Sample records for coupled transient analysis

  1. Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation

    NASA Technical Reports Server (NTRS)

    Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.

  2. An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems

    NASA Technical Reports Server (NTRS)

    Farhat, C.; Park, K. C.; Dubois-Pelerin, Y.

    1991-01-01

    An unconditionally stable second order accurate implicit-implicit staggered procedure for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the superiority of the proposed computational strategy to other conventional staggered procedures. Numerical examples of one and two-dimensional thermomechanical coupled problems demonstrate the accuracy of the proposed numerical solution algorithm.

  3. Integrated transient thermal-structural finite element analysis

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Wieting, A. R.; Tamma, K. K.

    1981-01-01

    An integrated thermal structural finite element approach for efficient coupling of transient thermal and structural analysis is presented. Integrated thermal structural rod and one dimensional axisymmetric elements considering conduction and convection are developed and used in transient thermal structural applications. The improved accuracy of the integrated approach is illustrated by comparisons with exact transient heat conduction elasticity solutions and conventional finite element thermal finite element structural analyses.

  4. Coupled loads analysis for Space Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Eldridge, J.

    1992-01-01

    Described here is a method for determining the transient response of, and the resultant loads in, a system exposed to predicted external forces. In this case, the system consists of four racks mounted on the inside of a space station resource node module (SSRNMO) which is mounted in the payload bay of the space shuttle. The predicted external forces are forcing functions which envelope worst case forces applied to the shuttle during liftoff and landing. This analysis, called a coupled loads analysis, is used to couple the payload and shuttle models together, determine the transient response of the system, and then recover payload loads, payload accelerations, and payload to shuttle interface forces.

  5. Transient loads analysis for space flight applications

    NASA Technical Reports Server (NTRS)

    Thampi, S. K.; Vidyasagar, N. S.; Ganesan, N.

    1992-01-01

    A significant part of the flight readiness verification process involves transient analysis of the coupled Shuttle-payload system to determine the low frequency transient loads. This paper describes a methodology for transient loads analysis and its implementation for the Spacelab Life Sciences Mission. The analysis is carried out using two major software tools - NASTRAN and an external FORTRAN code called EZTRAN. This approach is adopted to overcome some of the limitations of NASTRAN's standard transient analysis capabilities. The method uses Data Recovery Matrices (DRM) to improve computational efficiency. The mode acceleration method is fully implemented in the DRM formulation to recover accurate displacements, stresses, and forces. The advantages of the method are demonstrated through a numerical example.

  6. Transient thermal stresses of work roll by coupled thermoelasticity

    NASA Astrophysics Data System (ADS)

    Lai, W. B.; Chen, T. C.; Weng, C. I.

    1991-01-01

    A numerical method, based on a two-dimensional plane strain model, is developed to predict the transient responses (that include distributions of temperature, thermal deformation, and thermal stress) of work roll during strip rolling by coupled thermoelasticity. The method consists of discretizing the space domain of the problem by finite element method first, and then treating the time domain by implicit time integration techniques. In order to avoid the difficulty in analysis due to relative movement between work roll and its thermal boundary, the energy equation is formulated with respect to a fixed Eulerian reference frame. The effect of thermoelastic coupling term, that is generally disregarded in strip rolling, can be considered and assessed. The influences of some important process parameters, such as rotational speed of the roll and intensity of heat flux, on transient solutions are also included and discussed. Furthermore, since the stress history at any point of the roll in both transient and steady state could be accurately evaluated, it is available to perform the analysis of thermal fatigue for the roll by means of previous data.

  7. Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. L. Williamson

    A powerful multidimensional fuels performance analysis capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. This new capability is demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multipellet fuel rod, during both steady and transient operation. Comparisons are made between discrete andmore » smeared-pellet simulations. Computational results demonstrate the importance of a multidimensional, multipellet, fully-coupled thermomechanical approach. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermomechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less

  8. Optimization of coupled multiphysics methodology for safety analysis of pebble bed modular reactor

    NASA Astrophysics Data System (ADS)

    Mkhabela, Peter Tshepo

    The research conducted within the framework of this PhD thesis is devoted to the high-fidelity multi-physics (based on neutronics/thermal-hydraulics coupling) analysis of Pebble Bed Modular Reactor (PBMR), which is a High Temperature Reactor (HTR). The Next Generation Nuclear Plant (NGNP) will be a HTR design. The core design and safety analysis methods are considerably less developed and mature for HTR analysis than those currently used for Light Water Reactors (LWRs). Compared to LWRs, the HTR transient analysis is more demanding since it requires proper treatment of both slower and much longer transients (of time scale in hours and days) and fast and short transients (of time scale in minutes and seconds). There is limited operation and experimental data available for HTRs for validation of coupled multi-physics methodologies. This PhD work developed and verified reliable high fidelity coupled multi-physics models subsequently implemented in robust, efficient, and accurate computational tools to analyse the neutronics and thermal-hydraulic behaviour for design optimization and safety evaluation of PBMR concept The study provided a contribution to a greater accuracy of neutronics calculations by including the feedback from thermal hydraulics driven temperature calculation and various multi-physics effects that can influence it. Consideration of the feedback due to the influence of leakage was taken into account by development and implementation of improved buckling feedback models. Modifications were made in the calculation procedure to ensure that the xenon depletion models were accurate for proper interpolation from cross section tables. To achieve this, the NEM/THERMIX coupled code system was developed to create the system that is efficient and stable over the duration of transient calculations that last over several tens of hours. Another achievement of the PhD thesis was development and demonstration of full-physics, three-dimensional safety analysis methodology for the PBMR to provide reference solutions. Investigation of different aspects of the coupled methodology and development of efficient kinetics treatment for the PBMR were carried out, which accounts for all feedback phenomena in an efficient manner. The OECD/NEA PBMR-400 coupled code benchmark was used as a test matrix for the proposed investigations. The integrated thermal-hydraulics and neutronics (multi-physics) methods were extended to enable modeling of a wider range of transients pertinent to the PBMR. First, the effect of the spatial mapping schemes (spatial coupling) was studied and quantified for different types of transients, which resulted in implementation of improved mapping methodology based on user defined criteria. The second aspect that was studied and optimized is the temporal coupling and meshing schemes between the neutronics and thermal-hydraulics time step selection algorithms. The coupled code convergence was achieved supplemented by application of methods to accelerate it. Finally, the modeling of all feedback phenomena in PBMRs was investigated and a novel treatment of cross-section dependencies was introduced for improving the representation of cross-section variations. The added benefit was that in the process of studying and improving the coupled multi-physics methodology more insight was gained into the physics and dynamics of PBMR, which will help also to optimize the PBMR design and improve its safety. One unique contribution of the PhD research is the investigation of the importance of the correct representation of the three-dimensional (3-D) effects in the PBMR analysis. The performed studies demonstrated that explicit 3-D modeling of control rod movement is superior and removes the errors associated with the grey curtain (2-D homogenized) approximation.

  9. Enhancing the ABAQUS Thermomechanics Code to Simulate Steady and Transient Fuel Rod Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. L. Williamson; D. A. Knoll

    2009-09-01

    A powerful multidimensional fuels performance capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth , gap heat transfer, and gap/plenum gas behavior during irradiation. The various modeling capabilities are demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multi-pellet fuel rod, during both steady and transient operation. Computational results demonstrate the importancemore » of a multidimensional fully-coupled thermomechanics treatment. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermo-mechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less

  10. ANSYS simulation of the capacitance coupling of quartz tuning fork gyroscope

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Feng, Lihui; Zhao, Ke; Cui, Fang; Sun, Yu-nan

    2013-12-01

    Coupling error is one of the main error sources of the quartz tuning fork gyroscope. The mechanism of capacitance coupling error is analyzed in this article. Finite Element Method (FEM) is used to simulate the structure of the quartz tuning fork by ANSYS software. The voltage output induced by the capacitance coupling is simulated with the harmonic analysis and characteristics of electrical and mechanical parameters influenced by the capacitance coupling between drive electrodes and sense electrodes are discussed with the transient analysis.

  11. Coupled field effects in BWR stability simulations using SIMULATE-3K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, J.; Smith, K.; Hagrman, D.

    1996-12-31

    The SIMULATE-3K code is the transient analysis version of the Studsvik advanced nodal reactor analysis code, SIMULATE-3. Recent developments have focused on further broadening the range of transient applications by refinement of core thermal-hydraulic models and on comparison with boiling water reactor (BWR) stability measurements performed at Ringhals unit 1, during the startups of cycles 14 through 17.

  12. Coupling of TRAC-PF1/MOD2, Version 5.4.25, with NESTLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knepper, P.L.; Hochreiter, L.E.; Ivanov, K.N.

    1999-09-01

    A three-dimensional (3-D) spatial kinetics capability within a thermal-hydraulics system code provides a more correct description of the core physics during reactor transients that involve significant variations in the neutron flux distribution. Coupled codes provide the ability to forecast safety margins in a best-estimate manner. The behavior of a reactor core and the feedback to the plant dynamics can be accurately simulated. For each time step, coupled codes are capable of resolving system interaction effects on neutronics feedback and are capable of describing local neutronics effects caused by the thermal hydraulics and neutronics coupling. With the improvements in computational technology,more » modeling complex reactor behaviors with coupled thermal hydraulics and spatial kinetics is feasible. Previously, reactor analysis codes were limited to either a detailed thermal-hydraulics model with simplified kinetics or multidimensional neutron kinetics with a simplified thermal-hydraulics model. The authors discuss the coupling of the Transient Reactor Analysis Code (TRAC)-PF1/MOD2, Version 5.4.25, with the NESTLE code.« less

  13. The first-principle coupled calculations using TMCC and CFX for the pin-wise simulation of LWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L.; Wang, K.

    2012-07-01

    The coupling of neutronics and thermal-hydraulics plays an important role in the reactor safety, core design and operation of nuclear power facilities. This paper introduces the research on the coupling of Monte Carlo method and CFD method, specifically using TMCC and CFX. The methods of the coupling including the coupling approach, data transfer, mesh mapping and transient coupling scheme are studied firstly. The coupling of TMCC and CFX for the steady state calculations is studied and described for the single rod model and the 3 x 3 Rod Bundle model. The calculation results prove that the coupling method is feasiblemore » and the coupled calculation can be used for steady state calculations. However, the oscillation which occurs during the coupled calculation indicates that this method still needs to be improved for the accuracy. Then the coupling for the transient calculations is also studied and tested by two cases of the steady state and the lost of heat sink. The preliminary results of the transient coupled calculations indicates that the transient coupling with TMCC and CFX is able to simulate the transients but instabilities are occurring. It is also concluded that the transient coupling of TMCC and CFX needs to be improved due to the limitation of computational resource and the difference of time scales. (authors)« less

  14. Automated Loads Analysis System (ATLAS)

    NASA Technical Reports Server (NTRS)

    Gardner, Stephen; Frere, Scot; O’Reilly, Patrick

    2013-01-01

    ATLAS is a generalized solution that can be used for launch vehicles. ATLAS is used to produce modal transient analysis and quasi-static analysis results (i.e., accelerations, displacements, and forces) for the payload math models on a specific Shuttle Transport System (STS) flight using the shuttle math model and associated forcing functions. This innovation solves the problem of coupling of payload math models into a shuttle math model. It performs a transient loads analysis simulating liftoff, landing, and all flight events between liftoff and landing. ATLAS utilizes efficient and numerically stable algorithms available in MSC/NASTRAN.

  15. Stability of mixed time integration schemes for transient thermal analysis

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Lin, J. I.

    1982-01-01

    A current research topic in coupled-field problems is the development of effective transient algorithms that permit different time integration methods with different time steps to be used simultaneously in various regions of the problems. The implicit-explicit approach seems to be very successful in structural, fluid, and fluid-structure problems. This paper summarizes this research direction. A family of mixed time integration schemes, with the capabilities mentioned above, is also introduced for transient thermal analysis. A stability analysis and the computer implementation of this technique are also presented. In particular, it is shown that the mixed time implicit-explicit methods provide a natural framework for the further development of efficient, clean, modularized computer codes.

  16. Effects of self-coupling and asymmetric output on metastable dynamical transient firing patterns in arrays of neurons with bidirectional inhibitory coupling.

    PubMed

    Horikawa, Yo

    2016-04-01

    Metastable dynamical transient patterns in arrays of bidirectionally coupled neurons with self-coupling and asymmetric output were studied. First, an array of asymmetric sigmoidal neurons with symmetric inhibitory bidirectional coupling and self-coupling was considered and the bifurcations of its steady solutions were shown. Metastable dynamical transient spatially nonuniform states existed in the presence of a pair of spatially symmetric stable solutions as well as unstable spatially nonuniform solutions in a restricted range of the output gain of a neuron. The duration of the transients increased exponentially with the number of neurons up to the maximum number at which the spatially nonuniform steady solutions were stabilized. The range of the output gain for which they existed reduced as asymmetry in a sigmoidal output function of a neuron increased, while the existence range expanded as the strength of inhibitory self-coupling increased. Next, arrays of spiking neuron models with slow synaptic inhibitory bidirectional coupling and self-coupling were considered with computer simulation. In an array of Class 1 Hindmarsh-Rose type models, in which each neuron showed a graded firing rate, metastable dynamical transient firing patterns were observed in the presence of inhibitory self-coupling. This agreed with the condition for the existence of metastable dynamical transients in an array of sigmoidal neurons. In an array of Class 2 Bonhoeffer-van der Pol models, in which each neuron had a clear threshold between firing and resting, long-lasting transient firing patterns with bursting and irregular motion were observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Orbiter CCTV video signal noise analysis

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.; Blanke, L. R.; Pannett, R. F.

    1977-01-01

    The amount of steady state and transient noise which will couple to orbiter CCTV video signal wiring is predicted. The primary emphasis is on the interim system, however, some predictions are made concerning the operational system wiring in the cabin area. Noise sources considered are RF fields from on board transmitters, precipitation static, induced lightning currents, and induced noise from adjacent wiring. The most significant source is noise coupled to video circuits from associated circuits in common connectors. Video signal crosstalk is the primary cause of steady state interference, and mechanically switched control functions cause the largest induced transients.

  18. Transients in the synchronization of asymmetrically coupled oscillator arrays

    NASA Astrophysics Data System (ADS)

    Cantos, C. E.; Hammond, D. K.; Veerman, J. J. P.

    2016-09-01

    We consider the transient behavior of a large linear array of coupled linear damped harmonic oscillators following perturbation of a single element. Our work is motivated by modeling the behavior of flocks of autonomous vehicles. We first state a number of conjectures that allow us to derive an explicit characterization of the transients, within a certain parameter regime Ω. As corollaries we show that minimizing the transients requires considering non-symmetric coupling, and that within Ω the computed linear growth in N of the transients is independent of (reasonable) boundary conditions.

  19. Coupled wave model for large magnet coils

    NASA Technical Reports Server (NTRS)

    Gabriel, G. J.

    1980-01-01

    A wave coupled model based on field theory is evolved for analysis of fast electromagnetic transients on superconducting coils. It is expected to play a useful role in the design of protection methods against damage due to high voltages or any adverse effects that might arise from unintentional transients. The significant parameters of the coil are identified to be the turn to turn wave coupling coefficients and the travel time of an electromagnetic disturbance around a single turn. Unlike circuit theoretic inductor, the coil response evolves in discrete steps having durations equal to this travel time. It is during such intervals that high voltages are likely to occur. The model also bridges the gap between the low and high ends of the frequency spectrum.

  20. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.

  1. Fast transient analysis and first-stage collision-induced dissociation with the flowing atmospheric-pressure afterglow ionization source to improve analyte detection and identification.

    PubMed

    Shelley, Jacob T; Hieftje, Gary M

    2010-04-01

    The recent development of ambient desorption/ionization mass spectrometry (ADI-MS) has enabled fast, simple analysis of many different sample types. The ADI-MS sources have numerous advantages, including little or no required sample pre-treatment, simple mass spectra, and direct analysis of solids and liquids. However, problems of competitive ionization and limited fragmentation require sample-constituent separation, high mass accuracy, and/or tandem mass spectrometry (MS/MS) to detect, identify, and quantify unknown analytes. To maintain the inherent high throughput of ADI-MS, it is essential for the ion source/mass analyzer combination to measure fast transient signals and provide structural information. In the current study, the flowing atmospheric-pressure afterglow (FAPA) ionization source is coupled with a time-of-flight mass spectrometer (TOF-MS) to analyze fast transient signals (<500 ms FWHM). It was found that gas chromatography (GC) coupled with the FAPA source resulted in a reproducible (<5% RSD) and sensitive (detection limits of <6 fmol for a mixture of herbicides) system with analysis times of ca. 5 min. Introducing analytes to the FAPA in a transient was also shown to significantly reduce matrix effects caused by competitive ionization by minimizing the number and amount of constituents introduced into the ionization source. Additionally, MS/MS with FAPA-TOF-MS, enabling analyte identification, was performed via first-stage collision-induced dissociation (CID). Lastly, molecular and structural information was obtained across a fast transient peak by modulating the conditions that caused the first-stage CID.

  2. Summary of comparison and analysis of results from exercises 1 and 2 of the OECD PBMR coupled neutronics/thermal hydraulics transient benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkhabela, P.; Han, J.; Tyobeka, B.

    2006-07-01

    The Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) has accepted, through the Nuclear Science Committee (NSC), the inclusion of the Pebble-Bed Modular Reactor 400 MW design (PBMR-400) coupled neutronics/thermal hydraulics transient benchmark problem as part of their official activities. The scope of the benchmark is to establish a well-defined problem, based on a common given library of cross sections, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events through a set of multi-dimensional computational test problems. The benchmark includes three steady state exercises andmore » six transient exercises. This paper describes the first two steady state exercises, their objectives and the international participation in terms of organization, country and computer code utilized. This description is followed by a comparison and analysis of the participants' results submitted for these two exercises. The comparison of results from different codes allows for an assessment of the sensitivity of a result to the method employed and can thus help to focus the development efforts on the most critical areas. The two first exercises also allow for removing of user-related modeling errors and prepare core neutronics and thermal-hydraulics models of the different codes for the rest of the exercises in the benchmark. (authors)« less

  3. Steady-state and transient analysis of a squeeze film damper bearing for rotor stability

    NASA Technical Reports Server (NTRS)

    Barrett, L. E.; Gunter, E. J.

    1975-01-01

    A study of the steady-state and transient response of the squeeze film damper bearing is presented. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived. The bearing equivalent stiffness and damping coefficients are determined by steady-state equations. These coefficients are used to find the bearing configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The transient analysis of rotor-bearing systems is performed by coupling the bearing and journal equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included in the analysis. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed with emphasis on solving the system characteristic frequency equation and on producing stability maps. It is shown that for optimum stability and low force transmissability the squeeze bearing should operate at an eccentricity ratio epsilon 0.4.

  4. Evaluation of Transient Pin-Stress Requirements for Spacecraft Launching in Lightning Environments. Pain Free Analysis to Alleviate Those Pin Stress Headaches

    NASA Technical Reports Server (NTRS)

    Edwards, Paul; Terseck, Alex; Trout, Dawn

    2016-01-01

    Spacecraft are generally protected from direct lightning attachment by encapsulation within the payload fairing of a launch vehicle and the ground structures that exist at the launch site. Regardless of where lightning strikes, potentially damaging indirect effects prevail from the coupling of electromagnetic fields into a loop created by outer shield of the payload umbilical. The energy coupled into individual spacecraft circuits is dependent on the umbilical current drive, the cable transfer impedance and the source/ load circuitry, and the reference potential used. Lightning induced transient susceptibility of the spacecraft avionics needs to be fully understood in order to define realistic re-test criteria in the event of a lightning occurrence during the launch campaign. Use of standards such as RTCA/DO-160 & SAE 5412 has some applicability but do not represent the indirect environment adequately. This paper evaluates the launch pad environments, the measurement data available, and computer simulations to provide pain-free analysis to alleviate the transient pin-stress headaches for spacecraft launching in Lightning environments.

  5. Extensions of the MCNP5 and TRIPOLI4 Monte Carlo Codes for Transient Reactor Analysis

    NASA Astrophysics Data System (ADS)

    Hoogenboom, J. Eduard; Sjenitzer, Bart L.

    2014-06-01

    To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branchless collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3x3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3x3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail.

  6. Performance analysis of smart laminated composite plate integrated with distributed AFC material undergoing geometrically nonlinear transient vibrations

    NASA Astrophysics Data System (ADS)

    Shivakumar, J.; Ashok, M. H.; Khadakbhavi, Vishwanath; Pujari, Sanjay; Nandurkar, Santosh

    2018-02-01

    The present work focuses on geometrically nonlinear transient analysis of laminated smart composite plates integrated with the patches of Active fiber composites (AFC) using Active constrained layer damping (ACLD) as the distributed actuators. The analysis has been carried out using generalised energy based finite element model. The coupled electromechanical finite element model is derived using Von Karman type nonlinear strain displacement relations and a first-order shear deformation theory (FSDT). Eight-node iso-parametric serendipity elements are used for discretization of the overall plate integrated with AFC patch material. The viscoelastic constrained layer is modelled using GHM method. The numerical results shows the improvement in the active damping characteristics of the laminated composite plates over the passive damping for suppressing the geometrically nonlinear transient vibrations of laminated composite plates with AFC as patch material.

  7. Novel Analysis Software for Detecting and Classifying Ca2+ Transient Abnormalities in Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Penttinen, Kirsi; Siirtola, Harri; Àvalos-Salguero, Jorge; Vainio, Tiina; Juhola, Martti; Aalto-Setälä, Katriina

    2015-01-01

    Comprehensive functioning of Ca2+ cycling is crucial for excitation–contraction coupling of cardiomyocytes (CMs). Abnormal Ca2+ cycling is linked to arrhythmogenesis, which is associated with cardiac disorders and heart failure. Accordingly, we have generated spontaneously beating CMs from induced pluripotent stem cells (iPSC) derived from patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), which is an inherited and severe cardiac disease. Ca2+ cycling studies have revealed substantial abnormalities in these CMs. Ca2+ transient analysis performed manually lacks accepted analysis criteria, and has both low throughput and high variability. To overcome these issues, we have developed a software tool, AnomalyExplorer based on interactive visualization, to assist in the classification of Ca2+ transient patterns detected in CMs. Here, we demonstrate the usability and capability of the software, and we also compare the analysis efficiency to manual analysis. We show that AnomalyExplorer is suitable for detecting normal and abnormal Ca2+ transients; furthermore, this method provides more defined and consistent information regarding the Ca2+ abnormality patterns and cell line specific differences when compared to manual analysis. This tool will facilitate and speed up the analysis of CM Ca2+ transients, making it both more accurate and user-independent. AnomalyExplorer can be exploited in Ca2+ cycling analysis to study basic disease pathology and the effects of different drugs. PMID:26308621

  8. Novel Analysis Software for Detecting and Classifying Ca2+ Transient Abnormalities in Stem Cell-Derived Cardiomyocytes.

    PubMed

    Penttinen, Kirsi; Siirtola, Harri; Àvalos-Salguero, Jorge; Vainio, Tiina; Juhola, Martti; Aalto-Setälä, Katriina

    2015-01-01

    Comprehensive functioning of Ca2+ cycling is crucial for excitation-contraction coupling of cardiomyocytes (CMs). Abnormal Ca2+ cycling is linked to arrhythmogenesis, which is associated with cardiac disorders and heart failure. Accordingly, we have generated spontaneously beating CMs from induced pluripotent stem cells (iPSC) derived from patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), which is an inherited and severe cardiac disease. Ca2+ cycling studies have revealed substantial abnormalities in these CMs. Ca2+ transient analysis performed manually lacks accepted analysis criteria, and has both low throughput and high variability. To overcome these issues, we have developed a software tool, AnomalyExplorer based on interactive visualization, to assist in the classification of Ca2+ transient patterns detected in CMs. Here, we demonstrate the usability and capability of the software, and we also compare the analysis efficiency to manual analysis. We show that AnomalyExplorer is suitable for detecting normal and abnormal Ca2+ transients; furthermore, this method provides more defined and consistent information regarding the Ca2+ abnormality patterns and cell line specific differences when compared to manual analysis. This tool will facilitate and speed up the analysis of CM Ca2+ transients, making it both more accurate and user-independent. AnomalyExplorer can be exploited in Ca2+ cycling analysis to study basic disease pathology and the effects of different drugs.

  9. Analysis of redox additive-based overcharge protection for rechargeable lithium batteries

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Surampudi, S.; Attia, A. I.; Bankston, C. P.

    1991-01-01

    The overcharge condition in secondary lithium batteries employing redox additives for overcharge protection, has been theoretically analyzed in terms of a finite linear diffusion model. The analysis leads to expressions relating the steady-state overcharge current density and cell voltage to the concentration, diffusion coefficient, standard reduction potential of the redox couple, and interelectrode distance. The model permits the estimation of the maximum permissible overcharge rate for any chosen set of system conditions. Digital simulation of the overcharge experiment leads to numerical representation of the potential transients, and estimate of the influence of diffusion coefficient and interelectrode distance on the transient attainment of the steady state during overcharge. The model has been experimentally verified using 1,1-prime-dimethyl ferrocene as a redox additive. The analysis of the experimental results in terms of the theory allows the calculation of the diffusion coefficient and the formal potential of the redox couple. The model and the theoretical results may be exploited in the design and optimization of overcharge protection by the redox additive approach.

  10. Design and application of squeeze film dampers for turbomachinery stabilization

    NASA Technical Reports Server (NTRS)

    Gunter, E. J.; Barrett, L. E.; Allaire, P. E.

    1975-01-01

    The steady-state transient response of the squeeze film damper bearing was investigated. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived; the steady-state equations were used to determine the damper equivalent stiffness and damping coefficients. These coefficients are used to find the damper configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The effects of end seals and cavitated fluid film are included. The transient analysis of rotor-bearing systems was conducted by coupling the damping and rotor equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed.

  11. Understanding transient uncoupling induced synchronization through modified dynamic coupling

    NASA Astrophysics Data System (ADS)

    Ghosh, Anupam; Godara, Prakhar; Chakraborty, Sagar

    2018-05-01

    An important aspect of the recently introduced transient uncoupling scheme is that it induces synchronization for large values of coupling strength at which the coupled chaotic systems resist synchronization when continuously coupled. However, why this is so is an open problem? To answer this question, we recall the conventional wisdom that the eigenvalues of the Jacobian of the transverse dynamics measure whether a trajectory at a phase point is locally contracting or diverging with respect to another nearby trajectory. Subsequently, we go on to highlight a lesser appreciated fact that even when, under the corresponding linearised flow, the nearby trajectory asymptotically diverges away, its distance from the reference trajectory may still be contracting for some intermediate period. We term this phenomenon transient decay in line with the phenomenon of the transient growth. Using these facts, we show that an optimal coupling region, i.e., a region of the phase space where coupling is on, should ideally be such that at any of the constituent phase point either the maximum of the real parts of the eigenvalues is negative or the magnitude of the positive maximum is lesser than that of the negative minimum. We also invent and employ a modified dynamics coupling scheme—a significant improvement over the well-known dynamic coupling scheme—as a decisive tool to justify our results.

  12. Shock-induced thermal wave propagation and response analysis of a viscoelastic thin plate under transient heating loads

    NASA Astrophysics Data System (ADS)

    Li, Chenlin; Guo, Huili; Tian, Xiaogeng

    2018-04-01

    This paper is devoted to the thermal shock analysis for viscoelastic materials under transient heating loads. The governing coupled equations with time-delay parameter and nonlocal scale parameter are derived based on the generalized thermo-viscoelasticity theory. The problem of a thin plate composed of viscoelastic material, subjected to a sudden temperature rise at the boundary plane, is solved by employing Laplace transformation techniques. The transient responses, i.e. temperature, displacement, stresses, heat flux as well as strain, are obtained and discussed. The effects of time-delay and nonlocal scale parameter on the transient responses are analyzed and discussed. It can be observed that: the propagation of thermal wave is dynamically smoothed and changed with the variation of time-delay; while the displacement, strain, and stress can be rapidly reduced by nonlocal scale parameter, which can be viewed as an important indicator for predicting the stiffness softening behavior for viscoelastic materials.

  13. Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP

    NASA Technical Reports Server (NTRS)

    Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.

    1994-01-01

    Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.

  14. The detector response matrices of the burst and transient source experiment (BATSE) on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Pendleton, Geoffrey N.; Paciesas, William S.; Mallozzi, Robert S.; Koshut, Tom M.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Horack, John M.; Lestrade, John Patrick

    1995-01-01

    The detector response matrices for the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO) are described, including their creation and operation in data analysis. These response matrices are a detailed abstract representation of the gamma-ray detectors' operating characteristics that are needed for data analysis. They are constructed from an extensive set of calibration data coupled with a complex geometry electromagnetic cascade Monte Carlo simulation code. The calibration tests and simulation algorithm optimization are described. The characteristics of the BATSE detectors in the spacecraft environment are also described.

  15. An anisotropic thermomechanical damage model for concrete at transient elevated temperatures.

    PubMed

    Baker, Graham; de Borst, René

    2005-11-15

    The behaviour of concrete at elevated temperatures is important for an assessment of integrity (strength and durability) of structures exposed to a high-temperature environment, in applications such as fire exposure, smelting plants and nuclear installations. In modelling terms, a coupled thermomechanical analysis represents a generalization of the computational mechanics of fracture and damage. Here, we develop a fully coupled anisotropic thermomechanical damage model for concrete under high stress and transient temperature, with emphasis on the adherence of the model to the laws of thermodynamics. Specific analytical results are given, deduced from thermodynamics, of a novel interpretation on specific heat, evolution of entropy and the identification of the complete anisotropic, thermomechanical damage surface. The model is also shown to be stable in a computational sense, and to satisfy the laws of thermodynamics.

  16. Three dimensional transient multifield analysis of a piezoelectric micropump for drug delivery system for treatment of hemodynamic dysfunctions.

    PubMed

    Nisar, Asim; Afzulpurkar, Nitin; Tuantranont, Adisorn; Mahaisavariya, Banchong

    2008-12-01

    In this paper, we present design of a transdermal drug delivery system for treatment of cardiovascular or hemodynamic disorders such as hypertension. The system comprises of integrated control electronics and microelectromechanical system devices such as micropump, micro blood pressure sensor and microneedle array. The objective is to overcome the limitations of oral therapy such as variable absorption profile and the need for frequent dosing, by fabricating a safe, reliable and cost effective transdermal drug delivery system to dispense various pharmacological agents through the skin for treatment of hemodynamic dysfunction such as hypertension. Moreover, design optimization of a piezoelectrically actuated valveless micropump is presented for the drug delivery system. Because of the complexity in analysis of piezoelectric micropump, which involves structural and fluid field couplings in a complicated geometrical arrangement, finite element (FE) numerical simulation rather than an analytical system has been used. The behavior of the piezoelectric actuator with biocompatible polydimethylsiloxane membrane is first studied by conducting piezoelectric analysis. Then the performance of the valveless micropump is analyzed by building a three dimensional electric-solid-fluid model of the micropump. The effect of geometrical dimensions on micropump characteristics and efficiency of nozzle/diffuser elements of a valveless micropump is investigated in the transient analysis using multiple code coupling method. The deformation results of the membrane using multifield code coupling analysis are in good agreement with analytical as well as results of single code coupling analysis of a piezoelectric micropump. The analysis predicts that to enhance the performance of the micropump, diffuser geometrical dimensions such as diffuser length, diffuser neck width and diffuser angle need to be optimized. Micropump flow rate is not strongly affected at low excitation frequencies from 10 to 200 Hz. The excitation voltage is the more dominant factor that affects the flow rate of the micropump as compared with the excitation frequency. However, at extremely high excitation frequencies beyond 8,000 Hz, the flow rate drops as the membrane exhibits multiple bending peaks which is not desirable for fluid flow. Following the extensive numerical analysis, actual fabrication and performance characterization of the micropump is presented. The performance of the micropump is characterized in terms of piezoelectric actuator deflection and micropump flow rate at different operational parameters. The set of multifield simulations and experimental measurement of deflection and flow rate at varying voltage and excitation frequency is a significant advance in the study of the electric-solid-fluid coupled field effects as it allows transient, three dimensional piezoelectric and fluid analysis of the micropump thereby facilitating a more realistic multifield analysis. The results of the present study will also help to conduct relevant strength duration tests of integrated drug delivery device with micropump and microneedle array in future.

  17. GPS measurements and finite element modeling of the earthquake cycle along the Middle America subduction zone

    NASA Astrophysics Data System (ADS)

    Correa Mora, Francisco

    We model surface deformation recorded by GPS stations along the Pacific coasts of Mexico and Central America to estimate the magnitude of and variations in frictional locking (coupling) along the subduction interface, toward a better understanding of seismic hazard in these earthquake-prone regions. The first chapter describes my primary analysis technique, namely 3-dimensional finite element modeling to simulate subduction and bounded-variable inversions that optimize the fit to the GPS velocity field. This chapter focuses on and describes interseismic coupling of the Oaxaca segment of the Mexican subduction zone and introduces an analysis of transient slip events that occur in this region. Our results indicate that coupling is strong within the rupture zone of the 1978 Ms=7.8 Oaxaca earthquake, making this region a potential source of a future large earthquake. However, we also find evidence for significant variations in coupling on the subduction interface over distances of only tens of kilometers, decreasing toward the outer edges of the 1978 rupture zone. In the second chapter, we study in more detail some of the slow slip events that have been recorded over a broad area of southern Mexico, with emphasis on their space-time behavior. Our modeling indicates that transient deformation beneath southern Mexico is focused in two distinct slip patches mostly located downdip from seismogenic areas beneath Guerrero and Oaxaca. Contrary to conclusions reached in one previous study, we find no evidence for a spatial or temporal correlation between transient slip that occurs in these two widely separated source regions. Finally, chapter three extends the modeling techniques to new GPS data in Central America, where subduction coupling is weak or zero and the upper plate deformation is much more complex than in Mexico. Cocos-Caribbean plate convergence beneath El Salvador and Nicaragua is accompanied by subduction and trench-parallel motion of the forearc. Our GPS velocity field is best fit by a model with strongly locked faults in the volcanic arc and a weakly coupled subduction interface. In this region, seismic hazards associated with subduction are therefore low, but are high for crustal faults, in agreement with records of historic seismicity.

  18. Preliminary Results for the OECD/NEA Time Dependent Benchmark using Rattlesnake, Rattlesnake-IQS and TDKENO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeHart, Mark D.; Mausolff, Zander; Weems, Zach

    2016-08-01

    One goal of the MAMMOTH M&S project is to validate the analysis capabilities within MAMMOTH. Historical data has shown limited value for validation of full three-dimensional (3D) multi-physics methods. Initial analysis considered the TREAT startup minimum critical core and one of the startup transient tests. At present, validation is focusing on measurements taken during the M8CAL test calibration series. These exercises will valuable in preliminary assessment of the ability of MAMMOTH to perform coupled multi-physics calculations; calculations performed to date are being used to validate the neutron transport solver Rattlesnake\\cite{Rattlesnake} and the fuels performance code BISON. Other validation projects outsidemore » of TREAT are available for single-physics benchmarking. Because the transient solution capability of Rattlesnake is one of the key attributes that makes it unique for TREAT transient simulations, validation of the transient solution of Rattlesnake using other time dependent kinetics benchmarks has considerable value. The Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) has recently developed a computational benchmark for transient simulations. This benchmark considered both two-dimensional (2D) and 3D configurations for a total number of 26 different transients. All are negative reactivity insertions, typically returning to the critical state after some time.« less

  19. Transient tracer applications in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Stöven, T.; Tanhua, T.; Hoppema, M.

    2014-10-01

    Transient tracers can be used to constrain the Inverse-Gaussian transit time distribution (IG-TTD) and thus provide information about ocean ventilation. Individual transient tracers have different time and application ranges which are defined by their atmospheric history (chronological transient tracers) or their decay rate (radioactive transient tracers). The classification ranges from tracers for highly ventilated water masses, e.g. sulfur hexafluoride (SF6), the decay of Tritium (δ3H) and to some extent also dichlorodifluoromethane (CFC-12) to tracers for less ventilated deep ocean basins, e.g. CFC-12, Argon-39 (39Ar) and radiocarbon (14C). The IG-TTD can be empirically constrained by using transient tracer couples with sufficiently different input functions. Each tracer couple has specific characteristics which influence the application limit of the IG-TTD. Here we provide an overview of commonly used transient tracer couples and their validity areas within the IG-TTD by using the concept of tracer age differences (TAD). New measured CFC-12 and SF6 data from a section along 10° E in the Southern Ocean in 2012 are presented. These are combined with a similar data set of 1998 along 6° E in the Southern Ocean as well as with 39Ar data from the early 1980s in the western Atlantic Ocean and the Weddell Sea for investigating the application limit of the IG-TTD and to analyze changes in ventilation in the Southern Ocean. We found that the IG-TTD can be constrained south to 46° S which corresponds to the Subantarctic Front (SAF) denoting the application limit. The constrained IG-TTD north of the SAF shows a slight increase in mean ages between 1998 and 2012 in the upper 1200 m between 42-46° S. The absence of SF6 inhibits ventilation analyses below this depth. The time lag analysis between the 1998 and 2012 data shows an increase in ventilation down to 1000 m and a steady ventilation between 2000 m-bottom south of the SAF between 51-55° S.

  20. Derivation of improved load transformation matrices for launchers-spacecraft coupled analysis, and direct computation of margins of safety

    NASA Technical Reports Server (NTRS)

    Klein, M.; Reynolds, J.; Ricks, E.

    1989-01-01

    Load and stress recovery from transient dynamic studies are improved upon using an extended acceleration vector in the modal acceleration technique applied to structural analysis. Extension of the normal LTM (load transformation matrices) stress recovery to automatically compute margins of safety is presented with an application to the Hubble space telescope.

  1. Trajectory-based heating analysis for the European Space Agency/Rosetta Earth Return Vehicle

    NASA Technical Reports Server (NTRS)

    Henline, William D.; Tauber, Michael E.

    1994-01-01

    A coupled, trajectory-based flowfield and material thermal-response analysis is presented for the European Space Agency proposed Rosetta comet nucleus sample return vehicle. The probe returns to earth along a hyperbolic trajectory with an entry velocity of 16.5 km/s and requires an ablative heat shield on the forebody. Combined radiative and convective ablating flowfield analyses were performed for the significant heating portion of the shallow ballistic entry trajectory. Both quasisteady ablation and fully transient analyses were performed for a heat shield composed of carbon-phenolic ablative material. Quasisteady analysis was performed using the two-dimensional axisymmetric codes RASLE and BLIMPK. Transient computational results were obtained from the one-dimensional ablation/conduction code CMA. Results are presented for heating, temperature, and ablation rate distributions over the probe forebody for various trajectory points. Comparison of transient and quasisteady results indicates that, for the heating pulse encountered by this probe, the quasisteady approach is conservative from the standpoint of predicted surface recession.

  2. MANTLE: A finite element program for the thermal-mechanical analysis of mantle convection. A user's manual with examples

    NASA Technical Reports Server (NTRS)

    Thompson, E.

    1979-01-01

    A finite element computer code for the analysis of mantle convection is described. The coupled equations for creeping viscous flow and heat transfer can be solved for either a transient analysis or steady-state analysis. For transient analyses, either a control volume or a control mass approach can be used. Non-Newtonian fluids with viscosities which have thermal and spacial dependencies can be easily incorporated. All material parameters may be written as function statements by the user or simply specified as constants. A wide range of boundary conditions, both for the thermal analysis and the viscous flow analysis can be specified. For steady-state analyses, elastic strain rates can be included. Although this manual was specifically written for users interested in mantle convection, the code is equally well suited for analysis in a number of other areas including metal forming, glacial flows, and creep of rock and soil.

  3. Rapid sodium signaling couples glutamate uptake to breakdown of ATP in perivascular astrocyte endfeet.

    PubMed

    Langer, Julia; Gerkau, Niklas J; Derouiche, Amin; Kleinhans, Christian; Moshrefi-Ravasdjani, Behrouz; Fredrich, Michaela; Kafitz, Karl W; Seifert, Gerald; Steinhäuser, Christian; Rose, Christine R

    2017-02-01

    Perivascular endfeet of astrocytes are highly polarized compartments that ensheath blood vessels and contribute to the blood-brain barrier. They experience calcium transients with neuronal activity, a phenomenon involved in neurovascular coupling. Endfeet also mediate the uptake of glucose from the blood, a process stimulated in active brain regions. Here, we demonstrate in mouse hippocampal tissue slices that endfeet undergo sodium signaling upon stimulation of glutamatergic synaptic activity. Glutamate-induced endfeet sodium transients were diminished by TFB-TBOA, suggesting that they were generated by sodium-dependent glutamate uptake. With local agonist application, they could be restricted to endfeet and immunohistochemical analysis revealed prominent expression of glutamate transporters GLAST and GLT-1 localized towards the neuropil vs. the vascular side of endfeet. Endfeet sodium signals spread at an apparent maximum velocity of ∼120 µm/s and directly propagated from stimulated into neighboring endfeet; this spread was omitted in Cx30/Cx43 double-deficient mice. Sodium transients resulted in elevation of intracellular magnesium, indicating a decrease in intracellular ATP. In summary, our results establish that excitatory synaptic activity and stimulation of glutamate uptake in astrocytes trigger transient sodium increases in perivascular endfeet which rapidly spread through gap junctions into neighboring endfeet and cause a reduction of intracellular ATP. The newly discovered endfeet sodium signaling thereby represents a fast, long-lived and inter-cellularly acting indicator of synaptic activity at the blood-brain barrier, which likely constitutes an important component of neuro-metabolic coupling in the brain. GLIA 2017;65:293-308. © 2016 Wiley Periodicals, Inc.

  4. Transient Signal Distortion and Coupling in Multilayer Multiconductor MIC Microstrips

    DTIC Science & Technology

    1990-05-22

    cess.ar1 and identify by block number) I FIELD GROUP I $..)3-{; ’\\0-:: Transient signals, distortion, dispersion, microstrip J 1 i nes , multi...printed circuit design; complex microstrip structures {multiple lines and/or dielectric layers), coupling between lines, distortion of non -periodic...signals on complex structures, and a new method to control coupling on multilayer structures, as well as presenting numerical results for each of these

  5. Solving Modal Equations of Motion with Initial Conditions Using MSC/NASTRAN DMAP. Part 2; Coupled Versus Uncoupled Integration

    NASA Technical Reports Server (NTRS)

    Barnett, Alan R.; Ibrahim, Omar M.; Abdallah, Ayman A.; Sullivan, Timothy L.

    1993-01-01

    By utilizing MSC/NASTRAN DMAP (Direct Matrix Abstraction Program) in an existing NASA Lewis Research Center coupled loads methodology, solving modal equations of motion with initial conditions is possible using either coupled (Newmark-Beta) or uncoupled (exact mode superposition) integration available within module TRD1. Both the coupled and newly developed exact mode superposition methods have been used to perform transient analyses of various space systems. However, experience has shown that in most cases, significant time savings are realized when the equations of motion are integrated using the uncoupled solver instead of the coupled solver. Through the results of a real-world engineering analysis, advantages of using the exact mode superposition methodology are illustrated.

  6. Analysis of internal flows relative to the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Cooperative efforts between the Lockheed-Huntsville Computational Mechanics Group and the NASA-MSFC Computational Fluid Dynamics staff has resulted in improved capabilities for numerically simulating incompressible flows generic to the Space Shuttle Main Engine (SSME). A well established and documented CFD code was obtained, modified, and applied to laminar and turbulent flows of the type occurring in the SSME Hot Gas Manifold. The INS3D code was installed on the NASA-MSFC CRAY-XMP computer system and is currently being used by NASA engineers. Studies to perform a transient analysis of the FPB were conducted. The COBRA/TRAC code is recommended for simulating the transient flow of oxygen into the LOX manifold. Property data for modifying the code to represent LOX/GOX flow was collected. The ALFA code was developed and recommended for representing the transient combustion in the preburner. These two codes will couple through the transient boundary conditions to simulate the startup and/or shutdown of the fuel preburner. A study, NAS8-37461, is currently being conducted to implement this modeling effort.

  7. Sensitivity Equation Derivation for Transient Heat Transfer Problems

    NASA Technical Reports Server (NTRS)

    Hou, Gene; Chien, Ta-Cheng; Sheen, Jeenson

    2004-01-01

    The focus of the paper is on the derivation of sensitivity equations for transient heat transfer problems modeled by different discretization processes. Two examples will be used in this study to facilitate the discussion. The first example is a coupled, transient heat transfer problem that simulates the press molding process in fabrication of composite laminates. These state equations are discretized into standard h-version finite elements and solved by a multiple step, predictor-corrector scheme. The sensitivity analysis results based upon the direct and adjoint variable approaches will be presented. The second example is a nonlinear transient heat transfer problem solved by a p-version time-discontinuous Galerkin's Method. The resulting matrix equation of the state equation is simply in the form of Ax = b, representing a single step, time marching scheme. A direct differentiation approach will be used to compute the thermal sensitivities of a sample 2D problem.

  8. Transient simulation of hydropower station with consideration of three-dimensional unsteady flow in turbine

    NASA Astrophysics Data System (ADS)

    Huang, W. D.; Fan, H. G.; Chen, N. X.

    2012-11-01

    To study the interaction between the transient flow in pipe and the unsteady turbulent flow in turbine, a coupled model of the transient flow in the pipe and three-dimensional unsteady flow in the turbine is developed based on the method of characteristics and the fluid governing equation in the accelerated rotational relative coordinate. The load-rejection process under the closing of guide vanes of the hydraulic power plant is simulated by the coupled method, the traditional transient simulation method and traditional three-dimensional unsteady flow calculation method respectively and the results are compared. The pressure, unit flux and rotation speed calculated by three methods show a similar change trend. However, because the elastic water hammer in the pipe and the pressure fluctuation in the turbine have been considered in the coupled method, the increase of pressure at spiral inlet is higher and the pressure fluctuation in turbine is stronger.

  9. Searching for optical transients in real-time : the RAPTOR experiment /.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vestrand, W. T.; Borozdin, K. N.; Brumby, Steven P.

    2002-01-01

    A rich, but relatively unexplored, region in optical astronomy is the study of transients with durations of less than a day. We describe a wide-field optical monitoring system, RAPTOR, which is designed to identify and make follow-up observations of optical transients in real-time. The system is composed of an array of telescopes that continuously monitor about 1500 square degrees of the sky for transients down to about 12' magnitude in 60 seconds and a central fovea telescope that can reach 16{approx}m' agnitude in 60 seconds. Coupled to the telescope array is a real-time data analysis pipeline that is designed tomore » identify transients on timescales of seconds. In a manner analogous to human vision, the entire array is mounted on a rapidly slewing robotic mount so that the fovea of the array can be rapidly directed at transients identified by the wide-field system. The goal of the project is to develop a ground-based optical system that can reliably identify transients in real-time and ultimately generate alerts with source locations to enable follow-up observations wilh other, larger, telescopes.« less

  10. Fluid-solid coupled simulation of the ignition transient of solid rocket motor

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Liu, Peijin; He, Guoqiang

    2015-05-01

    The first period of the solid rocket motor operation is the ignition transient, which involves complex processes and, according to chronological sequence, can be divided into several stages, namely, igniter jet injection, propellant heating and ignition, flame spreading, chamber pressurization and solid propellant deformation. The ignition transient should be comprehensively analyzed because it significantly influences the overall performance of the solid rocket motor. A numerical approach is presented in this paper for simulating the fluid-solid interaction problems in the ignition transient of the solid rocket motor. In the proposed procedure, the time-dependent numerical solutions of the governing equations of internal compressible fluid flow are loosely coupled with those of the geometrical nonlinearity problems to determine the propellant mechanical response and deformation. The well-known Zeldovich-Novozhilov model was employed to model propellant ignition and combustion. The fluid-solid coupling interface data interpolation scheme and coupling instance for different computational agents were also reported. Finally, numerical validation was performed, and the proposed approach was applied to the ignition transient of one laboratory-scale solid rocket motor. For the application, the internal ballistics were obtained from the ground hot firing test, and comparisons were made. Results show that the integrated framework allows us to perform coupled simulations of the propellant ignition, strong unsteady internal fluid flow, and propellant mechanical response in SRMs with satisfactory stability and efficiency and presents a reliable and accurate solution to complex multi-physics problems.

  11. Transient nutation electron spin resonance spectroscopy on spin-correlated radical pairs: A theoretical analysis on hyperfine-induced nuclear modulations

    NASA Astrophysics Data System (ADS)

    Weber, Stefan; Kothe, Gerd; Norris, James R.

    1997-04-01

    The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave radiation. Here, the laser pulse merely defines the beginning of the microwave-induced coherent time evolution. This second mechanism appears the most consistent with current experimental observations.

  12. Metastable dynamical patterns and their stabilization in arrays of bidirectionally coupled sigmoidal neurons

    NASA Astrophysics Data System (ADS)

    Horikawa, Yo

    2013-12-01

    Transient patterns in a bistable ring of bidirectionally coupled sigmoidal neurons were studied. When the system had a pair of spatially uniform steady solutions, the instability of unstable spatially nonuniform steady solutions decreased exponentially with the number of neurons because of the symmetry of the system. As a result, transient spatially nonuniform patterns showed dynamical metastability: Their duration increased exponentially with the number of neurons and the duration of randomly generated patterns obeyed a power-law distribution. However, these metastable dynamical patterns were easily stabilized in the presence of small variations in coupling strength. Metastable rotating waves and their pinning in the presence of asymmetry in the direction of coupling and the disappearance of metastable dynamical patterns due to asymmetry in the output function of a neuron were also examined. Further, in a two-dimensional array of neurons with nearest-neighbor coupling, intrinsically one-dimensional patterns were dominant in transients, and self-excitation in these neurons affected the metastable dynamical patterns.

  13. Coherent fifth-order visible-infrared spectroscopies: ultrafast nonequilibrium vibrational dynamics in solution.

    PubMed

    Lynch, Michael S; Slenkamp, Karla M; Cheng, Mark; Khalil, Munira

    2012-07-05

    Obtaining a detailed description of photochemical reactions in solution requires measuring time-evolving structural dynamics of transient chemical species on ultrafast time scales. Time-resolved vibrational spectroscopies are sensitive probes of molecular structure and dynamics in solution. In this work, we develop doubly resonant fifth-order nonlinear visible-infrared spectroscopies to probe nonequilibrium vibrational dynamics among coupled high-frequency vibrations during an ultrafast charge transfer process using a heterodyne detection scheme. The method enables the simultaneous collection of third- and fifth-order signals, which respectively measure vibrational dynamics occurring on electronic ground and excited states on a femtosecond time scale. Our data collection and analysis strategy allows transient dispersed vibrational echo (t-DVE) and dispersed pump-probe (t-DPP) spectra to be extracted as a function of electronic and vibrational population periods with high signal-to-noise ratio (S/N > 25). We discuss how fifth-order experiments can measure (i) time-dependent anharmonic vibrational couplings, (ii) nonequilibrium frequency-frequency correlation functions, (iii) incoherent and coherent vibrational relaxation and transfer dynamics, and (iv) coherent vibrational and electronic (vibronic) coupling as a function of a photochemical reaction.

  14. Dynamical analysis for a scalar-tensor model with kinetic and nonminimal couplings

    NASA Astrophysics Data System (ADS)

    Granda, L. N.; Jimenez, D. F.

    We study the autonomous system for a scalar-tensor model of dark energy with nonminimal coupling to curvature and nonminimal kinetic coupling to the Einstein tensor. The critical points describe important stable asymptotic scenarios including quintessence, phantom and de Sitter attractor solutions. Two functional forms for the coupling functions and the scalar potential were considered: power-law and exponential functions of the scalar field. For power-law couplings, the restrictions on stable quintessence and phantom solutions lead to asymptotic freedom regime for the gravitational interaction. For the exponential functions, the stable quintessence, phantom or de Sitter solutions allow asymptotic behaviors where the effective Newtonian coupling can reach either the asymptotic freedom regime or constant value. The phantom solutions could be realized without appealing to ghost degrees of freedom. Transient inflationary and radiation dominated phases can also be described.

  15. Image analysis of single event transient effects on charge coupled devices irradiated by protons

    NASA Astrophysics Data System (ADS)

    Wang, Zujun; Xue, Yuanyuan; Liu, Jing; He, Baoping; Yao, Zhibin; Ma, Wuying

    2016-10-01

    The experiments of single event transient (SET) effects on charge coupled devices (CCDs) irradiated by protons are presented. The radiation experiments have been carried out at the accelerator protons with the energy of 200 MeV and 60 MeV.The incident angles of the protons are at 30°and 90° to the plane of the CCDs to obtain the images induced by the perpendicularity and incline incident angles. The experimental results show that the typical characteristics of the SET effects on a CCD induced by protons are the generation of a large number of dark signal spikes (hot pixels) which are randomly distributed in the "pepper" images. The characteristics of SET effects are investigated by observing the same imaging area at different time during proton radiation to verify the transient effects. The experiment results also show that the number of dark signal spikes increases with increasing integration time during proton radiation. The CCDs were tested at on-line and off-line to distinguish the radiation damage induced by the SET effects or DD effects. The mechanisms of the dark signal spike generation induced by the SET effects and the DD effects are demonstrated respectively.

  16. Dynamic characteristics of motor-gear system under load saltations and voltage transients

    NASA Astrophysics Data System (ADS)

    Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.

    2018-02-01

    In this paper, a dynamic model of a motor-gear system is proposed. The model combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system. The external excitations including voltage transients and load saltations, as well as the internal excitations such as spatial effects, magnetic circuits topology and material nonlinearity in the motor, and time-varying mesh stiffness and damping in the planetary gear system are considered in the proposed model. Then, the simulation results are compared with those predicted by the electromechanical model containing a dynamic motor model with constant inductances. The comparison showed that the electromechanical system model with the PNM motor model yields more reasonable results than the electromechanical system model with the lumped-parameter electric machine. It is observed that electromechanical coupling effect can induce additional and severe gear vibrations. In addition, the external conditions, especially the voltage transients, will dramatically affect the dynamic characteristics of the electromechanical system. Finally, some suggestions are offered based on this analysis for improving the performance and reliability of the electromechanical system.

  17. Transient airload computer analysis for simulating wind induced impulsive noise conditions of a hovering helicopter rotor

    NASA Technical Reports Server (NTRS)

    Hall, G. F.

    1975-01-01

    A numerical analysis was developed to determine the airloads on helicopter rotors operating under near-hovering flight conditions capable of producing impulsive noise. A computer program was written in which the solutions for the rotor tip vortex geometry, inflow, aeroelastic response, and airloads are solved in a coupled manner at sequential time steps, with or without the influence of an imposed steady ambient wind or transient gust. The program was developed for future applications in which predicted airloads would be incorporated in an acoustics analysis to attempt to predict and analyze impulsive noise (blade slap). The analysis was applied to a hovering full-scale rotor for which impulsive noise was recorded in the presence of ambient wind. The predicted tip vortex coordinates are in reasonable agreement with the test data, and the blade airload solutions converged to a periodic behavior for an imposed steady ambient wind conditions.

  18. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  19. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.

  20. Analysis of the STS-126 Flow Control Valve Structural-Acoustic Coupling Failure

    NASA Technical Reports Server (NTRS)

    Jones, Trevor M.; Larko, Jeffrey M.; McNelis, Mark E.

    2010-01-01

    During the Space Transportation System mission STS-126, one of the main engine's flow control valves incurred an unexpected failure. A section of the valve broke off during liftoff. It is theorized that an acoustic mode of the flowing fuel, coupled with a structural mode of the valve, causing a high cycle fatigue failure. This report documents the analysis efforts conducted in an attempt to verify this theory. Hand calculations, computational fluid dynamics, and finite element methods are all implemented and analyses are performed using steady-state methods in addition to transient analysis methods. The conclusion of the analyses is that there is a critical acoustic mode that aligns with a structural mode of the valve

  1. MODFLOW–LGR—Documentation of ghost node local grid refinement (LGR2) for multiple areas and the boundary flow and head (BFH2) package

    USGS Publications Warehouse

    Mehl, Steffen W.; Hill, Mary C.

    2013-01-01

    This report documents the addition of ghost node Local Grid Refinement (LGR2) to MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-difference groundwater flow model. LGR2 provides the capability to simulate groundwater flow using multiple block-shaped higher-resolution local grids (a child model) within a coarser-grid parent model. LGR2 accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the grid-refinement interface boundary. LGR2 can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined groundwater systems. Traditional one-way coupled telescopic mesh refinement methods can have large, often undetected, inconsistencies in heads and fluxes across the interface between two model grids. The iteratively coupled ghost-node method of LGR2 provides a more rigorous coupling in which the solution accuracy is controlled by convergence criteria defined by the user. In realistic problems, this can result in substantially more accurate solutions and require an increase in computer processing time. The rigorous coupling enables sensitivity analysis, parameter estimation, and uncertainty analysis that reflects conditions in both model grids. This report describes the method used by LGR2, evaluates accuracy and performance for two-and three-dimensional test cases, provides input instructions, and lists selected input and output files for an example problem. It also presents the Boundary Flow and Head (BFH2) Package, which allows the child and parent models to be simulated independently using the boundary conditions obtained through the iterative process of LGR2.

  2. MODFLOW-2005, the U.S. Geological Survey modular ground-water model - documentation of shared node local grid refinement (LGR) and the boundary flow and head (BFH) package

    USGS Publications Warehouse

    Mehl, Steffen W.; Hill, Mary C.

    2006-01-01

    This report documents the addition of shared node Local Grid Refinement (LGR) to MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-difference ground-water flow model. LGR provides the capability to simulate ground-water flow using one block-shaped higher-resolution local grid (a child model) within a coarser-grid parent model. LGR accomplishes this by iteratively coupling two separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundary. LGR can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined ground-water systems. Traditional one-way coupled telescopic mesh refinement (TMR) methods can have large, often undetected, inconsistencies in heads and fluxes across the interface between two model grids. The iteratively coupled shared-node method of LGR provides a more rigorous coupling in which the solution accuracy is controlled by convergence criteria defined by the user. In realistic problems, this can result in substantially more accurate solutions and require an increase in computer processing time. The rigorous coupling enables sensitivity analysis, parameter estimation, and uncertainty analysis that reflects conditions in both model grids. This report describes the method used by LGR, evaluates LGR accuracy and performance for two- and three-dimensional test cases, provides input instructions, and lists selected input and output files for an example problem. It also presents the Boundary Flow and Head (BFH) Package, which allows the child and parent models to be simulated independently using the boundary conditions obtained through the iterative process of LGR.

  3. Synchronizing noisy nonidentical oscillators by transient uncoupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandon, Aditya, E-mail: adityat@iitk.ac.in; Mannattil, Manu, E-mail: mmanu@iitk.ac.in; Schröder, Malte, E-mail: malte@nld.ds.mpg.de

    2016-09-15

    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the unitsmore » stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.« less

  4. High Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Lanteri, S.; Maman, N.; Piperno, S.; Gumaste, U.

    1994-01-01

    In order to predict the dynamic response of a flexible structure in a fluid flow, the equations of motion of the structure and the fluid must be solved simultaneously. In this paper, we present several partitioned procedures for time-integrating this focus coupled problem and discuss their merits in terms of accuracy, stability, heterogeneous computing, I/O transfers, subcycling, and parallel processing. All theoretical results are derived for a one-dimensional piston model problem with a compressible flow, because the complete three-dimensional aeroelastic problem is difficult to analyze mathematically. However, the insight gained from the analysis of the coupled piston problem and the conclusions drawn from its numerical investigation are confirmed with the numerical simulation of the two-dimensional transient aeroelastic response of a flexible panel in a transonic nonlinear Euler flow regime.

  5. Transient behaviour of EIT and EIA in an optical-radio two-photon coupling configuration

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Yang, Zicai; Shang, Yaxuan

    2012-11-01

    Both electromagnetically induced absorption (EIA) and transparency (EIT) can be obtained in a modified quasi-lambda four level system consisting of an optical-radio two-photon coupling field and a probing field. A physical account of EIA and EIT is given in terms of a transient state picture in this paper. It can be seen that the optical coupling field in this quasi-lambda four level system has a crucial effect on the forming of EIA and EIT. An EIA is observed under a resonant optical coupling and it evolves into an EIT when there is a detuning.

  6. Summary of the CTS Transient Event Counter data after one year of operation. [Communication Technology Satellite

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Klinect, V. W.; Gore, J. V.

    1977-01-01

    The environmental charging of satellite surfaces during geomagnetic substorms is the apparent cause of a significant number of anomalous events occurring on geosynchronous satellites since the early 1970's. Electromagnetic pulses produced in connection with the differential charging of insulators can couple into the spacecraft harness and cause electronic switching anomalies. An investigation conducted to determine the response of the spacecraft surfaces to substorm particle fluxes makes use of a harness transient detector. The harness transient detector, called the Transient Event Counter (TEC) was built and integrated into the Canadian-American Communications Technology Satellite (CTS). A description of the TEC and its operational characteristics is given and the obtained data are discussed. The data show that the satellite surfaces appear to be charged to the point that discharges occur and that the discharge-induced transients couple into the wire harnesses.

  7. Three-dimensional time-dependent STAR reactor kinetics analyses coupled with RETRAN and MCPWR system response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.

    1989-11-01

    The operation of a nuclear power plant must be regularly supported by various reactor dynamics and thermal-hydraulic analyses, which may include final safety analysis report (FSAR) design-basis calculations, and conservative and best-estimate analyses. The development and improvement of computer codes and analysis methodologies provide many advantages, including the ability to evaluate the effect of modeling simplifications and assumptions made in previous reactor kinetics and thermal-hydraulic calculations. This paper describes the results of using the RETRAN, MCPWR, and STAR codes in a tandem, predictive-corrective manner for three pressurized water reactor (PWR) transients: (a) loss of feedwater (LOF) anticipated transient without scrammore » (ATWS), (b) station blackout ATWS, and (c) loss of total reactor coolant system (RCS) flow with a scram.« less

  8. Development of a three-dimensional transient code for reactivity-initiated events of BWRs (boiling water reactors) - Models and code verifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uematsu, Hitoshi; Yamamoto, Toru; Izutsu, Sadayuki

    1990-06-01

    A reactivity-initiated event is a design-basis accident for the safety analysis of boiling water reactors. It is defined as a rapid transient of reactor power caused by a reactivity insertion of over $1.0 due to a postulated drop or abnormal withdrawal of the control rod from the core. Strong space-dependent feedback effects are associated with the local power increase due to control rod movement. A realistic treatment of the core status in a transient by a code with a detailed core model is recommended in evaluating this event. A three-dimensional transient code, ARIES, has been developed to meet this need.more » The code simulates the event with three-dimensional neutronics, coupled with multichannel thermal hydraulics, based on a nonequilibrium separated flow model. The experimental data obtained in reactivity accident tests performed with the SPERT III-E core are used to verify the entire code, including thermal-hydraulic models.« less

  9. Aeroelastic Modeling of a Nozzle Startup Transient

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2014-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,

  10. JPS heater and sensor lightning qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.

  11. Reduced-Order Aerothermoelastic Analysis of Hypersonic Vehicle Structures

    NASA Astrophysics Data System (ADS)

    Falkiewicz, Nathan J.

    Design and simulation of hypersonic vehicles require consideration of a variety of disciplines due to the highly coupled nature of the flight regime. In order to capture all of the potential effects on vehicle dynamics, one must consider the aerodynamics, aerodynamic heating, heat transfer, and structural dynamics as well as the interactions between these disciplines. The problem is further complicated by the large computational expense involved in capturing all of these effects and their interactions in a full-order sense. While high-fidelity modeling techniques exist for each of these disciplines, the use of such techniques is computationally infeasible in a vehicle design and control system simulation setting for such a highly coupled problem. Early in the design stage, many iterations of analyses may need to be carried out as the vehicle design matures, thus requiring quick analysis turnaround time. Additionally, the number of states used in the analyses must be small enough to allow for efficient control simulation and design. As a result, alternatives to full-order models must be considered. This dissertation presents a fully coupled, reduced-order aerothermoelastic framework for the modeling and analysis of hypersonic vehicle structures. The reduced-order transient thermal solution is a modal solution based on the proper orthogonal decomposition. The reduced-order structural dynamic model is based on projection of the equations of motion onto a Ritz modal subspace that is identified a priori. The reduced-order models are assembled into a time-domain aerothermoelastic simulation framework which uses a partitioned time-marching scheme to account for the disparate time scales of the associated physics. The aerothermoelastic modeling framework is outlined and the formulations associated with the unsteady aerodynamics, aerodynamic heating, transient thermal, and structural dynamics are outlined. Results demonstrate the accuracy of the reduced-order transient thermal and structural dynamic models under variation in boundary conditions and flight conditions. The framework is applied to representative hypersonic vehicle control surface structures and a variety of studies are conducted to assess the impact of aerothermoelastic effects on hypersonic vehicle dynamics. The results presented in this dissertation demonstrate the ability of the proposed framework to perform efficient aerothermoelastic analysis.

  12. Development of Probabilistic Life Prediction Methodologies and Testing Strategies for MEMS and CMC's

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2003-01-01

    This effort is to investigate probabilistic life prediction methodologies for ceramic matrix composites and MicroElectroMechanical Systems (MEMS) and to analyze designs that determine stochastic properties of MEMS. For CMC's this includes a brief literature survey regarding lifing methodologies. Also of interest for MEMS is the design of a proper test for the Weibull size effect in thin film (bulge test) specimens. The Weibull size effect is a consequence of a stochastic strength response predicted from the Weibull distribution. Confirming that MEMS strength is controlled by the Weibull distribution will enable the development of a probabilistic design methodology for MEMS - similar to the GRC developed CARES/Life program for bulk ceramics. A main objective of this effort is to further develop and verify the ability of the Ceramics Analysis and Reliability Evaluation of Structures/Life (CARES/Life) code to predict the time-dependent reliability of MEMS structures subjected to multiple transient loads. A second set of objectives is to determine the applicability/suitability of the CARES/Life methodology for CMC analysis, what changes would be needed to the methodology and software, and if feasible, run a demonstration problem. Also important is an evaluation of CARES/Life coupled to the ANSYS Probabilistic Design System (PDS) and the potential of coupling transient reliability analysis to the ANSYS PDS.

