Sample records for coupling coefficient k33

  1. Unified model for the electromechanical coupling factor of orthorhombic piezoelectric rectangular bar with arbitrary aspect ratio

    NASA Astrophysics Data System (ADS)

    Rouffaud, R.; Levassort, F.; Hladky-Hennion, A.-C.

    2017-02-01

    Piezoelectric Single Crystals (PSC) are increasingly used in the manufacture of ultrasonic transducers and in particular for linear arrays or single element transducers. Among these PSCs, according to their microstructure and poled direction, some exhibit a mm2 symmetry. The analytical expression of the electromechanical coupling coefficient for a vibration mode along the poling direction for piezoelectric rectangular bar resonator is established. It is based on the mode coupling theory and fundamental energy ratio definition of electromechanical coupling coefficients. This unified formula for mm2 symmetry class material is obtained as a function of an aspect ratio (G) where the two extreme cases correspond to a thin plate (with a vibration mode characterized by the thickness coupling factor, kt) and a thin bar (characterized by k33'). To optimize the k33' value related to the thin bar design, a rotation of the crystallogaphic axis in the plane orthogonal to the poling direction is done to choose the highest value for PIN-PMN-PT single crystal. Finally, finite element calculations are performed to deduce resonance frequencies and coupling coefficients in a large range of G value to confirm developed analytical relations.

  2. Cellular polypropylene polymer foam as air-coupled ultrasonic transducer materials.

    PubMed

    Satyanarayan, L; Haberman, Michael R; Berthelot, Yves H

    2010-10-01

    Cellular polypropylene polymer foams, also known as ferroelectrets, are compelling candidates for air-coupled ultrasonic transducer materials because of their excellent acoustic impedance match to air and because they have a piezoelectric d(33) coefficient superior to that of PVDF. This study investigates the performance of ferroelectret transducers in the generation and reception of ultrasonic waves in air. As previous studies have noted, the piezoelectric coupling coefficients of these foams depend on the number, size, and distribution of charged voids in the microstructure. The present work studies the influence of these parameters both theoretically and experimentally. First, a three-dimensional model is employed to explain the variation of piezoelectric coupling coefficients, elastic stiffness, and dielectric permittivity as a function of void fraction based on void-scale physics and void geometry. Laser Doppler vibrometer (LDV) measurements of the effective d(33) coefficient of a specially fabricated prototype transmitting transducer are then shown which clearly indicate that the charged voids in the ferroelectret material are randomly distributed in the plane of the foam. The frequency-dependent dynamic d(33) coefficient is then reported from 50 to 500 kHz for different excitation voltages and shown to be largely insensitive to drive voltage. Lastly, two ferroelectret transducers are operated in transmit-receive mode and the received signal is shown to accurately represent the corresponding signal generated by the transmitting transducer as measured using LDV.

  3. Dielectric, Piezoelectric and Variable Range Hopping Conductivity Studies of Bi0.5(Na, K)0.5TiO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Pattipaka, Srinivas; James, A. R.; Dobbidi, Pamu

    2018-04-01

    We report a detailed study on the structural, microstructural, piezoelectric, dielectric and AC conductivity of Bi0.5(Na1-x K x )0.5TiO3 (BNKT; x = 0, 0.1, 0.2 and 0.3) ceramics fabricated by a conventional solid-state reaction method. XRD and Raman analysis revealed that Bi0.5(Na0.8K0.2)0.5TiO3 and Bi0.5(Na0.7K0.3)0.5TiO3 ceramics exhibit a mixture of rhombohedral and tetragonal structures. The segregation of K at the grain boundary was confirmed by transmission electron microscopy and is related to typical microstructural local compositional mapping analysis. Two transitions, at ˜ 330°C and 150°C, observed from the ɛ' versus T curve in pure BNT are associated with the ferroelectric tetragonal to paraelectric cubic phase (T C) and ferroelectric rhombohedral to ferroelectric tetragonal phase (T d), respectively. Further, the T C and T d shifted towards the lower temperature with a rise in K concentration. Frequency dispersion of T d and T C suggest that BNKT ceramics exhibit a weak relaxor behavior with diffuse phase transition, which is confirmed by Uchino-Nomura criteria and the Vogel-Fulcher law. The AC resistivity ρ ac(T) follows the Mott variable range hopping conduction mechanism. A significant enhancement of dielectric and piezoelectric properties were observed for x = 0.2 system: dielectric constant (ɛ' = 1273), dielectric loss (tanδ = 0.047) at 1 kHz, electromechanical coupling coefficients (k ij : k 33, k t ˜ 60%, k 31 ˜ 62% and k p ˜ 46%), elastic coupling coefficients ( S_{33}D = 6.40 × 10-13 m2/N and S_{33}E = 10.06 × 10-13 m2/N) and piezoelectric constants (d 33 = 64.23 pC/N and g 33 = 5.69 × 10-3 Vm/N).

  4. Dielectric, Piezoelectric and Variable Range Hopping Conductivity Studies of Bi0.5(Na, K)0.5TiO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Pattipaka, Srinivas; James, A. R.; Dobbidi, Pamu

    2018-07-01

    We report a detailed study on the structural, microstructural, piezoelectric, dielectric and AC conductivity of Bi0.5(Na1- x K x )0.5TiO3 (BNKT; x = 0, 0.1, 0.2 and 0.3) ceramics fabricated by a conventional solid-state reaction method. XRD and Raman analysis revealed that Bi0.5(Na0.8K0.2)0.5TiO3 and Bi0.5(Na0.7K0.3)0.5TiO3 ceramics exhibit a mixture of rhombohedral and tetragonal structures. The segregation of K at the grain boundary was confirmed by transmission electron microscopy and is related to typical microstructural local compositional mapping analysis. Two transitions, at ˜ 330°C and 150°C, observed from the ɛ' versus T curve in pure BNT are associated with the ferroelectric tetragonal to paraelectric cubic phase ( T C) and ferroelectric rhombohedral to ferroelectric tetragonal phase ( T d), respectively. Further, the T C and T d shifted towards the lower temperature with a rise in K concentration. Frequency dispersion of T d and T C suggest that BNKT ceramics exhibit a weak relaxor behavior with diffuse phase transition, which is confirmed by Uchino-Nomura criteria and the Vogel-Fulcher law. The AC resistivity ρ ac( T) follows the Mott variable range hopping conduction mechanism. A significant enhancement of dielectric and piezoelectric properties were observed for x = 0.2 system: dielectric constant ( ɛ' = 1273), dielectric loss (tan δ = 0.047) at 1 kHz, electromechanical coupling coefficients ( k ij : k 33, k t ˜ 60%, k 31 ˜ 62% and k p ˜ 46%), elastic coupling coefficients ( S_{33}D = 6.40 × 10-13 m2/N and S_{33}E = 10.06 × 10-13 m2/N) and piezoelectric constants ( d 33 = 64.23 pC/N and g 33 = 5.69 × 10-3 Vm/N).

  5. (K, Na, Li)(Nb, Ta)O3:Mn lead-free single crystal with high piezoelectric properties

    PubMed Central

    Huo, Xiaoqing; Zhang, Rui; Zheng, Limei; Zhang, Shujun; Wang, Rui; Wang, Junjun; Sang, Shijing; Yang, Bin; Cao, Wenwu

    2016-01-01

    Lead-free single crystal, (K, Na, Li)(Nb, Ta)O3:Mn, was successfully grown using top-seeded solution growth method. Complete matrix of dielectric, piezoelectric and elastic constants for [001]C poled single crystal was determined. The piezoelectric coefficient d33 measured by the resonance method was 545 pC/N, which is almost three times that of its ceramic counterpart. The values measured by the Berlincourt meter ( d33∗=630pC/N) and strain-field curve ( d33∗∗=870pm/V) were even higher. The differences were assumed to relate with the different extrinsic contributions of domain wall vibration and domain wall translation during the measurements by different approaches, where the intrinsic contribution (on the order of 539 pm/V) was supposed to be the same. The crystal has ultrahigh electromechanical coupling factor (k33 ~ 95%) and high ultrasound velocity, which make it promising for high frequency medical transducer applications. PMID:27594704

  6. Charge transfer and ionization in collisions of Si3+ with H from low to high energy

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; He, B.; Ning, Y.; Liu, C. L.; Yan, J.; Stancil, P. C.; Schultz, D. R.

    2006-11-01

    Charge transfer processes due to collisions of ground state Si3+(3sS1) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) and classical-trajectory Monte Carlo (CTMC) methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained from Herrero [J. Phys. B 29, 5583 (1996)] which were calculated with a full configuration-interaction method. Total and state-selective single-electron capture cross sections are obtained for collision energies from 0.01eV/u to 1MeV/u . Total and state-selective rate coefficients are also presented for temperatures from 2×103K to 107K . Comparison with existing data reveals that the total CTMC cross sections are in good agreement with the experimental measurements at the higher considered energies and that previous Landau-Zener calculations underestimate the total rate coefficients by a factor of up to two. The CTMC calculations of target ionization are presented for high energies.

  7. Electromechanical coupling coefficient k15 of polycrystalline ZnO films with the c-axes lie in the substrate plane.

    PubMed

    Yanagitani, Takahiko; Mishima, Natsuki; Matsukawa, Mami; Watanabe, Yoshiaki

    2007-04-01

    The (1120) textured polycrystalline ZnO films with a high shear mode electromechanical coupling coefficient k15 are obtained by sputter deposition. An over-moded resonator, a layered structure of metal electrode film/(1120) textured ZnO piezoelectric film/metal electrode film/silica glass substrate was used to characterize k15 by a resonant spectrum method. The (1120) textured ZnO piezoelectric films with excellent crystallite c-axis alignment showed an electromechanical coupling coefficient k15 of 0.24. This value was 92% of k15 value in single-crystal (k15 = 0.26).

  8. The Effect of Poling on the Properties of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Uršič, Hana; Tellier, Jenny; Hrovat, Marko; Holc, Janez; Drnovšek, Silvo; Bobnar, Vid; Alguero, Miguel; Kosec, Marija

    2011-03-01

    The effects of the poling field on the structural and electrical properties of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (0.65PMN-0.35PT) ceramics were investigated. The highest piezoelectric coefficient d33, coupling coefficients kp, kt, and mechanical quality factor Qm were achieved for ceramics poled at electric fields between 2 and 3.5 kV/mm, whereas the d33, kp, kt, and Qm of ceramics poled at higher electric fields, i.e., 4 and 4.5 kV/mm, were lower. The non-poled ceramics contained 86% of the monoclinic phase with the space group Pm and 14% of the tetragonal phase with the space group P4mm. However, the ceramics poled at 2.5 kV/mm contained 99% of the monoclinic phase and the rest is the tetragonal phase. The results show that the ratio of the monoclinic to the tetragonal phases can be changed by the application of a poling electric field and that the extent of this change is dependent on the field strength.

  9. Effect of poling process on piezoelectric properties of BCZT - 0.08 wt.% CeO{sub 2} lead-free ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrakala, E.; Praveen, J. Paul; Das, Dibakar, E-mail: ddse@uohyd.ernet.in

    2016-05-06

    The properties of lead free piezoelectric materials can be tuned by suitable doping in the A and B sites of the perovskite structure. In the present study, cerium has been identified as a dopant to investigate the piezoelectric properties of lead-free BCZT system. BCZT – 0.08 wt.%CeO{sub 2} lead-free ceramics have been synthesized using sol-gel technique and the effects of CeO{sub 2} dopant on their phase structure and piezoelectric properties were investigated systematically. Poling conditions, such as temperature, electric field, and poling time have been optimized to get enhanced piezoelectric response. The optimized poling conditions (50°C, 3Ec and 30min) resultedmore » in high piezoelectric charge coefficient d{sub 33} ~ 670pC/N, high electromechanical coupling coefficient k{sub p} ~ 60% and piezoelectric voltage coefficient g{sub 33} ~ 14 mV.m/N for BCZT – 0.08wt.% CeO{sub 2} ceramics.« less

  10. Temperature Dependent Electrical Properties of PZT Wafer

    NASA Astrophysics Data System (ADS)

    Basu, T.; Sen, S.; Seal, A.; Sen, A.

    2016-04-01

    The electrical and electromechanical properties of lead zirconate titanate (PZT) wafers were investigated and compared with PZT bulk. PZT wafers were prepared by tape casting technique. The transition temperature of both the PZT forms remained the same. The transition from an asymmetric to a symmetric shape was observed for PZT wafers at higher temperature. The piezoelectric coefficient (d 33) values obtained were 560 pc/N and 234 pc/N, and the electromechanical coupling coefficient (k p) values were 0.68 and 0.49 for bulk and wafer, respectively. The reduction in polarization after fatigue was only ~3% in case of PZT bulk and ~7% for PZT wafer.

  11. Effect of Jahn-Teller ion in zinc sodium sulphate hexahydrate: a case of low hyperfine coupling constant for Cu(II) ion

    NASA Astrophysics Data System (ADS)

    Naidu, K. C.; Shiyamala, C.; Mithira, S.; Natarajan, B.; Venkatesan, R.; Rao, P. S.

    2005-06-01

    Single crystal electron paramagnetic resonance (EPR) studies of Cu(II) doped zinc sodium sulphate hexahydrate are carried out from room temperature (RT) to 123 K. The RT spectra show unresolved hyperfine lines and hence angular variation studies are also carried out at 123 K to obtain spin Hamiltonian parameters. The spin Hamiltonian parameters calculated from the 123 K spectra are: g(11)=2.039, g(22)=2.232, g(33)=2.394, A(11)=5.64 mT, A(22)=4.20 mT, and A(33)=7.94 mT. The g-matrix values at RT and 123 K have matched fairly well with each other. The low hyperfine value (A(33)), obtained at 123 K, has been explained by considering considerable admixture of d(x 2-y 2) ground state with d(z 2) excited state and the delocalization of the unpaired spin density onto the ligands. The admixture coefficients of ground state wave function are: a=0.346, b=0.935, c=0.055, d=0.040, e=-0.040, where a and b correspond to admixture coefficients for d(z 2) and d(x 2-y 2), respectively. Angular variation of Cu(II) resonances in the three orthogonal axes shows that the impurity has entered a substitutional site in the host lattice in place of Zn(II). Bonding parameters, kappa=0.295, P=245.4x10(-4), alpha(2)=0.709, alpha=0.8421 and alpha'=0.6034, have also been calculated to fully characterize the EPR.

  12. Propagation Characteristics of Surface Acoustic Waves on K3Li2Nb5O15

    NASA Astrophysics Data System (ADS)

    Hasegawa, Koji; Ikeda, Yuki; Okano, Hiroshi

    2005-06-01

    The contour maps of the phase velocity vf, the temperature coefficient of delay (TCD), the electromechanical coupling coefficient K2, and the power flow angle (PFA) of surface acoustic waves (SAWs) on K3Li2Nb5O15 are presented for Euler angles (φ, θ, \\psi) with φ=0, 10°, 20°, 30°, and 40°, and -180° ≤ φ, θ < 180°. These maps computed by Campbell and Jonnes’ method reveal that SAWs on K3Li2Nb5O15 with Euler angles (4°, 49°, 92°), (33°, 76°, 126°), and (30°, 86°, 151°) have vf of 3255 m/s, 3383 m/s, and 3728 m/s, K2 of 0.0115, 0.0147, and 0.0045, the values of first-order TCD of 0.02 ppm/°C, 0.05 ppm/°C, and 0.04 ppm/°C, and PFAs of 0.005°, 4.7°, and 5.1°, respectively.

  13. Evaluation of the acoustoelectric effect in the thickness direction of c-plane ZnO single crystals by Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Tomita, Shota; Yanagitani, Takahiko; Takayanagi, Shinji; Ichihashi, Hayato; Shibagaki, Yoshiaki; Hayashi, Hiromichi; Matsukawa, Mami

    2017-06-01

    Longitudinal wave velocity dispersion in ZnO single crystals, owing to the acoustoelectric effect, has been investigated by Brillouin scattering. The resistivity dependence of the longitudinal wave velocity in a c-plane ZnO single crystal was theoretically estimated and experimentally investigated. Velocity dispersion owing to the acoustoelectric effect was observed in the range 0.007-10 Ωm. The observed velocity dispersion shows a similar tendency to the theoretical estimation and gives the piezoelectric stiffened and unstiffened wave velocities. However, the measured dispersion curve shows a characteristic shift from the theoretical curve. One possible reason is the carrier mobility in the sample, which could be lower than the reported value. The measurement data gave the piezoelectric stiffened and unstiffened longitudinal wave velocities, from which the electromechanical coupling coefficient k33 was determined. The value of k33 is in good agreement with reported values. This method is promising for noncontact evaluation of electromechanical coupling. In particular, it could be for evaluation of the unknown piezoelectricity in the thickness direction of semiconductive materials and film resonators.

  14. (CH3)3COOH (tert-butyl hydroperoxide): OH reaction rate coefficients between 206 and 375 K and the OH photolysis quantum yield at 248 nm.

    PubMed

    Baasandorj, Munkhbayar; Papanastasiou, Dimitrios K; Talukdar, Ranajit K; Hasson, Alam S; Burkholder, James B

    2010-10-14

    Rate coefficients, k, for the gas-phase reaction of the OH radical with (CH(3))(3)COOH (tert-butyl hydroperoxide) were measured as a function of temperature (206-375 K) and pressure (25-200 Torr (He, N(2))). Rate coefficients were measured under pseudo-first-order conditions using pulsed laser photolysis to produce OH and laser induced fluorescence (PLP-LIF) to measure the OH temporal profile. Two independent methods were used to determine the gas-phase infrared cross sections of (CH(3))(3)COOH, absolute pressure and chemical titration, that were used to determine the (CH(3))(3)COOH concentration in the LIF reactor. The temperature dependence of the rate coefficients is described, within the measurement precision, by the Arrhenius expression k(1)(T) = (7.0 ± 1.0) × 10(-13) exp[(485 ± 20)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K) was measured to be (3.58 ± 0.54) × 10(-12) cm(3) molecule(-1) s(-1). The uncertainties are 2σ (95% confidence level) and include estimated systematic errors. UV absorption cross sections of (CH(3))(3)COOH were determined at 185, 214, 228, and 254 nm and over the wavelength range 210-300 nm. The OH quantum yield following the 248 nm pulsed laser photolysis of (CH(3))(3)COOH was measured relative to the OH quantum yields of H(2)O(2) and HNO(3) using PLP-LIF and found to be near unity.

  15. Ultrahigh Piezoelectric Properties in Textured (K,Na)NbO3 -Based Lead-Free Ceramics.

    PubMed

    Li, Peng; Zhai, Jiwei; Shen, Bo; Zhang, Shujun; Li, Xiaolong; Zhu, Fangyuan; Zhang, Xingmin

    2018-02-01

    High-performance lead-free piezoelectric materials are in great demand for next-generation electronic devices to meet the requirement of environmentally sustainable society. Here, ultrahigh piezoelectric properties with piezoelectric coefficients (d 33 ≈700 pC N -1 , d 33 * ≈980 pm V -1 ) and planar electromechanical coupling factor (k p ≈76%) are achieved in highly textured (K,Na)NbO 3 (KNN)-based ceramics. The excellent piezoelectric properties can be explained by the strong anisotropic feature, optimized engineered domain configuration in the textured ceramics, and facilitated polarization rotation induced by the intermediate phase. In addition, the nanodomain structures with decreased domain wall energy and increased domain wall mobility also contribute to the ultrahigh piezoelectric properties. This work not only demonstrates the tremendous potential of KNN-based ceramics to replace lead-based piezoelectrics but also provides a good strategy to design high-performance piezoelectrics by controlling appropriate phase and crystallographic orientation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enhanced electrical properties of textured NBBT ceramics derived from the screen printing technique.

    PubMed

    Wu, Mengjia; Wang, Youliang; Wang, Dong; Li, Yongxiang

    2011-10-01

    (001)(pc)-oriented (Na(0.5)Bi(0.5))(0.94)Ba(0.06)TiO(3) (NBBT) lead-free piezoelectric ceramics were fabricated by the screen printing technique using Na(0.5)Bi(0.5)TiO(3) (NBT) templates. The plate-like NBT template particles were synthesized from bismuth layer-structured ferroelectric Bi(4)Ti(3)O(12) (BiT) precursors by the topochemical method. The screen printed NBBT ceramics with 20 wt% NBT templates contained a large fraction of grains aligned with their c-axis normal to the sample surface, giving a Lotgering factor of 0.486. The dielectric and ferroelectric properties of textured NBBT ceramics were anisotropic. Compared with the non-textured NBBT ceramics, the dielectric, ferroelectric, and piezoelectric properties of the textured NBBT ceramics were improved, giving a dielectric constant ϵ(T)(33)/ϵ(0) of 910, a remnant polarization P(r) of 29.2 μC/cm(2), a coercive field E(c) of 23.5 kV/cm, a piezoelectric coefficient d(33) of 180 pC/N, and a thickness-mode electromechanical coupling coefficient k(t) of 0.485.

  17. Processing, properties, and application of textured 0.72lead(magnesium niobate)-0.28lead titanate ceramics

    NASA Astrophysics Data System (ADS)

    Brosnan, Kristen H.

    In this study, XRD and electron backscatter diffraction (EBSD) techniques were used to characterize the fiber texture in oriented PMN-28PT and the intensity data were fit with a texture model (the March-Dollase equation) that describes the texture in terms of texture fraction (f), and the width of the orientation distribution (r). EBSD analysis confirmed the <001> orientation of the microstructure, with no distinguishable randomly oriented, fine grain matrix. Although XRD rocking curve and EBSD data analysis gave similar f and r values, XRD rocking curve analysis was the most efficient and gave a complete description of texture fraction and texture orientation (f = 0.81 and r = 0.21, respectively). XRD rocking curve analysis was the preferred approach for characterization of the texture volume and the orientation distribution of texture in fiber-oriented PMN-PT. The dielectric, piezoelectric and electromechanical properties for random ceramic, 69 vol% textured, 81 vol% textured, and single crystal PMN-28PT were fully characterized and compared. The room temperature dielectric constant at 1 kHz for highly textured PMN-28PT was epsilonr ≥ 3600 with low dielectric loss (tan delta = 0.004). The temperature dependence of the dielectric constant for 81 vol% textured ceramic followed a similar trend as the single crystal PMN-28PT up to the rhombohedral to tetragonal transition temperature (TRT) at 104°C. 81 vol% textured PMN-28PT consistently displayed 60 to 65% of the single crystal PMN-28PT piezoelectric coefficient (d33) and 1.5 to 3.0 times greater than the random ceramic d33 (measured by Berlincourt meter, unipolar strain-field curves, IEEE standard resonance method, and laser vibrometry). The 81 vol% textured PMN-28PT displayed similarly low piezoelectric hysteresis as single crystal PMN-28PT measured by strain-field curves at 5 kV/cm. 81 vol% textured PMN-28PT and single crystal PMN-28PT displayed similar mechanical quality factors of QM = 74 and 76, respectively. The electromechanical coupling (k 33) of 81 vol% textured PMN-28PT (k33 = 0.79) was a significant fraction of single crystal (k33 = 0.91) and was higher than a commercial PMN-PT ceramic (k33 ˜ 0.74). The nonlinearity of the dielectric and piezoelectric response were investigated in textured ceramics and single crystal PMN-28PT using the Rayleigh approach. The reversible piezoelectric coefficient was found to increase significantly and the hysteretic contribution to the piezoelectric coefficient decreased significantly with an increase in texture volume. This indicates that increasing the texture volume decreases the non-180° domain wall contribution to the piezoelectric response in PMN-28PT. Finally, 81 vol% textured ceramics were also integrated into a Navy SONAR transducer design. In-water characterization of the transducers showed higher source levels, higher in-water coupling, higher acoustic intensity, and more bandwidth for the 81 vol% textured PMN-28PT tonpilz single elements compared to the ceramic PMN-28PT tonpilz element. In addition, an 81 vol% textured PMN-28PT tonpilz element showed large scale linearity in sound pressure levels as a function of drive level under high drive conditions (up to 2.33 kV/cm). The maximum electromechanical coupling obtained by the 81 vol% textured PMN-28PT transducer under high drive conditions was keff = 0.69. However, the resonance frequency shifted significantly during high drive tests (Deltafs = -19% at 3.7 kV/cm), evidence of a "soft" characteristic of the 81 vol% textured PMN-28PT, possibly caused by Sr2+ from the template particles. The results suggest there are limitations on the preload compressive stress (and thus drive level) for these textured ceramics, but this could be addressed with compositional modifications. The dielectric, piezoelectric and electromechanical properties have been significantly improved in textured PMN-PT ceramics of this study. Furthermore, scale-up in processing for incorporation into devices of highly textured ceramics with reproducible texture (and hence narrow properties distribution) was achieved in these materials. SONAR applications could benefit from textured ceramic parts because of their ease of processing, compositional homogeneity and potentially lower cost. (Abstract shortened by UMI.)

  18. Real-time two-dimensional imaging of potassium ion distribution using an ion semiconductor sensor with charged coupled device technology.

    PubMed

    Hattori, Toshiaki; Masaki, Yoshitomo; Atsumi, Kazuya; Kato, Ryo; Sawada, Kazuaki

    2010-01-01

    Two-dimensional real-time observation of potassium ion distributions was achieved using an ion imaging device based on charge-coupled device (CCD) and metal-oxide semiconductor technologies, and an ion selective membrane. The CCD potassium ion image sensor was equipped with an array of 32 × 32 pixels (1024 pixels). It could record five frames per second with an area of 4.16 × 4.16 mm(2). Potassium ion images were produced instantly. The leaching of potassium ion from a 3.3 M KCl Ag/AgCl reference electrode was dynamically monitored in aqueous solution. The potassium ion selective membrane on the semiconductor consisted of plasticized poly(vinyl chloride) (PVC) with bis(benzo-15-crown-5). The addition of a polyhedral oligomeric silsesquioxane to the plasticized PVC membrane greatly improved adhesion of the membrane onto Si(3)N(4) of the semiconductor surface, and the potential response was stabilized. The potential response was linear from 10(-2) to 10(-5) M logarithmic concentration of potassium ion. The selectivity coefficients were K(K(+),Li(+))(pot) = 10(-2.85), K(K(+),Na(+))(pot) = 10(-2.30), K(K(+),Rb(+))(pot) =10(-1.16), and K(K(+),Cs(+))(pot) = 10(-2.05).

  19. Fabrication and characterization of thick-film piezoelectric lead zirconate titanate ceramic resonators by tape-casting.