  13. Computation of Coupled Thermal-Fluid Problems in Distributed Memory Environment

    NASA Technical Reports Server (NTRS)

    Wei, H.; Shang, H. M.; Chen, Y. S.

    2001-01-01

    The thermal-fluid coupling problems are very important to aerospace and engineering applications. Instead of analyzing heat transfer and fluid flow separately, this study merged two well-accepted engineering solution methods, SINDA for thermal analysis and FDNS for fluid flow simulation, into a unified multi-disciplinary thermal fluid prediction method. A fully conservative patched grid interface algorithm for arbitrary two-dimensional and three-dimensional geometry has been developed. The state-of-the-art parallel computing concept was used to couple SINDA and FDNS for the communication of boundary conditions through PVM (Parallel Virtual Machine) libraries. Therefore, the thermal analysis performed by SINDA and the fluid flow calculated by FDNS are fully coupled to obtain steady state or transient solutions. The natural convection between two thick-walled eccentric tubes was calculated and the predicted results match the experiment data perfectly. A 3-D rocket engine model and a real 3-D SSME geometry were used to test the current model, and the reasonable temperature field was obtained.

  14. electromagnetics, eddy current, computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gartling, David

    TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.

  15. High-speed digital imaging of cytosolic Ca2+ and contraction in single cardiomyocytes.

    PubMed

    O'Rourke, B; Reibel, D K; Thomas, A P

    1990-07-01

    A charge-coupled device (CCD) camera, with the capacity for simultaneous spatially resolved photon counting and rapid frame transfer, was utilized for high-speed digital image collection from an inverted epifluorescence microscope. The unique properties of the CCD detector were applied to an analysis of cell shortening and the Ca2+ transient from fluorescence images of fura-2-loaded [corrected] cardiomyocytes. On electrical stimulation of the cell, a series of sequential subimages was collected and used to create images of Ca2+ within the cell during contraction. The high photosensitivity of the camera, combined with a detector-based frame storage technique, permitted collection of fluorescence images 10 ms apart. This rate of image collection was sufficient to resolve the rapid events of contraction, e.g., the upstroke of the Ca2+ transient (less than 40 ms) and the time to peak shortening (less than 80 ms). The technique was used to examine the effects of beta-adrenoceptor activation, fura-2 load, and stimulus frequency on cytosolic Ca2+ transients and contractions of single cardiomyocytes. beta-Adrenoceptor stimulation resulted in pronounced increases in peak Ca2+, maximal rates of rise and decay of Ca2+, extent of shortening, and maximal velocities of shortening and relaxation. Raising the intracellular load of fura-2 had little effect on the rising phase of Ca2+ or the extent of shortening but extended the duration of the Ca2+ transient and contraction. In related experiments utilizing differential-interference contrast microscopy, the same technique was applied to visualize sarcomere dynamics in contracting cells. This newly developed technique is a versatile tool for analyzing the Ca2+ transient and mechanical events in studies of excitation-contraction coupling in cardiomyocytes.

  16. Leap Frog and Time Step Sub-Cycle Scheme for Coupled Neutronics and Thermal-Hydraulic Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.

    2002-07-01

    As the result of the advancing TCP/IP based inter-process communication technology, more and more legacy thermal-hydraulic codes have been coupled with neutronics codes to provide best-estimate capabilities for reactivity related reactor transient analysis. Most of the coupling schemes are based on closely coupled serial or parallel approaches. Therefore, the execution of the coupled codes usually requires significant CPU time, when a complicated system is analyzed. Leap Frog scheme has been used to reduce the run time. The extent of the decoupling is usually determined based on a trial and error process for a specific analysis. It is the intent ofmore » this paper to develop a set of general criteria, which can be used to invoke the automatic Leap Frog algorithm. The algorithm will not only provide the run time reduction but also preserve the accuracy. The criteria will also serve as the base of an automatic time step sub-cycle scheme when a sudden reactivity change is introduced and the thermal-hydraulic code is marching with a relatively large time step. (authors)« less

  17. Theoretical analysis of a new class of optical bistability due to noncoherent coupling within a twin-laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuszelewicz, R.; Oudar, J.L.

    1987-04-01

    A new class of optical bistable devices, relying on the mutual quenching of two identical lasers, is theoretically analyzed. Conditions for achieving adequate competition between an external injected beam and the intracavity field through a noncoherent coupling (NCC) are discussed. Steady-state and transient behaviours are analyzed and lead to fast electrical or optical switching ( <100 ps ) and low commutation energy ( <10 pH). High efficiency, compactness, and technological compatibility with other integrated devices are expected. In addition, the emissive properties of these devices should considerably simplify their use in cascaded configurations.

  18. Transient dynamics of a nonlinear magneto-optical rotation

    NASA Astrophysics Data System (ADS)

    Grewal, Raghwinder Singh; Pustelny, S.; Rybak, A.; Florkowski, M.

    2018-04-01

    We analyze nonlinear magneto-optical rotation (NMOR) in rubidium vapor subjected to a continuously scanned magnetic field. By varying the magnetic-field sweep rate, a transition from traditionally observed dispersivelike NMOR signals (low sweep rate) to oscillating signals (higher sweep rates) is demonstrated. The transient oscillatory behavior is studied versus light and magnetic-field parameters, revealing a strong dependence of the signals on magnetic sweep rate and light intensity. The experimental results are supported with density-matrix calculations, which enable quantitative analysis of the effect. Fitting of the signals simulated versus different parameters with a theoretically motivated curve reveals the presence of oscillatory and static components in the signals. The components depend differently on the system parameters, which suggests their distinct nature. The investigations provide insight into the dynamics of ground-state coherence generation and enable application of NMOR in detection of transient spin couplings.

  19. High Energy Follow-up Study of Gravitational Wave Transients

    NASA Astrophysics Data System (ADS)

    Barker, Brandon L.; Patricelli, Barbara

    2018-01-01

    As second-generation gravitational wave interferometers, such as Advanced Virgo and Advanced LIGO, reach their design sensitivities, a new lens into our universe will become available. Many of the most violent and energetic events in the cosmos, in particular the merger of compact objects and core collapse supernovae, are sources of gravitational waves and are also believed to be connected with Gamma Ray Bursts. Joint observations of electromagnetic and gravitational wave signals will provide an ideal opportunity to study the physics of these transient events and their progenitors. In particular, gamma ray observatories such as Fermi, coupled with precise sky lo- calization, will be crucial to observe the high energy electromagnetic counterparts to gravitational wave signals. We constructed joint binary neutron star and gamma ray burst detection rate estimates using an analysis pipeline and report on the results of this analysis.

  20. Transient Characteristics of a Fluidic Device for Circulatory Jet Flow.

    PubMed

    Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu; Dau, Van Thanh

    2018-03-13

    In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis.

  1. Transient Characteristics of a Fluidic Device for Circulatory Jet Flow

    PubMed Central

    Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu

    2018-01-01

    In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis. PMID:29534014

  2. Application of ATHLET/DYN3D coupled codes system for fast liquid metal cooled reactor steady state simulation

    NASA Astrophysics Data System (ADS)

    Ivanov, V.; Samokhin, A.; Danicheva, I.; Khrennikov, N.; Bouscuet, J.; Velkov, K.; Pasichnyk, I.

    2017-01-01

    In this paper the approaches used for developing of the BN-800 reactor test model and for validation of coupled neutron-physic and thermohydraulic calculations are described. Coupled codes ATHLET 3.0 (code for thermohydraulic calculations of reactor transients) and DYN3D (3-dimensional code of neutron kinetics) are used for calculations. The main calculation results of reactor steady state condition are provided. 3-D model used for neutron calculations was developed for start reactor BN-800 load. The homogeneous approach is used for description of reactor assemblies. Along with main simplifications, the main reactor BN-800 core zones are described (LEZ, MEZ, HEZ, MOX, blankets). The 3D neutron physics calculations were provided with 28-group library, which is based on estimated nuclear data ENDF/B-7.0. Neutron SCALE code was used for preparation of group constants. Nodalization hydraulic model has boundary conditions by coolant mass-flow rate for core inlet part, by pressure and enthalpy for core outlet part, which can be chosen depending on reactor state. Core inlet and outlet temperatures were chosen according to reactor nominal state. The coolant mass flow rate profiling through the core is based on reactor power distribution. The test thermohydraulic calculations made with using of developed model showed acceptable results in coolant mass flow rate distribution through the reactor core and in axial temperature and pressure distribution. The developed model will be upgraded in future for different transient analysis in metal-cooled fast reactors of BN type including reactivity transients (control rods withdrawal, stop of the main circulation pump, etc.).

  3. A transient fully coupled climate-ice-sheet simulation of the last glacial inception

    NASA Astrophysics Data System (ADS)

    Lofverstrom, M.; Otto-Bliesner, B. L.; Lipscomb, W. H.; Fyke, J. G.; Marshall, S.; Sacks, B.; Brady, E. C.

    2017-12-01

    The last glacial inception occurred around 115 ka, following a relative minimum in the Northern Hemisphere summer insolation. It is believed that small and spatially separated ice caps initially formed in the high elevation regions of northern Canada, Scandinavia, and along the Siberian Arctic coast. These ice caps subsequently migrated down in the valleys where they coalesced and formed the initial seeds of the large coherent ice masses that covered the northern parts of the North American and Eurasian continents over most of the last glacial cycle. Sea level records show that the initial growth period lasted for about 10 kyrs, and the resulting ice sheets may have lowered the global sea level by as much as 30 to 50 meters. Here we examine the transient climate system evolution over the period between 118 and 110 ka, using the fully coupled Community Earth System Model, version 2 (CESM2). This model features a two-way coupled high-resolution (4x4 km) ice-sheet component (Community Ice Sheet model, version 2; CISM2) that simulates ice sheets as an interactive component of the climate system. We impose a transient forcing protocol where the greenhouse gas concentrations and the orbital parameters follow the nominal year in the simulation; the model topography is also dynamically evolving in order to reflect changes in ice elevation throughout the simulation. The analysis focuses on how the climate system evolves over this time interval, with a special focus on glacial inception in the high-latitude continents. Results will highlight how the evolving ice sheets compare to data and previous model based reconstructions.

  4. The dynamics of a flexible bladed disc on a flexible rotor in a two-rotor system

    NASA Technical Reports Server (NTRS)

    Gallardo, V. C.; Stallone, M. J.

    1984-01-01

    This paper describes the development of the analysis of the transient dynamic response of a bladed disk on a flexible rotor. The rotating flexible bladed disk is considered as a module in a complete turbine engine structure. The analysis of the flexible bladed disk (FBD) module is developed for the non-equilibrated one-diameter axial mode. The FBD motion is considered as a sum of two standing axial waves constrained to the rotor. The FBD is coupled inertially and gyroscopically to its rotor support, and indirectly through connecting elements, to the adjacent rotor and/or other supporting structures. Incorporated in the basic Turbine Engine Transient Response Analysis program (TETRA), the FBD module is demonstrated with a two-rotor model where the FBD can be excited into resonance by an unbalance in the adjacent rotor and at a frequency equal to the differential rotor speed. The FBD module also allows the analysis of two flexible bladed disks in the same rotor.

  5. Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Palfi, Tamas; Reh, Stefan

    2005-01-01

    Analytical techniques have progressively become more sophisticated, and now we can consider the probabilistic nature of the entire space of random input variables on the lifetime reliability of brittle structures. This was demonstrated with NASA s CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code combined with the commercially available ANSYS/Probabilistic Design System (ANSYS/PDS), a probabilistic analysis tool that is an integral part of the ANSYS finite-element analysis program. ANSYS/PDS allows probabilistic loads, component geometry, and material properties to be considered in the finite-element analysis. CARES/Life predicts the time dependent probability of failure of brittle material structures under generalized thermomechanical loading--such as that found in a turbine engine hot-section. Glenn researchers coupled ANSYS/PDS with CARES/Life to assess the effects of the stochastic variables of component geometry, loading, and material properties on the predicted life of the component for fully transient thermomechanical loading and cyclic loading.

  6. Two-Flux and Green's Function Method for Transient Radiative Transfer in a Semi-Transparent Layer

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1995-01-01

    A method using a Green's function is developed for computing transient temperatures in a semitransparent layer by using the two-flux method coupled with the transient energy equation. Each boundary of the layer is exposed to a hot or cold radiative environment, and is heated or cooled by convection. The layer refractive index is larger than one, and the effect of internal reflections is included with the boundaries assumed diffuse. The analysis accounts for internal emission, absorption, heat conduction, and isotropic scattering. Spectrally dependent radiative properties are included, and transient results are given to illustrate two-band spectral behavior with optically thin and thick bands. Transient results using the present Green's function method are verified for a gray layer by comparison with a finite difference solution of the exact radiative transfer equations; excellent agreement is obtained. The present method requires only moderate computing times and incorporates isotropic scattering without additional complexity. Typical temperature distributions are given to illustrate application of the method by examining the effect of strong radiative heating on one side of a layer with convective cooling on the other side, and the interaction of strong convective heating with radiative cooling from the layer interior.

  7. Temperature evolution during compaction of pharmaceutical powders.

    PubMed

    Zavaliangos, Antonios; Galen, Steve; Cunningham, John; Winstead, Denita

    2008-08-01

    A numerical approach to the prediction of temperature evolution in tablet compaction is presented here. It is based on a coupled thermomechanical finite element analysis and a calibrated Drucker-Prager Cap model. This approach is capable of predicting transient temperatures during compaction, which cannot be assessed by experimental techniques due to inherent test limitations. Model predictions are validated with infrared (IR) temperature measurements of the top tablet surface after ejection and match well with experiments. The dependence of temperature fields on speed and degree of compaction are naturally captured. The estimated transient temperatures are maximum at the end of compaction at the center of the tablet and close to the die wall next to the powder/die interface.

  8. Blade loss transient dynamics analysis with flexible bladed disk

    NASA Technical Reports Server (NTRS)

    Gallardo, V. C.; Black, G.; Bach, L.; Cline, S.; Storace, A.

    1983-01-01

    The transient dynamic response of a flexible bladed disk on a flexible rotor in a two rotor system is formulated by modal synthesis and a Lagrangian approach. Only the nonequilibrated one diameter flexible mode is considered for the flexible bladed disk, while the two flexible rotors are represented by their normal modes. The flexible bladed disk motion is modeled as a combination of two one diameter standing waves, and is coupled inertially and gyroscopically to the flexible rotors. Application to a two rotor model shows that a flexible bladed disk on one rotor can be driven into resonance by an unbalance in the other rotor, and at a frequency equal to the difference in the rotor speeds.

  9. Substructure coupling in the frequency domain

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Frequency domain analysis was found to be a suitable method for determining the transient response of systems subjected to a wide variety of loads. However, since a large number of calculations are performed within the discrete frequency loop, the method loses it computational efficiency if the loads must be represented by a large number of discrete frequencies. It was also discovered that substructure coupling in the frequency domain work particularly well for analyzing structural system with a small number of interface and loaded degrees of freedom. It was discovered that substructure coupling in the frequency domain can lead to an efficient method of obtaining natural frequencies of undamped structures. It was also found that the damped natural frequencies of a system may be determined using frequency domain techniques.

  10. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implementmore » a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.

    An inductively coupled plasma distance-of-flight mass spectrometer (ICP-DOFMS) has been coupled with laser-ablation (LA) sample introduction for the elemental analysis of solids. ICP-DOFMS is well suited for the analysis of laser-generated aerosols because it offers both high-speed mass analysis and simultaneous multi-elemental detection. Here, we evaluate the analytical performance of the LA-ICP-DOFMS instrument, equipped with a microchannel plate-based imaging detector, for the measurement of steady-state LA signals, as well as transient signals produced from single LA events. Steady-state detection limits are 1 mg g1, and absolute single-pulse LA detection limits are 200 fg for uranium; the system is shown capablemore » of performing time-resolved single-pulse LA analysis. By leveraging the benefits of simultaneous multi-elemental detection, we also attain a good shot-to-shot reproducibility of 6% relative standard deviation (RSD) and isotope-ratio precision of 0.3% RSD with a 10 s integration time.« less

  12. Transient combustion in hybrid rockets

    NASA Astrophysics Data System (ADS)

    Karabeyoglu, Mustafa Arif

    1998-09-01

    Hybrid rockets regained interest recently as an alternative chemical propulsion system due to their advantages over the solid and liquid systems that are currently in use. Development efforts on hybrids revealed two important problem areas: (1) low frequency instabilities and (2) slow transient response. Both of these are closely related to the transient behavior which is a poorly understood aspect of hybrid operation. This thesis is mainly involved with a theoretical study of transient combustion in hybrid rockets. We follow the methodology of identifying and modeling the subsystems of the motor such as the thermal lags in the solid, boundary layer combustion and chamber gasdynamics from a dynamic point of view. We begin with the thermal lag in the solid which yield the regression rate for any given wall heat flux variation. Interesting phenomena such as overshooting during throttling and the amplification and phase lead regions in the frequency domain are discovered. Later we develop a quasi-steady transient hybrid combustion model supported with time delays for the boundary layer processes. This is integrated with the thermal lag system to obtain the thermal combustion (TC) coupled response. The TC coupled system with positive delays generated low frequency instabilities. The scaling of the instabilities are in good agreement with actual motor test data. Finally, we formulate a gasdynamic model for the hybrid chamber which successfully resolves the filling/emptying and longitudinal acoustic behavior of the motor. The TC coupled system is later integrated to the gasdynamic model to obtain the overall response (TCG coupled system) of gaseous oxidizer motors with stiff feed systems. Low frequency instabilities were also encountered for the TCG coupled system. Apart from the transient investigations, the regression rate behavior of liquefying hybrid propellants such as solid cryogenic materials are also studied. The theory is based on the possibility of enhancement of regression rate by the entrainment mass transfer from a liquid layer formed on the fuel surface. The predicted regression rates are in good agreement with the cryogenic experimental findings obtained recently at Edwards Airforce Base with a frozen pentane and gaseous oxygen system.

  13. Non-equilibrium transport and spin dynamics in single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Moldoveanu, V.; Dinu, I. V.; Tanatar, B.

    2015-11-01

    The time-dependent transport through single-molecule magnets (SMM) coupled to magnetic or non-magnetic electrodes is studied in the framework of the generalized Master equation (GME) method. We calculate the transient currents which develop when the molecule is smoothly coupled to the source and drain electrodes. The signature of the electrically induced magnetic switching on these transient currents is investigated. Our simulations show that the magnetic switching of the molecular spin can be read indirectly from the transient currents if one lead is magnetic and it is much faster if the leads have opposite spin polarizations. We identify effects of the transverse anisotropy on the dynamics of molecular states.

  14. Dynamic Coupling Between Respiratory and Cardiovascular System

    NASA Astrophysics Data System (ADS)

    Censi, Federica; Calcagnini, Giovanni; Cerutti, Sergio

    The analysis of non-linear dynamics of the coupling among interacting quantities can be very useful for understanding the cardiorespiratory and cardiovascular control mechanisms. In this chapter RP is used to detect and quantify the degree of non-linear coupling between respiration and spontaneous rhythms of both heart rate and blood pressure variability signals. RQA turned out to be suitable for a quantitative evaluation of the observed coupling patterns among rhythms, both in simulated and real data, providing different degrees of coupling. The results from the simulated data showed that the increased degree of coupling between the signals was marked by the increase of PR and PD, and by the decrease of ER. When the RQA was applied to experimental data, PD and ER turned out to be the most significant variables, compared to PR. A remarkable finding is the detection of transient 1:2 PL episodes between respiration and cardiovascular variability signals. This phenomenon can be associated to a sub-harmonic synchronization between the two main rhythms of HR and BP variability series.

  15. Regional business cycle synchronization through expectations

    NASA Astrophysics Data System (ADS)

    Onozaki, Tamotsu; Yanagita, Tatsuo; Kaizoji, Taisei; Toyabe, Kazutaka

    2007-09-01

    This paper provides an example in which regional business cycles may synchronize via producers’ expectations, even though there is no interregional trade, by means of a system of globally coupled, noninvertible maps. We concentrate on the dependence of the dynamics on a parameter η which denotes the inverse of price elasticity of demand. Simulation results show that several phases (the short transient, the complete asynchronous, the long transient and the intermediate transient) appear one after another as η increases. In the long transient phase, the intermittent clustering process with a long chaotic transient appears repeatedly.

  16. Dynamic analysis of flexible rotor-bearing systems using a modal approach

    NASA Technical Reports Server (NTRS)

    Choy, K. C.; Gunter, E. J.; Barrett, L. E.

    1978-01-01

    The generalized dynamic equations of motion were obtained by the direct stiffness method for multimass flexible rotor-bearing systems. The direct solution of the equations of motion is illustrated on a simple 3-mass system. For complex rotor-bearing systems, the direct solution of the equations becomes very difficult. The transformation of the equations of motion into modal coordinates can greatly simplify the computation for the solution. The use of undamped and damped system mode shapes in the transformation are discussed. A set of undamped critical speed modes is used to transform the equations of motion into a set of coupled modal equations of motion. A rapid procedure for computing stability, steady state unbalance response, and transient response of the rotor-bearing system is presented. Examples of the application of this modal approach are presented. The dynamics of the system is further investigated with frequency spectrum analysis of the transient response.

  17. Benchmarking of Improved DPAC Transient Deflagration Analysis Code

    DOE PAGES

    Laurinat, James E.; Hensel, Steve J.

    2017-09-27

    The deflagration pressure analysis code (DPAC) has been upgraded for use in modeling hydrogen deflagration transients. The upgraded code is benchmarked using data from vented hydrogen deflagration tests conducted at the HYDRO-SC Test Facility at the University of Pisa. DPAC originally was written to calculate peak pressures for deflagrations in radioactive waste storage tanks and process facilities at the Savannah River Site. Upgrades include the addition of a laminar flame speed correlation for hydrogen deflagrations and a mechanistic model for turbulent flame propagation, incorporation of inertial effects during venting, and inclusion of the effect of water vapor condensation on vesselmore » walls. In addition, DPAC has been coupled with chemical equilibrium with applications (CEA), a NASA combustion chemistry code. The deflagration tests are modeled as end-to-end deflagrations. As a result, the improved DPAC code successfully predicts both the peak pressures during the deflagration tests and the times at which the pressure peaks.« less

  18. Benchmarking of Improved DPAC Transient Deflagration Analysis Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurinat, James E.; Hensel, Steve J.

    The deflagration pressure analysis code (DPAC) has been upgraded for use in modeling hydrogen deflagration transients. The upgraded code is benchmarked using data from vented hydrogen deflagration tests conducted at the HYDRO-SC Test Facility at the University of Pisa. DPAC originally was written to calculate peak pressures for deflagrations in radioactive waste storage tanks and process facilities at the Savannah River Site. Upgrades include the addition of a laminar flame speed correlation for hydrogen deflagrations and a mechanistic model for turbulent flame propagation, incorporation of inertial effects during venting, and inclusion of the effect of water vapor condensation on vesselmore » walls. In addition, DPAC has been coupled with chemical equilibrium with applications (CEA), a NASA combustion chemistry code. The deflagration tests are modeled as end-to-end deflagrations. As a result, the improved DPAC code successfully predicts both the peak pressures during the deflagration tests and the times at which the pressure peaks.« less

  19. Finite Element Method Applied to Fuse Protection Design

    NASA Astrophysics Data System (ADS)

    Li, Sen; Song, Zhiquan; Zhang, Ming; Xu, Liuwei; Li, Jinchao; Fu, Peng; Wang, Min; Dong, Lin

    2014-03-01

    In a poloidal field (PF) converter module, fuse protection is of great importance to ensure the safety of the thyristors. The fuse is pre-selected in a traditional way and then verified by finite element analysis. A 3D physical model is built by ANSYS software to solve the thermal-electric coupled problem of transient process in case of external fault. The result shows that this method is feasible.

  20. Thermo-economic analysis of a trigeneration HCPVT power plant

    NASA Astrophysics Data System (ADS)

    Selviaridis, Angelos; Burg, Brian R.; Wallerand, Anna Sophia; Maréchal, François; Michel, Bruno

    2015-09-01

    The increasing need for electricity and heat in a growing global economy must be combined with CO2 emissions reduction, in order to limit the human influence on the environment. This calls for energy-efficient and cost-competitive renewable energy systems that are able to satisfy both pressing needs. A High-Concentration Photovoltaic Thermal (HCPVT) system is a cogeneration concept that shows promising potential in delivering electricity and heat in an efficient and cost-competitive manner. This study investigates the transient behavior of the HCPVT system and presents a thermo-economic analysis of a MW-scale trigeneration (electricity, heating and cooling) power plant. Transient simulations show a fast dynamic response of the system which results in short heat-up intervals, maximizing heat recuperation throughout the day. Despite suboptimal coupling between demand and supply, partial heat utilization throughout the year and low COP of commercially available devices for the conversion of heat into cooling, the thermo-economic analysis shows promising economic behavior, with a levelized cost of electricity close to current retail prices.

  1. Simulation of sodium pumps for nuclear power plants. Technical report 1 Oct 80-1 May 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boadu, H.O.

    1981-05-01

    A single-phase pump model for analysis of transients in sodium cooled fast breeder nuclear power plants has been presented, where homologous characteristic curves are used to predict the behavior of the pump during operating transients. The pump model has been incorporated into BRENDA and FFTF; two system cases to simulate Clinch River Breeder Reactor Plant (CRBRP) and the Fast Flux Test Facility (FFTF) respectively. Two simulation test results for BRENDA which is one loop representation of a three loop plant have been presented. They are: (1) Primary pump coastdown to natural circulation coupled with scram failure, and (2) 10 percentmore » deviation of primary speed with plant controllers incorporated.« less

  2. Mining the Sky for Explosive Optical Transients with Both Eyes Open

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.; Borozdin, K.; Casperson, D. J.; Davidoff, S.; Davis, H.; Fenimore, E.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.

    2004-09-01

    While it has been known for centuries that the optical sky is variable, monitoring the sky for optical transients with durations as short as a minute is an area of astronomical research that remains largely unexplored. Prompt follow-up observations of Gamma Ray Bursts have shown that bright, explosive, optical transients exist. However, there are many reasons to suspect the existence of explosive optical transients that cannot be located through sky monitoring by high-energy satellites. The RAPTOR sky monitoring system is an autonomous system of telescope arrays at Los Alamos National Laboratory that identifies fast optical transients as short as a minute and makes follow-up observations in real time. The core of the RAPTOR system is composed of two arrays of telescopes, separated by 38 kilometers, that stereoscopically monitor a field of about 1300 square degrees for transients down to about 12.5th magnitude in 30 seconds. Both arrays are coupled to real-time data analysis pipelines that are designed to identify transients on timescales of seconds. Each telescope array also contains a more sensitive higher resolution ``fovea'' telescope, capable of both measuring the light curve at a faster cadence and providing color information. In a manner analogous to human vision, each array is mounted on a rapidly slewing mount so that the ``fovea'' of the array can be rapidly directed for real-time follow-up observations of any interesting transient identified by the wide-field system. We discuss the first results from RAPTOR and show that stereoscopic imaging and the absence of measurable parallax is a powerful tool for distinguishing real celestial transients in the ``forest'' of false positives.

  3. Mining the Sky for Explosive Optical Transients with Both Eyes Open

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vestrand, W.T.; Casperson, D.J.; Davis, H.

    2004-09-28

    While it has been known for centuries that the optical sky is variable, monitoring the sky for optical transients with durations as short as a minute is an area of astronomical research that remains largely unexplored. Prompt follow-up observations of Gamma Ray Bursts have shown that bright, explosive, optical transients exist. However, there are many reasons to suspect the existence of explosive optical transients that cannot be located through sky monitoring by high-energy satellites. The RAPTOR sky monitoring system is an autonomous system of telescope arrays at Los Alamos National Laboratory that identifies fast optical transients as short as amore » minute and makes follow-up observations in real time. The core of the RAPTOR system is composed of two arrays of telescopes, separated by 38 kilometers, that stereoscopically monitor a field of about 1300 square degrees for transients down to about 12.5th magnitude in 30 seconds. Both arrays are coupled to real-time data analysis pipelines that are designed to identify transients on timescales of seconds. Each telescope array also contains a more sensitive higher resolution 'fovea' telescope, capable of both measuring the light curve at a faster cadence and providing color information. In a manner analogous to human vision, each array is mounted on a rapidly slewing mount so that the 'fovea' of the array can be rapidly directed for real-time follow-up observations of any interesting transient identified by the wide-field system. We discuss the first results from RAPTOR and show that stereoscopic imaging and the absence of measurable parallax is a powerful tool for distinguishing real celestial transients in the 'forest' of false positives.« less

  4. A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate.

    PubMed

    Khan, Ilyas; Shah, Nehad Ali; Dennis, L C C

    2017-03-15

    This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically.

  5. A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate

    NASA Astrophysics Data System (ADS)

    Khan, Ilyas; Shah, Nehad Ali; Dennis, L. C. C.

    2017-03-01

    This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically.

  6. A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate

    PubMed Central

    Khan, Ilyas; Shah, Nehad Ali; Dennis, L. C. C.

    2017-01-01

    This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically. PMID:28294186

  7. Photon echo spectroscopy reveals structure-dynamics relationships in carotenoids

    NASA Astrophysics Data System (ADS)

    Christensson, N.; Polivka, T.; Yartsev, A.; Pullerits, T.

    2009-06-01

    Based on simultaneous analysis of the frequency-resolved transient grating, peak shift, and echo width signals, we present a model for the third-order optical response of carotenoids including population dynamics and system-bath interactions. Our frequency-resolved photon echo experiments show that the model needs to incorporate the excited-state absorption from both the S2 and the S1 states. We apply our model to analyze the experimental results on astaxanthin and lycopene, aiming to elucidate the relation between structure and system-bath interactions. Our analysis allows us to relate structural motifs to changes in the energy-gap correlation functions. We find that the terminal rings of astaxanthin lead to increased coupling between slow molecular motions and the electronic transition. We also find evidence for stronger coupling to higher frequency overdamped modes in astaxanthin, pointing to the importance of the functional groups in providing coupling to fluctuations influencing the dynamics in the passage through the conical intersection governing the S2-S1 relaxation.

  8. 77 FR 54848 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... damage to the operation of other critical airplane systems due to electromagnetic coupling and large... strike to the tail strobe light, electromagnetic coupling and large transient voltages can be transmitted... electromagnetic coupling, since the tail strobe light is located in a flammable leakage zone, electrical current...

  9. Phase transitions in the common brainstem and related systems investigated by nonstationary time series analysis.

    PubMed

    Lambertz, M; Vandenhouten, R; Grebe, R; Langhorst, P

    2000-01-14

    Neuronal activities of the reticular formation (RF) of the lower brainstem and the nucleus tractus solitarii (NTS, first relay station of baroreceptor afferents) were recorded together in the anesthized dog with related parameters of EEG, respiration and cardiovascular system. The RF neurons are part of the common brainstem system (CBS) which participates in regulation and coordination of cardiovascular, respiratory, somatomotor systems, and vigilance. Multiple time series of these physiological subsystems yield useful information about internal dynamic coordination of the organism. Essential problems are nonlinearity and instationarity of the signals, due to the dynamic complexity of the systems. Several time-resolving methods are presented to describe nonlinear dynamic couplings in the time course, particularly during phase transitions. The methods are applied to the recorded signals representing the complex couplings of the physiological subsystems. Phase transitions in these systems are detected by recurrence plots of the instationary signals. The pointwise transinformation and the pointwise conditional coupling divergence are measures of the mutual interaction of the subsystems in the state space. If the signals show marked rhythms, instantaneous frequencies and their shiftings are demonstrated by time frequency distributions, and instantaneous phase differences show couplings of oscillating subsystems. Transient signal components are reconstructed by wavelet packet time selective transient reconstruction. These methods are useful means for analyzing coupling characteristics of the complex physiological system, and detailed analyses of internal dynamic coordination of subsystems become possible. During phase transitions of the functional organization (a) the rhythms of the central neuronal activities and the peripheral systems are altered, (b) changes in the coupling between CBS neurons and cardiovascular signals, respiration and the EEG, and (c) between NTS neurons (influenced by baroreceptor afferents) and CBS neurons occur, and (d) the processing of baroreceptor input at the NTS neurons changes. The results of this complex analysis, which could not be done formerly in this manner, confirm and complete former investigations on the dynamic organization of the CBS with its changing relations to peripheral and other central nervous subsystems.

  10. Use of Single-Cysteine Variants for Trapping Transient States in DNA Mismatch Repair.

    PubMed

    Friedhoff, Peter; Manelyte, Laura; Giron-Monzon, Luis; Winkler, Ines; Groothuizen, Flora S; Sixma, Titia K

    2017-01-01

    DNA mismatch repair (MMR) is necessary to prevent incorporation of polymerase errors into the newly synthesized DNA strand, as they would be mutagenic. In humans, errors in MMR cause a predisposition to cancer, called Lynch syndrome. The MMR process is performed by a set of ATPases that transmit, validate, and couple information to identify which DNA strand requires repair. To understand the individual steps in the repair process, it is useful to be able to study these large molecular machines structurally and functionally. However, the steps and states are highly transient; therefore, the methods to capture and enrich them are essential. Here, we describe how single-cysteine variants can be used for specific cross-linking and labeling approaches that allow trapping of relevant transient states. Analysis of these defined states in functional and structural studies is instrumental to elucidate the molecular mechanism of this important DNA MMR process. © 2017 Elsevier Inc. All rights reserved.

  11. A simple method to generate stable cell lines for the analysis of transient protein-protein interactions.

    PubMed

    Savage, Emilia Elizabeth; Wootten, Denise; Christopoulos, Arthur; Sexton, Patrick Michael; Furness, Sebastian George Barton

    2013-04-01

    Transient protein-protein interactions form the basis of signal transduction pathways in addition to many other biological processes. One tool for studying these interactions is bioluminescence resonance energy transfer (BRET). This technique has been widely applied to study signaling pathways, in particular those initiated by G protein-coupled receptors (GPCRs). These assays are routinely performed using transient transfection, a technique that has limitations in terms of assay cost and variability, overexpression of interacting proteins, vector uptake limited to cycling cells, and non-homogenous expression across cells within the assay. To address these issues, we developed bicistronic vectors for use with Life Technology's Gateway and flpIN systems. These vectors provide a means to generate isogenic cell lines for comparison of interacting proteins. They have the advantage of stable, single copy, isogenic, homogeneous expression with low inter-assay variation. We demonstrate their utility by assessing ligand-induced interactions between GPCRs and arrestin proteins.

  12. Transient flow conditions change how we should think about WHPA delineation: a joint frequency and probability analysis

    NASA Astrophysics Data System (ADS)

    Rodriguez Pretelin (1), Abelardo; Nowak (1), Wolfgang

    2017-04-01

    Well head protection areas (WHPAs) are frequently used as safety measures for drinking water wells, preventing them from being polluted by restricting land use activities in their proximities. Two sources of uncertainty are involved during delineation: 1) uncertainty in aquifer parameters and 2) time-varying groundwater flow scenarios and their own inherent uncertainties. The former has been studied by Enzenhoefer et al (2012 [1] and 2014 [2]) as probabilistic risk version of WHPA delineation. The latter is frequently neglected and replaced by steady-state assumptions; thereby ignoring time-variant flow conditions triggered either by anthropogenic causes or climatic conditions. In this study we analyze the influence of transient flow considerations in WHPA delineation, following annual seasonality behavior; with transiency represented by four transient conditions: (I) regional groundwater flow direction, (II) strength of the regional hydraulic gradient, (III) natural recharge to the groundwater and (IV) pumping rate. Addressing WHPA delineation in transient flow scenarios is computationally expensive. Thus, we develop an efficient method using a dynamic superposition of steady-state flow solutions coupled with a reversed formulation of advective-dispersive transport based on a Lagrangian particle tracking with continuous injection. This analysis results in a time-frequency map of pixel-wise membership to the well catchment. Additional to transient flow conditions, we recognize two sources of uncertainty, inexact knowledge of transient drivers and parameters. The uncertainties are accommodated through Monte Carlo simulation. With the help of a global sensitivity analysis, we investigate the impact of transiency in WHPA solutions. In particular, we evaluate: (1) Among all considered transients, which ones are the most influential. (2) How influential in WHPA delineation is the transience-related uncertainty compared to aquifer parameter uncertainty. Literature [1] R. Enzenhoefer, W. Nowak, and R. Helmig. Probabilistic exposure risk assessment with advective-dispersive well vulnerability criteria. Advances in Water Resources, 36:121-132, 2012. [2] R. Enzenhoefer, T. Bunk, and W. Nowak. Nine steps to risk-informed wellhead protection and management: a case study. Ground water, 52:161-174, 2014.

  13. Heat Source Characterization In A TREAT Fuel Particle Using Coupled Neutronics Binary Collision Monte-Carlo Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunert, Sebastian; Schwen, Daniel; Ghassemi, Pedram

    This work presents a multi-physics, multi-scale approach to modeling the Transient Test Reactor (TREAT) currently prepared for restart at the Idaho National Laboratory. TREAT fuel is made up of microscopic fuel grains (r ˜ 20µm) dispersed in a graphite matrix. The novelty of this work is in coupling a binary collision Monte-Carlo (BCMC) model to the Finite Element based code Moose for solving a microsopic heat-conduction problem whose driving source is provided by the BCMC model tracking fission fragment energy deposition. This microscopic model is driven by a transient, engineering scale neutronics model coupled to an adiabatic heating model. Themore » macroscopic model provides local power densities and neutron energy spectra to the microscpic model. Currently, no feedback from the microscopic to the macroscopic model is considered. TREAT transient 15 is used to exemplify the capabilities of the multi-physics, multi-scale model, and it is found that the average fuel grain temperature differs from the average graphite temperature by 80 K despite the low-power transient. The large temperature difference has strong implications on the Doppler feedback a potential LEU TREAT core would see, and it underpins the need for multi-physics, multi-scale modeling of a TREAT LEU core.« less

  14. Large Deformation Dynamic Three-Dimensional Coupled Finite Element Analysis of Soft Biological Tissues Treated as Biphasic Porous Media

    DTIC Science & Technology

    2014-11-01

    response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...over time , when a bipha- sic soft tissue is subjected to dynamic loading. Also, after the initial transient, the variation of solid skeleton stresses...will be naturally calculated as the fluid phase pressure dissipates over time . This is important for developing physiologically- relevant degradation

  15. Simulation of Extreme Arctic Cyclones in IPCC AR5 Experiments

    DTIC Science & Technology

    2012-09-30

    of the present-day Arctic atmosphere in CCSM4. J. Climate, 2676-2695. Overeem, I ., R . S. Anderson, C. W. Wobus, G. D. Clow, F. E. Urban, and N...intensity of extreme Arctic cyclones? APPROACH I am targeting these objectives through a retrospective analysis of the transient 20th century...simulations (spanning years 1850-2005) among the GCMs participating in the latest Coupled Model Intercomparison Project (CMIP5). I am including 14

  16. OGLE-IV Transient Search summary of season 2015b

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, L.; Kostrzewa-Rutkowska, Z.; Klencki, J.; Sitek, M.; Mroz, P.; Udalski, A.; Kozlowski, S.; Skowron, J.; Poleski, R.; Szymanski, M. K.; Pietrzynski, G.; Soszynski, I.; Ulaczyk, K.; Pietrukowicz, P.

    2015-12-01

    The OGLE-IV Transient Detection System (Wyrzykowski et al. 2014, AcA,64,197; Kozlowski et al. 2013) in the 2015b transient observing season (from August) has been operating in dual mode: regular as in previous years (detections every couple of days based on at least two positive detections), and rapid (automatised detections within 15 mins after the single frame was taken, details in Klencki et al. in prep.).

  17. Transient many-body instability in driven Dirac materials

    NASA Astrophysics Data System (ADS)

    Pertsova, Anna; Triola, Christopher; Balatsky, Alexander

    The defining feature of a Dirac material (DM) is the presence of nodes in the low-energy excitation spectrum leading to a strong energy dependence of the density of states (DOS). The vanishing of the DOS at the nodal point implies a very low effective coupling constant which leads to stability of the node against electron-electron interactions. Non-equilibrium or driven DM, in which the DOS and hence the effective coupling can be controlled by external drive, offer a new platform for investigating collective instabilities. In this work, we discuss the possibility of realizing transient collective states in driven DMs. Motivated by recent pump-probe experiments which demonstrate the existence of long-lived photo-excited states in DMs, we consider an example of a transient excitonic instability in an optically-pumped DM. We identify experimental signatures of the transient excitonic condensate and provide estimates of the critical temperatures and lifetimes of these states for few important examples of DMs, such as single-layer graphene and topological-insulator surfaces.

  18. Coupled circuit numerical analysis of eddy currents in an open MRI system.

    PubMed

    Akram, Md Shahadat Hossain; Terada, Yasuhiko; Keiichiro, Ishi; Kose, Katsumi

    2014-08-01

    We performed a new coupled circuit numerical simulation of eddy currents in an open compact magnetic resonance imaging (MRI) system. Following the coupled circuit approach, the conducting structures were divided into subdomains along the length (or width) and the thickness, and by implementing coupled circuit concepts we have simulated transient responses of eddy currents for subdomains in different locations. We implemented the Eigen matrix technique to solve the network of coupled differential equations to speed up our simulation program. On the other hand, to compute the coupling relations between the biplanar gradient coil and any other conducting structure, we implemented the solid angle form of Ampere's law. We have also calculated the solid angle for three dimensions to compute inductive couplings in any subdomain of the conducting structures. Details of the temporal and spatial distribution of the eddy currents were then implemented in the secondary magnetic field calculation by the Biot-Savart law. In a desktop computer (Programming platform: Wolfram Mathematica 8.0®, Processor: Intel(R) Core(TM)2 Duo E7500 @ 2.93GHz; OS: Windows 7 Professional; Memory (RAM): 4.00GB), it took less than 3min to simulate the entire calculation of eddy currents and fields, and approximately 6min for X-gradient coil. The results are given in the time-space domain for both the direct and the cross-terms of the eddy current magnetic fields generated by the Z-gradient coil. We have also conducted free induction decay (FID) experiments of eddy fields using a nuclear magnetic resonance (NMR) probe to verify our simulation results. The simulation results were found to be in good agreement with the experimental results. In this study we have also conducted simulations for transient and spatial responses of secondary magnetic field induced by X-gradient coil. Our approach is fast and has much less computational complexity than the conventional electromagnetic numerical simulation methods. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Finite Element Analysis in the Estimation of Air-Gap Torque and Surface Temperature of Induction Machine

    NASA Astrophysics Data System (ADS)

    Mr., J. Ravi Kumar; Banakara, Basavaraja, Dr.

    2017-08-01

    This paper presents electromagnetic and thermal behavior of Induction Motor (IM) through the modeling and analysis by applying multiphysics coupled Finite Element Analysis (FEA). Therefore prediction of the magnetic flux, electromagnetic torque, stator and rotor losses and temperature distribution inside an operating electric motor are the most important issues during its design. Prediction and estimation of these parameters allows design engineers to decide capability of the machine for the proposed load, temperature rating and its application for which it is being designed ensuring normal motor operation at rated conditions. In this work, multiphysics coupled electromagnetic - thermal modeling and analysis of induction motor at rated and high frequency has carried out applying Arkkio’s torque method. COMSOL Multiphysics software is used for modeling and finite element analysis of IM. Transient electromagnetic torque, magnetic field distribution, speed-torque characteristics of IM were plotted and studied at different frequencies. This proposed work helps in the design and prediction of accurate performance of induction motor specific to various industrial drive applications. Results obtained are also validated with experimental analysis. The main purpose of this model is to use it as an integral part of the design aiming to system optimization of Variable Speed Drive (VSD) and its components using coupled simulations.

  20. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts andmore » engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.« less

  1. Theory on the Dynamics of Oscillatory Loops in the Transcription Factor Networks

    PubMed Central

    Murugan, Rajamanickam

    2014-01-01

    We develop a detailed theoretical framework for various types of transcription factor gene oscillators. We further demonstrate that one can build genetic-oscillators which are tunable and robust against perturbations in the critical control parameters by coupling two or more independent Goodwin-Griffith oscillators through either -OR- or -AND- type logic. Most of the coupled oscillators constructed in the literature so far seem to be of -OR- type. When there are transient perturbations in one of the -OR- type coupled-oscillators, then the overall period of the system remains constant (period-buffering) whereas in case of -AND- type coupling the overall period of the system moves towards the perturbed oscillator. Though there is a period-buffering, the amplitudes of oscillators coupled through -OR- type logic are more sensitive to perturbations in the parameters associated with the promoter state dynamics than -AND- type. Further analysis shows that the period of -AND- type coupled dual-feedback oscillators can be tuned without conceding on the amplitudes. Using these results we derive the basic design principles governing the robust and tunable synthetic gene oscillators without compromising on their amplitudes. PMID:25111803

  2. Coupling vibration research on Vehicle-bridge system

    NASA Astrophysics Data System (ADS)

    Zhou, Jiguo; Wang, Guihua

    2018-01-01

    The vehicle-bridge coupling system forms when vehicle running on a bridge. It will generate a relatively large influence on the driving comfort and driving safe when the vibration of the vehicle is bigger. A three-dimensional vehicle-bridge system with biaxial seven degrees of freedom has been establish in this paper based on finite numerical simulation. Adopting the finite element transient numerical simulation to realize the numerical simulation of vehicle-bridge system coupling vibration. Then, analyze the dynamic response of vehicle and bridge while different numbers of vehicles running on the bridge. Got the variation rule of vertical vibration of car body and bridge, and that of the contact force between the wheel and bridge deck. The research results have a reference value for the analysis about the vehicle running on a large-span cabled bridge.

  3. Dissociation between sustained single-neuron spiking and transient β-LFP oscillations in primate motor cortex

    PubMed Central

    Rule, Michael E.; Vargas-Irwin, Carlos E.; Donoghue, John P.

    2017-01-01

    Determining the relationship between single-neuron spiking and transient (20 Hz) β-local field potential (β-LFP) oscillations is an important step for understanding the role of these oscillations in motor cortex. We show that whereas motor cortex firing rates and beta spiking rhythmicity remain sustained during steady-state movement preparation periods, β-LFP oscillations emerge, in contrast, as short transient events. Single-neuron mean firing rates within and outside transient β-LFP events showed no differences, and no consistent correlation was found between the beta oscillation amplitude and firing rates, as was the case for movement- and visual cue-related β-LFP suppression. Importantly, well-isolated single units featuring beta-rhythmic spiking (43%, 125/292) showed no apparent or only weak phase coupling with the transient β-LFP oscillations. Similar results were obtained for the population spiking. These findings were common in triple microelectrode array recordings from primary motor (M1), ventral (PMv), and dorsal premotor (PMd) cortices in nonhuman primates during movement preparation. Although beta spiking rhythmicity indicates strong membrane potential fluctuations in the beta band, it does not imply strong phase coupling with β-LFP oscillations. The observed dissociation points to two different sources of variation in motor cortex β-LFPs: one that impacts single-neuron spiking dynamics and another related to the generation of mesoscopic β-LFP signals. Furthermore, our findings indicate that rhythmic spiking and diverse neuronal firing rates, which encode planned actions during movement preparation, may naturally limit the ability of different neuronal populations to strongly phase-couple to a single dominant oscillation frequency, leading to the observed spiking and β-LFP dissociation. NEW & NOTEWORTHY We show that whereas motor cortex spiking rates and beta (~20 Hz) spiking rhythmicity remain sustained during steady-state movement preparation periods, β-local field potential (β-LFP) oscillations emerge, in contrast, as transient events. Furthermore, the β-LFP phase at which neurons spike drifts: phase coupling is typically weak or absent. This dissociation points to two sources of variation in the level of motor cortex beta: one that impacts single-neuron spiking and another related to the generation of measured mesoscopic β-LFPs. PMID:28100654

  4. Mathematical modeling and analysis of heat pipe start-up from the frozen state

    NASA Technical Reports Server (NTRS)

    Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon; Mahefkey, Edward T.

    1989-01-01

    The start-up process of a frozen heat pipe is described and a complete mathematical model for the start-up of the frozen heat pipe is developed based on the existing experimental data, which is simplified and solved numerically. The two-dimensional transient model for the wall and wick is coupled with the one-dimensional transient model for the vapor flow when vaporization and condensation occur at the interface. A parametric study is performed to examine the effect of the boundary specification at the surface of the outer wall on the successful start-up from the frozen state. For successful start-up, the boundary specification at the outer wall surface must melt the working substance in the condenser before dry-out takes place in the evaporator.

  5. Mathematical modeling and analysis of heat pipe start-up from the frozen state

    NASA Technical Reports Server (NTRS)

    Jang, J. H.; Faghri, A.; Chang, W. S.; Mahefkey, E. T.

    1990-01-01

    The start-up process of a frozen heat pipe is described and a complete mathematical model for the start-up of the frozen heat pipe is developed based on the existing experimental data, which is simplified and solved numerically. The two-dimensional transient model for the wall and wick is coupled with the one-dimensional transient model for the vapor flow when vaporization and condensation occur at the interface. A parametric study is performed to examine the effect of the boundary specification at the surface of the outer wall on the successful start-up from the frozen state. For successful start-up, the boundary specification at the outer wall surface must melt the working substance in the condenser before dry-out takes place in the evaporator.

  6. Dynamics of coupled plasmon polariton wave packets excited at a subwavelength slit in optically thin metal films

    NASA Astrophysics Data System (ADS)

    Wang, Lei-Ming; Zhang, Lingxiao; Seideman, Tamar; Petek, Hrvoje

    2012-10-01

    We study by numerical simulations the excitation and propagation dynamics of coupled surface plasmon polariton (SPP) wave packets (WPs) in optically thin Ag films and a bulk Ag/vacuum interface under the illumination of a subwavelength slit by 400 nm continuous wave (cw) and femtosecond pulsed light. The generated surface fields include contributions from both SPPs and quasicylindrical waves, which dominate in different regimes. We explore aspects of the coupled SPP modes in Ag thin films, including symmetry, propagation, attenuation, and the variation of coupling with incident angle and film thickness. Simulations of the electromagnetic transients initiated with femtosecond pulses reveal new features of coupled SPP WP generation and propagation in thin Ag films. Our results show that, under pulsed excitation, the SPP modes in an Ag thin film break up into two distinct bound surface wave packets characterized by marked differences in symmetries, group velocities, attenuation lengths, and dispersion properties. The nanometer spatial and femtosecond temporal scale excitation and propagation dynamics of the coupled SPP WPs are revealed in detail by movies recording the evolution of their transient field distributions.

  7. Environmentally-induced discharge transient coupling to spacecraft

    NASA Technical Reports Server (NTRS)

    Viswanathan, R.; Barbay, G.; Stevens, N. J.

    1985-01-01

    The Hughes SCREENS (Space Craft Response to Environments of Space) technique was applied to generic spin and 3-axis stabilized spacecraft models. It involved the NASCAP modeling for surface charging and lumped element modeling for transients coupling into a spacecraft. A differential voltage between antenna and spun shelf of approx. 400 V and current of 12 A resulted from discharge at antenna for the spinner and approx. 3 kv and 0.3 A from a discharge at solar panels for the 3-axis stabilized Spacecraft. A typical interface circuit response was analyzed to show that the transients would couple into the Spacecraft System through ground points, which are most vulnerable. A compilation and review was performed on 15 years of available data from electron and ion current collection phenomena. Empirical models were developed to match data and compared with flight data of Pix-1 and Pix-2 mission. It was found that large space power systems would float negative and discharge if operated at or above 300 V. Several recommendations are given to improve the models and to apply them to large space systems.

  8. Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. II. Exclusion of HCO3(-)-effects on other ion permeabilities and of coupled electroneutral HCO3(-)-transport.

    PubMed

    Burckhardt, B C; Cassola, A C; Frömter, E

    1984-05-01

    Cell membrane potentials of rat kidney proximal tubules were measured in response to peritubular ion substitutions in vivo with conventional and Cl- sensitive microelectrodes in order to test possible alternative explanations of the bicarbonate dependent cell potential transients reported in the preceding paper. Significant direct effects of bicarbonate on peritubular K+, Na+, and Cl- conductances could be largely excluded by blocking K+ permeability with Ba2+ and replacing all Na+ and Cl- by choline or respectively SO4(2-) isethionate, or gluconate. Under those conditions the cell membrane response to HCO3- was essentially preserved. In addition it was observed that peritubular Cl- conductance is negligibly small, that Cl-/HCO3- exchange - if present at all - is insignificant, and that rheogenic HCO3- flow with coupling to Na+ flow is also absent or insignificant. A transient disturbance of the Na+ pump or a transient unspecific increase of the membrane permeability was also excluded by experiments with ouabain and by the observation that SITS (4-acetamido-4'-isothiocyano-2,2' disulphonic stilbene) blocked the HCO3- response instantaneously. The data strongly support the notion that the potential changes in response to peritubular HCO3- concentration changes arise from passive rheogenic bicarbonate transfer across the peritubular cell membrane, and hence that this membrane has a high conductance for bicarbonate buffer.

  9. A highly efficient autothermal microchannel reactor for ammonia decomposition: Analysis of hydrogen production in transient and steady-state regimes

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Nicolaas; Chiuta, Steven; Bessarabov, Dmitri G.

    2018-05-01

    The experimental evaluation of an autothermal microchannel reactor for H2 production from NH3 decomposition is described. The reactor design incorporates an autothermal approach, with added NH3 oxidation, for coupled heat supply to the endothermic decomposition reaction. An alternating catalytic plate arrangement is used to accomplish this thermal coupling in a cocurrent flow strategy. Detailed analysis of the transient operating regime associated with reactor start-up and steady-state results is presented. The effects of operating parameters on reactor performance are investigated, specifically, the NH3 decomposition flow rate, NH3 oxidation flow rate, and fuel-oxygen equivalence ratio. Overall, the reactor exhibits rapid response time during start-up; within 60 min, H2 production is approximately 95% of steady-state values. The recommended operating point for steady-state H2 production corresponds to an NH3 decomposition flow rate of 6 NL min-1, NH3 oxidation flow rate of 4 NL min-1, and fuel-oxygen equivalence ratio of 1.4. Under these flows, NH3 conversion of 99.8% and H2 equivalent fuel cell power output of 0.71 kWe is achieved. The reactor shows good heat utilization with a thermal efficiency of 75.9%. An efficient autothermal reactor design is therefore demonstrated, which may be upscaled to a multi-kW H2 production system for commercial implementation.

  10. Dynamics of elastic nonlinear rotating composite beams with embedded actuators

    NASA Astrophysics Data System (ADS)

    Ghorashi, Mehrdaad

    2009-08-01

    A comprehensive study of the nonlinear dynamics of composite beams is presented. The study consists of static and dynamic solutions with and without active elements. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Numerical solutions for the steady state and transient responses have been obtained. It is shown that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. The effect of perturbing the steady state solution has also been calculated and the results are shown to be compatible with those of the accelerating beam analysis. Next, the coupled flap-lag rigid body dynamics of a rotating articulated beam with hinge offset and subjected to aerodynamic forces is formulated. The solution to this rigid-body problem is then used, together with the finite difference method, in order to produce the nonlinear elasto-dynamic solution of an accelerating articulated beam. Next, the static and dynamic responses of nonlinear composite beams with embedded Anisotropic Piezo-composite Actuators (APA) are presented. The effect of activating actuators at various directions on the steady state force and moments generated in a rotating composite beam has been presented. With similar results for the transient response, this analysis can be used in controlling the response of adaptive rotating beams.

  11. Global dynamic modeling of a transmission system

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Qian, W.

    1993-01-01

    The work performed on global dynamic simulation and noise correlation of gear transmission systems at the University of Akron is outlined. The objective is to develop a comprehensive procedure to simulate the dynamics of the gear transmission system coupled with the effects of gear box vibrations. The developed numerical model is benchmarked with results from experimental tests at NASA Lewis Research Center. The modal synthesis approach is used to develop the global transient vibration analysis procedure used in the model. Modal dynamic characteristics of the rotor-gear-bearing system are calculated by the matrix transfer method while those of the gear box are evaluated by the finite element method (NASTRAN). A three-dimensional, axial-lateral coupled bearing model is used to couple the rotor vibrations with the gear box motion. The vibrations between the individual rotor systems are coupled through the nonlinear gear mesh interactions. The global equations of motion are solved in modal coordinates and the transient vibration of the system is evaluated by a variable time-stepping integration scheme. The relationship between housing vibration and resulting noise of the gear transmission system is generated by linear transfer functions using experimental data. A nonlinear relationship of the noise components to the fundamental mesh frequency is developed using the hypercoherence function. The numerically simulated vibrations and predicted noise of the gear transmission system are compared with the experimental results from the gear noise test rig at NASA Lewis Research Center. Results of the comparison indicate that the global dynamic model developed can accurately simulate the dynamics of a gear transmission system.

  12. Research on the Automatic Fusion Strategy of Fixed Value Boundary Based on the Weak Coupling Condition of Grid Partition

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Dou, J. M.; Shen, H.; Li, J.; Yang, G. S.; Fan, R. Q.; Shen, Q.

    2018-03-01

    With the continuous strengthening of power grids, the network structure is becoming more and more complicated. An open and regional data modeling is used to complete the calculation of the protection fixed value based on the local region. At the same time, a high precision, quasi real-time boundary fusion technique is needed to seamlessly integrate the various regions so as to constitute an integrated fault computing platform which can conduct transient stability analysis of covering the whole network with high accuracy and multiple modes, deal with the impact results of non-single fault, interlocking fault and build “the first line of defense” of the power grid. The boundary fusion algorithm in this paper is an automatic fusion algorithm based on the boundary accurate coupling of the networking power grid partition, which takes the actual operation mode for qualification, complete the boundary coupling algorithm of various weak coupling partition based on open-loop mode, improving the fusion efficiency, truly reflecting its transient stability level, and effectively solving the problems of too much data, too many difficulties of partition fusion, and no effective fusion due to mutually exclusive conditions. In this paper, the basic principle of fusion process is introduced firstly, and then the method of boundary fusion customization is introduced by scene description. Finally, an example is given to illustrate the specific algorithm on how it effectively implements the boundary fusion after grid partition and to verify the accuracy and efficiency of the algorithm.

  13. TRACE/PARCS analysis of the OECD/NEA Oskarshamn-2 BWR stability benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlowski, T.; Downar, T.; Xu, Y.

    2012-07-01

    On February 25, 1999, the Oskarshamn-2 NPP experienced a stability event which culminated in diverging power oscillations with a decay ratio of about 1.4. The event was successfully modeled by the TRACE/PARCS coupled code system, and further analysis of the event is described in this paper. The results show very good agreement with the plant data, capturing the entire behavior of the transient including the onset of instability, growth of the oscillations (decay ratio) and oscillation frequency. This provides confidence in the prediction of other parameters which are not available from the plant records. The event provides coupled code validationmore » for a challenging BWR stability event, which involves the accurate simulation of neutron kinetics (NK), thermal-hydraulics (TH), and TH/NK. coupling. The success of this work has demonstrated the ability of the 3-D coupled systems code TRACE/PARCS to capture the complex behavior of BWR stability events. The problem was released as an international OECD/NEA benchmark, and it is the first benchmark based on measured plant data for a stability event with a DR greater than one. Interested participants are invited to contact authors for more information. (authors)« less

  14. Transient Modeling and Analysis of a Metabolic Heat-Regenerated Temperature Swing Adsorption (MTSA) System for a PLSS

    NASA Technical Reports Server (NTRS)

    Iacomini, Christie; Powers, Aaron; Speight, Garland; Padilla, Sebastian; Paul, Heather L.

    2009-01-01

    A Metabolic heat-regenerated Temperature Swing Adsorption (MTSA) system is being developed for carbon dioxide, water and thermal control in a lunar and martian portable life support system (PLSS). A previous system analysis was performed to evaluate the impact of MTSA on PLSS design. That effort was Mars specific and assumed liquid carbon dioxide (LCO2) coolant made from martian resources. Transient effects were not considered but rather average conditions were used throughout the analysis. This effort takes into further consideration the transient effects inherent in the cycling MTSA system as well as assesses the use of water as coolant. Standard heat transfer, thermodynamic, and heat exchanger methods are presented to conduct the analysis. Assumptions and model verification are discussed. The tool was used to perform various system studies. Coolant selection was explored and takes into account different operational scenarios as the minimum bed temperature is driven by the sublimation temperature of the coolant (water being significantly higher than LCO2). From this, coolant mass is sized coupled with sorbent bed mass because MTSA adsorption performance decreases with increasing sublimation temperature. Reduction in heat exchanger performance and even removal of certain heat exchangers, like a recuperative one between the two sorbent beds, is also investigated. Finally, the coolant flow rate is varied over the cycle to determine if there is a more optimal means of cooling the bed from a mass perspective. Results of these studies and subsequent recommendations for system design are presented.

  15. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  16. An analysis of thermal stress and gas bending effects on vibrations of compressor rotor stages. [blade torsional rigidity

    NASA Technical Reports Server (NTRS)

    Chen, L.-T.; Dugundji, J.

    1979-01-01

    A preliminary study conducted by Kerrebrock et al. (1976) has shown that the torsional rigidity of untwisted thin blades of a transonic compressor can be reduced significantly by transient thermal stresses. The aerodynamic loads have various effects on blade vibration. One effect is that gas bending loads may result in a bending-torsion coupling which may change the characteristics of the torsion and bending vibration of the blade. For a general study of transient-temperature distribution within a rotor stage, a finite-element heat-conduction analysis was developed. The blade and shroud are divided into annular elements. With a temperature distribution obtained from the heat-conduction analysis and a prescribed gas bending load distribution along the blade span, the static deformation and moment distributions of the blade can be solved iteratively using the finite-element method. The reduction of the torsional rigidity of pretwisted blades caused by the thermal stress effect is then computed. The dynamic behavior of the blade is studied by a modified Galerkin's method.

  17. Large Angle Transient Dynamics (LATDYN) user's manual

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. Louis; Chang, Che-Wei; Powell, Michael G.; Wu, Shih-Chin; Bingel, Bradford D.; Theophilos, Paula M.

    1991-01-01

    A computer code for modeling the large angle transient dynamics (LATDYN) of structures was developed to investigate techniques for analyzing flexible deformation and control/structure interaction problems associated with large angular motions of spacecraft. This type of analysis is beyond the routine capability of conventional analytical tools without simplifying assumptions. In some instances, the motion may be sufficiently slow and the spacecraft (or component) sufficiently rigid to simplify analyses of dynamics and controls by making pseudo-static and/or rigid body assumptions. The LATDYN introduces a new approach to the problem by combining finite element structural analysis, multi-body dynamics, and control system analysis in a single tool. It includes a type of finite element that can deform and rotate through large angles at the same time, and which can be connected to other finite elements either rigidly or through mechanical joints. The LATDYN also provides symbolic capabilities for modeling control systems which are interfaced directly with the finite element structural model. Thus, the nonlinear equations representing the structural model are integrated along with the equations representing sensors, processing, and controls as a coupled system.

  18. Simplified transient isotachophoresis/capillary gel electrophoresis method for highly sensitive analysis of polymerase chain reaction samples on a microchip with laser-induced fluorescence detection.

    PubMed

    Liu, Dayu; Ou, Ziyou; Xu, Mingfei; Wang, Lihui

    2008-12-19

    We present a sensitive, simple and robust on-chip transient isotachophoresis/capillary gel electrophoresis (tITP/CGE) method for the analysis of polymerase chain reaction (PCR) samples. Using chloride ions in the PCR buffer and N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) in the background electrolyte, respectively, as the leading and terminating electrolytes, the tITP preconcentration was coupled with CGE separation with double-T shaped channel network. The tITP/CGE separation was carried out with a single running buffer. The separation process involved only two steps that were performed continuously with the sequential switching of four voltage outputs. The tITP/CGE method showed an analysis time and a separation efficiency comparable to those of standard CGE, while the signal intensity was enhanced by factors of over 20. The limit of detection of the chip-based tITP/CGE method was estimated to be 1.1 ng/mL of DNA in 1x PCR buffer using confocal fluorescence detection following 473 nm laser excitation.

  19. Numerical Simulation of Hydraulic Fracturing in Low-/High-Permeability, Quasi-Brittle and Heterogeneous Rocks

    NASA Astrophysics Data System (ADS)

    Pakzad, R.; Wang, S. Y.; Sloan, S. W.

    2018-04-01

    In this study, an elastic-brittle-damage constitutive model was incorporated into the coupled fluid/solid analysis of ABAQUS to iteratively calculate the equilibrium effective stress of Biot's theory of consolidation. The Young's modulus, strength and permeability parameter of the material were randomly assigned to the representative volume elements of finite element models following the Weibull distribution function. The hydraulic conductivity of elements was associated with their hydrostatic effective stress and damage level. The steady-state permeability test results for sandstone specimens under different triaxial loading conditions were reproduced by employing the same set of material parameters in coupled transient flow/stress analyses of plane-strain models, thereby indicating the reliability of the numerical model. The influence of heterogeneity on the failure response and the absolute permeability was investigated, and the post-peak permeability was found to decrease with the heterogeneity level in the coupled analysis with transient flow. The proposed model was applied to the plane-strain simulation of the fluid pressurization of a cavity within a large-scale block under different conditions. Regardless of the heterogeneity level, the hydraulically driven fractures propagated perpendicular to the minimum principal far-field stress direction for high-permeability models under anisotropic far-field stress conditions. Scattered damage elements appeared in the models with higher degrees of heterogeneity. The partially saturated areas around propagating fractures were simulated by relating the saturation degree to the negative pore pressure in low-permeability blocks under high pressure. By replicating previously reported trends in the fracture initiation and breakdown pressure for different pressurization rates and hydraulic conductivities, the results showed that the proposed model for hydraulic fracture problems is reliable for a wide range of pressurization rates and permeability conditions.