    PubMed

    Qin, Lifeng; Sun, Yingying; Wang, Qing-Ming; Zhong, Youliang; Ou, Ming; Jiang, Zhishui; Tian, Wei

    2012-12-01

    In this paper, thick-film piezoelectric lead zirconate titanate (PZT) ceramic resonators with thicknesses down to tens of micrometers have been fabricated by tape-casting processing. PZT ceramic resonators with composition near the morphotropic phase boundary and with different dopants added were prepared for piezoelectric transducer applications. Material property characterization for these thick-film PZT resonators is essential for device design and applications. For the property characterization, a recently developed normalized electrical impedance spectrum method was used to determine the electromechanical coefficient and the complex piezoelectric, elastic, and dielectric coefficients from the electrical measurement of resonators using thick films. In this work, nine PZT thick-film resonators have been fabricated and characterized, and two different types of resonators, namely thickness longitudinal and transverse modes, were used for material property characterization. The results were compared with those determined by the IEEE standard method, and they agreed well. It was found that depending on the PZT formulation and dopants, the relative permittivities ε(T)(33)/ε(0) measured at 2 kHz for these thick-films are in the range of 1527 to 4829, piezoelectric stress constants (e(33) in the range of 15 to 26 C/m(2), piezoelectric strain constants (d(31)) in the range of -169 × 10(-12) C/N to -314 × 10(-12) C/N, electromechanical coupling coefficients (k(t)) in the range of 0.48 to 0.53, and k(31) in the range of 0.35 to 0.38. The characterization results shows tape-casting processing can be used to fabricate high-quality PZT thick-film resonators, and the extracted material constants can be used to for device design and application.

  20. K{sub 1.33}Mn{sub 8}O{sub 16} as an electrocatalyst and a cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalili, Seifollah, E-mail: sjalili@kntu.ac.ir; Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences; Moharramzadeh Goliaei, Elham

    Density functional theory (DFT) calculations are carried out to investigate the electronic, magnetic and thermoelectric properties of bulk and nanosheet K{sub 1.33}Mn{sub 8}O{sub 16} materials. The catalytic activity and cathodic performance of bulk and nanosheet structures are examined using the Tran-Blaha modified Becke-Johnson (TB-mBJ) exchange potential. Electronic structure calculations reveal an anti-ferromagnetic ground state, with a TB-mMBJ band gap in bulk K{sub 1.33}Mn{sub 8}O{sub 16} that is in agreement with experimental results. Density of state plots indicate a partial reduction of Mn{sup 4+} ions to Mn{sup 3+}, without any obvious sign of Jahn-Teller distortion. Moreover, use of the O p-bandmore » center as a descriptor of catalytic activity suggests that the nanosheet has enhanced catalytic activity compared to the bulk structure. Thermoelectric parameters such as the Seebeck coefficient, electrical conductivity, and thermal conductivity are also calculated, and it is found that the Seebeck coefficients decrease with increasing temperature. High Seebeck coefficients for both spin-up and spin-down states are found in the nanosheet relative to their value in the bulk K{sub 1.33}Mn{sub 8}O{sub 16} structure, whereas the electrical and thermal conductivity are reduced relative to the bulk. In addition, figures of merit values are calculated as a function of the chemical potential and it is found that the nanosheet has a figure of merit of ~1 at room temperature, compared to 0.5 for the bulk material. All results suggest that K{sub 1.33}Mn{sub 8}O{sub 16} nanosheets can be used both as a material in waste heat recovery and as an electrocatalyst in fuel cells and batteries. - Graphical abstract: K{sub 1.33}Mn{sub 8}O{sub 16}: bulk and nanosheet. - Highlights: • Electronic properties of bulk and nanosheet forms of K{sub 1.33}Mn{sub 8}O{sub 16} have been studied. • The K{sub 1.33}Mn{sub 8}O{sub 16} nanosheet is a semiconductor while the bulk is a metal. • K{sub 1.33}Mn{sub 8}O{sub 16} Nanosheet is a more efficient electrocatalyst than bulk K{sub 1.33}Mn{sub 8}O{sub 16}. • High figure of merit of K{sub 1.33}Mn{sub 8}O{sub 16} nanosheet makes it an efficient cathode.« less

  1. Atomic Data and Spectral Line Intensities for Ni XXI

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Landi, E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ni XXI. The configurations used are 2s(sup 2)2p(sup 4), 2s2p(sup 5), 2p(sup 6), 2s(sup 2)2p(sup 3)3s, and 2s(sup 2)3p(sup 3)3d giving rise to 58 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 85, 170, 255, 340, and 425 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of log T(sub e)(K)=6.9, corresponding to maximum abundance of Ni XXI. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities 10(exp 8)-10(exp 14) per cubic centimeter. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted intensity ratios are compared with available observations.

  2. Effect of (Li,Ce) doping in Aurivillius phase material Na0.25K0.25Bi2.5Nb2O9

    NASA Astrophysics Data System (ADS)

    Gai, Zhi-Gang; Wang, Jin-Feng; Wang, Chun-Ming

    2007-01-01

    The effect of (Li,Ce) substitution for A site on the properties of Na0.25K0.25Bi2.5Nb2O9-based ceramics was investigated. The piezoelectric activity of Na0.25K0.25Bi2.5Nb2O9-based ceramics is significantly improved by the modification of lithium and cerium. The Curie temperature (TC) gradually increases from 668to684°C with increasing the (Li,Ce) modification. The piezoelectric coefficient d33 of the [(Na0.5K0.5)Bi]0.44(LiCe)0.03[]0.03Bi2Nb2O9 ceramic was found to be 28pC/N, the highest value among the Na0.25K0.25Bi2.5Nb2O9-based ceramics and also almost 50% higher than the reported d33 values of other bismuth layer-structured ferroelectric systems (˜5-19pC/N). The planar coupling factors kp and kt were found to be 8.0% and 23.0%, together with the high TC (˜670°C) and stable piezoelectric properties, demonstrating that the (Li,Ce) modified Na0.25K0.25Bi2.5Nb2O9-based material a promising candidate for high temperature applications.

  3. Numerical Simulation of Wear in a C/C Composite Multidisk Clutch (Preprint)

    DTIC Science & Technology

    2009-04-01

    subroutine FRIC, in the commercial finite element software ( ABAQUS , 6.5-1, Pawtucket, RI) [25], to calculate the local wear depth increment (decrease in...temperature continuity and the heat balance conditions must be satisfied. The subroutine FRIC in ABAQUS code [25] is called only when the contact point is...0.33, thermal expansion coefficients αr = 0.31x10-6/K, αz = 0.29x10-6/K, friction coefficient µ = 0.20, heat convection coefficient h = 100 W/m2K

  4. A fluid-solid coupling simulation method for convection heat transfer coefficient considering the under-vehicle condition

    NASA Astrophysics Data System (ADS)

    Tian, C.; Weng, J.; Liu, Y.

    2017-11-01

    The convection heat transfer coefficient is one of the evaluation indexes of the brake disc performance. The method used in this paper to calculate the convection heat transfer coefficient is a fluid-solid coupling simulation method, because the calculation results through the empirical formula method have great differences. The model, including a brake disc, a car body, a bogie and flow field, was built, meshed and simulated in the software FLUENT. The calculation models were K-epsilon Standard model and Energy model. The working condition of the brake disc was considered. The coefficient of various parts can be obtained through the method in this paper. The simulation result shows that, under 160 km/h speed, the radiating ribs have the maximum convection heat transfer coefficient and the value is 129.6W/(m2·K), the average coefficient of the whole disc is 100.4W/(m2·K), the windward of ribs is positive-pressure area and the leeward of ribs is negative-pressure area, the maximum pressure is 2663.53Pa.

  5. Cross-plane thermoelectric transport in p-type La0.67Sr0.33MnO3/LaMnO3 oxide metal/semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj; Sands, Timothy D.; Jackson, Philip; Bomberger, Cory; Favaloro, Tela; Hodson, Stephen; Zide, Joshua; Xu, Xianfan; Shakouri, Ali

    2013-05-01

    The cross-plane thermoelectric transport properties of La0.67Sr0.33MnO3 (LSMO)/LaMnO3 (LMO) oxide metal/semiconductor superlattices were investigated. The LSMO and LMO thin-film depositions were performed using pulsed laser deposition to achieve low resistivity constituent materials for LSMO/LMO superlattice heterostructures on (100)-strontium titanate substrates. X-ray diffraction and high-resolution reciprocal space mapping indicate that the superlattices are epitaxial and pseudomorphic. Cross-plane devices were fabricated by etching cylindrical pillar structures in superlattices using inductively, this coupled-plasma reactive-ion etching. The cross-plane electrical conductivity data for LSMO/LMO superlattices reveal a lowering of the effective barrier height to 223 meV as well as an increase in cross-plane conductivity by an order of magnitude compared to high resistivity superlattices. These results suggest that controlling the oxygen deficiency in the constituent materials enables modification of the effective barrier height and increases the cross-plane conductivity in oxide superlattices. The cross-plane LSMO/LMO superlattices showed a giant Seebeck coefficient of 2560 μV/K at 300 K that increases to 16 640 μV/K at 360 K. The giant increase in the Seebeck coefficient with temperature may include a collective contribution from the interplay of charge, spin current, and phonon drag. The low resistance oxide superlattices exhibited a room temperature cross-plane thermal conductivity of 0.92 W/m K, this indicating that the suppression of thermal conductivities due to the interfaces is preserved in both low and high resistivity superlattices. The high Seebeck coefficient, the order of magnitude improvement in cross-plane conductivity, and the low thermal conductivity in LSMO/LMO superlattices resulted in a two order of magnitude increase in cross-plane power factor and thermoelectric figure of merit (ZT), compared to the properties of superlattices with higher resistivity that were reported previously. The temperature dependence of the cross-plane power factor in low resistance superlattices suggests a direction for further investigations of the potential LSMO/LMO oxide superlattices for thermoelectric devices.

  6. Electronic transport properties of intermediately coupled superconductors: PdTe2 and Cu0.04PdTe2

    NASA Astrophysics Data System (ADS)

    Hooda, M. K.; Yadav, C. S.

    2018-01-01

    We have investigated the electrical resistivity (1.8-480 K), Seebeck coefficient (2.5-300 K) and thermal conductivity (2.5-300 K) of PdTe2 and 4% Cu intercalated PdTe2 compounds. The electrical resistivity for the compounds shows a Bloch-Gruneisen-type linear temperature (T) dependence for 100 \\text{K}, and Fermi liquid behavior (ρ (T) \\propto T2) for T<50 \\text{K} . Seebeck coefficient data exhibit a strong competition between Normal (N) and Umklapp (U) scattering processes at low T. The low-T, thermal conductivity (κ) of the compounds is strongly dominated by the electronic contribution, and exhibits a rare linear T-dependence below 10 K. However, high-T, κ (T) shows the usual 1/T -dependence, dominated by the U-scattering process. The electron-phonon coupling parameters, estimated from the low-T, specific-heat data and first-principle electronic structure calculations suggest that PdTe2 and Cu0.04PdTe2 are intermediately coupled superconductors.

  7. K1.33Mn8O16 as an electrocatalyst and a cathode

    NASA Astrophysics Data System (ADS)

    Jalili, Seifollah; Moharramzadeh Goliaei, Elham; Schofield, Jeremy

    2017-02-01

    Density functional theory (DFT) calculations are carried out to investigate the electronic, magnetic and thermoelectric properties of bulk and nanosheet K1.33Mn8O16 materials. The catalytic activity and cathodic performance of bulk and nanosheet structures are examined using the Tran-Blaha modified Becke-Johnson (TB-mBJ) exchange potential. Electronic structure calculations reveal an anti-ferromagnetic ground state, with a TB-mMBJ band gap in bulk K1.33Mn8O16 that is in agreement with experimental results. Density of state plots indicate a partial reduction of Mn4+ ions to Mn3+, without any obvious sign of Jahn-Teller distortion. Moreover, use of the O p-band center as a descriptor of catalytic activity suggests that the nanosheet has enhanced catalytic activity compared to the bulk structure. Thermoelectric parameters such as the Seebeck coefficient, electrical conductivity, and thermal conductivity are also calculated, and it is found that the Seebeck coefficients decrease with increasing temperature. High Seebeck coefficients for both spin-up and spin-down states are found in the nanosheet relative to their value in the bulk K1.33Mn8O16 structure, whereas the electrical and thermal conductivity are reduced relative to the bulk. In addition, figures of merit values are calculated as a function of the chemical potential and it is found that the nanosheet has a figure of merit of 1 at room temperature, compared to 0.5 for the bulk material. All results suggest that K1.33Mn8O16 nanosheets can be used both as a material in waste heat recovery and as an electrocatalyst in fuel cells and batteries.

  8. SAW propagation characteristics of TeO3/3C-SiC/LiNbO3 layered structure

    NASA Astrophysics Data System (ADS)

    Soni, Namrata D.

    2018-04-01

    Surface acoustic wave (SAW) devices based on Lithium Niobate (LiNbO3) single crystal are advantageous because of its high SAW phase velocity, electromechanical coupling coefficient and cost effectiveness. In the present work a new multi-layered TeO3/3C-SiC/128° Y-X LiNbO3 SAW device has been proposed. SAW propagation properties such as phase velocity, coupling coefficient and temperature coefficient of delay (TCD) of the TeO3/SiC/128° Y-X LiNbO3 multi layered structure is examined using theoretical calculations. It is found that the integration of 0.09λ thick 3C-SiC over layer on 128° Y-X LiNbO3 increases its electromechanical coupling coefficient from 5.3% to 9.77% and SAW velocity from 3800 ms‑1 to 4394 ms‑1. The SiC/128° Y-X LiNbO3 bilayer SAW structure exhibits a high positive TCD value. A temperature stable layered SAW device could be obtained with introduction of 0.007λ TeO3 over layer on SiC/128° Y-X LiNbO3 bilayer structure without sacrificing the efficiency of the device. The proposed TeO3/3C-SiC/128° Y-X LiNbO3 multi-layered SAW structure is found to be cost effective, efficient, temperature stable and suitable for high frequency application in harsh environment.

  9. Compositional inhomogeneityand segregation in (K 0.5Na 0.5)NbO 3 ceramics

    DOE PAGES

    Chen, Kepi; Tang, Jing; Chen, Yan

    2016-03-11

    The effects of the calcination temperature of (K 0.5Na 0.5)NbO 3 (KNN) powder on the sintering and piezoelectric properties of KNN ceramics have been investigated in this report. KNN powders are synthesized via the solid-state approach. Scanning electron microscopy and X-ray diffraction characterizations indicate that the incomplete reaction at 700 °C and 750 °C calcination results in the compositional inhomogeneity of the K-rich and Na-rich phases while the orthorhombic single phase is obtained after calcination at 900 °C. During the sintering, the presence of the liquid K-rich phase due to the lower melting point has a significant impact on themore » densification, the abnormal grain growth and the deteriorated piezoelectric properties. From the standpoint of piezoelectric properties, the optimal calcination temperature obtained for KNN ceramics calcined at this temperature is determined to be 800 °C, with piezoelectric constant d 33=128.3 pC/N, planar electromechanical coupling coefficient k p=32.2%, mechanical quality factor Q m=88, and dielectric loss tan δ=2.1%.« less

  10. Atomic Data and Spectral Line Intensities for Ne III

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Thomas, R. J.; Landi, E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ne III. The configurations used are 2s(sup 2) 2p(sup 4),2s2p(sup 5),2s(sup 2) 2p(sup 3)3s, and 2s(sup 2)3p(sup 3)3d giving rise to 57 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 5, 10, 15, 20, and 25 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of logT,(K)=5.0, corresponding to maximum abundance of Ne III. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8)-10(exp 14) per cubic centimeter. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted Ne III line intensities are compared with SERTS rocket measurements of a solar active region and of a laboratory EUV light source.

  11. Comparative face-shear piezoelectric properties of soft and hard PZT ceramics

    NASA Astrophysics Data System (ADS)

    Miao, Hongchen; Chen, Xi; Cai, Hairong; Li, Faxin

    2015-12-01

    The face-shear ( d 36 ) mode may be the most practical shear mode in piezoelectrics, while theoretically this mode cannot appear in piezoelectric ceramics because of its transversally isotropic symmetry. Recently, we realized piezoelectric coefficient d 36 up to 206pC/N in soft PbZr1-xTixO3 (PZT) ceramics via ferroelastic domain engineering [H. C. Miao and F. X. Li, Appl. Phys. Lett. 107, 122902 (2015)]. In this work, we further realized the face-shear mode in both hard and soft PZT ceramics including PZT-4 (hard), PZT-51(soft), and PZT-5H (soft) and investigated the electric properties systematically. The resonance methods are derived to measure the d 36 coefficients using both square patches and narrow bar samples, and the obtained values are consistent with that measured by a modified d 33 meter previously. For all samples, the pure d 36 mode can only appear near the resonance frequency, and the coupled d 36 - d 31 mode dominates off resonance. It is found that both the piezoelectric coefficient d 36 and the electromechanical coupling factor k 36 of soft PZT ceramics (PZT-5H and PZT-51) are considerably larger than those of the hard PZT ceramics (PZT-4). The obtained d 36 of 160-275pC/N, k 36 ˜ 0.24, and the mechanical quality factor Q 36 of 60-90 in soft PZT ceramics are comparable with the corresponding properties of the d 31 mode sample. Therefore, the d 36 mode in modified soft PZT ceramics is more promising for industrial applications such as face-shear resonators and shear horizontal wave generators.

  12. Thermal properties of cubic KTa1-xNbxO3 crystals

    NASA Astrophysics Data System (ADS)

    Wang, X. P.; Wang, J. Y.; Zhang, H. J.; Yu, Y. G.; Wu, J.; Gao, W. L.; Boughton, R. I.

    2008-02-01

    Cubic potassium tantalite niobate [KTa1-xNbxO3 (KTN)] crystals of large size, good quality, and varying Nb concentration have been grown by the Czochralski method and their thermal properties have been systematically studied. The melting point, molar enthalpy of fusion, and molar entropy of fusion of the crystals were determined to be: 1536.9 K, 12 068.521 J mol-1, and 7.85 J K-1 mol-1 for KTa0.67Nb0.33O3; and 1520.61 K, 15 352.511 J mol-1, and 10.098 J K-1 mol-1 for KTa0.67Nb0.33O3, respectively. Based on the data, the Jackson factor was calculated to be 0.994f and 1.214f for KTa0.67Nb0.33O3 and KTa0.63Nb0.37O3, respectively. The thermal expansion coefficients over the temperature range of 298.15-773.15 K are: α =4.0268×10-6/K, 6.4428×10-6/K, 6.5853×10-6/K for KTaO3, KTa0.67Nb0.33O3, and KTa0.63Nb0.37O3, respectively. The density follows an almost linear decrease when the temperature increases=from 298.15 to 773.15 K. The measured specific heats at 303.15 K are: 0.375 J g-1 K-1 for KTaO3; 0.421 J g-1 K-1 for KTa0.67Nb0.33O3, and 0.430 J g-1 K-1 for KTa0.63Nb0.37O3 The thermal diffusion coefficients of the crystals were measured over the temperature range from 303.15-563.15 K. The calculated thermal conductivity values of KTaO3, KTa0.67Nb0.33O3, and KTa0.63Nb0.37O3 at 303.15 K are 8.551, 5.592, and 4.489 W m-1 K-1, respectively. The variation of these thermal properties versus Nb concentration is qualitatively analyzed. These results show that crystalline KTN is a promising material for optical applications.

  13. Swainsonine, a novel fungal metabolite: optimization of fermentative production and bioreactor operations using evolutionary programming.

    PubMed

    Singh, Digar; Kaur, Gurvinder

    2014-08-01

    The optimization of bioreactor operations towards swainsonine production was performed using an artificial neural network coupled evolutionary program (EP)-based optimization algorithm fitted with experimental one-factor-at-a-time (OFAT) results. The effects of varying agitation (300-500 rpm) and aeration (0.5-2.0 vvm) rates for different incubation hours (72-108 h) were evaluated in bench top bioreactor. Prominent scale-up parameters, gassed power per unit volume (P g/V L, W/m(3)) and volumetric oxygen mass transfer coefficient (K L a, s(-1)) were correlated with optimized conditions. A maximum of 6.59 ± 0.10 μg/mL of swainsonine production was observed at 400 rpm-1.5 vvm at 84 h in OFAT experiments with corresponding P g/VL and K L a values of 91.66 W/m(3) and 341.48 × 10(-4) s(-1), respectively. The EP optimization algorithm predicted a maximum of 10.08 μg/mL of swainsonine at 325.47 rpm, 1.99 vvm and 80.75 h against the experimental production of 7.93 ± 0.52 μg/mL at constant K L a (349.25 × 10(-4) s(-1)) and significantly reduced P g/V L (33.33 W/m(3)) drawn by the impellers.

  14. Combining Multiple Types of Intelligence to Generate Probability Maps of Moving Targets

    DTIC Science & Technology

    2013-09-01

    normalization coefficient k similar to Demspter-Shafer’s combination rule. d. Mass Mean This rule of combination is the most straightforward one... coefficient , we can state that without normalizing, the updated distribution is: fupdate t   qk k t M 1 qk n k t M        (3.3) 36...Lawrence, KS. Chen, Z. (2003). Bayesian filtering: From Kalman filters to particle filters and beyond. Technical report, McMaster University. Dempster

  15. Interdiffusion, Intrinsic Diffusion, Atomic Mobility, and Vacancy Wind Effect in γ(bcc) Uranium-Molybdenum Alloy

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Keiser, Dennis D.; Sohn, Yongho

    2013-02-01

    U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. In order to understand the fundamental diffusion behavior of this system, solid-to-solid pure U vs Mo diffusion couples were assembled and annealed at 923 K, 973 K, 1073 K, 1173 K, and 1273 K (650 °C, 700 °C, 800 °C, 900 °C, and 1000 °C) for various times. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy and electron probe microanalysis, respectively. As the Mo concentration increased from 2 to 26 at. pct, the interdiffusion coefficient decreased, while the activation energy increased. A Kirkendall marker plane was clearly identified in each diffusion couple and utilized to determine intrinsic diffusion coefficients. Uranium intrinsically diffused 5-10 times faster than Mo. Molar excess Gibbs free energy of U-Mo alloy was applied to calculate the thermodynamic factor using ideal, regular, and subregular solution models. Based on the intrinsic diffusion coefficients and thermodynamic factors, Manning's formalism was used to calculate the tracer diffusion coefficients, atomic mobilities, and vacancy wind parameters of U and Mo at the marker composition. The tracer diffusion coefficients and atomic mobilities of U were about five times larger than those of Mo, and the vacancy wind effect increased the intrinsic flux of U by approximately 30 pct.

  16. Rate Coefficients for O-Atom Three-Body Recombination in N2 at Temperatures in the Range 170--320 K

    NASA Astrophysics Data System (ADS)

    Pejakovic, D. A.; Kalogerakis, K. S.; Copeland, R. A.; Huestis, D. L.; Robertson, R. M.; Smith, G. P.

    2005-12-01

    Three-body recombination of O-atoms, O + O + M → O_2* + M is one of the most important reactions in the upper atmospheres of Earth, Venus, and Mars. It is the only source for O2 nightglow, and the resulting emissions of electronically excited O2 are key tracers for photochemical and wave activity near the mesopause. Thus, knowledge of the rate coefficient for recombination of atomic oxygen is essential for modeling atmospheric composition. However, there exists a large discrepancy in the published estimates for this rate coefficient. For M = N2, the room temperature coefficient varies between about 3 × 10-33 cm6s-1, which is the value used in the combustion science community, and 5 × 10-33 cm6s-1, a value adopted in the atmospheric modeling community. We report measurements of the rate coefficient for O-atom recombination with N2 as the third body by two different experimental approaches. In the first experiment, we employ the pulsed output of a F2 laser at 157 nm to achieve high levels of photodissociation of molecular oxygen. In a high-pressure (760 Torr) background of N2 the produced O-atoms recombine in a time scale of several milliseconds. Oxygen atom population is monitored by observing fluorescence at 845 nm, induced by the output of a second laser near 226 nm. In the second experiment, the focused output of a KrF excimer laser at 248 nm is used to achieve complete photodissociation of measured amounts of ozone (0.2--0.9 Torr) in a background of ~500 Torr of N2, producing known initial concentrations of O-atoms. Their population decay is monitored by laser-induced fluorescence excited by the 226 nm radiation from a delayed frequency-doubled OPO system. The reaction cell can be cooled by dry ice or liquid nitrogen baths. The preliminary results of the O2 photolysis experiments give a room-temperature value for the rate coefficient of about 2.8 × 10-33 cm6s-1. The ozone photolysis experiments at 316 K (including effects of laser and kinetic heating of the gas) give a preliminary value of ~2.5 × 10-33 cm6s-1, in a good agreement with the O2 photolysis result. Preliminary results show faster recombination at lower temperatures: k(260 K) ~ 4.5 × 10-33 cm6s-1, and k(170 K) ~ 20 × 10-33 cm6s-1. The temperature dependence of k is in a good agreement with the recommendation of Baulch et al. [1], which has been adopted by the combustion modeling community. The O2 photolysis experiments were supported by the NASA Geospace Sciences Program under grant NAG5-12992. The F2 laser was purchased under grant ATM-0216583 from the NSF Major Research Instrumentation Program. The ozone photolysis experiments were supported by the NSF Grant ATM-0233523. [1] D. L. Baulch, D. D. Drysdale, J. Duxbury, and S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions Vol. 3 (Butterworths, London, 1976).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kepi; Tang, Jing; Chen, Yan

    The effects of the calcination temperature of (K 0.5Na 0.5)NbO 3 (KNN) powder on the sintering and piezoelectric properties of KNN ceramics have been investigated in this report. KNN powders are synthesized via the solid-state approach. Scanning electron microscopy and X-ray diffraction characterizations indicate that the incomplete reaction at 700 °C and 750 °C calcination results in the compositional inhomogeneity of the K-rich and Na-rich phases while the orthorhombic single phase is obtained after calcination at 900 °C. During the sintering, the presence of the liquid K-rich phase due to the lower melting point has a significant impact on themore » densification, the abnormal grain growth and the deteriorated piezoelectric properties. From the standpoint of piezoelectric properties, the optimal calcination temperature obtained for KNN ceramics calcined at this temperature is determined to be 800 °C, with piezoelectric constant d 33=128.3 pC/N, planar electromechanical coupling coefficient k p=32.2%, mechanical quality factor Q m=88, and dielectric loss tan δ=2.1%.« less

  18. PZT/PLZT - elastomer composites with improved piezoelectric voltage coefficient

    NASA Astrophysics Data System (ADS)

    Harikrishnan, K.; Bavbande, D. V.; Mohan, Dhirendra; Manoharan, B.; Prasad, M. R. S.; Kalyanakrishnan, G.