  20. An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media

    NASA Astrophysics Data System (ADS)

    Yan, Xia; Huang, Zhaoqin; Yao, Jun; Li, Yang; Fan, Dongyan; Zhang, Kai

    2018-02-01

    In this paper, a numerical model is developed for coupled analysis of deforming fractured porous media with multiscale fractures. In this model, the macro-fractures are modeled explicitly by the embedded discrete fracture model, and the supporting effects of fluid and fillings in these fractures are represented explicitly in the geomechanics model. On the other hand, matrix and micro-fractures are modeled by a multi-porosity model, which aims to accurately describe the transient matrix-fracture fluid exchange process. A stabilized extended finite element method scheme is developed based on the polynomial pressure projection technique to address the displacement oscillation along macro-fracture boundaries. After that, the mixed space discretization and modified fixed stress sequential implicit methods based on non-matching grids are applied to solve the coupling model. Finally, we demonstrate the accuracy and application of the proposed method to capture the coupled hydro-mechanical impacts of multiscale fractures on fractured porous media.

  1. Dynamics of Multistage Gear Transmission with Effects of Gearbox Vibrations

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, Dennis P.

    1990-01-01

    A comprehensive approach is presented in analyzing the dynamic behavior of multistage gear transmission systems with the effects of gearbox induced vibrations and mass imbalances of the rotor. The modal method, with undamped frequencies and planar mode shapes, is used to reduce the degrees of freedom of the gear system for time-transient dynamic analysis. Both the lateral and torsional vibration modes of each rotor-bearing-gear stage as well as the interstage vibrational characteristics are coupled together through localized gear mesh tooth interactions. In addition, gearbox vibrations are also coupled to the rotor-bearing-gear system dynamics through bearing support forces between the rotor and the gearbox. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domains to develop interpretations of the overall modal dynamic characteristics under various operating conditions. A typical three-stage geared system is used as an example. Effects of mass imbalance and gearbox vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  2. G protein-coupled receptor 30 down-regulates cofactor expression and interferes with the transcriptional activity of glucocorticoid.

    PubMed

    Ylikomi, Timo; Vienonen, Annika; Ahola, Tytti M

    2004-11-01

    G protein-coupled receptor 30 (GPR30) has previously been described to be important in steroid-mediated growth and to inhibit cell proliferation. Here we investigated whether the effect of GPR30 on cell growth is dependent on steroid hormone receptors. We stably introduced GPR30 in immortalized normal mammary epithelial (HME) cells using retroviruses for gene delivery. GPR30 inhibited the growth and proliferation of the cells. They expressed glucocorticoid receptor, but not estrogen or progesterone receptor. GPR30 down-regulated the expression of cofactor transcription intermediary factor 2 (TIF2) analyzed using quantitative RT-PCR analysis, and also diminished the expression of TIF2 at protein level analyzed by Western blotting using nuclear extracts from mammary epithelial cells. When HME cells were transiently transfected with the glucocorticoid response element MMTV-luc reporter plasmid, stable expression of GPR30 resulted in the abolition of ligand-induced transactivation of the promoter. In COS cells, transient transfection of GPR30 with glucocorticoid receptor alpha resulted in an abrogation of the MMTV-luc and GRE-luc reporter activities induced by dexamethasone. The results suggest a novel mechanism by which membrane-initiated signaling interferes with steroid signaling.

  3. HPTAM, a two-dimensional Heat Pipe Transient Analysis Model, including the startup from a frozen state

    NASA Technical Reports Server (NTRS)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    1995-01-01

    A two-dimensional Heat Pipe Transient Analysis Model, 'HPTAM,' was developed to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes from a frozen state. The model incorporates: (a) sublimation and resolidification of working fluid; (b) melting and freezing of the working fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a thin liquid film on a frozen substrate; (d) free-molecule, transition, and continuum vapor flow regimes, using the Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial location of the working fluid level (liquid or solid) in the wick. It also includes the transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor interface and geometrically relates the radius of curvature of the liquid meniscus to the volume fraction of vapor in the wick. The present model predicts the capillary limit and partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling submodel, which simulates accumulation of the excess liquid in the vapor core at the condenser end.

  4. Growth mechanisms of perturbations in boundary layers over a compliant wall

    NASA Astrophysics Data System (ADS)

    Malik, M.; Skote, Martin; Bouffanais, Roland

    2018-01-01

    The temporal modal and nonmodal growth of three-dimensional perturbations in the boundary layer flow over an infinite compliant flat wall is considered. Using a wall-normal velocity and wall-normal vorticity formalism, the dynamic boundary condition at the compliant wall admits a linear dependence on the eigenvalue parameter, as compared to a quadratic one in the canonical formulation of the problem. As a consequence, the continuous spectrum is accurately obtained. This enables us to effectively filter the pseudospectra, which is a prerequisite to the transient growth analysis. An energy-budget analysis for the least-decaying hydroelastic (static divergence, traveling wave flutter, and near-stationary transitional) and Tollmien-Schlichting modes in the parameter space reveals the primary routes of energy flow. Moreover, the maximum transient growth rate increases more slowly with the Reynolds number than for the solid wall case. The slowdown is due to a complex dependence of the wall-boundary condition with the Reynolds number, which translates into a transition of the fluid-solid interaction from a two-way to a one-way coupling. Unlike the solid-wall case, viscosity plays a pivotal role in the transient growth. The initial and optimal perturbations are compared with the boundary layer flow over a solid wall; differences and similarities are discussed.

  5. An Electromagnetically Actuated Vacuum Circuit Breaker Developed by Electromagnetic Analysis Coupled with Motion

    NASA Astrophysics Data System (ADS)

    Takeuchi, Toshie; Nakagawa, Takafumi; Tsukima, Mitsuru; Koyama, Kenichi; Tohya, Nobumoto; Yano, Tomotaka

    A new electromagnetically actuated vacuum circuit breaker (VCB) has been designed and developed on the basis of the transient electromagnetic analysis coupled with motion. The VCB has three advanced bi-stable electromagnetic actuators, which control each phase independently. The VCB serves as a synchronous circuit breaker as well as a standard circuit breaker. In this work, the flux delay due to the eddy current is analytically formulated using the delay time constant of the actuator coil current, thereby leading to accurate driving behavior. With this analytical method, the electromagnetic mechanism for a 24kV rated VCB has been optimized; and as a result, the driving energy is reduced to one fifth of that of a conventional VCB employing spring mechanism, and the number of parts is significantly decreased. Therefore, the developed VCB becomes compact, highly reliable and highly durable.

  6. Adavanced RTG and thermoelectric materials study

    NASA Technical Reports Server (NTRS)

    Eggers, P. E.

    1971-01-01

    A comprehensive, generalized two-dimensional RTG analysis computer program was developed. This program is capable of analyzing any specified RTG design under a wide range of transient as well as steady-state operating conditions. The feasibility of a new concept for the design of segmented (or single-phase) thermoelectric couples was demonstrated. A SiGe-PbTe segmented couple involving pressure contacted junctions at the intermediate- and hot-junction temperatures was successfully encapsulated in a hermetically sealed bellows enclosure. This bellows-encapsulated couple was operated between a hot- and cold-junction temperature of 1200 K and 450 K, respectively, with a measured energy conversion efficiency of 7.6 + or - .5 per cent. An experimental study of selected sublimation barrier schemes revealed that a significant reduction in the sublimation rate of p-type PbTe could be achieved by using multiple layers of SiO2 fibers. A comparison of the barrier effectiveness is given for three different barrier designs.

  7. Universality from disorder in the random-bond Blume-Capel model

    NASA Astrophysics Data System (ADS)

    Fytas, N. G.; Zierenberg, J.; Theodorakis, P. E.; Weigel, M.; Janke, W.; Malakis, A.

    2018-04-01

    Using high-precision Monte Carlo simulations and finite-size scaling we study the effect of quenched disorder in the exchange couplings on the Blume-Capel model on the square lattice. The first-order transition for large crystal-field coupling is softened to become continuous, with a divergent correlation length. An analysis of the scaling of the correlation length as well as the susceptibility and specific heat reveals that it belongs to the universality class of the Ising model with additional logarithmic corrections which is also observed for the Ising model itself if coupled to weak disorder. While the leading scaling behavior of the disordered system is therefore identical between the second-order and first-order segments of the phase diagram of the pure model, the finite-size scaling in the ex-first-order regime is affected by strong transient effects with a crossover length scale L*≈32 for the chosen parameters.

  8. NIRS-EEG joint imaging during transcranial direct current stimulation: Online parameter estimation with an autoregressive model.

    PubMed

    Sood, Mehak; Besson, Pierre; Muthalib, Makii; Jindal, Utkarsh; Perrey, Stephane; Dutta, Anirban; Hayashibe, Mitsuhiro

    2016-12-01

    Transcranial direct current stimulation (tDCS) has been shown to perturb both cortical neural activity and hemodynamics during (online) and after the stimulation, however mechanisms of these tDCS-induced online and after-effects are not known. Here, online resting-state spontaneous brain activation may be relevant to monitor tDCS neuromodulatory effects that can be measured using electroencephalography (EEG) in conjunction with near-infrared spectroscopy (NIRS). We present a Kalman Filter based online parameter estimation of an autoregressive (ARX) model to track the transient coupling relation between the changes in EEG power spectrum and NIRS signals during anodal tDCS (2mA, 10min) using a 4×1 ring high-definition montage. Our online ARX parameter estimation technique using the cross-correlation between log (base-10) transformed EEG band-power (0.5-11.25Hz) and NIRS oxy-hemoglobin signal in the low frequency (≤0.1Hz) range was shown in 5 healthy subjects to be sensitive to detect transient EEG-NIRS coupling changes in resting-state spontaneous brain activation during anodal tDCS. Conventional sliding window cross-correlation calculations suffer a fundamental problem in computing the phase relationship as the signal in the window is considered time-invariant and the choice of the window length and step size are subjective. Here, Kalman Filter based method allowed online ARX parameter estimation using time-varying signals that could capture transients in the coupling relationship between EEG and NIRS signals. Our new online ARX model based tracking method allows continuous assessment of the transient coupling between the electrophysiological (EEG) and the hemodynamic (NIRS) signals representing resting-state spontaneous brain activation during anodal tDCS. Published by Elsevier B.V.

  9. E-CANES: A Research Network dedicated to Electromagnetic Coupling of the Atmosphere With Near-Earth Space

    NASA Astrophysics Data System (ADS)

    Hanuise, C.; Blanc, E.; Crosby, N.; Ebert, U.; Mareev, E.; Neubert, T.; Rothkaehl, H.; Santolik, O.; Yair, Y.; Gille, P.

    2008-12-01

    Transient luminous events in the stratosphere and mesosphere, the sprites, elves, blue jets and gigantic jets, are observed above intense thunderstorms in association with particularly intense lightning discharges. Their recent discovery (1989) offers an opportunity to study the fundamental process of the electric discharge under the different conditions of the troposphere (lightning), stratosphere (blue jets) and the mesosphere (sprites) and the coupling between these regions by electric and magnetic fields. It further facilitates studies of the more general questions of thunderstorm effects on the atmosphere and the role of thunderstorms in a changing climate. New space missions will be launched in the coming years to study the various effects of thunderstorms. They will focus on transient luminous events, the generation of relativistic electron beams in discharges, and the perturbation to the atmosphere, ionosphere and magnetosphere of lightning, transient luminous events, water vapour transport and gravity waves. The missions are the French micro-satellite TARANIS, the ESA ASIM payload on board the International Space Station and the Japanese Sprite Sat mission. These highly interdisciplinary missions will result in a wealth of new data, which require knowledge based capacity building to underpin the observations with improved statistical data analysis and theoretical modelling. We are therefore establishing a global framework for research on thunderstorm processes and their effect on the atmosphere, in particular (1) the fundamental process of the electric discharge as manifested in the stratosphere and mesosphere as sprites and jets, (2) the relationship between cosmic rays, lightning discharges, transient luminous events and terrestrial gamma ray flashes, and (3) the environmental impact of the above physical processes, and thunderstorms in general, on the atmosphere and near-Earth space. The first step has been the creation of the European research group (GDRE) dubbed E-CANES (Electromagnetic Coupling of the Atmosphere with the Near-Earth Space). It complements in a synergistic way the former EU Research Training Network 'Coupling of Atmospheric Layers', the existing COST action on 'The physics of lightning flash and its effects', the ASIM Topical Team, and other programs. The main objective of E-CANES is to initiate and promote coordination activities towards a global research community on the subject. The first actions include the establishment of an organization for coordinating ground, balloon and aircraft observation campaigns, the creation of a community-wide mailing list and website, and the promotion and coordination of joint activities with other structures - to include new communities and to avoid the duplication of meetings and workshops.

  10. Simulation Analysis of DC and Switching Impulse Superposition Circuit

    NASA Astrophysics Data System (ADS)

    Zhang, Chenmeng; Xie, Shijun; Zhang, Yu; Mao, Yuxiang

    2018-03-01

    Surge capacitors running between the natural bus and the ground are affected by DC and impulse superposition voltage during operation in the converter station. This paper analyses the simulation aging circuit of surge capacitors by PSCAD electromagnetic transient simulation software. This paper also analyses the effect of the DC voltage to the waveform of the impulse voltage generation. The effect of coupling capacitor to the test voltage waveform is also studied. Testing results prove that the DC voltage has little effect on the waveform of the output of the surge voltage generator, and the value of the coupling capacitor has little effect on the voltage waveform of the sample. Simulation results show that surge capacitor DC and impulse superimposed aging test is feasible.

  11. Functional and anatomical characteristics of the nerve-brown adipose interaction in the rat

    NASA Technical Reports Server (NTRS)

    Flaim, K. E.; Horowitz, J. M.; Horwitz, B. A.

    1976-01-01

    Experiments were conducted on 12 male rats to study the coupling of signals from the sympathetic nervous system to the brown adipose tissue. Analysis of electron photomicrographs revealed considerable morphological heterogeneity among the nerves entering and leaving the interscapular fat pad. In response to electrical simulation of the nerves, the temperature of the brown fat increased following a rapid but transient temperature drop. Such changes were observed only on the ipsilateral side, indicating that the innervation to the interscapular brown fat of the rat is functionally bilateral rather than diffuse. The finding that brown fat is capable of responding in a graded fashion correlates well with observations suggesting that clusters of brown adipocytes may be electrically coupled.

  12. Three Dimensional Transient Analysis of Microstrip Circuits in Multilayered Anisotropic Media

    DTIC Science & Technology

    1994-01-18

    time fat rfVWh ifl~ttUktOnS. watching e..,ing| galai• fld t gatlwnq and maintaningn~ te data needed. an cems~l~lzn andI reuiewing 1h cOllection Of...noise on the passive via are derived. The coupling responses in the frequency domain and crosstalk waveforms in the time domain for some multilayered...source, developed across the module-backplane connector. The finite-difference time -domain (FD-TD) technique, which is based on the discretization of

  13. Estimation of automobile-driver describing function from highway tests using the double steering wheel

    NASA Technical Reports Server (NTRS)

    Delp, P.; Crossman, E. R. F. W.; Szostak, H.

    1972-01-01

    The automobile-driver describing function for lateral position control was estimated for three subjects from frequency response analysis of straight road test results. The measurement procedure employed an instrumented full size sedan with known steering response characteristics, and equipped with a lateral lane position measuring device based on video detection of white stripe lane markings. Forcing functions were inserted through a servo driven double steering wheel coupling the driver to the steering system proper. Random appearing, Gaussian, and transient time functions were used. The quasi-linear models fitted to the random appearing input frequency response characterized the driver as compensating for lateral position error in a proportional, derivative, and integral manner. Similar parameters were fitted to the Gabor transformed frequency response of the driver to transient functions. A fourth term corresponding to response to lateral acceleration was determined by matching the time response histories of the model to the experimental results. The time histories show evidence of pulse-like nonlinear behavior during extended response to step transients which appear as high frequency remnant power.

  14. Time-dependent quantum transport and power-law decay of the transient current in a nano-relay and nano-oscillator

    NASA Astrophysics Data System (ADS)

    Cuansing, Eduardo C.; Liang, Gengchiau

    2011-10-01

    Time-dependent nonequilibrium Green's functions are used to study electron transport properties in a device consisting of two linear chain leads and a time-dependent interlead coupling that is switched on non-adiabatically. We derive a numerically exact expression for the particle current and examine its characteristics as it evolves in time from the transient regime to the long-time steady-state regime. We find that just after switch-on, the current initially overshoots the expected long-time steady-state value, oscillates and decays as a power law, and eventually settles to a steady-state value consistent with the value calculated using the Landauer formula. The power-law parameters depend on the values of the applied bias voltage, the strength of the couplings, and the speed of the switch-on. In particular, the oscillating transient current decays away longer for lower bias voltages. Furthermore, the power-law decay nature of the current suggests an equivalent series resistor-inductor-capacitor circuit wherein all of the components have time-dependent properties. Such dynamical resistive, inductive, and capacitive influences are generic in nano-circuits where dynamical switches are incorporated. We also examine the characteristics of the dynamical current in a nano-oscillator modeled by introducing a sinusoidally modulated interlead coupling between the two leads. We find that the current does not strictly follow the sinusoidal form of the coupling. In particular, the maximum current does not occur during times when the leads are exactly aligned. Instead, the times when the maximum current occurs depend on the values of the bias potential, nearest-neighbor coupling, and the interlead coupling.

  15. Transient Performance of a Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Onol, Aykut; Yesilyurt, Serhat

    2016-11-01

    A coupled CFD/rotor dynamics modeling approach is presented for the analysis of realistic transient behavior of a height-normalized, three-straight-bladed VAWT subject to inertial effects of the rotor and generator load which is manipulated by a feedback control under standardized wind gusts. The model employs the k- ɛ turbulence model to approximate unsteady Reynolds-averaged Navier-Stokes equations and is validated with data from field measurements. As distinct from related studies, here, the angular velocity is calculated from the rotor's equation of motion; thus, the dynamic response of the rotor is taken into account. Results include the following: First, the rotor's inertia filters large amplitude oscillations in the wind torque owing to the first-order dynamics. Second, the generator and wind torques differ especially during wind transients subject to the conservation of angular momentum of the rotor. Third, oscillations of the power coefficient exceed the Betz limit temporarily due to the energy storage in the rotor, which acts as a temporary buffer that stores the kinetic energy like a flywheel in short durations. Last, average of transient power coefficients peaks at a smaller tip-speed ratio for wind gusts than steady winds. This work was supported by the Sabanci University Internal Research Grant Program (SU-IRG-985).

  16. Radiation tolerant combinational logic cell

    NASA Technical Reports Server (NTRS)

    Maki, Gary R. (Inventor); Whitaker, Sterling (Inventor); Gambles, Jody W. (Inventor)

    2009-01-01

    A system has a reduced sensitivity to Single Event Upset and/or Single Event Transient(s) compared to traditional logic devices. In a particular embodiment, the system includes an input, a logic block, a bias stage, a state machine, and an output. The logic block is coupled to the input. The logic block is for implementing a logic function, receiving a data set via the input, and generating a result f by applying the data set to the logic function. The bias stage is coupled to the logic block. The bias stage is for receiving the result from the logic block and presenting it to the state machine. The state machine is coupled to the bias stage. The state machine is for receiving, via the bias stage, the result generated by the logic block. The state machine is configured to retain a state value for the system. The state value is typically based on the result generated by the logic block. The output is coupled to the state machine. The output is for providing the value stored by the state machine. Some embodiments of the invention produce dual rail outputs Q and Q'. The logic block typically contains combinational logic and is similar, in size and transistor configuration, to a conventional CMOS combinational logic design. However, only a very small portion of the circuits of these embodiments, is sensitive to Single Event Upset and/or Single Event Transients.

  17. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2018-03-01

    We investigate the occurrence of collective dynamical states such as transient amplitude chimera, stable amplitude chimera, and imperfect breathing chimera states in a locally coupled network of Stuart-Landau oscillators. In an imperfect breathing chimera state, the synchronized group of oscillators exhibits oscillations with large amplitudes, while the desynchronized group of oscillators oscillates with small amplitudes, and this behavior of coexistence of synchronized and desynchronized oscillations fluctuates with time. Then, we analyze the stability of the amplitude chimera states under various circumstances, including variations in system parameters and coupling strength, and perturbations in the initial states of the oscillators. For an increase in the value of the system parameter, namely, the nonisochronicity parameter, the transient chimera state becomes a stable chimera state for a sufficiently large value of coupling strength. In addition, we also analyze the stability of these states by perturbing the initial states of the oscillators. We find that while a small perturbation allows one to perturb a large number of oscillators resulting in a stable amplitude chimera state, a large perturbation allows one to perturb a small number of oscillators to get a stable amplitude chimera state. We also find the stability of the transient and stable amplitude chimera states and traveling wave states for an appropriate number of oscillators using Floquet theory. In addition, we also find the stability of the incoherent oscillation death states.

  18. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators.

    PubMed

    Premalatha, K; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M

    2018-03-01

    We investigate the occurrence of collective dynamical states such as transient amplitude chimera, stable amplitude chimera, and imperfect breathing chimera states in a locally coupled network of Stuart-Landau oscillators. In an imperfect breathing chimera state, the synchronized group of oscillators exhibits oscillations with large amplitudes, while the desynchronized group of oscillators oscillates with small amplitudes, and this behavior of coexistence of synchronized and desynchronized oscillations fluctuates with time. Then, we analyze the stability of the amplitude chimera states under various circumstances, including variations in system parameters and coupling strength, and perturbations in the initial states of the oscillators. For an increase in the value of the system parameter, namely, the nonisochronicity parameter, the transient chimera state becomes a stable chimera state for a sufficiently large value of coupling strength. In addition, we also analyze the stability of these states by perturbing the initial states of the oscillators. We find that while a small perturbation allows one to perturb a large number of oscillators resulting in a stable amplitude chimera state, a large perturbation allows one to perturb a small number of oscillators to get a stable amplitude chimera state. We also find the stability of the transient and stable amplitude chimera states and traveling wave states for an appropriate number of oscillators using Floquet theory. In addition, we also find the stability of the incoherent oscillation death states.

  19. Fluid-structure interaction in straight pipelines with different anchoring conditions

    NASA Astrophysics Data System (ADS)

    Ferras, David; Manso, Pedro A.; Schleiss, Anton J.; Covas, Dídia I. C.

    2017-04-01

    This investigation aims at assessing the fluid-structure interaction (FSI) occurring during hydraulic transients in straight pipeline systems fixed to anchor blocks. A two mode 4-equation model is implemented incorporating the main interacting mechanisms: Poisson, friction and junction coupling. The resistance to movement due to inertia and dry friction of the anchor blocks is treated as junction coupling. Unsteady skin friction is taken into account in friction coupling. Experimental waterhammer tests collected from a straight copper pipe-rig are used for model validation in terms of wave shape, timing and damping. Numerical results successfully reproduce laboratory measurements for realistic values of calibration parameters. The novelty of this paper is the presentation of a 1D FSI solver capable of describing the resistance to movement of anchor blocks and its effect on the transient pressure wave propagation in straight pipelines.

  20. MaMiCo: Transient multi-instance molecular-continuum flow simulation on supercomputers

    NASA Astrophysics Data System (ADS)

    Neumann, Philipp; Bian, Xin

    2017-11-01

    We present extensions of the macro-micro-coupling tool MaMiCo, which was designed to couple continuum fluid dynamics solvers with discrete particle dynamics. To enable local extraction of smooth flow field quantities especially on rather short time scales, sampling over an ensemble of molecular dynamics simulations is introduced. We provide details on these extensions including the transient coupling algorithm, open boundary forcing, and multi-instance sampling. Furthermore, we validate the coupling in Couette flow using different particle simulation software packages and particle models, i.e. molecular dynamics and dissipative particle dynamics. Finally, we demonstrate the parallel scalability of the molecular-continuum simulations by using up to 65 536 compute cores of the supercomputer Shaheen II located at KAUST. Program Files doi:http://dx.doi.org/10.17632/w7rgdrhb85.1 Licensing provisions: BSD 3-clause Programming language: C, C++ External routines/libraries: For compiling: SCons, MPI (optional) Subprograms used: ESPResSo, LAMMPS, ls1 mardyn, waLBerla For installation procedures of the MaMiCo interfaces, see the README files in the respective code directories located in coupling/interface/impl. Journal reference of previous version: P. Neumann, H. Flohr, R. Arora, P. Jarmatz, N. Tchipev, H.-J. Bungartz. MaMiCo: Software design for parallel molecular-continuum flow simulations, Computer Physics Communications 200: 324-335, 2016 Does the new version supersede the previous version?: Yes. The functionality of the previous version is completely retained in the new version. Nature of problem: Coupled molecular-continuum simulation for multi-resolution fluid dynamics: parts of the domain are resolved by molecular dynamics or another particle-based solver whereas large parts are covered by a mesh-based CFD solver, e.g. a lattice Boltzmann automaton. Solution method: We couple existing MD and CFD solvers via MaMiCo (macro-micro coupling tool). Data exchange and coupling algorithmics are abstracted and incorporated in MaMiCo. Once an algorithm is set up in MaMiCo, it can be used and extended, even if other solvers are used (as soon as the respective interfaces are implemented/available). Reasons for the new version: We have incorporated a new algorithm to simulate transient molecular-continuum systems and to automatically sample data over multiple MD runs that can be executed simultaneously (on, e.g., a compute cluster). MaMiCo has further been extended by an interface to incorporate boundary forcing to account for open molecular dynamics boundaries. Besides support for coupling with various MD and CFD frameworks, the new version contains a test case that allows to run molecular-continuum Couette flow simulations out-of-the-box. No external tools or simulation codes are required anymore. However, the user is free to switch from the included MD simulation package to LAMMPS. For details on how to run the transient Couette problem, see the file README in the folder coupling/tests, Remark on MaMiCo V1.1. Summary of revisions: Open boundary forcing; Multi-instance MD sampling; support for transient molecular-continuum systems Restrictions: Currently, only single-centered systems are supported. For access to the LAMMPS-based implementation of DPD boundary forcing, please contact Xin Bian, xin.bian@tum.de. Additional comments: Please see file license_mamico.txt for further details regarding distribution and advertising of this software.

  1. Unsteady Aerodynamic Simulations of a Finned Projectile at a Supersonic Speed With Jet Interaction

    DTIC Science & Technology

    2014-06-01

    20 4.4 Transient Effects During the Jet Event and Time-Accuracy of...35 Figure 27. Transient effects of jet maneuver event for the no initial angular...rate case. ................36 Figure 28. Effect of time step on the coupled solution for the initial low roll rate case: (a) roll rate, (b) roll angle

  2. Investigation of natural circulation instability and transients in passively safe novel modular reactor

    NASA Astrophysics Data System (ADS)

    Shi, Shanbin

    The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal-hydraulic and nuclear coupled startup transients are performed to investigate the flow instabilities at low pressure and low power conditions. Two different power ramps are chosen to study the effect of power density on the flow instability. The experimental startup transient tests show the existence of three different flow instability mechanisms during the low pressure startup transients, i.e., flashing instability, condensation induced instability, and density wave oscillations. Flashing instability in the chimney section of the test loop and density wave oscillation are the main flow instabilities observed when the system pressure is below 0.5 MPa. They show completely different type of oscillations, i.e., intermittent oscillation and sinusoidal oscillation, in void fraction profile during the startup transients. In order to perform nuclear-coupled startup transients with void reactivity feedback, the Point Kinetics model is utilized to calculate the transient power during the startup transients. In addition, the differences between the electric resistance heaters and typical fuel element are taken into account. The reactor power calculated shows some oscillations due to flashing instability during the transients. However, the void reactivity feedback does not have significant influence on the flow instability during the startup procedure for the NMR-50. Further investigation of very small power ramp on the startup transients is carried out for the thermal-hydraulic startup transients. It is found that very small power density can eliminate the flashing oscillation in the single phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. Furthermore, initially pressurized startup procedure is investigated to eliminate the main flow instabilities. The results show that the pressurized startup procedure can suppress the flashing instability at low pressure and low power conditions. In order to have a deep understanding of natural circulation flow instability, the quasi-steady tests are performed using the test facility installed with preheater and subcooler. The effects of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback are investigated in the quasi-steady state tests. The stability boundaries are determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. In order to predict the stability boundary theoretically, linear stability analysis in the frequency domain is performed at four sections of the loop. The flashing in the chimney is considered as an axially uniform heat source. The dimensionless characteristic equation of the pressure drop perturbation is obtained by considering the void fraction effect and outlet flow resistance in the chimney section. The flashing boundary shows some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium is recommended to improve the accuracy of flashing instability boundary.

  3. Excitonic instability in optically pumped three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Pertsova, Anna; Balatsky, Alexander V.

    2018-02-01

    Recently it was suggested that transient excitonic instability can be realized in optically pumped two-dimensional (2D) Dirac materials (DMs), such as graphene and topological insulator surface states. Here we discuss the possibility of achieving a transient excitonic condensate in optically pumped three-dimensional (3D) DMs, such as Dirac and Weyl semimetals, described by nonequilibrium chemical potentials for photoexcited electrons and holes. Similar to the equilibrium case with long-range interactions, we find that for pumped 3D DMs with screened Coulomb potential two possible excitonic phases exist, an excitonic insulator phase and the charge density wave phase originating from intranodal and internodal interactions, respectively. In the pumped case, the critical coupling for excitonic instability vanishes; therefore the two phases coexist for arbitrarily weak coupling strengths. The excitonic gap in the charge density wave phase is always the largest one. The competition between screening effects and the increase of the density of states with optical pumping results in a rich phase diagram for the transient excitonic condensate. Based on the static theory of screening, we find that under certain conditions the value of the dimensionless coupling constant screening in 3D DMs can be weaker than in 2D DMs. Furthermore, we identify the signatures of the transient excitonic condensate that could be probed by scanning tunneling spectroscopy, photoemission, and optical conductivity measurements. Finally, we provide estimates of critical temperatures and excitonic gaps for existing and hypothetical 3D DMs.

  4. Time-variable stress transfer across a megathrust from seismic to Wilson cycle scale

    NASA Astrophysics Data System (ADS)

    Rosenau, Matthias; Angiboust, Samuel; Moreno, Marcos; Schurr, Bernd; Oncken, Onno

    2013-04-01

    During the lifetime of a convergent plate margin stress transfer across the plate interface (a megathrust) can be expected to vary at multiple timescales. At short time scales (years to decades), a subduction megathrust interface appears coupled (accumulating shear stress) at shallow depth (seismogenic zone <350°C) in a laterally heterogeneous fashion. Highly coupled areas are prerequisite to areas of large slip (asperities) during future earthquakes but the correlation is rarely unequivocal suggesting that the coupling pattern is transient during the interseismic period. As temperature, structure and material properties are unlike to change at short time scales as well as at short distance along strike, fluid pressure change is invoked as the prime agent of lateral and time-variable stress transfer at short time (seismic cycle) scale and beyond. On longer time scales (up to Wilson cycles), additional agents of time-variable stress change are discussed. Shear tests using velocity weakening rock analogue material suggest that in a conditionally stable regime the effective normal load controls both the geodetic and the seismic coupling (fraction of convergence velocity accommodated by interseismic backslip/seismic slip). Accordingly seismic coupling decreases from 80% to 20% as the pore fluid pressure increases from hydrostatic to near-lithostatic. Moreover, the experiments demonstrate that at sub-seismic cycle scale the geodetic coupling (locking) is not only proportional to effective normal load but also to relative shear stress. For areas of near complete stress drop locking might systematically decrease over the interseismic period from >80-95 % shortly after an earthquake to backslip at significant fractions of plate convergence rate (<5-45 % locking) later in the seismic cycle. If we allow pore fluid pressures to change at sub-seismic cycle scale a single location along a megathrust may thus appear fully locked after an earthquake while fully unlocked before an earthquake. The mechanisms and timescales of fluid pressure changes along a megathrust are yet to be explored but a valid hypothesis seems to be that non-volcanic tremor and slow slip below the seismogenic zone represent short term episodes of metamorphic fluid infiltration into the shallow megathrust. A megathrust fault valve mechanism clocked by the greatest earthquakes then accounts for cyclic fluid pressure build up and drainage at sub-seismic cycle scale. As pore pressure dynamics are controlled primarily by permeability which in turn is controlled by structure and material properties, then more long term coupling transients associated with structural evolution of the plate margin can be implied. Fluid controlled transients might interfere with transients and secular trends resulting from changes in material strength and plate tectonic forces over the Wilson cycle resulting in a multispectral stress-transfer pattern associated with convergent margin evolution. Because of the viscous damping effect of the underlying asthenosphere, however, only longterm transients (periods >1-10 ka) are transmitted into the engaged plates. We therefore speculate that the multispectral nature of stress transfer across a megathrust filtered through the asthenosphere explains transient fault activity in some intraplate settings.

  5. Groundwater contamination from an inactive uranium mill tailings pile: 2. Application of a dynamic mixing model

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.; White, A. F.; Tokunaga, T.

    1986-12-01

    At Riverton, Wyoming, low pH process waters from an abandoned uranium mill tailings pile have been infiltrating into and contaminating the shallow water table aquifer. The contamination process has been governed by transient infiltration rates, saturated-unsaturated flow, as well as transient chemical reactions between the many chemical species present in the mixing waters and the sediments. In the first part of this two-part series [White et al., 1984] we presented field data as well as an interpretation based on a static mixing model. As an upper bound, we estimated that 1.7% of the tailings water had mixed with the native groundwater. In the present work we present the results of numerical investigation of the dynamic mixing process. The model, DYNAMIX (DYNAmic MIXing), couples a chemical speciation algorithm, PHREEQE, with a modified form of the transport algorithm, TRUMP, specifically designed to handle the simultaneous migration of several chemical constituents. The overall problem of simulating the evolution and migration of the contaminant plume was divided into three sub problems that were solved in sequential stages. These were the infiltration problem, the reactive mixing problem, and the plume-migration problem. The results of the application agree reasonably with the detailed field data. The methodology developed in the present study demonstrates the feasibility of analyzing the evolution of natural hydrogeochemical systems through a coupled analysis of transient fluid flow as well as chemical reactions. It seems worthwhile to devote further effort toward improving the physicochemical capabilities of the model as well as to enhance its computational efficiency.

  6. Groundwater contamination from an inactive uranium mill tailings pile. 2. Application of a dynamic mixing model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narashimhan, T.N.; White, A.F.; Tokunaga, T.

    1986-12-01

    At Riverton, Wyoming, low pH process waters from an abandoned uranium mill tailings pile have been infiltrating into and contaminating the shallow water table aquifer. The contamination process has been governed by transient infiltration rates, saturated-unsaturated flow, as well as transient chemical reactions between the many chemical species present in the mixing waters and the sediments. In the first part of this two-part series the authors presented field data as well as an interpretation based on a static mixing models. As an upper bound, the authors estimated that 1.7% of the tailings water had mixed with the native groundwater. Inmore » the present work they present the results of numerical investigation of the dynamic mixing process. The model, DYNAMIX (DYNamic MIXing), couples a chemical speciation algorithm, PHREEQE, with a modified form of the transport algorithm, TRUMP, specifically designed to handle the simultaneous migration of several chemical constituents. The overall problem of simulating the evolution and migration of the contaminant plume was divided into three sub problems that were solved in sequential stages. These were the infiltration problem, the reactive mixing problem, and the plume-migration problem. The results of the application agree reasonably with the detailed field data. The methodology developed in the present study demonstrates the feasibility of analyzing the evolution of natural hydrogeochemical systems through a coupled analysis of transient fluid flow as well as chemical reactions. It seems worthwhile to devote further effort toward improving the physicochemical capabilities of the model as well as to enhance its computational efficiency.« less

  7. The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2012-09-01

    Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor ( Q ) and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory.

  8. The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission

    PubMed Central

    Kiani, Mehdi; Ghovanloo, Maysam

    2014-01-01

    Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor (Q) and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory. PMID:24683368

  9. Flutter and forced response of mistuned rotors using standing wave analysis

    NASA Technical Reports Server (NTRS)

    Dugundji, J.; Bundas, D. J.

    1983-01-01

    A standing wave approach is applied to the analysis of the flutter and forced response of tuned and mistuned rotors. The traditional traveling wave cascade airforces are recast into standing wave arbitrary motion form using Pade approximants, and the resulting equations of motion are written in the matrix form. Applications for vibration modes, flutter, and forced response are discussed. It is noted that the standing wave methods may prove to be more versatile for dealing with certain applications, such as coupling flutter with forced response and dynamic shaft problems, transient impulses on the rotor, low-order engine excitation, bearing motions, and mistuning effects in rotors.

  10. Flutter and forced response of mistuned rotors using standing wave analysis

    NASA Technical Reports Server (NTRS)

    Bundas, D. J.; Dungundji, J.

    1983-01-01

    A standing wave approach is applied to the analysis of the flutter and forced response of tuned and mistuned rotors. The traditional traveling wave cascade airforces are recast into standing wave arbitrary motion form using Pade approximants, and the resulting equations of motion are written in the matrix form. Applications for vibration modes, flutter, and forced response are discussed. It is noted that the standing wave methods may prove to be more versatile for dealing with certain applications, such as coupling flutter with forced response and dynamic shaft problems, transient impulses on the rotor, low-order engine excitation, bearing motion, and mistuning effects in rotors.

  11. Vibration signature analysis of multistage gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.

    1989-01-01

    An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.

  12. An efficient numerical solution of the transient storage equations for solute transport in small streams

    USGS Publications Warehouse

    Runkel, Robert L.; Chapra, Steven C.

    1993-01-01

    Several investigators have proposed solute transport models that incorporate the effects of transient storage. Transient storage occurs in small streams when portions of the transported solute become isolated in zones of water that are immobile relative to water in the main channel (e.g., pools, gravel beds). Transient storage is modeled by adding a storage term to the advection-dispersion equation describing conservation of mass for the main channel. In addition, a separate mass balance equation is written for the storage zone. Although numerous applications of the transient storage equations may be found in the literature, little attention has been paid to the numerical aspects of the approach. Of particular interest is the coupled nature of the equations describing mass conservation for the main channel and the storage zone. In the work described herein, an implicit finite difference technique is developed that allows for a decoupling of the governing differential equations. This decoupling method may be applied to other sets of coupled equations such as those describing sediment-water interactions for toxic contaminants. For the case at hand, decoupling leads to a 50% reduction in simulation run time. Computational costs may be further reduced through efficient application of the Thomas algorithm. These techniques may be easily incorporated into existing codes and new applications in which simulation run time is of concern.

  13. Exact analytical solution to a transient conjugate heat-transfer problem

    NASA Technical Reports Server (NTRS)

    Sucec, J.

    1973-01-01

    An exact analytical solution is found for laminar, constant-property, slug flow over a thin plate which is also convectively cooled from below. The solution is found by means of two successive Laplace transformations when a transient in the plate and the fluid is initiated by a step change in the fluid inlet temperature. The exact solution yields the transient fluid temperature, surface heat flux, and surface temperature distributions. The results of the exact transient solution for the surface heat flux are compared to the quasi-steady values, and a criterion for the validity of the quasi-steady results is found. Also the effect of the plate coupling parameter on the surface heat flux are investigated.

  14. Coupled Cryogenic Thermal and Electrical Models for Transient Analysis of Superconducting Power Devices with Integrated Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Satyanarayana, S.; Indrakanti, S.; Kim, J.; Kim, C.; Pamidi, S.

    2017-12-01

    Benefits of an integrated high temperature superconducting (HTS) power system and the associated cryogenic systems on board an electric ship or aircraft are discussed. A versatile modelling methodology developed to assess the cryogenic thermal behavior of the integrated system with multiple HTS devices and the various potential configurations are introduced. The utility and effectiveness of the developed modelling methodology is demonstrated using a case study involving a hypothetical system including an HTS propulsion motor, an HTS generator and an HTS power cable cooled by an integrated cryogenic helium circulation system. Using the methodology, multiple configurations are studied. The required total cooling power and the ability to maintain each HTS device at the required operating temperatures are considered for each configuration and the trade-offs are discussed for each configuration. Transient analysis of temperature evolution in the cryogenic helium circulation loop in case of a system failure is carried out to arrive at the required critical response time. The analysis was also performed for a similar liquid nitrogen circulation for an isobaric condition and the cooling capacity ratio is used to compare the relative merits of the two cryogens.

  15. A modified variational method for nonlinear vibration analysis of rotating beams including Coriolis effects

    NASA Astrophysics Data System (ADS)

    Tian, Jiajin; Su, Jinpeng; Zhou, Kai; Hua, Hongxing

    2018-07-01

    This paper presents a general formulation for nonlinear vibration analysis of rotating beams. A modified variational method combined with a multi-segment partitioning technique is employed to derive the free and transient vibration behaviors of the rotating beams. The strain energy and kinetic energy functional are formulated based on the order truncation principle of the fully geometrically nonlinear beam theory. The Coriolis effects as well as nonlinear effects due to the coupling of bending-stretching, bending-twist and twist-stretching are taken into account. The present method relaxes the need to explicitly meet the requirements of the boundary conditions for the admissible functions, and allows the use of any linearly independent, complete basis functions as admissible functions for rotating beams. Moreover, the method is readily used to deal with the nonlinear transient vibration problems for rotating beams subjected to dynamic loads. The accuracy, convergence and efficiency of the proposed method are examined by numerical examples. The influences of Coriolis and centrifugal forces on the vibration behaviors of the beams with various hub radiuses and slenderness ratios and rotating at different angular velocities are also investigated.

  16. Co-simulation coupling spectral/finite elements for 3D soil/structure interaction problems

    NASA Astrophysics Data System (ADS)

    Zuchowski, Loïc; Brun, Michael; De Martin, Florent

    2018-05-01

    The coupling between an implicit finite elements (FE) code and an explicit spectral elements (SE) code has been explored for solving the elastic wave propagation in the case of soil/structure interaction problem. The coupling approach is based on domain decomposition methods in transient dynamics. The spatial coupling at the interface is managed by a standard coupling mortar approach, whereas the time integration is dealt with an hybrid asynchronous time integrator. An external coupling software, handling the interface problem, has been set up in order to couple the FE software Code_Aster with the SE software EFISPEC3D.

  17. One nuclear calcium transient induced by a single burst of action potentials represents the minimum signal strength in activity-dependent transcription in hippocampal neurons.

    PubMed

    Yu, Yan; Oberlaender, Kristin; Bengtson, C Peter; Bading, Hilmar

    2017-07-01

    Neurons undergo dramatic changes in their gene expression profiles in response to synaptic stimulation. The coupling of neuronal excitation to gene transcription is well studied and is mediated by signaling pathways activated by cytoplasmic and nuclear calcium transients. Despite this, the minimum synaptic activity required to induce gene expression remains unknown. To address this, we used cultured hippocampal neurons and cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH) that allows detection of nascent transcripts in the cell nucleus. We found that a single burst of action potentials, consisting of 24.4±5.1 action potentials during a 6.7±1.9s depolarization of 19.5±2.0mV causing a 9.3±0.9s somatic calcium transient, is sufficient to activate transcription of the immediate early gene arc (also known as Arg3.1). The total arc mRNA yield produced after a single burst-induced nuclear calcium transient was very small and, compared to unstimulated control neurons, did not lead to a significant increase in arc mRNA levels measured using quantitative reverse transcriptase PCR (qRT-PCR) of cell lysates. Significantly increased arc mRNA levels became detectable in hippocampal neurons that had undergone 5-8 consecutive burst-induced nuclear calcium transients at 0.05-0.15Hz. These results indicate that a single burst-induced nuclear calcium transient can activate gene expression and that transcription is rapidly shut off after synaptic stimulation has ceased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Transient alkalinization of the leaf apoplast stiffens the cell wall during onset of chloride salinity in corn leaves.

    PubMed

    Geilfus, Christoph-Martin; Tenhaken, Raimund; Carpentier, Sebastien Christian

    2017-11-17

    During chloride salinity, the pH of the leaf apoplast (pH apo ) transiently alkalizes. There is an ongoing debate about the physiological relevance of these stress-induced pH apo changes. Using proteomic analyses of expanding leaves of corn ( Zea mays L.), we show that this transition in pH apo conveys functionality by (i) adjusting protein abundances and (ii) affecting the rheological properties of the cell wall. pH apo was monitored in planta via microscopy-based ratio imaging, and the leaf-proteomic response to the transient leaf apoplastic alkalinization was analyzed via ultra-high performance liquid chromatography-MS. This analysis identified 1459 proteins, of which 44 exhibited increased abundance specifically through the chloride-induced transient rise in pH apo These elevated protein abundances did not directly arise from high tissue concentrations of Cl - or Na + but were due to changes in the pH apo Most of these proteins functioned in growth-relevant processes and in the synthesis of cell wall-building components such as arabinose. Measurements with a linear-variable differential transducer revealed that the transient alkalinization rigidified ( i.e. stiffened) the cell wall during the onset of chloride salinity. A decrease in t -coumaric and t -ferulic acids indicates that the wall stiffening arises from cross-linkage to cell wall polymers. We conclude that the pH of the apoplast represents a dynamic factor that is mechanistically coupled to cellular responses to chloride stress. By hardening the wall, the increased pH abrogates wall loosening required for cell expansion and growth. We conclude that the transient alkalinization of the leaf apoplast is related to salinity-induced growth reduction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. On the timing behaviour of PSR B1259-63 under the propeller torque from a transient accretion disc

    NASA Astrophysics Data System (ADS)

    Yi, Shu-Xu; Cheng, K. S.

    2018-05-01

    The γ-ray pulsar binary system PSR B1259-63 flares in GeV after each periastron. The origin of these flares is still under debate. Recently, in 2017, we proposed a mechanism that might explain the GeV flares. In that model, a transient accretion disc is expected to be formed from the matter that was gravity-captured by the neutron star from the main-sequence companion's circumstellar disc. The transient accretion disc exerts a spin-down torque on the neutron star (i.e. the propeller effect), which might be traceable via pulsar timing observations of PSR B1259-63. In this paper, we consider the propeller effect phenomenologically using a parameter χ, which describes the coupling between the disc matter and the neutron star. Comparing the expected timing residuals with recent observations by Shannon et al., we conclude that the angular momentum transfer is very weak (with the coupling parameter χ ≤ 10-4).

  20. Theoretical study of collinear optical frequency comb generation under multi-wave, transient stimulated Raman scattering in crystals

    NASA Astrophysics Data System (ADS)

    Smetanin, S. N.

    2014-11-01

    Using mathematical modelling we have studied the conditions of low-threshold collinear optical frequency comb generation under transient (picosecond) stimulated Raman scattering (SRS) and parametric four-wave coupling of SRS components in crystals. It is shown that Raman-parametric generation of an octave-spanning optical frequency comb occurs most effectively under intermediate, transient SRS at a pump pulse duration exceeding the dephasing time by five-to-twenty times. We have found the optimal values of not only the laser pump pulse duration, but also of the Raman crystal lengths corresponding to highly efficient generation of an optical frequency comb from the second anti-Stokes to the fourth Stokes Raman components. For the KGd(WO4)2 (high dispersion) and Ba(NO3)2 (low dispersion) crystals pumped at a wavelength of 1.064 μm and a pulse duration five or more times greater than the dephasing time, the optimum length of the crystal was 0.3 and 0.6 cm, respectively, which is consistent with the condition of the most effective Stokes - anti-Stokes coupling ΔkL ≈ 15, where Δk is the wave detuning from phase matching of Stokes - anti-Stokes coupling, determined by the refractive index dispersion of the SRS medium.

  1. Estimation of the quantification uncertainty from flow injection and liquid chromatography transient signals in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Laborda, Francisco; Medrano, Jesús; Castillo, Juan R.

    2004-06-01

    The quality of the quantitative results obtained from transient signals in high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) and flow injection-inductively coupled plasma mass spectrometry (FI-ICPMS) was investigated under multielement conditions. Quantification methods were based on multiple-point calibration by simple and weighted linear regression, and double-point calibration (measurement of the baseline and one standard). An uncertainty model, which includes the main sources of uncertainty from FI-ICPMS and HPLC-ICPMS (signal measurement, sample flow rate and injection volume), was developed to estimate peak area uncertainties and statistical weights used in weighted linear regression. The behaviour of the ICPMS instrument was characterized in order to be considered in the model, concluding that the instrument works as a concentration detector when it is used to monitorize transient signals from flow injection or chromatographic separations. Proper quantification by the three calibration methods was achieved when compared to reference materials, although the double-point calibration allowed to obtain results of the same quality as the multiple-point calibration, shortening the calibration time. Relative expanded uncertainties ranged from 10-20% for concentrations around the LOQ to 5% for concentrations higher than 100 times the LOQ.

  2. Improved characterization of heterogeneous permeability in saline aquifers from transient pressure data during freshwater injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Peter K.; Lee, Jonghyun; Fu, Xiaojing

    Managing recharge of freshwater into saline aquifers requires accurate estimation of the heterogeneous permeability field for maximizing injection and recovery efficiency. Here we present a methodology for subsurface characterization in saline aquifers that takes advantage of the density difference between the injected freshwater and the ambient saline groundwater. We combine high-resolution forward modeling of density-driven flow with an efficient Bayesian geostatistical inversion algorithm. In the presence of a density difference between the injected and ambient fluids due to differences in salinity, the pressure field is coupled to the spatial distribution of salinity. This coupling renders the pressure field transient: themore » time evolution of the salinity distribution controls the density distribution which then leads to a time-evolving pressure distribution. We exploit this coupling between pressure and salinity to obtain an improved characterization of the permeability field without multiple pumping tests or additional salinity measurements. We show that the inversion performance improves with an increase in the mixed convection ratio—the relative importance between viscous forces from injection and buoyancy forces from density difference. Thus, our work shows that measuring transient pressure data at multiple sampling points during freshwater injection into saline aquifers can be an effective strategy for aquifer characterization, key to the successful management of aquifer recharge.« less

  3. Multiscale Transient and Steady-State Study of the Influence of Microstructure Degradation and Chromium Oxide Poisoning on Solid Oxide Fuel Cell Cathode Performance

    NASA Astrophysics Data System (ADS)

    Li, Guanchen; von Spakovsky, Michael R.; Shen, Fengyu; Lu, Kathy

    2018-01-01

    Oxygen reduction in a solid oxide fuel cell cathode involves a nonequilibrium process of coupled mass and heat diffusion and electrochemical and chemical reactions. These phenomena occur at multiple temporal and spatial scales, making the modeling, especially in the transient regime, very difficult. Nonetheless, multiscale models are needed to improve the understanding of oxygen reduction and guide cathode design. Of particular importance for long-term operation are microstructure degradation and chromium oxide poisoning both of which degrade cathode performance. Existing methods are phenomenological or empirical in nature and their application limited to the continuum realm with quantum effects not captured. In contrast, steepest-entropy-ascent quantum thermodynamics can be used to model nonequilibrium processes (even those far-from equilibrium) at all scales. The nonequilibrium relaxation is characterized by entropy generation, which can unify coupled phenomena into one framework to model transient and steady behavior. The results reveal the effects on performance of the different timescales of the varied phenomena involved and their coupling. Results are included here for the effects of chromium oxide concentrations on cathode output as is a parametric study of the effects of interconnect-three-phase-boundary length, oxygen mean free path, and adsorption site effectiveness. A qualitative comparison with experimental results is made.

  4. Improved characterization of heterogeneous permeability in saline aquifers from transient pressure data during freshwater injection

    DOE PAGES

    Kang, Peter K.; Lee, Jonghyun; Fu, Xiaojing; ...

    2017-05-31

    Managing recharge of freshwater into saline aquifers requires accurate estimation of the heterogeneous permeability field for maximizing injection and recovery efficiency. Here we present a methodology for subsurface characterization in saline aquifers that takes advantage of the density difference between the injected freshwater and the ambient saline groundwater. We combine high-resolution forward modeling of density-driven flow with an efficient Bayesian geostatistical inversion algorithm. In the presence of a density difference between the injected and ambient fluids due to differences in salinity, the pressure field is coupled to the spatial distribution of salinity. This coupling renders the pressure field transient: themore » time evolution of the salinity distribution controls the density distribution which then leads to a time-evolving pressure distribution. We exploit this coupling between pressure and salinity to obtain an improved characterization of the permeability field without multiple pumping tests or additional salinity measurements. We show that the inversion performance improves with an increase in the mixed convection ratio—the relative importance between viscous forces from injection and buoyancy forces from density difference. Thus, our work shows that measuring transient pressure data at multiple sampling points during freshwater injection into saline aquifers can be an effective strategy for aquifer characterization, key to the successful management of aquifer recharge.« less

  5. Effect of the fissile bead's and thermocouple wires' sizes on the response time of a fission couple.

    PubMed

    Liang, Wenfeng; Lu, Yi; Li, Meng; Fan, Xiaoqiang; Lu, Wei

    2014-05-01

    The fission couple is proposed as a fast response miniature neutron detector in the measurement of time dependent energy depositions within the fissile material based on theoretical analysis, but the response time of a fission couple is relatively slow in practice. The time lag originated from heat transfer process was demonstrated to be the dominating factor by theoretical simulations and experimental verification in this paper. The response of a fission couple as a function of the bead size and the thermocouple wires' sizes are simulated using ANSYS workbench. The decrease of wires' diameter results in the decrease of response time, and the increase of bead's diameter leads to a slight increase of response time. During a pulse heating transient in the fuel of Chinese Fast Burst Reactor II with a FWHM of 181 μs, the time lag originated from heat transfer process is about tens of microseconds for the peaks of the change rate of temperature, and is of the order of milliseconds to achieve 85% of the temperature rise for a typical fission couple with a Φ 1 mm fissile bead and two Φ 0.05 mm thermocouple wires. The results obtained provide foundation for the optimization of fission couples.

  6. Effect of the fissile bead's and thermocouple wires’ sizes on the response time of a fission couple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Wenfeng, E-mail: liang-wen-feng@163.com; Lu, Yi; Li, Meng

    The fission couple is proposed as a fast response miniature neutron detector in the measurement of time dependent energy depositions within the fissile material based on theoretical analysis, but the response time of a fission couple is relatively slow in practice. The time lag originated from heat transfer process was demonstrated to be the dominating factor by theoretical simulations and experimental verification in this paper. The response of a fission couple as a function of the bead size and the thermocouple wires’ sizes are simulated using ANSYS workbench. The decrease of wires’ diameter results in the decrease of response time,more » and the increase of bead's diameter leads to a slight increase of response time. During a pulse heating transient in the fuel of Chinese Fast Burst Reactor II with a FWHM of 181μs, the time lag originated from heat transfer process is about tens of microseconds for the peaks of the change rate of temperature, and is of the order of milliseconds to achieve 85% of the temperature rise for a typical fission couple with a Φ 1 mm fissile bead and two Φ 0.05 mm thermocouple wires. The results obtained provide foundation for the optimization of fission couples.« less

  7. Frequency method for determining the parameters of the electromagnetic brakes and slip-type couplings with solid magnetic circuits

    NASA Technical Reports Server (NTRS)

    Guseynov, F. G.; Abbasova, E. M.

    1977-01-01

    The equivalent representation of brakes and coupling by lumped circuits is investigated. Analytical equations are derived for relating the indices of the transients to the parameters of the equivalent circuits for arbitrary rotor speed. A computer algorithm is given for the calculations.

  8. Magnetic moments, coupling, and interface interdiffusion in Fe/V(001) superlattices

    NASA Astrophysics Data System (ADS)

    Schwickert, M. M.; Coehoorn, R.; Tomaz, M. A.; Mayo, E.; Lederman, D.; O'brien, W. L.; Lin, Tao; Harp, G. R.

    1998-06-01

    Epitaxial Fe/V(001) multilayers are studied both experimentally and by theoretical calculations. Sputter-deposited epitaxial films are characterized by x-ray diffraction, magneto-optical Kerr effect, and x-ray magnetic circular dichroism. These results are compared with first-principles calculations modeling different amounts of interface interdiffusion. The exchange coupling across the V layers is observed to oscillate, with antiferromagnetic peaks near the V layer thicknesses tV~22, 32, and 42 Å. For all films including superlattices and alloys, the average V magnetic moment is antiparallel to that of Fe. The average V moment increases slightly with increasing interdiffusion at the Fe/V interface. Calculations modeling mixed interface layers and measurements indicate that all V atoms are aligned with one another for tV<~15 Å, although the magnitude of the V moment decays toward the center of the layer. This ``transient ferromagnetic'' state arises from direct (d-d) exchange coupling between V atoms in the layer. It is argued that the transient ferromagnetism suppresses the first antiferromagnetic coupling peak between Fe layers, expected to occur at tV~12 Å.

  9. Fast Response of the Tropics to an Abrupt Loss of Arctic Sea Ice via Ocean Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Deser, Clara; Sun, Lantao; Tomas, Robert A.

    2018-05-01

    The role of ocean dynamics in the transient adjustment of the coupled climate system to an abrupt loss of Arctic sea ice is investigated using experiments with Community Climate System Model version 4 in two configurations: a thermodynamic slab mixed layer ocean and a full-depth ocean that includes both dynamics and thermodynamics. Ocean dynamics produce a distinct sea surface temperature warming maximum in the eastern equatorial Pacific, accompanied by an equatorward intensification of the Intertropical Convergence Zone and Hadley Circulation. These tropical responses are established within 25 years of ice loss and contrast markedly with the quasi-steady antisymmetric coupled response in the slab-ocean configuration. A heat budget analysis reveals the importance of anomalous vertical advection tied to a monotonic temperature increase below 200 m for the equatorial sea surface temperature warming maximum in the fully coupled model. Ocean dynamics also rapidly modify the midlatitude atmospheric response to sea ice loss.

  10. Space shuttle main engine definition (phase B). Volume 5: Valves and interconnects. [for space shuttle

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1971-01-01

    The steady state thermodynamic cycle balance of the single preburner staged combustion engine, coupled with dynamic transient analyses, dictated in detail the location and requirements for each valve defined in this volume. Valve configuration selections were influenced by overall engine and vehicle system weight and failure mode determinations. Modulating valve actuators are external to the valve and are line replaceable. Development and satisfactory demonstration of a high pressure dynamic shaft seal has made this configuration practical. Pneumatic motor driven actuators that use engine pumped hydrogen gas as the working fluid are used. The helium control system is proposed as a module containing a cluster of solenoid actuated valves. The separable couplings and flanges are designed to assure minimum leakage with minimum coupling weight. The deflection of the seal surface in the flange is defined by finite element analysis that has been confirmed with test data. The seal design proposed has passed preliminary pressure cycling and thermal cycling tests.

  11. Dynamics of Solid-Liquid Composite Beams

    NASA Astrophysics Data System (ADS)

    Matia, Yoav; Gat, Amir

    2017-11-01

    Solid-liquid composite structures received considerable attention in recent years in various fields such as smart materials, sensors, actuators and soft-robotics. We examine a beam-like appendage embedded with a set of a fluid-filled bladders, interconnected via elastic slender channels; a common arrangement in the abovementioned fields. Viscous flow within such structures is coupled with the elastic deformation of the solid. Beam deformation both creates, and is induced by, a fluidic pressure gradient and viscous flow which deforms the bladders and thus the surrounding solid. Applying concepts from poroelastic analysis, we obtain a set of three interdependent equations relating the fluidic pressure within the channel to the transverse and longitudinal displacements of the beam. Exact and approximate solutions are presented for various configurations. The results are validated and supplemented by a transient three-dimensional numerical study of the fluid-structure-interaction. The two-way coupled fluid-structure-interaction model allows the analysis and design of soft smart-metamaterials with unique mechanical properties, to applications such as touch-sensing surfaces, energy harvesting and protective gear.

  12. Coupling the System Analysis Module with SAS4A/SASSYS-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanning, T. H.; Hu, R.

    2016-09-30

    SAS4A/SASSYS-1 is a simulation tool used to perform deterministic analysis of anticipated events as well as design basis and beyond design basis accidents for advanced reactors, with an emphasis on sodium fast reactors. SAS4A/SASSYS-1 has been under development and in active use for nearly forty-five years, and is currently maintained by the U.S. Department of Energy under the Office of Advanced Reactor Technology. Although SAS4A/SASSYS-1 contains a very capable primary and intermediate system modeling component, PRIMAR-4, it also has some shortcomings: outdated data management and code structure makes extension of the PRIMAR-4 module somewhat difficult. The user input format formore » PRIMAR-4 also limits the number of volumes and segments that can be used to describe a given system. The System Analysis Module (SAM) is a fairly new code development effort being carried out under the U.S. DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. SAM is being developed with advanced physical models, numerical methods, and software engineering practices; however, it is currently somewhat limited in the system components and phenomena that can be represented. For example, component models for electromagnetic pumps and multi-layer stratified volumes have not yet been developed. Nor is there support for a balance of plant model. Similarly, system-level phenomena such as control-rod driveline expansion and vessel elongation are not represented. This report documents fiscal year 2016 work that was carried out to couple the transient safety analysis capabilities of SAS4A/SASSYS-1 with the system modeling capabilities of SAM under the joint support of the ART and NEAMS programs. The coupling effort was successful and is demonstrated by evaluating an unprotected loss of flow transient for the Advanced Burner Test Reactor (ABTR) design. There are differences between the stand-alone SAS4A/SASSYS-1 simulations and the coupled SAS/SAM simulations, but these are mainly attributed to the limited maturity of the SAM development effort. The severe accident modeling capabilities in SAS4A/SASSYS-1 (sodium boiling, fuel melting and relocation) will continue to play a vital role for a long time. Therefore, the SAS4A/SASSYS-1 modernization effort should remain a high priority task under the ART program to ensure continued participation in domestic and international SFR safety collaborations and design optimizations. On the other hand, SAM provides an advanced system analysis tool, with improved numerical solution schemes, data management, code flexibility, and accuracy. SAM is still in early stages of development and will require continued support from NEAMS to fulfill its potential and to mature into a production tool for advanced reactor safety analysis. The effort to couple SAS4A/SASSYS-1 and SAM is the first step on the integration of these modeling capabilities.« less

  13. Temperature and Voltage Coupling to Channel Opening in Transient Receptor Potential Melastatin 8 (TRPM8)*♦

    PubMed Central

    Raddatz, Natalia; Castillo, Juan P.; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-01-01

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca2+-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol−1. The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening. PMID:25352597

  14. Gi-coupled γ-aminobutyric acid-B receptors cross-regulate phospholipase C and calcium in airway smooth muscle.

    PubMed

    Mizuta, Kentaro; Mizuta, Fumiko; Xu, Dingbang; Masaki, Eiji; Panettieri, Reynold A; Emala, Charles W

    2011-12-01

    γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system, and exerts its actions via both ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors. Although the functional expression of GABA(B) receptors coupled to the G(i) protein was reported for airway smooth muscle, the role of GABA(B) receptors in airway responsiveness remains unclear. We investigated whether G(i)-coupled GABA(B) receptors cross-regulate phospholipase C (PLC), an enzyme classically regulated by G(q)-coupled receptors in human airway smooth muscle cells. Both the GABA(B)-selective agonist baclofen and the endogenous ligand GABA significantly increased the synthesis of inositol phosphate, whereas GABA(A) receptor agonists, muscimol, and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol exerted no effect. The baclofen-induced synthesis of inositol phosphate and transient increases in [Ca(2+)](i) were blocked by CGP35348 and CGP55845 (selective GABA(B) antagonists), pertussis toxin (PTX, which inactivates the G(i) protein), gallein (a G(βγ) signaling inhibitor), U73122 (an inhibitor of PLC-β), and xestospongin C, an inositol 1,4,5-triphosphate receptor blocker. Baclofen also potentiated the bradykinin-induced synthesis of inositol phosphate and transient increases in [Ca(2+)](i), which were blocked by CGP35348 or PTX. Moreover, baclofen potentiated the substance P-induced contraction of airway smooth muscle in isolated guinea pig tracheal rings. In conclusion, the stimulation of GABA(B) receptors in human airway smooth muscle cells rapidly mobilizes intracellular Ca(2+) stores by the synthesis of inositol phosphate via the activation of PLC-β, which is stimulated by G(βγ) protein liberated from G(i) proteins coupled to GABA(B) receptors. Furthermore, crosstalk between GABA(B) receptors and G(q)-coupled receptors potentiates the synthesis of inositol phosphate, transient increases in [Ca(2+)](i), and smooth muscle contraction through G(i) proteins.

  15. Gi-Coupled γ-Aminobutyric Acid–B Receptors Cross-Regulate Phospholipase C and Calcium in Airway Smooth Muscle

    PubMed Central

    Mizuta, Kentaro; Mizuta, Fumiko; Xu, Dingbang; Masaki, Eiji; Panettieri, Reynold A.