    2018-02-01

    Lead Zirconate Titanate (PZT) and Lanthanum-modified Lead Zirconate Titanate (PLZT) ceramic sensor materials are widely used because of their excellent piezoelectric coefficients. These materials are brittle, high density and have low achievable piezoelectric voltage coefficients. The density of the sintered ceramics shall be reduced by burnable polymeric sponge method. The achievable porosity level in this case is nearly 60 - 90%. However, the porous ceramic structure with 3-3 connectivity produced by this method is very fragile in nature. The strength of the porous structure is improved with Sylgard®-184 (silicone elastomer) by vacuum impregnation method maintaining the dynamic vacuum level in the range of -650 mm Hg. The elastomer Sylgard®-184 is having low density, low dielectric constant and high compliance (as a resultant stiffness of the composites is increased). To obtain a net dipole moment, the impregnated ceramic composites were subjected to poling treatment with varying conditions of D.C. field and temperature. The properties of the poled PZT/PLZT - elastomer composites were characterized with LCR meter for measuring the dielectric constant values (k), d33 meter used for measuring piezo-electric charge coefficient values (d33) and piezo-electric voltage coefficient (g33) values which were derived from d33 values. The voltage coefficient (g33) values of these composites are increased by 10 fold as compared to the conventional solid ceramics demonstrates that it is possible to fabricate a conformable detector.

  19. Theoretical investigation of the SAW properties of ferroelectric film composite structures.

    PubMed

    Shih, W C; Wu, M S

    1998-01-01

    The characteristics of surface acoustic waves (SAW) propagating on a three-layered structure consisting of a perovskite-type ferroelectric film, a buffer layer and a semiconductor substrate have been studied theoretically. Large coupling coefficients (K(2)) can be obtained when the interdigital transducer (IDT) is on top of the perovskite-type ferroelectric film, with (type 4) and without (type 3) the floating-plane electrode at the perovskite-type ferroelectric film-buffer layer interface. In the above cases, the peak values of K (2) Of the Pb(Zr,Ti)O(3) (PZT) films (3.2%-3.8%) are higher than those of the BaTiO(3) (BT) and PbTiO(3) (PT) films. In the IDT configuration of type 4, there exists a minor peak of the coupling coefficients for the PZT and BT films, but not for the PT films when the normalized thickness (hK) of the perovskite-type ferroelectric film is about 0.3. The minor peak values of the coupling coefficients (0.62%-0.93%) for different layered structures (PZT/STO/Si, PZT/MgO/Si, and PZT/MgO/GaAs) all decrease when we increase hK value from 0 to 0.25. The results could be useful in the integration of ferroelectric devices, semiconductor devices, and SAW devices on the same substrate.

  20. Equivalent Circuit Model of Low-Frequency Magnetoelectric Effect in Disk-Type Terfenol-D/PZT Laminate Composites Considering a New Interface Coupling Factor.

    PubMed

    Lou, Guofeng; Yu, Xinjie; Lu, Shihua

    2017-06-15

    This paper describes the modeling of magnetoelectric (ME) effects for disk-type Terfenol-D (Tb 0.3 Dy 0.7 Fe 1.92 )/PZT (Pb(Zr,Ti)O₃) laminate composite at low frequency by combining the advantages of the static elastic model and the equivalent circuit model, aiming at providing a guidance for the design and fabrication of the sensors based on magnetoelectric laminate composite. Considering that the strains of the magnetostrictive and piezoelectric layers are not equal in actual operating due to the epoxy resin adhesive bonding condition, the magnetostrictive and piezoelectric layers were first modeled through the equation of motion separately, and then coupled together with a new interface coupling factor k c , which physically reflects the strain transfer between the phases. Furthermore, a theoretical expression containing k c for the transverse ME voltage coefficient α v and the optimum thickness ratio n optim to which the maximum ME voltage coefficient corresponds were derived from the modified equivalent circuit of ME laminate, where the interface coupling factor acted as an ideal transformer. To explore the influence of mechanical load on the interface coupling factor k c , two sets of weights, i.e., 100 g and 500 g, were placed on the top of the ME laminates with the same thickness ratio n in the sample fabrication. A total of 22 T-T mode disk-type ME laminate samples with different configurations were fabricated. The interface coupling factors determined from the measured α v and the DC bias magnetic field H bias were 0.11 for 500 g pre-mechanical load and 0.08 for 100 g pre-mechanical load. Furthermore, the measured optimum thickness ratios were 0.61 for k c = 0.11 and 0.56 for k c = 0.08. Both the theoretical ME voltage coefficient α v and optimum thickness ratio n optim containing k c agreed well with the measured data, verifying the reasonability and correctness for the introduction of k c in the modified equivalent circuit model.

  1. Fabrication and properties of radially <001>C textured PMN-PT cylinders for transducer applications

    NASA Astrophysics Data System (ADS)

    Poterala, Stephen F.; Meyer, Richard J.; Messing, Gary L.

    2012-07-01

    <001>C Textured PMN-PT ceramics have electromechanical properties (d33 = 850-1050 pm/V, k33 = 0.79-0.83) between those of conventional PZT ceramics and relaxor PMN-PT crystals. In this work, we tailor crystallographic orientation in textured PMN-PT ceramics for transducer designs with non-planar poling surfaces. Specifically, omni-directional cylindrical transducer elements were fabricated using monolithic, radially <001>C textured and poled PMN-PT ceramic. Texture was produced by templated grain growth using NBT-PT templates, which were oriented radially by wrapping green ceramic tapes around a cylindrical mandrel. Finished transducer elements measure ˜5 cm in diameter by ˜2.5 cm in height and demonstrate scalability of textured ceramic fabrication techniques. The fabricated cylinders are ˜50 vol. % textured and show high 31-mode electromechanical properties compared to PZT ceramics (d31 = -259 pm/V, k31 = 0.43, ɛT33 = 3000, and Qm = 350). Frequency bandwidth is related to the square of the hoop mode coupling coefficient kh2, which is ˜60% higher in textured PMN-PT cylinders compared to PZT 5H. Finite element simulations show that this parameter may be further increased by improving texture quality to ≥90 vol. %. Radially textured PMN-PT may thus improve performance in omni-directional cylindrical transducers while avoiding the need for segmented single crystal designs.

  2. Advantages and Challenges of Relaxor-PbTiO3 Ferroelectric Crystals for Electroacoustic Transducers- A Review.

    PubMed

    Zhang, Shujun; Li, Fei; Jiang, Xiaoning; Kim, Jinwook; Luo, Jun; Geng, Xuecang

    2015-03-01

    Relaxor-PbTiO 3 (PT) based ferroelectric crystals with the perovskite structure have been investigated over the last few decades due to their ultrahigh piezoelectric coefficients ( d 33 > 1500 pC/N) and electromechanical coupling factors ( k 33 > 90%), far outperforming state-of-the-art ferroelectric polycrystalline Pb(Zr,Ti)O 3 ceramics, and are at the forefront of advanced electroacoustic applications. In this review, the performance merits of relaxor-PT crystals in various electroacoustic devices are presented from a piezoelectric material viewpoint. Opportunities come from not only the ultrahigh properties, specifically coupling and piezoelectric coefficients, but through novel vibration modes and crystallographic/domain engineering. Figure of merits (FOMs) of crystals with various compositions and phases were established for various applications, including medical ultrasonic transducers, underwater transducers, acoustic sensors and tweezers. For each device application, recent developments in relaxor-PT ferroelectric crystals were surveyed and compared with state-of-the-art polycrystalline piezoelectrics, with an emphasis on their strong anisotropic features and crystallographic uniqueness, including engineered domain - property relationships. This review starts with an introduction on electroacoustic transducers and the history of piezoelectric materials. The development of the high performance relaxor-PT single crystals, with a focus on their uniqueness in transducer applications, is then discussed. In the third part, various FOMs of piezoelectric materials for a wide range of ultrasound applications, including diagnostic ultrasound, therapeutic ultrasound, underwater acoustic and passive sensors, tactile sensors and acoustic tweezers, are evaluated to provide a thorough understanding of the materials' behavior under operational conditions. Structure-property-performance relationships are then established. Finally, the impacts and challenges of relaxor-PT crystals are summarized to guide on-going and future research in the development of relaxor-PT crystals for the next generation electroacoustic transducers.

  3. Anisotropic Laminar Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2006-01-01

    The design, fabrication, and testing of a flexible, laminar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d33 piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d33 estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  4. Anisotropic Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2004-01-01

    The design, fabrication, and testing of a flexible, planar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d(sub 33) piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d(sub 33) estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  5. Advantages and Challenges of Relaxor-PbTiO3 Ferroelectric Crystals for Electroacoustic Transducers- A Review

    PubMed Central

    Zhang, Shujun; Li, Fei; Jiang, Xiaoning; Kim, Jinwook; Luo, Jun; Geng, Xuecang

    2014-01-01

    Relaxor-PbTiO3 (PT) based ferroelectric crystals with the perovskite structure have been investigated over the last few decades due to their ultrahigh piezoelectric coefficients (d33 > 1500 pC/N) and electromechanical coupling factors (k33 > 90%), far outperforming state-of-the-art ferroelectric polycrystalline Pb(Zr,Ti)O3 ceramics, and are at the forefront of advanced electroacoustic applications. In this review, the performance merits of relaxor-PT crystals in various electroacoustic devices are presented from a piezoelectric material viewpoint. Opportunities come from not only the ultrahigh properties, specifically coupling and piezoelectric coefficients, but through novel vibration modes and crystallographic/domain engineering. Figure of merits (FOMs) of crystals with various compositions and phases were established for various applications, including medical ultrasonic transducers, underwater transducers, acoustic sensors and tweezers. For each device application, recent developments in relaxor-PT ferroelectric crystals were surveyed and compared with state-of-the-art polycrystalline piezoelectrics, with an emphasis on their strong anisotropic features and crystallographic uniqueness, including engineered domain - property relationships. This review starts with an introduction on electroacoustic transducers and the history of piezoelectric materials. The development of the high performance relaxor-PT single crystals, with a focus on their uniqueness in transducer applications, is then discussed. In the third part, various FOMs of piezoelectric materials for a wide range of ultrasound applications, including diagnostic ultrasound, therapeutic ultrasound, underwater acoustic and passive sensors, tactile sensors and acoustic tweezers, are evaluated to provide a thorough understanding of the materials’ behavior under operational conditions. Structure-property-performance relationships are then established. Finally, the impacts and challenges of relaxor-PT crystals are summarized to guide on-going and future research in the development of relaxor-PT crystals for the next generation electroacoustic transducers. PMID:25530641

  6. Rare earth-iron magnetostrictive materials and devices using these materials

    DOEpatents

    Savage, Howard T.; Clark, Arthur E.; McMasters, O. Dale

    1981-12-29

    Grain-oriented polycrystalline or single crystal magnetostrictive materials n the general formula Tb.sub.x Dy.sub.1-x Fe.sub.2-w, Tb.sub.x Ho.sub.1-x Fe.sub.2-w, Sm.sub.x Dy.sub.1-x Fe.sub.x-w, Sm.sub.x Ho.sub.1-x Fe.sub.2-w, Tb.sub.x Ho.sub.y Dy.sub.z Fe.sub.2-w, or Sm.sub.x Ho.sub.y Dy.sub.z Fe.sub.2-w, wherein O.ltoreq.w.ltoreq.0.20, and x+y+z=1. X, y, and z are selected to maximize the magnetostrictive effect and the magnetomechanical coupling coefficient K.sub.33. These material may be used in magnetostrictive transducers, delay lines, variable frequency resonators, and filters.

  7. Large piezoelectric properties in KNN-based lead-free single crystals grown by a seed-free solid-state crystal growth method

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhang, Faqiang; Yang, Qunbao; Liu, Zhifu; Li, Yongxiang; Liu, Yun; Zhang, Qiming

    2016-05-01

    We report lead-free single crystals with a nominal formula of (K0.45Na0.55)0.96Li0.04NbO3 grown using a simple low-cost seed-free solid-state crystal growth method (SFSSCG). The crystals thus prepared can reach maximum dimensions of 6 mm × 5 mm × 2 mm and exhibit a large piezoelectric coefficient d33 of 689 pC/N. Moreover, the effective piezoelectric coefficient d33 * , obtained under a unipolar electric field of 30 kV/cm, can reach 967 pm/V. The large piezoelectric response plus the high Curie temperature (TC) of 432 °C indicate that SFSSCG is an effective approach to synthesize high-performance lead-free piezoelectric single crystals.

  8. Piezoelectric Flexible LCP-PZT Composites for Sensor Applications at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Tolvanen, Jarkko; Hannu, Jari; Juuti, Jari; Jantunen, Heli

    2018-03-01

    In this paper fabrication of piezoelectric ceramic-polymer composites is demonstrated via filament extrusion enabling cost-efficient large-scale production of highly bendable pressure sensors feasible for elevated temperatures. These composites are fabricated by utilizing environmentally resistant and stable liquid crystal polymer matrix with addition of lead zirconate titanate at loading levels of 30 vol%. These composites, of approximately 0.99 mm thick and length of > 50 cm, achieved excellent bendability with minimum bending radius of 6.6 cm. The maximum piezoelectric coefficients d33 and g33 of the composites were > 14 pC/N and > 108 mVm/N at pressure < 10 kPa. In all cases, the piezoelectric charge coefficient (d33) of the composites decreased as a function of pressure. Also, piezoelectric coefficient (d33) further decreased in the case of increased frequency press-release cycle sand pre-stress levels by approximately 37-50%. However, the obtained results provide tools for fabricating novel piezoelectric sensors in highly efficient way for environments with elevated temperatures.

  9. Cross-plane electrical and thermal transport in oxide metal/semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj

    Perovskite oxides display a rich variety of electronic properties as metals, ferroelectrics, ferromagnetics, multiferroics, and thermoelectrics. Cross-plane electron filtering transport in metal/semiconductor superlattices provides a potential approach to increase the thermoelectric figure of merit (ZT). La0.67Sr0.33MnO3 (LSMO) and LaMnO3 (LMO) thin-film depositions were optimized using pulsed laser deposition (PLD) to achieve low resistivity constituent materials for LSMO/LMO superlattice heterostructures on (100)-strontium titanate (STO) substrates. X-ray diffraction and high-resolution reciprocal space mapping (RSM) indicate that the superlattices are epitaxial and pseudomorphic. Cross-plane devices were fabricated by etching cylindrical pillar structures in superlattices using inductively-coupled-plasma reactive-ion etching. The cross-plane electrical conductivity data for LSMO/LMO superlattices reveal an effective barrier height of 220 meV. The cross-plane LSMO/LMO superlattices showed a giant Seebeck coefficient of 2560 microV/K at 300K that increases to 16640 microV/K at 360K. The large Seebeck coefficient may arise due to hot electron and spin filtering as LSMO/LMO superlattice constituent materials exhibit spintronic properties where charges and spin current are intertwined and can generate a spin-Seebeck effect. The room temperature thermal conductivity achieved in low resistivity superlattices was 0.92 W/mK, which indicates that cross-plane phonon scattering at interfaces reduces the lattice contribution to the thermal conductivity. The giant contribution of spin-Seebeck, the large temperature dependence of the cross-plane power factor, and the low thermal conductivity in low resistance LSMO/LMO superlattices may offer opportunities to realize spin-magnetic thermoelectric devices, and suggests a direction for further investigations of the potential of LSMO/LMO oxide superlattices for thermoelectric devices.

  10. Coupling and tuning of modal frequencies in direct current biased microelectromechanical systems arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kambali, Prashant N.; Swain, Gyanadutta; Pandey, Ashok Kumar, E-mail: ashok@iith.ac.in

    2015-08-10

    Understanding the coupling of different modal frequencies and their tuning mechanisms has become essential to design multi-frequency MEMS devices. In this work, we fabricate a MEMS beam with fixed boundaries separated from two side electrodes and a bottom electrode. Subsequently, we perform experiments to obtain the frequency variation of in-plane and out-of-plane mechanical modes of the microbeam with respect to both DC bias and laser heating. We show that the frequencies of the two modes coincide at a certain DC bias, which in turn can also be varied due to temperature. Subsequently, we develop a theoretical model to predict themore » variation of the two modes and their coupling due to a variable gap between the microbeam and electrodes, initial tension, and fringing field coefficients. Finally, we discuss the influence of frequency tuning parameters in arrays of 3, 33, and 40 microbeams, respectively. It is also found that the frequency bandwidth of a microbeam array can be increased to as high as 25 kHz for a 40 microbeam array with a DC bias of 80 V.« less

  11. Characteristics of fundamental acoustic wave modes in thin piezoelectric plates.

    PubMed

    Joshi, S G; Zaitsev, B D; Kuznetsova, I E; Teplykh, A A; Pasachhe, A

    2006-12-22

    The characteristics of the three lowest order plate waves (A(0), S(0), and SH(0)) propagating in piezoelectric plates whose thickness h is much less than the acoustic wavelength lambda are theoretically analyzed. It is found that these waves can provide much higher values of electromechanical coupling coefficient K(2) and lower values of temperature coefficient of delay (TCD) than is possible with surface acoustic waves (SAWs). For example, in 30Y-X lithium niobate, the SH(0) mode has K(2)=0.46 and TCD=55 ppm/degrees C. The corresponding values for SAW in the widely used, strong coupling material of 128Y-X lithium niobate are K(2)=0.053 and TCD=75 ppm/degrees C. Another important advantage of plate waves is that, unlike the case of SAWs, they can operate satisfactorily in contact with a liquid medium, thus making possible their use in liquid phase sensors.

  12. Determination of the magnetoelectric coupling coefficient from temperature dependences of the dielectric permittivity for multiferroic ceramics Bi{sub 5}Ti{sub 3}FeO{sub 15}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartkowska, J. A., E-mail: joanna.bartkowska@us.edu.pl; Dercz, J.

    2013-11-15

    In the multiferroic materials, the dielectric and magnetic properties are closely correlated through the coupling interaction between the ferroelectric and magnetic order. We attempted to determine the magnetoelectric coupling coefficient from the temperature dependences of the dielectric permittivity for multiferroic Bi{sub 5}Ti{sub 3}FeO{sub 15}. Multiferroic ceramics Bi{sub 5}Ti{sub 3}FeO{sub 15} belong to materials of the Aurivillius-type structure. Multiferroic ceramics Bi{sub 5}Ti{sub 3}FeO{sub 15} was synthesized via sintering the Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} mixture and TiO{sub 2} oxides. The precursor material was ground in a high-energy attritorial mill for 5 hours. This material was obtained by a solid-statemore » reaction process at T = 1313 K. We investigated the temperature dependences of the dielectric permittivity for the different frequencies. From the dielectric measurements, we determined the temperature of phase transition of the ferroelectric-to-paraelectric type at about 1013 K. Based on dielectric measurements and theoretical considerations, the values of the magnetoelectric coupling coefficient were specified.« less

  13. Calculation of electronic transport coefficients of Ag and Au plasma.

    PubMed

    Apfelbaum, E M

    2011-12-01

    The thermoelectric transport coefficients of silver and gold plasma have been calculated within the relaxation-time approximation. We considered temperatures of 10-100 kK and densities of ρ

  14. Analysis of SAW properties in ZnO/AlxGa1-xN/c-Al2O3 structures.

    PubMed

    Chen, Ying; Emanetoglu, Nuri William; Saraf, Gaurav; Wu, Pan; Lu, Yicheng; Parekh, Aniruddh; Merai, Vinod; Udovich, Eric; Lu, Dong; Lee, Dong S; Armour, Eric A; Pophristic, Milan

    2005-07-01

    Piezoelectric thin films on high acoustic velocity nonpiezoelectric substrates, such as ZnO, AlN, or GaN deposited on diamond or sapphire substrates, are attractive for high frequency and low-loss surface acoustic wave devices. In this work, ZnO films are deposited on AlxGa1-xN/c-Al2O3 (0 < or = chi < or = 1) substrates using the radio frequency (RF) sputtering technique. In comparison with a single AlxGa1-xN layer deposited on c-Al2O3 with the same total film thickness, a ZnO/AlxGa1-xN/c-Al2O3 multilayer structure provides several advantages, including higher order wave modes with higher velocity and larger electromechanical coupling coefficient (K2). The surface acoustic wave (SAW) velocities and coupling coefficients of the ZnO/AlxGa1-xN/c-Al2O3 structure are tailored as a function of the Al mole percentage in AlxGa1-xN films, and as a function of the ZnO (h1) to AlxGa1-xN (h2) thickness ratio. It is found that a wide thickness-frequency product (hf) region in which coupling is close to its maximum value, K(2)max, can be obtained. The K(2)max of the second order wave mode (h1 = h2) is estimated to be 4.3% for ZnO/GaN/c-Al2O3, and 3.8% for ZnO/AlN/c-Al2O3. The bandwidth of second and third order wave modes, in which the coupling coefficient is within +/- 0.3% of K(2)max, is calculated to be 820 hf for ZnO/GaN/c-Al2O3, and 3620 hf for ZnO/AlN/c-Al2O3. Thus, the hf region in which the coupling coefficient is close to the maximum value broadens with increasing Al content, while K(2)max decreases slightly. When the thickness ratio of AlN to ZnO increases, the K(2)max and hf bandwidth of the second and third higher wave modes increases. The SAW test devices are fabricated and tested. The theoretical and experimental results of velocity dispersion in the ZnO/AlxGa1-xN/c-Al2O3 structures are found to be well matched.

  15. Laboratory Studies of Chemical and Photochemical Processes Relevant to Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Villalta, P. W.; Zahniser, M. S.; Nelson, D. D.; Kolb, C. E.

    1998-01-01

    This is the final report for this project. Its purpose is to reduce the uncertainty in rate coefficients for key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring the rate coefficients for the reactions of HO2 + O3, and HO2 + NO2 in the temperature range (200-240 K) relevant to the lower stratosphere. In order to accomplish this, a high pressure turbulent flow tube reactor was built and its flow characteristics were quantified. The instrument was coupled with tunable diode laser spectroscopy for HO2 detection. Room temperature measurements of the HO2 + NO2 rate coefficients over the pressure range of 50-300 torr agree well with previous measurements. Preliminary measurements of the HO2 + O, rate coefficients at 50 - 300 Torr over the temperature range of 208-294 K agree with the NASA evaluation from 294-225 K but deviate significantly (50 % higher) at approximately 210 K.

  16. Hyperfine excitation of C2H in collisions with ortho- and para-H2

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-06-01

    Accurate estimation of the abundance of the ethynyl (C2H) radical requires accurate radiative and collisional rate coefficients. Hyperfine-resolved rate coefficients for (de-)excitation of C2H in collisions with ortho- and para-H2 are presented in this work. These rate coefficients were computed in time-independent close-coupling quantum scattering calculations that employed a potential energy surface recently computed at the coupled-clusters level of theory that describes the interaction of C2H with H2. Rate coefficients for temperatures from 10 to 300 K were computed for all transitions among the first 40 hyperfine energy levels of C2H in collisions with ortho- and para-H2. These rate coefficients were employed in simple radiative transfer calculations to simulate the excitation of C2H in typical molecular clouds.

  17. Quantum close coupling calculation of transport and relaxation properties for Hg-H2 system

    NASA Astrophysics Data System (ADS)

    Nemati-Kande, Ebrahim; Maghari, Ali

    2016-11-01

    Quantum mechanical close coupling calculation of the state-to-state transport and relaxation cross sections have been done for Hg-H2 molecular system using a high-level ab initio potential energy surface. Rotationally averaged cross sections were also calculated to obtain the energy dependent Senftleben-Beenakker cross sections at the energy range of 0.005-25,000 cm-1. Boltzmann averaging of the energy dependent Senftleben-Beenakker cross sections showed the temperature dependency over a wide temperature range of 50-2500 K. Interaction viscosity and diffusion coefficients were also calculated using close coupling cross sections and full classical Mason-Monchick approximation. The results were compared with each other and with the available experimental data. It was found that Mason-Monchick approximation for viscosity is more reliable than diffusion coefficient. Furthermore, from the comparison of the experimental diffusion coefficients with the result of the close coupling and Mason-Monchick approximation, it was found that the Hg-H2 potential energy surface used in this work can reliably predict diffusion coefficient data.

  18. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach

    USGS Publications Warehouse

    Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.

    2009-01-01

    Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.

  19. Dual-Electrode CMUT With Non-Uniform Membranes for High Electromechanical Coupling Coefficient and High Bandwidth Operation

    PubMed Central

    Guldiken, Rasim O.; Zahorian, Jaime; Yamaner, F. Y.; Degertekin, F. L.

    2010-01-01

    In this paper, we report measurement results on dual-electrode CMUT demonstrating electromechanical coupling coefficient (k2) of 0.82 at 90% of collapse voltage as well as 136% 3 dB one-way fractional bandwidth at the transducer surface around the design frequency of 8 MHz. These results are within 5% of the predictions of the finite element simulations. The large bandwidth is achieved mainly by utilizing a non-uniform membrane, introducing center mass to the design, whereas the dual-electrode structure provides high coupling coefficient in a large dc bias range without collapsing the membrane. In addition, the non-uniform membrane structure improves the transmit sensitivity of the dual-electrode CMUT by about 2dB as compared with a dual electrode CMUT with uniform membrane. PMID:19574135

  20. Superconductivity in semimetallic B i 3 O 2 S 3

    DOE PAGES

    Li, L.; Parker, D.; Babkevich, P.; ...

    2015-03-12

    We report in this paper a further investigation on the thermodynamic and transport properties, and an assessment of theoretical calculations, for the BiS 2-layered Bi 3O 2S 3 superconductor. The polycrystalline sample is synthesized with a superconducting transition temperature of T c onset=5.75K and T c zero=4.03K (≈Tc mag) that drops to 3.3 K by applying a hydrostatic pressure of 6 kbar. Density-of-states (DOS) calculations give substantial hybridization between Bi, O, and S, with Bi the largest component of DOS, which supports the idea that the BiS 2 layer is relevant for producing electron-phonon coupling. An analysis of previously publishedmore » specific heat data for Bi 3O 2S 3 is additionally suggestive of a strong electron-phonon interaction in the Bi-O-S system. The analysis of the Seebeck coefficient results strongly suggests that Bi 3O 2S 3 is a semimetal. In fact, we found the semimetallic or narrow band gap behavior may occur in certain other materials in the BiS 2-layered class of materials, such as Bi 4O 4S 3.« less

  1. Piezoelectric properties of nonstoichiometric Sr1-xBi2+2x/3Ta2O9 ceramics

    NASA Astrophysics Data System (ADS)

    Jain, Rajni; Chauhan, Arun Kumar Singh; Gupta, Vinay; Sreenivas, K.

    2005-06-01

    The effect of poling on the structural, dielectric, and piezoelectric properties has been investigated for sol-gel-derived strontium bismuth tantalate (SBT) [Sr1-xBi2+2x/3Ta2O9] ceramics with x =0.0,0.15,0.30,0.45. The dielectric and ferroelectric properties are found to improve with increase in x up to 0.3. Beyond x >0.3 the properties are found to degrade due to the limited solid solubility and the presence of a mixed phase of bismuth tantalate (BiTaO4) is detected with x =0.45. Poling treatment reduces the dielectric dispersion and dielectric loss in the frequency range (0.1-100kHz). The resonance and antiresonance frequencies increase with increase in x (x=0-0.30), and the corresponding minimum impedance decreases. The measured coupling coefficients (kp) are small (0.0967-0.1) for x =0-0.30, and the electromechanical quality factor (Qm=915) is a maximum for the Sr0.7Bi2.2Ta2O9 composition (x=0.30). The estimated piezoelectric charge coefficient (d31) and piezoelectric voltage coefficient (g31) are 5.2pC/N and 5.8×10-3Vm/N, respectively. The positive values of d31 and g31 and the low dielectric permittivity of SBT yield a high value for the hydrostatic coefficients, despite the low charge coefficient of d33=24pC/N. The maximum values of charge coefficient (dh=34pC/N) and voltage coefficient (gh=39×10-3Vm/N) are obtained for Sr0.7Bi2.2Ta2O9 composition, and the estimated hydrostatic figure of merit (dhgh×10-15=1215m2/N) is high.

  2. Hippocampal effective synchronization values are not pre-seizure indicator without considering the state of the onset channels

    PubMed Central

    Shayegh, Farzaneh; Sadri, Saeed; Amirfattahi, Rassoul; Ansari-Asl, Karim; Bellanger, Jean-Jacques; Senhadji, Lotfi

    2014-01-01

    In this paper, a model-based approach is presented to quantify the effective synchrony between hippocampal areas from depth-EEG signals. This approach is based on the parameter identification procedure of a realistic Multi-Source/Multi-Channel (MSMC) hippocampal model that simulates the function of different areas of hippocampus. In the model it is supposed that the observed signals recorded using intracranial electrodes are generated by some hidden neuronal sources, according to some parameters. An algorithm is proposed to extract the intrinsic (solely relative to one hippocampal area) and extrinsic (coupling coefficients between two areas) model parameters, simultaneously, by a Maximum Likelihood (ML) method. Coupling coefficients are considered as the measure of effective synchronization. This work can be considered as an application of Dynamic Causal Modeling (DCM) that enables us to understand effective synchronization changes during transition from inter-ictal to pre -ictal state. The algorithm is first validated by using some synthetic datasets. Then by extracting the coupling coefficients of real depth-EEG signals by the proposed approach, it is observed that the coupling values show no significant difference between ictal, pre-ictal and inter-ictal states, i.e., either the increase or decrease of coupling coefficients has been observed in all states. However, taking the value of intrinsic parameters into account, pre-seizure state can be distinguished from inter-ictal state. It is claimed that seizures start to appear when there are seizure-related physiological parameters on the onset channel, and its coupling coefficient toward other channels increases simultaneously. As a result of considering both intrinsic and extrinsic parameters as the feature vector, inter-ictal, pre-ictal and ictal activities are discriminated from each other with an accuracy of 91.33% accuracy. PMID:25061815

  3. Three-phase inductive-coupled structures for contactless PHEV charging system

    NASA Astrophysics Data System (ADS)

    Lee, Jia-You; Shen, Hung-Yu; Li, Cheng-Bin

    2016-07-01

    In this article, a new-type three-phase inductive-coupled structure is proposed for the contactless plug-in hybrid electric vehicle (PHEV) charging system regarding with SAE J-1773. Four possible three-phase core structures are presented and subsequently investigated by the finite element analysis. To study the correlation between the core geometric parameter and the coupling coefficient, the magnetic equivalent circuit model of each structure is also established. In accordance with the simulation results, the low reluctance and the sharing of flux path in the core material are achieved by the proposed inductive-coupled structure with an arc-shape and three-phase symmetrical core material. It results in a compensation of the magnetic flux between each phase and a continuous flow of the output power in the inductive-coupled structure. Higher coupling coefficient between inductive-coupled structures is achieved. A comparison of coupling coefficient, mutual inductance, and self-inductance between theoretical and measured results is also performed to verify the proposed model. A 1 kW laboratory scale prototype of the contactless PHEV charging system with the proposed arc-shape three-phase inductive-coupled structure is implemented and tested. An overall system efficiency of 88% is measured when two series lithium iron phosphate battery packs of 25.6 V/8.4 Ah are charged.

  4. Wittichenite Cu3BiS3: Synthesis and Physical Properties

    NASA Astrophysics Data System (ADS)

    Wei, Kaya; Hobbis, Dean; Wang, Hsin; Nolas, George S.

    2018-04-01

    Polycrystalline Cu3BiS3 was synthesized and densified using hot pressing in order to investigate the physical properties of this material. Both the thermal conductivity and the Seebeck coefficient of Cu3BiS3 are reported for the first time in order to investigate the thermoelectric properties of this material. The ultralow thermal conductivity coupled with the relatively high Seebeck coefficient, 0.17 W/m-K and 540 μV/K at room temperature, respectively, suggest Cu3BiS3 may show promise for thermoelectric applications.

  5. Wittichenite Cu3BiS3: Synthesis and Physical Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Kaya; Hobbis, Dean; Wang, Hsin

    Polycrystalline Cu 3BiS 3 was synthesized and densified using hot pressing in order to investigate the physical properties of this material. Both the thermal conductivity and the Seebeck coefficient of Cu 3BiS 3 are reported for the first time in order to investigate the thermoelectric properties of this material. The ultralow thermal conductivity coupled with the relatively high Seebeck coefficient, 0.17 W/m-K and 540 μV/K at room temperature, respectively, suggest Cu 3BiS 3 may show promise for thermoelectric applications.

  6. Wittichenite Cu3BiS3: Synthesis and Physical Properties

    DOE PAGES

    Wei, Kaya; Hobbis, Dean; Wang, Hsin; ...

    2018-01-18

    Polycrystalline Cu 3BiS 3 was synthesized and densified using hot pressing in order to investigate the physical properties of this material. Both the thermal conductivity and the Seebeck coefficient of Cu 3BiS 3 are reported for the first time in order to investigate the thermoelectric properties of this material. The ultralow thermal conductivity coupled with the relatively high Seebeck coefficient, 0.17 W/m-K and 540 μV/K at room temperature, respectively, suggest Cu 3BiS 3 may show promise for thermoelectric applications.

  7. PMN-PT based quaternary piezoceramics with enhanced piezoelectricity and temperature stability

    NASA Astrophysics Data System (ADS)

    Luo, Nengneng; Zhang, Shujun; Li, Qiang; Yan, Qingfeng; He, Wenhui; Zhang, Yiling; Shrout, Thomas R.

    2014-05-01

    The phase structure, piezoelectric, dielectric, and ferroelectric properties of (0.80 - x)PMN-0.10PFN-0.10PZ-xPT were investigated systematically. The morphotropic phase boundary (MPB) was confirmed to be 0.30 < x < 0.34. Both MPB compositions of x = 0.32 and x = 0.33 exhibit high piezoelectric coefficients d33 = 640 pC/N and 580 pC/N, electromechanical couplings kp of 0.53 and 0.52, respectively. Of particular importance is that the composition with x = 0.33 was found to process high field-induced piezoelectric strain coefficient d33* of 680 pm/V, exhibiting a minimal temperature-dependent behavior, being less than 8% in the temperature range of 25-165 °C, which can be further confirmed by d31, with a variation of less than 9%. The temperature-insensitive d33* values can be explained by the counterbalance of the ascending dielectric permittivity and descending polarization with increasing temperature. These features make the PMN-PT based quaternary MPB compositions promising for actuator applications demanding high temperature stability.

  8. A study of the liquid-vapor phase change of mercury based on irreversible thermodynamics.

    NASA Technical Reports Server (NTRS)

    Adt, R. R., Jr.; Hatsopoulos, G. N.; Bornhorst, W. J.

    1972-01-01

    The object of this work is to determine the transport coefficients which appear in linear irreversible-thermodynamic rate equations of a phase change. An experiment which involves the steady-state evaporation of mercury was performed to measure the principal transport coefficient appearing in the mass-rate equation and the coupling transport coefficient appearing in both the mass-rate equation and the energy-rate equation. The principal transport coefficient sigma, usually termed the 'condensation' or 'evaporation' coefficient, is found to be approximately 0.9, which is higher than that measured previously in condensation-of-mercury experiments. The experimental value of the coupling coefficient K does not agree with the value predicted from Schrage's kinetic analysis of the phase change. A modified kinetic analysis in which the Onsager reciprocal law and the conservation laws are invoked is presented which removes this discrepancy but which shows that the use of Schrage's equation for predicting mass rates of phase change is a good approximation.

  9. Cross-plane electronic and thermal transport properties of p-type La0.67Sr0.33MnO3/LaMnO3 perovskite oxide metal/semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj; Sands, Timothy D.; Cassels, Laura; Jackson, Philip; Favaloro, Tela; Kirk, Benjamin; Zide, Joshua; Xu, Xianfan; Shakouri, Ali

    2012-09-01

    Lanthanum strontium manganate (La0.67Sr0.33MnO3, i.e., LSMO)/lanthanum manganate (LaMnO3, i.e., LMO) perovskite oxide metal/semiconductor superlattices were investigated as a potential p-type thermoelectric material. Growth was performed using pulsed laser deposition to achieve epitaxial LSMO (metal)/LMO (p-type semiconductor) superlattices on (100)-strontium titanate (STO) substrates. The magnitude of the in-plane Seebeck coefficient of LSMO thin films (<20 μV/K) is consistent with metallic behavior, while LMO thin films were p-type with a room temperature Seebeck coefficient of 140 μV/K. Thermal conductivity measurements via the photo-acoustic (PA) technique showed that LSMO/LMO superlattices exhibit a room temperature cross-plane thermal conductivity (0.89 W/m.K) that is significantly lower than the thermal conductivity of individual thin films of either LSMO (1.60 W/m.K) or LMO (1.29 W/m.K). The lower thermal conductivity of LSMO/LMO superlattices may help overcome one of the major limitations of oxides as thermoelectrics. In addition to a low cross-plane thermal conductivity, a high ZT requires a high power factor (S2σ). Cross-plane electrical transport measurements were carried out on cylindrical pillars etched in LSMO/LMO superlattices via inductively coupled plasma reactive ion etching. Cross-plane electrical resistivity data for LSMO/LMO superlattices showed a magnetic phase transition temperature (TP) or metal-semiconductor transition at ˜330 K, which is ˜80 K higher than the TP observed for in-plane resistivity of LSMO, LMO, or LSMO/LMO thin films. The room temperature cross-plane resistivity (ρc) was found to be greater than the in-plane resistivity by about three orders of magnitude. The magnitude and temperature dependence of the cross-plane conductivity of LSMO/LMO superlattices suggests the presence of a barrier with the effective barrier height of ˜300 meV. Although the magnitude of the cross-plane power factor is too low for thermoelectric applications by a factor of approximately 10-4—in part because the growth conditions chosen for this study yielded relatively high resistivity films—the temperature dependence of the resistivity and the potential for tuning the power factor by engineering strain, oxygen stoichiometry, and electronic band structure suggest that these epitaxial metal/semiconductor superlattices are deserving of further investigation.

  10. Screening of Possible Re-Substitutional Elements in Single-Crystal Ni-Based Superalloys: A Viewpoint From Interdiffusion Coefficients in Ni-Al-X Ternaries

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Zhang, Lijun; Lu, Xiao-Gang

    2018-07-01

    A popular area of research in the field of high-temperature alloys concerns the search of substitutional elements for Re in order to manufacture single-crystal Ni-based superalloys with less or even no Re addition. To find the elements with similar or even lower diffusion coefficients than Re is an effective strategy. Based on 29 fcc diffusion couples in ternary Ni-Al-X (X = Re, Os, and Ir) systems, high-throughput measurement of composition- and temperature-dependent interdiffusivity matrices was performed using our recently developed numerical inverse method implemented in HitDIC software. The reliability of the determined interdiffusivities was validated by comprehensively comparing the model-predicted composition/interdiffusion flux profiles for each diffusion couple with the corresponding experimental data. Moreover, we also conducted a comparison with the interdiffusivities evaluated using the traditional Matano-Kirkaldy method as well as those from the literature and in boundary binary systems. After that, a comprehensive comparison of the interdiffusion coefficients in fcc Ni-2 wt pct Al-6 wt pct X (X = Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) alloys at 1423 K to 1573 K was conducted. Results indicate that the diffusion rate of Re is lower than that of Os at 1473 K and 1523 K; but higher at 1573 K, while the diffusion rate of Ir is always slightly higher than those of Os and Re at 1473 K to 1573 K. Further analysis of the magnitude of the interdiffusion coefficient correlates with the alloying concentration, activation energy, atomic number, and atomic radius of different diffusing transition metal species ( i.e., Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) was conducted, which is expected to provide useful information regarding element choice in the development of new-generation Ni-based single-crystal superalloys.

  11. Screening of Possible Re-Substitutional Elements in Single-Crystal Ni-Based Superalloys: A Viewpoint From Interdiffusion Coefficients in Ni-Al-X Ternaries

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Zhang, Lijun; Lu, Xiao-Gang

    2018-05-01

    A popular area of research in the field of high-temperature alloys concerns the search of substitutional elements for Re in order to manufacture single-crystal Ni-based superalloys with less or even no Re addition. To find the elements with similar or even lower diffusion coefficients than Re is an effective strategy. Based on 29 fcc diffusion couples in ternary Ni-Al-X (X = Re, Os, and Ir) systems, high-throughput measurement of composition- and temperature-dependent interdiffusivity matrices was performed using our recently developed numerical inverse method implemented in HitDIC software. The reliability of the determined interdiffusivities was validated by comprehensively comparing the model-predicted composition/interdiffusion flux profiles for each diffusion couple with the corresponding experimental data. Moreover, we also conducted a comparison with the interdiffusivities evaluated using the traditional Matano-Kirkaldy method as well as those from the literature and in boundary binary systems. After that, a comprehensive comparison of the interdiffusion coefficients in fcc Ni-2 wt pct Al-6 wt pct X (X = Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) alloys at 1423 K to 1573 K was conducted. Results indicate that the diffusion rate of Re is lower than that of Os at 1473 K and 1523 K; but higher at 1573 K, while the diffusion rate of Ir is always slightly higher than those of Os and Re at 1473 K to 1573 K. Further analysis of the magnitude of the interdiffusion coefficient correlates with the alloying concentration, activation energy, atomic number, and atomic radius of different diffusing transition metal species (i.e., Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) was conducted, which is expected to provide useful information regarding element choice in the development of new-generation Ni-based single-crystal superalloys.

  12. High temperature (NaBi)0.48□0.04Bi2Nb2O9-based piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Gai, Zhi-Gang; Wang, Jin-Feng; Zhao, Ming-Lei; Wang, Chun-Ming; Zang, Guo-Zhong; Ming, Bao-Quan; Qi, Peng; Zhang, Shujun; Shrout, Thomas R.

    2006-07-01

    The effect of (LiCe) substitution for A site on the properties of (NaBi)0.48◻0.04Bi2Nb2O9 (NB◻N)-based ceramics was investigated. The coercive fields (EC) of NB◻N)-based ceramics were significantly decreased from 61.0to32.5kV/cm and the Curie temperature (TC) gradually decreases from 820to803°C with increasing the (LiCe) modification. The piezoelectric coefficient d33, planar coupling factor kp, and mechanical quality factor Q of (NaBi)0.38(LiCe)0.05◻0.14Bi2Nb2O9 ceramic were found to be 27pC/N, 11.2%, and 2600, respectively, together with the high TC (˜809°C) and stable piezoelectric properties, demonstrating that the (LiCe) modified NB◻N-based material a promising candidate for high temperature applications.

  13. Lead-free piezoelectric (K,Na)NbO3-based ceramic with planar-mode coupling coefficient comparable to that of conventional lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Ohbayashi, Kazushige; Matsuoka, Takayuki; Kitamura, Kazuaki; Yamada, Hideto; Hishida, Tomoko; Yamazaki, Masato

    2017-06-01

    We developed a (K,Na)NbO3-based lead-free piezoelectric ceramic with a KTiNbO5 system, (K1- x Na x )0.86Ca0.04Li0.02Nb0.85O3-δ-K0.85Ti0.85Nb1.15O5-BaZrO3-Fe2O3-MgO (K1- x N x N-NTK-FM). K1- x N x N-NTK-FM ceramic exhibits a very dense microstructure and a coupling coefficient of k p = 0.59, which is almost comparable to that of conventional lead zirconate titanate (PZT). The (K,Na)NbO3-based ceramic has the Γ15 mode for a wide x range. The nanodomains of orthorhombic (K,Na)NbO3 with the M3 mode coexist within the tetragonal Γ15 mode (K,Na)NbO3 matrix. Successive phase transition cannot occur with increasing x. The maximum k p is observed at approximately the minimum x required to generate the M3 mode phase. Unlike the behavior at the morphotropic phase boundary (MPB) in PZT, the characteristics of K1- x N x N-NTK-FM ceramic in this region changed moderately. This gentle phase transition seems to be a relaxor, although the diffuseness degree is not in line with this hypothesis. Furthermore, piezoelectric properties change from “soft” to “hard” upon the M3 mode phase aggregation.

  14. A Theoretical and Experimental Comparison of 3-3 and 3-1 Mode Piezoelectric Microelectromechanical Systems (MEMS)

    PubMed Central

    Kim, Donghwan; Hewa-Kasakarage, Nishshanka; Hall, Neal A.

    2014-01-01

    Two piezoelectric transducer modes applied in microelectromechanical systems are (i) the 3-1 mode with parallel electrodes perpendicular to a vertical polarization vector, and (ii) the 3-3 mode which uses interdigitated (IDT) electrodes to realize an in-plane polarization vector. This study compares the two configurations by deriving a Norton equivalent representation of each approach – including expressions for output charge and device capacitance. The model is verified using a microfabricated device comprised of multiple epitaxial silicon beams with sol-gel deposited lead zirconate titanate at the surface. The beams have identical dimensions and are attached to a common moving element at their tip. The only difference between beams is electrode configuration – enabling a direct comparison. Capacitance and charge measurements verify the presented theory with high accuracy. The Norton equivalent representation is general and enables comparison of any figure of merit, including electromechanical coupling coefficient and signal to noise ratio. With respect to coupling coefficient, the experimentally validated theory in this work suggests that 3-3 mode IDT-electrode configurations offer the potential for modest improvements compared against 3-1 mode devices (less than 2×), and the only geometrical parameter affecting this ratio is the fill factor of the IDT electrode. PMID:25309041

  15. Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times

    NASA Technical Reports Server (NTRS)

    Slack, M. W.

    1977-01-01

    Shock tube experiments measured hydrogen-air induction times near the second explosion limit. By matching these experimental results with numerically predicted induction times, the rate coefficient for the reaction H + O2 + M = HO2 + M was evaluated as k-sub 4,N2 = 3.3 (plus or minus .6) x 10 to the 15 cm to the 6th/sq mole/s.

  16. Bulk Crystal Growth of Piezoelectric PMN-PT Crystals Using Gradient Freeze Technique for Improved SHM Sensors

    NASA Technical Reports Server (NTRS)

    Aggarwal, Mohan D.; Kochary, F.; Penn, Benjamin G.; Miller, Jim

    2007-01-01

    There has been a growing interest in recent years in lead based perovskite ferroelectric and relaxor ferroelectric solid solutions because of their excellent dielectric, piezoelectric and electrostrictive properties that make them very attractive for various sensing, actuating and structural health monitoring (SHM) applications. We are interested in the development of highly sensitive and efficient PMN-PT sensors based on large single crystals for the structural health monitoring of composite materials that may be used in future spacecrafts. Highly sensitive sensors are needed for detection of defects in these materials because they often tend to fail by distributed and interacting damage modes and much of the damage occurs beneath the top surface of the laminate and not detectable by visual inspection. Research is being carried out for various combinations of solid solutions for PMN-PT piezoelectric materials and bigger size crystals are being sought for improved sensor applications. Single crystals of this material are of interest for sensor applications because of their high piezoelectric coefficient (d33 greater than 1700 pC/N) and electromechanical coefficients (k33 greater than 0.90). For comparison, the commonly used piezoelectric ceramic lead zirconate titanate (PZT) has a d33 of about 600 pC/N and electromechanical coefficients k33 of about 0.75. At the present time, these piezoelectric relaxor crystals are grown by high temperature flux growth method and the size of these crystals are rather small (3x4x5 mm(exp 3). In the present paper, we have attempted to grow bulk single crystals of PMN-PT in a 2 inch diameter platinum crucible and successfully grown a large size crystal of 67%PMN-33%PT using the vertical gradient freeze technique with no flux. Piezoelectric properties of the grown crystals are investigated. PMN-PT plates show excellent piezoelectric properties. Samples were poled under an applied electric field of 5 kV/cm. Dielectric properties at a frequency of 1 kHz are examined. The grown PMN-PT crystals show typical relaxor dielectric properties. Additionally, the thermal properties of the sample are tested. The results are in good agreement with those found in the literature and some are reported for the first time.

  17. Constrained dipole oscillator strength distributions, sum rules, and dispersion coefficients for Br2 and BrCN

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2017-03-01

    Dipole oscillator strength distributions for Br2 and BrCN are constructed from photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule, the high-energy behavior of the dipole-oscillator-strength density and molar refractivity data when available. The distributions are used to predict dipole sum rules S (k) , mean excitation energies I (k) , and van der Waals C6 coefficients. Coupled-cluster calculations of the static dipole polarizabilities of Br2 and BrCN are reported for comparison with the values of S (- 2) extracted from the distributions.

  18. Laboratory Study of the OH + Permethylsiloxane (L2, L3, D3, and D4) Reaction Rate Coefficients Between 240 and 370 K

    NASA Astrophysics Data System (ADS)

    Burkholder, J. B.; Bernard, F.; Papadimitriou, V. C.

    2016-12-01

    The atmospheric chemistry of organosiloxanes has recently been implicated in the formation of new particles as well as regional and indoor air quality. Methylsiloxanes with Si<6 are relatively volatile compounds with either linear or cyclic molecular structures. Methylsiloxanes are found in consumer goods such as cosmetics, textiles, health care and household products and in industrial applications as solvents and lubricants. They are released into the atmosphere during manufacturing, use, and disposal and have been observed in the atmosphere in ppb levels in certain locations. However, the fundamental chemical properties of this class of compounds, particularly their reactivity with the OH radical, are presently not fully characterized. In this work, the temperature dependence of the rate coefficients for the OH radical reaction with the simplest linear (L2 and L3) and cyclic (D3 and D4) siloxanes were measured: OH + (CH3)3SiOSi(CH3)3 = Products L2OH + [(CH3)3SiO]2Si(CH3)2 = Products L3OH + [-Si(CH3)2O-]3 = Products D3OH + [-Si(CH3)2O-]4 = Products D4OH rate coefficients were measured under pseudo-first conditions in OH over the temperature range 240-370 K using a pulsed laser photolysis-laser induced fluorescence (PLP-LIF) technique and at 296 K using a relative rate method. The present results are compared with available literature data where possible and discrepancies are discussed. The results from this work will be discussed in terms of the atmospheric lifetimes of these methylsiloxanes and the reactivity trends for this class of compound.

  19. Correlation of magnetoelectric coupling in multiferroic BaTiO{sub 3}-BiFeO{sub 3} superlattices with oxygen vacancies and antiphase octahedral rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, Michael, E-mail: mlorenz@physik.uni-leipzig.de; Schwinkendorf, Peter; Grundmann, Marius

    2015-01-05

    Multiferroic (BaTiO{sub 3}-BiFeO{sub 3}) × 15 multilayer heterostructures show high magnetoelectric (ME) coefficients α{sub ME} up to 24 V/cm·Oe at 300 K. This value is much higher than that of a single-phase BiFeO{sub 3} reference film (α{sub ME} = 4.2 V/cm·Oe). We found clear correlation of ME coefficients with increasing oxygen partial pressure during growth. ME coupling is highest for lower density of oxygen vacancy-related defects. Detailed scanning transmission electron microscopy and selected area electron diffraction microstructural investigations at 300 K revealed antiphase rotations of the oxygen octahedra in the BaTiO{sub 3} single layers, which are an additional correlated defect structure of the multilayers.

  20. Hydrothermal crystal growth, piezoelectricity, and triboluminescence of KNaNbOF{sub 5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Kelvin B.; Edwards, Bryce W.; Frazer, Laszlo

    Single crystals of the noncentrosymmetric KNaNbOF{sub 5} polymorph were grown for piezoelectric and triboluminescent measurements. Piezoelectric measurements yielded a d{sub 33} value of ±6.3 pCN{sup −1} and an effective electromechanical coupling coefficient of up to 0.1565 in the frequency range 1960–2080 kHz. Crystals of KNaNbOF{sub 5} were found to exhibit a strong triboluminscence effect visible to the naked eye as blue sparks when crystals are crushed. This triboluminescence effect is uncommon in that it is likely independent from both the piezoelectric effect and atmospheric electrical discharge. Instead, triboluminescence may originate from crystal defects or be related to an electroluminescence effect.more » - Graphical abstract: An optical emission visible to the naked eye as blue sparks is observed when KNaNbOF{sub 5} single crystals are fractured. - Highlights: • Single crystals of KNaNbOF{sub 5} were grown under hydrothermal conditions. • Piezoelectric and triboluminescent properties were characterized. • Piezoelectric measurements yielded a d{sub 33} value of ±pCN{sup −1}. • KNaNbOF{sub 5} exhibits strong triboluminscence visible to the naked eye as blue sparks.« less

  1. Crystal Structure and Thermoelectric Properties of β-Pyrochlore-Type Alkali Iron Tungsten Oxides with Cage-Like Structure

    NASA Astrophysics Data System (ADS)

    Mizuta, Kohei; Ohtaki, Michitaka

    2016-03-01

    We report the electrical and thermal properties of β-pyrochlore (defect pyrochlore) oxides AFe0.33W1.67O6 ( A = K, Rb, Cs) with a crystal structure having a small cation surrounded by oversized cage-like framework. The thermal conductivity, κ, of CsFe0.33W1.67O6 and RbFe0.33W1.67O6 showed extremely low values as oxides (below 1.0 W/mK) similar to those of ATaWO6 ( A = K, Rb, Cs) which we have already reported. These low κ values are ascribed to a "rattling" motion of the A cations, evidenced by their crystal structure refinement and the Raman spectra. Their electrical conductivity, σ, was in the order of 10-3 S/cm, and the Seebeck coefficient, S, was -500 to -600 μV/K. The electrical conductivity of AFe0.33W1.67O6 ( A = Rb, Cs) was much higher than those of ATaWO6 ( A = Rb, Cs), suggesting that an appropriate selection of the framework composition enables us to have better thermoelectric performance.