    2011-01-01

    γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system, and exerts its actions via both ionotropic (GABAA) and metabotropic (GABAB) receptors. Although the functional expression of GABAB receptors coupled to the Gi protein was reported for airway smooth muscle, the role of GABAB receptors in airway responsiveness remains unclear. We investigated whether Gi-coupled GABAB receptors cross-regulate phospholipase C (PLC), an enzyme classically regulated by Gq-coupled receptors in human airway smooth muscle cells. Both the GABAB-selective agonist baclofen and the endogenous ligand GABA significantly increased the synthesis of inositol phosphate, whereas GABAA receptor agonists, muscimol, and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol exerted no effect. The baclofen-induced synthesis of inositol phosphate and transient increases in [Ca2+]i were blocked by CGP35348 and CGP55845 (selective GABAB antagonists), pertussis toxin (PTX, which inactivates the Gi protein), gallein (a Gβγ signaling inhibitor), U73122 (an inhibitor of PLC-β), and xestospongin C, an inositol 1,4,5-triphosphate receptor blocker. Baclofen also potentiated the bradykinin-induced synthesis of inositol phosphate and transient increases in [Ca2+]i, which were blocked by CGP35348 or PTX. Moreover, baclofen potentiated the substance P–induced contraction of airway smooth muscle in isolated guinea pig tracheal rings. In conclusion, the stimulation of GABAB receptors in human airway smooth muscle cells rapidly mobilizes intracellular Ca2+ stores by the synthesis of inositol phosphate via the activation of PLC-β, which is stimulated by Gβγ protein liberated from Gi proteins coupled to GABAB receptors. Furthermore, crosstalk between GABAB receptors and Gq-coupled receptors potentiates the synthesis of inositol phosphate, transient increases in [Ca2+]i, and smooth muscle contraction through Gi proteins. PMID:21719794

  16. A theory of post-stall transients in axial compression systems. I - Development of equations

    NASA Technical Reports Server (NTRS)

    Moore, F. K.; Greitzer, E. M.

    1985-01-01

    An approximate theory is presented for post-stall transients in multistage axial compression systems. The theory leads to a set of three simultaneous nonlinear third-order partial differential equations for pressure rise, and average and disturbed values of flow coefficient, as functions of time and angle around the compressor. By a Galerkin procedure, angular dependence is averaged, and the equations become first order in time. These final equations are capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. It is shown how rotating-stall-like and surgelike motions are coupled through these equations, and also how the instantaneous compressor pumping characteristic changes during the transient stall process.

  17. Transient spatiotemporal chaos in the Morris-Lecar neuronal ring network.

    PubMed

    Keplinger, Keegan; Wackerbauer, Renate

    2014-03-01

    Transient behavior is thought to play an integral role in brain functionality. Numerical simulations of the firing activity of diffusively coupled, excitable Morris-Lecar neurons reveal transient spatiotemporal chaos in the parameter regime below the saddle-node on invariant circle bifurcation point. The neighborhood of the chaotic saddle is reached through perturbations of the rest state, in which few initially active neurons at an effective spatial distance can initiate spatiotemporal chaos. The system escapes from the neighborhood of the chaotic saddle to either the rest state or to a state of pulse propagation. The lifetime of the chaotic transients is manipulated in a statistical sense through a singular application of a synchronous perturbation to a group of neurons.

  18. Transient Micromotors That Disappear When No Longer Needed.

    PubMed

    Chen, Chuanrui; Karshalev, Emil; Li, Jinxing; Soto, Fernando; Castillo, Roxanne; Campos, Isaac; Mou, Fangzhi; Guan, Jianguo; Wang, Joseph

    2016-11-22

    Transient self-destroyed micromotors that autonomously disappear in biological media at controlled rates upon completing their task, without leaving a toxic residue, are presented. The propulsion and degradation characteristics of the self-destroyed Mg/ZnO, Mg/Si, and Zn/Fe Janus micromotors and single-component Zn micromotors are described. The degradation of the Janus micromotors relies on the different corrosion rates of their core-shell components. Inductively coupled plasma optical emission spectrometry measurements are used to probe the time-dependent degradation of the different constituents of the micromotors. The toxicity of the transient micromotors is discussed toward their potential use in biomedical applications. This concept of transient micromotors offers considerable potential for diverse practical applications in the near future.

  19. Electrothermal Equivalent Three-Dimensional Finite-Element Model of a Single Neuron.

    PubMed

    Cinelli, Ilaria; Destrade, Michel; Duffy, Maeve; McHugh, Peter

    2018-06-01

    We propose a novel approach for modelling the interdependence of electrical and mechanical phenomena in nervous cells, by using electrothermal equivalences in finite element (FE) analysis so that existing thermomechanical tools can be applied. First, the equivalence between electrical and thermal properties of the nerve materials is established, and results of a pure heat conduction analysis performed in Abaqus CAE Software 6.13-3 are validated with analytical solutions for a range of steady and transient conditions. This validation includes the definition of equivalent active membrane properties that enable prediction of the action potential. Then, as a step toward fully coupled models, electromechanical coupling is implemented through the definition of equivalent piezoelectric properties of the nerve membrane using the thermal expansion coefficient, enabling prediction of the mechanical response of the nerve to the action potential. Results of the coupled electromechanical model are validated with previously published experimental results of deformation for squid giant axon, crab nerve fibre, and garfish olfactory nerve fibre. A simplified coupled electromechanical modelling approach is established through an electrothermal equivalent FE model of a nervous cell for biomedical applications. One of the key findings is the mechanical characterization of the neural activity in a coupled electromechanical domain, which provides insights into the electromechanical behaviour of nervous cells, such as thinning of the membrane. This is a first step toward modelling three-dimensional electromechanical alteration induced by trauma at nerve bundle, tissue, and organ levels.

  20. Advanced multiphysics coupling for LWR fuel performance analysis

    DOE PAGES

    Hales, J. D.; Tonks, M. R.; Gleicher, F. N.; ...

    2015-10-01

    Even the most basic nuclear fuel analysis is a multiphysics undertaking, as a credible simulation must consider at a minimum coupled heat conduction and mechanical deformation. The need for more realistic fuel modeling under a variety of conditions invariably leads to a desire to include coupling between a more complete set of the physical phenomena influencing fuel behavior, including neutronics, thermal hydraulics, and mechanisms occurring at lower length scales. This paper covers current efforts toward coupled multiphysics LWR fuel modeling in three main areas. The first area covered in this paper concerns thermomechanical coupling. The interaction of these two physics,more » particularly related to the feedback effect associated with heat transfer and mechanical contact at the fuel/clad gap, provides numerous computational challenges. An outline is provided of an effective approach used to manage the nonlinearities associated with an evolving gap in BISON, a nuclear fuel performance application. A second type of multiphysics coupling described here is that of coupling neutronics with thermomechanical LWR fuel performance. DeCART, a high-fidelity core analysis program based on the method of characteristics, has been coupled to BISON. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during a depletion or a fast transient simulation. Two-way coupling between these codes was achieved by mapping fission rate density and fast neutron flux fields from DeCART to BISON and the temperature field from BISON to DeCART while employing a Picard iterative algorithm. Finally, the need for multiscale coupling is considered. Fission gas production and evolution significantly impact fuel performance by causing swelling, a reduction in the thermal conductivity, and fission gas release. The mechanisms involved occur at the atomistic and grain scale and are therefore not the domain of a fuel performance code. However, it is possible to use lower length scale models such as those used in the mesoscale MARMOT code to compute average properties, e.g. swelling or thermal conductivity. These may then be used by an engineering-scale model. Examples of this type of multiscale, multiphysics modeling are shown.« less

  1. Transition from an optical precursor in coupled-resonator-induced transparency to coherent energy exchange in Autler-Townes splitting

    NASA Astrophysics Data System (ADS)

    Oishi, Tohru; Suzuki, Ryuta; Talukder, Aminul I.; Tomita, Makoto

    2013-08-01

    We investigated the transient responses of coupled optical resonators, after they were injected with square modulated temporal pulses. A sharp spike, attributed to the optical precursor in coupled-resonator-induced transparency, appeared when the coupling between the resonators was weak. As the coupling strength increased, the resonance spectrum developed clearly separated double dips of Autler-Townes splitting, and the precursor spike transformed into an oscillatory structure. These temporal oscillations were attributed to the coherent energy exchange between two resonators. Theoretical calculations were in good agreement with the experimental observations.

  2. Strongly coupled stress waves in heterogeneous plates.

    NASA Technical Reports Server (NTRS)

    Wang, A. S. D.; Chou, P. C.; Rose, J. L.

    1972-01-01

    Consideration of coupled stress waves generated by an impulsive load applied at one end of a semiinfinite plate. For the field equations governing the one-dimensional coupled waves a hyperbolic system of equations is obtained in which a strong coupling in the second derivatives exists. The method of characteristics described by Chou and Mortimer (1967) is extended to cover the case of strong coupling, and a study is made of the transient stress waves in a semiinfinite plate subjected to an initial step input. Coupled discontinuity fronts are found to propagate at different velocities. The normal plate stress and the bending moment at different time regimes are illustrated by graphs.

  3. Analytical Study of Gravity Effects on Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Edelman, R. B.; Fortune, O.; Weilerstein, G.

    1972-01-01

    A mathematical model is presented for the description of axisymmetric laminar-jet diffusion flames. The analysis includes the effects of inertia, viscosity, diffusion, gravity and combustion. These mechanisms are coupled in a boundary layer type formulation and solutions are obtained by an explicit finite difference technique. A dimensional analysis shows that the maximum flame width radius, velocity and thermodynamic state characterize the flame structure. Comparisons with experimental data showed excellent agreement for normal gravity flames and fair agreement for steady state low Reynolds number zero gravity flames. Kinetics effects and radiation are shown to be the primary mechanisms responsible for this discrepancy. Additional factors are discussed including elipticity and transient effects.

  4. High speed cylindrical roller bearing analysis, SKF computer program CYBEAN. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Kleckner, R. J.; Pirvics, J.

    1978-01-01

    The CYBEAN (Cylindrical Bearing Analysis) was created to detail radially loaded, aligned and misaligned cylindrical roller bearing performance under a variety of operating conditions. Emphasis was placed on detailing the effects of high speed, preload and system thermal coupling. Roller tilt, skew, radial, circumferential and axial displacement as well as flange contact were considered. Variable housing and flexible out-of-round outer ring geometries, and both steady state and time transient temperature calculations were enabled. The complete range of elastohydrodynamic contact considerations, employing full and partial film conditions were treated in the computation of raceway and flange contacts. Input and output architectures containing guidelines for use and a sample execution are detailed.

  5. Tuning maps for setpoint changes and load disturbance upsets in a three capacity process under multivariable control

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Smith, Ira C.

    1991-01-01

    Tuning maps are an aid in the controller tuning process because they provide a convenient way for the plant operator to determine the consequences of adjusting different controller parameters. In this application the maps provide a graphical representation of the effect of varying the gains in the state feedback matrix on startup and load disturbance transients for a three capacity process. Nominally, the three tank system, represented in diagonal form, has a Proportional-Integral control on each loop. Cross coupling is then introduced between the loops by using non-zero off-diagonal proportional parameters. Changes in transient behavior due to setpoint and load changes are examined by varying the gains of the cross coupling terms.

  6. Demonstration of Tokamak Ohmic Flux Saving by Transient Coaxial Helicity Injection in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Raman, R.; Mueller, D.; Nelson, B. A.; Jarboe, T. R.; Gerhardt, S.; Kugel, H. W.; Leblanc, B.; Maingi, R.; Menard, J.; Ono, M.; Paul, S.; Roquemore, L.; Sabbagh, S.; Soukhanovskii, V.

    2010-03-01

    Transient coaxial helicity injection (CHI) started discharges in the National Spherical Torus Experiment (NSTX) have attained peak currents up to 300 kA and when coupled to induction, it has produced up to 200 kA additional current over inductive-only operation. CHI in NSTX has shown to be energetically quite efficient, producing a plasma current of about 10 A/J of capacitor bank energy. In addition, for the first time, the CHI-produced toroidal current that couples to induction continues to increase with the energy supplied by the CHI power supply at otherwise similar values of the injector flux, indicating the potential for substantial current generation capability by CHI in NSTX and in future toroidal devices.

  7. System Simulation of Nuclear Power Plant by Coupling RELAP5 and Matlab/Simulink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng Lin; Dong Hou; Zhihong Xu

    2006-07-01

    Since RELAP5 code has general and advanced features in thermal-hydraulic computation, it has been widely used in transient and accident safety analysis, experiment planning analysis, and system simulation, etc. So we wish to design, analyze, verify a new Instrumentation And Control (I and C) system of Nuclear Power Plant (NPP) based on the best-estimated code, and even develop our engineering simulator. But because of limited function of simulating control and protection system in RELAP5, it is necessary to expand the function for high efficient, accurate, flexible design and simulation of I and C system. Matlab/Simulink, a scientific computation software, justmore » can compensate the limitation, which is a powerful tool in research and simulation of plant process control. The software is selected as I and C part to be coupled with RELAP5 code to realize system simulation of NPPs. There are two key techniques to be solved. One is the dynamic data exchange, by which Matlab/Simulink receives plant parameters and returns control results. Database is used to communicate the two codes. Accordingly, Dynamic Link Library (DLL) is applied to link database in RELAP5, while DLL and S-Function is applied in Matlab/Simulink. The other problem is synchronization between the two codes for ensuring consistency in global simulation time. Because Matlab/Simulink always computes faster than RELAP5, the simulation time is sent by RELAP5 and received by Matlab/Simulink. A time control subroutine is added into the simulation procedure of Matlab/Simulink to control its simulation advancement. Through these ways, Matlab/Simulink is dynamically coupled with RELAP5. Thus, in Matlab/Simulink, we can freely design control and protection logic of NPPs and test it with best-estimated plant model feedback. A test will be shown to illuminate that results of coupling calculation are nearly the same with one of single RELAP5 with control logic. In practice, a real Pressurized Water Reactor (PWR) is modeled by RELAP5 code, and its main control and protection system is duplicated by Matlab/Simulink. Some steady states and transients are calculated under control of these I and C systems, and the results are compared with the plant test curves. The application showed that it can do exact system simulation of NPPs by coupling RELAP5 and Matlab/Simulink. This paper will mainly focus on the coupling method, plant thermal-hydraulic model, main control logics, test and application results. (authors)« less

  8. Impact of transient soil water simulation to estimated nitrogen leaching and emission at high- and low-deposition forest sites in southern California

    Treesearch

    Yuan Yuan; Thomas Meixner; Mark E. Fenn; Jirka Simunek

    2011-01-01

    Soil water dynamics and drainage are key abiotic factors controlling losses of atmospherically deposited N in Southern California. In this paper soil N leaching and trace gaseous emissions simulated by the DAYCENT biogeochemical model using its original semi‐dynamic water flow module were compared to that coupled with a finite element transient water flow...

  9. Field enhanced charge carrier reconfiguration in electronic and ionic coupled dynamic polymer resistive memory.

    PubMed

    Zhao, Jun Hui; Thomson, Douglas J; Pilapil, Matt; Pillai, Rajesh G; Rahman, G M Aminur; Freund, Michael S

    2010-04-02

    Dynamic resistive memory devices based on a conjugated polymer composite (PPy(0)DBS(-)Li(+) (PPy: polypyrrole; DBS(-): dodecylbenzenesulfonate)), with field-driven ion migration, have been demonstrated. In this work the dynamics of these systems has been investigated and it has been concluded that increasing the applied field can dramatically increase the rate at which information can be 'written' into these devices. A conductance model using space charge limited current coupled with an electric field induced ion reconfiguration has been successfully utilized to interpret the experimentally observed transient conducting behaviors. The memory devices use the rising and falling transient current states for the storage of digital states. The magnitude of these transient currents is controlled by the magnitude and width of the write/read pulse. For the 500 nm length devices used in this work an increase in 'write' potential from 2.5 to 5.5 V decreased the time required to create a transient conductance state that can be converted into the digital signal by 50 times. This work suggests that the scaling of these devices will be favorable and that 'write' times for the conjugated polymer composite memory devices will decrease rapidly as ion driving fields increase with decreasing device size.

  10. Initial Implementation of Transient VERA-CS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerlach, Andrew; Kochunas, Brendan; Salko, Robert

    In this milestone the capabilities of both CTF and MPACT were extended to perform coupled transient calculations. This required several small changes in MPACT to setup the problems correctly, perform the edits correctly, and call the appropriate CTF interfaces in the right order. For CTF, revisions and corrections to the transient timestepping algorithm were made, as well as the addition of a new interface subroutine to allow MPACT to drive CTF at each timestep. With the modifications completed, the initial coupled capability was demonstrated on some problems used for code verification, a hypothetical small mini-core, and a Watts Bar demonstrationmore » problem. For each of these cases the results showed good agreement with the previous MPACT internal TH feedback model that relied on a simplified fuel heat conduction model and simplified coolant treatment. After the pulse the results are notably different as expected, where the effects of convection of heat to the coolant can be observed. Areas for future work were discussed, including assessment and development of the CTF dynamic fuel deformation and gap conductance models, addition of suitable transient boiling and CHF models for the rapid heating and cooling rates seen in RIAs, additional validation and demonstration work, and areas for improvement to the code input and output capabilities.« less

  11. The use of in vivo fluorescence image sequences to indicate the occurrence and propagation of transient focal depolarizations in cerebral ischemia.

    PubMed

    Strong, A J; Harland, S P; Meldrum, B S; Whittington, D J

    1996-05-01

    A method for the detection and tracking of propagated fluorescence transients as indicators of depolarizations in focal cerebral ischemia is described, together with initial results indicating the potential of the method. The cortex of the right cerebral hemisphere was exposed for nonrecovery experiments in five cats anesthetized with chloralose and subjected to permanent middle cerebral artery (MCA) occlusion. Fluorescence with 370-nm excitation (attributed to the degree of reduction of the NAD/H couple) was imaged with an intensified charge-coupled device camera and digitized. Sequences of images representing changes in gray level from a baseline image were examined, together with the time courses of mean gray levels in specified regions of interest. Spontaneous increases in fluorescence occurred, starting most commonly at the edge of areas of core ischemia; they propagated usually throughout the periinfarct zone and resolved to varying degrees and at varying rates, depending on proximity of the locus to the MCA input. When a fluorescence transient reached the anterior cerebral artery territory, its initial polarity reversed from an increase to a decrease in fluorescence. An initial increase in fluorescence in response to the arrival of a transient may characterize cortex that will become infarcted, if pathophysiological changes in the periinfarct zone are allowed to evolve naturally.

  12. Measurement of isotope ratios on transient signals by MC-ICP-MS.

    PubMed

    Günther-Leopold, Ines; Wernli, Beat; Kopajtic, Zlatko; Günther, Detlef

    2004-01-01

    Precise and accurate isotope ratio measurements are an important task in many applications such as isotope-dilution mass spectrometry, bioavailability studies, or the determination of isotope variations in geological or nuclear samples. The technique of MC-ICP-MS has attracted much attention because it permits the precise measurement of isotope compositions for a wide range of elements combined with excellent detection limits due to high ionisation efficiencies. However, the results are based mainly on measurements using continuous sample introduction. In the present study the determination of isotope ratios on various transient signals with a time duration of 30 to 60 s has been achieved by coupling high-performance liquid chromatography to a multicollector inductively coupled plasma mass spectrometer. In order to investigate the origin of ratio drifts across the transient signals for this hyphenated technique, measurements with the same standard solutions were also carried out using a flow-injection device for sample introduction. As a result of this application it could be concluded that the main source of the bias in the measured isotope ratios is within the ICP-MS instead of fractionation effects on the chromatographic column material. Preliminary studies on short transient signals of gaseous samples (dry plasma) showed a reverse fractionation effect compared with wet plasma conditions (flow injection and HPLC).

  13. Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion.

    PubMed

    Elhamdani, Abdeladim; Azizi, Fouad; Artalejo, Cristina R

    2006-03-15

    Transient fusion ("kiss-and-run") is accepted as a mode of transmitter release both in central neurons and neuroendocrine cells, but the prevalence of this mechanism compared with full fusion is still in doubt. Using a novel double patch-clamp method (whole cell/cell attached), permitting the recording of unitary capacitance events while stimulating under a variety of conditions including action potentials, we show that transient fusion is the predominant (>90%) mode of secretion in calf adrenal chromaffin cells. Raising intracellular Ca2+ concentration ([Ca]i) from 10 to 200 microM increases the incidence of full fusion events at the expense of transient fusion. Blocking rapid endocytosis that normally terminates transient fusion events also promotes full fusion events. Thus, [Ca]i controls the transition between transient and full fusion, each of which is coupled to different modes of endocytosis.

  14. Dynamic simulation of coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.; Wu, S. T.

    1980-01-01

    A model is developed for the formation and propagation through the lower corona of the loop-like coronal transients in which mass is ejected from near the solar surface to the outer corona. It is assumed that the initial state for the transient is a coronal streamer. The initial state for the streamer is a polytropic, hydrodynamic solution to the steady-state radial equation of motion coupled with a force-free dipole magnetic field. The numerical solution of the complete time-dependent equations then gradually approaches a stationary coronal streamer configuration. The streamer configuration becomes the initial state for the coronal transient. The streamer and transient simulations are performed completely independent of each other. The transient is created by a sudden increase in the pressure at the base of the closed-field region in the streamer configuration. Both coronal streamers and coronal transients are calculated for values of the plasma beta (the ratio of thermal to magnetic pressure) varying from 0.1 to 100.

  15. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenbuch, S.; Velkov, K.; Lizorkin, M.

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  16. Transient classification in LIGO data using difference boosting neural network

    NASA Astrophysics Data System (ADS)

    Mukund, N.; Abraham, S.; Kandhasamy, S.; Mitra, S.; Philip, N. S.

    2017-05-01

    Detection and classification of transients in data from gravitational wave detectors are crucial for efficient searches for true astrophysical events and identification of noise sources. We present a hybrid method for classification of short duration transients seen in gravitational wave data using both supervised and unsupervised machine learning techniques. To train the classifiers, we use the relative wavelet energy and the corresponding entropy obtained by applying one-dimensional wavelet decomposition on the data. The prediction accuracy of the trained classifier on nine simulated classes of gravitational wave transients and also LIGO's sixth science run hardware injections are reported. Targeted searches for a couple of known classes of nonastrophysical signals in the first observational run of Advanced LIGO data are also presented. The ability to accurately identify transient classes using minimal training samples makes the proposed method a useful tool for LIGO detector characterization as well as searches for short duration gravitational wave signals.

  17. Physical Origin of Transient Negative Capacitance in a Ferroelectric Capacitor

    NASA Astrophysics Data System (ADS)

    Chang, Sou-Chi; Avci, Uygar E.; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2018-01-01

    Transient negative differential capacitance, the dynamic reversal of transient capacitance in an electrical circuit, is of highly technological and scientific interest since it probes the foundation of ferroelectricity. We study a resistor-ferroelectric capacitor (R -FEC) network through a series of coupled equations based on Kirchhoff's law, electrostatics, and Landau theory. We show that transient negative capacitance (NC) in a R -FEC circuit originates from the mismatch in switching rate between the free charge on the metal plate and the bound charge in a ferroelectric (FE) capacitor during the polarization switching. This transient free charge-polarization mismatch is driven by the negative curvature of the FE free-energy landscape, and it is also analytically shown that a free-energy profile with a negative curvature is the only physical system that can describe transient NC in a R -FEC circuit. Furthermore, transient NC induced by the free charge-polarization mismatch is justified by its dependence on both external resistance and the intrinsic FE viscosity coefficient. The depolarization effect on FE capacitors emphasizes the importance of negative curvature to transient NC and also implies that transient and steady-state NC cannot be observed in a FE capacitor simultaneously. Finally, using the transient NC measurements, a procedure to experimentally determine the viscosity coefficient is presented to provide more insight into the relation between transient NC and the FE free-energy profile.

  18. 1D-3D coupling for hydraulic system transient simulations

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Nilsson, Håkan; Yang, Jiandong; Petit, Olivier

    2017-01-01

    This work describes a coupling between the 1D method of characteristics (MOC) and the 3D finite volume method of computational fluid dynamics (CFD). The coupling method is applied to compressible flow in hydraulic systems. The MOC code is implemented as a set of boundary conditions in the OpenFOAM open source CFD software. The coupling is realized by two linear equations originating from the characteristics equation and the Riemann constant equation, respectively. The coupling method is validated using three simple water hammer cases and several coupling configurations. The accuracy and robustness are investigated with respect to the mesh size ratio across the interface, and 3D flow features close to the interface. The method is finally applied to the transient flow caused by the closing and opening of a knife valve (gate) in a pipe, where the flow is driven by the difference in free surface elevation between two tanks. A small region surrounding the moving gate is resolved by CFD, using a dynamic mesh library, while the rest of the system is modeled by MOC. Minor losses are included in the 1D region, corresponding to the contraction of the flow from the upstream tank into the pipe, a separate stationary flow regulation valve, and a pipe bend. The results are validated with experimental data. A 1D solution is provided for comparison, using the static gate characteristics obtained from steady-state CFD simulations.

  19. Dynamics of the G-excess illusion

    NASA Technical Reports Server (NTRS)

    Baylor, K. A.; Reschke, M.; Guedry, F. E.; Mcgrath, B. J.; Rupert, A. H.

    1992-01-01

    The G-excess illusion is increasingly recognized as a cause of aviation mishaps especially when pilots perform high-speed, steeply banked turns at low altitudes. Centrifuge studies of this illusion have examined the perception of subject orientation and/or target displacement during maintained hypergravity with the subject's head held stationary. The transient illusory perceptions produced by moving the head in hypergravity are difficult to study onboard centrifuges because the high angular velocity ensures the presence of strong Coriolis cross-coupled semicircular canal effects that mask immediate transient otolith-organ effects. The present study reports perceptions following head movements in hypergravity produced by high-speed aircraft maintaining a banked attitude with low angular velocity to minimize cross-coupled effects. Methods: Fourteen subjects flew on the NASA KC-135 and were exposed to resultant gravity forces of 1.3, 1.5, and 1.8 G for 3 minute periods. On command, seated subjects made controlled head movements in roll, pitch, and yaw at 30 second intervals both in the dark and with faint targets at a distance of 5 feet. Results: head movement produced transient perception of target displacement and velocity at levels as low as 1.3 G. Reports of target velocity without appropriate corresponding displacement were common. At 1.8 G when yaw head movements were made from a face down position, 4 subjects reported oscillatory rotational target displacement with fast and slow alternating components suggestive of torsional nystagmus. Head movements evoked symptoms of nausea in most subjects, with 2 subjects and 1 observer vomiting. Conclusions: The transient percepts present conflicting signals, which introduced confusion in target and subject orientation. Repeated head movements in hypergravity generate nausea by mechanisms distinct from cross-coupled Coriolis effects.

  20. Transient coupling relationships of the Holocene Australian monsoon

    NASA Astrophysics Data System (ADS)

    McRobie, F. H.; Stemler, T.; Wyrwoll, K.-H.

    2015-08-01

    The northwest Australian summer monsoon owes a notable degree of its interannual variability to interactions with other regional monsoon systems. Therefore, changes in the nature of these relationships may contribute to variability in monsoon strength over longer time scales. Previous attempts to evaluate how proxy records from the Indonesian-Australian monsoon region correspond to other records from the Indian and East Asian monsoon regions, as well as to El Niño-related proxy records, have been qualitative, relying on 'curve-fitting' methods. Here, we seek a quantitative approach for identifying coupling relationships between paleoclimate proxy records, employing statistical techniques to compute the interdependence of two paleoclimate time series. We verify the use of complex networks to identify coupling relationships between modern climate indices. This method is then extended to a set of paleoclimate proxy records from the Asian, Australasian and South American regions spanning the past 9000 years. The resulting networks demonstrate the existence of coupling relationships between regional monsoon systems on millennial time scales, but also highlight the transient nature of teleconnections during this period. In the context of the northwest Australian summer monsoon, we recognise a shift in coupling relationships from strong interhemispheric links with East Asian and ITCZ-related proxy records in the mid-Holocene to significantly weaker coupling in the later Holocene. Although the identified links cannot explain the underlying physical processes leading to coupling between regional monsoon systems, this method provides a step towards understanding the role that changes in teleconnections play in millennial-to orbital-scale climate variability.

  1. Experimental evidence of dynamic re-organization of evolving landscapes under changing climatic forcing

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Tejedor, Alejandro; Zaliapin, Ilya; Reinhardt, Liam; Foufoula-Georgiou, Efi

    2015-04-01

    The aim of this study is to better understand the dynamic re-organization of an evolving landscape under a scenario of changing climatic forcing for improving our knowledge of geomorphic transport laws under transient conditions and developing predictive models of landscape response to external perturbations. Real landscape observations for long-term analysis are limited and to this end a high resolution controlled laboratory experiment was conducted at the St. Anthony Falls laboratory at the University of Minnesota. Elevation data were collected at temporal resolution of 5 mins and spatial resolution of 0.5 mm as the landscape approached steady state (constant uplift and precipitation rate) and in the transient state (under the same uplift and 5x precipitation). The results reveal rapid topographic re-organization under a five-fold precipitation increase with the fluvial regime expanding into the previously debris dominated regime, accelerated erosion happening at hillslope scales, and rivers shifting from an erosion-limited to a transport-limited regime. From a connectivity and clustering analysis of the erosional and depositional events, we demonstrate the strikingly different spatial patterns of landscape evolution under steady-state (SS) and transient-state (TS), even when the time under SS is "stretched" compared to that under TS such as to match the total volume and PDF of erosional and depositional amounts. We quantify the spatial coupling of hillslopes and channels and demonstrate that hillslopes lead and channels follow in re-organizing the whole landscape under such an amplified precipitation regime.

  2. Theoretical study of collinear optical frequency comb generation under multi-wave, transient stimulated Raman scattering in crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smetanin, S N

    2014-11-30

    Using mathematical modelling we have studied the conditions of low-threshold collinear optical frequency comb generation under transient (picosecond) stimulated Raman scattering (SRS) and parametric four-wave coupling of SRS components in crystals. It is shown that Raman-parametric generation of an octave-spanning optical frequency comb occurs most effectively under intermediate, transient SRS at a pump pulse duration exceeding the dephasing time by five-to-twenty times. We have found the optimal values of not only the laser pump pulse duration, but also of the Raman crystal lengths corresponding to highly efficient generation of an optical frequency comb from the second anti-Stokes to the fourthmore » Stokes Raman components. For the KGd(WO{sub 4}){sub 2} (high dispersion) and Ba(NO{sub 3}){sub 2} (low dispersion) crystals pumped at a wavelength of 1.064 μm and a pulse duration five or more times greater than the dephasing time, the optimum length of the crystal was 0.3 and 0.6 cm, respectively, which is consistent with the condition of the most effective Stokes – anti-Stokes coupling ΔkL ≈ 15, where Δk is the wave detuning from phase matching of Stokes – anti-Stokes coupling, determined by the refractive index dispersion of the SRS medium. (nonlinear optical phenomena)« less

  3. Transient coherence of media under strong phase modulation exploiting electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Shwa, David; Katz, Nadav

    2014-08-01

    When quantum systems are shifted faster than their transition and coupling time scales, their susceptibility is dramatically modified. We measure the optical susceptibility of a strongly modulated electromagnetically induced transparency system. Time vs detuning plots for different pump modulation frequencies reveal a transition between an adiabatic regime where a series of smooth pulses are created and a nonadiabatic regime where a strong transient oscillating response is added. Applying a magnetic field lifts the hyperfine level degeneracy, revealing an interference effect between the different magnetic level transients. We explore the dynamics of the magnetic and nonmagnetic cases and discuss their coherent nature. We finally combine the global phase of the transmitted pulses with the transient interference to achieve broadband magnetic sensing without losing the sensitivity of a single electromagnetically induced transparency line.

  4. Modeling of environmentally induced transients within satellites

    NASA Technical Reports Server (NTRS)

    Stevens, N. John; Barbay, Gordon J.; Jones, Michael R.; Viswanathan, R.

    1987-01-01

    A technique is described that allows an estimation of possible spacecraft charging hazards. This technique, called SCREENS (spacecraft response to environments of space), utilizes the NASA charging analyzer program (NASCAP) to estimate the electrical stress locations and the charge stored in the dielectric coatings due to spacecraft encounter with a geomagnetic substorm environment. This information can then be used to determine the response of the spacecraft electrical system to a surface discharge by means of lumped element models. The coupling into the electronics is assumed to be due to magnetic linkage from the transient currents flowing as a result of the discharge transient. The behavior of a spinning spacecraft encountering a severe substorm is predicted using this technique. It is found that systems are potentially vulnerable to upset if transient signals enter through the ground lines.

  5. Transient thermal stress problem for a circumferentially cracked hollow cylinder

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1983-01-01

    The paper is concerned with the transient thermal stress problem for a long hollow circular cylinder containing an internal axisymmetric circumferential edge crack that is suddenly cooled from inside. It is assumed that the transient thermal stress problem is quasi-static, i.e., the inertial effects are negligible. Also, all thermoelastic coupling effects and the possible temperature dependence of the thermoelastic constants are neglected. The problem is considered in two parts. The first part is the evaluation of transient thermal stresses in an uncracked cylinder; the second part is the isothermal perturbation problem for the cracked cylinder in which the crack surface tractions, equal and opposite to the thermal stresses obtained from the first problem, are the only external loads. The superposition of the two solutions gives results for the cracked cylinder.

  6. Method and apparatus for acquisition and tracking of light sources in a transient event rich environment

    NASA Technical Reports Server (NTRS)

    Bolin, Kenneth (Inventor); Flynn, David (Inventor); Fowski, Walter (Inventor); Miklus, Kenneth (Inventor); Kissh, Frank (Inventor); Abreu, Rene (Inventor)

    1993-01-01

    A method and apparatus for tracking a light source in a transient event rich environment locks on to a light source incident on a field-of-view 1 of a charge-coupled-device (CCD) array 6, validates the permanence of said light source and transmits data relating to the brilliance and location of said light source if said light source is determined to be permanent.

  7. How does rapidly changing discharge during storm events affect transient storage and channel water balance in a headwater mountain stream?

    Treesearch

    Adam S. Ward; Michael N. Gooseff; Thomas J. Voltz; Michael Fitzgerald; Kamini Singha; Jay P. Zarnetske

    2013-01-01

    Measurements of transient storage in coupled surface-water and groundwater systems are widely made during base flow periods and rarely made during storm flow periods. We completed 24 sets of slug injections in three contiguous study reaches during a 1.25 year return interval storm event (discharge ranging from 21.5 to 434 L s1 ) in a net gaining headwater stream within...

  8. 3D numerical simulation of transient processes in hydraulic turbines

    NASA Astrophysics Data System (ADS)

    Cherny, S.; Chirkov, D.; Bannikov, D.; Lapin, V.; Skorospelov, V.; Eshkunova, I.; Avdushenko, A.

    2010-08-01

    An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.

  9. Femtosecond transient absorption dynamics of close-packed gold nanocrystal monolayer arrays*1

    NASA Astrophysics Data System (ADS)

    Eah, Sang-Kee; Jaeger, Heinrich M.; Scherer, Norbert F.; Lin, Xiao-Min; Wiederrecht, Gary P.

    2004-03-01

    Femtosecond transient absorption spectroscopy is used to investigate hot electron dynamics of close-packed 6 nm gold nanocrystal monolayers. Morphology changes of the monolayer caused by the laser pump pulse are monitored by transmission electron microscopy. At low pump power, the monolayer maintains its structural integrity. Hot electrons induced by the pump pulse decay through electron-phonon (e-ph) coupling inside the nanocrystals with a decay constant that is similar to the value for bulk films. At high pump power, irreversible particle aggregation and sintering occur in the nanocrystal monolayer, which cause damping and peak shifting of the transient bleach signal.

  10. Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

    PubMed

    Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V

    1999-10-01

    We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium.

  11. Nonlinear interaction between underwater explosion bubble and structure based on fully coupled model

    NASA Astrophysics Data System (ADS)

    Zhang, A. M.; Wu, W. B.; Liu, Y. L.; Wang, Q. X.

    2017-08-01

    The interaction between an underwater explosion bubble and an elastic-plastic structure is a complex transient process, accompanying violent bubble collapsing, jet impact, penetration through the bubble, and large structural deformation. In the present study, the bubble dynamics are modeled using the boundary element method and the nonlinear transient structural response is modeled using the explicit finite element method. A new fully coupled 3D model is established through coupling the equations for the state variables of the fluid and structure and solving them as a set of coupled linear algebra equations. Based on the acceleration potential theory, the mutual dependence between the hydrodynamic load and the structural motion is decoupled. The pressure distribution in the flow field is calculated with the Bernoulli equation, where the partial derivative of the velocity potential in time is calculated using the boundary integral method to avoid numerical instabilities. To validate the present fully coupled model, the experiments of small-scale underwater explosion near a stiffened plate are carried out. High-speed imaging is used to capture the bubble behaviors and strain gauges are used to measure the strain response. The numerical results correspond well with the experimental data, in terms of bubble shapes and structural strain response. By both the loosely coupled model and the fully coupled model, the interaction between a bubble and a hollow spherical shell is studied. The bubble patterns vary with different parameters. When the fully coupled model and the loosely coupled model are advanced with the same time step, the error caused by the loosely coupled model becomes larger with the coupling effect becoming stronger. The fully coupled model is more stable than the loosely coupled model. Besides, the influences of the internal fluid on the dynamic response of the spherical shell are studied. At last, the case that the bubble interacts with an air-backed stiffened plate is simulated. The associated interesting physical phenomenon is obtained and expounded.

  12. Model-free data analysis for source separation based on Non-Negative Matrix Factorization and k-means clustering (NMFk)

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Alexandrov, B.

    2014-12-01

    The identification of the physical sources causing spatial and temporal fluctuations of state variables such as river stage levels and aquifer hydraulic heads is challenging. The fluctuations can be caused by variations in natural and anthropogenic sources such as precipitation events, infiltration, groundwater pumping, barometric pressures, etc. The source identification and separation can be crucial for conceptualization of the hydrological conditions and characterization of system properties. If the original signals that cause the observed state-variable transients can be successfully "unmixed", decoupled physics models may then be applied to analyze the propagation of each signal independently. We propose a new model-free inverse analysis of transient data based on Non-negative Matrix Factorization (NMF) method for Blind Source Separation (BSS) coupled with k-means clustering algorithm, which we call NMFk. NMFk is capable of identifying a set of unique sources from a set of experimentally measured mixed signals, without any information about the sources, their transients, and the physical mechanisms and properties controlling the signal propagation through the system. A classical BSS conundrum is the so-called "cocktail-party" problem where several microphones are recording the sounds in a ballroom (music, conversations, noise, etc.). Each of the microphones is recording a mixture of the sounds. The goal of BSS is to "unmix'" and reconstruct the original sounds from the microphone records. Similarly to the "cocktail-party" problem, our model-freee analysis only requires information about state-variable transients at a number of observation points, m, where m > r, and r is the number of unknown unique sources causing the observed fluctuations. We apply the analysis on a dataset from the Los Alamos National Laboratory (LANL) site. We identify and estimate the impact and sources are barometric pressure and water-supply pumping effects. We also estimate the location of the water-supply pumping wells based on the available data. The possible applications of the NMFk algorithm are not limited to hydrology problems; NMFk can be applied to any problem where temporal system behavior is observed at multiple locations and an unknown number of physical sources are causing these fluctuations.

  13. A transient radio jet in an erupting dwarf nova.

    PubMed

    Körding, Elmar; Rupen, Michael; Knigge, Christian; Fender, Rob; Dhawan, Vivek; Templeton, Matthew; Muxlow, Tom

    2008-06-06

    Astrophysical jets seem to occur in nearly all types of accreting objects, from supermassive black holes to young stellar objects. On the basis of x-ray binaries, a unified scenario describing the disc/jet coupling has evolved and been extended to many accreting objects. The only major exceptions are thought to be cataclysmic variables: Dwarf novae, weakly accreting white dwarfs, show similar outburst behavior to x-ray binaries, but no jet has yet been detected. Here we present radio observations of a dwarf nova in outburst showing variable flat-spectrum radio emission that is best explained as synchrotron emission originating in a transient jet. Both the inferred jet power and the relation to the outburst cycle are analogous to those seen in x-ray binaries, suggesting that the disc/jet coupling mechanism is ubiquitous.

  14. Selective Transient Cooling by Impulse Perturbations in a Simple Toy Model

    NASA Astrophysics Data System (ADS)

    Fabrizio, Michele

    2018-06-01

    We show in a simple exactly solvable toy model that a properly designed impulse perturbation can transiently cool down low-energy degrees of freedom at the expense of high-energy ones that heat up. The model consists of two infinite-range quantum Ising models: one, the high-energy sector, with a transverse field much bigger than the other, the low-energy sector. The finite-duration perturbation is a spin exchange that couples the two Ising models with an oscillating coupling strength. We find a cooling of the low-energy sector that is optimized by the oscillation frequency in resonance with the spin exchange excitation. After the perturbation is turned off, the Ising model with a low transverse field can even develop a spontaneous symmetry breaking despite being initially above the critical temperature.

  15. Complete geometric computer simulation of a classical guitar

    NASA Astrophysics Data System (ADS)

    Bader, Rolf

    2005-04-01

    The aim of formulating a complete model of a classical guitar body as a transient-time geometry is to get detailed insight into the vibrating and coupling behavior of the time-dependent guitar system. Here, especially the evolution of the guitars initial transient can be looked at with great detail and the produced sounds from this computer implementation can be listened to. Therefore, a stand-alone software was developed to build, calculate, and visualize the guitar. The model splits the guitar body into top plate, back plate, ribs, neck, inclosed air, and strings and couples these parts together including the coupling of bending waves and in-plane waves of these plates to serve for a better understanding of the coupling between the guitar parts and between these two kinds of waves. The resulting waveforms are integrated over the geometry and the resulting sounds show up the different roles and contributions of the different guitar body parts to the guitar sound. Here cooperation with guitar makers is established, as changes on the guitars geometry on the resulting sound can be considered as computer simulation and promising new sound qualities can then be used again in real instrument production.

  16. Femtosecond dynamics of monolayer MoS2-Ag nanoparticles hybrid probed at 532 nm

    NASA Astrophysics Data System (ADS)

    Xu, Xuefeng; Shi, Ying; Liu, Xiaochun; Sun, Mengtao

    2018-01-01

    In this communication, plasmon-exciton couplings of monolayer MoS2/Ag nanoparticles (NPs) hybrids with different sizes are investigated, using transient absorption spectra. Ultrafast dynamics of coupling interactions inside these hybrid structures are carefully examined at 532 nm, which can well interpret the apllication of plasmon-exciton coupling for the co-driven chemical reactions excited at 532 nm. Our experimental results can promote the deeper understanding on the physical mechanism of plasmon-excition interaction, and applications in different fields.

  17. Transient regional climate change: analysis of the summer climate response in a high-resolution, century-scale, ensemble experiment over the continental United States

    PubMed Central

    Diffenbaugh, Noah S.; Ashfaq, Moetasim; Scherer, Martin

    2013-01-01

    Integrating the potential for climate change impacts into policy and planning decisions requires quantification of the emergence of sub-regional climate changes that could occur in response to transient changes in global radiative forcing. Here we report results from a high-resolution, century-scale, ensemble simulation of climate in the United States, forced by atmospheric constituent concentrations from the Special Report on Emissions Scenarios (SRES) A1B scenario. We find that 21st century summer warming permanently emerges beyond the baseline decadal-scale variability prior to 2020 over most areas of the continental U.S. Permanent emergence beyond the baseline annual-scale variability shows much greater spatial heterogeneity, with emergence occurring prior to 2030 over areas of the southwestern U.S., but not prior to the end of the 21st century over much of the southcentral and southeastern U.S. The pattern of emergence of robust summer warming contrasts with the pattern of summer warming magnitude, which is greatest over the central U.S. and smallest over the western U.S. In addition to stronger warming, the central U.S. also exhibits stronger coupling of changes in surface air temperature, precipitation, and moisture and energy fluxes, along with changes in atmospheric circulation towards increased anticylonic anomalies in the mid-troposphere and a poleward shift in the mid-latitude jet aloft. However, as a fraction of the baseline variability, the transient warming over the central U.S. is smaller than the warming over the southwestern or northeastern U.S., delaying the emergence of the warming signal over the central U.S. Our comparisons with observations and the Coupled Model Intercomparison Project Phase 3 (CMIP3) ensemble of global climate model experiments suggest that near-term global warming is likely to cause robust sub-regional-scale warming over areas that exhibit relatively little baseline variability. In contrast, where there is greater variability in the baseline climate dynamics, there can be greater variability in the response to elevated greenhouse forcing, decreasing the robustness of the transient warming signal. PMID:24307747

  18. The role of population inertia in predicting the outcome of stage-structured biological invasions.

    PubMed

    Guiver, Chris; Dreiwi, Hanan; Filannino, Donna-Maria; Hodgson, Dave; Lloyd, Stephanie; Townley, Stuart

    2015-07-01

    Deterministic dynamic models for coupled resident and invader populations are considered with the purpose of finding quantities that are effective at predicting when the invasive population will become established asymptotically. A key feature of the models considered is the stage-structure, meaning that the populations are described by vectors of discrete developmental stage- or age-classes. The vector structure permits exotic transient behaviour-phenomena not encountered in scalar models. Analysis using a linear Lyapunov function demonstrates that for the class of population models considered, a large so-called population inertia is indicative of successful invasion. Population inertia is an indicator of transient growth or decline. Furthermore, for the class of models considered, we find that the so-called invasion exponent, an existing index used in models for invasion, is not always a reliable comparative indicator of successful invasion. We highlight these findings through numerical examples and a biological interpretation of why this might be the case is discussed. Copyright © 2015. Published by Elsevier Inc.

  19. Synopsis of a computer program designed to interface a personal computer with the fast data acquisition system of a time-of-flight mass spectrometer

    NASA Technical Reports Server (NTRS)

    Bechtel, R. D.; Mateos, M. A.; Lincoln, K. A.

    1988-01-01

    Briefly described are the essential features of a computer program designed to interface a personal computer with the fast, digital data acquisition system of a time-of-flight mass spectrometer. The instrumentation was developed to provide a time-resolved analysis of individual vapor pulses produced by the incidence of a pulsed laser beam on an ablative material. The high repetition rate spectrometer coupled to a fast transient recorder captures complete mass spectra every 20 to 35 microsecs, thereby providing the time resolution needed for the study of this sort of transient event. The program enables the computer to record the large amount of data generated by the system in short time intervals, and it provides the operator the immediate option of presenting the spectral data in several different formats. Furthermore, the system does this with a high degree of automation, including the tasks of mass labeling the spectra and logging pertinent instrumental parameters.

  20. Field transients of coherent terahertz synchrotron radiation accessed via time-resolving and correlation techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohl, A.; Hübers, H.-W.; Institute of Optical Sensor Systems, German Aerospace Center

    2016-03-21

    Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the durationmore » of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.« less

  1. Coverage dependent non-adiabaticity of CO on a copper surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omiya, Takuma; Surface and Interface Science Laboratory, RIKEN, Wako 351-0198; Arnolds, Heike

    2014-12-07

    We have studied the coverage-dependent energy transfer dynamics between hot electrons and CO on Cu(110) with femtosecond visible pump, sum frequency probe spectroscopy. We find that transients of the C–O stretch frequency display a red shift, which increases from 3 cm{sup −1} at 0.1 ML to 9 cm{sup −1} at 0.77 ML. Analysis of the transients reveals that the non-adiabatic coupling between the adsorbate vibrational motion and the electrons becomes stronger with increasing coverage. This trend requires the frustrated rotational mode to be the cause of the non-adiabatic behavior, even for relatively weak laser excitation of the adsorbate. We attributemore » the coverage dependence to both an increase in the adsorbate electronic density of states and an increasingly anharmonic potential energy surface caused by repulsive interactions between neighboring CO adsorbates. This work thus reveals adsorbate-adsorbate interactions as a new way to control adsorbate non-adiabaticity.« less

  2. The North Pacific as a Regulator of Summertime Climate Over North America and the Asian Monsoon

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wang, H.

    2004-01-01

    The interannual variability of summertime rainfall over the U.S. may be linked to climate anomalies over Pacific and East Asia through teleconnection patterns that may be components of recurring global climate modes in boreal summer (Lau and Weng 2002). In this study, maintenance of the boreal summer teleconnection patterns is investigated. The particular focus is on the potential effects of North Pacific air-sea interaction on climate anomalies over the U.S. Observational data, reanalysis and outputs of a series of NASA NSIPP AGCM and AGCM coupled to NASA GSFC MLO model experiments are used. Statistical analysis of observations and NSIPP AMIP type simulations indicates that, the interannual variability of observed warm season precipitation over the U.S. is related to SST variation in both tropical and North Pacific, whereas the NSIPP AMIP simulated summertime US. precipitation variation mainly reflects impact of ENS0 in tropical Pacific. This implies the potential importance of air-sea interaction in North Pacific in contributing to the interannual variability of observed summer climate over the U.S. The anomalous atmospheric circulation associated with the dominant summertime teleconnection modes in both observations and NSIPP AMIP simulations are further diagnosed, using stationary wave modeling approach. In observations, for the two dominant modes, both anomalous diabatic heating and anomalous transients significantly contribute to the anomalous circulation. The distributions of the anomalous diabatic heating and transient forcing are quadrature configured over North Pacific and North America, so that both forcings act constructively to maintain the teleconnection patterns. The contrast between observations and NSIPP AMIP simulations from stationary wave modeling diagnosis confirms the previous conclusion based on statistical analysis. To better appreciate the role of extra-tropical air-sea interaction in maintaining the summertime teleconnection pattern, various dynamical and physical fields and their inter- linkage in the series of NSIPP AGCM and AGCM coupled to MLO model experiments are examined in-depth. Based on comparison between different model experiments, we will discuss the physical and dynamical mechanisms through which the air-sea interaction in extratropics, and transient mean flow interactions over the North Pacific, affects interannual variation of U.S. climate during boreal summer.

  3. Transient Simulation of the Multi-SERTTA Experiment with MAMMOTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortensi, Javier; Baker, Benjamin; Wang, Yaqi

    This work details the MAMMOTH reactor physics simulations of the Static Environment Rodlet Transient Test Apparatus (SERTTA) conducted at Idaho National Laboratory in FY-2017. TREAT static-environment experiment vehicles are being developed to enable transient testing of Pressurized Water Reactor (PWR) type fuel specimens, including fuel concepts with enhanced accident tolerance (Accident Tolerant Fuels, ATF). The MAMMOTH simulations include point reactor kinetics as well as spatial dynamics for a temperature-limited transient. The strongly coupled multi-physics solutions of the neutron flux and temperature fields are second order accurate both in the spatial and temporal domains. MAMMOTH produces pellet stack powers that are within 1.5% of the Monte Carlo reference solutions. Some discrepancies between the MCNP model used in the design of the flux collars and the Serpent/MAMMOTH models lead to higher power and energy deposition values in Multi-SERTTA unit 1. The TREAT core results compare well with the safety case computed with point reactor kinetics in RELAP5-3D. The reactor period is 44 msec, which corresponds to a reactivity insertion of 2.685% delta k/kmore » $. The peak core power in the spatial dynamics simulation is 431 MW, which the point kinetics model over-predicts by 12%. The pulse width at half the maximum power is 0.177 sec. Subtle transient effects are apparent at the beginning insertion in the experimental samples due to the control rod removal. Additional difference due to transient effects are observed in the sample powers and enthalpy. The time dependence of the power coupling factor (PCF) is calculated for the various fuel stacks of the Multi-SERTTA vehicle. Sample temperatures in excess of 3100 K, the melting point UO$$_2$$, are computed with the adiabatic heat transfer model. The planned shaped-transient might introduce additional effects that cannot be predicted with PRK models. Future modeling will be focused on the shaped-transient by improving the control rod models in MAMMOTH and adding the BISON thermo-elastic models and thermal-fluids heat transfer.« less

  4. A Monte Carlo Analysis of the Thrust Imbalance for the RSRMV Booster During Both the Ignition Transient and Steady State Operation

    NASA Technical Reports Server (NTRS)

    Foster, Winfred A., Jr.; Crowder, Winston; Steadman, Todd E.

    2014-01-01

    This paper presents the results of statistical analyses performed to predict the thrust imbalance between two solid rocket motor boosters to be used on the Space Launch System (SLS) vehicle. Two legacy internal ballistics codes developed for the Space Shuttle program were coupled with a Monte Carlo analysis code to determine a thrust imbalance envelope for the SLS vehicle based on the performance of 1000 motor pairs. Thirty three variables which could impact the performance of the motors during the ignition transient and thirty eight variables which could impact the performance of the motors during steady state operation of the motor were identified and treated as statistical variables for the analyses. The effects of motor to motor variation as well as variations between motors of a single pair were included in the analyses. The statistical variations of the variables were defined based on data provided by NASA's Marshall Space Flight Center for the upgraded five segment booster and from the Space Shuttle booster when appropriate. The results obtained for the statistical envelope are compared with the design specification thrust imbalance limits for the SLS launch vehicle

  5. A Monte Carlo Analysis of the Thrust Imbalance for the Space Launch System Booster During Both the Ignition Transient and Steady State Operation

    NASA Technical Reports Server (NTRS)

    Foster, Winfred A., Jr.; Crowder, Winston; Steadman, Todd E.

    2014-01-01

    This paper presents the results of statistical analyses performed to predict the thrust imbalance between two solid rocket motor boosters to be used on the Space Launch System (SLS) vehicle. Two legacy internal ballistics codes developed for the Space Shuttle program were coupled with a Monte Carlo analysis code to determine a thrust imbalance envelope for the SLS vehicle based on the performance of 1000 motor pairs. Thirty three variables which could impact the performance of the motors during the ignition transient and thirty eight variables which could impact the performance of the motors during steady state operation of the motor were identified and treated as statistical variables for the analyses. The effects of motor to motor variation as well as variations between motors of a single pair were included in the analyses. The statistical variations of the variables were defined based on data provided by NASA's Marshall Space Flight Center for the upgraded five segment booster and from the Space Shuttle booster when appropriate. The results obtained for the statistical envelope are compared with the design specification thrust imbalance limits for the SLS launch vehicle.

  6. RAPTOR: Closed-Loop monitoring of the night sky and the earliest optical detection of GRB 021211

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.; Borozdin, K.; Casperson, D. J.; Fenimore, E.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.

    2004-10-01

    We discuss the RAPTOR (Rapid Telescopes for Optical Response) sky monitoring system at Los Alamos National Laboratory. RAPTOR is a fully autonomous robotic system that is designed to identify and make follow-up observations of optical transients with durations as short as one minute. The RAPTOR design is based on Biomimicry of Human Vision. The sky monitor is composed of two identical arrays of telescopes, separated by 38 kilometers, which stereoscopically monitor a field of about 1300 square-degrees for transients. Both monitoring arrays are carried on rapidly slewing mounts and are composed of an ensemble of wide-field telescopes clustered around a more powerful narrow-field telescope called the ``fovea'' telescope. All telescopes are coupled to real-time analysis pipelines that identify candidate transients and relay the information to a central decision unit that filters the candidates to find real celestial transients and command a response. When a celestial transient is found, the system can point the fovea telescopes to any position on the sky within five seconds and begin follow-up observations. RAPTOR also responds to Gamma Ray Burst (GRB) alerts generated by GRB monitoring spacecraft. Here we present RAPTOR observations of GRB 021211 that constitute the earliest detection of optical emission from that event and are the second fastest achieved for any GRB. The detection of bright optical emission from GRB021211, a burst with modest gamma-ray fluence, indicates that prompt optical emission, detectable with small robotic telescopes, is more common than previously thought. Further, the very fast decline of the optical afterglow from GRB 021211 suggests that some so-called ``optically dark'' GRBs were not detected only because of the slow response of the follow-up telescopes.

  7. Lumped-Element Dynamic Electro-Thermal model of a superconducting magnet

    NASA Astrophysics Data System (ADS)

    Ravaioli, E.; Auchmann, B.; Maciejewski, M.; ten Kate, H. H. J.; Verweij, A. P.

    2016-12-01

    Modeling accurately electro-thermal transients occurring in a superconducting magnet is challenging. The behavior of the magnet is the result of complex phenomena occurring in distinct physical domains (electrical, magnetic and thermal) at very different spatial and time scales. Combined multi-domain effects significantly affect the dynamic behavior of the system and are to be taken into account in a coherent and consistent model. A new methodology for developing a Lumped-Element Dynamic Electro-Thermal (LEDET) model of a superconducting magnet is presented. This model includes non-linear dynamic effects such as the dependence of the magnet's differential self-inductance on the presence of inter-filament and inter-strand coupling currents in the conductor. These effects are usually not taken into account because superconducting magnets are primarily operated in stationary conditions. However, they often have significant impact on magnet performance, particularly when the magnet is subject to high ramp rates. Following the LEDET method, the complex interdependence between the electro-magnetic and thermal domains can be modeled with three sub-networks of lumped-elements, reproducing the electrical transient in the main magnet circuit, the thermal transient in the coil cross-section, and the electro-magnetic transient of the inter-filament and inter-strand coupling currents in the superconductor. The same simulation environment can simultaneously model macroscopic electrical transients and phenomena at the level of superconducting strands. The model developed is a very useful tool for reproducing and predicting the performance of conventional quench protection systems based on energy extraction and quench heaters, and of the innovative CLIQ protection system as well.

  8. Thermal Management Tools for Propulsion System Trade Studies and Analysis

    NASA Technical Reports Server (NTRS)

    McCarthy, Kevin; Hodge, Ernie

    2011-01-01

    Energy-related subsystems in modern aircraft are more tightly coupled with less design margin. These subsystems include thermal management subsystems, vehicle electric power generation and distribution, aircraft engines, and flight control. Tighter coupling, lower design margins, and higher system complexity all make preliminary trade studies difficult. A suite of thermal management analysis tools has been developed to facilitate trade studies during preliminary design of air-vehicle propulsion systems. Simulink blocksets (from MathWorks) for developing quasi-steady-state and transient system models of aircraft thermal management systems and related energy systems have been developed. These blocksets extend the Simulink modeling environment in the thermal sciences and aircraft systems disciplines. The blocksets include blocks for modeling aircraft system heat loads, heat exchangers, pumps, reservoirs, fuel tanks, and other components at varying levels of model fidelity. The blocksets have been applied in a first-principles, physics-based modeling and simulation architecture for rapid prototyping of aircraft thermal management and related systems. They have been applied in representative modern aircraft thermal management system studies. The modeling and simulation architecture has also been used to conduct trade studies in a vehicle level model that incorporates coupling effects among the aircraft mission, engine cycle, fuel, and multi-phase heat-transfer materials.

  9. Numerical modeling of a long-term in situ chemical osmosis experiment in the Pierre Shale, South Dakota

    USGS Publications Warehouse

    Garavito, A.M.; Kooi, H.; Neuzil, C.E.

    2006-01-01

    We have numerically modeled evolving fluid pressures and concentrations from a nine-year in situ osmosis experiment in the Pierre Shale, South Dakota. These data were obtained and recently interpreted by one of us (C.E.N.) as indicating a potentially significant role for chemical osmosis in media like the Pierre Shale. That analysis considered only the final pressure differentials among boreholes that were assumed to represent osmotic equilibrium. For this study, the system evolution was modeled using a recently developed transient model for membrane transport. The model simulates hydraulically and chemically driven fluid and solute transport. The results yield an estimate of the thickness of the water film between the clay platelets b of 40 A??, which corresponds to an osmotic efficiency ?? of 0.21 for the ambient pore water salinity of 3.5 g/l TDS. These values largely confirm the results of the earlier equilibrium analysis. However, the new model analysis provides additional constraints suggesting that intrinsic permeability k = 1.4 ?? 10-19 m2, specific storage Ss = 1.7 ?? 10-5 m-1, and diffusion coefficient D* = 6 ?? 10-11 m2/s. The k value is larger than certain independent estimates which range from 10-21 to 10-20; it may indicate opening of microcracks during the experiments. The fact that the complex transient pressure and concentration behavior for the individual wells could be reproduced quite accurately, and the inferred parameter values appear to be realistic for the Pierre Shale, suggests that the new model is a useful tool for modeling transient coupled flows in groundwater systems. ?? 2005 Elsevier Ltd. All rights reserved.

  10. Quasi-2D Unsteady Flow Solver Module for Rocket Engine and Propulsion System Simulations

    DTIC Science & Technology

    2006-06-14

    Conference, Sacramento, CA, 9-12 July 2006. 14. ABSTRACT A new quasi-two-dimensional procedure is presented for the transient solution of real-fluid flows...solution procedures is being developed in parallel to provide verification test cases. The solution procedure for both codes is coupled with a state-of...Davis, Davis, CA, 95616 A new quasi-two-dimensional procedure is presented for the transient solution of real- fluid flows in lines and volumes

  11. Transient decrease in nociceptor GRK2 expression produces long–term enhancement in inflammatory pain

    PubMed Central

    Ferrari, Luiz F.; Bogen, Oliver; Alessandri–Haber, Nicole; Levine, Emma; Gear, Robert W.; Levine, Jon D.

    2012-01-01

    In heterozygous mice, attenuation of G-protein-coupled receptor kinase 2 (GRK2) level in nociceptors is associated with enhanced and prolonged inflammatory hyperalgesia. To further elucidate the role of GRK2 in nociceptor function we reversibly decreased GRK2 expression using intrathecal antisense oligodeoxynucleotide (AS-ODN). GRK2 AS-ODN administration led to an enhanced and prolonged hyperalgesia induced by prostaglandin E 2, epinephrine and carrageenan. Morover, this effect persisted unattenuated 2 weeks after the last dose of antisense, well after GRK2 protein recovered, suggesting that transient attenuation of GRK2 produced neuroplastic changes in nociceptor function. Unlike hyperalgesic priming induced by transient attenuation of GRK2 produced neuroplastic changes in nociceptor function. Unlike hyperalgesic priming induced by transient activation of protein kinase C epsilon (PKCε), (Aley et al., 2000, Parada et al., 2003b), the enhanced and prolonged hyperalgesia following attenuation of GRK2 is PKCε- and cytoplasmic polyadenylation element binding protein (CPEB)-independent and is protein kinase A (PKA)- and Src tyrosine kinase (Src)-dependent. Finally, rats treated with GRK2 AS-ODN exhibited enhanced and prolonged hyperalgesia induced by direct activation of second messengers, adenyl cyclase, Epac or PKA, suggesting changes downstream of G-protein-coupled receptors. Because inflammation can produce a decrease in GRK2, such a mechanism could help explain a predilection to develop chronic pain, after resolution of acute inflammation. PMID:22796071

  12. Experimental validation of solid rocket motor damping models

    NASA Astrophysics Data System (ADS)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2017-12-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe damping properties of slender launch vehicles in payload/launcher coupled load analysis.

  13. Experimental validation of solid rocket motor damping models

    NASA Astrophysics Data System (ADS)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2018-06-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe damping properties of slender launch vehicles in payload/launcher coupled load analysis.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epiney, A.; Canepa, S.; Zerkak, O.

    The STARS project at the Paul Scherrer Institut (PSI) has adopted the TRACE thermal-hydraulic (T-H) code for best-estimate system transient simulations of the Swiss Light Water Reactors (LWRs). For analyses involving interactions between system and core, a coupling of TRACE with the SIMULATE-3K (S3K) LWR core simulator has also been developed. In this configuration, the TRACE code and associated nuclear power reactor simulation models play a central role to achieve a comprehensive safety analysis capability. Thus, efforts have now been undertaken to consolidate the validation strategy by implementing a more rigorous and structured assessment approach for TRACE applications involving eithermore » only system T-H evaluations or requiring interfaces to e.g. detailed core or fuel behavior models. The first part of this paper presents the preliminary concepts of this validation strategy. The principle is to systematically track the evolution of a given set of predicted physical Quantities of Interest (QoIs) over a multidimensional parametric space where each of the dimensions represent the evolution of specific analysis aspects, including e.g. code version, transient specific simulation methodology and model "nodalisation". If properly set up, such environment should provide code developers and code users with persistent (less affected by user effect) and quantified information (sensitivity of QoIs) on the applicability of a simulation scheme (codes, input models, methodology) for steady state and transient analysis of full LWR systems. Through this, for each given transient/accident, critical paths of the validation process can be identified that could then translate into defining reference schemes to be applied for downstream predictive simulations. In order to illustrate this approach, the second part of this paper presents a first application of this validation strategy to an inadvertent blowdown event that occurred in a Swiss BWR/6. The transient was initiated by the spurious actuation of the Automatic Depressurization System (ADS). The validation approach progresses through a number of dimensions here: First, the same BWR system simulation model is assessed for different versions of the TRACE code, up to the most recent one. The second dimension is the "nodalisation" dimension, where changes to the input model are assessed. The third dimension is the "methodology" dimension. In this case imposed power and an updated TRACE core model are investigated. For each step in each validation dimension, a common set of QoIs are investigated. For the steady-state results, these include fuel temperatures distributions. For the transient part of the present study, the evaluated QoIs include the system pressure evolution and water carry-over into the steam line.« less

  15. Modeling of Structural-Acoustic Interaction Using Coupled FE/BE Method and Control of Interior Acoustic Pressure Using Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Shi, Yacheng

    1997-01-01

    A coupled finite element (FE) and boundary element (BE) approach is presented to model full coupled structural/acoustic/piezoelectric systems. The dual reciprocity boundary element method is used so that the natural frequencies and mode shapes of the coupled system can be obtained, and to extend this approach to time dependent problems. The boundary element method is applied to interior acoustic domains, and the results are very accurate when compared with limited exact solutions. Structural-acoustic problems are then analyzed with the coupled finite element/boundary element method, where the finite element method models the structural domain and the boundary element method models the acoustic domain. Results for a system consisting of an isotropic panel and a cubic cavity are in good agreement with exact solutions and experiment data. The response of a composite panel backed cavity is then obtained. The results show that the mass and stiffness of piezoelectric layers have to be considered. The coupled finite element and boundary element equations are transformed into modal coordinates, which is more convenient for transient excitation. Several transient problems are solved based on this formulation. Two control designs, a linear quadratic regulator (LQR) and a feedforward controller, are applied to reduce the acoustic pressure inside the cavity based on the equations in modal coordinates. The results indicate that both controllers can reduce the interior acoustic pressure and the plate deflection.