  2. Kinetics of the R + NO2 reactions (R = i-C3H7, n-C3H7, s-C4H9, and t-C4H9) in the temperature range 201-489 K.

    PubMed

    Rissanen, Matti P; Arppe, Suula L; Eskola, Arkke J; Tammi, Matti M; Timonen, Raimo S

    2010-04-15

    The bimolecular rate coefficients of four alkyl radical reactions with NO(2) have been measured in direct time-resolved experiments. Reactions were studied under pseudo-first-order conditions in a temperature-controlled tubular flow reactor coupled to a laser photolysis/photoionization mass spectrometer (LP-PIMS). The measured reaction rate coefficients are independent of helium bath gas pressure within the experimental ranges covered and exhibit negative temperature dependence. For i-C(3)H(7) + NO(2) and t-C(4)H(9) + NO(2) reactions, the dependence of ordinate (logarithm of reaction rate coefficients) on abscissa (1/T or log(T)) was nonlinear. The obtained results (in cm(3) s(-1)) can be expressed by the following equations: k(n-C(3)H(7) + NO(2)) = ((4.34 +/- 0.08) x 10(-11)) (T/300 K)(-0.14+/-0.08) (203-473 K, 1-7 Torr), k(i-C(3)H(7) + NO(2)) = ((3.66 +/- 2.54) x 10(-12)) exp(656 +/- 201 K/T)(T/300 K)(1.26+/-0.68) (220-489 K, 1-11 Torr), k(s-C(4)H(9) + NO(2)) = ((4.99 +/- 0.16) x 10(-11))(T/300 K)(-1.74+/-0.12) (241-485 K, 2 - 12 Torr) and k(t-C(4)H(9) + NO(2)) = ((8.64 +/- 4.61) x 10(-12)) exp(413 +/- 154 K/T)(T/300 K)(0.51+/-0.55) (201-480 K, 2-11 Torr), where the uncertainties shown refer only to the 1 standard deviations obtained from the fitting procedure. The estimated overall uncertainty in the determined bimolecular rate coefficients is about +/-20%.

  3. Development of an 83.2 MHz, 3.2 kW solid-state RF amplifier using Wilkinson power divider and combiner for a 10 MeV cyclotron

    NASA Astrophysics Data System (ADS)

    Song, Ho Seung; Ghergherehchi, Mitra; Oh, Seyoung; Chai, Jong Seo

    2017-03-01

    We design a stripline-type Wilkinson power divider and combiner for a 3.2 kW solid-state radio frequency (RF) amplifier module and optimize this setup. A Teflon-based printed circuit board is used in the power combiner to transmit high RF power efficiently in the limited space. The reflection coefficient (S11) and insertion loss (S21) related to impedance matching are characterized to determine the optimization process. The resulting two-way divider reflection coefficient and insertion loss were -48.00 dB and -3.22 dB, respectively. The two-way power combiner reflection coefficient and insertion loss were -20 dB and -3.3 dB, respectively. Moreover, the 3.2 kW solid-state RF power test results demonstrate that the proposed power divider and combiner exhibit a maximum efficiency value of 71.3% (combiner loss 5%) at 48 V supply voltage.

  4. Magnetoelectric coupling in oxygen deficient La0.67Sr0.33MnO3-δ/BaTiO3 composite film

    NASA Astrophysics Data System (ADS)

    Wang, Jianyuan; Han, Zhuokun; Bai, Jianying; Luo, Bingcheng; Chen, Changle

    2018-04-01

    The effect of magnetic field on the polarization and dielectric properties in oxygen deficient La0.67Sr0.33MnO3-δ/BaTiO3 composite film are investigated. A temperature dependent polarization variation induced by the magnetic field is observed. Under a magnetic fields of 0.8 T, the enhancement of saturation polarization is remarkable at low temperature region with a maximum changing rate 66.5% occurring at 70 K, whereas it is indistinctive at high temperature. The composite film also exhibits significant magnetodielectric property. The positive changing rate of dielectric constant ηε induced by 0.8 T magnetic field reaches the maximum of 80% and 57% at 80 K with the frequency of 1 kHz and 100 kHz, respectively, and the corresponding changing rate of dielectric loss get the negative peak of -27% and -22%. The magneto-induced polarization and dielectric change may result from the charge-based coupling as well as the Maxwell-Wagner effect in this heterojunction.

  5. Isopiestic Determination of the Osmotic Coefficients of NaNO3 + Eu(NO3)3 + H2O at 298.15 K and Representation with an Extended Ion-Interaction (Pitzer) Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter R. Zalupski; Rocklan McDowell; Simon L. Clegg

    Isopiestic vapor pressures were measured at 298.15 K for aqueous NaNO3 + Eu(NO3)3 solutions, using NaCl(aq) as the reference standard. Measurements were made for both binary (single salt) solutions and for ternary solutions of the following NaNO3 ionic strength fractions: 0.05995, 0.08749, 0.16084, 0.27709, and 0.36313 over the water activity range 0.8951 = aw = 0.9832. (These ionic strength fractions correspond to NaNO3 molality fractions 0.27675, 0.36519, 0.53489, 0.69695, and 0.77381, respectively.) The results, and those of other studies for the two pure aqueous solutions, were used to determine the Pitzer model parameters for aqueous Eu(NO3)3 for molalities up tomore » 3 mol kg–1 and the two ternary (mixture) parameters ?Eu,Na = 0.367 ± 0.0035 and ?Eu,Na,NO3 = -0.0743 ± 0.0014. Some deviations of the measurements from the fitted model, of the order of +0.0075 in the osmotic coefficient, were noted for mixtures containing less than about 1 mol kg–1 total NO3–. The use of the mixture parameters in the Pitzer model yields predicted trace activity coefficients of Eu3+ in 1 mol kg–1 aqueous NaNO3 almost a factor of 2 greater than if they are omitted.« less

  6. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenbo; He, Xingli; Ye, Zhi, E-mail: yezhi@zju.edu.cn, E-mail: jl2@bolton.ac.uk

    AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0% ∼ 2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are muchmore » higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.« less

  7. New potential energy surface for the HCS{sup +}–He system and inelastic rate coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubernet, Marie-Lise; Quintas-Sánchez, Ernesto; Tuckey, Philip

    2015-07-28

    A new high quality potential energy surface is calculated at a coupled-cluster single double triple level with an aug-cc-pV5Z basis set for the HCS{sup +}–He system. This potential energy surface is used in low energy quantum scattering calculations to provide a set of (de)-excitation cross sections and rate coefficients among the first 20 rotational levels of HCS{sup +} by He in the range of temperature from 5 K to 100 K. The paper discusses the impact of the new ab initio potential energy surface on the cross sections at low energy and provides a comparison with the HCO{sup +}–He system.more » The HCS{sup +}–He rate coefficients for the strongest transitions differ by factors of up to 2.5 from previous rate coefficients; thus, analysis of astrophysical spectra should be reconsidered with the new rate coefficients.« less

  8. A study of the piezoelectric resonance in metal organic NLO single crystals: Sodium D-isoascorbate monohydrate and Lithium L-ascorbate dihydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saripalli, Ravi Kiran, E-mail: rksaripalli@physics.iisc.ernet.in; Sanath Kumar, R.; Elizabeth, Suja

    2016-05-06

    Large single crystals of Sodium D-isoacsorbate monohydrate and Lithium L-ascorbate dehydrate were grown using solution growth technique. Dielectric constant and dielectric loss were monitored as a function of frequency at different temperatures. These are typically characterized by strong resonance peaks. The piezoelectric coefficients d{sub 31}, elastic coefficient (S{sub 11}) and electromechanical coupling coefficient (k{sub 31}) were estimated by resonance-antiresonance method. The temperature dependence of the resonance-peaks frequencies was studied.

  9. Development of Multi-physics (Multiphase CFD + MCNP) simulation for generic solution vessel power calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seung Jun; Buechler, Cynthia Eileen

    The current study aims to predict the steady state power of a generic solution vessel and to develop a corresponding heat transfer coefficient correlation for a Moly99 production facility by conducting a fully coupled multi-physics simulation. A prediction of steady state power for the current application is inherently interconnected between thermal hydraulic characteristics (i.e. Multiphase computational fluid dynamics solved by ANSYS-Fluent 17.2) and the corresponding neutronic behavior (i.e. particle transport solved by MCNP6.2) in the solution vessel. Thus, the development of a coupling methodology is vital to understand the system behavior at a variety of system design and postulated operatingmore » scenarios. In this study, we report on the k-effective (keff) calculation for the baseline solution vessel configuration with a selected solution concentration using MCNP K-code modeling. The associated correlation of thermal properties (e.g. density, viscosity, thermal conductivity, specific heat) at the selected solution concentration are developed based on existing experimental measurements in the open literature. The numerical coupling methodology between multiphase CFD and MCNP is successfully demonstrated, and the detailed coupling procedure is documented. In addition, improved coupling methods capturing realistic physics in the solution vessel thermal-neutronic dynamics are proposed and tested further (i.e. dynamic height adjustment, mull-cell approach). As a key outcome of the current study, a multi-physics coupling methodology between MCFD and MCNP is demonstrated and tested for four different operating conditions. Those different operating conditions are determined based on the neutron source strength at a fixed geometry condition. The steady state powers for the generic solution vessel at various operating conditions are reported, and a generalized correlation of the heat transfer coefficient for the current application is discussed. The assessment of multi-physics methodology and preliminary results from various coupled calculations (power prediction and heat transfer coefficient) can be further utilized for the system code validation and generic solution vessel design improvement.« less

  10. Multiferroic magnetoelectric coupling effect of bilayer La1.2Sr1.8Mn2O7/PbZr0.3Ti0.7O3 complex thin film

    NASA Astrophysics Data System (ADS)

    Liang, K.; Zhou, P.; Ma, Z. J.; Qi, Y. J.; Mei, Z. H.; Zhang, T. J.

    2017-05-01

    Magnetoelectric (ME) coupling effect of 2-2-type ferromagnetic/ferroelectric bi-layer multiferroic epitaxial thin film (La1.2Sr1.8Mn2O7/PbZr0.3Ti0.7O3, LSMO/PZT) on SrRuO3 (SRO) substrate is investigated systematically by using Landau-Ginzburg-Devonshire (LGD) thermodynamic theory and modified constitutive equations. The calculating results clarify the detail relationships between ME coupling response and the residual strain, the volume fraction of constituent phases, the interface coupling coefficients, the magnetic field and the temperature. It also shows that improved ME coupling response can be modulated by these parameters. External magnetic fields (H1) induced ME coupling effect could be enhanced around Curie Temperature (Tc) of ferromagnetic phase and ME voltage coefficient (αE31) approaches a maximum at H1 ∼ 4.5 kOe near Tc. The remarkable variations of ME coupling response can be used to provide useful guidelines on the design of multifunctional devices.

  11. On the Nonequilibrium Interface Kinetics of Rapid Coupled Eutectic Growth

    NASA Astrophysics Data System (ADS)

    Dong, H.; Chen, Y. Z.; Shan, G. B.; Zhang, Z. R.; Liu, F.

    2017-08-01

    Nonequilibrium interface kinetics (NEIK) is expected to play an important role in coupled growth of eutectic alloys, when solidification velocity is high and intermetallic compound or topologically complex phases form in the crystallized product. In order to quantitatively evaluate the effect of NEIK on the rapid coupled eutectic growth, in this work, two nonequilibrium interface kinetic effects, i.e., atom attachment and solute trapping at the solid-liquid interface, were incorporated into the analyses of the coupled eutectic growth under the rapid solidification condition. First, a coupled growth model incorporating the preceding two nonequilibrium kinetic effects was derived. On this basis, an expression of kinetic undercooling (Δ T k), which is used to characterize the NEIK, was defined. The calculations based on the as-derived couple growth model show good agreement with the reported experimental results achieved in rapidly solidified eutectic Al-Sm alloys consisting of a solid solution phase ( α-Al) and an intermetallic compound phase (Al11Sm3). In terms of the definition of Δ T k defined in this work, the role of NEIK in the coupled growth of the Al-Sm eutectic system was analyzed. The results show that with increasing the coupled growth velocity, Δ T k increases continuously, and its ratio to the total undercooling reaches 0.32 at the maximum growth velocity for coupled eutectic growth. Parametric analyses on two key alloy parameters that influence Δ T k, i.e., interface kinetic parameter ( μ i ) and solute distribution coefficient ( k e ), indicate that both μ i and k e influence the NEIK significantly and the decrease of either these two parameters enhances the NEIK effect.

  12. High density operation with Lower Hybrid waves in FTU tokamak

    NASA Astrophysics Data System (ADS)

    Pericoli Ridolfini, V.; Mirizzi, F.; Panaccione, L.; Podda, S.

    2001-10-01

    Since April 2001 the lower hybrid (LH) radiofrequency system in FTU (6 gyrotrons @ f=8 GHz) can deliver to the plasma about 2 MW through two equal launchers with a reflection coefficient = 10%. This value is close to the target value of 2.2 MW (net power density of 6.2 kW/cm2 on the waveguides mouth) which could be reached after further conditioning of the grill and of the transmission lines. In high density plasmas (line density *1*1020 m-3), high magnetic field (BT=7.2 T), with PLH=2 MW we drive about 75% of the total current (Ip=500 kA) and stabilise fully the sawteeth activity. The central electron temperature Te0 increases from 1.6 to 3.3 keV (steady), and the neutron rate by about 10 times. Analysis of these pulses with effective electronic heating will be presented. In post-pellet plasmas ( *6*1020 m-3), good coupling of the LH is achieved with the launcher almost flush to the walls, due to the very dense scrape off-layer. The perturbation here induced by the pellet imposes a delay to the LH of only 20 ms. The exact location of the launcher is critical in these regimes, because the high N|| (parallel index of refraction) requested (N||>2.3) for a good penetration of the waves makes more problematic a good coupling all along the poloidal extension of the grill.

  13. Temperature-dependent rate coefficients and theoretical calculations for the OH+Cl2O reaction.

    PubMed

    Riffault, Véronique; Clark, Jared M; Hansen, Jaron C; Ravishankara, A R; Burkholder, James B

    2010-12-17

    Rate coefficients k for the OH+Cl(2)O reaction are measured as a function of temperature (230-370 K) and pressure by using pulsed laser photolysis to produce OH radicals and laser-induced fluorescence to monitor their loss under pseudo-first-order conditions in OH. The reaction rate coefficient is found to be independent of pressure, within the precision of our measurements at 30-100 Torr (He) and 100 Torr (N(2)). The rate coefficients obtained at 100 Torr (He) showed a negative temperature dependence with a weak non-Arrhenius behavior. A room-temperature rate coefficient of k(1)(297 K)=(7.5±1.1)×10(-12) cm(3) molecule(-1) s(-1) is obtained, where the quoted uncertainties are 2σ and include estimated systematic errors. Theoretical methods are used to examine OH···OCl(2) and OH···ClOCl adduct formation and the potential-energy surfaces leading to the HOCl+ClO (1a) and Cl+HOOCl (1d) products in reaction (1) at the hybrid density functional UMPW1K/6-311++G(2df,p) level of theory. The OH···OCl(2) and OH···ClOCl adducts are found to have binding energies of about 0.2 kcal mol(-1). The reaction is calculated to proceed through weak pre-reactive complexes. Transition-state energies for channels (1a) and (1d) are calculated to be about 1.4 and about 3.3 kcal mol(-1) above the energy of the reactants. The results from the present study are compared with previously reported rate coefficients, and the interpretation of the possible non-Arrhenius behavior is discussed.

  14. The effect of temperature and loading frequency on the converse piezoelectric response of soft PZT ceramics

    NASA Astrophysics Data System (ADS)

    Dapeng, Zhu; Qinghui, Jiang; Yingwei, Li

    2017-12-01

    The converse piezoelectric coefficient d 33 of soft PZT ceramics was measured from 20 °C to 150 °C under different loading frequency. Results showed that in the tested temperature range, the evolution of d 33 obeys the Rayleigh-law behavior. The influence of temperature on d 33 is a little complicated. For instance, the maximum d 33 was observed at 150 °C when the applied electric field E was at 0.1 kV mm-1. When E increased to 0.3 kV mm-1 and 0.4 kV mm-1, the maximum d 33 was observed at 120 °C and 100 °C, respectively. Such behaviors are rationalized by the evolution of the Rayleigh parameters d init and α. For d init, it increases as temperature increases. While for α, it first increases and then decreases with the increase of temperature due to the evolution of the spontaneous strain and the volume of the switched domains. In the tested loading frequency, d 33 decreased linearly with the logarithm of the frequency of electric field. With the increase of temperature, the influence of frequency on d 33 gradually weakened, implying that at high temperature, the motion of domain walls became active and the pinning effect of defects nearly disappeared.

  15. Developing a vacuum thermal stripping - acid absorption process for ammonia recovery from anaerobic digester effluent.

    PubMed

    Ukwuani, Anayo T; Tao, Wendong

    2016-12-01

    To prevent acetoclastic methanogens from ammonia inhibition in anaerobic digestion of protein-rich substrates, ammonia needs to be removed or recovered from digestate. This paper presents an innovative ammonia recovery process that couples vacuum thermal stripping with acid absorption. Ammonia is stripped out of digestate boiling at a temperature below the normal boiling point due to vacuum. Stripped ammonia is absorbed to a sulfuric acid solution, forming ammonium sulfate crystals as a marketable product. Three common types of digestate were found to have boiling point temperature-vacuum curves similar to water. Seven combinations of boiling temperature and vacuum (50 °C 16.6 kPa, 58 °C 20.0 kPa, 65 °C 25.1 kPa, 70 °C 33.6 kPa, 80 °C 54.0 kPa, 90 °C 74.2 kPa, and 100 °C 101.3 kPa) were tested for batch stripping of ammonia in dairy manure digestate. 93.3-99.9% of ammonia was stripped in 3 h. The Lewis-Whitman model fitted ammonia stripping process well. Ammonia mass transfer coefficient was significantly higher at boiling temperature 65-100 °C and vacuum pressure 25.1-101.3 kPa than 50-58 °C and 16.6-20.0 kPa. The low ammonia saturation concentrations (0-24 mg N/L) suggested a large driving force to strip ammonia. The optimum boiling point temperature - vacuum pressure for ammonia recovery in a recirculation line of a mesophilic digester was 65 °C and 25.1 kPa, at which the ammonia mass transfer coefficient was as high as 37.3 mm/h. Installation of a demister and liquid trap could avoid negative effects of higher stripping temperature and stronger vacuum on formation of ammonium sulfate crystals. Pilot tests demonstrated that high-purity ammonium sulfate crystals could be produced by controlling sulfuric acid content and maintaining acid solution saturated with ammonium sulfate. Although volatile organic compounds such as cyclohexene were found in the final acid solutions, no volatile organic compounds were found in the recovered crystals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Measurement of Nonlinear Optical Properties of Single-Crystal Thin-Films of 3-Methyl-4-Methoxy-4'-Nitrostilbene (MMONS)

    NASA Astrophysics Data System (ADS)

    Tan, Shida; Bhowmik, Achintya; Thakur, Mrinal

    2000-03-01

    Excellent optical quality large area ( ~1 cm^2) single-crystal thin-films of MMONS were prepared by modified shear method.(M. Thakur and S. Meyler, Macromolecules 18, 2341 (1985); M. Thakur, Y. Shani, G. C. Chi, and K. O'Brien, Synth. Met. 28, D595 (1989).) This material belongs to mm2 point group.(D. Bierlein, L. K. Cheng, Y. Wang, and W. Tam, Appl. Phys. Lett. 56, 423 (1990).) Polarized optical microscopic and X-ray diffraction studies were performed to characterize the single-crystal films. The surface orientation of the films was (100). Polarized optical absorption measurements showed a large dichroism in the film as the molecules are oriented almost parallel to the film-plane. Using a mode-locked Nd:YAG laser ( ~100 ps, 82 MHz), the significant d-coefficients were determined by polarization selective SHG measurements, and the electro-optic coefficients were determined by field-induced birefringence measurements. The measured magnitudes of d- and r-coefficients are d_33=198±10 pm/V, d_32=78±5 pm/V, r_33=52±5 pm/V, and r_23=21±2 pm/V at 1064 nm. The results indicate that these films are promising for applications in guided-wave SHG and electro-optics.

  17. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    NASA Astrophysics Data System (ADS)

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  18. High precision optical measurement of displacement and simultaneous determinations of piezoelectric coefficients

    NASA Astrophysics Data System (ADS)

    Gamboa, Bryan M.; Malladi, Madhuri; Vadlamani, Ramya; Guo, Ruyan; Bhalla, Amar

    2016-09-01

    PZT are also well known for their applications in Micro Electrical Mechanical Systems (MEMS). It is necessary to study the piezoelectric coefficients of the materials accurately in order to design a sensor as an example, which defines their strain dependent applications. Systematic study of the electro mechanic displacement measurement was conducted and compared using a white light fiber optic sensor, a heterodyne laser Doppler vibrometer, and a homodyne laser interferometry setup. Frequency dependent measurement is conducted to evaluate displacement values well below and near the piezoelectric resonances. UHF-120 ultra-high frequency Vibrometer is used to measure the longitudinal piezoelectric displacement or x33 and the MTI 2000 FotonicTM Sensor is used to measure the transverse piezoelectric displacement or x11 over 100Hz to 2MHz. A Multiphysics Finite Element Analysis method, COMSOL, is also adopted in the study to generate a three dimensional electromechanical coupled model based on experimentally determined strains x33 and x11 as a function of frequency of the electric field applied. The full family of piezoelectric coefficients of the poled electronic ceramic PZT, d33, d31, and d15, can be then derived, upon satisfactory simulation of the COMSOL. This is achieved without the usual need of preparation of piezoelectric resonators of fundamental longitudinal, transversal, and shear modes respectively.

  19. Novel PMN-PT free standing film for high frequency (80MHz) intravascular ultrasonic imaging

    PubMed Central

    Li, Xiang; Zhou, Qifa; Shung, K. Kirk; Shih, Wei-Heng; Shih, Wan Y.

    2011-01-01

    [Pb(Mg1/3Nb2/3)O3]0.63[PbTiO3]0.37 (PMN-PT) free standing film of comparable piezoelectric property to bulk PMN-PT with a thickness of 33 μm has been fabricated using a modified precursor coating approach. At 1 KHz, the dielectric constant and loss were 4,160 and 0.0291, respectively. The remnant polarization and coercive field were 28 μC/cm2 and 18.43 kV/cm. The electromechanical coupling coefficient kt was measured to be 0.55, which was close to that of bulk PMN-PT single crystal material. A high frequency (80 MHz) miniature ultrasonic transducer with high sensitivity was fabricated from this film. In vitro imaging of a rabbit aorta was performed to demonstrate the application of this material to intravascular ultrasound imaging at 80 MHz. Compared to a 35 MHz ultrasonic image, the 80 MHz image showed superior resolution and contrast. PMID:22083761

  20. Isotopic effects in the collision of CH+ with He

    NASA Astrophysics Data System (ADS)

    Werfelli, Ghofran; Balança, Christian; Stoecklin, Thierry; Kerkeni, Boutheïna; Feautrier, Nicole

    2017-07-01

    Deuterated species are proved to be helpful in understanding the physical and chemical properties in various astrophysical environments. The present study is dedicated to the rotational excitation of CD+ by collision with 4He and to the comparison between CD+-He and CH+-He rate coefficients. Close coupling CD+-He rotational cross-sections are calculated within the rigid-body approach for collision energies up to 3000 cm-1 and the corresponding rate coefficients are evaluated for the transitions of levels up to j = 10 and temperatures up to 300 K. Significant differences are found between the rate coefficients of the two isotopologues.

  1. Local Probing of Magnetoelectric Coupling and Magnetoelastic Control of Switching in BiFeO3-CoFe2O4 Thin-Film Nanocomposite

    DTIC Science & Technology

    2013-07-25

    at remanent state (Fig. 4(d)). The obtained ME coefficient (the highest value we measure is 102 mV/ cm/Oe) and is comparable to that of bulk PZT -CFO...For a large field (H > Hc), a mag- netostrictive strain (k) must be already saturated and the ME coefficient estimated (Fig. 4) should be nearly...zero at high field (as a function of piezomagnetic coefficient (dk=dH), leading to a maximum in the ME response near Hc. That this is not observed can be

  2. Temperature-(208-318 K) and pressure-(18-696 Torr) dependent rate coefficients for the reaction between OH and HNO3

    NASA Astrophysics Data System (ADS)

    Dulitz, Katrin; Amedro, Damien; Dillon, Terry J.; Pozzer, Andrea; Crowley, John N.

    2018-02-01

    Rate coefficients (k5) for the title reaction were obtained using pulsed laser photolytic generation of OH coupled to its detection by laser-induced fluorescence (PLP-LIF). More than 80 determinations of k5 were carried out in nitrogen or air bath gas at various temperatures and pressures. The accuracy of the rate coefficients obtained was enhanced by in situ measurement of the concentrations of both HNO3 reactant and NO2 impurity. The rate coefficients show both temperature and pressure dependence with a rapid increase in k5 at low temperatures. The pressure dependence was weak at room temperature but increased significantly at low temperatures. The entire data set was combined with selected literature values of k5 and parameterised using a combination of pressure-dependent and -independent terms to give an expression that covers the relevant pressure and temperature range for the atmosphere. A global model, using the new parameterisation for k5 rather than those presently accepted, indicated small but significant latitude- and altitude-dependent changes in the HNO3 / NOx ratio of between -6 and +6 %. Effective HNO3 absorption cross sections (184.95 and 213.86 nm, units of cm2 molecule-1) were obtained as part of this work: σ213.86 = 4.52-0.12+0.23 × 10-19 and σ184.95 = 1.61-0.04+0.08 × 10-17.

  3. Structure-property relations of orthorhombic [(CH3)3NCH2COO]2(CuCl2)3 · 2H2 O

    NASA Astrophysics Data System (ADS)

    Haussühl, Eiken; Schreuer, Jürgen; Wiehl, Leonore; Paulsen, Natalia

    2014-04-01

    Large single crystals of orthorhombic [(CH3)3NCH2COO]2(CuCl2)3 · 2H2 O with dimensions up to 40×40×30 mm3 were grown from aqueous solutions. The elastic and piezoelastic coefficients were derived from ultrasonic resonance frequencies and their shifts upon variation of pressure, respectively, using the plate-resonance technique. Additionally, the coefficients of thermal expansion were determined between 95 K and 305 K by dilatometry. The elastic behaviour at ambient conditions is dominated by the 2-dimensional network of strong hydrogen bonds within the (001) plane leading to a corresponding pseudo-tetragonal anisotropy of the longitudinal elastic stiffness. The variation of elastic properties with pressure, however, as well as the thermal expansion shows strong deviations from the pseudo-tetragonal symmetry. These deviations are probably correlated with tilts of the elongated tri-nuclear betaine-CuCl2-water complexes. Neither the thermal expansion nor the specific heat capacity gives any hint on a phase transition in the investigated temperature range.

  4. Trojan penguins and isospin violation in hadronic B decays

    NASA Astrophysics Data System (ADS)

    Grossman, Yuval; Neubert, Matthias; Kagan, Alexander L.

    1999-10-01

    Some rare hadronic decays of B mesons, such as B→πK, are sensitive to isospin-violating contributions from physics beyond the Standard Model. Although commonly referred to as electroweak penguins, such contributions can often arise through tree-level exchanges of heavy particles, or through strong-interaction loop diagrams. The Wilson coefficients of the corresponding electroweak penguin operators are calculated in a large class of New Physics models, and in many cases are found not to be suppressed with respect to the QCD penguin coefficients. Several tests for these effects using observables in B+/-→πK decays are discussed, and nontrivial bounds on the couplings of the various New Physics models are derived.

  5. A comparison of the reactivity of germylene and dimethylgermylene with some methylgermanes. Direct kinetic and quantum chemical studies.

    PubMed

    Becerra, Rosa; Boganov, Sergey E; Egorov, Mikhail P; Faustov, Valery I; Krylova, Irina V; Nefedov, Oleg M; Promyslov, Vladimir M; Walsh, Robin

    2007-08-21

    Time-resolved studies of germylene, GeH(2), and dimethygermylene, GeMe(2), generated by the 193 nm laser flash photolysis of appropriate precursor molecules have been carried out to try to obtain rate coefficients for their bimolecular reactions with dimethylgermane, Me(2)GeH(2), in the gas-phase. GeH(2) + Me(2)GeH(2) was studied over the pressure range 1-100 Torr with SF(6) as bath gas and at five temperatures in the range 296-553 K. Only slight pressure dependences were found (at 386, 447 and 553 K). RRKM modelling was carried out to fit these pressure dependences. The high pressure rate coefficients gave the Arrhenius parameters: log(A/cm(3) molecule(-1) s(-1)) = -10.99 +/- 0.07 and E(a) =-(7.35 +/- 0.48) kJ mol(-1). No reaction could be found between GeMe(2) + Me(2)GeH(2) at any temperature up to 549 K, and upper limits of ca. 10(-14) cm(3) molecule(-1) s(-1) were set for the rate coefficients. A rate coefficient of (1.33 +/- 0.04) x 10(-10) cm(3) molecule(-1) s(-1) was also obtained for GeH(2) + MeGeH(3) at 296 K. No reaction was found between GeMe(2) and MeGeH(3). Rate coefficient comparisons showed, inter alia, that in the substrate germane Me-for-H substitution increased the magnitudes of rate coefficients significantly, while in the germylene Me-for-H substitution decreased the magnitudes of rate coefficients by at least four orders of magnitude. Quantum chemical calculations (G2(MP2,SVP)//B3LYP level) supported these findings and showed that the lack of reactivity of GeMe(2) is caused by a positive energy barrier for rearrangement of the initially formed complexes. Full details of the structures of intermediate complexes and the discussion of their stabilities are given in the paper.

  6. Relationship between the Kubelka-Munk scattering and radiative transfer coefficients.

    PubMed

    Thennadil, Suresh N

    2008-07-01

    The relationship between the Kubelka-Munk (K-M) and the transport scattering coefficient is obtained through a semi-empirical approach. This approach gives the same result as that given by Gate [Appl. Opt.13, 236 (1974)] when the incident beam is diffuse. This result and those given by Star et al. [Phys. Med. Biol.33, 437 (1988)] and Brinkworth [Appl. Opt.11, 1434 (1972)] are compared with the exact solution of the radiative transfer equation over a large range of optical properties. It is found that the latter expressions, which include an absorption component, do not give accurate results over the range considered. Using the semi-empirical approach, the relationship between the K-M and the transport scattering coefficient is derived for the case where the incident light is collimated. It is shown that although the K-M equation is derived based on diffuse incident light, it can also represent very well the reflectance from a slab of infinite thickness when the incident light is collimated. However, in this case the relationship between the coefficients has to include a function that is dependent on the anisotropy factor. Analysis indicates that the K-M transform achieves the objective of obtaining a measure that gives the ratio of absorption to scattering effects for both diffuse and collimated incident beams over a large range of optical properties.

  7. Space, energy and anisotropy effects on effective cross sections and diffusion coefficients in the resonance region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meftah, B.

    1982-01-01

    Present methods used in reactor analysis do not include adequately the effect of anisotropic scattering in the calculation of resonance effective cross sections. Also the assumption that the streaming term ..cap omega...del Phi is conserved when the total, absorption and transfer cross sections are conserved, is bad because the leakage from a heterogeneous cell will not be conserved and is strongly anisotropic. A third major consideration is the coupling between different regions in a multiregion reactor; currently this effect is being completely ignored. To assess the magnitude of these effects, a code based on integral transport formalism with linear anisotropicmore » scattering was developed. Also, a more adequate formulation of the diffusion coefficient in a heterogeneous cell was derived. Two reactors, one fast, ZPR-6/5, and one thermal, TRX-3, were selected for the study. The study showed that, in general, the inclusion of linear scattering anisotropy increases the cell effective capture cross section of U-238. The increase was up to 2% in TRX-3 and 0.5% in ZPR-6/5. The effect on the multiplication factor was -0.003% ..delta..k/k for ZPR-6/5 and -0.05% ..delta..k/k for TRX-3. For the case of the diffusion coefficient, the combined effect of heterogeneity and linear anisotropy gave an increase of up to 29% in the parallel diffusion coefficient of TRX-3 and 5% in the parallel diffusion coefficient of ZPR-6/5. In contrast, the change in the perpendicular diffusion coefficient did not exceed 2% in both systems.« less

  8. Determination of partition coefficient and analysis of nitrophenols by three-phase liquid-phase microextraction coupled with capillary electrophoresis.

    PubMed

    Sanagi, Mohd Marsin; Miskam, Mazidatulakmam; Wan Ibrahim, Wan Aini; Hermawan, Dadan; Aboul-Enein, Hassan Y

    2010-07-01

    A three-phase hollow fiber liquid-phase microextraction method coupled with CE was developed and used for the determination of partition coefficients and analysis of selected nitrophenols in water samples. The selected nitrophenols were extracted from 14 mL of aqueous solution (donor solution) with the pH adjusted to pH 3 into an organic phase (1-octanol) immobilized in the pores of the hollow fiber and finally backextracted into 40.0 microL of the acceptor phase (NaOH) at pH 12.0 located inside the lumen of the hollow fiber. The extractions were carried out under the following optimum conditions: donor solution, 0.05 M H(3)PO(4), pH 3.0; organic solvent, 1-octanol; acceptor solution, 40 microL of 0.1 M NaOH, pH 12.0; agitation rate, 1050 rpm; extraction time, 15 min. Under optimized conditions, the calibration curves for the analytes were linear in the range of 0.05-0.30 mg/L with r(2)>0.9900 and LODs were in the range of 0.01-0.04 mg/L with RSDs of 1.25-2.32%. Excellent enrichment factors of up to 398-folds were obtained. It was found that the partition coefficient (K(a/d)) values were high for 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol and 2,6-dinitrophenol and that the individual partition coefficients (K(org/d) and K(a/org)) promoted efficient simultaneous extraction from the donor through the organic phase and further into the acceptor phase. The developed method was successfully applied for the analysis of water samples.

  9. Collisional excitation of sulfur dioxide by molecular hydrogen in warm molecular clouds

    NASA Astrophysics Data System (ADS)

    Balança, Christian; Spielfiedel, Annie; Feautrier, Nicole

    2016-08-01

    Interpretation of SO2 line emission in warm environments requires a detailed knowledge of collisional rate coefficients for a wide range of levels and temperatures. Using an accurate theoretical interaction potential for SO2-H2, rate coefficients for collisions of SO2 with para and ortho-H2 for the 31 first SO2, rotational levels are calculated for temperatures up to 500 K using the coupled states (CS) approximation. From a comparison with previously published close-coupling (CC) results, it was shown that the two sets of data agree within 20-30 per cent for both para- and ortho-H2 collisions. As previously found within the CC approach, the CS rate coefficients with ortho and para-H2 differ by a factor of 2 in average, the largest being mainly the rates for collisions with ortho-H2. For higher levels and temperatures, rate constants were computed within the infinite order sudden (IOS) approximation. Rate coefficients were obtained for the lowest 410 rotational levels of SO2 in the 100-1000 K temperature range. A comparison at 30, 100 and 300 K of the IOS data with the corresponding para-H2 CS results indicates that the IOS approximation systematically underestimates the CS results by a factor up to 2 at the lowest temperatures. As expected, IOS and CS rates are in a better agreement at higher temperatures. Considering that the IOS theory was developed for collisions with para-H2, this approach cannot describe with the same accuracy collisions with ortho-H2. So, our IOS data may be considered as quite reliable for collisions with para-H2 and less accurate for collisions with ortho-H2.

  10. Assessment of langatate material constants and temperature coefficients using SAW delay line measurements.

    PubMed

    Sturtevant, Blake T; Pereira da Cunha, Mauricio

    2010-03-01

    This paper reports on the assessment of langatate (LGT) acoustic material constants and temperature coefficients by surface acoustic wave (SAW) delay line measurements up to 130 degrees C. Based upon a full set of material constants recently reported by the authors, 7 orientations in the LGT plane with Euler angles (90 degrees, 23 degrees, Psi) were identified for testing. Each of the 7 selected orientations exhibited calculated coupling coefficients (K(2)) between 0.2% and 0.75% and also showed a large range of predicted temperature coefficient of delay (TCD) values around room temperature. Additionally, methods for estimating the uncertainty in predicted SAW propagation properties were developed and applied to SAW phase velocity and temperature coefficient of delay calculations. Starting from a purchased LGT boule, the SAW wafers used in this work were aligned, cut, ground, and polished at University of Maine facilities, followed by device fabrication and testing. Using repeated measurements of 2 devices on separate wafers for each of the 7 orientations, the room temperature SAW phase velocities were extracted with a precision of 0.1% and found to be in agreement with the predicted values. The normalized frequency change and the temperature coefficient of delay for all 7 orientations agreed with predictions within the uncertainty of the measurement and the predictions over the entire 120 degrees C temperature range measured. Two orientations, with Euler angles (90 degrees, 23 degrees, 123 degrees) and (90 degrees, 23 degrees, 119 degrees), were found to have high predicted coupling for LGT (K(2) > 0.5%) and were shown experimentally to exhibit temperature compensation in the vicinity of room temperature, with turnover temperatures at 50 and 60 degrees C, respectively.

  11. Experimental Study of the Exciton Gas-Liquid Transition in Coupled Quantum Wells.

    PubMed

    Misra, Subhradeep; Stern, Michael; Joshua, Arjun; Umansky, Vladimir; Bar-Joseph, Israel

    2018-01-26

    We study the exciton gas-liquid transition in GaAs/AlGaAs coupled quantum wells. Below a critical temperature, T_{C}=4.8  K, and above a threshold laser power density the system undergoes a phase transition into a liquid state. We determine the density-temperature phase diagram over the temperature range 0.1-4.8 K. We find that the latent heat increases linearly with temperature at T≲1.1  K, similarly to a Bose-Einstein condensate transition, and becomes constant at 1.1≲T<4.8  K. Resonant Rayleigh scattering measurements reveal that the disorder in the sample is strongly suppressed and the diffusion coefficient sharply increases with decreasing temperature at T

  12. Experimental Study of the Exciton Gas-Liquid Transition in Coupled Quantum Wells

    NASA Astrophysics Data System (ADS)

    Misra, Subhradeep; Stern, Michael; Joshua, Arjun; Umansky, Vladimir; Bar-Joseph, Israel

    2018-01-01

    We study the exciton gas-liquid transition in GaAs /AlGaAs coupled quantum wells. Below a critical temperature, TC=4.8 K , and above a threshold laser power density the system undergoes a phase transition into a liquid state. We determine the density-temperature phase diagram over the temperature range 0.1-4.8 K. We find that the latent heat increases linearly with temperature at T ≲1.1 K , similarly to a Bose-Einstein condensate transition, and becomes constant at 1.1 ≲T <4.8 K . Resonant Rayleigh scattering measurements reveal that the disorder in the sample is strongly suppressed and the diffusion coefficient sharply increases with decreasing temperature at T

  13. Effects of porosity distribution and porosity volume fraction on the electromechanical properties of 3-3 piezoelectric foams

    NASA Astrophysics Data System (ADS)

    Nguyen, B. V.; Challagulla, K. S.; Venkatesh, T. A.; Hadjiloizi, D. A.; Georgiades, A. V.

    2016-12-01

    Unit-cell based finite element models are developed to completely characterize the role of porosity distribution and porosity volume fraction in determining the elastic, dielectric and piezoelectric properties as well as relevant figures of merit of 3-3 type piezoelectric foam structures. Eight classes of foam structures which represent structures with different types and degrees of uniformity of porosity distribution are identified; a Base structure (Class I), two H-type foam structures (Classes II, and III), a Cross-type foam structure (Class IV) and four Line-type foam structures (Classes V, VI, VII, and VIII). Three geometric factors that influence the electromechanical properties are identified: (i) the number of pores per face, pore size and the distance between the pores; (ii) pore orientation with respect to poling direction; (iii) the overall symmetry of the pore distribution with respect to the center of the face of the unit cell. To assess the suitability of these structures for such applications as hydrophones, bone implants, medical imaging and diagnostic devices, five figures of merit are determined via the developed finite element model; the piezoelectric coupling constant (K t ), the acoustic impedance (Z), the piezoelectric charge coefficient (d h ), the hydrostatic voltage coefficient (g h ), and the hydrostatic figure of merit (d h g h ). At high material volume fractions, foams with non-uniform Line-type porosity (Classes V and VII) where the pores are preferentially distributed perpendicular to poling direction, are found to exhibit the best combination of desirable piezoelectric figures of merit. For example, at about 50% volume fraction, the d h , g h , and d h g h figures of merit are 55%, 1600% and 2500% higher, respectively, for Classes V and VII of Line-like foam structures compared with the Base structure.

  14. Growth of highly textured PbTiO3 films on conductive substrate under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Tang, Haixiong; Zhou, Zhi; Bowland, Christopher C.; Sodano, Henry A.

    2015-08-01

    Perovskite structure (ABO3) thin films have wide applications in electronic devices due to their unique properties, including high dielectric permittivity, ferroelectricity and piezoelectric coupling. Here, we report an approach to grow highly textured thick lead titanate (PbTiO3) films on conductive substrates by a two-step hydrothermal reaction. Initially, vertically aligned TiO2 nanowire arrays are grown on fluorine-doped tin oxide (FTO) coated glass, which act as template crystals for conversion to the perovskite structure. The PbTiO3 films are then converted from TiO2 NW arrays by diffusing Pb2+ ions into the template through a second hydrothermal reaction. The dielectric permittivity and piezoelectric coupling coefficient (d33) of the PbTiO3 films are as high as 795 at 1 kHz and 52 pm V-1, respectively. The reported process can also potentially be expanded for the assembly of other complex perovskite ATiO3 (A = Ba, Ca, Cd, etc) films by using the highly aligned TiO2 NW arrays as templates. Therefore, the approach introduced here opens up a new door to synthesize ferroelectric thin films on conductive substrates for application in sensors, actuators, and ultrasonic transducers that are important in various industrial and scientific areas.

  15. Thermodynamic properties and transport coefficients of two-temperature helium thermal plasmas

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoxue; Murphy, Anthony B.; Li, Xingwen

    2017-03-01

    Helium thermal plasmas are in widespread use in arc welding and many other industrial applications. Simulation of these processes relies on accurate plasma property data, such as plasma composition, thermodynamic properties and transport coefficients. Departures from LTE (local thermodynamic equilibrium) generally occur in some regions of helium plasmas. In this paper, properties are calculated allowing for different values of the electron temperature, T e, and heavy-species temperature, T h, at atmospheric pressure from 300 K to 30 000 K. The plasma composition is first calculated using the mass action law, and the two-temperature thermodynamic properties are then derived. The viscosity, diffusion coefficients, electrical conductivity and thermal conductivity of the two-temperature helium thermal plasma are obtained using a recently-developed method that retains coupling between electrons and heavy species by including the electron-heavy-species collision term in the heavy-species Boltzmann equation. It is shown that the viscosity and the diffusion coefficients strongly depend on non-equilibrium ratio θ (θ ={{T}\\text{e}}/{{T}\\text{h}} ), through the plasma composition and the collision integrals. The electrical conductivity, which depends on the electron number density and ordinary diffusion coefficients, and the thermal conductivity have similar dependencies. The choice of definition of the Debye length is shown to affect the electrical conductivity significantly for θ  >  1. By comparing with literature data, it is shown that the coupling between electrons and heavy species has a significant influence on the electrical conductivity, but not on the viscosity. Plasma properties are tabulated in the supplementary data.

  16. A classical mechanics model for the interpretation of piezoelectric property data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Andrew J., E-mail: a.j.bell@leeds.ac.uk

    2015-12-14

    In order to provide a means of understanding, the relationship between the primary electromechanical coefficients and simple crystal chemistry parameters for piezoelectric materials, a static analysis of a 3 atom, dipolar molecule has been undertaken to derive relationships for elastic compliance s{sup E}, dielectric permittivity ε{sup X}, and piezoelectric charge coefficient d in terms of an effective ionic charge and two inter-atomic force constants. The relationships demonstrate the mutual interdependence of the three coefficients, in keeping with experimental evidence from a large dataset of commercial piezoelectric materials. It is shown that the electromechanical coupling coefficient k is purely an expressionmore » of the asymmetry in the two force constants or bond compliances. The treatment is extended to show that the quadratic electrostriction relation between strain and polarization, in both centrosymmetric and non-centrosymmetric systems, is due to the presence of a non-zero 2nd order term in the bond compliance. Comparison with experimental data explains the counter-intuitive, positive correlation of k with s{sup E} and ε{sup X} and supports the proposition that high piezoelectric activity in single crystals is dominated by large compliance coupled with asymmetry in the sub-cell force constants. However, the analysis also shows that in polycrystalline materials, the dielectric anisotropy of the constituent crystals can be more important for attaining large charge coefficients. The model provides a completely new methodology for the interpretation of piezoelectric and electrostrictive property data and suggests methods for rapid screening for high activity in candidate piezoelectric materials, both experimentally and by novel interrogation of ab initio calculations.« less

  17. Suppression of Rayleigh wave spurious signal in ultra-wideband surface acoustic wave devices employing 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Ji, Xiaojun; Xiao, Qiang; Chen, Jing; Wang, Hualei; Omori, Tatsuya; Changjun, Ahn

    2017-05-01

    The propagation characteristics of surface acoustic waves (SAWs) on rotated Y-cut X-propagating 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3(PMN-33%PT) substrate are theoretically analyzed. It is shown that besides the existence of a shear horizontal (SH) SAW with ultrahigh electromechanical coupling factor K2, a Rayleigh SAW also exists causing strong spurious response. The calculated results showed that the spurious Rayleigh SAW can be sufficiently suppressed by properly selecting electrode and its thickness with optimized rotating angle while maintaining large K2 of SH SAW. The fractional -3 dB bandwidth of 47% is achievable for the ladder type filter constructed by Au IDT/48oYX-PMN-33%PT resonators.

  18. Collisional Dissociation of CO: ab initio Potential Energy Surfaces and Quasiclassical Trajectory Rate Coefficients

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Jaffe, Richard L.; Chaban, Galina M.

    2016-01-01

    We have generated accurate global potential energy surfaces for CO+Ar and CO+O that correlate with atom-diatom pairs in their ground electronic states based on extensive ab initio electronic structure calculations and used these potentials in quasi-classical trajectory nuclear dynamics calculations to predict the thermal dissociation rate coefficients over 5000- 35000 K. Our results are not compatible with the 20-45 year old experimental results. For CO + Ar we obtain fairly good agreement with the experimental rate coefficients of Appleton et al. (1970) and Mick and Roth (1993), but our computed rate coefficients exhibit a stronger temperature dependence. For CO + O our dissociation rate coefficient is in close agreement with the value from the Park model, which is an empirical adjustment of older experimental results. However, we find the rate coefficient for CO + O is only 1.5 to 3.3 times larger than CO + Ar over the temperature range of the shock tube experiments (8000-15,000 K). The previously accepted value for this rate coefficient ratio is 15, independent of temperature. We also computed the rate coefficient for the CO + O ex- change reaction which forms C + O2. We find this reaction is much faster than previously believed and is the dominant process in the removal of CO at temperatures up to 16,000 K. As a result, the dissociation of CO is accomplished in two steps (react to form C+O2 and then O2 dissociates) that are endothermic by 6.1 and 5.1 eV, instead of one step that requires 11.2 eV to break the CO bond.

  19. Quenching of Excited Na due to He Collisions

    NASA Technical Reports Server (NTRS)

    Lin, C. Y.; Stancil, P. C.; Liebermann, H. P.; Funke, P.; Buenker, R. J.

    2006-01-01

    The quenching and elastic scattering of excited Sodium by collisions with Helium have been investigated for energies between 10(exp -13) eV and 10 eV. With the ab initio adiabatic potentials and nonadiabatic radial and rotational couplings obtained from multireference single- and double-excitation configuration interaction approach, we carried out scattering calculations by the quantum-mechanical molecular-orbital close-coupling method. Cross sections for quenching reactions and elastic collisions are presented. Quenching and elastic collisional rate coefficients as a function of temperature between 1 micro-K and 10,000 K are also obtained. The results are relevant to modeling non-LTE effects on Na D absorption lines in extrasolar planets and brown dwarfs.

  20. Microstructural Development and Ternary Interdiffusion in Ni-Mn-Ga Alloys

    NASA Astrophysics Data System (ADS)

    Zhou, Le; Kammerer, Catherine; Giri, Anit; Cho, Kyu; Sohn, Yongho

    2015-12-01

    NiMnGa alloys functioning as either ferromagnetic shape memory alloys or magnetocaloric materials have both practical applications and fundamental research value. In this study, solid-to-solid diffusion couple experiments were carried out to investigate the phase equilibria, microstructural development, and interdiffusion behavior in Ni-Mn-Ga ternary alloys. Selected diffusion couples between pure Ni, Ni25Mn75 and four ternary off-stoichiometric NiMnGa alloys ( i.e., Ni52Mn18Ga30, Ni46Mn30Ga24, Ni52Mn30Ga18, Ni58Mn18Ga24) were assembled and annealed at 1073 K, 1123 K, and 1173 K (800 °C, 850 °C, and 900 °C) for 480, 240, and 120 hours, respectively. At these high temperatures, the β NiMnGa phase has a B2 crystal structure. The microstructure of the interdiffusion zone was examined by scanning electron microscopy and transmission electron microscopy. Concentration profiles across the interdiffusion zone were determined by electron probe micro analysis. Solubility values obtained for various phases were mostly consistent with the existing isothermal phase diagrams, but the phase boundary of the γ(Mn) + β two-phase region was slightly modified. In addition, equilibrium compositions for the γ(Ni) and α' phases at 1173 K (900 °C) were also determined for the respective two-phase region. Both austenitic and martensitic phases were found at room temperature in each diffusion couple with a clear boundary. The compositions at the interfaces corresponded close to valence electron concentration (e/a) of 7.6, but trended to lower values when Mn increased to more than 35 at. pct. Average effective interdiffusion coefficients for the β phase over different compositional ranges were determined and reported in the light of temperature-dependence. Ternary interdiffusion coefficients were also determined and examined to assess the ternary diffusional interactions among Ni, Mn, and Ga. Ni was observed to interdiffuse the fastest, followed by Mn then Ga. Interdiffusion flux of Ni also has strong influences on the interdiffusion of Mn and Ga with large and negative cross interdiffusion coefficients, tilde{D}_{MnNi}^{Ga} and tilde{D}_{GaNi}^{Mn} . The tilde{D}_{NiNi}^{Ga} and tilde{D}_{MnMn}^{Ga} ternary interdiffusion coefficients exhibited minimum values near 52 at. pct Ni concentration.

  1. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  2. An Experimental and Theoretical Study of Nitrogen-Broadened Acetylene Lines

    NASA Technical Reports Server (NTRS)

    Thibault, Franck; Martinez, Raul Z.; Bermejo, Dionisio; Ivanov, Sergey V.; Buzykin, Oleg G.; Ma, Qiancheng

    2014-01-01

    We present experimental nitrogen-broadening coefficients derived from Voigt profiles of isotropic Raman Q-lines measured in the 2 band of acetylene (C2H2) at 150 K and 298 K, and compare them to theoretical values obtained through calculations that were carried out specifically for this work. Namely, full classical calculations based on Gordon's approach, two kinds of semi-classical calculations based on Robert Bonamy method as well as full quantum dynamical calculations were performed. All the computations employed exactly the same ab initio potential energy surface for the C2H2N2 system which is, to our knowledge, the most realistic, accurate and up-to-date one. The resulting calculated collisional half-widths are in good agreement with the experimental ones only for the full classical and quantum dynamical methods. In addition, we have performed similar calculations for IR absorption lines and compared the results to bibliographic values. Results obtained with the full classical method are again in good agreement with the available room temperature experimental data. The quantum dynamical close-coupling calculations are too time consuming to provide a complete set of values and therefore have been performed only for the R(0) line of C2H2. The broadening coefficient obtained for this line at 173 K and 297 K also compares quite well with the available experimental data. The traditional Robert Bonamy semi-classical formalism, however, strongly overestimates the values of half-width for both Qand R-lines. The refined semi-classical Robert Bonamy method, first proposed for the calculations of pressure broadening coefficients of isotropic Raman lines, is also used for IR lines. By using this improved model that takes into account effects from line coupling, the calculated semi-classical widths are significantly reduced and closer to the measured ones.