  16. Cable coupling lightning transient qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of instrumentation cabling on the redesigned solid rocket motor was performed. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of instrumentation cable transients on cables within the system tunnel. The maximum short-circuit current induced onto a United Space Boosters, Inc., operational flight cable within the systems tunnel was 92 A, and the maximum induced open-circuit voltage was 316 V. These levels were extrapolated to the worst-case (200 kA) condition of NASA specification NSTS 07636 and were also scaled to full-scale redesigned solid rocket motor dimensions. Testing showed that voltage coupling to cables within the systems tunnel can be reduced 40 to 90 dB and that current coupling to cables within the systems tunnel can be reduced 30 to 70 dB with the use of braided metallic sock shields around cables that are external to the systems tunnel. Testing also showed that current and voltage levels induced onto cables within the systems tunnel are partially dependant on the cables' relative locations within the systems tunnel. Results of current injections to the systems tunnel indicate that the dominant coupling mode on cables within the systems tunnel is not from instrumentation cables but from coupling through the systems tunnel cover seam apertures. It is recommended that methods of improving the electrical bonding between individual sections of the systems tunnel covers be evaluated. Further testing to better characterize redesigned solid rocket motor cable coupling effects as an aid in developing methods to reduce coupling levels, particularly with respect to cable placement within the systems tunnel, is also recommended.

  17. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  18. Monolithic optical link in silicon-on-insulator CMOS technology.

    PubMed

    Dutta, Satadal; Agarwal, Vishal; Hueting, Raymond J E; Schmitz, Jurriaan; Annema, Anne-Johan

    2017-03-06

    This work presents a monolithic laterally-coupled wide-spectrum (350 nm < λ < 1270 nm) optical link in a silicon-on-insulator CMOS technology. The link consists of a silicon (Si) light-emitting diode (LED) as the optical source and a Si photodiode (PD) as the detector; both realized by vertical abrupt n+p junctions, separated by a shallow trench isolation composed of silicon dioxide. Medium trench isolation around the devices along with the buried oxide layer provides galvanic isolation. Optical coupling in both avalanche-mode and forward-mode operation of the LED are analyzed for various designs and bias conditions. From both DC and pulsed transient measurements, it is further shown that heating in the avalanche-mode LED leads to a slow thermal coupling to the PD with time constants in the ms range. An integrated heat sink in the same technology leads to a ∼ 6 times reduction in the change in PD junction temperature per unit electrical power dissipated in the avalanche-mode LED. The analysis paves way for wide-spectrum optical links integrated in smart power technologies.

  19. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahowald, Natalie; Rothenberg, D.; Lindsay, Keith

    2011-02-01

    Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries) and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climatemore » feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.« less

  20. Different phospholipase-C-coupled receptors differentially regulate capacitative and non-capacitative Ca2+ entry in A7r5 cells

    PubMed Central

    Moneer, Zahid; Pino, Irene; Taylor, Emily J. A.; Broad, Lisa M.; Liu, Yingjie; Tovey, Stephen C.; Staali, Leila; Taylor, Colin W.

    2005-01-01

    Several receptors, including those for AVP (Arg8-vasopressin) and 5-HT (5-hydroxytryptamine), share an ability to stimulate PLC (phospholipase C) and so production of IP3 (inositol 1,4,5-trisphosphate) and DAG (diacylglycerol) in A7r5 vascular smooth muscle cells. Our previous analysis of the effects of AVP on Ca2+ entry [Moneer, Dyer and Taylor (2003) Biochem. J. 370, 439–448] showed that arachidonic acid released from DAG stimulated NO synthase. NO then stimulated an NCCE (non-capacitative Ca2+ entry) pathway, and, via cGMP and protein kinase G, it inhibited CCE (capacitative Ca2+ entry). This reciprocal regulation ensured that, in the presence of AVP, all Ca2+ entry occurred via NCCE to be followed by a transient activation of CCE only when AVP was removed [Moneer and Taylor (2002) Biochem. J. 362, 13–21]. We confirm that, in the presence of AVP, all Ca2+ entry occurs via NCCE, but 5-HT, despite activating PLC and evoking release of Ca2+ from intracellular stores, stimulates Ca2+ entry only via CCE. We conclude that two PLC-coupled receptors differentially regulate CCE and NCCE. We also address evidence that, in some A7r5 cells lines, AVP fails either to stimulate NCCE or inhibit CCE [Brueggemann, Markun, Barakat, Chen and Byron (2005) Biochem. J. 388, 237–244]. Quantitative PCR analysis suggests that these cells predominantly express TRPC1 (transient receptor potential canonical 1), whereas cells in which AVP reciprocally regulates CCE and NCCE express a greater variety of TRPC subtypes (TRPC1=6>2>3). PMID:15918794

  1. Calcium/calmodulin-dependent kinase II and nitric oxide synthase 1-dependent modulation of ryanodine receptors during β-adrenergic stimulation is restricted to the dyadic cleft.

    PubMed

    Dries, Eef; Santiago, Demetrio J; Johnson, Daniel M; Gilbert, Guillaume; Holemans, Patricia; Korte, Sanne M; Roderick, H Llewelyn; Sipido, Karin R

    2016-10-15

    The dyadic cleft, where coupled ryanodine receptors (RyRs) reside, is thought to serve as a microdomain for local signalling, as supported by distinct modulation of coupled RyRs dependent on Ca 2+ /calmodulin-dependent kinase II (CaMKII) activation during high-frequency stimulation. Sympathetic stimulation through β-adrenergic receptors activates an integrated signalling cascade, enhancing Ca 2+ cycling and is at least partially mediated through CaMKII. Here we report that CaMKII activation during β-adrenergic signalling is restricted to the dyadic cleft, where it enhances activity of coupled RyRs thereby contributing to the increase in diastolic events. Nitric oxide synthase 1 equally participates in the local modulation of coupled RyRs. In contrast, the increase in the Ca 2+ content of the sarcoplasmic reticulum and related increase in the amplitude of the Ca 2+ transient are primarily protein kinase A-dependent. The present data extend the concept of microdomain signalling in the dyadic cleft and give perspectives for selective modulation of RyR subpopulations and diastolic events. In cardiac myocytes, β-adrenergic stimulation enhances Ca 2+ cycling through an integrated signalling cascade modulating L-type Ca 2+ channels (LTCCs), phospholamban and ryanodine receptors (RyRs). Ca 2+ /calmodulin-dependent kinase II (CaMKII) and nitric oxide synthase 1 (NOS1) are proposed as prime mediators for increasing RyR open probability. We investigate whether this pathway is confined to the high Ca 2+ microdomain of the dyadic cleft and thus to coupled RyRs. Pig ventricular myocytes are studied under whole-cell voltage-clamp and confocal line-scan imaging with Fluo-4 as a [Ca 2+ ] i indicator. Following conditioning depolarizing pulses, spontaneous RyR activity is recorded as Ca 2+ sparks, which are assigned to coupled and non-coupled RyR clusters. Isoproterenol (ISO) (10 nm) increases Ca 2+ spark frequency in both populations of RyRs. However, CaMKII inhibition reduces spark frequency in coupled RyRs only; NOS1 inhibition mimics the effect of CaMKII inhibition. Moreover, ISO induces the repetitive activation of coupled RyR clusters through CaMKII activation. Immunostaining shows high levels of CaMKII phosphorylation at the dyadic cleft. CaMKII inhibition reduces I CaL and local Ca 2+ transients during depolarizing steps but has only modest effects on amplitude or relaxation of the global Ca 2+ transient. In contrast, protein kinase A (PKA) inhibition reduces spark frequency in all RyRs concurrently with a reduction of sarcoplasmic reticulum Ca 2+ content, Ca 2+ transient amplitude and relaxation. In conclusion, CaMKII activation during β-adrenergic stimulation is restricted to the dyadic cleft microdomain, enhancing LTCC-triggered local Ca 2+ release as well as spontaneous diastolic Ca 2+ release whilst PKA is the major pathway increasing global Ca 2+ cycling. Selective CaMKII inhibition may reduce potentially arrhythmogenic release without negative inotropy. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  2. Phase synchronization of neuronal noise in mouse hippocampal epileptiform dynamics.

    PubMed

    Serletis, Demitre; Carlen, Peter L; Valiante, Taufik A; Bardakjian, Berj L

    2013-02-01

    Organized brain activity is the result of dynamical, segregated neuronal signals that may be used to investigate synchronization effects using sophisticated neuroengineering techniques. Phase synchrony analysis, in particular, has emerged as a promising methodology to study transient and frequency-specific coupling effects across multi-site signals. In this study, we investigated phase synchronization in intracellular recordings of interictal and ictal epileptiform events recorded from pairs of cells in the whole (intact) mouse hippocampus. In particular, we focused our analysis on the background noise-like activity (NLA), previously reported to exhibit complex neurodynamical properties. Our results show evidence for increased linear and nonlinear phase coupling in NLA across three frequency bands [theta (4-10 Hz), beta (12-30 Hz) and gamma (30-80 Hz)] in the ictal compared to interictal state dynamics. We also present qualitative and statistical evidence for increased phase synchronization in the theta, beta and gamma frequency bands from paired recordings of ictal NLA. Overall, our results validate the use of background NLA in the neurodynamical study of epileptiform transitions and suggest that what is considered "neuronal noise" is amenable to synchronization effects in the spatiotemporal domain.

  3. A theory of post-stall transients in multistage axial compression systems

    NASA Technical Reports Server (NTRS)

    Moore, F. K.; Greitzer, E. M.

    1985-01-01

    A theory is presented for post stall transients in multistage axial compressors. The theory leads to a set of coupled first-order ordinary differential equations capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. These changing flow features are shown to have a significant effect on the instantaneous compressor pumping characteristic during unsteady operation, and henace on the overall system behavior. It is also found from the theory that the ultimate mode of system response, stable rotating stall or surge, depends not only on the B parameter but also on other parameters, such as the compressor length-to-diameter ratio. Small values of this latter quantity tend to favor the occurrence of surge, as do large values of B. A limited parametric study is carried out to show the impact of the different system features on transient behavior. Based on analytical and numerical results, several specific topics are suggested for future research on post-stall transients.

  4. Geological Hypothesis Testing and Investigations of Coupling with Transient Electromagnetics (TEM)

    NASA Astrophysics Data System (ADS)

    Adams, A. C.; Moeller, M. M.; Snyder, E.; Workman, E. J.; Urquhart, S.; Bedrosian, P.; Pellerin, L.

    2014-12-01

    Transient electromagnetic (TEM) data were acquired in Borrego Canyon within the Santo Domingo Basin of the Rio Grande Rift, central New Mexico, during the 2014 Summer of Applied Geophysical Experience (SAGE) field program. TEM surveys were carried out in several regions both to investigate geologic structure and to illustrate the effects of coupling to anthropogenic structures. To determine an optimal survey configuration, 50, 100 and 200 m square transmitter loops were deployed; estimates of depth-of-investigation and logistical considerations determined that 50 m loops were sufficient for production-style measurements. A resistive (100s of ohm-m) layer was identified at a depth of 25-75 m at several locations, and interpreted as dismembered parts of one or more concealed volcanic flows, an interpretation consistent with Tertiary volcanic flows that cap the Santa Anna Mesa immediately to the south. TEM soundings were also made across an inferred fault to investigate whether fault offset is accompanied by lateral changes in electrical resistivity. Soundings within several hundred meters of the inferred fault strand were identical, indicating no resistivity contrast across the fault, and possibly an absence of recent activity. An old windmill and water tank, long-abandoned, offered an excellent laboratory to study the effect of coupling to metallic anthropogenic structures. The character of the measured data strongly suggests the water tank is in electrical contact with the earth (galvanic coupling), and an induced response was persistent to more than 1 second after current turn-off. Coupling effects could be identified at least 150 meters from the tank. Understanding the mechanism behind such coupling and the ability to identify coupled data are critical skills, as one-dimensional modeling of data is affected by such coupling producing artificial conductive layers at depth.

  5. Stability Analysis of a High-Speed Seal Test Rotor With Marginal and Extended Squeeze-Film Dampers: Theoretical and Experimental Results

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Gunter, Edgar J.

    2007-01-01

    A case study of a high-speed seal test rotor shows how rotor dynamic analysis can be used to diagnose the source of high vibrations and evaluate a proposed remedy. Experimental results are compared with the synchronous and non-synchronous whirl response analysis of a double overhung, high-speed seal test rotor with ball bearings supported in 5.84- and 12.7-mm-long, un-centered squeeze-film oil dampers. Test performance with the original damper of length 5.84 mm was marginal. Non-synchronous whirling occurred at the overhung seal test disk and there was a high amplitude synchronous response near the drive spline above 32,000 rpm. Nonlinear synchronous unbalance and time transient whirl studies were conducted on the seal test rotor with the original and extended damper lengths. With the original damper design, the nonlinear synchronous response showed that unbalance could cause damper lockup at 33,000 rpm. Alford cross-coupling forces were also included at the overhung seal test disk for the whirl analysis. Sub-synchronous whirling at the seal test disk was observed in the nonlinear time transient analysis. With the extended damper length of 12.7 mm, the sub-synchronous motion was eliminated and the rotor unbalance response was acceptable to 45,000 rpm with moderate rotor unbalance. Seal test rotor orbits and vibration levels with the extended squeeze film dampers showed smooth operation to 40,444 rpm.

  6. Modelling of the plastic deformation and primary creep of metals coupled with DC in terms of the synthetic theory of irrecoverable deformation

    NASA Astrophysics Data System (ADS)

    Rusinko, Andrew; Varga, Peter

    2018-04-01

    The paper deals with modelling of the plastic and creep deformation of metals coupled with current. The passage of DC manifests itself in the increase in creep deformation and leads to primary creep time shortening. With plastic deformation, a short electric impulse results in the step-wise decrease of stress (stress-drop) on the stress-strain diagram. To catch these phenomena, we utilize the synthetic theory of recoverable deformation. The constitutive equation of this theory is supplemented by a term taking into account the intensity of DC. Further, we introduce DC intensity into the function governing transient creep. As a result, we predict the parameters of transient creep and calculate the stress-drop as a function of current intensity. The model results show good agreement with experimental data.

  7. Three-dimensional multi-physics coupled simulation of ignition transient in a dual pulse solid rocket motor

    NASA Astrophysics Data System (ADS)

    Li, Yingkun; Chen, Xiong; Xu, Jinsheng; Zhou, Changsheng; Musa, Omer

    2018-05-01

    In this paper, numerical investigation of ignition transient in a dual pulse solid rocket motor has been conducted. An in-house code has been developed in order to solve multi-physics governing equations, including unsteady compressible flow, heat conduction and structural dynamic. The simplified numerical models for solid propellant ignition and combustion have been added. The conventional serial staggered algorithm is adopted to simulate the fluid structure interaction problems in a loosely-coupled manner. The accuracy of the coupling procedure is validated by the behavior of a cantilever panel subjected to a shock wave. Then, the detailed flow field development, flame propagation characteristics, pressure evolution in the combustion chamber, and the structural response of metal diaphragm are analyzed carefully. The burst-time and burst-pressure of the metal diaphragm are also obtained. The individual effects of the igniter's mass flow rate, metal diaphragm thickness and diameter on the ignition transient have been systemically compared. The numerical results show that the evolution of the flow field in the combustion chamber, the temperature distribution on the propellant surface and the pressure loading on the metal diaphragm surface present a strong three-dimensional behavior during the initial ignition stage. The rupture of metal diaphragm is not only related to the magnitude of pressure loading on the diaphragm surface, but also to the history of pressure loading. The metal diaphragm thickness and diameter have a significant effect on the burst-time and burst-pressure of metal diaphragm.

  8. Dynamic response of a fiber-optic ring resonator: Analysis with influences of light-source parameters

    NASA Astrophysics Data System (ADS)

    Seraji, Faramarz E.

    2009-03-01

    In practice, dynamic behavior of fiber-optic ring resonator (FORR) appears as a detrimental factor to influence the transmission response of the FORR. This paper presents dynamic response analysis of the FORR by considering phase modulation of the FORR loop and sinewave modulation of input signal applied to the FORR from a laser diode. The analysis investigates the influences of modulation frequency and amplitude modulation index of laser diode, loop delay time of the FORR, phase angle between FM and AM response of laser diode, and laser diode line-width on dynamic response of the FORR. The analysis shows that the transient response of the FORR strongly depends on the product of modulation frequency and loop delay time, coupling and transmission coefficients of the FORR. The analyses presented here may have applications in optical systems employing an FORR with a laser diode source.

  9. Lifetime Reliability Prediction of Ceramic Structures Under Transient Thermomechanical Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Jadaan, Osama J.; Gyekenyesi, John P.

    2005-01-01

    An analytical methodology is developed to predict the probability of survival (reliability) of ceramic components subjected to harsh thermomechanical loads that can vary with time (transient reliability analysis). This capability enables more accurate prediction of ceramic component integrity against fracture in situations such as turbine startup and shutdown, operational vibrations, atmospheric reentry, or other rapid heating or cooling situations (thermal shock). The transient reliability analysis methodology developed herein incorporates the following features: fast-fracture transient analysis (reliability analysis without slow crack growth, SCG); transient analysis with SCG (reliability analysis with time-dependent damage due to SCG); a computationally efficient algorithm to compute the reliability for components subjected to repeated transient loading (block loading); cyclic fatigue modeling using a combined SCG and Walker fatigue law; proof testing for transient loads; and Weibull and fatigue parameters that are allowed to vary with temperature or time. Component-to-component variation in strength (stochastic strength response) is accounted for with the Weibull distribution, and either the principle of independent action or the Batdorf theory is used to predict the effect of multiaxial stresses on reliability. The reliability analysis can be performed either as a function of the component surface (for surface-distributed flaws) or component volume (for volume-distributed flaws). The transient reliability analysis capability has been added to the NASA CARES/ Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code. CARES/Life was also updated to interface with commercially available finite element analysis software, such as ANSYS, when used to model the effects of transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  10. Dynamic analysis of nonlinear rotor-housing systems

    NASA Technical Reports Server (NTRS)

    Noah, Sherif T.

    1988-01-01

    Nonlinear analysis methods are developed which will enable the reliable prediction of the dynamic behavior of the space shuttle main engine (SSME) turbopumps in the presence of bearing clearances and other local nonlinearities. A computationally efficient convolution method, based on discretized Duhamel and transition matrix integral formulations, is developed for the transient analysis. In the formulation, the coupling forces due to the nonlinearities are treated as external forces acting on the coupled subsystems. Iteration is utilized to determine their magnitudes at each time increment. The method is applied to a nonlinear generic model of the high pressure oxygen turbopump (HPOTP). As compared to the fourth order Runge-Kutta numerical integration methods, the convolution approach proved to be more accurate and more highly efficient. For determining the nonlinear, steady-state periodic responses, an incremental harmonic balance method was also developed. The method was successfully used to determine dominantly harmonic and subharmonic responses fo the HPOTP generic model with bearing clearances. A reduction method similar to the impedance formulation utilized with linear systems is used to reduce the housing-rotor models to their coordinates at the bearing clearances. Recommendations are included for further development of the method, for extending the analysis to aperiodic and chaotic regimes and for conducting critical parameteric studies of the nonlinear response of the current SSME turbopumps.

  11. High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity

    NASA Astrophysics Data System (ADS)

    Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander

    2016-05-01

    The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.

  12. Flow chemistry as a discovery tool to access sp2-sp3 cross-coupling reactions via diazo compounds.

    PubMed

    Tran, Duc N; Battilocchio, Claudio; Lou, Shing-Bong; Hawkins, Joel M; Ley, Steven V

    2015-02-01

    The work takes advantage of an important feature of flow chemistry, whereby the generation of a transient species (or reactive intermediate) can be followed by a transfer step into another chemical environment, before the intermediate is reacted with a coupling partner. This concept is successfully applied to achieve a room temperature sp 2 -sp 3 cross coupling of boronic acids with diazo compounds, these latter species being generated from hydrazones under flow conditions using MnO 2 as the oxidant.

  13. Synchronized Astrocytic Ca2+ Responses in Neurovascular Coupling during Somatosensory Stimulation and for the Resting State.

    PubMed

    Gu, Xiaochun; Chen, Wei; Volkow, Nora D; Koretsky, Alan P; Du, Congwu; Pan, Yingtian

    2018-06-26

    The role of astrocytes in neurovascular coupling (NVC) is unclear. Here, we applied a multimodality imaging approach to concomitantly measure synchronized neuronal or astrocytic Ca 2+ and hemodynamic changes in the mouse somatosensory cortex at rest and during sensory electrical stimulation. Strikingly, we found that low-frequency stimulation (0.3-1 Hz), which consistently evokes fast neuronal Ca 2+ transients (6.0 ± 2.7 ms latency) that always precede vascular responses, does not always elicit astrocytic Ca 2+ transients (313 ± 65 ms latency). However, the magnitude of the hemodynamic response is increased when astrocytic transients occur, suggesting a facilitatory role of astrocytes in NVC. High-frequency stimulation (5-10 Hz) consistently evokes a large, delayed astrocytic Ca 2+ accumulation (3.48 ± 0.09 s latency) that is temporarily associated with vasoconstriction, suggesting a role for astrocytes in resetting NVC. At rest, neuronal, but not astrocytic, Ca 2+ fluctuations correlate with hemodynamic low-frequency oscillations. Taken together, these results support a role for astrocytes in modulating, but not triggering, NVC. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Multi-physics transient simulation of monolithic niobium dioxide-tantalum dioxide memristor-selector structures

    NASA Astrophysics Data System (ADS)

    Sevic, John F.; Kobayashi, Nobuhiko P.

    2017-10-01

    Self-assembled niobium dioxide (NbO2) thin-film selectors self-aligned to tantalum dioxide (TaO2) memristive memory cells are studied by a multi-physics transient solution of the heat equation coupled to the nonlinear current continuity equation. While a compact model can resolve the quasi-static bulk negative differential resistance (NDR), a self-consistent coupled transport formulation provides a non-equilibrium picture of NbO2-TaO2 selector-memristor operation ab initio. By employing the drift-diffusion transport approximation, a finite element method is used to study the dynamic electrothermal behavior of our experimentally obtained selector-memristor devices, showing that existing conditions are suitable for electroformation of NbO2 selector thin-films. Both transient and steady-state simulations support our theory, suggesting that the phase change due to insulator-metal transition is responsible for NbO2 selector NDR in our as-fabricated selector-memristor devices. Simulation results further suggest that TiN nano-via may play a central role in electroforming, as its dimensions and material properties establish the mutual electrothermal interaction between TiN nano-via and the selector-memristor.

  15. Study on the Transient Process of 500kV Substations Secondary Equipment

    NASA Astrophysics Data System (ADS)

    Li, Hongbo; Li, Pei; Zhang, Yanyan; Niu, Lin; Gao, Nannan; Si, Tailong; Guo, Jiadong; Xu, Min-min; Li, Guofeng; Guo, Liangfeng

    2017-05-01

    By analyzing on the reason of the lightning accident occur in the substation, the way of lightning incoming surge invading the secondary system is summarized. The interference source acts on the secondary system through various coupling paths. It mainly consists of four ways: the conductance coupling mode, the Capacitive Coupling Mode, the inductive coupling mode, The Radiation Interference Model. Then simulated the way with the program-ATP. At last, from the three aspects of low-voltage power supply system, the impact potential distribution of grounding grid, the secondary system and the computer system. The lightning protection measures is put forward.

  16. Diplexer switch

    NASA Technical Reports Server (NTRS)

    Grauling, C. H., Jr.; Parker, T. W.

    1977-01-01

    Switch achieves high isolation and continuous input/output matching by using resonant coupling structure of diplexer. Additionally, dc bias network used to control switch is decoupled from RF input and output lines. Voltage transients in external circuits are thus minimized.

  17. Controlling electronic couplings with tunable long wavelength pulses: Study of Autler-Townes splitting and XUV emission spectra

    NASA Astrophysics Data System (ADS)

    Harkema, Nathan; Liao, Chen-Ting; Sandhu, Arvinder

    2017-04-01

    Attosecond transient absorption spectroscopy (ATAS) enables the study of excited electron dynamics with unprecedented temporal and energy resolution. Many ATAS experiments use an extreme ultraviolet (XUV) pump pulse and a near-infrared (NIR) probe fixed at the fundamental laser frequency ( 800 nm) to study the light induced effects on electronic structure of atoms and molecules. We extend the technique by using an optical parametric amplifier in one arm of our setup, which allows us to independently tune the frequency of the probe pulse from 1200 to 1800 nm. These long-wavelength pulses allow us to explore a new regime, where we can control the couplings between nearby electronic states to alter the transient absorption lineshapes in atoms. We use this technique to investigate the 4p-3s detuning dependent Autler-Townes splitting of the 4p state in Helium. Light induced Floquet structures extending into the continuum are observed in our study. We demonstrate new tunable XUV emission channels from four-wave mixing processes, and the efficiency of these emissions can be strongly enhanced through resonant couplings. The tunable IR induced electronic couplings are also used to influence the autoionization dynamics in Argon. This work is supported by NSF Grant No. PHY-1505556 and ARO Grant No. W911NF-14-1-0383.

  18. The effect of cyclic feathering motions on dynamic rotor loads. [for helicopters

    NASA Technical Reports Server (NTRS)

    Harvey, K. W.

    1974-01-01

    The dynamic loads of a helicopter rotor in forward flight are influenced significantly by the geometric pitch angles between the structural axes of the hub and blade sections and the plane of rotation. The analytical study presented includes elastic coupling between inplane and out-of-plane deflections as a function of geometric pitch between the plane of rotation and the principal axes of inertia of each blade. The numerical evaluation is based on a transient analysis using lumped masses and elastic substructure techniques. A comparison of cases with and without cyclic feathering motion shows the effect on computed dynamic rotor loads.

  19. Coherent virtual absorption for discretized light

    NASA Astrophysics Data System (ADS)

    Longhi, S.

    2018-05-01

    Coherent virtual absorption (CVA) is a recently-introduced phenomenon for which exponentially growing waves incident onto a conservative optical medium are neither reflected nor transmitted, at least transiently. CVA has been associated to complex zeros of the scattering matrix and can be regarded as the time reversal of the decay process of a quasi-mode sustained by the optical medium. Here we consider CVA for discretized light transport in coupled resonator optical waveguides or waveguide arrays and show that a distinct kind of CVA, which is not related to complex zero excitation of quasi-modes, can be observed. This result suggests that scattering matrix analysis can not fully capture CVA phenomena.

  20. Atomic-level study of a thickness-dependent phase change in gold thin films heated by an ultrafast laser.

    PubMed

    Gan, Yong; Shi, Jixiang; Jiang, Shan

    2012-08-20

    An ultrafast laser-induced phase change in gold thin films with different thicknesses has been simulated by the method of coupling the two-temperature model and the molecular dynamics, including transient optical properties. Numerical results show that the decrease of film thickness leads to faster melting in the early nonequilibrium time and a larger melting depth. Moreover, earlier occurrence and a higher rate of resolidification are observed for the thicker film. Further analysis reveals that the mechanism for the thickness-dependent phase change in the films is the fast electron thermal conduction in the nonequilibrium state.

  1. TEMPEST: A three-dimensional time-dependent computer program for hydrothermal analysis: Volume 1, Numerical methods and input instructions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trent, D.S.; Eyler, L.L.; Budden, M.J.

    This document describes the numerical methods, current capabilities, and the use of the TEMPEST (Version L, MOD 2) computer program. TEMPEST is a transient, three-dimensional, hydrothermal computer program that is designed to analyze a broad range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. 10 refs., 22 figs., 2 tabs.

  2. CFD study of mixing miscible liquid with high viscosity difference in a stirred tank

    NASA Astrophysics Data System (ADS)

    Madhania, S.; Cahyani, A. B.; Nurtono, T.; Muharam, Y.; Winardi, S.; Purwanto, W. W.

    2018-03-01

    The mixing process of miscible liquids with high viscosity difference is crucial role even though the solution mutually dissolved. This paper describes the mixing behaviour of the water-molasses system in a conical-bottomed cylindrical stirred tank (D = 0.28 m and H = 0.395 m) equipped with a side-entry Marine propeller (d = 0.036 m) under the turbulence regime using a three-dimensional and transient CFD-simulation. The objective of this work is to compare the solution strategies was applied in the computational analysis to capture the detail phenomena of mixing two miscible liquid with high viscosity difference. Four solution strategies that have been used are the RANS Standards k-ε (SKE) model as the turbulence model coupled with the Multiple Reference Frame (MRF) method for impeller motion, the RANS Realizable k-ε (RKE) combine with the MRF, the Large Eddy Simulation (LES) coupled with the Sliding Mesh (SM) method and the LES-MRF combination. The transient calculations were conducted with Ansys Fluent 17.1 version. The mixing behaviour and the propeller characteristic are to be compared and discussed in this work. The simulation results show the differences of flow pattern and the molasses distribution profile for every solution strategy. The variation of the flow pattern which happened in each solution strategy showing an instability of the mixing process in stirred tank. The LES-SM strategy shows the realistic direction of flow than another solution strategies.

  3. Control of amplitude chimeras by time delay in oscillator networks

    NASA Astrophysics Data System (ADS)

    Gjurchinovski, Aleksandar; Schöll, Eckehard; Zakharova, Anna

    2017-04-01

    We investigate the influence of time-delayed coupling in a ring network of nonlocally coupled Stuart-Landau oscillators upon chimera states, i.e., space-time patterns with coexisting partially coherent and partially incoherent domains. We focus on amplitude chimeras, which exhibit incoherent behavior with respect to the amplitude rather than the phase and are transient patterns, and we show that their lifetime can be significantly enhanced by coupling delay. To characterize their transition to phase-lag synchronization (coherent traveling waves) and other coherent structures, we generalize the Kuramoto order parameter. Contrasting the results for instantaneous coupling with those for constant coupling delay, for time-varying delay, and for distributed-delay coupling, we demonstrate that the lifetime of amplitude chimera states and related partially incoherent states can be controlled, i.e., deliberately reduced or increased, depending upon the type of coupling delay.

  4. Apparatus for and method of eliminating single event upsets in combinational logic

    NASA Technical Reports Server (NTRS)

    Gambles, Jody W. (Inventor); Hass, Kenneth J. (Inventor); Cameron, Kelly B. (Inventor)

    2001-01-01

    An apparatus for and method of eliminating single event upsets (or SEU) in combinational logic are used to prevent error propagation as a result of cosmic particle strikes to the combinational logic. The apparatus preferably includes a combinational logic block electrically coupled to a delay element, a latch and an output buffer. In operation, a signal from the combinational logic is electrically coupled to a first input of the latch. In addition, the signal is routed through the delay element to produce a delayed signal. The delayed signal is routed to a second input of the latch. The latch used in the apparatus for preventing SEU preferably includes latch outputs and a feature that the latch outputs will not change state unless both latch inputs are correct. For example, the latch outputs may not change state unless both latch inputs have the same logical state. When a cosmic particle strikes the combinational logic, a transient disturbance with a predetermined length may appear in the signal. However, a function of the delay element is to preferably provide a time delay greater than the length of the transient disturbance. Therefore, the transient disturbance will not reach both latch inputs simultaneously. As a result, the latch outputs will not permanently change state in error due to the transient disturbance. In addition, the output buffer preferably combines the latch outputs in such a way that the correct state is preserved at all times. Thus, combinational logic with protection from SEU is provided.

  5. Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked ecosystem carbon model

    DOE PAGES

    Safta, C.; Ricciuto, Daniel M.; Sargsyan, Khachik; ...

    2015-07-01

    In this paper we propose a probabilistic framework for an uncertainty quantification (UQ) study of a carbon cycle model and focus on the comparison between steady-state and transient simulation setups. A global sensitivity analysis (GSA) study indicates the parameters and parameter couplings that are important at different times of the year for quantities of interest (QoIs) obtained with the data assimilation linked ecosystem carbon (DALEC) model. We then employ a Bayesian approach and a statistical model error term to calibrate the parameters of DALEC using net ecosystem exchange (NEE) observations at the Harvard Forest site. The calibration results are employedmore » in the second part of the paper to assess the predictive skill of the model via posterior predictive checks.« less

  6. A Java-Enabled Interactive Graphical Gas Turbine Propulsion System Simulator

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Afjeh, Abdollah A.

    1997-01-01

    This paper describes a gas turbine simulation system which utilizes the newly developed Java language environment software system. The system provides an interactive graphical environment which allows the quick and efficient construction and analysis of arbitrary gas turbine propulsion systems. The simulation system couples a graphical user interface, developed using the Java Abstract Window Toolkit, and a transient, space- averaged, aero-thermodynamic gas turbine analysis method, both entirely coded in the Java language. The combined package provides analytical, graphical and data management tools which allow the user to construct and control engine simulations by manipulating graphical objects on the computer display screen. Distributed simulations, including parallel processing and distributed database access across the Internet and World-Wide Web (WWW), are made possible through services provided by the Java environment.

  7. The coupling of the neutron transport application RATTLESNAKE to the nuclear fuels performance application BISON under the MOOSE framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleicher, Frederick N.; Williamson, Richard L.; Ortensi, Javier

    The MOOSE neutron transport application RATTLESNAKE was coupled to the fuels performance application BISON to provide a higher fidelity tool for fuel performance simulation. This project is motivated by the desire to couple a high fidelity core analysis program (based on the self-adjoint angular flux equations) to a high fidelity fuel performance program, both of which can simulate on unstructured meshes. RATTLESNAKE solves self-adjoint angular flux transport equation and provides a sub-pin level resolution of the multigroup neutron flux with resonance treatment during burnup or a fast transient. BISON solves the coupled thermomechanical equations for the fuel on a sub-millimetermore » scale. Both applications are able to solve their respective systems on aligned and unaligned unstructured finite element meshes. The power density and local burnup was transferred from RATTLESNAKE to BISON with the MOOSE Multiapp transfer system. Multiple depletion cases were run with one-way data transfer from RATTLESNAKE to BISON. The eigenvalues are shown to agree well with values obtained from the lattice physics code DRAGON. The one-way data transfer of power density is shown to agree with the power density obtained from an internal Lassman-style model in BISON.« less

  8. Multiple Loops of the Dihydropyridine Receptor Pore Subunit Are Required for Full-Scale Excitation-Contraction Coupling in Skeletal Muscle

    PubMed Central

    Carbonneau, Leah; Bhattacharya, Dipankar; Sheridan, David C.; Coronado, Roberto

    2005-01-01

    Understanding which cytosolic domains of the dihydropyridine receptor participate in excitation-contraction (EC) coupling is critical to validate current structural models. Here we quantified the contribution to skeletal-type EC coupling of the α1S (CaV1.1) II-III loop when alone or in combination with the rest of the cytosolic domains of α1S. Chimeras consisting of α1C (CaV1.2) with α1S substitutions at each of the interrepeat loops (I-II, II-III, and III-IV loops) and N- and C-terminal domains were evaluated in dysgenic (α1S-null) myotubes for phenotypic expression of skeletal-type EC coupling. Myotubes were voltage-clamped, and Ca2+ transients were measured by confocal line-scan imaging of fluo-4 fluorescence. In agreement with previous results, the α1C/α1S II-III loop chimera, but none of the other single-loop chimeras, recovered a sigmoidal fluorescence-voltage curve indicative of skeletal-type EC coupling. To quantify Ca2+ transients in the absence of inward Ca2+ current, but without changing the external solution, a mutation, E736K, was introduced into the P-loop of repeat II of α1C. The Ca2+ transients expressed by the α1C(E736K)/α1S II-III loop chimera were ∼70% smaller than those expressed by the Ca2+-conducting α1C/α1S II-III variant. The low skeletal-type EC coupling expressed by the α1C/α1S II-III loop chimera was confirmed in the Ca2+-conducting α1C/α1S II-III loop variant using Cd2+ (10−4 M) as the Ca2+ current blocker. In contrast to the behavior of the II-III loop chimera, Ca2+ transients expressed by an α1C/α1S chimera carrying all tested skeletal α1S domains (all α1S interrepeat loops, N- and C-terminus) were similar in shape and amplitude to wild-type α1S, and did not change in the presence of the E736K mutation or in the presence of 10−4 M Cd2+. Controls indicated that similar dihydropyridine receptor charge movements were expressed by the non-Ca2+ permeant α1S(E1014K) variant, the α1C(E736K)/α1S II-III loop chimera, and the α1C(E736K)/α1S chimera carrying all tested α1S domains. The data indicate that the functional recovery produced by the α1S II-III loop is incomplete and that multiple cytosolic domains of α1S are necessary for a quantitative recovery of the EC-coupling phenotype of skeletal myotubes. Thus, despite the importance of the II-III loop there may be other critical determinants in α1S that influence the efficiency of EC coupling. PMID:15849247

  9. Ringing phenomenon in coupled cavities: Application to modal coupling in whispering-gallery-mode resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trebaol, Stephane; Dumeige, Yannick; Feron, Patrice

    We present a simple model to describe the transient response of two coupled resonators probed by a monochromatic wave whose frequency is rapidly swept across the resonances with respect to their characteristic photon lifetimes. The model is applied to analyze the dynamic behavior of the modal coupling between two degenerate resonances of the same cavity. In particular, this can be used to describe the coupling of counterpropagating whispering gallery modes (WGMs) by Rayleigh scattering. The theory is successfully compared to experiments carried out in silica microspheres. These results show that this ringdown technique can be extended to accurately measure linearmore » properties and frequency splittings of high-quality factor WGM microresonators.« less

  10. Electron-ion coupling in semiconductors beyond Fermi's Golden Rule [On the electron-ion coupling in semiconductors beyond Fermi's Golden Rule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Nikita; Li, Zheng; Tkachenko, Victor

    2017-01-31

    In the present study, a theoretical study of electron-phonon (electron-ion) coupling rates in semiconductors driven out of equilibrium is performed. Transient change of optical coefficients reflects the band gap shrinkage in covalently bonded materials, and thus, the heating of atomic lattice. Utilizing this dependence, we test various models of electron-ion coupling. The simulation technique is based on tight-binding molecular dynamics. Our simulations with the dedicated hybrid approach (XTANT) indicate that the widely used Fermi's golden rule can break down describing material excitation on femtosecond time scales. In contrast, dynamical coupling proposed in this work yields a reasonably good agreement ofmore » simulation results with available experimental data.« less

  11. Finite difference time domain calculation of transients in antennas with nonlinear loads

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent

    1991-01-01

    In this paper transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.

  12. Determining mode excitations of vacuum electronics devices via three-dimensional simulations using the SOS code

    NASA Technical Reports Server (NTRS)

    Warren, Gary

    1988-01-01

    The SOS code is used to compute the resonance modes (frequency-domain information) of sample devices and separately to compute the transient behavior of the same devices. A code, DOT, is created to compute appropriate dot products of the time-domain and frequency-domain results. The transient behavior of individual modes in the device is then plotted. Modes in a coupled-cavity traveling-wave tube (CCTWT) section excited beam in separate simulations are analyzed. Mode energy vs. time and mode phase vs. time are computed and it is determined whether the transient waves are forward or backward waves for each case. Finally, the hot-test mode frequencies of the CCTWT section are computed.

  13. Nonlinear Whirl Response of a High-Speed Seal Test Rotor With Marginal and Extended Squeeze-Film Dampers

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Gunter, Edgar J.

    2005-01-01

    Synchronous and nonsynchronous whirl response analysis of a double overhung, high-speed seal test rotor with ball bearings supported in 5.84- and 12.7-mm-long, un-centered squeeze-film oil dampers is presented. Test performance with the original damper of length 5.84 mm was marginal, with nonsynchronous whirling at the overhung seal test disk and high amplitude synchronous response above 32,000 rpm near the drive spline section occurring. A system critical speed analysis of the drive system and the high-speed seal test rotor indicated that the first two critical speeds are associated with the seal test rotor. Nonlinear synchronous unbalance and time transient whirl studies were conducted on the seal test rotor with the original and extended damper lengths. With the original damper design, the nonlinear synchronous response showed that unbalance could cause damper lockup at 33,000 rpm. Alford cross-coupling forces were also included at the overhung seal test disk for the whirl analysis. Sub-synchronous whirling at the seal test disk was observed in the nonlinear time transient analysis. With the extended damper length of 12.7 mm, the sub-synchronous motion was eliminated and the rotor unbalance response was acceptable to 45,000 rpm with moderate rotor unbalance. However, with high rotor unbalance, damper lockup could still occur at 33,000 rpm, even with the extended squeeze-film dampers. Therefore, the test rotor must be reasonably balanced in order for the un-centered dampers to be effective.

  14. AITRAC: Augmented Interactive Transient Radiation Analysis by Computer. User's information manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-10-01

    AITRAC is a program designed for on-line, interactive, DC, and transient analysis of electronic circuits. The program solves linear and nonlinear simultaneous equations which characterize the mathematical models used to predict circuit response. The program features 100 external node--200 branch capability; conversional, free-format input language; built-in junction, FET, MOS, and switch models; sparse matrix algorithm with extended-precision H matrix and T vector calculations, for fast and accurate execution; linear transconductances: beta, GM, MU, ZM; accurate and fast radiation effects analysis; special interface for user-defined equations; selective control of multiple outputs; graphical outputs in wide and narrow formats; and on-line parametermore » modification capability. The user describes the problem by entering the circuit topology and part parameters. The program then automatically generates and solves the circuit equations, providing the user with printed or plotted output. The circuit topology and/or part values may then be changed by the user, and a new analysis, requested. Circuit descriptions may be saved on disk files for storage and later use. The program contains built-in standard models for resistors, voltage and current sources, capacitors, inductors including mutual couplings, switches, junction diodes and transistors, FETS, and MOS devices. Nonstandard models may be constructed from standard models or by using the special equations interface. Time functions may be described by straight-line segments or by sine, damped sine, and exponential functions. 42 figures, 1 table. (RWR)« less

  15. Characterizing RNA ensembles from NMR data with kinematic models

    PubMed Central

    Fonseca, Rasmus; Pachov, Dimitar V.; Bernauer, Julie; van den Bedem, Henry

    2014-01-01

    Functional mechanisms of biomolecules often manifest themselves precisely in transient conformational substates. Researchers have long sought to structurally characterize dynamic processes in non-coding RNA, combining experimental data with computer algorithms. However, adequate exploration of conformational space for these highly dynamic molecules, starting from static crystal structures, remains challenging. Here, we report a new conformational sampling procedure, KGSrna, which can efficiently probe the native ensemble of RNA molecules in solution. We found that KGSrna ensembles accurately represent the conformational landscapes of 3D RNA encoded by NMR proton chemical shifts. KGSrna resolves motionally averaged NMR data into structural contributions; when coupled with residual dipolar coupling data, a KGSrna ensemble revealed a previously uncharacterized transient excited state of the HIV-1 trans-activation response element stem–loop. Ensemble-based interpretations of averaged data can aid in formulating and testing dynamic, motion-based hypotheses of functional mechanisms in RNAs with broad implications for RNA engineering and therapeutic intervention. PMID:25114056

  16. Arctic-North Pacific Coupled Impacts on the Late Autumn Cold in North America

    NASA Technical Reports Server (NTRS)

    Sung, Mi-Kyung; Kim, Baek-Min; Baik, Eun-Hyuk; Lim, Young-Kwon; Kim, Seong-Joong

    2016-01-01

    The Pacific Decadal Oscillation (PDO) is known to bring an anomalously cold (warm) period to southeastern (northwestern) North America during the cold season of its positive phase through a Rossby wave linkage. This study provides evidence that the remote connection between the North Pacific and the downstream temperature over central North America is strengthened by the warm arctic conditions over the Chukchi and East Siberian Sea, especially in the late autumn season. The modulation effect of the Arctic manifests itself as an altered Rossby wave response to a transient vorticity forcing that results from an equatorward storm track shift, which is induced collaboratively by the PDO and the warm Arctic. This observational finding is supported by two independent modeling experiments: 1) an idealized coupled GCM experiment being nudged toward the warm arctic surface condition and 2) a simple stationary wave model (SWM) experiment forced by transient eddy forcing.

  17. G Protein–Coupled Receptor-Type G Proteins Are Required for Light-Dependent Seedling Growth and Fertility in Arabidopsis[W

    PubMed Central

    Jaffé, Felix W.; Freschet, Gian-Enrico C.; Valdes, Billy M.; Runions, John; Terry, Matthew J.; Williams, Lorraine E.

    2012-01-01

    G protein–coupled receptor-type G proteins (GTGs) are highly conserved membrane proteins in plants, animals, and fungi that have eight to nine predicted transmembrane domains. They have been classified as G protein–coupled receptor-type G proteins that function as abscisic acid (ABA) receptors in Arabidopsis thaliana. We cloned Arabidopsis GTG1 and GTG2 and isolated new T-DNA insertion alleles of GTG1 and GTG2 in both Wassilewskija and Columbia backgrounds. These gtg1 gtg2 double mutants show defects in fertility, hypocotyl and root growth, and responses to light and sugars. Histological studies of shoot tissue reveal cellular distortions that are particularly evident in the epidermal layer. Stable expression of GTG1pro:GTG1-GFP (for green fluorescent protein) in Arabidopsis and transient expression in tobacco (Nicotiana tabacum) indicate that GTG1 is localized primarily to Golgi bodies and to the endoplasmic reticulum. Microarray analysis comparing gene expression profiles in the wild type and double mutant revealed differences in expression of genes important for cell wall function, hormone response, and amino acid metabolism. The double mutants isolated here respond normally to ABA in seed germination assays, root growth inhibition, and gene expression analysis. These results are inconsistent with their proposed role as ABA receptors but demonstrate that GTGs are fundamentally important for plant growth and development. PMID:23001037

  18. iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova

    DOE PAGES

    Whitesides, L.; Lunnan, R.; Kasliwal, M. M.; ...

    2017-12-18

    Wide-field surveys are discovering a growing number of rare transients whose physical origin is not yet well understood. We present optical and UV data and analysis of intermediate Palomar Transient Factory (iPTF) 16asu, a luminous, rapidly evolving, high-velocity, stripped-envelope supernova (SN). With a rest-frame rise time of just four days and a peak absolute magnitude of M g = -20.4 mag, the light curve of iPTF 16asu is faster and more luminous than that of previous rapid transients. The spectra of iPTF 16asu show a featureless blue continuum near peak that develops into an SN Ic-BL spectrum on the decline.more » We show that while the late-time light curve could plausibly be powered by 56Ni decay, the early emission requires a different energy source. Nondetections in the X-ray and radio strongly constrain the energy coupled to relativistic ejecta to be at most comparable to the class of low-luminosity gamma-ray bursts (GRBs). We suggest that the early emission may have been powered by either a rapidly spinning-down magnetar or by shock breakout in an extended envelope of a very energetic explosion. In either scenario a central engine is required, making iPTF 16asu an intriguing transition object between superluminous SNe, SNe Ic-BL, and low-luminosity GRBs.« less

  19. iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova

    NASA Astrophysics Data System (ADS)

    Whitesides, L.; Lunnan, R.; Kasliwal, M. M.; Perley, D. A.; Corsi, A.; Cenko, S. B.; Blagorodnova, N.; Cao, Y.; Cook, D. O.; Doran, G. B.; Frederiks, D. D.; Fremling, C.; Hurley, K.; Karamehmetoglu, E.; Kulkarni, S. R.; Leloudas, G.; Masci, F.; Nugent, P. E.; Ritter, A.; Rubin, A.; Savchenko, V.; Sollerman, J.; Svinkin, D. S.; Taddia, F.; Vreeswijk, P.; Wozniak, P.

    2017-12-01

    Wide-field surveys are discovering a growing number of rare transients whose physical origin is not yet well understood. Here we present optical and UV data and analysis of intermediate Palomar Transient Factory (iPTF) 16asu, a luminous, rapidly evolving, high-velocity, stripped-envelope supernova (SN). With a rest-frame rise time of just four days and a peak absolute magnitude of {M}{{g}}=-20.4 mag, the light curve of iPTF 16asu is faster and more luminous than that of previous rapid transients. The spectra of iPTF 16asu show a featureless blue continuum near peak that develops into an SN Ic-BL spectrum on the decline. We show that while the late-time light curve could plausibly be powered by 56Ni decay, the early emission requires a different energy source. Nondetections in the X-ray and radio strongly constrain the energy coupled to relativistic ejecta to be at most comparable to the class of low-luminosity gamma-ray bursts (GRBs). We suggest that the early emission may have been powered by either a rapidly spinning-down magnetar or by shock breakout in an extended envelope of a very energetic explosion. In either scenario a central engine is required, making iPTF 16asu an intriguing transition object between superluminous SNe, SNe Ic-BL, and low-luminosity GRBs.

  20. Desynchronization boost by non-uniform coordinated reset stimulation in ensembles of pulse-coupled neurons

    PubMed Central

    Lücken, Leonhard; Yanchuk, Serhiy; Popovych, Oleksandr V.; Tass, Peter A.

    2013-01-01

    Several brain diseases are characterized by abnormal neuronal synchronization. Desynchronization of abnormal neural synchrony is theoretically compelling because of the complex dynamical mechanisms involved. We here present a novel type of coordinated reset (CR) stimulation. CR means to deliver phase resetting stimuli at different neuronal sub-populations sequentially, i.e., at times equidistantly distributed in a stimulation cycle. This uniform timing pattern seems to be intuitive and actually applies to the neural network models used for the study of CR so far. CR resets the population to an unstable cluster state from where it passes through a desynchronized transient, eventually resynchronizing if left unperturbed. In contrast, we show that the optimal stimulation times are non-uniform. Using the model of weakly pulse-coupled neurons with phase response curves, we provide an approach that enables to determine optimal stimulation timing patterns that substantially maximize the desynchronized transient time following the application of CR stimulation. This approach includes an optimization search for clusters in a low-dimensional pulse coupled map. As a consequence, model-specific non-uniformly spaced cluster states cause considerably longer desynchronization transients. Intriguingly, such a desynchronization boost with non-uniform CR stimulation can already be achieved by only slight modifications of the uniform CR timing pattern. Our results suggest that the non-uniformness of the stimulation times can be a medically valuable parameter in the calibration procedure for CR stimulation, where the latter has successfully been used in clinical and pre-clinical studies for the treatment of Parkinson's disease and tinnitus. PMID:23750134

  1. Transient stress-coupling between the 1992 Landers and 1999 Hector Mine, California, earthquakes

    USGS Publications Warehouse

    Masterlark, Timothy; Wang, H.F.

    2002-01-01

    A three-dimensional finite-element model (FEM) of the Mojave block region in southern California is constructed to investigate transient stress-coupling between the 1992 Landers and 1999 Hector Mine earthquakes. The FEM simulates a poroelastic upper-crust layer coupled to a viscoelastic lower-crust layer, which is decoupled from the upper mantle. FEM predictions of the transient mechanical behavior of the crust are constrained by global positioning system (GPS) data, interferometric synthetic aperture radar (InSAR) images, fluid-pressure data from water wells, and the dislocation source of the 1999 Hector Mine earthquake. Two time-dependent parameters, hydraulic diffusivity of the upper crust and viscosity of the lower crust, are calibrated to 10–2 m2·sec–1 and 5 × 1018 Pa·sec respectively. The hydraulic diffusivity is relatively insensitive to heterogeneous fault-zone permeability specifications and fluid-flow boundary conditions along the elastic free-surface at the top of the problem domain. The calibrated FEM is used to predict the evolution of Coulomb stress during the interval separating the 1992 Landers and 1999 Hector Mine earthquakes. The predicted change in Coulomb stress near the hypocenter of the Hector Mine earthquake increases from 0.02 to 0.05 MPa during the 7-yr interval separating the two events. This increase is primarily attributed to the recovery of decreased excess fluid pressure from the 1992 Landers coseismic (undrained) strain field. Coulomb stress predictions are insensitive to small variations of fault-plane dip and hypocentral depth estimations of the Hector Mine rupture.

  2. Transient excitation and mechanical admittance test techniques for prediction of payload vibration environments

    NASA Technical Reports Server (NTRS)

    Kana, D. D.; Vargas, L. M.

    1977-01-01

    Transient excitation forces were applied separately to simple beam-and-mass launch vehicle and payload models to develop complex admittance functions for the interface and other appropriate points on the structures. These measured admittances were then analytically combined by a matrix representation to obtain a description of the coupled system dynamic characteristics. Response of the payload model to excitation of the launch vehicle model was predicted and compared with results measured on the combined models. These results are also compared with results of earlier work in which a similar procedure was employed except that steady-state sinusoidal excitation techniques were included. It is found that the method employing transient tests produces results that are better overall than the steady state methods. Furthermore, the transient method requires far less time to implement, and provides far better resolution in the data. However, the data acquisition and handling problem is more complex for this method. It is concluded that the transient test and admittance matrix prediction method can be a valuable tool for development of payload vibration tests.

  3. Transient Modeling of Hybrid Rocket Low Frequency Instabilities

    NASA Technical Reports Server (NTRS)

    Karabeyoglu, M. Arif; DeZilwa, Shane; Cantwell, Brian; Zilliac, Greg

    2003-01-01

    A comprehensive dynamic model of a hybrid rocket has been developed in order to understand and predict the transient behavior including instabilities. A linearized version of the transient model predicted the low-frequency chamber pressure oscillations that are commonly observed in hybrids. The source of the instabilities is based on a complex coupling of thermal transients in the solid fuel, wall heat transfer blocking due to fuel regression rate and the transients in the boundary layer that forms on the fuel surface. The oscillation frequencies predicted by the linearized theory are in very good agreement with 43 motor test results obtained from the hybrid propulsion literature. The motor test results used in the comparison cover a very wide spectrum of parameters including: 1) four separate research and development programs, 2) three different oxidizers (LOX, GOX, N2O), 3) a wide range of motor dimensions (i.e. from 5 inch diameter to 72 inch diameter) and operating conditions and 4) several fuel formulations. A simple universal scaling formula for the frequency of the primary oscillation mode is suggested.

  4. Recursive thoughts on the simulation of the flexible multibody dynamics of slender offshore structures

    NASA Astrophysics Data System (ADS)

    Schilder, J.; Ellenbroek, M.; de Boer, A.

    2017-12-01

    In this work, the floating frame of reference formulation is used to create a flexible multibody model of slender offshore structures such as pipelines and risers. It is shown that due to the chain-like topology of the considered structures, the equation of motion can be expressed in terms of absolute interface coordinates. In the presented form, kinematic constraint equations are satisfied explicitly and the Lagrange multipliers are eliminated from the equations. Hence, the structures can be conveniently coupled to finite element or multibody models of for example seabed and vessel. The chain-like topology enables the efficient use of recursive solution procedures for both transient dynamic analysis and equilibrium analysis. For this, the transfer matrix method is used. In order to improve the convergence of the equilibrium analysis, the analytical solution of an ideal catenary is used as an initial configuration, reducing the number of required iterations.

  5. Transient Analysis Generator /TAG/ simulates behavior of large class of electrical networks

    NASA Technical Reports Server (NTRS)

    Thomas, W. J.

    1967-01-01

    Transient Analysis Generator program simulates both transient and dc steady-state behavior of a large class of electrical networks. It generates a special analysis program for each circuit described in an easily understood and manipulated programming language. A generator or preprocessor and a simulation system make up the TAG system.

  6. Robust spatial memory maps in flickering neuronal networks: a topological model

    NASA Astrophysics Data System (ADS)

    Dabaghian, Yuri; Babichev, Andrey; Memoli, Facundo; Chowdhury, Samir; Rice University Collaboration; Ohio State University Collaboration

    It is widely accepted that the hippocampal place cells provide a substrate of the neuronal representation of the environment--the ``cognitive map''. However, hippocampal network, as any other network in the brain is transient: thousands of hippocampal neurons die every day and the connections formed by these cells constantly change due to various forms of synaptic plasticity. What then explains the remarkable reliability of our spatial memories? We propose a computational approach to answering this question based on a couple of insights. First, we propose that the hippocampal cognitive map is fundamentally topological, and hence it is amenable to analysis by topological methods. We then apply several novel methods from homology theory, to understand how dynamic connections between cells influences the speed and reliability of spatial learning. We simulate the rat's exploratory movements through different environments and study how topological invariants of these environments arise in a network of simulated neurons with ``flickering'' connectivity. We find that despite transient connectivity the network of place cells produces a stable representation of the topology of the environment.

  7. A transient electrochemical model incorporating the Donnan effect for all-vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Lei, Y.; Zhang, B. W.; Bai, B. F.; Zhao, T. S.

    2015-12-01

    In a typical all-vanadium redox flow battery (VRFB), the ion exchange membrane is directly exposed in the bulk electrolyte. Consequently, the Donnan effect occurs at the membrane/electrolyte (M/E) interfaces, which is critical for modeling of ion transport through the membrane and the prediction of cell performance. However, unrealistic assumptions in previous VRFB models, such as electroneutrality and discontinuities of ionic potential and ion concentrations at the M/E interfaces, lead to simulated results inconsistent with the theoretical analysis of ion adsorption in the membrane. To address this issue, this work proposes a continuous-Donnan effect-model using the Poisson equation coupled with the Nernst-Planck equation to describe variable distributions at the M/E interfaces. A one-dimensional transient VRFB model incorporating the Donnan effect is developed. It is demonstrated that the present model enables (i) a more realistic simulation of continuous distributions of ion concentrations and ionic potential throughout the membrane and (ii) a more comprehensive estimation for the effect of the fixed charge concentration on species crossover across the membrane and cell performance.

  8. Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse.

    PubMed

    Hu, Q; Viswanadham, S; Joshi, R P; Schoenbach, K H; Beebe, S J; Blackmore, P F

    2005-03-01

    A molecular dynamics (MD) scheme is combined with a distributed circuit model for a self-consistent analysis of the transient membrane response for cells subjected to an ultrashort (nanosecond) high-intensity (approximately 0.01-V/nm spatially averaged field) voltage pulse. The dynamical, stochastic, many-body aspects are treated at the molecular level by resorting to a course-grained representation of the membrane lipid molecules. Coupling the Smoluchowski equation to the distributed electrical model for current flow provides the time-dependent transmembrane fields for the MD simulations. A good match between the simulation results and available experimental data is obtained. Predictions include pore formation times of about 5-6 ns. It is also shown that the pore formation process would tend to begin from the anodic side of an electrically stressed membrane. Furthermore, the present simulations demonstrate that ions could facilitate pore formation. This could be of practical importance and have direct relevance to the recent observations of calcium release from the endoplasmic reticulum in cells subjected to such ultrashort, high-intensity pulses.

  9. A Study on the Transient Behavior of Pulse Modulated Dual-Frequency Capacitive Discharges based on Circuit Analysis

    NASA Astrophysics Data System (ADS)

    Na, Byungkeun; Bae, Inshik; Park, Gi Jung; Chang, Hong-Young

    2016-09-01

    Multi-frequency capacitively coupled plasma (CCP) has been studied to independently control the ion energy and the ion flux; pulsing technique is used to reduce the electron temperature and finally the charging effects. The use of these techniques is a key to high aspect ratio contact (HARC) etching in the recent semiconductor processing. In this study, the characteristics of pulsed dual frequency (DF) CCP is investigated. Two separate powers of 3 MHz and 40 MHz are delivered to the powered electrode of an asymmetric CCP, and each frequency is modulated by an external 1 kHz pulse. Due to the complexity of the RF compensation in DF CCP, the characteristics of the plasma and the sheath are analyzed by high speed impedance measurement. The transient behavior of pulse modulated DF CCP is analyzed based on the result of continuous wave (CW) DF CCP. The optimized experimental condition for high ion energy will be presented. The difference between electronegative oxygen plasma and electropositive argon plasma is discussed as well.

  10. Using prior information to separate the temperature response to greenhouse gas forcing from that of aerosols - Estimating the transient climate response

    NASA Astrophysics Data System (ADS)

    Schurer, Andrew; Hegerl, Gabriele

    2016-04-01

    The evaluation of the transient climate response (TCR) is of critical importance to policy makers as it can be used to calculate a simple estimate of the expected warming given predicted greenhouse gas emissions. Previous studies using optimal detection techniques have been able to estimate a TCR value from the historic record using simulations from some of the models which took part in the Coupled Model Intercomparison Project Phase 5 (CMIP5) but have found that others give unconstrained results. At least partly this is due to degeneracy between the greenhouse gas and aerosol signals which makes separation of the temperature response to these forcings problematic. Here we re-visit this important topic by using an adapted optimal detection analysis within a Bayesian framework. We account for observational uncertainty by the use of an ensemble of instrumental observations, and model uncertainty by combining the results from several different models. This framework allows the use of prior information which is found to help separate the response to the different forcings leading to a more constrained estimate of TCR.

  11. TEMPEST. Transient 3-D Thermal-Hydraulic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyler, L.L.

    TEMPEST is a transient, three-dimensional, hydrothermal program that is designed to analyze a range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor (FBR) thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. The equations governing mass, momentum, and energy conservation for incompressible flows and small density variations (Boussinesq approximation) are solved using finite-difference techniques. Analyses may be conducted in either cylindrical or Cartesian coordinate systems. Turbulence ismore » treated using a two-equation model. Two auxiliary plotting programs, SEQUEL and MANPLOT, for use with TEMPEST output are included. SEQUEL may be operated in batch or interactive mode; it generates data required for vector plots, contour plots of scalar quantities, line plots, grid and boundary plots, and time-history plots. MANPLOT reads the SEQUEL-generated data and creates the hardcopy plots. TEMPEST can be a valuable hydrothermal design analysis tool in areas outside the intended FBR thermal-hydraulic design community.« less

  12. Dynamics of intramolecular electron transfer reaction of FAD studied by magnetic field effects on transient absorption spectra.

    PubMed

    Murakami, Masaaki; Maeda, Kiminori; Arai, Tatsuo

    2005-07-07

    The kinetics of intermediates generated from intramolecular electron-transfer reaction by photo irradiation of the flavin adenine dinucleotide (FAD) molecule was studied by a magnetic field effect (MFE) on transient absorption (TA) spectra. Existence time of MFE and MFE action spectra have a strong dependence on the pH of solutions. The MFE action spectra have indicated the existence of interconversion between the radical pair and the cation form of the triplet excited state of flavin part. All rate constants of the triplet and the radical pair were determined by analysis of the MFE action spectra and decay kinetics of TA. The obtained values for the interconversion indicate that the formation of cation radical promotes the back electron-transfer reaction to the triplet excited state. Further, rate constants of spin relaxation and recombination have been studied by the time profiles of MFE at various pH. The drastic change of those two factors has been obtained and can be explained by SOC (spin-orbit coupling) induced back electron-transfer promoted by the formation of a stacking conformation at pH > 2.5.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgue, E.

    The point kinetics approach is a classical useful method for a reactor transient analysis. It is helpful to known, however, when a more elaborate transient analysis, involving the space-dependence change of the flux through a given transient, should be considered. In this paper, the authors present a rather elegant and quick method to check the need for a space-dependent flux analysis through a control rod transient in a given nuclear reactor. The method is applied to a series of rod ejection experiments in the TRIGA MARK-II reactor of Istanbul Technical University (ITU).

  14. Modelling the transient behaviour of pulsed current tungsten-inert-gas weldpools

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Zheng, W.; Wu, L.

    1999-01-01

    A three-dimensional model is established to simulate the pulsed current tungsten-inert-gas (TIG) welding process. The goal is to analyse the cyclic variation of fluid flow and heat transfer in weldpools under periodic arc heat input. To this end, an algorithm, which is capable of handling the transience, nonlinearity, multiphase and strong coupling encountered in this work, is developed. The numerical simulations demonstrate the transient behaviour of weldpools under pulsed current. Experimental data are compared with numerical results to show the effectiveness of the developed model.

  15. Nonlinear transient waves in coupled phase oscillators with inertia.

    PubMed

    Jörg, David J

    2015-05-01

    Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.

  16. Comprehensive Modeling and Analysis of Rotorcraft Variable Speed Propulsion System With Coupled Engine/Transmission/Rotor Dynamics

    NASA Technical Reports Server (NTRS)

    DeSmidt, Hans A.; Smith, Edward C.; Bill, Robert C.; Wang, Kon-Well

    2013-01-01

    This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean-line compressor and turbine approximations is developed. Finally an analysis of high frequency gear dynamics including the effect of tooth mesh stiffness variation under variable speed operation is conducted including experimental validation. Through exploring the interactions between the various subsystems, this investigation provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.

  17. Towards a Consolidated Approach for the Assessment of Evaluation Models of Nuclear Power Reactors

    DOE PAGES

    Epiney, A.; Canepa, S.; Zerkak, O.; ...

    2016-11-02

    The STARS project at the Paul Scherrer Institut (PSI) has adopted the TRACE thermal-hydraulic (T-H) code for best-estimate system transient simulations of the Swiss Light Water Reactors (LWRs). For analyses involving interactions between system and core, a coupling of TRACE with the SIMULATE-3K (S3K) LWR core simulator has also been developed. In this configuration, the TRACE code and associated nuclear power reactor simulation models play a central role to achieve a comprehensive safety analysis capability. Thus, efforts have now been undertaken to consolidate the validation strategy by implementing a more rigorous and structured assessment approach for TRACE applications involving eithermore » only system T-H evaluations or requiring interfaces to e.g. detailed core or fuel behavior models. The first part of this paper presents the preliminary concepts of this validation strategy. The principle is to systematically track the evolution of a given set of predicted physical Quantities of Interest (QoIs) over a multidimensional parametric space where each of the dimensions represent the evolution of specific analysis aspects, including e.g. code version, transient specific simulation methodology and model "nodalisation". If properly set up, such environment should provide code developers and code users with persistent (less affected by user effect) and quantified information (sensitivity of QoIs) on the applicability of a simulation scheme (codes, input models, methodology) for steady state and transient analysis of full LWR systems. Through this, for each given transient/accident, critical paths of the validation process can be identified that could then translate into defining reference schemes to be applied for downstream predictive simulations. In order to illustrate this approach, the second part of this paper presents a first application of this validation strategy to an inadvertent blowdown event that occurred in a Swiss BWR/6. The transient was initiated by the spurious actuation of the Automatic Depressurization System (ADS). The validation approach progresses through a number of dimensions here: First, the same BWR system simulation model is assessed for different versions of the TRACE code, up to the most recent one. The second dimension is the "nodalisation" dimension, where changes to the input model are assessed. The third dimension is the "methodology" dimension. In this case imposed power and an updated TRACE core model are investigated. For each step in each validation dimension, a common set of QoIs are investigated. For the steady-state results, these include fuel temperatures distributions. For the transient part of the present study, the evaluated QoIs include the system pressure evolution and water carry-over into the steam line.« less

  18. Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Houts, Michael

    2001-02-01

    Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .

  19. Experimental investigation on the coupled effect of effective stress and gas slippage on the permeability of shale.

    PubMed

    Yang, Diansen; Wang, Wei; Chen, Weizhong; Wang, Shugang; Wang, Xiaoqiong

    2017-03-17

    Permeability is one of the most important parameters to evaluate gas production in shale reservoirs. Because shale permeability is extremely low, gas is often used in the laboratory to measure permeability. However, the measured apparent gas permeability is higher than the intrinsic permeability due to the gas slippage effect, which could be even more dominant for materials with nanopores. Increasing gas pressure during tests reduces gas slippage effect, but it also decreases the effective stress which in turn influences the permeability. The coupled effect of gas slippage and effective stress on shale permeability remains unclear. Here we perform laboratory experiments on Longmaxi shale specimens to explore the coupled effect. We use the pressure transient method to measure permeability under different stress and pressure conditions. Our results reveal that the apparent measured permeability is controlled by these two competing effects. With increasing gas pressure, there exists a pressure threshold at which the dominant effect on permeability switches from gas slippage to effective stress. Based on the Klinkenberg model, we propose a new conceptual model that incorporates both competing effects. Combining microstructure analysis, we further discuss the roles of stress, gas pressure and water contents on gas permeability of shale.

  20. Molecular dynamics study of interfacial thermal transport between silicene and substrates.

    PubMed

    Zhang, Jingchao; Hong, Yang; Tong, Zhen; Xiao, Zhihuai; Bao, Hua; Yue, Yanan

    2015-10-07

    In this work, the interfacial thermal transport across silicene and various substrates, i.e., crystalline silicon (c-Si), amorphous silicon (a-Si), crystalline silica (c-SiO2) and amorphous silica (a-SiO2) are explored by classical molecular dynamics (MD) simulations. A transient pulsed heating technique is applied in this work to characterize the interfacial thermal resistance in all hybrid systems. It is reported that the interfacial thermal resistances between silicene and all substrates decrease nearly 40% with temperature from 100 K to 400 K, which is due to the enhanced phonon couplings from the anharmonicity effect. Analysis of phonon power spectra of all systems is performed to interpret simulation results. Contradictory to the traditional thought that amorphous structures tend to have poor thermal transport capabilities due to the disordered atomic configurations, it is calculated that amorphous silicon and silica substrates facilitate the interfacial thermal transport compared with their crystalline structures. Besides, the coupling effect from substrates can improve the interface thermal transport up to 43.5% for coupling strengths χ from 1.0 to 2.0. Our results provide fundamental knowledge and rational guidelines for the design and development of the next-generation silicene-based nanoelectronics and thermal interface materials.

  1. Identification of parameters through which surface chemistry determines the lifetimes of hot electrons in small Au nanoparticles

    PubMed Central

    Aruda, Kenneth O.; Tagliazucchi, Mario; Sweeney, Christina M.; Hannah, Daniel C.; Schatz, George C.; Weiss, Emily A.

    2013-01-01

    This paper describes measurements of the dynamics of hot electron cooling in photoexcited gold nanoparticles (Au NPs) with diameters of ∼3.5 nm, and passivated with either a hexadecylamine or hexadecanethiolate adlayer, using ultrafast transient absorption spectroscopy. Fits of these dynamics with temperature-dependent Mie theory reveal that both the electronic heat capacity and the electron–phonon coupling constant are larger for the thiolated NPs than for the aminated NPs, by 40% and 30%, respectively. Density functional theory calculations on ligand-functionalized Au slabs show that the increase in these quantities is due to an increased electronic density of states near the Fermi level upon ligand exchange from amines to thiolates. The lifetime of hot electrons, which have thermalized from the initial plasmon excitation, increases with increasing electronic heat capacity, but decreases with increasing electron–phonon coupling, so the effects of changing surface chemistry on these two quantities partially cancel to yield a hot electron lifetime of thiolated NPs that is only 20% longer than that of aminated NPs. This analysis also reveals that incorporation of a temperature-dependent electron–phonon coupling constant is necessary to adequately fit the dynamics of electron cooling. PMID:23440215

  2. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models

    DOE PAGES

    Andrews, Timothy; Gregory, Jonathan M.; Webb, Mark J.; ...

    2012-05-15

    We quantify forcing and feedbacks across available CMIP5 coupled atmosphere-ocean general circulation models (AOGCMs) by analysing simulations forced by an abrupt quadrupling of atmospheric carbon dioxide concentration. This is the first application of the linear forcing-feedback regression analysis of Gregory et al. (2004) to an ensemble of AOGCMs. The range of equilibrium climate sensitivity is 2.1–4.7 K. Differences in cloud feedbacks continue to be important contributors to this range. Some models show small deviations from a linear dependence of top-of-atmosphere radiative fluxes on global surface temperature change. We show that this phenomenon largely arises from shortwave cloud radiative effects overmore » the ocean and is consistent with independent estimates of forcing using fixed sea-surface temperature methods. Moreover, we suggest that future research should focus more on understanding transient climate change, including any time-scale dependence of the forcing and/or feedback, rather than on the equilibrium response to large instantaneous forcing.« less

  3. Modeling and experimental analysis of the linear ultrasonic motor with in-plane bending and longitudinal mode.

    PubMed

    Wan, Zhijian; Hu, Hong

    2014-03-01

    A novel linear ultrasonic motor based on in-plane longitudinal and bending mode vibration is presented in this paper. The stator of the motor is composed of a metal plate and eight piezoelectric ceramic patches. There are four long holes in the plate, designed for consideration of the longitudinal and bending mode coupling. The corresponding model is developed to optimize the mechanical and electrical coupling of the stator, which causes an ellipse motion at the contact tip of the stator when the composite vibrations with longitudinal and bending are excited. Its harmonic and transient responses are simulated and inspected. A prototype based on the model is fabricated and used to conduct experiments. Results show that the amplitude of the stator's contact tips is significantly increased, which helps to amplify the driving force and speed of the motor. It is therefore feasible to implement effective linear movement using the developed prototype. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Preliminary Thermal-Mechanical Sizing of Metallic TPS: Process Development and Sensitivity Studies

    NASA Technical Reports Server (NTRS)

    Poteet, Carl C.; Abu-Khajeel, Hasan; Hsu, Su-Yuen

    2002-01-01

    The purpose of this research was to perform sensitivity studies and develop a process to perform thermal and structural analysis and sizing of the latest Metallic Thermal Protection System (TPS) developed at NASA LaRC (Langley Research Center). Metallic TPS is a key technology for reducing the cost of reusable launch vehicles (RLV), offering the combination of increased durability and competitive weights when compared to other systems. Accurate sizing of metallic TPS requires combined thermal and structural analysis. Initial sensitivity studies were conducted using transient one-dimensional finite element thermal analysis to determine the influence of various TPS and analysis parameters on TPS weight. The thermal analysis model was then used in combination with static deflection and failure mode analysis of the sandwich panel outer surface of the TPS to obtain minimum weight TPS configurations at three vehicle stations on the windward centerline of a representative RLV. The coupled nature of the analysis requires an iterative analysis process, which will be described herein. Findings from the sensitivity analysis are reported, along with TPS designs at the three RLV vehicle stations considered.

  5. Full Core TREAT Kinetics Demonstration Using Rattlesnake/BISON Coupling Within MAMMOTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortensi, Javier; DeHart, Mark D.; Gleicher, Frederick N.

    2015-08-01

    This report summarizes key aspects of research in evaluation of modeling needs for TREAT transient simulation. Using a measured TREAT critical measurement and a transient for a small, experimentally simplified core, Rattlesnake and MAMMOTH simulations are performed building from simple infinite media to a full core model. Cross sections processing methods are evaluated, various homogenization approaches are assessed and the neutronic behavior of the core studied to determine key modeling aspects. The simulation of the minimum critical core with the diffusion solver shows very good agreement with the reference Monte Carlo simulation and the experiment. The full core transient simulationmore » with thermal feedback shows a significantly lower power peak compared to the documented experimental measurement, which is not unexpected in the early stages of model development.« less

  6. Enabling Near Real-Time Remote Search for Fast Transient Events with Lossy Data Compression

    NASA Astrophysics Data System (ADS)

    Vohl, Dany; Pritchard, Tyler; Andreoni, Igor; Cooke, Jeffrey; Meade, Bernard

    2017-09-01

    We present a systematic evaluation of JPEG2000 (ISO/IEC 15444) as a transport data format to enable rapid remote searches for fast transient events as part of the Deeper Wider Faster programme. Deeper Wider Faster programme uses 20 telescopes from radio to gamma rays to perform simultaneous and rapid-response follow-up searches for fast transient events on millisecond-to-hours timescales. Deeper Wider Faster programme search demands have a set of constraints that is becoming common amongst large collaborations. Here, we focus on the rapid optical data component of Deeper Wider Faster programme led by the Dark Energy Camera at Cerro Tololo Inter-American Observatory. Each Dark Energy Camera image has 70 total coupled-charged devices saved as a 1.2 gigabyte FITS file. Near real-time data processing and fast transient candidate identifications-in minutes for rapid follow-up triggers on other telescopes-requires computational power exceeding what is currently available on-site at Cerro Tololo Inter-American Observatory. In this context, data files need to be transmitted rapidly to a foreign location for supercomputing post-processing, source finding, visualisation and analysis. This step in the search process poses a major bottleneck, and reducing the data size helps accommodate faster data transmission. To maximise our gain in transfer time and still achieve our science goals, we opt for lossy data compression-keeping in mind that raw data is archived and can be evaluated at a later time. We evaluate how lossy JPEG2000 compression affects the process of finding transients, and find only a negligible effect for compression ratios up to 25:1. We also find a linear relation between compression ratio and the mean estimated data transmission speed-up factor. Adding highly customised compression and decompression steps to the science pipeline considerably reduces the transmission time-validating its introduction to the Deeper Wider Faster programme science pipeline and enabling science that was otherwise too difficult with current technology.

  7. Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the Community Climate System Model (CCSM4) from 1850 to 2100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Peter J.; Feddema, Johannes J.; Bonan, Gordon B.

    To assess the climate impacts of historical and projected land cover change and land use in the Community Climate System Model (CCSM4) we have developed new time series of transient Community Land Model (CLM4) Plant Functional Type (PFT) parameters and wood harvest parameters. The new parameters capture the dynamics of the Coupled Model Inter-comparison Project phase 5 (CMIP5) land cover change and wood harvest trajectories for the historical period from 1850 to 2005, and for the four Representative Concentration Pathways (RCP) periods from 2006 to 2100. Analysis of the biogeochemical impacts of land cover change in CCSM4 with the parametersmore » found the model produced an historical cumulative land use flux of 148.4 PgC from 1850 to 2005, which was in good agreement with other global estimates of around 156 PgC for the same period. The biogeophysical impacts of only applying the transient land cover change parameters in CCSM4 were cooling of the near surface atmospheric over land by -0.1OC, through increased surface albedo and reduced shortwave radiation absorption. When combined with other transient climate forcings, the higher albedo from land cover change was overwhelmed at global scales by decreases in snow albedo from black carbon deposition and from high latitude warming. At regional scales however the land cover change forcing persisted resulting in reduced warming, with the biggest impacts in eastern North America. The future CCSM4 RCP simulations showed that the CLM4 transient PFT and wood harvest parameters could be used to represent a wide range of human land cover change and land use scenarios. Furthermore, these simulations ranged from the RCP 4.5 reforestation scenario that was able to draw down 82.6 PgC from the atmosphere, to the RCP 8.5 wide scale deforestation scenario that released 171.6 PgC to the atmosphere.« less

  8. Emerging mechanistic targets in lung injury induced by combustion-generated particles.

    EPA Science Inventory

    ABSTRACT The mechanism for biological effect following pulmonary exposure to combustion-generated particles is incompletely defined. Transient receptor potential (TRP) cation channels were identified as “particle sensors” in that their activation was coupled with the initiation ...

  9. A framework for studying transient dynamics of population projection matrix models.

    PubMed

    Stott, Iain; Townley, Stuart; Hodgson, David James

    2011-09-01

    Empirical models are central to effective conservation and population management, and should be predictive of real-world dynamics. Available modelling methods are diverse, but analysis usually focuses on long-term dynamics that are unable to describe the complicated short-term time series that can arise even from simple models following ecological disturbances or perturbations. Recent interest in such transient dynamics has led to diverse methodologies for their quantification in density-independent, time-invariant population projection matrix (PPM) models, but the fragmented nature of this literature has stifled the widespread analysis of transients. We review the literature on transient analyses of linear PPM models and synthesise a coherent framework. We promote the use of standardised indices, and categorise indices according to their focus on either convergence times or transient population density, and on either transient bounds or case-specific transient dynamics. We use a large database of empirical PPM models to explore relationships between indices of transient dynamics. This analysis promotes the use of population inertia as a simple, versatile and informative predictor of transient population density, but criticises the utility of established indices of convergence times. Our findings should guide further development of analyses of transient population dynamics using PPMs or other empirical modelling techniques. © 2011 Blackwell Publishing Ltd/CNRS.

  10. Slow slip in the focal region of the anticipated Tokai earthquake following the seismo-volcanic event in the northern Izu Islands in 2000

    NASA Astrophysics Data System (ADS)

    Kobayashi, Akio; Yoshida, Akio; Yamamoto, Takeyasu; Takayama, Hiromi

    2005-06-01

    Transient crustal deformation occurred in the regions of Kanto and Tokai during the seismo-volcanic event in the northern Izu Islands in 2000. In our investigation of the observed deformation, we constructed an optimum-source model of the event between Miyake and Kozu Islands. We then made an inversion analysis of the differences between the observed displacement field and the calculated displacement field from the optimum model, assuming that the differences were caused by the changes in the interplate coupling beneath the Tokai region. From the inversion analysis of data for each of three-month periods, May to August, June to September, and July to October, we found decreased interplate coupling in the early stages of the 2000 event. In the first stage, either a slow slip or a temporary suspension of the plate subduction occurred in the focal region of the anticipated Tokai earthquake. The area then extended to the west and, finally, a slow slip exceeded the secular convergence velocity on the plate interface near Lake Hamana in the fall of 2000. We believe this ongoing slow slip began in August or early September 2000.

  11. Vibro-Shock Dynamics Analysis of a Tandem Low Frequency Resonator-High Frequency Piezoelectric Energy Harvester.

    PubMed

    Žižys, Darius; Gaidys, Rimvydas; Ostaševičius, Vytautas; Narijauskaitė, Birutė

    2017-04-27

    Frequency up-conversion is a promising technique for energy harvesting in low frequency environments. In this approach, abundantly available environmental motion energy is absorbed by a Low Frequency Resonator (LFR) which transfers it to a high frequency Piezoelectric Vibration Energy Harvester (PVEH) via impact or magnetic coupling. As a result, a decaying alternating output signal is produced, that can later be collected using a battery or be transferred directly to the electric load. The paper reports an impact-coupled frequency up-converting tandem setup with different LFR to PVEH natural frequency ratios and varying contact point location along the length of the harvester. RMS power output of different frequency up-converting tandems with optimal resistive values was found from the transient analysis revealing a strong relation between power output and LFR-PVEH natural frequency ratio as well as impact point location. Simulations revealed that higher power output is obtained from a higher natural frequency ratio between LFR and PVEH, an increase of power output by one order of magnitude for a doubled natural frequency ratio and up to 150% difference in power output from different impact point locations. The theoretical results were experimentally verified.

  12. A triangular prism solid and shell interactive mapping element for electromagnetic sheet metal forming process

    NASA Astrophysics Data System (ADS)

    Cui, Xiangyang; Li, She; Feng, Hui; Li, Guangyao

    2017-05-01

    In this paper, a novel triangular prism solid and shell interactive mapping element is proposed to solve the coupled magnetic-mechanical formulation in electromagnetic sheet metal forming process. A linear six-node "Triprism" element is firstly proposed for transient eddy current analysis in electromagnetic field. In present "Triprism" element, shape functions are given explicitly, and a cell-wise gradient smoothing operation is used to obtain the gradient matrices without evaluating derivatives of shape functions. In mechanical field analysis, a shear locking free triangular shell element is employed in internal force computation, and a data mapping method is developed to transfer the Lorentz force on solid into the external forces suffered by shell structure for dynamic elasto-plasticity deformation analysis. Based on the deformed triangular shell structure, a "Triprism" element generation rule is established for updated electromagnetic analysis, which means inter-transformation of meshes between the coupled fields can be performed automatically. In addition, the dynamic moving mesh is adopted for air mesh updating based on the deformation of sheet metal. A benchmark problem is carried out for confirming the accuracy of the proposed "Triprism" element in predicting flux density in electromagnetic field. Solutions of several EMF problems obtained by present work are compared with experiment results and those of traditional method, which are showing excellent performances of present interactive mapping element.

  13. Modeling landslide recurrence in Seattle, Washington, USA

    USGS Publications Warehouse

    Salciarini, Diana; Godt, Jonathan W.; Savage, William Z.; Baum, Rex L.; Conversini, Pietro

    2008-01-01

    To manage the hazard associated with shallow landslides, decision makers need an understanding of where and when landslides may occur. A variety of approaches have been used to estimate the hazard from shallow, rainfall-triggered landslides, such as empirical rainfall threshold methods or probabilistic methods based on historical records. The wide availability of Geographic Information Systems (GIS) and digital topographic data has led to the development of analytic methods for landslide hazard estimation that couple steady-state hydrological models with slope stability calculations. Because these methods typically neglect the transient effects of infiltration on slope stability, results cannot be linked with historical or forecasted rainfall sequences. Estimates of the frequency of conditions likely to cause landslides are critical for quantitative risk and hazard assessments. We present results to demonstrate how a transient infiltration model coupled with an infinite slope stability calculation may be used to assess shallow landslide frequency in the City of Seattle, Washington, USA. A module called CRF (Critical RainFall) for estimating deterministic rainfall thresholds has been integrated in the TRIGRS (Transient Rainfall Infiltration and Grid-based Slope-Stability) model that combines a transient, one-dimensional analytic solution for pore-pressure response to rainfall infiltration with an infinite slope stability calculation. Input data for the extended model include topographic slope, colluvial thickness, initial water-table depth, material properties, and rainfall durations. This approach is combined with a statistical treatment of rainfall using a GEV (General Extreme Value) probabilistic distribution to produce maps showing the shallow landslide recurrence induced, on a spatially distributed basis, as a function of rainfall duration and hillslope characteristics.

  14. Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration

    USGS Publications Warehouse

    Baum, Rex L.; Godt, Jonathan W.; Savage, William Z.

    2010-01-01

    Shallow rainfall-induced landslides commonly occur under conditions of transient infiltration into initially unsaturated soils. In an effort to predict the timing and location of such landslides, we developed a model of the infiltration process using a two-layer system that consists of an unsaturated zone above a saturated zone and implemented this model in a geographic information system (GIS) framework. The model links analytical solutions for transient, unsaturated, vertical infiltration above the water table to pressure-diffusion solutions for pressure changes below the water table. The solutions are coupled through a transient water table that rises as water accumulates at the base of the unsaturated zone. This scheme, though limited to simplified soil-water characteristics and moist initial conditions, greatly improves computational efficiency over numerical models in spatially distributed modeling applications. Pore pressures computed by these coupled models are subsequently used in one-dimensional slope-stability computations to estimate the timing and locations of slope failures. Applied over a digital landscape near Seattle, Washington, for an hourly rainfall history known to trigger shallow landslides, the model computes a factor of safety for each grid cell at any time during a rainstorm. The unsaturated layer attenuates and delays the rainfall-induced pore-pressure response of the model at depth, consistent with observations at an instrumented hillside near Edmonds, Washington. This attenuation results in realistic estimates of timing for the onset of slope instability (7 h earlier than observed landslides, on average). By considering the spatial distribution of physical properties, the model predicts the primary source areas of landslides.

  15. A split band-Cholesky equation solving strategy for finite element analysis of transient field problems. [in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.

    1978-01-01

    The paper describes the split-Cholesky strategy for banded matrices arising from the large systems of equations in certain fluid mechanics problems. The basic idea is that for a banded matrix the computation can be carried out in pieces, with only a small portion of the matrix residing in core. Mesh considerations are discussed by demonstrating the manner in which the assembly of finite element equations proceeds for linear trial functions on a triangular mesh. The FORTRAN code which implements the out-of-core decomposition strategy for banded symmetric positive definite matrices (mass matrices) of a coupled initial value problem is given.

  16. The Transport Equation in Optically Thick Media: Discussion of IMC and its Diffusion Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szoke, A.; Brooks, E. D.

    2016-07-12

    We discuss the limits of validity of the Implicit Monte Carlo (IMC) method for the transport of thermally emitted radiation. The weakened coupling between the radiation and material energy of the IMC method causes defects in handling problems with strong transients. We introduce an approach to asymptotic analysis for the transport equation that emphasizes the fact that the radiation and material temperatures are always different in time-dependent problems, and we use it to show that IMC does not produce the correct diffusion limit. As this is a defect of IMC in the continuous equations, no improvement to its discretization canmore » remedy it.« less

  17. Computational Methods for Structural Mechanics and Dynamics

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)

    1989-01-01

    Topics addressed include: transient dynamics; transient finite element method; transient analysis in impact and crash dynamic studies; multibody computer codes; dynamic analysis of space structures; multibody mechanics and manipulators; spatial and coplanar linkage systems; flexible body simulation; multibody dynamics; dynamical systems; and nonlinear characteristics of joints.

  18. Time-independent hybrid enrichment for finite element solution of transient conduction–radiation in diffusive grey media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, M. Shadi, E-mail: m.s.mohamed@durham.ac.uk; Seaid, Mohammed; Trevelyan, Jon

    2013-10-15

    We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach canmore » be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.« less

  19. Investigation of the transient fuel preburner manifold and combustor

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chen, Yen-Sen; Farmer, Richard C.

    1989-01-01

    A computational fluid dynamics (CFD) model with finite rate reactions, FDNS, was developed to study the start transient of the Space Shuttle Main Engine (SSME) fuel preburner (FPB). FDNS is a time accurate, pressure based CFD code. An upwind scheme was employed for spatial discretization. The upwind scheme was based on second and fourth order central differencing with adaptive artificial dissipation. A state of the art two-equation k-epsilon (T) turbulence model was employed for the turbulence calculation. A Pade' Rational Solution (PARASOL) chemistry algorithm was coupled with the point implicit procedure. FDNS was benchmarked with three well documented experiments: a confined swirling coaxial jet, a non-reactive ramjet dump combustor, and a reactive ramjet dump combustor. Excellent comparisons were obtained for the benchmark cases. The code was then used to study the start transient of an axisymmetric SSME fuel preburner. Predicted transient operation of the preburner agrees well with experiment. Furthermore, it was also found that an appreciable amount of unburned oxygen entered the turbine stages.

  20. Two-Flux Method for Transient Radiative Transfer in a Semitransparent Layer

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1996-01-01

    The two-flux method was used to obtain transient solutions for a plane layer including internal reflections and scattering. The layer was initially at uniform temperature, and was heated or cooled by external radiation and convection. The two-flux equations were examined as a means for evaluating the radiative flux gradient in the transient energy equation. Comparisons of transient temperature distributions using the two-flux method were made with results where the radiative flux gradient was evaluated from the exact radiative transfer equations. Good agreement was obtained for optical thicknesses from 0.5 to 5 and for refractive indices of 1 and 2. Illustrative results obtained with the two-flux method demonstrate the effect of isotropic scattering coupled with changing the refractive index. For small absorption with large scattering the maximum layer temperature is increased when the refractive index is increased. For larger absorption the effect is opposite, and the maximum temperature decreases with increased refractive index .

  1. Tidal calibration of Plate Boundary Observatory borehole strainmeters: Roles of vertical and shear coupling

    USGS Publications Warehouse

    Roeloffs, Evelyn

    2010-01-01

    A multicomponent borehole strainmeter directly measures changes in the diameter of its cylindrical housing at several azimuths. To transform these measurements to formation strains requires a calibration matrix, which must be estimated by analyzing the installed strainmeter's response to known strains. Typically, theoretical calculations of Earth tidal strains serve as the known strains. This paper carries out such an analysis for 12 Plate Boundary Observatory (PBO) borehole strainmeters, postulating that each of the strainmeters' four gauges responds ("couples") to all three horizontal components of the formation strain tensor, as well as to vertical strain. Orientation corrections are also estimated. The fourth extensometer in each PBO strainmeter provides redundant information used to reduce the chance that coupling coefficients could be misleadingly fit to inappropriate theoretical tides. Satisfactory fits between observed and theoretically calculated tides were obtained for three PBO strainmeters in California, where the calculated tides are corroborated by other instrumentation, as well as for six strainmeters in Oregon and Washington, where no other instruments have ever recorded Earth tidal strain. Several strainmeters have unexpectedly large coupling coefficients for vertical strain, which increases the strainmeter's response to atmospheric pressure. Vertical coupling diminishes, or even changes the sign of, the apparent response to areal strain caused by Earth tides or deep Earth processes because near the free surface, vertical strains are opposite in sign to areal strain. Vertical coupling does not impair the shear strain response, however. PBO borehole strainmeters can provide calibrated shear strain time series of transient strain associated with tectonic or magmatic processes.

  2. Equilibrium and Effective Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Rugenstein, M.; Bloch-Johnson, J.

    2016-12-01

    Atmosphere-ocean general circulation models, as well as the real world, take thousands of years to equilibrate to CO2 induced radiative perturbations. Equilibrium climate sensitivity - a fully equilibrated 2xCO2 perturbation - has been used for decades as a benchmark in model intercomparisons, as a test of our understanding of the climate system and paleo proxies, and to predict or project future climate change. Computational costs and limited time lead to the widespread practice of extrapolating equilibrium conditions from just a few decades of coupled simulations. The most common workaround is the "effective climate sensitivity" - defined through an extrapolation of a 150 year abrupt2xCO2 simulation, including the assumption of linear climate feedbacks. The definitions of effective and equilibrium climate sensitivity are often mixed up and used equivalently, and it is argued that "transient climate sensitivity" is the more relevant measure for predicting the next decades. We present an ongoing model intercomparison, the "LongRunMIP", to study century and millennia time scales of AOGCM equilibration and the linearity assumptions around feedback analysis. As a true ensemble of opportunity, there is no protocol and the only condition to participate is a coupled model simulation of any stabilizing scenario simulating more than 1000 years. Many of the submitted simulations took several years to conduct. As of July 2016 the contribution comprises 27 scenario simulations of 13 different models originating from 7 modeling centers, each between 1000 and 6000 years. To contribute, please contact the authors as soon as possible We present preliminary results, discussing differences between effective and equilibrium climate sensitivity, the usefulness of transient climate sensitivity, extrapolation methods, and the state of the coupled climate system close to equilibrium. Caption for the Figure below: Evolution of temperature anomaly and radiative imbalance of 22 simulations with 12 models (color indicates the model). 20 year moving average.

  3. Saltstone SDU6 Modeling Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Si Y.; Hyun, Sinjae

    2013-01-10

    A new disposal unit, designated as Saltstone Disposal Unit 6 (SDU6), is being designed for support of site accelerated closure goals and salt waste projections identified in the new Liquid Waste System Plan. The unit is a cylindrical disposal cell of 375 ft in diameter and 43 ft in height, and it has a minimum 30 million gallons of capacity. SRNL was requested to evaluate the impact of an increased grout placement height on the flow patterns radially spread on the floor and to determine whether grout quality is impacted by the height. The primary goals of the work aremore » to develop the baseline Computational Fluid Dynamics (CFD) model and to perform the evaluations for the flow patterns of grout material in SDU6 as a function of elevation of grout discharge port and grout rheology. Two transient grout models have been developed by taking a three-dimensional multiphase CFD approach to estimate the domain size of the grout materials radially spread on the facility floor and to perform the sensitivity analysis with respect to the baseline design and operating conditions such as elevation height of the discharge port and fresh grout properties. For the CFD modeling calculations, air-grout Volume of Fluid (VOF) method combined with Bingham plastic and time-dependent grout models were used for examining the impact of fluid spread performance for the initial baseline configurations and to evaluate the impact of grout pouring height on grout quality. The grout quality was estimated in terms of the air volume fraction for the grout layer formed on the SDU6 floor, resulting in the change of grout density. The study results should be considered as preliminary scoping analyses since benchmarking analysis is not included in this task scope. Transient analyses with the Bingham plastic model were performed with the FLUENTTM code on the high performance parallel computing platform in SRNL. The analysis coupled with a transient grout aging model was performed by using ANSYS-CFX code in the parallel computing platform in Mercer University. Recommended operational guidance was developed assuming that local shear rates and flow patterns related to radial spread along the SDU floor can be used as a measure of grout performance and spatial dispersion affected by the grout height and viscosity. The 5 ft height baseline results show that when the 150 gpm grout flow with a 5 Pa yield stress and a 60 cp viscosity is poured down through a 3 inch discharge port, the grout is spread radially up to about 64 ft distance from the pouring center after 2 hours' pouring time. The air volume fraction of the grout layer is about 29% at 5 minutes' transient time, and it is reduced by about 9% in 2 hours' pouring time, resulting in the grout density consisting of about 80% grout and 20% air volume fractions. The sensitivity results show that when the discharge port is located at a higher position, a larger amount of air is trapped inside the layer formed below the discharge port at the early transient time of less than 30 minutes because of the higher impinging momentum of the grout flow on the floor, resulting in the formation of less smooth layer. The results clearly indicate that the radial spread for the 43 ft discharge port is about 10% faster than that of the 5 ft discharge port for the early transient period of 5 minutes. However, for the pouring time longer than half an hour, the discharge port height does not affect the radial distance spread on the disposal floor. When grout quality is related to grout volume fraction, the grout volume fraction for the 43 ft discharge port has lower volume fraction than the 5 ft discharge port for the transient period of the first 5 minutes. However, for the pouring time longer than half an hour, the discharge port height does not affect the grout volume fraction for the layer accumulated on the disposal floor. A modified Bingham plastic model coupled with time-dependent viscosity behavior was developed for conducting the initial scoping calculations to assess the impact of fluid residence time on radial spreading and basic flow patterns. The results for the transient viscosity model show that when grout material becomes more viscous, the thickness of the grout layer accumulated on the floor becomes higher, but the radial distance spread on the horizontal floor becomes smaller. The early transient results for the grout density with about 32% air volume fractions are in reasonable agreement with those of the idealized Bingham plastic model. It is recommended that the current models developed here be benchmarked against the experimental results for critical applications of the modeling results.« less

  4. Unstable force analysis for induction motor eccentricity

    NASA Astrophysics Data System (ADS)

    Han, Xu; Palazzolo, Alan

    2016-05-01

    The increasing popularity of motors in machinery trains has led to an intensified interest in the forces they produce that may influence machinery vibration. Motor design typically assumes a uniform air gap, however in practice all motors operate with the rotor slightly displaced from the motor centerline in what is referred to as an eccentric position. Rotor center eccentricity can cause a radially unbalanced magnetic field when the motor is operating. This will results in both a radial force pulling the motor further away from the center, and a tangential force which can induce a vibration stability problem. In this paper, a magnetic equivalent circuit MEC modeling method is proposed to calculate both the radial and tangential motor eccentric force. The treatment of tangential force determination is rarely addressed, but it is very important for rotordynamic vibration stability evaluation. The proposed model is also coupled with the motor electric circuit model to provide capability for transient vibration simulations. FEM is used to verify the MEC model. A parametric study is performed on the motor radial and tangential eccentric forces. Also a Jeffcott rotor model is used to study the influence of the motor eccentric force on mechanical vibration stability and nonlinear behavior. Furthermore, a stability criteria for the bearing damping is provided. The motor radial and tangential eccentric forces are both curved fitted to include their nonlinearity in time domain transient simulation for both a Jeffcott rotor model and a geared machinery train with coupled torsional-lateral motion. Nonlinear motions are observed, including limit cycles and bifurcation induced vibration amplitude jumps.

  5. Scattering of an electronic wave packet by a one-dimensional electron-phonon-coupled structure

    NASA Astrophysics Data System (ADS)

    Brockt, C.; Jeckelmann, E.

    2017-02-01

    We investigate the scattering of an electron by phonons in a small structure between two one-dimensional tight-binding leads. This model mimics the quantum electron transport through atomic wires or molecular junctions coupled to metallic leads. The electron-phonon-coupled structure is represented by the Holstein model. We observe permanent energy transfer from the electron to the phonon system (dissipation), transient self-trapping of the electron in the electron-phonon-coupled structure (due to polaron formation and multiple reflections at the structure edges), and transmission resonances that depend strongly on the strength of the electron-phonon coupling and the adiabaticity ratio. A recently developed TEBD algorithm, optimized for bosonic degrees of freedom, is used to simulate the quantum dynamics of a wave packet launched against the electron-phonon-coupled structure. Exact results are calculated for a single electron-phonon site using scattering theory and analytical approximations are obtained for limiting cases.

  6. Spreading of a surfactant monolayer on a thin liquid film: Onset and evolution of digitated structures.

    PubMed

    Matar, Omar K.; Troian, Sandra M.

    1999-03-01

    We describe the response of an insoluble surfactant monolayer spreading on the surface of a thin liquid film to small disturbances in the film thickness and surfactant concentration. The surface shear stress, which derives from variations in surfactant concentration at the air-liquid interface, rapidly drives liquid and surfactant from the source toward the distal region of higher surface tension. A previous linear stability analysis of a quasi-steady state solution describing the spreading of a finite strip of surfactant on a thin Newtonian film has predicted only stable modes. [Dynamics in Small Confining Systems III, Materials Research Society Symposium Proceedings, edited by J. M. Drake, J. Klafter, and E. R. Kopelman (Materials Research Society, Boston, 1996), Vol. 464, p. 237; Phys. Fluids A 9, 3645 (1997); O. K. Matar Ph.D. thesis, Princeton University, Princeton, NJ, 1998]. A perturbation analysis of the transient behavior, however, has revealed the possibility of significant amplification of disturbances in the film thickness within an order one shear time after the onset of flow [Phys. Fluids A 10, 1234 (1998); "Transient response of a surfactant monolayer spreading on a thin liquid film: Mechanism for amplification of disturbances," submitted to Phys. Fluids]. In this paper we describe the linearized transient behavior and interpret which physical parameters most strongly affect the disturbance amplification ratio. We show how the disturbances localize behind the moving front and how the inclusion of van der Waals forces further enhances their growth and lifetime. We also present numerical solutions to the fully nonlinear 2D governing equations. As time evolves, the nonlinear system sustains disturbances of longer and longer wavelength, consistent with the quasi-steady state and transient linearized descriptions. In addition, for the parameter set investigated, disturbances consisting of several harmonics of a fundamental wavenumber do not couple significantly. The system eventually singles out the smallest wavenumber disturbance in the chosen set. The summary of results to date seems to suggest that the fingering process may be a transient response which nonetheless has a dramatic influence on the spreading process since the digitated structures redirect the flux of liquid and surfactant to produce nonuniform surface coverage. (c) 1999 American Institute of Physics.

  7. A new code for predicting the thermo-mechanical and irradiation behavior of metallic fuels in sodium fast reactors

    NASA Astrophysics Data System (ADS)

    Karahan, Aydın; Buongiorno, Jacopo

    2010-01-01

    An engineering code to predict the irradiation behavior of U-Zr and U-Pu-Zr metallic alloy fuel pins and UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named Fuel Engineering and Structural analysis Tool (FEAST). FEAST has several modules working in coupled form with an explicit numerical algorithm. These modules describe fission gas release and fuel swelling, fuel chemistry and restructuring, temperature distribution, fuel-clad chemical interaction, and fuel and clad mechanical analysis including transient creep-fracture for the clad. Given the fuel pin geometry, composition and irradiation history, FEAST can analyze fuel and clad thermo-mechanical behavior at both steady-state and design-basis (non-disruptive) transient scenarios. FEAST was written in FORTRAN-90 and has a simple input file similar to that of the LWR fuel code FRAPCON. The metal-fuel version is called FEAST-METAL, and is described in this paper. The oxide-fuel version, FEAST-OXIDE is described in a companion paper. With respect to the old Argonne National Laboratory code LIFE-METAL and other same-generation codes, FEAST-METAL emphasizes more mechanistic, less empirical models, whenever available. Specifically, fission gas release and swelling are modeled with the GRSIS algorithm, which is based on detailed tracking of fission gas bubbles within the metal fuel. Migration of the fuel constituents is modeled by means of thermo-transport theory. Fuel-clad chemical interaction models based on precipitation kinetics were developed for steady-state operation and transients. Finally, a transient intergranular creep-fracture model for the clad, which tracks the nucleation and growth of the cavities at the grain boundaries, was developed for and implemented in the code. Reducing the empiricism in the constitutive models should make it more acceptable to extrapolate FEAST-METAL to new fuel compositions and higher burnup, as envisioned in advanced sodium reactors. FEAST-METAL was benchmarked against the open-literature EBR-II database for steady state and furnace tests (transients). The results show that the code is able to predict important phenomena such as clad strain, fission gas release, clad wastage, clad failure time, axial fuel slug deformation and fuel constituent redistribution, satisfactorily.

  8. Ultrafast control of strong light-matter coupling

    NASA Astrophysics Data System (ADS)

    Lange, Christoph; Cancellieri, Emiliano; Panna, Dmitry; Whittaker, David M.; Steger, Mark; Snoke, David W.; Pfeiffer, Loren N.; West, Kenneth W.; Hayat, Alex

    2018-01-01

    We dynamically modulate strong light-matter coupling in a GaAs/AlGaAs microcavity using intense ultrashort laser pulses tuned below the interband exciton energy, which induce a transient Stark shift of the cavity polaritons. For 225-fs pulses, shorter than the cavity Rabi cycle period of 1000 fs, this shift decouples excitons and cavity photons for the duration of the pulse, interrupting the periodic energy exchange between photonic and electronic states. For 1500-fs pulses, longer than the Rabi cycle period, however, the Stark shift does not affect the strong coupling. The two regimes are marked by distinctly different line shapes in ultrafast reflectivity measurements—regardless of the Stark field intensity. The crossover marks the transition from adiabatic to diabatic switching of strong light-matter coupling.

  9. On self-exciting coupled Faraday disk homopolar dynamos driving series motors

    NASA Astrophysics Data System (ADS)

    Moroz, Irene M.; Hide, Raymond; Soward, Andrew M.

    1998-06-01

    We present the results of a preliminary analytical and numerical study of one of the simpler members of a hierarchy of N (where N ≥ 1) coupled self-exciting Faraday disk homopolar dynamos, incorporating motors as additional electrical elements driven by the dynamo-generated current, as proposed by Hide (1997). The hierarchy is a generalisation of a single disk dynamo ( N = 1) with just one electric motor in the system, and crucially, incorporating effects due to mechanical friction in both the disk and the motor, as investigated by Hide et al. (1996). This is describable by a set of three coupled autonomous nonlinear ordinary differential equations, which, due to the presence of the motor, has solutions corresponding to co-existing periodic states of increasing complexity, as well as to chaotic dynamics. We consider the case of two such homopolar dynamos ( N = 2) with generally dissimilar characteristics but coupled together magnetically, with the aim of determining the extent to which this coupled system differs in its behaviour from the single disk dynamo with a series motor (Hide et al. 1996). In the case when the units are identical, the behaviour of the double dynamo system (after initial transients have decayed away) is identical to that of the single dynamo system, with solutions (including “synchronised chaos”) locked in both amplitude and phase. When there is no motor in the system and the coefficient of mechanical friction in the disks is small, these transients resemble the well-known ‘non-synchronous’, but structurally unstable Rikitake solution.

  10. Estimation of payload loads using rigid body interface accelerations. [in structural design of launch vehicle systems

    NASA Technical Reports Server (NTRS)

    Chen, J. C.; Garba, J. A.; Wada, B. K.

    1978-01-01

    In the design/analysis process of a payload structural system, the accelerations at the payload/launch vehicle interface obtained from a system analysis using a rigid payload are often used as the input forcing function to the elastic payload to obtain structural design loads. Such an analysis is at best an approximation since the elastic coupling effects are neglected. This paper develops a method wherein the launch vehicle/rigid payload interface accelerations are modified to account for the payload elasticity. The advantage of the proposed method, which is exact to the extent that the physical system can be described by a truncated set of generalized coordinates, is that the complete design/analysis process can be performed within the organization responsible for the payload design. The method requires the updating of the system normal modes to account for payload changes, but does not require a complete transient solution using the composite system model. An application to a real complex structure, the Viking Spacecraft System, is given.

  11. Transient flow thrust prediction for an ejector propulsion concept

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.

    1989-01-01

    A method for predicting transient thrust augmenting ejector characteristics is introduced. The analysis blends classic self-similar turbulent jet descriptions with a mixing region control volume analysis to predict transient effects in a new way. Details of the theoretical foundation, the solution algorithm, and sample calculations are given.

  12. Temporal intermittency and the lifetime of chimera states in ensembles of nonlocally coupled chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Semenova, N. I.; Strelkova, G. I.; Anishchenko, V. S.; Zakharova, A.

    2017-06-01

    We describe numerical results for the dynamics of networks of nonlocally coupled chaotic maps. Switchings in time between amplitude and phase chimera states have been first established and studied. It has been shown that in autonomous ensembles, a nonstationary regime of switchings has a finite lifetime and represents a transient process towards a stationary regime of phase chimera. The lifetime of the nonstationary switching regime can be increased to infinity by applying short-term noise perturbations.

  13. Modeling single event induced crosstalk in nanometer technologies

    NASA Astrophysics Data System (ADS)

    Boorla, Vijay K.

    Radiation effects become more important in combinational logic circuits with newer technologies. When a high energetic particle strikes at the sensitive region within the combinational logic circuit a voltage pulse called Single Event Transient is created. Recently, researchers reported Single Event Crosstalk because of increasing coupling effects. In this work, the closed form expression for SE crosstalk noise is formulated for the first time. For all calculations, 4-pi model is used in this work. The crosstalk model uses a reduced transfer function between aggressor coupling node and victim node to reduce information loss. Aggressor coupling node waveform is obtained and then applied to transfer function between the coupling node and the victim output to obtain victim noise voltage. This work includes both effect of passive aggressor loading on victim and victim loading on aggressor by considering resistive shielding effect. Noise peak expressions derived in this work show very good results in comparison to HSPICE results. Results show that average error for noise peak is 3.794% while allowing for very fast analysis. Once the SE crosstalk noise is calculated, one can hire mitigation techniques such as driver sizing. A standard DTMOS technique along with sizing is proposed in this work to mitigate SE crosstalk. This combined approach can saves in some areas compared to driver sizing alone. Key Words: Crosstalk Noise, Closed Form Modeling, Standard DTMOS

  14. PSH Transient Simulation Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard

    PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.

  15. Calcium Domains around Single and Clustered IP3 Receptors and Their Modulation by Buffers

    PubMed Central

    Rüdiger, S.; Nagaiah, Ch.; Warnecke, G.; Shuai, J.W.

    2010-01-01

    Abstract We study Ca2+ release through single and clustered IP3 receptor channels on the ER membrane under presence of buffer proteins. Our computational scheme couples reaction-diffusion equations and a Markovian channel model and allows our investigating the effects of buffer proteins on local calcium concentrations and channel gating. We find transient and stationary elevations of calcium concentrations around active channels and show how they determine release amplitude. Transient calcium domains occur after closing of isolated channels and constitute an important part of the channel's feedback. They cause repeated openings (bursts) and mediate increased release due to Ca2+ buffering by immobile proteins. Stationary domains occur during prolonged activity of clustered channels, where the spatial proximity of IP3Rs produces a distinct [Ca2+] scale (0.5–10 μM), which is smaller than channel pore concentrations (>100 μM) but larger than transient levels. While immobile buffer affects transient levels only, mobile buffers in general reduce both transient and stationary domains, giving rise to Ca2+ evacuation and biphasic modulation of release amplitude. Our findings explain recent experiments in oocytes and provide a general framework for the understanding of calcium signals. PMID:20655827

  16. Numerical Investigation of Transient Flow in a Prototype Centrifugal Pump during Startup Period

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Liang; Zhu, Zu-Chao; Dou, Hua-Shu; Cui, Bao-Ling; Li, Yi; Zhou, Zhao-Zhong

    2017-05-01

    Transient performance of pumps during transient operating periods, such as startup and stopping, has drawn more and more attentions recently due to the growing engineering needs. During the startup period of a pump, the performance parameters such as the flow rate and head would vary significantly in a broad range. Therefore, it is very difficult to accurately specify the unsteady boundary conditions for a pump alone to solve the transient flow in the absence of experimental results. The closed-loop pipe system including a centrifugal pump is built to accomplish the self-coupling calculation. The three-dimensional unsteady incompressible viscous flow inside the passage of the pump during startup period is numerically simulated using the dynamic mesh method. Simulation results show that there are tiny fluctuations in the flow rate even under stable operating conditions and this can be attributed to influence of the rotor-stator interaction. At the very beginning of the startup, the rising speed of the flow rate is lower than that of the rotational speed. It is also found that it is not suitable to predict the transient performance of pumps using the calculation method of quasi-steady flow, especially at the earlier period of the startup.

  17. Excitonic gap formation in pumped Dirac materials

    NASA Astrophysics Data System (ADS)

    Triola, Christopher; Pertsova, Anna; Markiewicz, Robert S.; Balatsky, Alexander V.

    2017-05-01

    Recent pump-probe experiments demonstrate the possibility that Dirac materials may be driven into transient excited states describable by two chemical potentials, one for the electrons and one for the holes. Given the Dirac nature of the spectrum, such an inverted population allows the optical tunability of the density of states of the electrons and holes, effectively offering control of the strength of the Coulomb interaction. Here we discuss the feasibility of realizing transient excitonic instabilities in optically pumped Dirac materials. We demonstrate, theoretically, the reduction of the critical coupling leading to the formation of a transient condensate of electron-hole pairs and identify signatures of this state. Furthermore, we provide guidelines for experiments by both identifying the regimes in which such exotic many-body states are more likely to be observed and estimating the magnitude of the excitonic gap for a few important examples of existing Dirac materials. We find a set of material parameters for which our theory predicts large gaps and high critical temperatures and which could be realized in future Dirac materials. We also comment on transient excitonic instabilities in three-dimensional Dirac and Weyl semimetals. This study provides an example of a transient collective instability in driven Dirac materials.

  18. On the Use of Material-Dependent Damping in ANSYS for Mode Superposition Transient Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, J.; Wei, X.

    The mode superposition method is often used for dynamic analysis of complex structures, such as the seismic Category I structures in nuclear power plants, in place of the less efficient full method, which uses the full system matrices for calculation of the transient responses. In such applications, specification of material-dependent damping is usually desirable because complex structures can consist of multiple types of materials that may have different energy dissipation capabilities. A recent review of the ANSYS manual for several releases found that the use of material-dependent damping is not clearly explained for performing a mode superposition transient dynamic analysis.more » This paper includes several mode superposition transient dynamic analyses using different ways to specify damping in ANSYS, in order to determine how material-dependent damping can be specified conveniently in a mode superposition transient dynamic analysis.« less

  19. MODELING MULTICOMPONENT ORGANIC CHEMICAL TRANSPORT IN THREE-FLUID-PHASE POROUS MEDIA

    EPA Science Inventory

    A two dimensional finite-element model was developed to predict coupled transient flow and multicomponent transport of organic chemicals which can partition between NAPL, water, gas and solid phases in porous media under the assumption of local chemical equilibrium. as-phase pres...

  20. MODELING MULTICOMPONENT ORGANIC CHEMICAL TRANSPORT IN THREE FLUID PHASE POROUS MEDIA

    EPA Science Inventory

    A two-dimensional finite-element model was developed to predict coupled transient flow and multicomponent transport of organic chemicals which can partition between nonaqueous phase liquid, water, gas and solid phases in porous media under the assumption of local chemical equilib...

  1. High-Temperature Isothermal Capacitance Transient Spectroscopy Study on Inductively Coupled Plasma Etching Damage for p-GaN Surfaces

    NASA Astrophysics Data System (ADS)

    Aoki, Toshichika; Wakayama, Hisashi; Kaneda, Naoki; Mishima, Tomoyoshi; Nomoto, Kazuki; Shiojima, Kenji

    2013-11-01

    The effects of the inductively coupled plasma (ICP) etching damage on the electrical characteristics of low-Mg-doped p-GaN Schottky contacts were evaluated by high-temperature isothermal capacitance transient spectroscopy. A large single peak for an acceptor-type surface state was dominantly detected for as-grown samples. The energy level and state density were obtained to be 1.18 eV above the valence band, which is close to a Ga vacancy (VGa), and 1.5×1013 cm-2, respectively. It was speculated that a small portion of Ga atoms were missing from the surface, and a high VGa density was observed in a few surface layers. The peak intensity decreased by 60% upon annealing at 800 °C, and further decrease was found by ICP etching. This decrease is consistent with the suppression of the memory effect in current-voltage characteristics. Upon annealing and ICP etching, since the VGa structure might be disordered, the peak intensity decreased.

  2. Electron and lattice dynamics of transition metal thin films observed by ultrafast electron diffraction and transient optical measurements.

    PubMed

    Nakamura, A; Shimojima, T; Nakano, M; Iwasa, Y; Ishizaka, K

    2016-11-01

    We report the ultrafast dynamics of electrons and lattice in transition metal thin films (Au, Cu, and Mo) investigated by a combination of ultrafast electron diffraction (UED) and pump-probe optical methods. For a single-crystalline Au thin film, we observe the suppression of the diffraction intensity occuring in 10 ps, which direcly reflects the lattice thermalization via the electron-phonon interaction. By using the two-temperature model, the electron-phonon coupling constant ( g ) and the electron and lattice temperatures ( T e , T l ) are evaluated from UED, with which we simulate the transient optical transmittance. The simulation well agrees with the experimentally obtained transmittance data, except for the slight deviations at the initial photoexcitation and the relaxed quasi-equilibrium state. We also present the results similarly obtained for polycrystalline Au, Cu, and Mo thin films and demonstrate the electron and lattice dynamics occurring in metals with different electron-phonon coupling strengths.

  3. Attosecond transient absorption probing of electronic superpositions of bound states in neon. Detection of quantum beats

    DOE PAGES

    Beck, Annelise R; Bernhardt, Birgitta; Warrick, Erika R.; ...

    2014-11-07

    Electronic wavepackets composed of multiple bound excited states of atomic neon lying between 19.6 and 21.5 eV are launched using an isolated attosecond pulse. Individual quantum beats of the wavepacket are detected by perturbing the induced polarization of the medium with a time-delayed few-femtosecond near-infrared (NIR) pulse via coupling the individual states to multiple neighboring levels. All of the initially excited states are monitored simultaneously in the attosecond transient absorption spectrum, revealing Lorentzian to Fano lineshape spectral changes as well as quantum beats. The most prominent beating of the several that were observed was in the spin–orbit split 3d absorptionmore » features, which has a 40 femtosecond period that corresponds to the spin–orbit splitting of 0.1 eV. The few-level models and multilevel calculations confirm that the observed magnitude of oscillation depends strongly on the spectral bandwidth and tuning of the NIR pulse and on the location of possible coupling states.« less

  4. Transient Simulation of Last Deglaciation with a New Mechanism for B lling-Aller d Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, David J

    2009-01-01

    We conducted the first synchronously coupled atmosphere-ocean general circulation model simulation from the Last Glacial Maximum to the Boelling-Alleroed (BA) warming. Our model reproduces several major features of the deglacial climate evolution, suggesting a good agreement in climate sensitivity between the model and observations. In particular, our model simulates the abrupt BA warming as a transient response of the Atlantic meridional overturning circulation (AMOC) to a sudden termination of freshwater discharge to the North Atlantic before the BA. In contrast to previous mechanisms that invoke AMOC multiple equilibrium and Southern Hemisphere climate forcing, we propose that the BA transition ismore » caused by the superposition of climatic responses to the transient CO{sub 2} forcing, the AMOC recovery from Heinrich Event 1, and an AMOC overshoot.« less

  5. A novel approach to model the transient behavior of solid-oxide fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Menon, Vikram; Janardhanan, Vinod M.; Tischer, Steffen; Deutschmann, Olaf

    2012-09-01

    This paper presents a novel approach to model the transient behavior of solid-oxide fuel cell (SOFC) stacks in two and three dimensions. A hierarchical model is developed by decoupling the temperature of the solid phase from the fluid phase. The solution of the temperature field is considered as an elliptic problem, while each channel within the stack is modeled as a marching problem. This paper presents the numerical model and cluster algorithm for coupling between the solid phase and fluid phase. For demonstration purposes, results are presented for a stack operated on pre-reformed hydrocarbon fuel. Transient response to load changes is studied by introducing step changes in cell potential and current. Furthermore, the effect of boundary conditions and stack materials on response time and internal temperature distribution is investigated.

  6. Importance of Hydrophobic Cavities in Allosteric Regulation of Formylglycinamide Synthetase: Insight from Xenon Trapping and Statistical Coupling Analysis

    PubMed Central

    Choudhary, Deepanshu; Panjikar, Santosh; Anand, Ruchi

    2013-01-01

    Formylglycinamide ribonucleotide amidotransferase (FGAR-AT) is a 140 kDa bi-functional enzyme involved in a coupled reaction, where the glutaminase active site produces ammonia that is subsequently utilized to convert FGAR to its corresponding amidine in an ATP assisted fashion. The structure of FGAR-AT has been previously determined in an inactive state and the mechanism of activation remains largely unknown. In the current study, hydrophobic cavities were used as markers to identify regions involved in domain movements that facilitate catalytic coupling and subsequent activation of the enzyme. Three internal hydrophobic cavities were located by xenon trapping experiments on FGAR-AT crystals and further, these cavities were perturbed via site-directed mutagenesis. Biophysical characterization of the mutants demonstrated that two of these three voids are crucial for stability and function of the protein, although being ∼20 Å from the active centers. Interestingly, correlation analysis corroborated the experimental findings, and revealed that amino acids lining the functionally important cavities form correlated sets (co-evolving residues) that connect these regions to the amidotransferase active center. It was further proposed that the first cavity is transient and allows for breathing motion to occur and thereby serves as an allosteric hotspot. In contrast, the third cavity which lacks correlated residues was found to be highly plastic and accommodated steric congestion by local adjustment of the structure without affecting either stability or activity. PMID:24223728

  7. Experimental Validation of a Closed Brayton Cycle System Transient Simulation

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.; Hervol, David S.

    2006-01-01

    The Brayton Power Conversion Unit (BPCU) is a closed cycle system with an inert gas working fluid. It is located in Vacuum Facility 6 at NASA Glenn Research Center. Was used in previous solar dynamic technology efforts (SDGTD). Modified to its present configuration by replacing the solar receiver with an electrical resistance heater. The first closed-Brayton-cycle to be coupled with an ion propulsion system. Used to examine mechanical dynamic characteristics and responses. The focus of this work was the validation of a computer model of the BPCU. Model was built using the Closed Cycle System Simulation (CCSS) design and analysis tool. Test conditions were then duplicated in CCSS. Various steady-state points. Transients involving changes in shaft rotational speed and heat input. Testing to date has shown that the BPCU is able to generate meaningful, repeatable data that can be used for computer model validation. Results generated by CCSS demonstrated that the model sufficiently reproduced the thermal transients exhibited by the BPCU system. CCSS was also used to match BPCU steady-state operating points. Cycle temperatures were within 4.1% of the data (most were within 1%). Cycle pressures were all within 3.2%. Error in alternator power (as much as 13.5%) was attributed to uncertainties in the compressor and turbine maps and alternator and bearing loss models. The acquired understanding of the BPCU behavior gives useful insight for improvements to be made to the CCSS model as well as ideas for future testing and possible system modifications.

  8. Alternatives Analysis for the Resumption of Transient Testing Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee Nelson

    2013-11-01

    An alternatives analysis was performed for resumption of transient testing. The analysis considered eleven alternatives – including both US international facilities. A screening process was used to identify two viable alternatives from the original eleven. In addition, the alternatives analysis includes a no action alternative as required by the National Environmental Policy Act (NEPA). The alternatives considered in this analysis included: 1. Restart the Transient Reactor Test Facility (TREAT) 2. Modify the Annular Core Research Reactor (ACRR) which includes construction of a new hot cell and installation of a new hodoscope. 3. No Action

  9. HOTCFGM-2D: A Coupled Higher-Order Theory for Cylindrical Structural Components with Bi-Directionally Components with Bi-Directionally Graded Microstructures

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Aboudi, Jacob

    2000-01-01

    The objective of this two-year project was to develop and deliver to the NASA-Glenn Research Center a two-dimensional higher-order theory, and related computer codes, for the analysis and design of cylindrical functionally graded materials/structural components for use in advanced aircraft engines (e.g., combustor linings, rotor disks, heat shields, brisk blades). To satisfy this objective, two-dimensional version of the higher-order theory, HOTCFGM-2D, and four computer codes based on this theory, for the analysis and design of structural components functionally graded in the radial and circumferential directions were developed in the cylindrical coordinate system r-Theta-z. This version of the higher-order theory is a significant generalization of the one-dimensional theory, HOTCFGM-1D, developed during the FY97 for the analysis and design of cylindrical structural components with radially graded microstructures. The generalized theory is applicable to thin multi-phased composite shells/cylinders subjected to steady-state thermomechanical, transient thermal and inertial loading applied uniformly along the axial direction such that the overall deformation is characterized by a constant average axial strain. The reinforcement phases are uniformly distributed in the axial direction, and arbitrarily distributed in the radial and circumferential direction, thereby allowing functional grading of the internal reinforcement in the r-Theta plane. The four computer codes fgmc3dq.cylindrical.f, fgmp3dq.cylindrical.f, fgmgvips3dq.cylindrical.f, and fgmc3dq.cylindrical.transient.f are research-oriented codes for investigating the effect of functionally graded architectures, as well as the properties of the multi-phase reinforcement, in thin shells subjected to thermomechanical and inertial loading, on the internal temperature, stress and (inelastic) strain fields. The reinforcement distribution in the radial and circumferential directions is specified by the user. The thermal and inelastic properties of the individual phases can vary with temperature. The inelastic phases are presently modeled by the power-law creep model generalized to multi-directional loading (within fgmc3dq.cylindrical.f and fgmc3dq.cylindrical.transient.f for steady-state and transient thermal loading, respectively), and incremental plasticity and GVIPS unified viscoplasticity theories (within the steady-state loading versions fgmp3dq.cylindrical.f and fgmgvips3dq.cylindrical.f).

  10. Network thermodynamic approach compartmental analysis. Na+ transients in frog skin.

    PubMed

    Mikulecky, D C; Huf, E G; Thomas, S R

    1979-01-01

    We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc.

  11. Experimental Investigation of Jet Impingement Heat Transfer Using Thermochromic Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Dempsey, Brian Paul

    1997-01-01

    Jet impingement cooling of a hypersonic airfoil leading edge is experimentally investigated using thermochromic liquid crystals (TLCS) to measure surface temperature. The experiment uses computer data acquisition with digital imaging of the TLCs to determine heat transfer coefficients during a transient experiment. The data reduction relies on analysis of a coupled transient conduction - convection heat transfer problem that characterizes the experiment. The recovery temperature of the jet is accounted for by running two experiments with different heating rates, thereby generating a second equation that is used to solve for the recovery temperature. The resulting solution requires a complicated numerical iteration that is handled by a computer. Because the computational data reduction method is complex, special attention is paid to error assessment. The error analysis considers random and systematic errors generated by the instrumentation along with errors generated by the approximate nature of the numerical methods. Results of the error analysis show that the experimentally determined heat transfer coefficients are accurate to within 15%. The error analysis also shows that the recovery temperature data may be in error by more than 50%. The results show that the recovery temperature data is only reliable when the recovery temperature of the jet is greater than 5 C, i.e. the jet velocity is in excess of 100 m/s. Parameters that were investigated include nozzle width, distance from the nozzle exit to the airfoil surface, and jet velocity. Heat transfer data is presented in graphical and tabular forms. An engineering analysis of hypersonic airfoil leading edge cooling is performed using the results from these experiments. Several suggestions for the improvement of the experimental technique are discussed.

  12. Coupled calculation of the radiological release and the thermal-hydraulic behavior of a 3-loop PWR after a SGTR by means of the code RELAP5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hove, W.; Van Laeken, K.; Bartsoen, L.

    1995-09-01

    To enable a more realistic and accurate calculation of the radiological consequences of a SGTR, a fission product transport model was developed. As the radiological releases strongly depend on the thermal-hydraulic transient, the model was included in the RELAP5 input decks of the Belgian NPPs. This enables the coupled calculation of the thermal-hydraulic transient and the radiological release. The fission product transport model tracks the concentration of the fission products in the primary circuit, in each of the SGs as well as in the condenser. This leads to a system of 6 coupled, first order ordinary differential equations with timemore » dependent coefficients. Flashing, scrubbing, atomisation and dry out of the break flow are accounted for. Coupling with the thermal-hydraulic calculation and correct modelling of the break position enables an accurate calculation of the mixture level above the break. Pre- and post-accident spiking in the primary circuit are introduced. The transport times in the FW-system and the SG blowdown system are also taken into account, as is the decontaminating effect of the primary make-up system and of the SG blowdown system. Physical input parameters such as the partition coefficients, half life times and spiking coefficients are explicitly introduced so that the same model can be used for iodine, caesium and noble gases.« less

  13. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  14. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less

  15. Modeling biotic uptake by periphyton and transient hyporrheic storage of nitrate in a natural stream

    USGS Publications Warehouse

    Kim, Brian K.A.; Jackman, Alan P.; Triska, Frank J.

    1992-01-01

    To a convection-dispersion hydrologic transport model we coupled a transient storage submodel (Bencala, 1984) and a biotic uptake submodel based on Michaelis-Menten kinetics (Kim et al., 1990). Our purpose was threefold: (1) to simulate nitrate retention in response to change in load in a third-order stream, (2) to differentiate biotic versus hydrologie factors in nitrate retention, and (3) to produce a research tool whose properties are consistent with laboratory and field observations. Hydrodynamic parameters were fitted from chloride concentration during a 20-day chloride-nitrate coinjection (Bencala, 1984), and biotic uptake kinetics were based on flume studies by Kim et al. (1990) and Triska et al. (1983). Nitrate concentration from the 20-day coinjection experiment served as a base for model validation. The complete transport retention model reasonably predicted the observed nitrate concentration. However, simulations which lacked either the transient storage submodel or the biotic uptake submodel poorly predicted the observed nitrate concentration. Model simulations indicated that transient storage in channel and hyporrheic interstices dominated nitrate retention within the first 24 hours, whereas biotic uptake dominated thereafter. A sawtooth function for Vmax ranging from 0.10 to 0.17 μg NO3-N s−1 gAFDM−1 (grams ash free dry mass) slightly underpredicted nitrate retention in simulations of 2–7 days. This result was reasonable since uptake by other nitrate-demanding processes were not included. The model demonstrated how ecosystem retention is an interaction between physical and biotic processes and supports the validity of coupling separate hydrodynamic and reactive submodels to established solute transport models in biological studies of fluvial ecosystems.

  16. Mechanisms contributing to cluster formation in the inferior olivary nucleus in brainstem slices from postnatal mice

    PubMed Central

    Kølvraa, Mathias; Müller, Felix C; Jahnsen, Henrik; Rekling, Jens C

    2014-01-01

    Abstract The inferior olivary nucleus (IO) in in vitro slices from postnatal mice (P5.5–P15.5) spontaneously generates clusters of neurons with synchronous calcium transients, and intracellular recordings from IO neurons suggest that electrical coupling between neighbouring IO neurons may serve as a synchronizing mechanism. Here, we studied the cluster-forming mechanism and find that clusters overlap extensively with an overlap distribution that resembles the distribution for a random overlap model. The average somatodendritic field size of single curly IO neurons was ∼6400 μm2, which is slightly smaller than the average IO cluster size. Eighty-seven neurons with overlapping dendrites were estimated to be contained in the principal olive mean cluster size, and about six non-overlapping curly IO neurons could be contained within the largest clusters. Clusters could also be induced by iontophoresis with glutamate. Induced clusters were inhibited by tetrodotoxin, carbenoxelone and 18β-glycyrrhetinic acid, suggesting that sodium action potentials and electrical coupling are involved in glutamate-induced cluster formation, which could also be induced by activation of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Spikelets and a small transient depolarizing response were observed during glutamate-induced cluster formation. Calcium transients spread with decreasing velocity during cluster formation, and somatic action potentials and cluster formation are accompanied by large dendritic calcium transients. In conclusion, cluster formation depends on gap junctions, sodium action potentials and spontaneous clusters occur randomly throughout the IO. The relative slow signal spread during cluster formation, combined with a strong dendritic influx of calcium, may signify that active dendritic properties contribute to cluster formation. PMID:24042500

  17. Coherent excitations and electron-phonon coupling in Ba/EuFe2As2 compounds investigated by femtosecond time- and angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Avigo, I.; Cortés, R.; Rettig, L.; Thirupathaiah, S.; Jeevan, H. S.; Gegenwart, P.; Wolf, T.; Ligges, M.; Wolf, M.; Fink, J.; Bovensiepen, U.