  3. Wind Speed and Sea State Dependencies of Air-Sea Gas Transfer: Results From the High Wind Speed Gas Exchange Study (HiWinGS)

    NASA Astrophysics Data System (ADS)

    Blomquist, B. W.; Brumer, S. E.; Fairall, C. W.; Huebert, B. J.; Zappa, C. J.; Brooks, I. M.; Yang, M.; Bariteau, L.; Prytherch, J.; Hare, J. E.; Czerski, H.; Matei, A.; Pascal, R. W.

    2017-10-01

    A variety of physical mechanisms are jointly responsible for facilitating air-sea gas transfer through turbulent processes at the atmosphere-ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k660) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s-1 and significant wave heights to 8 m. Measurements of k660 for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U10N), following a power law relationship of the form: k660 CO2˜U10N1.68 and k660 dms˜U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and sea state in a complex manner, with k660 CO2 increasing as the wind sea approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean-Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a sea state-dependent calculation of bubble-mediated transfer, successfully reproduces the mean trend in observed k660 with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.

  4. Rotationally inelastic scattering of PN by para-H2(j = 0) at low/moderate temperature

    NASA Astrophysics Data System (ADS)

    Najar, F.; Naouai, M.; Hanini, H. El; Jaidane, N.

    2017-12-01

    Calculation of the collisional rate coefficients with the most abundant species has been motivated by the desire to interpret observations of molecules in the interstellar medium. This paper will be concerned with rotational excitation of the phosphorus nitride (PN) molecule in its ground vibrational state by collisions with para-H2(j = 0). Ab intio potential energy surface for the PN-H2 van der Waals system, considering both molecules as rigid rotors, was computed via CCSD(T) method using the aug-cc-pVTZ basis sets, augmented by a bond functions placed at midway between the PN and H2 centres of mass. Cross-sections among the 40 first rotational levels of PN in collisions with para-H2(j = 0) were obtained using close coupling and coupled states calculations, for total energies up to 3000 cm- 1. Rate coefficients are presented for temperatures ranging from 5 to 300 K. A strong propensity favouring even Δj transitions is found. The comparison of the new PN-H2 rate coefficients with previously calculated PN-He rate coefficients shows that significant differences exist.

  5. The polarizability of diatomic helium. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Fortune, P. J.

    1974-01-01

    The calculation of the electric dipole polarizability tensor of the He 2 dimer is described, and the results are used in the computation of several dielectric and optical properties of helium gas, at both high (322 K) and low (4 K) temperatures. The properties considered are the second dielectric virial coefficient, the second Kerr virial coefficient, and the depolarization ratio of the integrated intensities for the Raman scattering experiments. The thesis consists of five parts: the polarizability and various properties are defined; the calculation of the polarizability in the long-range region in terms of a quantum mechanical multipole expansion is described; the calculation of the He2 polarizability in the overlap region via coupled Hartree-Fock perturbation theory is described; the calculation of the quantum pair distribution function for both the He-3 and He-4 isotopes at 4 K is discussed; and the calculated values of the properties of helium gas are given.

  6. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoqing; Institute for Telecommunications Technology, Merckstrasse 25, 64283 Darmstadt; Wu, Liming

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d{sub 33} coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d{sub 33} ⋅ g{sub 33}) for a more typical d{sub 33} value of 400 pC/N is about 11.2 GPa{sup −1}. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigatedmore » at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm{sup 2} and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.« less

  7. Equilibrium unfolding studies of the rat liver methionine adenosyltransferase III, a dimeric enzyme with intersubunit active sites.

    PubMed Central

    Gasset, María; Alfonso, Carlos; Neira, José L; Rivas, Germán; Pajares, María A

    2002-01-01

    The reversible unfolding of rat liver methionine adenosyltransferase dimer by urea under equilibrium conditions has been monitored by fluorescence spectroscopy, CD, size-exclusion chromatography, analytical ultracentrifugation and enzyme activity measurements. The results obtained indicate that unfolding takes place through a three-state mechanism, involving an inactive monomeric intermediate. This intermediate has a 70% native secondary structure, binds less 8-anilinonaphthalene-1-sulphonic acid than the native dimer and has a sedimentation coefficient of 4.24+/-0.15. The variations of free energy in the absence of denaturant [DeltaG(H(2)O)] and its coefficients of urea dependence (m), calculated by the linear extrapolation model, were 36.15+/-2.3 kJ.mol(-1) and 19.87+/-0.71 kJ.mol(-1).M(-1) for the dissociation of the native dimer and 14.77+/-1.63 kJ.mol(-1) and 5.23+/-0.21 kJ.mol(-1).M(-1) for the unfolding of the monomeric intermediate respectively. Thus the global free energy change in the absence of denaturant and the m coefficient were calculated to be 65.69 kJ.mol(-1) and 30.33 kJ.mol(-1).M(-1) respectively. Analysis of the calculated thermodynamical parameters indicate the instability of the dimer in the presence of denaturant, and that the major exposure to the solvent is due to dimer dissociation. Finally, a minimum-folding mechanism for methionine adenosyltransferase III is established. PMID:11772402

  8. Frequency-Agile Differential Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Reed, Zachary; Hodges, Joseph

    2015-06-01

    The ultimate precision of highly sensitive cavity-enhanced spectroscopic measurements is often limited by interferences (etalons) caused by weak coupled-cavity effects. Differential measurements of ring-down decay constants have previously been demonstrated to largely cancel these effects, but the measurement acquisition rates were relatively low [1,2]. We have previously demonstrated the use of frequency agile rapid scanning cavity ring-down spectroscopy (FARS-CRDS) for acquisition of absorption spectra [3]. Here, the method of rapidly scanned, frequency-agile differential cavity ring-down spectroscopy (FADS-CRDS) is presented for reducing the effect of these interferences and other shot-to-shot statistical variations in measured decay times. To this end, an electro-optic phase modulator (EOM) with a bandwidth of 20 GHz is driven by a microwave source, generating pairs of sidebands on the probe laser. The optical resonator acts as a highly selective optical filter to all laser frequencies except for one tunable sideband. This sideband may be stepped arbitrarily from mode-to-mode of the ring-down cavity, at a rate limited only by the cavity buildup/decay time. The ability to probe any cavity mode across the EOM bandwidth enables a variety of methods for generating differential spectra. The differential mode spacing may be changed, and the effect of this method on suppressing the various coupled-cavity interactions present in the system is discussed. Alternatively, each mode may also be differentially referenced to a single point, providing immunity to temporal variations in the base losses of the cavity while allowing for conventional spectral fitting approaches. Differential measurements of absorption are acquired at 3.3 kHz and a minimum detectable absorption coefficient of 5 x10-12 cm-1 in 1 s averaging time is achieved. 1. J. Courtois, K. Bielska, and J.T Hodges J. Opt. Soc. Am. B, 30, 1486-1495, 2013 2. H.F. Huang and K.K. Lehmann App. Optics 49, 1378-1387, 2010 3. G.-W. Truong, K.O. Douglass, S.E. Maxwell, R.D. van Zee, D.F. Plusquellic, J.T. Hodges, and D.A. Long Nature Photonics, 7, 532-534, 2013

  9. Rotorcraft Flight Simulation Computer Program C81 with Datamap Interface, Volume 2. Programmer’s Manual

    DTIC Science & Technology

    1981-10-01

    39 :CIRK M p VPJoJ 29 4 31 j ii 33bAqRKI H4NLSP Ř A 8. 86 08 I N 1*Li I0 4t 102 103 to4 BATV Lo AoT 142 SN 6 kNkM TV UQIIRTV I 16 " COMT kL A1I N t 3...TENNIS RACKET MOMENT EXPRESS ION OANDOIT AUl THETA DOT FROM CYCLIC OANOOI T AERCO DRAG RISE COEFFICIENT (DEFAULT - 1.9/RAD) CC AGUST (13) GUST

  10. IOS and ECS line coupling calculation for the CO-He system - Influence on the vibration-rotation band shapes

    NASA Technical Reports Server (NTRS)

    Boissoles, J.; Boulet, C.; Robert, D.; Green, S.

    1987-01-01

    Line coupling coefficients resulting from rotational excitation of CO perturbed by He are computed within the infinite order sudden approximation (IOSA) and within the energy corrected sudden approximation (ECSA). The influence of this line coupling on the 1-0 CO-He vibration-rotation band shape is then computed for the case of weakly overlapping lines in the 292-78 K temperature range. The IOS and ECS results differ only at 78 K by a weak amount at high frequencies. Comparison with an additive superposition of Lorentzian lines shows strong modifications in the troughs between the lines. These calculated modifications are in excellent quantitative agreement with recent experimental data for all the temperatures considered. The applicability of previous approaches to CO-He system, based on either the strong collision model or exponential energy gap law, is also discussed.

  11. Modeling of the adsorption breakthrough behaviors of Pb2+ in a fixed bed of ETS-10 adsorbent.

    PubMed

    Lv, Lu; Zhang, Yan; Wang, Kean; Ray, Ajay K; Zhao, X S

    2008-09-01

    On the basis of experimental breakthrough curves of lead ion adsorption on ETS-10 particles in a fixed-bed column, we simulated the breakthrough curves using the two-phase homogeneous diffusion model (TPHDM). Three important model parameters, namely the external mass-transfer coefficient (k(f)), effective intercrystal diffusivity (D(e)), and axial dispersion coefficient (D(L)), were optimally found to be 8.33x10(-5) m/s, 2.57x10(-10) m(2)/s, and 1.93x10(-10) m(2)/s, respectively. A good agreement was observed between the numerical simulation and the experimental results. Sensitivity analysis revealed that the value of D(e) dictates the model performance while the magnitude of k(f) primarily affects the initial breakthrough point of the breakthrough curves.

  12. Coherent dynamic structure factors of strongly coupled plasmas: A generalized hydrodynamic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Di; Hu, GuangYue; Gong, Tao

    2016-05-15

    A generalized hydrodynamic fluctuation model is proposed to simplify the calculation of the dynamic structure factor S(ω, k) of non-ideal plasmas using the fluctuation-dissipation theorem. In this model, the kinetic and correlation effects are both included in hydrodynamic coefficients, which are considered as functions of the coupling strength (Γ) and collision parameter (kλ{sub ei}), where λ{sub ei} is the electron-ion mean free path. A particle-particle particle-mesh molecular dynamics simulation code is also developed to simulate the dynamic structure factors, which are used to benchmark the calculation of our model. A good agreement between the two different approaches confirms the reliabilitymore » of our model.« less

  13. New Crystalline Materials for Nonlinear Frequency Conversion, Electro-Optic Modulation, and Mid-Infrared Gain Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J

    New crystalline materials were investigated for applications in frequency conversion of near-infrared wavelengths and as gain media for tunable mid-infrared solid-state lasers. GaCa{sub 4}O(BO{sub 3}){sub 3} (GdCOB), YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB), LaCa{sub 4}O(BO{sub 3}){sub 3} (LaCOB), and Gd{sub 0.275}Y{sub 0.725}Ca{sub 4}O(BO{sub 3}){sub 3} were characterized for frequency conversion of 1 {micro}m lasers. For type I doubling at 1064 nm, LaCOB, GdCOB, and YCOB were found to have effective coupling coefficients (d{sub eff}) of 0.52 {+-} 0.05, 0.78 {+-} 0.06, and 1.12 {+-} 0.07 pm/V, respectively. LaCOB was measured to have angular and thermal sensitivities of 1224 {+-} 184 (cm-rad){supmore » -1} and < 0.10 (cm-{sup o}C){sup -1}, respectively. The effective coupling coefficient for type II noncritically phasematched (NCPM) doubling at 1064 nm in Gd{sub 0.275}Y{sub 0.725}Ca{sub 4}O(BO{sub 3}){sub 3} was measured to be 0.37 {+-} 0.04 pm/V. We predict LaCOB to have a type I NCPM fundamental wavelength of 1042 {+-} 1.5 nm. Due to its low angular and thermal sensitivities for doubling near 1047 nm, LaCOB has potential for frequency doubling of high-average power Nd:LiYF{sub 4} and Yb:Sr{sub 5}(P0{sub 4}){sub 3}F lasers. LaCOB, GdCOB, and YCOB were also investigated for optical parametric oscillator applications and we determined that they may have potential in a Ti:sapphire pumped oscillator. The effective linear electro-optic coefficients (r{sub eff}) were measured along dielectric directions in YCOB and a maximum r{sub eff} of 10.8 pm/V was found. For a crystal with a 5:1 aspect ratio, the corresponding half-wave voltage at 1064 nm would be 19.6 kV. Therefore a Pockels cell composed of two YCOB crystals with 5:1 aspect ratios would have a required half-wave voltage <10 kV. Moderate coupling coefficients (3 x KH{sub 2}PO{sub 4}), low thermal sensitivities, ease of growth to large sizes, non-hygroscopicity, and favorable polishing and coating characteristics make LaCOB, GdCOB, and YCOB attractive for frequency conversion of high-average power near-infrared lasers. Absorption and emission cross-sections of {approx}10{sup -18} cm{sup 2} were measured for Fe{sup 2+}:ZnSe in the 4 {micro}m region at temperatures below 220 K. Luminescence lifetimes were found that ranged from 5-110 {micro}s below 220 K. Tunable lasing action was demonstrated for the first time in Fe{sup 2+}:ZnSe with a tuning range from 3.98 {micro}m (20 K) to 4.54 {micro}m (180 K). The Fe{sup 2+}:ZnSe laser had thresholds {le}50 {micro}J and slope efficiencies {le}10% with 0.6% output coupling.« less

  14. Computational Modeling of Piezoelectric Foams

    NASA Astrophysics Data System (ADS)

    Challagulla, K. S.; Venkatesh, T. A.

    2013-02-01

    Piezoelectric materials, by virtue of their unique electromechanical characteristics, have been recognized for their potential utility in many applications as sensors and actuators. However, the sensing or actuating functionality of monolithic piezoelectric materials is generally limited. The composite approach to piezoelectric materials provides a unique opportunity to access a new design space with optimal mechanical and coupled characteristics. The properties of monolithic piezoelectric materials can be enhanced via the additive approach by adding two or more constituents to create several types of piezoelectric composites or via the subtractive approach by introducing controlled porosity in the matrix materials to create porous piezoelectric materials. Such porous piezoelectrics can be tailored to demonstrate improved signal-to-noise ratio, impedance matching, and sensitivity, and thus, they can be optimized for applications such as hydrophone devices. This article captures key results from the recent developments in the field of computational modeling of novel piezoelectric foam structures. It is demonstrated that the fundamental elastic, dielectric, and piezoelectric properties of piezoelectric foam are strongly dependent on the internal structure of the foams and the material volume fraction. The highest piezoelectric coupling constants and the highest acoustic impedance are obtained in the [3-3] interconnect-free piezoelectric foam structures, while the corresponding figures of merit for the [3-1] type long-porous structure are marginally higher. Among the [3-3] type foam structures, the sparsely-packed foam structures (with longer and thicker interconnects) display higher coupling constants and acoustic impedance as compared to closepacked foam structures (with shorter and thinner interconnects). The piezoelectric charge coefficients ( d h), the hydrostatic voltage coefficients ( g h), and the hydrostatic figures of merit ( d hgh) are observed to be significantly higher for the [3-3] type piezoelectric foam structures as compared to the [3-1] type long-porous materials, and these can be enhanced significantly by modifying the aspect ratio of the porosity in the foam structures as well.

  15. AC-coupled GaAs microstrip detectors with a new type of integrated bias resistors

    NASA Astrophysics Data System (ADS)

    Irsigler, R.; Geppert, R.; Göppert, R.; Hornung, M.; Ludwig, J.; Rogalla, M.; Runge, K.; Schmid, Th.; Söldner-Rembold, A.; Webel, M.; Weber, C.

    1998-02-01

    Full-size single-sided GaAs microstrip detectors with integrated coupling capacitors and bias resistors have been fabricated on 3″ substrate wafers. PECVD deposited SiO 2 and {SiO 2}/{Si 3N 4} layers were used to provide coupling capacitances of 32.5 and 61.6 pF/cm, respectively. The resistors are made of sputtered CERMET using simple lift of technique. The sheet resistivity of 78 kΩ/□ and the thermal coefficient of resistance of less than 4 × 10 -3/°C satisfy the demands of small area biasing resistors, working on a wide temperature range.

  16. Effects of PbO-B2O3 Glass Doping on the Sintering Temperature and Piezoelectric Properties of 0.35Pb (Ni1/3Nb2/3)O3-0.65Pb(Zr0.41Ti0.59)O3 Ceramics

    NASA Astrophysics Data System (ADS)

    Yi, Jinqiao; Shen, Meng; Liu, Sisi; Jiang, Shenglin

    2015-12-01

    0.35Pb(Ni1/3Nb2/3)O3-0.65Pb(Zr0.41Ti0.59)O3 (PNN-PZT) ceramics doped with 0.5PbO-0.5B2O3 glass have been synthesized by the conventional solid-state sintering technique. The effects of 0.5PbO-0.5B2O3 glass on the sintering temperature and piezoelectric properties of PNN-PZT ceramics were studied. The results indicated that the sintering temperature of PNN-PZT was significantly reduced due to the incorporation of 0.5PbO-0.5B2O3 glass dopant. When the content of 0.5PbO-0.5B2O3 glass was 0.5 wt.%, the sintering temperature of PNN-PZT was observed to reduce from above 1200°C to 920°C while the samples maintained high density (7.91 g/cm3), excellent piezoelectric constant ( d 33 = 479 pC/N), large electromechanical coupling coefficient ( K p = 0.55), and relatively low electromechanical quality factor ( Q m = 79). Moreover, large dielectric constant ( ɛ 33 T / ɛ 0 = 2904) and low dielectric loss (tan δ = 0.0166) were obtained in this work.

  17. Crystal Structure, Piezoelectric and Dielectric Properties of (Li, Ce)4+, Nb5+ and Mn2+ Co-doped CaBi4Ti4O15 High-Temperature Ceramics

    NASA Astrophysics Data System (ADS)

    Xin, Deqiong; Chen, Qiang; Wu, Jiagang; Bao, Shaoming; Zhang, Wen; Xiao, Dingquan; Zhu, Jianguo

    2016-07-01

    Bismuth-layered structured ceramics Ca0.85(Li,Ce)0.075Bi4Ti4- x Nb x O15-0.01MnCO3 were prepared by the conventional solid-state reaction method. The evolution of microstructure and corresponding electrical properties were studied. All the samples presented a single bismuth layered-structural phase with m = 4, indicating that (Li, Ce)4+, Nb5+ and Mn2+ adequately enter into the pseudo-perovskite structure and form solid solutions. It was found that Ca0.85(Li,Ce)0.075Bi4Ti3.98Nb0.02O15-0.01MnCO3 (CBTLCM-0.02Nb) ceramics possess the optimum electrical properties. The piezoelectric coefficient d 33, dielectric constant ɛ r, loss tan δ, planar electromechanical coupling factor k p and Curie-temperature T C of CBTLCM-0.02Nb ceramics were found to be ˜19.6 pC/N, 160, 0.16%, 8.1% and 767°C, respectively. Furthermore, the thermal depoling behavior demonstrates that the d 33 value of x = 0.02 content remains at 16.8 pC/N after annealing at 500°C. These results suggest that the (Li, Ce)4+-, Nb5+- and Mn2+-doped CBT-based ceramics are promising candidates for high-temperature piezoelectric applications.

  18. Magnetotransport parameters of La0.67Ca0.33MnO3 films grown on neodymium gallate substrates

    NASA Astrophysics Data System (ADS)

    Boikov, Yu. A.; Volkov, M. P.

    2013-01-01

    Weakly mechanically stressed 40-nm-thick La0.67Ca0.33MnO3 films have been grown coherently on a (001)NdGaO3 substrate by laser evaporation. The electrical resistivity ρ of the La0.67Ca0.33MnO3 film reaches a maximum at a temperature T C ≈ 255 K. At temperatures below 0.6 T C, the temperature dependences of ρ are well approximated by the relation ρ = ρdef + C 1 T 2 + C 2 T 4.5, in which the first term on the right-hand side accounts for the contribution of structural defects to electrical resistivity, and the second and third terms stand for those of the electron-electron and electron-magnon interactions, respectively. The parameters ρdef ≈ 1 x 10-4 Ω cm and C 1 ≈ 7.7 × 10-9 Ω cm K-2 do not depend on temperature and magnetic field H. The coefficient C 2 decreases with increasing H to reach about 4.9 × 10-15 Ω cm K-4.5 at μ0 H = 14 T.

  19. TEMPEST/N33.5. Computational Fluid Dynamics Package For Incompressible, 3D, Time Dependent Pro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trent, Dr.D.S.; Eyler, Dr.L.L.

    TEMPESTN33.5 provides numerical solutions to general incompressible flow problems with coupled heat transfer in fluids and solids. Turbulence is created with a k-e model and gas, liquid or solid constituents may be included with the bulk flow. Problems may be modeled in Cartesian or cylindrical coordinates. Limitations include incompressible flow, Boussinesq approximation, and passive constituents. No direct steady state solution is available; steady state is obtained as the limit of a transient.

  20. Interdiffusion between the L1(2) trialuminides Al66Ti25Mn9 and Al67Ti25Cr8

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    Concentration-distance profiles obtained from Al66Ti25Mn9/Al67Ti25Cr8 diffusion couples are used to determine the interdiffusion coeffients in the temperature range 1373-1073 K. The couples are treated as pseudobinaries, and the diffusion coefficients are determined using the Matano approach. The results are then used to compute the activation energies for diffusion, and a comparison is made with some existing data for the activation energy for creep of Al22Ti8Fe3.

  1. Transverse thermoelectric effect in La{sub 0.67}Sr{sub 0.33}MnO{sub 3}|SrRuO{sub 3} superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiomi, Y.; Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Aoba-ku, Sendai 980-8577; Handa, Y.

    2015-06-08

    Transverse thermoelectric effects in response to an out-of-plane heat current have been studied in an external magnetic field for ferromagnetic superlattices consisting of La{sub 0.67}Sr{sub 0.33}MnO{sub 3} and SrRuO{sub 3} layers. The superlattices were fabricated on SrTiO{sub 3} substrates by pulsed laser deposition. We found that the sign of the transverse thermoelectric voltage for the superlattices is opposite to that for La{sub 0.67}Sr{sub 0.33}MnO{sub 3} and SrRuO{sub 3} single layers at 200 K, implying an important role of spin Seebeck effects inside the superlattices. At 10 K, the magnetothermoelectric curves shift from the zero field due to an antiferromagnetic coupling between layersmore » in the superlattices.« less

  2. 1.3 μm single-photon emission from strain-coupled bilayer of InAs/GaAs quantum dots at the temperature up to 120 K

    NASA Astrophysics Data System (ADS)

    Xue, Yongzhou; Chen, Zesheng; Ni, Haiqiao; Niu, Zhichuan; Jiang, Desheng; Dou, Xiuming; Sun, Baoquan

    2017-10-01

    We report on 1.3 μm single-photon emission based on a self-assembled strain-coupled bilayer of InAs quantum dots (QDs) embedded in a micropillar Bragg cavity at temperature of liquid nitrogen or even as high as 120 K. The obtained single-photon flux into the first lens of the collection optics is 4.2 × 106 and 3.3 × 106/s at 82 and 120 K, respectively, corresponding to a second-order correlation function at zero delay times of 0.27(2) and 0.28(3). This work reports on the significant effect of the micropillar cavity-related enhancement of QD emission and demonstrates an opportunity to employ telecom band single-photon emitters at liquid nitrogen or even higher temperature.

  3. La-doped SrTiO3 films with large cryogenic thermoelectric power factors

    NASA Astrophysics Data System (ADS)

    Cain, Tyler A.; Kajdos, Adam P.; Stemmer, Susanne

    2013-05-01

    The thermoelectric properties at temperatures between 10 K and 300 K of La-doped SrTiO3 thin films grown by hybrid molecular beam epitaxy (MBE) on undoped SrTiO3 substrates are reported. Below 50 K, the Seebeck coefficients exhibit very large magnitudes due to the influence of phonon drag. Combined with high carrier mobilities, exceeding 50 000 cm2 V-1 s-1 at 2 K for the films with the lowest carrier densities, this leads to thermoelectric power factors as high as 470 μWcm-1 K-2. The results are compared with other promising low temperature thermoelectric materials and discussed in the context of coupling with phonons in the undoped substrate.

  4. Effective collision strengths for forbidden transitions among the 3s23p3 fine-structure levels of CL IIIIII

    NASA Astrophysics Data System (ADS)

    Ramsbottom, C. A.; Bell, K. L.; Keenan, F. P.

    1999-08-01

    Effective collision strengths for the 10 astrophysically important fine-structure forbidden transitions among the ^4S^o, ^2D^o and ^2P^o levels in the 3s^23p^3 configuration of Cliii are presented. The calculation employs the multichannel R-matrix method to compute the electron-impact excitation collision strengths in a close-coupling expansion, which incorporates the lowest 23 LS target eigenstates of Cliii. These states are formed from the 3s^23p^3, 3s3p^4, 3s^23p^23d and 3s^23p^24s configurations. The Maxwellian-averaged effective collision strengths are presented graphically for all 10 fine-structure transitions over a wide range of electron temperatures appropriate for astrophysical applications [logT(K)=3.3-logT(K)=5.9]. Comparisons are made with the earlier seven-state close-coupling calculation of Butler & Zeippen, and in general excellent agreement is found in the low-temperature region where a comparison is possible [logT(K)=3.3-logT(K)=4.7]. However, discrepancies of up to 30 per cent are found to occur for the forbidden transitions which involve the ^4S^o ground state level, particularly for the lowest temperatures considered. At the higher temperatures, the present data are the only reliable results currently available.

  5. Enhanced magnetoelectric effects in composite of piezoelectric ceramics, rare-earth iron alloys, and shape-optimized nanocrystalline alloys.