    2013-03-01

    We employed femtosecond time- and angle-resolved photoelectron spectroscopy to analyze the response of the electronic structure of the 122 Fe-pnictide parent compounds Ba/EuFe2As2 and optimally doped BaFe1.85Co0.15As2 near the Γ point to optical excitation by an infrared femtosecond laser pulse. We identify pronounced changes of the electron population within several 100 meV above and below the Fermi level, which we explain as a combination of (i) coherent lattice vibrations, (ii) a hot electron and hole distribution, and (iii) transient modifications of the chemical potential. The responses of the three different materials are very similar. In the coherent response we identify three modes at 5.6, 3.3, and 2.6 THz. While the highest frequency mode is safely assigned to the A1g mode, the other two modes require a discussion in comparison to the literature. Employing a transient three temperature model we deduce from the transient evolution of the electron distribution a rather weak, momentum-averaged electron-phonon coupling quantified by values for λ<ω2> between 30 and 70 meV2. The chemical potential is found to present pronounced transient changes reaching a maximum of 15 meV about 0.6 ps after optical excitation and is modulated by the coherent phonons. This change in the chemical potential is particularly strong in a multiband system like the 122 Fe-pnictide compounds investigated here due to the pronounced variation of the electron density of states close to the equilibrium chemical potential.

  18. Hysteresis of Colloid Retention and Release in Saturated Porous Media During Transients in Solution Chemistry

    USDA-ARS?s Scientific Manuscript database

    Saturated packed column and micromodel transport studies wereconducted to gain insightonmechanismsof colloid retention and release under unfavorable attachment conditions. The initial deposition of colloids in porous media was found to be a strongly coupled process that depended on solution chemistr...

  19. Development of a system emulating the global carbon cycle in Earth system models

    NASA Astrophysics Data System (ADS)

    Tachiiri, K.; Hargreaves, J. C.; Annan, J. D.; Oka, A.; Abe-Ouchi, A.; Kawamiya, M.

    2010-08-01

    Recent studies have indicated that the uncertainty in the global carbon cycle may have a significant impact on the climate. Since state of the art models are too computationally expensive for it to be possible to explore their parametric uncertainty in anything approaching a comprehensive fashion, we have developed a simplified system for investigating this problem. By combining the strong points of general circulation models (GCMs), which contain detailed and complex processes, and Earth system models of intermediate complexity (EMICs), which are quick and capable of large ensembles, we have developed a loosely coupled model (LCM) which can represent the outputs of a GCM-based Earth system model, using much smaller computational resources. We address the problem of relatively poor representation of precipitation within our EMIC, which prevents us from directly coupling it to a vegetation model, by coupling it to a precomputed transient simulation using a full GCM. The LCM consists of three components: an EMIC (MIROC-lite) which consists of a 2-D energy balance atmosphere coupled to a low resolution 3-D GCM ocean (COCO) including an ocean carbon cycle (an NPZD-type marine ecosystem model); a state of the art vegetation model (Sim-CYCLE); and a database of daily temperature, precipitation, and other necessary climatic fields to drive Sim-CYCLE from a precomputed transient simulation from a state of the art AOGCM. The transient warming of the climate system is calculated from MIROC-lite, with the global temperature anomaly used to select the most appropriate annual climatic field from the pre-computed AOGCM simulation which, in this case, is a 1% pa increasing CO2 concentration scenario. By adjusting the effective climate sensitivity (equivalent to the equilibrium climate sensitivity for an energy balance model) of MIROC-lite, the transient warming of the LCM could be adjusted to closely follow the low sensitivity (with an equilibrium climate sensitivity of 4.0 K) version of MIROC3.2. By tuning of the physical and biogeochemical parameters it was possible to reasonably reproduce the bulk physical and biogeochemical properties of previously published CO2 stabilisation scenarios for that model. As an example of an application of the LCM, the behavior of the high sensitivity version of MIROC3.2 (with a 6.3 K equilibrium climate sensitivity) is also demonstrated. Given the highly adjustable nature of the model, we believe that the LCM should be a very useful tool for studying uncertainty in global climate change, and we have named the model, JUMP-LCM, after the name of our research group (Japan Uncertainty Modelling Project).

  20. Transient recovery dynamics of a predator-prey system under press and pulse disturbances.

    PubMed

    Karakoç, Canan; Singer, Alexander; Johst, Karin; Harms, Hauke; Chatzinotas, Antonis

    2017-04-04

    Species recovery after disturbances depends on the strength and duration of disturbance, on the species traits and on the biotic interactions with other species. In order to understand these complex relationships, it is essential to understand mechanistically the transient dynamics of interacting species during and after disturbances. We combined microcosm experiments with simulation modelling and studied the transient recovery dynamics of a simple microbial food web under pulse and press disturbances and under different predator couplings to an alternative resource. Our results reveal that although the disturbances affected predator and prey populations by the same mortality, predator populations suffered for a longer time. The resulting diminished predation stress caused a temporary phase of high prey population sizes (i.e. prey release) during and even after disturbances. Increasing duration and strength of disturbances significantly slowed down the recovery time of the predator prolonging the phase of prey release. However, the additional coupling of the predator to an alternative resource allowed the predator to recover faster after the disturbances thus shortening the phase of prey release. Our findings are not limited to the studied system and can be used to understand the dynamic response and recovery potential of many natural predator-prey or host-pathogen systems. They can be applied, for instance, in epidemiological and conservational contexts to regulate prey release or to avoid extinction risk of the top trophic levels under different types of disturbances.

  1. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM).

    PubMed

    Delmotte, Philippe; Sieck, Gary C

    2015-02-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.

  2. The FAK–Arp2/3 interaction promotes leading edge advance and haptosensing by coupling nascent adhesions to lamellipodia actin

    PubMed Central

    Swaminathan, Vinay; Fischer, R. S.; Waterman, Clare M.

    2016-01-01

    Cell migration is initiated in response to biochemical or physical cues in the environment that promote actin-mediated lamellipodial protrusion followed by the formation of nascent integrin adhesions (NAs) within the protrusion to drive leading edge advance. Although FAK is known to be required for cell migration through effects on focal adhesions, its role in NA formation and lamellipodial dynamics is unclear. Live-cell microscopy of FAK−/− cells with expression of phosphorylation deficient or a FERM-domain mutant deficient in Arp2/3 binding revealed a requirement for FAK in promoting the dense formation, transient stabilization, and timely turnover of NA within lamellipodia to couple actin-driven protrusion to adhesion and advance of the leading edge. Phosphorylation on Y397 of FAK promotes dense NA formation but is dispensable for transient NA stabilization and leading edge advance. In contrast, transient NA stabilization and advance of the cell edge requires FAK–Arp2/3 interaction, which promotes Arp2/3 localization to NA and reduces FAK activity. Haptosensing of extracellular matrix (ECM) concentration during migration requires the interaction between FAK and Arp2/3, whereas FAK phosphorylation modulates mechanosensing of ECM stiffness during spreading. Taken together, our results show that mechanistically separable functions of FAK in NA are required for cells to distinguish distinct properties of their environment during migration. PMID:26842895

  3. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca2+ regulation in airway smooth muscle (ASM)1

    PubMed Central

    Delmotte, Philippe; Sieck, Gary C.

    2015-01-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca2+ ([Ca2+]cyt) responses to agonist stimulation and Ca2+ sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca2+]cyt induced by agonists leads to a transient increase in mitochondrial Ca2+ ([Ca2+]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca2+]mito is blunted despite enhanced [Ca2+]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion–ER/SR coupling, decreased mitochondrial Ca2+ buffering, mitochondrial fragmentation, and increased cell proliferation. PMID:25506723

  4. Network Connectivity for Permanent, Transient, Independent, and Correlated Faults

    NASA Technical Reports Server (NTRS)

    White, Allan L.; Sicher, Courtney; henry, Courtney

    2012-01-01

    This paper develops a method for the quantitative analysis of network connectivity in the presence of both permanent and transient faults. Even though transient noise is considered a common occurrence in networks, a survey of the literature reveals an emphasis on permanent faults. Transient faults introduce a time element into the analysis of network reliability. With permanent faults it is sufficient to consider the faults that have accumulated by the end of the operating period. With transient faults the arrival and recovery time must be included. The number and location of faults in the system is a dynamic variable. Transient faults also introduce system recovery into the analysis. The goal is the quantitative assessment of network connectivity in the presence of both permanent and transient faults. The approach is to construct a global model that includes all classes of faults: permanent, transient, independent, and correlated. A theorem is derived about this model that give distributions for (1) the number of fault occurrences, (2) the type of fault occurrence, (3) the time of the fault occurrences, and (4) the location of the fault occurrence. These results are applied to compare and contrast the connectivity of different network architectures in the presence of permanent, transient, independent, and correlated faults. The examples below use a Monte Carlo simulation, but the theorem mentioned above could be used to guide fault-injections in a laboratory.

  5. Statistical Methods for Quantifying the Variability of Solar Wind Transients of All Sizes

    NASA Astrophysics Data System (ADS)

    Tindale, E.; Chapman, S. C.

    2016-12-01

    The solar wind is inherently variable across a wide range of timescales, from small-scale turbulent fluctuations to the 11-year periodicity induced by the solar cycle. Each solar cycle is unique, and this change in overall cycle activity is coupled from the Sun to Earth via the solar wind, leading to long-term trends in space weather. Our work [Tindale & Chapman, 2016] applies novel statistical methods to solar wind transients of all sizes, to quantify the variability of the solar wind associated with the solar cycle. We use the same methods to link solar wind observations with those on the Sun and Earth. We use Wind data to construct quantile-quantile (QQ) plots comparing the statistical distributions of multiple commonly used solar wind-magnetosphere coupling parameters between the minima and maxima of solar cycles 23 and 24. We find that in each case the distribution is multicomponent, ranging from small fluctuations to extreme values, with the same functional form at all phases of the solar cycle. The change in PDF is captured by a simple change of variables, which is independent of the PDF model. Using this method we can quantify the quietness of the cycle 24 maximum, identify which variable drives the changing distribution of composite parameters such as ɛ, and we show that the distribution of ɛ is less sensitive to changes in its extreme values than that of its constituents. After demonstrating the QQ method on solar wind data, we extend the analysis to include solar and magnetospheric data spanning the same time period. We focus on GOES X-ray flux and WDC AE index data. Finally, having studied the statistics of transients across the full distribution, we apply the same method to time series of extreme bursts in each variable. Using these statistical tools, we aim to track the solar cycle-driven variability from the Sun through the solar wind and into the Earth's magnetosphere. Tindale, E. and S.C. Chapman (2016), Geophys. Res. Lett., 43(11), doi: 10.1002/2016GL068920.

  6. Impedance analysis of GPCR-mediated changes in endothelial barrier function: overview, and fundamental considerations for stable and reproducible measurements

    PubMed Central

    Stolwijk, Judith A.; Matrougui, Khalid; Renken, Christian W.; Trebak, Mohamed

    2014-01-01

    The past 20 years have seen significant growth in using impedance-based assays to understand the molecular underpinning of endothelial and epithelial barrier function in response to physiological agonists, pharmacological and toxicological compounds. Most studies on barrier function use G protein coupled receptor (GPCR) agonists which couple to fast and transient changes in barrier properties. The power of impedance based techniques such as Electric Cell-Substrate Impedance Sensing (ECIS) reside in its ability to detect minute changes in cell layer integrity label-free and in real-time ranging from seconds to days. We provide a comprehensive overview of the biophysical principles, applications and recent developments in impedance-based methodologies. Despite extensive application of impedance analysis in endothelial barrier research little attention has been paid to data analysis and critical experimental variables, which are both essential for signal stability and reproducibility. We describe the rationale behind common ECIS data presentation and interpretation and illustrate practical guidelines to improve signal intensity by adapting technical parameters such as electrode layout, monitoring frequency or parameter (resistance versus impedance magnitude). Moreover, we discuss the impact of experimental parameters, including cell source, liquid handling and agonist preparation on signal intensity and kinetics. Our discussions are supported by experimental data obtained from human microvascular endothelial cells challenged with three GPCR agonists, thrombin, histamine and Sphingosine-1-Phosphate. PMID:25537398

  7. Impedance analysis of GPCR-mediated changes in endothelial barrier function: overview and fundamental considerations for stable and reproducible measurements.

    PubMed

    Stolwijk, Judith A; Matrougui, Khalid; Renken, Christian W; Trebak, Mohamed

    2015-10-01

    The past 20 years has seen significant growth in using impedance-based assays to understand the molecular underpinning of endothelial and epithelial barrier function in response to physiological agonists and pharmacological and toxicological compounds. Most studies on barrier function use G protein-coupled receptor (GPCR) agonists which couple to fast and transient changes in barrier properties. The power of impedance-based techniques such as electric cell-substrate impedance sensing (ECIS) resides in its ability to detect minute changes in cell layer integrity label-free and in real-time ranging from seconds to days. We provide a comprehensive overview of the biophysical principles, applications, and recent developments in impedance-based methodologies. Despite extensive application of impedance analysis in endothelial barrier research, little attention has been paid to data analysis and critical experimental variables, which are both essential for signal stability and reproducibility. We describe the rationale behind common ECIS data presentation and interpretation and illustrate practical guidelines to improve signal intensity by adapting technical parameters such as electrode layout, monitoring frequency, or parameter (resistance versus impedance magnitude). Moreover, we discuss the impact of experimental parameters, including cell source, liquid handling, and agonist preparation on signal intensity and kinetics. Our discussions are supported by experimental data obtained from human microvascular endothelial cells challenged with three GPCR agonists, thrombin, histamine, and sphingosine-1-phosphate.

  8. International Symposium on Electromagnetic Compatibility, 25th, Arlington, VA, August 23-25, 1983, Symposium Record

    NASA Astrophysics Data System (ADS)

    Subjects related to electromagnetic compatibility (EMC) analysis are discussed, taking into account forcing terms of line equations for externally excited transmission lines, E-fields over ground, electromagnetic near fields as a function of electrical size, a program for experimental verification of EMC analysis models, random susceptability of an IC 7400 TTL NAND gate, and a comparison of IEMCAP and SEMCAP. Other topics explored are concerned with EMC measurements, spectrum management, the electromagnetic pulse (EMP), a Navy EMC program, measurement systems, filters, EMC design, electromagnetic vulnerability (EMV) assessment of weapon systems, FCC rules and regulations, shielding, and electromagnetic interference (EMI) in communication systems. Attention is also given to nonsinusoidal functions in radar and communications, transients/electrostatic discharge, open field testing, cables and connectors, interference effects of induced and conducted earth current at dc and ELF, test cells, and cable coupling.

  9. Detecting switching and intermittent causalities in time series

    NASA Astrophysics Data System (ADS)

    Zanin, Massimiliano; Papo, David

    2017-04-01

    During the last decade, complex network representations have emerged as a powerful instrument for describing the cross-talk between different brain regions both at rest and as subjects are carrying out cognitive tasks, in healthy brains and neurological pathologies. The transient nature of such cross-talk has nevertheless by and large been neglected, mainly due to the inherent limitations of some metrics, e.g., causality ones, which require a long time series in order to yield statistically significant results. Here, we present a methodology to account for intermittent causal coupling in neural activity, based on the identification of non-overlapping windows within the original time series in which the causality is strongest. The result is a less coarse-grained assessment of the time-varying properties of brain interactions, which can be used to create a high temporal resolution time-varying network. We apply the proposed methodology to the analysis of the brain activity of control subjects and alcoholic patients performing an image recognition task. Our results show that short-lived, intermittent, local-scale causality is better at discriminating both groups than global network metrics. These results highlight the importance of the transient nature of brain activity, at least under some pathological conditions.

  10. Rapid and Automated Analytical Methods for Redox Species Based on Potentiometric Flow Injection Analysis Using Potential Buffers

    PubMed Central

    Ohura, Hiroki; Imato, Toshihiko

    2011-01-01

    Two analytical methods, which prove the utility of a potentiometric flow injection technique for determining various redox species, based on the use of some redox potential buffers, are reviewed. The first is a potentiometric flow injection method in which a redox couple such as Fe(III)-Fe(II), Fe(CN)6 3−-Fe(CN)(CN)6 4−, and bromide-bromine and a redox electrode or a combined platinum-bromide ion selective electrode are used. The analytical principle and advantages of the method are discussed, and several examples of its application are reported. Another example is a highly sensitive potentiometric flow injection method, in which a large transient potential change due to bromine or chlorine as an intermediate, generated during the reaction of the oxidative species with an Fe(III)-Fe(II) potential buffer containing bromide or chloride, is utilized. The analytical principle and details of the proposed method are described, and examples of several applications are described. The determination of trace amounts of hydrazine, based on the detection of a transient change in potential caused by the reaction with a Ce(IV)-Ce(III) potential buffer, is also described. PMID:21584280

  11. RAZORBACK - A Research Reactor Transient Analysis Code Version 1.0 - Volume 3: Verification and Validation Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talley, Darren G.

    2017-04-01

    This report describes the work and results of the verification and validation (V&V) of the version 1.0 release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, the equation of motion for fuel element thermal expansion, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This V&V effort was intended to confirm that the code showsmore » good agreement between simulation and actual ACRR operations.« less

  12. Distributed Parameter Analysis of Pressure and Flow Disturbances in Rocket Propellant Feed Systems

    NASA Technical Reports Server (NTRS)

    Dorsch, Robert G.; Wood, Don J.; Lightner, Charlene

    1966-01-01

    A digital distributed parameter model for computing the dynamic response of propellant feed systems is formulated. The analytical approach used is an application of the wave-plan method of analyzing unsteady flow. Nonlinear effects are included. The model takes into account locally high compliances at the pump inlet and at the injector dome region. Examples of the calculated transient and steady-state periodic responses of a simple hypothetical propellant feed system to several types of disturbances are presented. Included are flow disturbances originating from longitudinal structural motion, gimbaling, throttling, and combustion-chamber coupling. The analytical method can be employed for analyzing developmental hardware and offers a flexible tool for the calculation of unsteady flow in these systems.

  13. A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Zhong, Zheng

    2017-10-01

    To analyse the frequently encountered thermo-chemo-mechanical problems in chemically active material applications, we develop a thermodynamically-consistent continuum theory of coupled deformation, mass diffusion, heat conduction and chemical reaction. Basic balance equations of force, mass and energy are presented at first, and then fully coupled constitutive laws interpreting multi-field interactions and evolving equations governing irreversible fluxes are constructed according to the energy dissipation inequality and the chemical kinetics. To consider the essential distinction between mass diffusion and chemical reactions in affecting free energy and dissipations of a highly coupled system, we regard both the concentrations of diffusive species and the extent of reaction as independent state variables. This new formulation then distinguishes between the energy contribution from the diffusive species entering the solid and that from the subsequent chemical reactions occurring among these species and the host solid, which not only interact with stresses or strains in different manners and on different time scales, but also induce different variations of solid microstructures and material properties. Taking advantage of this new description, we further establish a specialized isothermal model to predict precisely the transient chemo-mechanical response of a swelling solid with a proposed volumetric constraint that accounts for material incompressibility. Coupled kinetics is incorporated to capture the volumetric swelling of the solid caused by imbibition of external species and the simultaneous dilation arised from chemical reactions between the diffusing species and the solid. The model is then exemplified with two numerical examples of transient swelling accompanied by chemical reaction. Various ratios of characteristic times of diffusion and chemical reaction are taken into account to shed light on the dependency on kinetic time scales of evolution patterns for a diffusion-reaction controlled deformable solid.

  14. Transient sensitivities of sea ice export through the Canadian Arctic Archipelago inferred from a coupled ocean/sea-ice adjoint model

    NASA Astrophysics Data System (ADS)

    Heimbach, P.; Losch, M.; Menemenlis, D.; Campin, J.; Hill, C.

    2008-12-01

    The sensitivity of sea-ice export through the Canadian Arctic Archipelago (CAA), measured in terms of its solid freshwater export through Lancaster Sound, to changes in various elements of the ocean and sea-ice state, and to elements of the atmospheric forcing fields through time and space is assessed by means of a coupled ocean/sea-ice adjoint model. The adjoint model furnishes full spatial sensitivity maps (also known as Lagrange multipliers) of the export metric to a variety of model variables at any chosen point in time, providing the unique capability to quantify major drivers of sea-ice export variability. The underlying model is the MIT ocean general circulation model (MITgcm), which is coupled to a Hibler-type dynamic/thermodynamic sea-ice model. The configuration is based on the Arctic face of the ECCO3 high-resolution cubed-sphere model, but coarsened to 36-km horizontal grid spacing. The adjoint of the coupled system has been derived by means of automatic differentiation using the software tool TAF. Finite perturbation simulations are performed to check the information provided by the adjoint. The sea-ice model's performance in the presence of narrow straits is assessed with different sea-ice lateral boundary conditions. The adjoint sensitivity clearly exposes the role of the model trajectory and the transient nature of the problem. The complex interplay between forcing, dynamics, and boundary condition is demonstrated in the comparison between the different calculations. The study is a step towards fully coupled adjoint-based ocean/sea-ice state estimation at basin to global scales as part of the ECCO efforts.

  15. Analysis of unmitigated large break loss of coolant accidents using MELCOR code

    NASA Astrophysics Data System (ADS)

    Pescarini, M.; Mascari, F.; Mostacci, D.; De Rosa, F.; Lombardo, C.; Giannetti, F.

    2017-11-01

    In the framework of severe accident research activity developed by ENEA, a MELCOR nodalization of a generic Pressurized Water Reactor of 900 MWe has been developed. The aim of this paper is to present the analysis of MELCOR code calculations concerning two independent unmitigated large break loss of coolant accident transients, occurring in the cited type of reactor. In particular, the analysis and comparison between the transients initiated by an unmitigated double-ended cold leg rupture and an unmitigated double-ended hot leg rupture in the loop 1 of the primary cooling system is presented herein. This activity has been performed focusing specifically on the in-vessel phenomenology that characterizes this kind of accidents. The analysis of the thermal-hydraulic transient phenomena and the core degradation phenomena is therefore here presented. The analysis of the calculated data shows the capability of the code to reproduce the phenomena typical of these transients and permits their phenomenological study. A first sequence of main events is here presented and shows that the cold leg break transient results faster than the hot leg break transient because of the position of the break. Further analyses are in progress to quantitatively assess the results of the code nodalization for accident management strategy definition and fission product source term evaluation.

  16. Correlating structural dynamics and catalytic activity of AgAu nanoparticles with ultrafast spectroscopy and all-atom molecular dynamics simulations.

    PubMed

    Ferbonink, G F; Rodrigues, T S; Dos Santos, D P; Camargo, P H C; Albuquerque, R Q; Nome, R A

    2018-05-29

    In this study, we investigated hollow AgAu nanoparticles with the goal of improving our understanding of the composition-dependent catalytic activity of these nanoparticles. AgAu nanoparticles were synthesized via the galvanic replacement method with controlled size and nanoparticle compositions. We studied extinction spectra with UV-Vis spectroscopy and simulations based on Mie theory and the boundary element method, and ultrafast spectroscopy measurements to characterize decay constants and the overall energy transfer dynamics as a function of AgAu composition. Electron-phonon coupling times for each composition were obtained from pump-power dependent pump-probe transients. These spectroscopic studies showed how nanoscale surface segregation, hollow interiors and porosity affect the surface plasmon resonance wavelength and fundamental electron-phonon coupling times. Analysis of the spectroscopic data was used to correlate electron-phonon coupling times to AgAu composition, and thus to surface segregation and catalytic activity. We have performed all-atom molecular dynamics simulations of model hollow AgAu core-shell nanoparticles to characterize nanoparticle stability and equilibrium structures, besides providing atomic level views of nanoparticle surface segregation. Overall, the basic atomistic and electron-lattice dynamics of core-shell AgAu nanoparticles characterized here thus aid the mechanistic understanding and performance optimization of AgAu nanoparticle catalysts.

  17. Co-rotational thermo-mechanically coupled multi-field framework and finite element for the large displacement analysis of multi-layered shape memory alloy beam-like structures

    NASA Astrophysics Data System (ADS)

    Solomou, Alexandros G.; Machairas, Theodoros T.; Karakalas, Anargyros A.; Saravanos, Dimitris A.

    2017-06-01

    A thermo-mechanically coupled finite element (FE) for the simulation of multi-layered shape memory alloy (SMA) beams admitting large displacements and rotations (LDRs) is developed to capture the geometrically nonlinear effects which are present in many SMA applications. A generalized multi-field beam theory implementing a SMA constitutive model based on small strain theory, thermo-mechanically coupled governing equations and multi-field kinematic hypotheses combining first order shear deformation assumptions with a sixth order polynomial temperature field through the thickness of the beam section are extended to admit LDRs. The co-rotational formulation is adopted, where the motion of the beam is decomposed to rigid body motion and relative small deformation in the local frame. A new generalized multi-layered SMA FE is formulated. The nonlinear transient spatial discretized equations of motion of the SMA structure are synthesized and solved using the Newton-Raphson method combined with an implicit time integration scheme. Correlations of models incorporating the present beam FE with respective results of models incorporating plane stress SMA FEs, demonstrate excellent agreement of the predicted LDRs response, temperature and phase transformation fields, as well as, significant gains in computational time.

  18. Experimental investigation on the coupled effect of effective stress and gas slippage on the permeability of shale

    PubMed Central

    Yang, Diansen; Wang, Wei; Chen, Weizhong; Wang, Shugang; Wang, Xiaoqiong

    2017-01-01

    Permeability is one of the most important parameters to evaluate gas production in shale reservoirs. Because shale permeability is extremely low, gas is often used in the laboratory to measure permeability. However, the measured apparent gas permeability is higher than the intrinsic permeability due to the gas slippage effect, which could be even more dominant for materials with nanopores. Increasing gas pressure during tests reduces gas slippage effect, but it also decreases the effective stress which in turn influences the permeability. The coupled effect of gas slippage and effective stress on shale permeability remains unclear. Here we perform laboratory experiments on Longmaxi shale specimens to explore the coupled effect. We use the pressure transient method to measure permeability under different stress and pressure conditions. Our results reveal that the apparent measured permeability is controlled by these two competing effects. With increasing gas pressure, there exists a pressure threshold at which the dominant effect on permeability switches from gas slippage to effective stress. Based on the Klinkenberg model, we propose a new conceptual model that incorporates both competing effects. Combining microstructure analysis, we further discuss the roles of stress, gas pressure and water contents on gas permeability of shale. PMID:28304395

  19. Coupled CFD-Thermal Analysis of Erosion Patterns Resulting from Nozzle Wedgeouts on the SRTMV-N2

    NASA Technical Reports Server (NTRS)

    Ables, Catherine; Davis, Philip

    2014-01-01

    The objective of this analysis was to study the effects of the erosion patterns from the introduction of nozzle flaws machined into the nozzle of the SRTMV-N2 (Solid Rocket Test Motor V Nozzle 2). The SRTMV-N2 motor was a single segment static subscale solid rocket motor used to further develop the RSRMV (Redesigned Solid Rocket Motor V Segment). Two flaws or "wedgeouts" were placed in the nozzle inlet parallel to the ply angles of that section to study erosion effects. One wedgeout was placed in the nose cap region and the other placed in the inlet ring on the opposite side of the bondline, separated 180 degrees circumferentially. A coupled CFD (Computational Fluid Analysis)-thermal iterative analytical approach was utilized at the wedgeouts to analyze the erosion profile during the burn time. The iterative CFD thermal approach was applied at five second intervals throughout the motor burn. The coupled fluid thermal boundary conditions were derived from a steady state CFD solution at the beginning of the interval. The derived heat fluxes were then applied along the surface and a transient thermal solution was developed to characterize the material response over the specified interval. Eroded profiles of each of the nozzle's wedgeouts and the original contour were created at each of the specified intervals. The final iteration of the erosion profile showed that both wedgeouts were "washedout," indicating that the erosion profile of the wedgeout had rejoined the original eroded contour, leaving no trace of the wedgeouts post fire. This analytical assessment agreed with post-fire observations made of the SRTMV-N2 wedgeouts, which noted a smooth eroded contour.

  20. Pre-flight transient dynamic analysis of B-52 carrying Space Shuttle solid rocket booster drop-test vehicle

    NASA Technical Reports Server (NTRS)

    Ko, W. L.; Schuster, L. S.

    1983-01-01

    This paper concerns the transient dynamic analysis of the B-52 aircraft carrying the Space Shuttle solid-rocket booster drop-test vehicle (SRB/DTV). The NASA structural analysis (NASTRAN) finite-element computer program was used in the analysis. The B-52 operating conditions considered for analysis were (1) landing and (2) braking on aborted takeoff runs. The transient loads for the B-52 pylon front and rear hooks were calculated. The results can be used to establish the safe maneuver envelopes for the B-52 carrying the SRB/DTV in landings and brakings.

  1. Advances in transient (pulsed) eddy current for inspection of multi-layer aluminum structures in the presence of ferrous fasteners

    NASA Astrophysics Data System (ADS)

    Desjardins, D. R.; Vallières, G.; Whalen, P. P.; Krause, T. W.

    2012-05-01

    An experimental investigation of the electromagnetic processes underlying transient (pulsed) eddy current inspection of aircraft wing structures in the vicinity of ferrous fasteners is performed. The separate effects of transient excitation of ferrous fastener and eddy currents induced in the surrounding aluminum structure are explored using a transmit-receive configuration with transient excitation of a steel rod, an aluminum plate with a bore hole and a steel rod through the bore hole. Observations are used to interpret results from a coupled driving and differential coil sensing unit applied to detect fatigue cracks emanating from bolt holes in aluminum structures with ferrous fasteners present. In particular, it is noted that abrupt magnetization of the fastener, by the probe's central driving unit, can transfer flux and consequently, induce strong eddy current responses deep within the aluminum structure in the vicinity of the bore hole. Rotation of the probe, centered over the fastener, permits detection of subsurface discontinuities, such as cracks, by the pair of differentially connected pickup coils.

  2. Geometrically nonlinear transient vibrations of actively damped anti-symmetric angle ply laminated composite shallow shell using active fibre composite (AFC) actuators

    NASA Astrophysics Data System (ADS)

    Ashok, M. H.; Shivakumar, J.; Nandurkar, Santosh; Khadakbhavi, Vishwanath; Pujari, Sanjay

    2018-02-01

    In present work, the thin laminated composite shallow shell as smart structure with AFC material’s ACLD treatment is analyzed for geometrically nonlinear transient vibrations. The AFC material is used to make the constraining layer of the ACLD treatment. Golla-Hughes-McTavish (GHM) is used to model the constrained viscoelastic layer of the ACLD treatment in time domain. Along with a simple first-order shear deformation theory the Von Kármán type non-linear strain displacement relations are used for deriving this electromechanical coupled problem. A 3-dimensional finite element model of smart composite panels integrated with the ACLD treated patches has been modelled to reveal the performance of ACLD treated patches on improving the damping properties of slender anti-symmetric angle-ply laminated shallow shell, in controlling the transient vibrations which are geometrically nonlinear. The mathematical results explain that the ACLD treated patches considerably enhance the damping properties of anti-symmetric angle-ply panels undergoing geometrically nonlinear transient vibrations.

  3. Transient Thermoelectric Solution Employing Green's Functions

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    The study works to formulate convenient solutions to the problem of a thermoelectric couple operating under a time varying condition. Transient operation of a thermoelectric will become increasingly common as thermoelectric technology permits applications in an increasing number of uses. A number of terrestrial applications, in contrast to steady-state space applications, can subject devices to time varying conditions. For instance thermoelectrics can be exposed to transient conditions in the automotive industry depending on engine system dynamics along with factors like driving style. In an effort to generalize the thermoelectric solution a Greens function method is used, so that arbitrary time varying boundary and initial conditions may be applied to the system without reformulation. The solution demonstrates that in thermoelectric applications of a transient nature additional factors must be taken into account and optimized. For instance, the materials specific heat and density become critical parameters in addition to the thermal mass of a heat sink or the details of the thermal profile, such as oscillating frequency. The calculations can yield the optimum operating conditions to maximize power output andor efficiency for a given type of device.

  4. Middle Atmosphere Electrodynamics During a Thunderstorm

    NASA Technical Reports Server (NTRS)

    Croskey, Charles L.

    1996-01-01

    Rocket-based instrumentation investigations of middle atmospheric electrodynamics during thunderstorms were conducted in coordination with balloon-measurements at Wallops Island, Virginia. Middle atmosphere electrodynamics and energy coupling are of particular importance to associated electrical processes at lower and higher altitudes. Objectives of this research effort included: (1) investigation of thunderstorm effects on middle atmosphere electrical structure, including spatial and temporal dependence; (2) characterization of electric field transients and the associated energy deposited at various altitudes; (3) evaluation of the vertical Maxwell current density over a thunderstorm to study the coupling of energy to higher altitudes; and (4) investigation of the coupling of energy to the ionosphere and the current supplied to the 'global circuit.'

  5. Flow chemistry as a discovery tool to access sp2–sp3 cross-coupling reactions via diazo compounds† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc03072a Click here for additional data file.

    PubMed Central

    Tran, Duc N.; Battilocchio, Claudio; Lou, Shing-Bong; Hawkins, Joel M.

    2015-01-01

    The work takes advantage of an important feature of flow chemistry, whereby the generation of a transient species (or reactive intermediate) can be followed by a transfer step into another chemical environment, before the intermediate is reacted with a coupling partner. This concept is successfully applied to achieve a room temperature sp2–sp3 cross coupling of boronic acids with diazo compounds, these latter species being generated from hydrazones under flow conditions using MnO2 as the oxidant. PMID:29560199

  6. A new type of two-wave interaction in saturable dye

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Lin, F.

    1986-03-01

    A new interaction of two noncollinear laser beams with the same frequency have been observed in a saturable dye solution of bis-(4-dimethyl aminodithio benzil) (DN) and pentamethine cyanine. It differs from the four-wave mixing effect and the transient self-diffraction and coherent coupling effects.

  7. AGT-102 automotive gas turbine

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Development of a gas turbine powertrain with a 30% fuel economy improvement over a comparable S1 reciprocating engine, operation within 0.41 HC, 3.4 CO, and 0.40 NOx grams per mile emissions levels, and ability to use a variety of alternate fuels is summarized. The powertrain concept consists of a single-shaft engine with a ceramic inner shell for containment of hot gasses and support of twin regenerators. It uses a fixed-geometry, lean, premixed, prevaporized combustor, and a ceramic radial turbine rotor supported by an air-lubricated journal bearing. The engine is coupled to the vehicle through a widerange continuously variable transmission, which utilizes gearing and a variable-ratio metal compression belt. A response assist flywheel is used to achieve acceptable levels of engine response. The package offers a 100 lb weight advantage in a Chrysler K Car front-wheel-drive installation. Initial layout studies, preliminary transient thermal analysis, ceramic inner housing structural analysis, and detailed performance analysis were carried out for the basic engine.

  8. Mechanism of potassium ion uptake by the Na+/K+-ATPase

    PubMed Central

    Castillo, Juan P.; Rui, Huan; Basilio, Daniel; Das, Avisek; Roux, Benoît; Latorre, Ramon; Bezanilla, Francisco; Holmgren, Miguel

    2015-01-01

    The Na+/K+-ATPase restores sodium (Na+) and potassium (K+) electrochemical gradients dissipated by action potentials and ion-coupled transport processes. As ions are transported, they become transiently trapped between intracellular and extracellular gates. Once the external gate opens, three Na+ ions are released, followed by the binding and occlusion of two K+ ions. While the mechanisms of Na+ release have been well characterized by the study of transient Na+ currents, smaller and faster transient currents mediated by external K+ have been more difficult to study. Here we show that external K+ ions travelling to their binding sites sense only a small fraction of the electric field as they rapidly and simultaneously become occluded. Consistent with these results, molecular dynamics simulations of a pump model show a wide water-filled access channel connecting the binding site to the external solution. These results suggest a mechanism of K+ gating different from that of Na+ occlusion. PMID:26205423

  9. Steady and transient regimes in hydropower plants

    NASA Astrophysics Data System (ADS)

    Gajic, A.

    2013-12-01

    Hydropower plant that has been in operation for about 30 years has to be reconstructed. They have already installed 12 Kaplan turbines, the largest in the world at that time. The existing CAM relationship was determined based on hydraulic model tests and checked by efficiency on-site tests. It was also tested based on turbine bearing vibrations. In order to discover vibrations and long cracks on stay vanes detailed on-site measurements were performed. Influence of the modification of the trailing edges on the dynamic stresses of the stay vanes is also shown. In order to improve power output transient regimes were analyzed, both experimentally and numerically. Reversible hydropower plant, a pioneer in Europe since it was the first Pump storage power plant constructed with the highest head pump-turbines in the world. Analyses of transient regimes discover some problems with S-shaped characteristics coupled with non-symmetrical penstock.

  10. A new offshore transport mechanism for shoreline-released tracer induced by transient rip currents and stratification

    NASA Astrophysics Data System (ADS)

    Kumar, Nirnimesh; Feddersen, Falk

    2017-03-01

    Offshore transport from the shoreline across the inner shelf of early-stage larvae and pathogens is poorly understood yet is critical for understanding larval fate and dilution of polluted shoreline water. With a novel coupling of a transient rip current (TRC) generating surf zone model and an ocean circulation model, we show that transient rip currents ejected onto a stratified inner shelf induce a new, previously unconsidered offshore transport pathway. For incident waves and stratification typical for Southern California in the fall, this mechanism subducts surf zone-origin tracers and transports them at least 800 m offshore at 1.2 km/d analogous to subduction at ocean fronts. This mechanism requires both TRCs and stratification. As TRCs are ubiquitous and the inner shelf is often stratified, this mechanism may have an important role in exporting early-stage larvae, pathogens, or other tracers onto the shelf.

  11. Transient behavior of flare-associated solar wind. II - Gas dynamics in a nonradial open field region

    NASA Technical Reports Server (NTRS)

    Nagai, F.

    1984-01-01

    Transient behavior of flare-associated solar wind in the nonradial open field region is numerically investigated, taking into account the thermal and dynamical coupling between the chromosphere and the corona. A realistic steady solar wind is constructed which passes through the inner X-type critical point in the rapidly diverging region. The wind speed shows a local maximum at the middle, O-type, critical point. The wind's density and pressure distributions decrease abruptly in the rapidly diverging region of the flow tube. The transient behavior of the wind following flare energy deposition includes ascending and descending conduction fronts. Thermal instability occurs in the lower corona, and ascending material flows out through the throat after the flare energy input ceases. A local density distribution peak is generated at the shock front due to the pressure deficit just behind the shock front.

  12. Detecting hydrological changes through conceptual model

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Caracciolo, Domenico; Pumo, Dario; Francipane, Antonio; Valerio Noto, Leonardo

    2015-04-01

    Natural changes and human modifications in hydrological systems coevolve and interact in a coupled and interlinked way. If, on one hand, climatic changes are stochastic, non-steady, and affect the hydrological systems, on the other hand, human-induced changes due to over-exploitation of soils and water resources modifies the natural landscape, water fluxes and its partitioning. Indeed, the traditional assumption of static systems in hydrological analysis, which has been adopted for long time, fails whenever transient climatic conditions and/or land use changes occur. Time series analysis is a way to explore environmental changes together with societal changes; unfortunately, the not distinguishability between causes restrict the scope of this method. In order to overcome this limitation, it is possible to couple time series analysis with an opportune hydrological model, such as a conceptual hydrological model, which offers a schematization of complex dynamics acting within a basin. Assuming that model parameters represent morphological basin characteristics and that calibration is a way to detect hydrological signature at a specific moment, it is possible to argue that calibrating the model over different time windows could be a method for detecting potential hydrological changes. In order to test the capabilities of a conceptual model in detecting hydrological changes, this work presents different "in silico" experiments. A synthetic-basin is forced with an ensemble of possible future scenarios generated with a stochastic weather generator able to simulate steady and non-steady climatic conditions. The experiments refer to Mediterranean climate, which is characterized by marked seasonality, and consider the outcomes of the IPCC 5th report for describing climate evolution in the next century. In particular, in order to generate future climate change scenarios, a stochastic downscaling in space and time is carried out using realizations of an ensemble of General Circulation Models (GCMs) for the future scenarios 2046-2065 and 2081-2100. Land use changes (i.e., changes in the fraction of impervious area due to increasing urbanization) are explicitly simulated, while the reference hydrological responses are assessed by the spatially distributed, process-based hydrological model tRIBS, the TIN-based Real-time Integrated Basin Simulator. Several scenarios have been created, describing hypothetical centuries with steady conditions, climate change conditions, land use change conditions and finally complex conditions involving both transient climatic modifications and gradual land use changes. A conceptual lumped model, the EHSM (EcoHydrological Streamflow Model) is calibrated for the above mentioned scenarios with regard to different time-windows. The calibrated parameters show high sensitivity to anthropic variations in land use and/or climatic variability. Land use changes are clearly visible from parameters evolution especially when steady climatic conditions are considered. When the increase in urbanization is coupled with rainfall reduction the ability to detect human interventions through the analysis of conceptual model parameters is weakened.

  13. Transient CFD simulation of a Francis turbine startup

    NASA Astrophysics Data System (ADS)

    Nicolle, J.; Morissette, J. F.; Giroux, A. M.

    2012-11-01

    To assess the life expectancy of hydraulic turbines, it is essential to obtain the loading on the blades, especially during transient operations known to be the most damaging. This paper presents a simplified CFD setup to model the startup phase of a Francis turbine while it goes from rest to speed no-load condition. The fluid domain included one distributor sector coupled with one runner passage. The guide vane motion and change in the angular velocity were included in a commercial code with user functions. Comparisons between numerical results and measurements acquired on a full-size turbine showed that most of the flow physics occurring during startup were captured.

  14. Structural signature of a brittle-to-ductile transition in self-assembled networks.

    PubMed

    Ramos, Laurence; Laperrousaz, Arnaud; Dieudonné, Philippe; Ligoure, Christian

    2011-09-30

    We study the nonlinear rheology of a novel class of transient networks, made of surfactant micelles of tunable morphology reversibly linked by block copolymers. We couple rheology and time-resolved structural measurements, using synchrotron radiation, to characterize the highly nonlinear viscoelastic regime. We propose the fluctuations of the degree of alignment of the micelles under shear as a probe to identify a fracture process. We show a clear signature of a brittle-to-ductile transition in transient gels, as the morphology of the micelles varies, and provide a parallel between the fracture of solids and the fracture under shear of viscoelastic fluids.

  15. Thermal protection for hypervelocity flight in earth's atmosphere by use of radiation backscattering ablating materials

    NASA Technical Reports Server (NTRS)

    Howe, John T.; Yang, Lily

    1991-01-01

    A heat-shield-material response code predicting the transient performance of a material subject to the combined convective and radiative heating associated with the hypervelocity flight is developed. The code is dynamically interactive to the heating from a transient flow field, including the effects of material ablation on flow field behavior. It accomodates finite time variable material thickness, internal material phase change, wavelength-dependent radiative properties, and temperature-dependent thermal, physical, and radiative properties. The equations of radiative transfer are solved with the material and are coupled to the transfer energy equation containing the radiative flux divergence in addition to the usual energy terms.

  16. Time-Frequency Analysis of Rocket Nozzle Wall Pressures During Start-up Transients

    NASA Technical Reports Server (NTRS)

    Baars, Woutijn J.; Tinney, Charles E.; Ruf, Joseph H.

    2011-01-01

    Surveys of the fluctuating wall pressure were conducted on a sub-scale, thrust- optimized parabolic nozzle in order to develop a physical intuition for its Fourier-azimuthal mode behavior during fixed and transient start-up conditions. These unsteady signatures are driven by shock wave turbulent boundary layer interactions which depend on the nozzle pressure ratio and nozzle geometry. The focus however, is on the degree of similarity between the spectral footprints of these modes obtained from transient start-ups as opposed to a sequence of fixed nozzle pressure ratio conditions. For the latter, statistically converged spectra are computed using conventional Fourier analyses techniques, whereas the former are investigated by way of time-frequency analysis. The findings suggest that at low nozzle pressure ratios -- where the flow resides in a Free Shock Separation state -- strong spectral similarities occur between fixed and transient conditions. Conversely, at higher nozzle pressure ratios -- where the flow resides in Restricted Shock Separation -- stark differences are observed between the fixed and transient conditions and depends greatly on the ramping rate of the transient period. And so, it appears that an understanding of the dynamics during transient start-up conditions cannot be furnished by a way of fixed flow analysis.

  17. Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) Users' Guide

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Zinnecker, Alicia M.

    2014-01-01

    The tool for turbine engine closed-loop transient analysis (TTECTrA) is a semi-automated control design tool for subsonic aircraft engine simulations. At a specific flight condition, TTECTrA produces a basic controller designed to meet user-defined goals and containing only the fundamental limiters that affect the transient performance of the engine. The purpose of this tool is to provide the user a preliminary estimate of the transient performance of an engine model without the need to design a full nonlinear controller.

  18. Low transient storage and uptake efficiencies in seven agricultural streams: implications for nutrient demand

    USGS Publications Warehouse

    Sheibley, Rich W.; Duff, John H.; Tesoriero, Anthony J.

    2014-01-01

    We used mass load budgets, transient storage modeling, and nutrient spiraling metrics to characterize nitrate (NO3−), ammonium (NH4+), and inorganic phosphorus (SRP) demand in seven agricultural streams across the United States and to identify in-stream services that may control these conditions. Retention of one or all nutrients was observed in all but one stream, but demand for all nutrients was low relative to the mass in transport. Transient storage metrics (As/A, Fmed200, Tstr, and qs) correlated with NO3− retention but not NH4+ or SRP retention, suggesting in-stream services associated with transient storage and stream water residence time could influence reach-scale NO3− demand. However, because the fraction of median reach-scale travel time due to transient storage (Fmed200) was ≤1.2% across the sites, only a relatively small demand for NO3− could be generated by transient storage. In contrast, net uptake of nutrients from the water column calculated from nutrient spiraling metrics were not significant at any site because uptake lengths calculated from background nutrient concentrations were statistically insignificant and therefore much longer than the study reaches. These results suggest that low transient storage coupled with high surface water NO3− inputs have resulted in uptake efficiencies that are not sufficient to offset groundwater inputs of N. Nutrient retention has been linked to physical and hydrogeologic elements that drive flow through transient storage areas where residence time and biotic contact are maximized; however, our findings indicate that similar mechanisms are unable to generate a significant nutrient demand in these streams relative to the loads.

  19. AIR VEHICLES INTEGRATION AND TECHNOLOGY RESEARCH (AVIATR) Task Order 0015: Predictive Capability for Hypersonic Structural Response and Life Prediction Phase 1 - Identification of Knowledge Gaps

    DTIC Science & Technology

    2010-08-01

    using load - bearing tanks with parasitic TPS was considered to be a lower weight design when all details were accounted for. The cold structure...share one very key element with the design of load bearing hot structure – the design drive toward thin gauge metallic skin under complex and coupled...39 skin panel joints and their susceptibility to high acoustic loading coupled with transient heating, and hot structure skin deflections and

  20. Gain and losses in THz quantum cascade laser with metal-metal waveguide.

    PubMed

    Martl, Michael; Darmo, Juraj; Deutsch, Christoph; Brandstetter, Martin; Andrews, Aaron Maxwell; Klang, Pavel; Strasser, Gottfried; Unterrainer, Karl

    2011-01-17

    Coupling of broadband terahertz pulses into metal-metal terahertz quantum cascade lasers is presented. Mode matched terahertz transients are generated on the quantum cascade laser facet of subwavelength dimension. This method provides a full overlap of optical mode and active laser medium. A longitudinal optical-phonon depletion based active region design is investigated in a coupled cavity configuration. Modulation experiments reveal spectral gain and (broadband) losses. The observed gain shows high dynamic behavior when switching from loss to gain around threshold and is clamped at total laser losses.

  1. Slow-Wave Phase Shifters, Based on Thin Ferroelectric Films, for Reflectarray Antennas. Frequency-Agile Radio: Systems and Technlogies, WMG 139

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2006-01-01

    We have developed relatively broadband K- and Ka-band phase shifters using synthetic (slow-wave) transmission lines employing coupled microstripline "varactors". The tunable coupled microstripline circuits are based on laser ablated BaSrTiO films on lanthanum aluminate substrates. A model and design criteria for these novel circuits will be presented, along with measured performance including anomalous phase delay characteristics. The critical role of phase shifter loss and transient response in reflectarray antennas will be emphasized.

  2. Major component analysis of dynamic networks of physiologic organ interactions

    NASA Astrophysics Data System (ADS)

    Liu, Kang K. L.; Bartsch, Ronny P.; Ma, Qianli D. Y.; Ivanov, Plamen Ch

    2015-09-01

    The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function.

  3. Simulations for the Development of Thermoelectric Measurements

    NASA Astrophysics Data System (ADS)

    Zabrocki, Knud; Ziolkowski, Pawel; Dasgupta, Titas; de Boor, Johannes; Müller, Eckhard

    2013-07-01

    In thermoelectricity, continuum theoretical equations are usually used for the calculation of the characteristics and performance of thermoelectric elements, modules or devices as a function of external parameters (material, geometry, temperatures, current, flow, load, etc.). An increasing number of commercial software packages aimed at applications, such as COMSOL and ANSYS, contain vkernels using direct thermoelectric coupling. Application of these numerical tools also allows analysis of physical measurement conditions and can lead to specifically adapted methods for developing special test equipment required for the determination of TE material and module properties. System-theoretical and simulation-based considerations of favorable geometries are taken into account to create draft sketches in the development of such measurement systems. Particular consideration is given to the development of transient measurement methods, which have great advantages compared with the conventional static methods in terms of the measurement duration required. In this paper the benefits of using numerical tools in designing measurement facilities are shown using two examples. The first is the determination of geometric correction factors in four-point probe measurement of electrical conductivity, whereas the second example is focused on the so-called combined thermoelectric measurement (CTEM) system, where all thermoelectric material properties (Seebeck coefficient, electrical and thermal conductivity, and Harman measurement of zT) are measured in a combined way. Here, we want to highlight especially the measurement of thermal conductivity in a transient mode. Factors influencing the measurement results such as coupling to the environment due to radiation, heat losses via the mounting of the probe head, as well as contact resistance between the sample and sample holder are illustrated, analyzed, and discussed. By employing the results of the simulations, we have developed an improved sample head that allows for measurements over a larger temperature interval with enhanced accuracy.

  4. Modeling the Inhomogeneous Response of Steady and Transient Flows of Entangled Micellar Solutions

    NASA Astrophysics Data System (ADS)

    McKinley, Gareth

    2008-03-01

    Surfactant molecules can self-assemble in solution into long flexible structures known as wormlike micelles. These structures entangle, forming a viscoelastic network similar to those in entangled polymer melts and solutions. However, in contrast to `inert' polymeric networks, wormlike micelles continuously break and reform leading to an additional relaxation mechanism and the name `living polymers'. Observations in both classes of entangled fluids have shown that steady and transient shearing flows of these solutions exhibit spatial inhomogeneities such as `shear-bands' at sufficiently large applied strains. In the present work, we investigate the dynamical response of a class of two-species elastic network models which can capture, in a self-consistent manner, the creation and destruction of elastically-active network segments, as well as diffusive coupling between the microstructural conformations and the local state of stress in regions with large spatial gradients of local deformation. These models incorporate a discrete version of the micellar breakage and reforming dynamics originally proposed by Cates and capture, at least qualitatively, non-affine tube deformation and chain disentanglement. The `flow curves' of stress and apparent shear rate resulting from an assumption of homogeneous deformation is non-monotonic and linear stability analysis shows that the region of non-monotonic response is unstable. Calculation of the full inhomogeneous flow field results in localized shear bands that grow linearly in extent across the gap as the apparent shear rate increases. Time-dependent calculations in step strain, large amplitude oscillatory shear (LAOS) and in start up of steady shear flow show that the velocity profile in the gap and the total stress measured at the bounding surfaces are coupled and evolve in a complex non-monotonic manner as the shear bands develop and propagate.

  5. Regulation of mGlu4 metabotropic glutamate receptor signaling by type-2 G-protein coupled receptor kinase (GRK2).

    PubMed

    Iacovelli, L; Capobianco, L; Iula, M; Di Giorgi Gerevini, V; Picascia, A; Blahos, J; Melchiorri, D; Nicoletti, F; De Blasi, A

    2004-05-01

    We examined the role of G-protein coupled receptor kinase-2 (GRK2) in the homologous desensitization of mGlu4 metabotropic glutamate receptors transiently expressed in human embryonic kidney (HEK) 293 cells. Receptor activation with the agonist l-2-amino-4-phosphonobutanoate (l-AP4) stimulated at least two distinct signaling pathways: inhibition of cAMP formation and activation of the mitogen-activated protein kinase (MAPK) pathway [assessed by Western blot analysis of phosphorylated extracellular signal-regulated kinase (ERK) 1 and 2]. Activation of both pathways was attenuated by pertussis toxin. Overexpression of GRK2 (but not GRK4) largely attenuated the stimulation of the MAPK pathway by l-AP4, whereas it slightly potentiated the inhibition of FSK-stimulated cAMP formation. Transfection with a kinase-dead mutant of GRK2 (GRK2-K220R) or with the C-terminal fragment of GRK2 also reduced the mGlu4-mediated stimulation of MAPK, suggesting that GRK2 binds to the Gbetagamma subunits to inhibit signal propagation toward the MAPK pathway. This was confirmed by the evidence that GRK2 coimmunoprecipitated with Gbetagamma subunits in an agonist-dependent manner. Finally, neither GRK2 nor its kinase-dead mutant had any effect on agonist-induced mGlu4 receptor internalization in HEK293 cells transiently transfected with GFP-tagged receptors. Agonist-dependent internalization was instead abolished by a negative-dominant mutant of dynamin, which also reduced the stimulation of MAPK pathway by l-AP4. We speculate that GRK2 acts as a "switch molecule" by inhibiting the mGlu4 receptor-mediated stimulation of MAPK and therefore directing the signal propagation toward the inhibition of adenylyl cyclase.

  6. Subcellular localization and characterization of G protein-coupled receptor homolog from lymphocystis disease virus isolated in China.

    PubMed

    Huang, Youhua; Huang, Xiaohong; Zhang, Jing; Gui, Jianfang; Zhang, Qiya

    2007-01-01

    G protein-coupled receptors (GPCRs) constitute a large superfamily involved in various types of signal transduction pathways, and play an important role in coordinating the activation and migration of leukocytes to sites of infection and inflammation. Viral GPCRs, on the other hand, can help the virus to escape from host immune surveillance and contribute to viral pathogenesis. Lymphocystis disease virus isolated in China (LCDV-C) contains a putative homolog of cellular GPCRs, LCDV-C GPCR. In this paper, LCDV-C GPCR was cloned, and the subcellular localization and characterization of GPCR protein were investigated in fish cells. LCDV-C GPCR encoded a 325 amino acid peptide, containing a typical seven-transmembrane domain characteristic of the chemokine receptors and a conserved DRY motif that is usually essential for receptor activation. Transient transfection of GPCR-EGFP in fathead minnow (FHM) cells and epithelioma papulosum cyprini (EPC) cells indicated that LCDV-C GPCR was expressed abundantly in both the cytoplasm and nucleoplasm. Transient overexpression of GPCR in these two cells cannot induce obvious apoptosis. FHM cells stably expressing GPCR showed enhanced cell proliferation and significant anchorage-independent growth. The effects of GPCR protein on external apoptotic stimuli were examined. Few apoptotic bodies were observed in cells expressing GPCR treated with actinomycin D (ActD). Quantitative analysis of apoptotic cells indicated that a considerable decrease in the apoptotic fraction of cells expressing GPCR, compared with the control cells, was detected after exposure to ActD and cycloheximide. These data suggest that LCDV-C GPCR may inhibit apoptosis as part of its potential mechanism in mediating cellular transformation.

  7. Instrumented Taylor anvil-on-rod impact tests for validating applicability of standard strength models to transient deformation states

    NASA Astrophysics Data System (ADS)

    Eakins, D. E.; Thadhani, N. N.

    2006-10-01

    Instrumented Taylor anvil-on-rod impact tests have been conducted on oxygen-free electronic copper to validate the accuracy of current strength models for predicting transient states during dynamic deformation events. The experiments coupled the use of high-speed digital photography to record the transient deformation states and laser interferometry to monitor the sample back (free surface) velocity as a measure of the elastic/plastic wave propagation through the sample length. Numerical continuum dynamics simulations of the impact and plastic wave propagation employing the Johnson-Cook [Proceedings of the Seventh International Symposium on Ballistics, 1983, The Netherlands (Am. Def. Prep. Assoc. (ADPA)), pp. 541-547], Zerilli-Armstrong [J. Appl. Phys. C1, 1816 (1987)], and Steinberg-Guinan [J. Appl. Phys. 51, 1498 (1980)] constitutive equations were used to generate transient deformation profiles and the free surface velocity traces. While these simulations showed good correlation with the measured free surface velocity traces and the final deformed sample shape, varying degrees of deviations were observed between the photographed and calculated specimen profiles at intermediate deformation states. The results illustrate the usefulness of the instrumented Taylor anvil-on-rod impact technique for validating constitutive equations that can describe the path-dependent deformation response and can therefore predict the transient and final deformation states.

  8. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - user`s manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.

    This document is the User`s Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code`s capabilities and limitations; Chapter 2 describes the code`s structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARCmore » and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs.« less

  9. Transient rheology of the oceanic asthenosphere following the 2012 Indian Ocean Earthquake inferred from geodetic data

    NASA Astrophysics Data System (ADS)

    Pratama, Cecep; Ito, Takeo; Sasajima, Ryohei; Tabei, Takao; Kimata, Fumiaki; Gunawan, Endra; Ohta, Yusaku; Yamashina, Tadashi; Ismail, Nazli; Nurdin, Irwandi; Sugiyanto, Didik; Muksin, Umar; Meilano, Irwan

    2017-10-01

    Postseismic motion in the middle-field (100-500 km from the epicenter) geodetic data resulting from the 2012 Indian Ocean earthquake exhibited rapid change during the two months following the rupture. This pattern probably indicates multiple postseismic deformation mechanisms and might have been controlled by transient rheology. Therefore, the relative contribution of transient rheology in the oceanic asthenosphere and afterslip in the oceanic lithosphere should be incorporated to explain short- and long-term transitional features of postseismic signals. In this study, using two years of post-earthquake geodetic data from northern Sumatra, a three-dimensional spherical-earth finite-element model was constructed based on a heterogeneous structure and incorporating transient rheology. A rheology model combined with stress-driven afterslip was estimated. Our best-fit model suggests an oceanic lithosphere thickness of 75 km with oceanic asthenosphere viscosity values of 1 × 1017 Pa s and 2 × 1018 Pa s for the Kelvin and Maxwell viscosity models, respectively. The model results indicate that horizontal landward motion and vertical uplift in northern Sumatra require viscoelastic relaxation of the oceanic asthenosphere coupled with afterslip in the lithosphere. The present study demonstrates that transient rheology is essential for reproducing the rapidly changing motion of postseismic deformation in the middle-field area.

  10. An interval precise integration method for transient unbalance response analysis of rotor system with uncertainty

    NASA Astrophysics Data System (ADS)

    Fu, Chao; Ren, Xingmin; Yang, Yongfeng; Xia, Yebao; Deng, Wangqun

    2018-07-01

    A non-intrusive interval precise integration method (IPIM) is proposed in this paper to analyze the transient unbalance response of uncertain rotor systems. The transfer matrix method (TMM) is used to derive the deterministic equations of motion of a hollow-shaft overhung rotor. The uncertain transient dynamic problem is solved by combing the Chebyshev approximation theory with the modified precise integration method (PIM). Transient response bounds are calculated by interval arithmetic of the expansion coefficients. Theoretical error analysis of the proposed method is provided briefly, and its accuracy is further validated by comparing with the scanning method in simulations. Numerical results show that the IPIM can keep good accuracy in vibration prediction of the start-up transient process. Furthermore, the proposed method can also provide theoretical guidance to other transient dynamic mechanical systems with uncertainties.

  11. Possibilities of the particle finite element method for fluid-soil-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Oñate, Eugenio; Celigueta, Miguel Angel; Idelsohn, Sergio R.; Salazar, Fernando; Suárez, Benjamín

    2011-09-01

    We present some developments in the particle finite element method (PFEM) for analysis of complex coupled problems in mechanics involving fluid-soil-structure interaction (FSSI). The PFEM uses an updated Lagrangian description to model the motion of nodes (particles) in both the fluid and the solid domains (the later including soil/rock and structures). A mesh connects the particles (nodes) defining the discretized domain where the governing equations for each of the constituent materials are solved as in the standard FEM. The stabilization for dealing with an incompressibility continuum is introduced via the finite calculus method. An incremental iterative scheme for the solution of the non linear transient coupled FSSI problem is described. The procedure to model frictional contact conditions and material erosion at fluid-solid and solid-solid interfaces is described. We present several examples of application of the PFEM to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions sea waves and the study of landslides.

  12. Interactions of solutes and streambed sediment: 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport

    USGS Publications Warehouse

    Bencala, Kenneth E.

    1984-01-01

    Solute transport in streams is determined by the interaction of physical and chemical processes. Data from an injection experiment for chloride and several cations indicate significant influence of solutestreambed processes on transport in a mountain stream. These data are interpreted in terms of transient storage processes for all tracers and sorption processes for the cations. Process parameter values are estimated with simulations based on coupled quasi-two-dimensional transport and first-order mass transfer sorption. Comparative simulations demonstrate the relative roles of the physical and chemical processes in determining solute transport. During the first 24 hours of the experiment, chloride concentrations were attenuated relative to expected plateau levels. Additional attenuation occurred for the sorbing cation strontium. The simulations account for these storage processes. Parameter values determined by calibration compare favorably with estimates from other studies in mountain streams. Without further calibration, the transport of potassium and lithium is adequately simulated using parameters determined in the chloride-strontium simulation and with measured cation distribution coefficients.

  13. Numerical study on the thermal management system of a liquid metal battery module

    NASA Astrophysics Data System (ADS)

    Guo, Zhenlin; Xu, Cheng; Li, Wei; Zhu, Fangfang; Li, Haomiao; Wang, Kangli; Cheng, Shijie; Jiang, Kai

    2018-07-01

    Liquid metal battery (LMB), with three-liquid-layer structure and high operating temperature (300-700 °C), is a newly emerging technology for large scale energy storage applications. A thermal management system is critical to achieve satisfied LMB performance and extend the life of batteries. In this work, an improved coupling model composing of a 3D heat-transfer model and a 1D electrochemical model is developed for the thermal analysis of a Li||Sb-Sn LMBs module (5.5 kWh). Key results including transient values, the contribution ratio of heat sources, temperature homogeneity and distribution, as well as the energy efficiency of the battery module, are presented. Based on the coupling model, the changeable-power-heating mode, sand filling material and vacuum insulation are further proposed to achieve the high energy efficiency and optimal performance of the LMBs module. Moreover, the LMBs module can achieve "self-heating" when operated at 0.2 C charge/discharge, under the vacuum insulation (0.01 W m-1 K-1 thermal conductivity, 100 mm thickness), requiring no external heating to keep the batteries at operating temperature.

  14. Evaluating transient performance of servo mechanisms by analysing stator current of PMSM

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Tan, Luyao; Xu, Guanghua

    2018-02-01

    Smooth running and rapid response are the desired performance goals for the transient motions of servo mechanisms. Because of the uncertain and unobservable transient behaviour of servo mechanisms, it is difficult to evaluate their transient performance. Under the effects of electromechanical coupling, the stator current signals of a permanent-magnet synchronous motor (PMSM) potentially contain the performance information regarding servo mechanisms in use. In this paper, a novel method based on analysing the stator current of the PMSM is proposed for quantifying the transient performance. First, a vector control model is constructed to simulate the stator current behaviour in the transient processes of consecutive speed changes, consecutive load changes, and intermittent start-stops. It is discovered that the amplitude and frequency of the stator current are modulated by the transient load torque and motor speed, respectively. The stator currents under different performance conditions are also simulated and compared. Then, the stator current is processed using a local means decomposition (LMD) algorithm to extract the instantaneous amplitude and instantaneous frequency. The sample entropy of the instantaneous amplitude, which reflects the complexity of the load torque variation, is calculated as a performance indicator of smooth running. The peak-to-peak value of the instantaneous frequency, which defines the range of the motor speed variation, is set as a performance indicator of rapid response. The proposed method is applied to both simulated data in an intermittent start-stops process and experimental data measured for a batch of servo turrets for turning lathes. The results show that the performance evaluations agree with the actual performance.

  15. Unsteady Analysis of Inlet-Compressor Acoustic Interactions Using Coupled 3-D and 1-D CFD Codes

    NASA Technical Reports Server (NTRS)

    Suresh, A.; Cole, G. L.

    2000-01-01

    It is well known that the dynamic response of a mixed compression supersonic inlet is very sensitive to the boundary condition imposed at the subsonic exit (engine face) of the inlet. In previous work, a 3-D computational fluid dynamics (CFD) inlet code (NPARC) was coupled at the engine face to a 3-D turbomachinery code (ADPAC) simulating an isolated rotor and the coupled simulation used to study the unsteady response of the inlet. The main problem with this approach is that the high fidelity turbomachinery simulation becomes prohibitively expensive as more stages are included in the simulation. In this paper, an alternative approach is explored, wherein the inlet code is coupled to a lesser fidelity 1-D transient compressor code (DYNTECC) which simulates the whole compressor. The specific application chosen for this evaluation is the collapsing bump experiment performed at the University of Cincinnati, wherein reflections of a large-amplitude acoustic pulse from a compressor were measured. The metrics for comparison are the pulse strength (time integral of the pulse amplitude) and wave form (shape). When the compressor is modeled by stage characteristics the computed strength is about ten percent greater than that for the experiment, but the wave shapes are in poor agreement. An alternate approach that uses a fixed rise in duct total pressure and temperature (so-called 'lossy' duct) to simulate a compressor gives good pulse shapes but the strength is about 30 percent low.

  16. Transient thermal analysis of fluid systems

    NASA Technical Reports Server (NTRS)

    Chandler, G. D.; Trust, R. D.

    1977-01-01

    Computer program performs transient thermal analysis of any 2-node to 200-node-thermal network, which transports heat by fluid flow convection. Program can be modified to add conduction along tubes and radiation.

  17. Power System Transient Stability Based on Data Mining Theory

    NASA Astrophysics Data System (ADS)

    Cui, Zhen; Shi, Jia; Wu, Runsheng; Lu, Dan; Cui, Mingde

    2018-01-01

    In order to study the stability of power system, a power system transient stability based on data mining theory is designed. By introducing association rules analysis in data mining theory, an association classification method for transient stability assessment is presented. A mathematical model of transient stability assessment based on data mining technology is established. Meanwhile, combining rule reasoning with classification prediction, the method of association classification is proposed to perform transient stability assessment. The transient stability index is used to identify the samples that cannot be correctly classified in association classification. Then, according to the critical stability of each sample, the time domain simulation method is used to determine the state, so as to ensure the accuracy of the final results. The results show that this stability assessment system can improve the speed of operation under the premise that the analysis result is completely correct, and the improved algorithm can find out the inherent relation between the change of power system operation mode and the change of transient stability degree.

  18. Numerical analysis of multicomponent responses of surface-hole transient electromagnetic method

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Xin; Hu, Xiang-Yun; Pan, He-Ping; Zhou, Feng

    2017-03-01

    We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver-Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.

  19. Preflight transient dynamic analyses of B-52 aircraft carrying Space Shuttle solid rocket booster drop-test vehicle

    NASA Technical Reports Server (NTRS)

    Ko, W. L.; Schuster, L. S.

    1984-01-01

    This paper concerns the transient dynamic analysis of the B-52 aircraft carrying the Space Shuttle solid rocket booster drop test vehicle (SRB/DTV). The NASA structural analysis (NASTRAN) finite element computer program was used in the analysis. The B-52 operating conditions considered for analysis were (1) landing and (2) braking on aborted takeoff runs. The transient loads for the B-52 pylon front and rear hooks were calculated. The results can be used to establish the safe maneuver envelopes for the B-52 carrying the SRB/DTV in landings and brakings.

  20. Transients control in Raman fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Freitas, Marcio; Givigi, Sidney N., Jr.; Klein, Jackson; Calmon, Luiz C.; de Almeida, Ailson R.

    2004-11-01

    Raman fiber amplifiers (RFA) are being used in optical transmission communication systems in the recent years due to their advantages in comparison to erbium-doped fiber amplifiers (EDFA). Recently the analysis of RFAs dynamic response and transients control has become important in order to predict the system response to add/drop of channels or cable cuts in optical systems, and avoid impairments caused by the power transients. Fast signal power transients in the surviving channels are caused by the cross-gain saturation effect in RFA and the slope of the gain saturation characteristics determines the steady-state surviving channel power excursion. We are presenting the modeling and analysis of power transients and its control using a pump control method for a single and multi-pump scheme.

  1. Transient analysis of a superconducting AC generator using the compensated 2-D model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chun, Y.D.; Lee, H.W.; Lee, J.

    1999-09-01

    A SCG has many advantages over conventional generators, such as reduction in width and size, improvement in efficiency, and better steady-state stability. The paper presents a 2-D transient analysis of a superconducting AC generator (SCG) using the finite element method (FEM). The compensated 2-D model obtained by lengthening the airgap of the original 2-D model is proposed for the accurate and efficient transient analysis. The accuracy of the compensated 2-D model is verified by the small error 6.4% compared to experimental data. The transient characteristics of the 30 KVA SCG model have been investigated in detail and the damper performancemore » on various design parameters is examined.« less

  2. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.

    PubMed

    Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P

    2011-04-01

    Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials.

  3. Thermal finite-element analysis of space shuttle main engine turbine blade

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Tong, Michael T.; Kaufman, Albert

    1987-01-01

    Finite-element, transient heat transfer analyses were performed for the first-stage blades of the space shuttle main engine (SSME) high-pressure fuel turbopump. The analyses were based on test engine data provided by Rocketdyne. Heat transfer coefficients were predicted by performing a boundary-layer analysis at steady-state conditions with the STAN5 boundary-layer code. Two different peak-temperature overshoots were evaluated for the startup transient. Cutoff transient conditions were also analyzed. A reduced gas temperature profile based on actual thermocouple data was also considered. Transient heat transfer analyses were conducted with the MARC finite-element computer code.

  4. Evolution of Spiral and Scroll Waves of Excitation in a Mathematical Model of Ischaemic Border Zone

    PubMed Central

    Biktashev, Vadim N.; Biktasheva, Irina V.; Sarvazyan, Narine A.

    2011-01-01

    Abnormal electrical activity from the boundaries of ischemic cardiac tissue is recognized as one of the major causes in generation of ischemia-reperfusion arrhythmias. Here we present theoretical analysis of the waves of electrical activity that can rise on the boundary of cardiac cell network upon its recovery from ischaemia-like conditions. The main factors included in our analysis are macroscopic gradients of the cell-to-cell coupling and cell excitability and microscopic heterogeneity of individual cells. The interplay between these factors allows one to explain how spirals form, drift together with the moving boundary, get transiently pinned to local inhomogeneities, and finally penetrate into the bulk of the well-coupled tissue where they reach macroscopic scale. The asymptotic theory of the drift of spiral and scroll waves based on response functions provides explanation of the drifts involved in this mechanism, with the exception of effects due to the discreteness of cardiac tissue. In particular, this asymptotic theory allows an extrapolation of 2D events into 3D, which has shown that cells within the border zone can give rise to 3D analogues of spirals, the scroll waves. When and if such scroll waves escape into a better coupled tissue, they are likely to collapse due to the positive filament tension. However, our simulations have shown that such collapse of newly generated scrolls is not inevitable and that under certain conditions filament tension becomes negative, leading to scroll filaments to expand and multiply leading to a fibrillation-like state within small areas of cardiac tissue. PMID:21935402

  5. Repetitive transient extraction for machinery fault diagnosis using multiscale fractional order entropy infogram

    NASA Astrophysics Data System (ADS)

    Xu, Xuefang; Qiao, Zijian; Lei, Yaguo

    2018-03-01

    The presence of repetitive transients in vibration signals is a typical symptom of local faults of rotating machinery. Infogram was developed to extract the repetitive transients from vibration signals based on Shannon entropy. Unfortunately, the Shannon entropy is maximized for random processes and unable to quantify the repetitive transients buried in heavy random noise. In addition, the vibration signals always contain multiple intrinsic oscillatory modes due to interaction and coupling effects between machine components. Under this circumstance, high values of Shannon entropy appear in several frequency bands or high value of Shannon entropy doesn't appear in the optimal frequency band, and the infogram becomes difficult to interpret. Thus, it also becomes difficult to select the optimal frequency band for extracting the repetitive transients from the whole frequency bands. To solve these problems, multiscale fractional order entropy (MSFE) infogram is proposed in this paper. With the help of MSFE infogram, the complexity and nonlinear signatures of the vibration signals can be evaluated by quantifying spectral entropy over a range of scales in fractional domain. Moreover, the similarity tolerance of MSFE infogram is helpful for assessing the regularity of signals. A simulation and two experiments concerning a locomotive bearing and a wind turbine gear are used to validate the MSFE infogram. The results demonstrate that the MSFE infogram is more robust to the heavy noise than infogram and the high value is able to only appear in the optimal frequency band for the repetitive transient extraction.

  6. Advanced simulation study on bunch gap transient effect

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya; Akai, Kazunori

    2016-06-01

    Bunch phase shift along the train due to a bunch gap transient is a concern in high-current colliders. In KEKB operation, the measured phase shift along the train agreed well with a simulation and a simple analytical form in most part of the train. However, a rapid phase change was observed at the leading part of the train, which was not predicted by the simulation or by the analytical form. In order to understand the cause of this observation, we have developed an advanced simulation, which treats the transient loading in each of the cavities of the three-cavity system of the accelerator resonantly coupled with energy storage (ARES) instead of the equivalent single cavities used in the previous simulation, operating in the accelerating mode. In this paper, we show that the new simulation reproduces the observation, and clarify that the rapid phase change at the leading part of the train is caused by a transient loading in the three-cavity system of ARES. KEKB is being upgraded to SuperKEKB, which is aiming at 40 times higher luminosity than KEKB. The gap transient in SuperKEKB is investigated using the new simulation, and the result shows that the rapid phase change at the leading part of the train is much larger due to higher beam currents. We will also present measures to mitigate possible luminosity reduction or beam performance deterioration due to the rapid phase change caused by the gap transient.

  7. Impacts of northern Tibetan Plateau on East Asian summer rainfall via modulating midlatitude transient eddies

    NASA Astrophysics Data System (ADS)

    Deng, Jiechun; Xu, Haiming; Shi, Ning; Zhang, Leying; Ma, Jing

    2017-08-01

    Roles of the Tibetan Plateau (TP) in forming and changing the seasonal Asian climate system have been widely explored. However, little is known about modulation effects of the TP on extratropical transient eddies (TEs) and subsequent synoptic responses of the East Asian rainfall. In this study, the Community Atmosphere Model version 5.1 coupled with a slab ocean model is employed to highlight the important role of the TP in regulating the upper-tropospheric transient wave train. Comparison between sensitivity experiments with and without the TP shows that the northern TP excites a strong anomalous anticyclone, which shifts the upper-level East Asian westerly jet northward and helps transfer barotropic and baroclinic energy from the mean flow to the synoptic TE flow. The transient wave train is primarily shifted northward by northern TP and is forced to propagate southeastward along the eastern flank of the TP until reaching eastern China. Before the strengthening of monsoonal southerlies, the TP-modulated transient wave train cools the troposphere, which decreases the static stability over northern China. Meanwhile, the associated anomalous warm advection induces ascending motion, leading to excessive rainfall by releasing unstable energy as the southerly strengthens. Due to the southeastward propagation of the wave train, anomalous heavy rainfall subsequently appears over eastern China from north to south, which increases day-to-day rainfall variation in this region. Additionally, occurrence of this upper-tropospheric transient wave train associated with low-level southerly peak is substantially increased by northern TP.

  8. TREAT Neutronics Analysis and Design Support, Part I: Multi-SERTTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.; Woolstenhulme, Nicolas E.; Hill, Connie M.

    2016-08-01

    Experiment vehicle design is necessary in preparation for Transient Reactor Test (TREAT) facility restart and the resumption of transient testing to support Accident Tolerant Fuel (ATF) characterization and other future fuels testing requirements. Currently the most mature vehicle design is the Multi-SERTTA (Static Environments Rodlet Transient Test Apparatuses), which can accommodate up to four concurrent rodlet-sized specimens under separate environmental conditions. Robust test vehicle design requires neutronics analyses to support design development, optimization of the power coupling factor (PCF) to efficiently maximize energy generation in the test fuel rodlets, and experiment safety analyses. Calculations were performed to support analysis ofmore » a near-final design of the Multi-SERTTA vehicle, the design process for future TREAT test vehicles, and establish analytical practices for upcoming transient test experiments. Models of the Multi-SERTTA vehicle containing typical PWR-fuel rodlets were prepared and neutronics calculations were performed using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries. Calculation of the PCF for reference conditions of a PWR fuel rodlet in clean water at operational temperature and pressure provided results between 1.10 and 1.74 W/g-MW depending on the location of the four Multi-SERTTA units with the stack. Basic changes to the Multi-SERTTA secondary vessel containment and support have minimal impact on PCF; using materials with less neutron absorption can improve expected PCF values, especially in the primary containment. An optimized balance is needed between structural integrity, experiment safety, and energy deposition in the experiment. Type of medium and environmental conditions within the primary vessel surrounding the fuel rodlet can also have a significant impact on resultant PCF values. The estimated reactivity insertion worth into the TREAT core is impacted more by the primary and secondary Multi-SERTTA vehicle structure with the experiment content and contained environment having a near negligible impact on overall system reactivity. Additional calculations were performed to evaluate the peak-to-average assembly powers throughout the TREAT core, as well as the nuclear heat generation for the various structural components of the Multi-SERTTA assembly. Future efforts include the evaluation of flux collars to shape the PCF for individual Multi-SERTTA units during an experiment such as to achieve uniformity in test unit environmental conditions impacted by the non-uniform axial flux/power profile of TREAT. Upon resumption of transient testing, experimental results from both the Multi-SERTTA and Multi-SERTTA-CAL will be compared against calculational results and methods for further optimization and design strategies.« less

  9. Stress Intensity Factors for Cracking Metal Structures under Rapid Thermal Loading. Volume 2. Theoretical Background

    DTIC Science & Technology

    1989-08-01

    thermal pulse loadings. The work couples a Green’s function integration technique for transient thermal stresses with the well-known influence ... function approach for calculating stress intensity factors. A total of seven most commonly used crack models were investigated in this study. A computer

  10. AMP kinase–mediated activation of the BH3-only protein Bim couples energy depletion to stress-induced apoptosis

    PubMed Central

    Concannon, Caoimhín G.; Tuffy, Liam P.; Weisová, Petronela; Bonner, Helena P.; Dávila, David; Bonner, Caroline; Devocelle, Marc C.; Strasser, Andreas; Ward, Manus W.

    2010-01-01

    Excitotoxicity after glutamate receptor overactivation induces disturbances in cellular ion gradients, resulting in necrosis or apoptosis. Excitotoxic necrosis is triggered by rapid, irreversible ATP depletion, whereas the ability to recover cellular bioenergetics is suggested to be necessary for the activation of excitotoxic apoptosis. In this study, we demonstrate that even a transient decrease in cellular bioenergetics and an associated activation of adenosine monophosphate–activated protein kinase (AMPK) is necessary for the activation of excitotoxic apoptosis. We show that the Bcl-2 homology domain 3 (BH3)–only protein Bim, a proapoptotic Bcl-2 family member, is activated in multiple excitotoxicity paradigms, mediates excitotoxic apoptosis, and inhibits delayed Ca2+ deregulation, mitochondrial depolarization, and apoptosis-inducing factor translocation. We demonstrate that bim activation required the activation of AMPK and that prolonged AMPK activation is sufficient to induce bim gene expression and to trigger a bim-dependent cell death. Collectively, our data demonstrate that AMPK activation and the BH3-only protein Bim couple transient energy depletion to stress-induced neuronal apoptosis. PMID:20351066

  11. Theory of parametrically amplified electron-phonon superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babadi, Mehrtash; Knap, Michael; Martin, Ivar

    2017-07-01

    Ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [M. Mitrano et al., Nature (London) 530, 461 (2016)], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systemswith lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's functionmore » technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time-and angle-resolved photoemission spectroscopy experiments as a consequence of the proposed mechanism.« less

  12. Spatiotemporal behavior and nonlinear dynamics in a phase conjugate resonator

    NASA Technical Reports Server (NTRS)

    Liu, Siuying Raymond

    1993-01-01

    The work described can be divided into two parts. The first part is an investigation of the transient behavior and stability property of a phase conjugate resonator (PCR) below threshold. The second part is an experimental and theoretical study of the PCR's spatiotemporal dynamics above threshold. The time-dependent coupled wave equations for four-wave mixing (FWM) in a photorefractive crystal, with two distinct interaction regions caused by feedback from an ordinary mirror, was used to model the transient dynamics of a PCR below threshold. The conditions for self-oscillation were determined and the solutions were used to define the PCR's transfer function and analyze its stability. Experimental results for the buildup and decay times confirmed qualitatively the predicted behavior. Experiments were carried out above threshold to study the spatiotemporal dynamics of the PCR as a function of Pragg detuning and the resonator's Fresnel number. The existence of optical vortices in the wavefront were identified by optical interferometry. It was possible to describe the transverse dynamics and the spatiotemporal instabilities by modeling the three-dimensional-coupled wave equations in photorefractive FWM using a truncated modal expansion approach.

  13. Transient signal isotope analysis: validation of the method for isotope signal synchronization with the determination of amplifier first-order time constants.

    PubMed

    Gourgiotis, Alkiviadis; Manhès, Gérard; Louvat, Pascale; Moureau, Julien; Gaillardet, Jérôme

    2015-09-30

    During transient signal acquisition by Multi-Collection Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS), an isotope ratio increase or decrease (isotopic drift hereafter) is often observed which is related to the different time responses of the amplifiers involved in multi-collection. This isotopic drift affects the quality of the isotopic data and, in a recent study, a method of internal amplifier signal synchronization for isotope drift correction was proposed. In this work the determination of the amplifier time constants was investigated in order to validate the method of internal amplifier signal synchronization for isotope ratio drift correction. Two different MC-ICPMS instruments, the Neptune and the Neptune Plus, were used, and both the lead transient signals and the signal decay curves of the amplifiers were investigated. Our results show that the first part of the amplifier signal decay curve is characterized by a pure exponential decay. This part of the signal decay was used for the effective calculation of the amplifier first-order time constants. The small differences between these time constants were compared with time lag values obtained from the method of isotope signal synchronization and were found to be in good agreement. This work proposes a way of determining amplifier first-order time constants. We show that isotopic drift is directly related to the amplifier first-order time constants and the method of internal amplifier signal synchronization for isotope ratio drift correction is validated. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Experimental investigation of the impact of compound-specific dispersion and electrostatic interactions on transient transport and solute breakthrough

    NASA Astrophysics Data System (ADS)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2017-02-01

    This study investigates the effects of compound-specific diffusion/dispersion and electrochemical migration on transient solute transport in saturated porous media. We conducted laboratory bench-scale experiments, under advection-dominated regimes (seepage velocity: 0.5, 5, 25 m/d), in a quasi two-dimensional flow-through setup using pulse injection of multiple tracers (both uncharged and ionic species). Extensive sampling and measurement of solutes' concentrations (˜1500 samples; >3000 measurements) were performed at the outlet of the flow-through setup, at high spatial and temporal resolution. The experimental results show that compound-specific effects and charge-induced Coulombic interactions are important not only at low velocities and/or for steady state plumes but also for transient transport under high flow velocities. Such effects can lead to a remarkably different behavior of measured breakthrough curves also at very high Péclet numbers. To quantitatively interpret the experimental results, we used four modeling approaches: classical advection-dispersion equation (ADE), continuous time random walk (CTRW), dual-domain mass transfer model (DDMT), and a multicomponent ionic dispersion model. The latter is based on the multicomponent formulation of coupled diffusive/dispersive fluxes and was used to describe and explain the electrostatic effects of charged species. Furthermore, we determined experimentally the temporal profiles of the flux-related dilution index. This metric of mixing, used in connection with the traditional solute breakthrough curves, proved to be useful to correctly distinguish between plume spreading and mixing, particularly for the cases in which the sole analysis of integrated concentration breakthrough curves may lead to erroneous interpretation of plume dilution.

  15. LMFBR system-wide transient analysis: the state of the art and US validation needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatib-Rahbar, M.; Guppy, J.G.; Cerbone, R.J.

    1982-01-01

    This paper summarizes the computational capabilities in the area of liquid metal fast breeder reactor (LMFBR) system-wide transient analysis in the United States, identifies various numerical and physical approximations, the degree of empiricism, range of applicability, model verification and experimental needs for a wide class of protected transients, in particular, natural circulation shutdown heat removal for both loop- and pool-type plants.

  16. Update on Integrated Optical Design Analyzer

    NASA Technical Reports Server (NTRS)

    Moore, James D., Jr.; Troy, Ed

    2003-01-01

    Updated information on the Integrated Optical Design Analyzer (IODA) computer program has become available. IODA was described in Software for Multidisciplinary Concurrent Optical Design (MFS-31452), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 8a. To recapitulate: IODA facilitates multidisciplinary concurrent engineering of highly precise optical instruments. The architecture of IODA was developed by reviewing design processes and software in an effort to automate design procedures. IODA significantly reduces design iteration cycle time and eliminates many potential sources of error. IODA integrates the modeling efforts of a team of experts in different disciplines (e.g., optics, structural analysis, and heat transfer) working at different locations and provides seamless fusion of data among thermal, structural, and optical models used to design an instrument. IODA is compatible with data files generated by the NASTRAN structural-analysis program and the Code V (Registered Trademark) optical-analysis program, and can be used to couple analyses performed by these two programs. IODA supports multiple-load-case analysis for quickly accomplishing trade studies. IODA can also model the transient response of an instrument under the influence of dynamic loads and disturbances.

  17. Transient analysis using conical shell elements

    NASA Technical Reports Server (NTRS)

    Yang, J. C. S.; Goeller, J. E.; Messick, W. T.

    1973-01-01

    The use of the NASTRAN conical shell element in static, eigenvalue, and direct transient analyses is demonstrated. The results of a NASTRAN static solution of an externally pressurized ring-stiffened cylinder agree well with a theoretical discontinuity analysis. Good agreement is also obtained between the NASTRAN direct transient response of a uniform cylinder to a dynamic end load and one-dimensional solutions obtained using a method of characteristics stress wave code and a standing wave solution. Finally, a NASTRAN eigenvalue analysis is performed on a hydroballistic model idealized with conical shell elements.

  18. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover.

    PubMed

    Feng, S; Ng, C W W; Leung, A K; Liu, H W

    2017-10-01

    Microbial aerobic methane oxidation in unsaturated landfill cover involves coupled water, gas and heat reactive transfer. The coupled process is complex and its influence on methane oxidation efficiency is not clear, especially in steep covers where spatial variations of water, gas and heat are significant. In this study, two-dimensional finite element numerical simulations were carried out to evaluate the performance of unsaturated sloping cover. The numerical model was calibrated using a set of flume model test data, and was then subsequently used for parametric study. A new method that considers transient changes of methane concentration during the estimation of the methane oxidation efficiency was proposed and compared against existing methods. It was found that a steeper cover had a lower oxidation efficiency due to enhanced downslope water flow, during which desaturation of soil promoted gas transport and hence landfill gas emission. This effect was magnified as the cover angle and landfill gas generation rate at the bottom of the cover increased. Assuming the steady-state methane concentration in a cover would result in a non-conservative overestimation of oxidation efficiency, especially when a steep cover was subjected to rainfall infiltration. By considering the transient methane concentration, the newly-modified method can give a more accurate oxidation efficiency. Copyright © 2017. Published by Elsevier Ltd.

  19. Ultrafast electronic relaxation in superheated bismuth

    NASA Astrophysics Data System (ADS)

    Gamaly, E. G.; Rode, A. V.

    2013-01-01

    Interaction of moving electrons with vibrating ions in the lattice forms the basis for many physical properties from electrical resistivity and electronic heat capacity to superconductivity. In ultrafast laser interaction with matter the electrons are heated much faster than the electron-ion energy equilibration, leading to a two-temperature state with electron temperature far above that of the lattice. The rate of temperature equilibration is governed by the strength of electron-phonon energy coupling, which is conventionally described by a coupling constant, neglecting the dependence on the electron and lattice temperature. The application of this constant to the observations of fast relaxation rate led to a controversial notion of ‘ultra-fast non-thermal melting’ under extreme electronic excitation. Here we provide theoretical grounds for a strong dependence of the electron-phonon relaxation time on the lattice temperature. We show, by taking proper account of temperature dependence, that the heating and restructuring of the lattice occurs much faster than were predicted on the assumption of a constant, temperature independent energy coupling. We applied the temperature-dependent momentum and energy transfer time to experiments on fs-laser excited bismuth to demonstrate that all the observed ultra-fast transformations of the transient state of bismuth are purely thermal in nature. The developed theory, when applied to ultrafast experiments on bismuth, provides interpretation of the whole variety of transient phase relaxation without the non-thermal melting conjecture.

  20. Transport processes in directional solidification and their effects on microstructure development

    NASA Astrophysics Data System (ADS)

    Mazumder, Prantik

    The processing of materials with unique electronic, mechanical, optical and thermal properties plays a crucial role in modern technology. The quality of these materials depend strongly on the microstructures and the solute/dopant fields in the solid product, that are strongly influenced by the intricate coupling of heat and mass transfer and melt flow in the growth systems. An integrated research program is developed that include precisely characterized experiments and detailed physical and numerical modeling of the complex transport and dynamical processes. Direct numerical simulation of the solidification process is carried out that takes into account the unsteady thermo-solutal convection in the vertical Bridgman crystal growth system, and accurately models the thermal interaction between the furnace and the ampoule by appropriately using experimentally measured thermal profiles. The flow instabilities and transitions and the nonlinear evolution following the transitions are investigated by time series and flow pattern analysis. A range of complex dynamical behavior is predicted with increasing thermal Rayleigh number. The route to chaos appears as: steady convection --> transient mono-periodic --> transient bi-periodic --> transient quasiperiodic --> transient intermittent oscillation- relaxation --> stable intermittent oscillation-relaxation attractor. The spatio-temporal dynamics of the melt flow is found to be directly related to the spatial patterns observed experimentally in the solidified crystals. The application of the model to two phase Sn-Cd peritectic alloys showed that a new class of tree-like oscillating microstructure develops in the solid phase due to unsteady thermo-solutal convection in the liquid melt. These oscillating layered structures can give the illusion of band structures on a plane of polish. The model is applied to single phase solidification in the Al-Cu and Pb-Sn systems to characterize the effect of convection on the macroscopic shape and disorder in the primary arm spacing of the cellular/dendritic freezing front. The apparently puzzling experimental observation of higher disorder in the weakly convective Al-Cu system than that in the highly convective Pb-Sn system is explained by the numerical calculations.

  1. Effects of premature stimulation on HERG K+ channels

    PubMed Central

    Lu, Yu; Mahaut-Smith, Martyn P; Varghese, Anthony; Huang, Christopher L-H; Kemp, Paul R; Vandenberg, Jamie I

    2001-01-01

    The unusual kinetics of human ether-à-go-go-related gene (HERG) K+ channels are consistent with a role in the suppression of arrhythmias initiated by premature beats. Action potential clamp protocols were used to investigate the effect of premature stimulation on HERG K+ channels, transfected in Chinese hamster ovary cells, at 37 °C. HERG K+ channel currents peaked during the terminal repolarization phase of normally paced action potential waveforms. However, the magnitude of the current and the time point at which conductance was maximal depended on the type of action potential waveform used (epicardial, endocardial, Purkinje fibre or atrial). HERG K+ channel currents recorded during premature action potentials consisted of an early transient outward current followed by a sustained outward current. The magnitude of the transient current component showed a biphasic dependence on the coupling interval between the normally paced and premature action potentials and was maximal at a coupling interval equivalent to 90% repolarization (APD90) for ventricular action potentials. The largest transient current response occurred at shorter coupling intervals for Purkinje fibre (APD90– 20 ms) and atrial (APD90– 30 ms) action potentials. The magnitude of the sustained current response following premature stimulation was similar to that recorded during the first action potential for ventricular action potential waveforms. However, for Purkinje and atrial action potentials the sustained current response was significantly larger during the premature action potential than during the normally paced action potential. A Markov model that included three closed states, one open and one inactivated state with transitions permitted between the pre-open closed state and the inactivated state, successfully reproduced our results for the effects of premature stimuli, both during square pulse and action potential clamp waveforms. These properties of HERG K+ channels may help to suppress arrhythmias initiated by early afterdepolarizations and premature beats in the ventricles, Purkinje fibres or atria. PMID:11744759

  2. Interface requirements to couple thermal-hydraulic codes to severe accident codes: ATHLET-CD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trambauer, K.

    1997-07-01

    The system code ATHLET-CD is being developed by GRS in cooperation with IKE and IPSN. Its field of application comprises the whole spectrum of leaks and large breaks, as well as operational and abnormal transients for LWRs and VVERs. At present the analyses cover the in-vessel thermal-hydraulics, the early phases of core degradation, as well as fission products and aerosol release from the core and their transport in the Reactor Coolant System. The aim of the code development is to extend the simulation of core degradation up to failure of the reactor pressure vessel and to cover all physically reasonablemore » accident sequences for western and eastern LWRs including RMBKs. The ATHLET-CD structure is highly modular in order to include a manifold spectrum of models and to offer an optimum basis for further development. The code consists of four general modules to describe the reactor coolant system thermal-hydraulics, the core degradation, the fission product core release, and fission product and aerosol transport. Each general module consists of some basic modules which correspond to the process to be simulated or to its specific purpose. Besides the code structure based on the physical modelling, the code follows four strictly separated steps during the course of a calculation: (1) input of structure, geometrical data, initial and boundary condition, (2) initialization of derived quantities, (3) steady state calculation or input of restart data, and (4) transient calculation. In this paper, the transient solution method is briefly presented and the coupling methods are discussed. Three aspects have to be considered for the coupling of different modules in one code system. First is the conservation of masses and energy in the different subsystems as there are fluid, structures, and fission products and aerosols. Second is the convergence of the numerical solution and stability of the calculation. The third aspect is related to the code performance, and running time.« less

  3. Mach 14 Flow Restrictor Thermal Stress Analysis

    DTIC Science & Technology

    1984-08-01

    tranfer analysis, thermal stress analysis, results translation from ABAQUS to PATRAN-G, and the method used to determine the heat transfer film...G, model translation into ABAQUS format, transient heat transfer analysis and thermal stress analysis input decks, results translation from ABAQUS ...TRANSLATION FROM PATRAN-G TO ABAQUS 3 ABAQUS CONSIDERATIONS 8 MATERIAL PROPERTIES OF COLUMBIUM C-103 10 USER SUBROUTINE FILM 11 TRANSIENT

  4. Evaluation of a cost-effective loads approach. [shock spectra/impedance method for Viking Orbiter

    NASA Technical Reports Server (NTRS)

    Garba, J. A.; Wada, B. K.; Bamford, R.; Trubert, M. R.

    1976-01-01

    A shock spectra/impedance method for loads predictions is used to estimate member loads for the Viking Orbiter, a 7800-lb interplanetary spacecraft that has been designed using transient loads analysis techniques. The transient loads analysis approach leads to a lightweight structure but requires complex and costly analyses. To reduce complexity and cost, a shock spectra/impedance method is currently being used to design the Mariner Jupiter Saturn spacecraft. This method has the advantage of using low-cost in-house loads analysis techniques and typically results in more conservative structural loads. The method is evaluated by comparing the increase in Viking member loads to the loads obtained by the transient loads analysis approach. An estimate of the weight penalty incurred by using this method is presented. The paper also compares the calculated flight loads from the transient loads analyses and the shock spectra/impedance method to measured flight data.

  5. Evaluation of a cost-effective loads approach. [for Viking Orbiter light weight structural design

    NASA Technical Reports Server (NTRS)

    Garba, J. A.; Wada, B. K.; Bamford, R.; Trubert, M. R.

    1976-01-01

    A shock spectra/impedance method for loads prediction is used to estimate member loads for the Viking Orbiter, a 7800-lb interplanetary spacecraft that has been designed using transient loads analysis techniques. The transient loads analysis approach leads to a lightweight structure but requires complex and costly analyses. To reduce complexity and cost a shock spectra/impedance method is currently being used to design the Mariner Jupiter Saturn spacecraft. This method has the advantage of using low-cost in-house loads analysis techniques and typically results in more conservative structural loads. The method is evaluated by comparing the increase in Viking member loads to the loads obtained by the transient loads analysis approach. An estimate of the weight penalty incurred by using this method is presented. The paper also compares the calculated flight loads from the transient loads analyses and the shock spectra/impedance method to measured flight data.

  6. Maximum von Mises Stress in the Loading Environment of Mass Acceleration Curve

    NASA Technical Reports Server (NTRS)

    Glaser, Robert J.; Chen, Long Y.

    2006-01-01

    Method for calculating stress due to acceleration loading: 1) Part has been designed by FEA and hand calculation in one critical loading direction judged by the analyst; 2) Maximum stress can be due to loading in another direction; 3) Analysis procedure to be presented determines: a) The maximum Mises stress at any point; and b) The direction of maximum loading associated with the "stress". Concept of Mass Acceleration Curves (MAC): 1) Developed by JPL to perform preliminary structural sizing (i.e. Mariners, Voyager, Galileo, Pathfinder, MER,...MSL); 2) Acceleration of physical masses are bounded by a curve; 3) G-levels of vibro-acoustic and transient environments; 4) Convergent process before the couple loads cycle; and 5) Semi-empirical method to effectively bound the loads, not a simulation of the actual response.

  7. Communication: Transient anion states of phenol…(H2O)n (n = 1, 2) complexes: Search for microsolvation signatures

    NASA Astrophysics Data System (ADS)

    de Oliveira, Eliane M.; Freitas, Thiago C.; Coutinho, Kaline; do N. Varella, Márcio T.; Canuto, Sylvio; Lima, Marco A. P.; Bettega, Márcio H. F.

    2014-08-01

    We report on the shape resonance spectra of phenol-water clusters, as obtained from elastic electron scattering calculations. Our results, along with virtual orbital analysis, indicate that the well-known indirect mechanism for hydrogen elimination in the gas phase is significantly impacted on by microsolvation, due to the competition between vibronic couplings on the solute and solvent molecules. This fact suggests how relevant the solvation effects could be for the electron-driven damage of biomolecules and the biomass delignification [E. M. de Oliveira et al., Phys. Rev. A 86, 020701(R) (2012)]. We also discuss microsolvation signatures in the differential cross sections that could help to identify the solvated complexes and access the composition of gaseous admixtures of these species.

  8. Initial verification and validation of RAZORBACK - A research reactor transient analysis code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talley, Darren G.

    2015-09-01

    This report describes the work and results of the initial verification and validation (V&V) of the beta release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This initial V&V effort was intended to confirm that the code work to-date shows good agreement between simulation and actualmore » ACRR operations, indicating that the subsequent V&V effort for the official release of the code will be successful.« less

  9. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.

    PubMed

    Bandura, Dmitry R; Baranov, Vladimir I; Ornatsky, Olga I; Antonov, Alexei; Kinach, Robert; Lou, Xudong; Pavlov, Serguei; Vorobiev, Sergey; Dick, John E; Tanner, Scott D

    2009-08-15

    A novel instrument for real time analysis of individual biological cells or other microparticles is described. The instrument is based on inductively coupled plasma time-of-flight mass spectrometry and comprises a three-aperture plasma-vacuum interface, a dc quadrupole turning optics for decoupling ions from neutral components, an rf quadrupole ion guide discriminating against low-mass dominant plasma ions, a point-to-parallel focusing dc quadrupole doublet, an orthogonal acceleration reflectron analyzer, a discrete dynode fast ion detector, and an 8-bit 1 GHz digitizer. A high spectrum generation frequency of 76.8 kHz provides capability for collecting multiple spectra from each particle-induced transient ion cloud, typically of 200-300 micros duration. It is shown that the transients can be resolved and characterized individually at a peak frequency of 1100 particles per second. Design considerations and optimization data are presented. The figures of merit of the instrument are measured under standard inductively coupled plasma (ICP) operating conditions (<3% cerium oxide ratio). At mass resolution (full width at half-maximum) M/DeltaM > 900 for m/z = 159, the sensitivity with a standard sample introduction system of >1.4 x 10(8) ion counts per second per mg L(-1) of Tb and an abundance sensitivity of (6 x 10(-4))-(1.4 x 10(-3)) (trailing and leading masses, respectively) are shown. The mass range (m/z = 125-215) and abundance sensitivity are sufficient for elemental immunoassay with up to 60 distinct available elemental tags. When <15 elemental tags are used, a higher sensitivity mode at lower resolution (M/DeltaM > 500) can be used, which provides >2.4 x 10(8) cps per mg L(-1) of Tb, at (1.5 x 10(-3))-(5.0 x 10(-3)) abundance sensitivity. The real-time simultaneous detection of multiple isotopes from individual 1.8 microm polystyrene beads labeled with lanthanides is shown. A real time single cell 20 antigen expression assay of model cell lines and leukemia patient samples immuno-labeled with lanthanide-tagged antibodies is presented.

  10. Quantum state-resolved probing of strong-field-ionized xenon atoms using femtosecond high-order harmonic transient absorption spectroscopy.

    PubMed

    Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E; Santra, Robin; Buth, Christian; Leone, Stephen R

    2007-04-06

    Femtosecond high-order harmonic transient absorption spectroscopy is used to resolve the complete |j,m quantum state distribution of Xe+ produced by optical strong-field ionization of Xe atoms at 800 nm. Probing at the Xe N4/5 edge yields a population distribution rhoj,|m| of rho3/2,1/2ratiorho1/2,1/2ratiorho3/2,3/2=75+/-6 :12+/-3 :13+/-6%. The result is compared to a tunnel ionization calculation with the inclusion of spin-orbit coupling, revealing nonadiabatic ionization behavior. The sub-50-fs time resolution paves the way for tabletop extreme ultraviolet absorption probing of ultrafast dynamics.

  11. Coupling of Transport and Chemical Processes in Catalytic Combustion

    NASA Technical Reports Server (NTRS)

    Bracco, F. V.; Bruno, C.; Royce, B. S. H.; Santavicca, D. A.; Sinha, N.; Stein, Y.

    1983-01-01

    Catalytic combustors have demonstrated the ability to operate efficiently over a much wider range of fuel air ratios than are imposed by the flammability limits of conventional combustors. Extensive commercial use however needs the following: (1) the design of a catalyst with low ignition temperature and high temperature stability, (2) reducing fatigue due to thermal stresses during transient operation, and (3) the development of mathematical models that can be used as design optimization tools to isolate promising operating ranges for the numerous operating parameters. The current program of research involves the development of a two dimensional transient catalytic combustion model and the development of a new catalyst with low temperature light-off and high temperature stablity characteristics.

  12. Numerical study of Free Convective Viscous Dissipative flow along Vertical Cone with Influence of Radiation using Network Simulation method

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Pullepu, Bapuji; Immanuel, Y.

    2018-04-01

    A two dimensional mathematical model is formulated for the transient laminar free convective flow with heat transfer over an incompressible viscous fluid past a vertical cone with uniform surface heat flux with combined effects of viscous dissipation and radiation. The dimensionless boundary layer equations of the flow which are transient, coupled and nonlinear Partial differential equations are solved using the Network Simulation Method (NSM), a powerful numerical technique which demonstrates high efficiency and accuracy by employing the network simulator computer code Pspice. The velocity and temperature profiles have been investigated for various factors, namely viscous dissipation parameter ε, Prandtl number Pr and radiation Rd are analyzed graphically.

  13. Transient Vibration Prediction for Rotors on Ball Bearings Using Load-dependent Non-linear Bearing Stiffness

    NASA Technical Reports Server (NTRS)

    Fleming, David P.; Poplawski, J. V.

    2002-01-01

    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for non-linear speed and load dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optimized Ball and Roller Bearing Analysis - Advanced High Speed) and supplied to the rotordynamics code ARDS (Analysis of Rotor Dynamic Systems) for accurate simulation of rotor transient behavior. COBRA-AHS is a fast-running 5 degree-of-freedom computer code able to calculate high speed rolling-element bearing load-displacement data for radial and angular contact ball bearings and also for cylindrical and tapered roller beatings. Results show that use of nonlinear bearing characteristics is essential for accurate prediction of rotordynamic behavior.

  14. Separation of distinct photoexcitation species in femtosecond transient absorption microscopy

    DOE PAGES

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...

    2016-02-03

    Femtosecond transient absorption microscopy is a novel chemical imaging capability with simultaneous high spatial and temporal resolution. Although several powerful data analysis approaches have been developed and successfully applied to separate distinct chemical species in such images, the application of such analysis to distinguish different photoexcited species is rare. In this paper, we demonstrate a combined approach based on phasor and linear decomposition analysis on a microscopic level that allows us to separate the contributions of both the excitons and free charge carriers in the observed transient absorption response of a composite organometallic lead halide perovskite film. We found spatialmore » regions where the transient absorption response was predominately a result of excitons and others where it was predominately due to charge carriers, and regions consisting of signals from both contributors. Lastly, quantitative decomposition of the transient absorption response curves further enabled us to reveal the relative contribution of each photoexcitation to the measured response at spatially resolved locations in the film.« less

  15. Inverse Transient Analysis for Classification of Wall Thickness Variations in Pipelines

    PubMed Central

    Tuck, Jeffrey; Lee, Pedro

    2013-01-01

    Analysis of transient fluid pressure signals has been investigated as an alternative method of fault detection in pipeline systems and has shown promise in both laboratory and field trials. The advantage of the method is that it can potentially provide a fast and cost effective means of locating faults such as leaks, blockages and pipeline wall degradation within a pipeline while the system remains fully operational. The only requirement is that high speed pressure sensors are placed in contact with the fluid. Further development of the method requires detailed numerical models and enhanced understanding of transient flow within a pipeline where variations in pipeline condition and geometry occur. One such variation commonly encountered is the degradation or thinning of pipe walls, which can increase the susceptible of a pipeline to leak development. This paper aims to improve transient-based fault detection methods by investigating how changes in pipe wall thickness will affect the transient behaviour of a system; this is done through the analysis of laboratory experiments. The laboratory experiments are carried out on a stainless steel pipeline of constant outside diameter, into which a pipe section of variable wall thickness is inserted. In order to detect the location and severity of these changes in wall conditions within the laboratory system an inverse transient analysis procedure is employed which considers independent variations in wavespeed and diameter. Inverse transient analyses are carried out using a genetic algorithm optimisation routine to match the response from a one-dimensional method of characteristics transient model to the experimental time domain pressure responses. The accuracy of the detection technique is evaluated and benefits associated with various simplifying assumptions and simulation run times are investigated. It is found that for the case investigated, changes in the wavespeed and nominal diameter of the pipeline are both important to the accuracy of the inverse analysis procedure and can be used to differentiate the observed transient behaviour caused by changes in wall thickness from that caused by other known faults such as leaks. Further application of the method to real pipelines is discussed.

  16. Very long transients, irregular firing, and chaotic dynamics in networks of randomly connected inhibitory integrate-and-fire neurons.

    PubMed

    Zillmer, Rüdiger; Brunel, Nicolas; Hansel, David

    2009-03-01

    We present results of an extensive numerical study of the dynamics of networks of integrate-and-fire neurons connected randomly through inhibitory interactions. We first consider delayed interactions with infinitely fast rise and decay. Depending on the parameters, the network displays transients which are short or exponentially long in the network size. At the end of these transients, the dynamics settle on a periodic attractor. If the number of connections per neuron is large ( approximately 1000) , this attractor is a cluster state with a short period. In contrast, if the number of connections per neuron is small ( approximately 100) , the attractor has complex dynamics and very long period. During the long transients the neurons fire in a highly irregular manner. They can be viewed as quasistationary states in which, depending on the coupling strength, the pattern of activity is asynchronous or displays population oscillations. In the first case, the average firing rates and the variability of the single-neuron activity are well described by a mean-field theory valid in the thermodynamic limit. Bifurcations of the long transient dynamics from asynchronous to synchronous activity are also well predicted by this theory. The transient dynamics display features reminiscent of stable chaos. In particular, despite being linearly stable, the trajectories of the transient dynamics are destabilized by finite perturbations as small as O(1/N) . We further show that stable chaos is also observed for postsynaptic currents with finite decay time. However, we report in this type of network that chaotic dynamics characterized by positive Lyapunov exponents can also be observed. We show in fact that chaos occurs when the decay time of the synaptic currents is long compared to the synaptic delay, provided that the network is sufficiently large.

  17. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids

    PubMed Central

    Covey, Dan P.; Bunner, Kendra D.; Schuweiler, Douglas R.; Cheer, Joseph F.; Garris, Paul A.

    2018-01-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement. PMID:27038339

  18. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    PubMed

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Real-time Transients from Palomar-QUEST Synoptic Sky Survey

    NASA Astrophysics Data System (ADS)

    Mahabal, Ashish A.; Drake, A.; Djorgovski, S. G.; Donalek, C.; Glikman, E.; Graham, M. J.; Williams, R.; Baltay, C.; Rabinowitz, D.; Bauer, A.; Ellman, N.; Lauer, R.; PQ Team Indiana

    2006-12-01

    The data from the driftscans of the Palomar-QUEST synoptic sky survey is now routinely processed in real-time. We describe here the various components of the pipeline. We search for both variable and transient objects, including supernovae, variable AGN, GRB orphan afterglows, cataclysmic variables, interesting stellar flares, novae, other types of variable stars, and do not exclude the possibility of even entirely new types of objects or phenomena. In order to flag as many asteroids as possible we have been doing two 4-hour scans of the same area covering 250 sq. deg and detect over a million sources. Flagging a source as a candidate transient requires detection in at least two filters besides its absence in fiducial sky constructed from past images. We use various software filters to eliminate instrument artifacts, and false alarms due to the proximity of bright, saturated stars which dominate the initial detection rate. This leaves up to a couple of hundred asteroids and genuine transients. Previously known asteroids are flagged through an automated comparison with a databases of known asteroids, and new ones through apparent motion. In the end, we have typically 10 20 astrophysical transients remaining per night, and we are currently working on their automated classification, and spectroscopic follow-up. We present preliminary results from real-time follow-up of a few candidates carried out with the Palomar 200-inch telescope as part of a pilot project. Finally we outline the plans for the much harder problem of classifying the transients more accurately for distribution through VOEventNet to astronomers interested only in specific types of transients, more details and overall setting of which is covered in our VOEventNet poster (Drake et al.)

  20. Quantification of causal couplings via dynamical effects: A unifying perspective

    NASA Astrophysics Data System (ADS)

    Smirnov, Dmitry A.

    2014-12-01

    Quantitative characterization of causal couplings from time series is crucial in studies of complex systems of different origin. Various statistical tools for that exist and new ones are still being developed with a tendency to creating a single, universal, model-free quantifier of coupling strength. However, a clear and generally applicable way of interpreting such universal characteristics is lacking. This work suggests a general conceptual framework for causal coupling quantification, which is based on state space models and extends the concepts of virtual interventions and dynamical causal effects. Namely, two basic kinds of interventions (state space and parametric) and effects (orbital or transient and stationary or limit) are introduced, giving four families of coupling characteristics. The framework provides a unifying view of apparently different well-established measures and allows us to introduce new characteristics, always with a definite "intervention-effect" interpretation. It is shown that diverse characteristics cannot be reduced to any single coupling strength quantifier and their interpretation is inevitably model based. The proposed set of dynamical causal effect measures quantifies different aspects of "how the coupling manifests itself in the dynamics," reformulating the very question about the "causal coupling strength."

  1. Variations in atmospheric CO2 growth rates coupled with tropical temperature

    PubMed Central

    Wang, Weile; Ciais, Philippe; Nemani, Ramakrishna R.; Canadell, Josep G.; Piao, Shilong; Sitch, Stephen; White, Michael A.; Hashimoto, Hirofumi; Milesi, Cristina; Myneni, Ranga B.

    2013-01-01

    Previous studies have highlighted the occurrence and intensity of El Niño–Southern Oscillation as important drivers of the interannual variability of the atmospheric CO2 growth rate, but the underlying biogeophysical mechanisms governing such connections remain unclear. Here we show a strong and persistent coupling (r2 ≈ 0.50) between interannual variations of the CO2 growth rate and tropical land–surface air temperature during 1959 to 2011, with a 1 °C tropical temperature anomaly leading to a 3.5 ± 0.6 Petagrams of carbon per year (PgC/y) CO2 growth-rate anomaly on average. Analysis of simulation results from Dynamic Global Vegetation Models suggests that this temperature–CO2 coupling is contributed mainly by the additive responses of heterotrophic respiration (Rh) and net primary production (NPP) to temperature variations in tropical ecosystems. However, we find a weaker and less consistent (r2 ≈ 0.25) interannual coupling between CO2 growth rate and tropical land precipitation than diagnosed from the Dynamic Global Vegetation Models, likely resulting from the subtractive responses of tropical Rh and NPP to precipitation anomalies that partly offset each other in the net ecosystem exchange (i.e., net ecosystem exchange ≈ Rh − NPP). Variations in other climate variables (e.g., large-scale cloudiness) and natural disturbances (e.g., volcanic eruptions) may induce transient reductions in the temperature–CO2 coupling, but the relationship is robust during the past 50 y and shows full recovery within a few years after any such major variability event. Therefore, it provides an important diagnostic tool for improved understanding of the contemporary and future global carbon cycle. PMID:23884654

  2. Finite difference time domain calculation of transients in antennas with nonlinear loads

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent

    1991-01-01

    Determining transient electromagnetic fields in antennas with nonlinear loads is a challenging problem. Typical methods used involve calculating frequency domain parameters at a large number of different frequencies, then applying Fourier transform methods plus nonlinear equation solution techniques. If the antenna is simple enough so that the open circuit time domain voltage can be determined independently of the effects of the nonlinear load on the antennas current, time stepping methods can be applied in a straightforward way. Here, transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain (FDTD) methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case, the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets, including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.

  3. Identification of speech transients using variable frame rate analysis and wavelet packets.

    PubMed

    Rasetshwane, Daniel M; Boston, J Robert; Li, Ching-Chung

    2006-01-01

    Speech transients are important cues for identifying and discriminating speech sounds. Yoo et al. and Tantibundhit et al. were successful in identifying speech transients and, emphasizing them, improving the intelligibility of speech in noise. However, their methods are computationally intensive and unsuitable for real-time applications. This paper presents a method to identify and emphasize speech transients that combines subband decomposition by the wavelet packet transform with variable frame rate (VFR) analysis and unvoiced consonant detection. The VFR analysis is applied to each wavelet packet to define a transitivity function that describes the extent to which the wavelet coefficients of that packet are changing. Unvoiced consonant detection is used to identify unvoiced consonant intervals and the transitivity function is amplified during these intervals. The wavelet coefficients are multiplied by the transitivity function for that packet, amplifying the coefficients localized at times when they are changing and attenuating coefficients at times when they are steady. Inverse transform of the modified wavelet packet coefficients produces a signal corresponding to speech transients similar to the transients identified by Yoo et al. and Tantibundhit et al. A preliminary implementation of the algorithm runs more efficiently.

  4. The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics.

    PubMed

    Ene, Florentina; Delassus, Patrick; Morris, Liam

    2014-08-01

    The variation in computational assumptions for analysing abdominal aortic aneurysm haemodynamics can influence the desired output results and computational cost. Such assumptions for abdominal aortic aneurysm modelling include static/transient pressures, steady/transient flows and rigid/compliant walls. Six computational methods and these various assumptions were simulated and compared within a realistic abdominal aortic aneurysm model with and without intraluminal thrombus. A full transient fluid-structure interaction was required to analyse the flow patterns within the compliant abdominal aortic aneurysms models. Rigid wall computational fluid dynamics overestimates the velocity magnitude by as much as 40%-65% and the wall shear stress by 30%-50%. These differences were attributed to the deforming walls which reduced the outlet volumetric flow rate for the transient fluid-structure interaction during the majority of the systolic phase. Static finite element analysis accurately approximates the deformations and von Mises stresses when compared with transient fluid-structure interaction. Simplifying the modelling complexity reduces the computational cost significantly. In conclusion, the deformation and von Mises stress can be approximately found by static finite element analysis, while for compliant models a full transient fluid-structure interaction analysis is required for acquiring the fluid flow phenomenon. © IMechE 2014.

  5. Adaptive Nodal Transport Methods for Reactor Transient Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Downar; E. Lewis

    2005-08-31

    Develop methods for adaptively treating the angular, spatial, and time dependence of the neutron flux in reactor transient analysis. These methods were demonstrated in the DOE transport nodal code VARIANT and the US NRC spatial kinetics code, PARCS.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingerfelt, David B.; Lestrange, Patrick J.; Radler, Joseph J.

    Materials and molecular systems exhibiting long-lived electronic coherence can facilitate coherent transport, opening the door to efficient charge and energy transport beyond traditional methods. Recently, signatures of a possible coherent, recurrent electronic motion were identified in femtosecond pump-probe spectroscopy experiments on a binuclear platinum complex, where a persistent periodic beating in the transient absorption signal’s anisotropy was observed. In this study, we investigate the excitonic dynamics that underlie the suspected electronic coherence for a series of binuclear platinum complexes exhibiting a range of interplatinum distances. Results suggest that the long-lived coherence can only result when competitive electronic couplings are inmore » balance. At longer Pt-Pt distances, the electronic couplings between the two halves of the binuclear system weaken, and exciton localization and recombination is favored on short time scales. For short Pt-Pt distances, electronic couplings between the states in the coherent superposition are stronger than the coupling with other excitonic states, leading to long-lived coherence.« less

  7. Discharge transient coupling in large space power systems

    NASA Technical Reports Server (NTRS)

    Stevens, N. John; Stillwell, R. P.

    1990-01-01

    Experiments have shown that plasma environments can induce discharges in solar arrays. These plasmas simulate the environments found in low earth orbits where current plans call for operation of very large power systems. The discharges could be large enough to couple into the power system and possibly disrupt operations. Here, the general concepts of the discharge mechanism and the techniques of coupling are discussed. Data from both ground and flight experiments are reviewed to obtain an expected basis for the interactions. These concepts were applied to the Space Station solar array and distribution system as an example of the large space power system. The effect of discharges was found to be a function of the discharge site. For most sites in the array discharges would not seriously impact performance. One location at the negative end of the array was identified as a position where discharges could couple to charge stored in system capacitors. This latter case could impact performance.

  8. Transient Dynamics of Double Quantum Dots Coupled to Two Reservoirs

    NASA Astrophysics Data System (ADS)

    Fukadai, Takahisa; Sasamoto, Tomohiro

    2018-05-01

    We study the time-dependent properties of double quantum dots coupled to two reservoirs using the nonequilibrium Green function method. For an arbitrary time-dependent bias, we derive an expression for the time-dependent electron density of a dot and several currents, including the current between the dots in the wide-band-limit approximation. For the special case of a constant bias, we calculate the electron density and the currents numerically. As a result, we find that these quantities oscillate and that the number of crests in a single period of the current from a dot changes with the bias voltage. We also obtain an analytical expression for the relaxation time, which expresses how fast the system converges to its steady state. From the expression, we find that the relaxation time becomes constant when the coupling strength between the dots is sufficiently large in comparison with the difference of coupling strength between the dots and the reservoirs.

  9. Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons

    PubMed Central

    Dunkelberger, A. D.; Spann, B. T.; Fears, K. P.; Simpkins, B. S.; Owrutsky, J. C.

    2016-01-01

    Coupling vibrational transitions to resonant optical modes creates vibrational polaritons shifted from the uncoupled molecular resonances and provides a convenient way to modify the energetics of molecular vibrations. This approach is a viable method to explore controlling chemical reactivity. In this work, we report pump–probe infrared spectroscopy of the cavity-coupled C–O stretching band of W(CO)6 and the direct measurement of the lifetime of a vibration-cavity polariton. The upper polariton relaxes 10 times more quickly than the uncoupled vibrational mode. Tuning the polariton energy changes the polariton transient spectra and relaxation times. We also observe quantum beats, so-called vacuum Rabi oscillations, between the upper and lower vibration-cavity polaritons. In addition to establishing that coupling to an optical cavity modifies the energy-transfer dynamics of the coupled molecules, this work points out the possibility of systematic and predictive modification of the excited-state kinetics of vibration-cavity polariton systems. PMID:27874010

  10. Cell membrane temperature rate sensitivity predicted from the Nernst equation.

    PubMed

    Barnes, F S

    1984-01-01

    A hyperpolarized current is predicted from the Nernst equation for conditions of positive temperature derivatives with respect to time. This ion current, coupled with changes in membrane channel conductivities, is expected to contribute to a transient potential shift across the cell membrane for silent cells and to a change in firing rate for pacemaker cells.

  11. Guanosine radical reactivity explored by pulse radiolysis coupled with transient electrochemistry.

    PubMed

    Latus, A; Alam, M S; Mostafavi, M; Marignier, J-L; Maisonhaute, E

    2015-06-04

    We follow the reactivity of a guanosine radical created by a radiolytic electron pulse both by spectroscopic and electrochemical methods. This original approach allows us to demonstrate that there is a competition between oxidation and reduction of these intermediates, an important result to further analyse the degradation or repair pathways of DNA bases.

  12. Photocatalytic Conversion of Nitrobenzene to Aniline through Sequential Proton-Coupled One-Electron Transfers from a Cadmium Sulfide Quantum Dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Stephen C.; Bettis Homan, Stephanie; Weiss, Emily A.

    2016-01-28

    This paper describes the use of cadmium sulfide quantum dots (CdS QDs) as visible-light photocatalysts for the reduction of nitrobenzene to aniline through six sequential photoinduced, proton-coupled electron transfers. At pH 3.6–4.3, the internal quantum yield of photons-to-reducing electrons is 37.1% over 54 h of illumination, with no apparent decrease in catalyst activity. Monitoring of the QD exciton by transient absorption reveals that, for each step in the catalytic cycle, the sacrificial reductant, 3-mercaptopropionic acid, scavenges the excitonic hole in ~5 ps to form QD•–; electron transfer to nitrobenzene or the intermediates nitrosobenzene and phenylhydroxylamine then occurs on the nanosecondmore » time scale. The rate constants for the single-electron transfer reactions are correlated with the driving forces for the corresponding proton-coupled electron transfers. This result suggests, but does not prove, that electron transfer, not proton transfer, is rate-limiting for these reactions. Nuclear magnetic resonance analysis of the QD–molecule systems shows that the photoproduct aniline, left unprotonated, serves as a poison for the QD catalyst by adsorbing to its surface. Performing the reaction at an acidic pH not only encourages aniline to desorb but also increases the probability of protonated intermediates; the latter effect probably ensures that recruitment of protons is not rate-limiting.« less

  13. Simulating Heinrich events in a coupled atmosphere-ocean-ice sheet model

    NASA Astrophysics Data System (ADS)

    Mikolajewicz, Uwe; Ziemen, Florian

    2016-04-01

    Heinrich events are among the most prominent events of long-term climate variability recorded in proxies across the northern hemisphere. They are the archetype of ice sheet - climate interactions on millennial time scales. Nevertheless, the exact mechanisms that cause Heinrich events are still under discussion, and their climatic consequences are far from being fully understood. We contribute to answering the open questions by studying Heinrich events in a coupled ice sheet model (ISM) atmosphere-ocean-vegetation general circulation model (AOVGCM) framework, where this variability occurs as part of the model generated internal variability without the need to prescribe external perturbations, as was the standard approach in almost all model studies so far. The setup consists of a northern hemisphere setup of the modified Parallel Ice Sheet Model (mPISM) coupled to the global coarse resolution AOVGCM ECHAM5/MPIOM/LPJ. The simulations used for this analysis were an ensemble covering substantial parts of the late Glacial forced with transient insolation and prescribed atmospheric greenhouse gas concentrations. The modeled Heinrich events show a marked influence of the ice discharge on the Atlantic circulation and heat transport, but none of the Heinrich events during the Glacial did show a complete collapse of the North Atlantic meridional overturning circulation. The simulated main consequences of the Heinrich events are a freshening and cooling over the North Atlantic and a drying over northern Europe.

  14. Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents.

    PubMed

    Zevenhoven, Koos C J; Busch, Sarah; Hatridge, Michael; Oisjöen, Fredrik; Ilmoniemi, Risto J; Clarke, John

    2014-03-14

    Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field-applied before each signal acquisition sequence to increase the signal-induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures.

  15. Physical experiments and analysis on the generation and evolution of tsunami-induced turbulent coherent structures

    NASA Astrophysics Data System (ADS)

    Kalligeris, Nikos; Lynett, Patrick

    2017-11-01

    Numerous historical accounts describe the formation of ``whirpools'' inside ports and harbors during tsunami events, causing port operation disruptions. Videos from the Japan 2011 tsunami revealed complex nearshore flow patters, resulting from the interaction of tsunami-induced currents with the man-made coastline, and the generation of large eddies (or turbulent coherent structures) in numerous ports and harbors near the earthquake epicenter. The aim of this work is to study the generation and evolution of tsunami-induced turbulent coherent structures (TCS) in a well-controlled environment using realistic scaling. A physical configuration is created in the image of a port entrance at a scale of 1:27 and a small-amplitude, long period wave creates a transient flow through the asymmetric harbor channel. A separated region forms, which coupled with the transient flow, leads to the formation of a stable monopolar TCS. The surface flow is examined through mono- and stereo-PTV techniques to extract surface velocity vectors. Surface velocity maps and vortex flow profiles are used to study the experimental TCS generation and evolution, and characterize the TCS structure. Analytical tools are used to describe the TCS growth rate and kinetic energy decay. This work was funded by the National Science Foundation NEES Research program, with Award Number 1135026.

  16. Real-time dynamic range and signal to noise enhancement in beam-scanning microscopy by integration of sensor characteristics, data acquisition hardware, and statistical methods

    NASA Astrophysics Data System (ADS)

    Kissick, David J.; Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J.

    2013-02-01

    Despite the ubiquitous use of multi-photon and confocal microscopy measurements in biology, the core techniques typically suffer from fundamental compromises between signal to noise (S/N) and linear dynamic range (LDR). In this study, direct synchronous digitization of voltage transients coupled with statistical analysis is shown to allow S/N approaching the theoretical maximum throughout an LDR spanning more than 8 decades, limited only by the dark counts of the detector on the low end and by the intrinsic nonlinearities of the photomultiplier tube (PMT) detector on the high end. Synchronous digitization of each voltage transient represents a fundamental departure from established methods in confocal/multi-photon imaging, which are currently based on either photon counting or signal averaging. High information-density data acquisition (up to 3.2 GB/s of raw data) enables the smooth transition between the two modalities on a pixel-by-pixel basis and the ultimate writing of much smaller files (few kB/s). Modeling of the PMT response allows extraction of key sensor parameters from the histogram of voltage peak-heights. Applications in second harmonic generation (SHG) microscopy are described demonstrating S/N approaching the shot-noise limit of the detector over large dynamic ranges.

  17. The electrostatics of parachutes

    NASA Astrophysics Data System (ADS)

    Yu, Li; Ming, Xiao

    2007-12-01

    In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loadings during a very short time, it is of great difficulty for theoretical analysis and experimental measurements. In this paper, aerodynamic equations and structural dynamics equations were developed for describing parachute opening process, and an iterative coupling solving strategy incorporating the above equations was proposed for a small-scale, flexible and flat-circular parachute. Then, analyses were carried out for canopy geometry, time-dependent pressure difference between the inside and outside of the canopy, transient vortex around the canopy and the flow field in the radial plane as a sequence in opening process. The mechanism of the canopy shape development was explained from perspective of transient flow fields during the inflation process. Experiments of the parachute opening process were conducted in a wind tunnel, in which instantaneous shape of the canopy was measured by high velocity camera and the opening loading was measured by dynamometer balance. The theoretical predictions were found in good agreement with the experimental results, validating the proposed approach. This numerical method can improve the situation of strong dependence of parachute research on wind tunnel tests, and is of significance to the understanding of the mechanics of parachute inflation process.

  18. Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents

    PubMed Central

    Zevenhoven, Koos C. J.; Busch, Sarah; Hatridge, Michael; Öisjöen, Fredrik; Ilmoniemi, Risto J.; Clarke, John

    2014-01-01

    Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field—applied before each signal acquisition sequence to increase the signal—induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures. PMID:24753629

  19. A 3-D SPH model for simulating water flooding of a damaged floating structure

    NASA Astrophysics Data System (ADS)

    Guo, Kai; Sun, Peng-nan; Cao, Xue-yan; Huang, Xiao

    2017-10-01

    With the quasi-static analysis method, the terminal floating state of a damaged ship is usually evaluated for the risk assessment. But this is not enough since the ship has the possibility to lose its stability during the transient flooding process. Therefore, an enhanced smoothed particle hydrodynamics (SPH) model is applied in this paper to investigate the response of a simplified cabin model under the condition of the transient water flooding. The enhanced SPH model is presented firstly including the governing equations, the diffusive terms, the boundary implementations and then an algorithm regarding the coupling motions of six degrees of freedom (6-DOF) between the structure and the fluid is described. In the numerical results, a non-damaged cabin floating under the rest condition is simulated. It is shown that a stable floating state can be reached and maintained by using the present SPH scheme. After that, three-dimensional (3-D) test cases of the damaged cabin with a hole at different locations are simulated. A series of model tests are also carried out for the validation. Fairly good agreements are achieved between the numerical results and the experimental data. Relevant conclusions are drawn with respect to the mechanism of the responses of the damaged cabin model under water flooding conditions.

  20. What Climate Sensitivity Index Is Most Useful for Projections?

    NASA Astrophysics Data System (ADS)

    Grose, Michael R.; Gregory, Jonathan; Colman, Robert; Andrews, Timothy

    2018-02-01

    Transient climate response (TCR), transient response at 140 years (T140), and equilibrium climate sensitivity (ECS) indices are intended as benchmarks for comparing the magnitude of climate response projected by climate models. It is generally assumed that TCR or T140 would explain more variability between models than ECS for temperature change over the 21st century, since this timescale is the realm of transient climate change. Here we find that TCR explains more variability across Coupled Model Intercomparison Project phase 5 than ECS for global temperature change since preindustrial, for 50 or 100 year global trends up to the present, and for projected change under representative concentration pathways in regions of delayed warming such as the Southern Ocean. However, unexpectedly, we find that ECS correlates higher than TCR for projected change from the present in the global mean and in most regions. This higher correlation does not relate to aerosol forcing, and the physical cause requires further investigation.

Top