    PubMed

    Zhang, Jitao; Li, Ping; Wen, Yumei; He, Wei; Yang, Aichao; Lu, Caijiang

    2014-03-01

    An enhancement for magnetoelectric (ME) effects is studied in a three-phase ME architecture consisting of two magnetostrictive Terfenol-D (Tb(0.3)Dy(0.7)Fe(1.92)) plates, a piezoelectric PZT (Pb(Zr,Ti)O3) plate, and a pair of shape-optimized FeCuNbSiB nanocrystalline alloys. By modifying the conventional shape of the magnetic flux concentrator, the shape-optimized flux concentrator has an improved effective permeability (μ(eff)) due to the shape-induced demagnetizing effect at its end surface. The flux concentrator concentrates and amplifies the external magnetic flux into Terfenol-D plate by means of changing its internal flux concentrating manner. Consequently, more flux lines can be uniformly concentrated into Terfenol-D plates. The effective piezomagnetic coefficients (d(33m)) of Terfenol-D plate and the ME voltage coefficients (α(ME)) can be further improved under a lower magnetic bias field. The dynamic magneto-elastic properties and the effective magnetic induction of Terfenol-D are taken into account to derive the enhanced effective ME voltage coefficients (α(ME,eff)), the consistency of experimental results and theoretical analyses verifies this enhancement. The experimental results demonstrate that the maximum d(33m) in our proposed architecture achieves 22.48 nm/A under a bias of 114 Oe. The maximum α(ME) in the bias magnetic range 0-900 Oe reaches 84.73 mV/Oe under the low frequency of 1 kHz, and 2.996 V/Oe under the resonance frequency of 102.3 kHz, respectively. It exhibits a 1.43 times larger piezomagnetic coefficient and a 1.87 times higher ME voltage coefficient under a smaller magnetic bias of 82 Oe than those of a conventional Terfenol-D/PZT/Terfenol-D composite. These shape-induced magnetoelectric behaviors provide the possibility of using this ME architecture in ultra-sensitive magnetic sensors.

  6. Flowfield Measurements in the Vortex Wake of a Missile at High Angle of Attack in Turbulence

    DTIC Science & Technology

    1988-12-01

    pressure coefficient Cy: side force coefficient d: base diameter of the missile body F: blockage correction K: wind tunnel calibration factor LI : missile...and assistance in the wind tunnel apparatus and data acquisition s -;te1 m. I would like to thank Lt. Ao Chia-Ning. Republic of China Navy, Mr. Li ...axisymmetric missile configuration. 6- MO GRID + WIJS RE 1.33 E+05 z 2- Li 0- O C8 -C0 tq *tt~E I ’mtO0 E 5 , • r;.H/ 2 011USE 6 -6 x J! ’ 5SE 3 ,AHOSE

  7. Conference Proceedings on Atmospheric Propagation in the UV, Visible, IR and MM-Wave Region and Related Systems Aspects Held in Copenhagen, Denmark on 9- 13th October 1989

    DTIC Science & Technology

    1990-03-01

    is more likely2 3 . Table 3. Linear Regression Coefficients of Aerosol Concentration and Volumetric Loadings on Wind Speed Size Band Coefficients...vents. S33 UNI L N I m a FE 4 K 26 w " N ~ ~ ~ ~ ~ AN FA CrCS S HI IIq 2-4 C - LA SONDE GRANULOUNTRIQUN. D’autre part, des mesures do granulom ~trie...appel6 NAVY MAR17!- NB’’). Celui-ci rbnulte d’une s~rie de mesures de profils granulom ~tti- ques pris lors de conditions mataorologiques diff6rentes

  8. Permanent magnet design for magnetic heat pumps using total cost minimization

    NASA Astrophysics Data System (ADS)

    Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Niknia, I.; Rowe, A.

    2017-11-01

    The active magnetic regenerator (AMR) is an attractive technology for efficient heat pumps and cooling systems. The costs associated with a permanent magnet for near room temperature applications are a central issue which must be solved for broad market implementation. To address this problem, we present a permanent magnet topology optimization to minimize the total cost of cooling using a thermoeconomic cost-rate balance coupled with an AMR model. A genetic algorithm identifies cost-minimizing magnet topologies. For a fixed temperature span of 15 K and 4.2 kg of gadolinium, the optimal magnet configuration provides 3.3 kW of cooling power with a second law efficiency (ηII) of 0.33 using 16.3 kg of permanent magnet material.

  9. Experimental and CFD-PBM Study of Oxygen Mass Transfer Coefficient in Different Impeller Configurations and Operational Conditions of a Two-Phase Partitioning Bioreactor.

    PubMed

    Moradkhani, Hamed; Izadkhah, Mir-Shahabeddin; Anarjan, Navideh

    2017-02-01

    In this work, gas dispersion in a two-phase partitioning bioreactor is analyzed by calculating volumetric oxygen mass transfer coefficient which is modeled using a commercial computational fluid dynamics (CFD), code FLUENT 6.2. Dispersed oxygen bubbles dynamics is based on standard "k-ε" Reynolds-averaged Navier-Stokes (RANS) model. This paper describes a three-dimensional CFD model coupled with population balance equations (PBE) in order to get more confirming results of experimental measurements. Values of k L a are obtained using dynamic gassing-out method. Using the CFD simulation, the volumetric mass transfer coefficient is calculated based on Higbie's penetration theory. Characteristics of mass transfer coefficient are investigated for five configurations of impeller and three different aeration flow rates. The pitched six blade type, due to the creation of downward flow direction, leads to higher dissolved oxygen (DO) concentrations, thereby, higher values of k L a compared with other impeller compositions. The magnitude of dissolved oxygen percentage in the aqueous phase has direct correlation with impeller speed and any increase of the aeration magnitude leads to faster saturation in shorter periods of time. Agitation speeds of 300 to 800 rpm are found to be the most effective rotational speeds for the mass transfer of oxygen in two-phase partitioning bioreactors (TPPB).

  10. Understanding the insight into the mechanisms and dynamics of the Cl-initiated oxidation of (CH3)3CC(O)X and the subsequent reactions in the presence of NO and O2 (X = F, Cl, and Br).

    PubMed

    Bai, Feng-Yang; Lv, Shuang; Ma, Yuan; Liu, Chun-Yu; He, Chun-Fang; Pan, Xiu-Mei

    2017-03-01

    In this work, the density functional and high-level ab initio theories are adopted to investigate the mechanisms and kinetics of reaction of (CH 3 ) 3 CC(O)X (X = F, Cl, and Br) with atomic chlorine. Rate coefficients for the reactions of chlorine atom with (CH 3 ) 3 CC(O)F (k 1 ), (CH 3 ) 3 CC(O)Cl (k 2 ), and (CH 3 ) 3 CC(O)Br (k 3 ) are calculated using canonical variational transition state theory coupled with small curvature tunneling method over a wide range of temperatures from 250 to 1000 K. The dynamic calculations are performed by the variational transition state theory with the interpolated single-point energies method at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of theory. Computed rate constant is in good line with the available experimental value. The rate constants for the title reactions are in this order: k 1

  11. An Investigation of Dielectric, Piezoelectric Properties and Microstructures of Bi0.5Na0.5TiO3-BaTiO3-Bi0.5K0.5TiO3 Lead-Free Piezoelectric Ceramics Doped with K2AlNbO5 Compound

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Jiang, Wentao; Liu, Kaihua; Liu, Xiaokui; Song, Chunlin; Yan, Yan; Jin, Li

    2017-08-01

    The effect of K2AlNbO5 compound acting as both donor and accepter on the phase, microstructures and electrical properties of the 0.9362(Bi0.5Na0.5)TiO3-0.0637BaTiO3-0.02(Bi0.5K0.5)TiO3 [(1- x)(0.9163BNT-0.0637BT-0.02BKT)- x(K2AlNbO5)] (BNKBT-1000 xKAN) ternary lead-free piezoelectric ceramics was systematically investigated. When doping content of K2AlNbO5 was varied from 0 to 0.009, the BNKBT-1000 xKAN ceramics showed a single perovskite structure, and the phase structure transferred from a rhombohedral-tetragonal coexistent morphotropic phase boundaries zone to a tetragonal zone. The x-ray photoelectron spectroscopy analysis indicated that the chemical valence of the Nb and Al element are 5+ and 3+, respectively. Strong relaxor characteristics were revealed by the temperature-dependent dielectric properties of the ceramics. Typical square polarization-electric field ( P- E) hysteresis loops were observed in the samples with doping content lower than 0.005. However, with further increasing the doping content ( x = 0.007 and 0.009), round P- E hysteresis loops were observed due to the high conductivity of these samples. Moreover, when the doping content was less than 0.005, the ceramic samples exhibited good piezoelectric properties. Specially, when the doping content was 0.001, the piezoelectric constant d 33 and electromechanical coupling coefficient k p of the sample were 197 pC/N and 22%, respectively. However, further addition would deteriorate both the dielectric and piezoelectric properties.

  12. Quantum scattering calculations for ro-vibrational de-excitation of CO by hydrogen atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Lei; Avoird, Ad van der; Karman, Tijs

    2015-05-28

    We present quantum-mechanical scattering calculations for ro-vibrational relaxation of carbon monoxide (CO) in collision with hydrogen atoms. Collisional cross sections of CO ro-vibrational transitions from v = 1, j = 0 − 30 to v′ = 0, j′ are calculated using the close coupling method for collision energies between 0.1 and 15 000 cm{sup −1} based on the three-dimensional potential energy surface of Song et al. [J. Phys. Chem. A 117, 7571 (2013)]. Cross sections of transitions from v = 1, j ≥ 3 to v′ = 0, j′ are reported for the first time at this level of theory. Alsomore » calculations by the more approximate coupled states and infinite order sudden (IOS) methods are performed in order to test the applicability of these methods to H–CO ro-vibrational inelastic scattering. Vibrational de-excitation rate coefficients of CO (v = 1) are presented for the temperature range from 100 K to 3000 K and are compared with the available experimental and theoretical data. All of these results and additional rate coefficients reported in a forthcoming paper are important for including the effects of H–CO collisions in astrophysical models.« less

  13. Theoretical investigation of surface acoustic wave in the new, three-layered structure: ZnO/AlN/diamond.

    PubMed

    El Hakiki, Mohamed; Elmazria, Omar; Alnot, Patrick

    2007-03-01

    The new layered structure, ZnO/AlN/diamond, for surface acoustic wave (SAW) devices is investigated for gigahertz-band applications. This structure combines the advantages of both piezoelectric materials, with a high electromechanical coupling coefficient (K2) of ZnO and high acoustic velocity of AlN. Theoretical results show that Rayleigh mode SAWs with large phase velocities up to 12,200 m/s and large K2 from 1 to 3% were generated with this new structure.

  14. High-Temperature Properties of Piezoelectric Langatate Single Crystals

    NASA Technical Reports Server (NTRS)

    Sehirlioglu, Alp; Sayir, Ali; Klemenz, Christine

    2007-01-01

    Langasite type crystals belong to non-polar point group of 32 and do not show any phase transformations up to the melting temperature. Langatate (La3Ga(5.5)Ta(0.5)O14) demonstrates piezoelectric activity better than quartz and possesses attractive properties for high temperature sensors, resonators and filter applications. High-quality and colorless langatate crystals were grown by the Czochralski technique. The electromechanical and electrical properties of langatate crystals in different crystallographic directions were characterized at elevated temperature. The piezoelectric coefficient along x-axis was 7 pC/N as measured by a Berlincourt meter for a plate geometry with an aspect ratio of 10:1. The dielectric constant did not exhibit any significant temperature dependence (K33 approx. 21 at 30 C and K33 approx. 23 at 600 C). Loss tangent at 100 kHz remained <0.003 up to 300 C and <0.65 at 600 C. The dielectric properties along the y-axis were similar and its temperature dependence was analogous to the x-axis. Electromechanically, the inactive z-axis exhibited no resonance with K33 approx. 84 at room temperature, decreasing down to approx. 49 at 600 C. Resistivity of these crystals along x-axis decreased from approx. 6x10(exp 11) omega-cm at room temperature, to approx. 1.6x10(exp 6) omega-cm at 600 C.

  15. Coupling of electronic and magnetic properties in Fe1+y(Te1-xSex)

    NASA Astrophysics Data System (ADS)

    Hu, J.; Liu, T. J.; Qian, B.; Mao, Z. Q.

    2013-09-01

    We have studied the coupling of electronic and magnetic properties in Fe1+y(Te1-xSex) via systematic specific heat, magnetoresistivity (MR), and Hall coefficient measurements on two groups of samples with y=0.02 and 0.1. In the y=0.02 series, we find that the 0.09

  16. Determining the K coefficient to leaf area index estimations in a tropical dry forest

    NASA Astrophysics Data System (ADS)

    Magalhães, Sarah Freitas; Calvo-Rodriguez, Sofia; do Espírito Santo, Mário Marcos; Sánchez Azofeifa, Gerardo Arturo

    2018-03-01

    Vegetation indices are useful tools to remotely estimate several important parameters related to ecosystem functioning. However, improving and validating estimations for a wide range of vegetation types are necessary. In this study, we provide a methodology for the estimation of the leaf area index (LAI) in a tropical dry forest (TDF) using the light diffusion through the canopy as a function of the successional stage. For this purpose, we estimated the K coefficient, a parameter that relates the normalized difference vegetation index (NDVI) to LAI, based on photosynthetically active radiation (PAR) and solar radiation. The study was conducted in the Mata Seca State Park, in southeastern Brazil, from 2012 to 2013. We defined four successional stages (very early, early, intermediate, and late) and established one optical phenology tower at one plot of 20 × 20 m per stage. Towers measured the incoming and reflected solar radiation and PAR for NDVI calculation. For each plot, we established 24 points for LAI sampling through hemispherical photographs. Because leaf cover is highly seasonal in TDFs, we determined ΔK (leaf growth phase) and K max (leaf maturity phase). We detected a strong correlation between NDVI and LAI, which is necessary for a reliable determination of the K coefficient. Both NDVI and LAI varied significantly between successional stages, indicating sensitivity to structural changes in forest regeneration. Furthermore, the K values differed between successional stages and correlated significantly with other environmental variables such as air temperature and humidity, fraction of absorbed PAR, and soil moisture. Thus, we established a model based on spectral properties of the vegetation coupled with biophysical characteristics in a TDF that makes possible to estimate LAI from NDVI values. The application of the K coefficient can improve remote estimations of forest primary productivity and gases and energy exchanges between vegetation and atmosphere. This model can be applied to distinguish different successional stages of TDFs, supporting environmental monitoring and conservation policies towards this biome.

  17. Detection of magnetic dipolar coupling of water molecules at the nanoscale using quantum magnetometry

    NASA Astrophysics Data System (ADS)

    Yang, Zhiping; Shi, Fazhan; Wang, Pengfei; Raatz, Nicole; Li, Rui; Qin, Xi; Meijer, Jan; Duan, Changkui; Ju, Chenyong; Kong, Xi; Du, Jiangfeng

    2018-05-01

    It is a crucial issue to study interactions among water molecules and hydrophobic interfacial water at the nanoscale. Here we succeed in measuring the nuclear magnetic resonance spectrum of a diamond-water interfacial ice with a detection volume of about 2.2 ×10-22 L. More importantly, the magnetic dipolar coupling between the two protons of a water molecule is resolved by measuring the signal contributed from about 7000 water molecules at the nanoscale. The resolved intramolecule magnetic dipolar interactions are about 15 and 33 kHz with spectral resolution of 5 kHz. This work provides a platform for hydrophobic interfacial water study under ambient conditions, with further applications in more general nanoscale structural analysis.

  18. Effects of substrate-induced-strain on the electrical properties and laser induced voltages of tilted La0.67Ca0.33MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Ma, Ji; Zhang, Hui; Chen, Qingming; Liu, Xiang

    2013-07-01

    La0.67Ca0.33MnO3 thin films have been prepared on vicinal cut LaAlO3, (LaAlO3)0.3-(SrAlTaO6)0.7, and SrTiO3 (001) substrates by pulsed laser deposition. The influence of the substrate on the electrical transport properties and laser induced voltage (LIV) effect of the films was investigated. The high insulator to metal transition temperature Tp (263.6 K) and large peak voltage of LIV signal (2.328 V) were observed in the film grown on LaAlO3 substrate. The compressive strain and large Seebeck coefficient anisotropy ΔS (3.62 μV/K) induced by LaAlO3 are thought to be responsible for this result.

  19. Improvement of the piezoelectric properties in (K,Na)NbO3-based lead-free piezoelectric ceramic with two-phase co-existing state

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Matsuoka, T.; Kozuka, H.; Yamazaki, M.; Ohbayashi, K.; Ida, T.

    2015-06-01

    Two phases of (K,Na)NbO3 (KNN) co-exist in a KNN-based composite lead-free piezoelectric ceramic 0.910(K1-xNax)0.86Ca0.04Li0.02Nb0.85O3-δ-0.042K0.85Ti0.85Nb1.15O5-0.036BaZrO3-0.0016Co3O4- 0.0025Fe2O3-0.0069ZnO system, over a wide range of Na fractions, where 0.56 ≤ x ≤ 0.75. The crystal systems of the two KNN phases are identified to tetragonal and orthorhombic by analyzing the synchrotron powder X-ray diffraction (XRD) data, high-resolution transmission electron microscopy (HR-TEM), and selected-area electron diffraction (SAD). In the range 0.33 ≤ x ≤ 0.50, the main component of the composite system is found to be single-phase KNN with a tetragonal structure. Granular nanodomains of the orthorhombic phase dispersed in the tetragonal matrix have been identified by HR-TEM and SAD for 0.56 ≤ x ≤ 0.75. Only a trace amount of the orthorhombic phase has been found in the SAD patterns at the composition x = 0.56. However, the number of orthorhombic nanodomains gradually increases with increasing Na content up to x < 0.75, as observed from the HR-TEM images. An abrupt increase and agglomeration of the nanodomains are observed at x = 0.75, where weak diffraction peaks of the orthorhombic phase have also become detectable from the XRD data. The maximum value of the electromechanical coupling coefficient, kp = 0.56, has been observed at the composition x = 0.56.

  20. Adsorption-Coupled Diffusion of Gold Nanoclusters within a Large-Pore Protein Crystal Scaffold.

    PubMed

    Hartje, Luke F; Munsky, Brian; Ni, Thomas W; Ackerson, Christopher J; Snow, Christopher D

    2017-08-17

    Large-pore protein crystals (LPCs) are ordered biologically derived nanoporous materials exhibiting pore diameters greater than 8 nm. These substantial pores distinguish LPCs from typical nanoporous scaffolds, enabling engineered LPC materials to readily uptake, immobilize, and release macromolecular guests. In this study, macromolecular transport within an LPC environment was experimentally and computationally investigated by studying adsorption-coupled diffusion of Au 25 (glutathione) 18 nanoclusters within a cross-linked LPC scaffold via time-lapse confocal microscopy, bulk equilibrium adsorption, and hindered diffusion simulation. Equilibrium adsorption data is congruent with a Langmuir adsorption model, exhibiting strong binding behavior between nanoclusters and the scaffold. The standard Gibbs free energy of binding is equivalent to -37.2 kJ/mol, and the maximum binding capacity of 1.25 × 10 3 mg/g corresponds to approximately 29 nanoclusters per LPC unit cell. The hindered diffusion model showed good agreement with experimental data, revealing a pore diffusion coefficient of 3.7 × 10 -7 cm 2 /s under low nanocluster concentration. Furthermore, the model was sufficient to determine adsorption and desorption kinetic values for k a and k d equal to 13 cm 3 /mol·s and 1.7 × 10 -7 s -1 , respectively. At higher nanocluster concentrations, the simulated pore diffusion coefficient could be reduced by 3 orders of magnitude to 3.4 × 10 -10 cm 2 /s due to the effects of pore occlusion. This study demonstrates a strategy to analyze adsorption-coupled diffusion data to better understand complex transport of fluorescent macromolecules into LPCs. This approach fits the observable fluorescence data to the key molecular details and will benefit downstream efforts to engineer LPC-based nanoporous materials.

  1. Modelling thermal radiation from one-meter diameter methane pool fires

    NASA Astrophysics Data System (ADS)

    Consalvi, J. L.; Demarco, R.

    2012-06-01

    The first objective of this article is to implement a comprehensive radiation model in order to predict the radiant fractions and radiative fluxes on remote surfaces in large-scale methane pool fires. The second aim is to quantify the importance of Turbulence-Radiation Interactions (TRIs) in such buoyant flames. The fire-induced flow is modelled by using a buoyancy-modified k-ɛ model and the Steady Laminar Flamelet (SLF) model coupled with a presumed probability density function (pdf) approach. Spectral radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. TRIs are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA). The emission term and the mean absorption coefficient are closed by using a presumed pdf of the mixture fraction, scalar dissipation rate and enthalpy defect. Two 1m-diameter fires with Heat Release Rates (HRR) of 49 kW and 162 kW were simulated. Predicted radiant fractions and radiative heat fluxes are found in reasonable agreement with experimental data. The importance of TRIs is evidenced, computed radiant fractions and radiative heat fluxes being considerably higher than those obtained from calculations based on mean properties. Finally, model results show that the complete absorption coefficient-Planck function correlation should be considered in order to properly take into account the influence of TRIs on the emission term, whereas the absorption coefficient self-correlation in the absorption term reduces significantly the radiant fractions.

  2. Large cooling differentials and high heat flux capability with p-type Bi2Te3/Sb2Te3 and n-type Bi2Te3/Bi2SexTe3-x Superlattice Thermoelectric Devices

    NASA Astrophysics Data System (ADS)

    Bulman, Gary; Siivola, Ed; Wiitala, Ryan; Grant, Brian; Pierce, Jonathan; Venkatasubramanian, Rama

    2007-03-01

    Thin film superlattice (SL) based thermoelectric (TE) devices offer the potential for improved efficiency and high heat flux cooling over conventional bulk materials. Recently, we have demonstrated external cooling of 55K and heat pumping capacity of 128 W/cm^2. These high heat fluxes in thin film devices, while attractive for cooling hot-spots in electronics, also make the device performance sensitive to various thermal resistances in the device structure. We will discuss advances in the cooling performance of Bi2Te3-based SL TE devices and describe a method to extract device material parameters, including thermal resistance, from measurements of their δT-I-V characteristics. These parameters will be compared to values obtained through Hall and Seebeck coefficient measurement on epitaxial materials. Results will be presented for both single couple and multi-couple modules, as well as multi-stage cascaded devices made with these materials. Single stage cooling couples with δTmax of 57.8K (Tc˜242K) and multi-stage modules with δTmax˜92.2K (Tc˜209K) have been measured. G.E. Bulman, E. Siivola, B. Shen and R. Venkatasubramanian, Appl. Phys. Lett. 89, 122117 (2006).

  3. ASD-1000: High-resolution, high-temperature acetylene spectroscopic databank

    NASA Astrophysics Data System (ADS)

    Lyulin, O. M.; Perevalov, V. I.

    2017-11-01

    We present a high-resolution, high-temperature version of the Acetylene Spectroscopic Databank called ASD-1000. The databank contains the line parameters (position, intensity, Einstein coefficient for spontaneous emission, term value of the lower states, self- and air-broadening coefficients, temperature dependence exponents of the self- and air-broadening coefficients) of the principal isotopologue of C2H2. The reference temperature for line intensity is 296 K and the intensity cutoff is 10-27 cm-1/(molecule cm-2) at 1000 K. The databank has 33,890,981 entries and covers the 3-10,000 cm-1 spectral range. The databank is based on the global modeling of the line positions and intensities performed within the framework of the method of effective operators. The parameters of the effective Hamiltonian and the effective dipole moment operator have been fitted to the observed values of the line positions and intensities collected from the literature. The broadening coefficients as well as their temperature dependence exponents were calculated using the empirical equations. The databank is useful for studying high-temperature radiative properties of C2H2. ASD-1000 is freely accessible via the Internet site of V.E. Zuev Institute of Atmospheric Optics SB RAS ftp://ftp.iao.ru/pub/ASD1000/.

  4. String unification scale and the hyper-charge Kac-Moody level in the non-supersymmetric standard model

    NASA Astrophysics Data System (ADS)

    Cho, Gi-Chol; Hagiwara, Kaoru

    1998-02-01

    The string theory predicts the unification of the gauge couplings and gravity. The minimal supersymmetric Standard Model, however, gives the unification scale ~2x1016 GeV which is significantly smaller than the string scale ~5x1017 GeV of the weak coupling heterotic string theory. We study the unification scale of the non-supersymmetric minimal Standard Model quantitatively at the two-loop level. We find that the unification scale should be at most ~4x1016 GeV and the desired Kac-Moody level of the hyper-charge coupling should be 1.33<~kY<~1.35.

  5. Reliability and validity of television food advertising questionnaire in Malaysia.

    PubMed

    Zalma, Abdul Razak; Safiah, Md Yusof; Ajau, Danis; Khairil Anuar, Md Isa

    2015-09-01

    Interventions to counter the influence of television food advertising amongst children are important. Thus, reliable and valid instrument to assess its effect is needed. The objective of this study was to determine the reliability and validity of such a questionnaire. The questionnaire was administered twice on 32 primary schoolchildren aged 10-11 years in Selangor, Malaysia. The interval between the first and second administration was 2 weeks. Test-retest method was used to examine the reliability of the questionnaire. Intra-rater reliability was determined by kappa coefficient and internal consistency by Cronbach's alpha coefficient. Construct validity was evaluated using factor analysis. The test-retest correlation showed moderate-to-high reliability for all scores (r = 0.40*, p = 0.02 to r = 0.95**, p = 0.00), with one exception, consumption of fast foods (r = 0.24, p = 0.20). Kappa coefficient showed acceptable-to-strong intra-rater reliability (K = 0.40-0.92), except for two items under knowledge on television food advertising (K = 0.26 and K = 0.21) and one item under preference for healthier foods (K = 0.33). Cronbach's alpha coefficient indicated acceptable internal consistency for all scores (0.45-0.60). After deleting two items under Consumption of Commonly Advertised Food, the items showed moderate-to-high loading (0.52, 0.84, 0.42 and 0.42) with the Scree plot showing that there was only one factor. The Kaiser-Meyer-Olkin was 0.60, showing that the sample was adequate for factor analysis. The questionnaire on television food advertising is reliable and valid to assess the effect of media literacy education on television food advertising on schoolchildren. © The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Theoretical investigation on thermoelectric properties of (Ca,Sr,Ba)Fe2(As/Bi)2 compounds under temperature

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, D. S.; Sundareswari, M.; Viswanathan, E.; Das, Abhijeet

    2018-04-01

    The electrical conductivity, resistivity and Seebeck coefficient, Pauli magnetic susceptibility and power factor are computed under temperature (100 K - 800 K) in steps of 100 K for the theoretically designed compounds namely (Ca,Sr,Ba)Fe2Bi2 and their parent compounds namely (Ca,Sr,Ba)Fe2As2 by using Boltzmann transport theory interfaced to the Wien2k program. The Bulk modulus, electron phonon coupling constant, thermoelectric figure of merit (ZT) and transition temperature are calculated for the optimized anti ferromagnetic phase of the proposed compounds. The results are discussed for the novel compounds in view of their superconductivity existence and compared with their parent unconventional superconducting compounds.

  7. Formation of AlCl by radiative association

    NASA Astrophysics Data System (ADS)

    Andreazza, C. M.; de Almeida, A. A.; Vichietti, R. M.

    2018-06-01

    The rate coefficient for the formation of aluminium monochloride, AlCl, from the radiative association of aluminium and chlorine atoms is estimated as a function of temperature. The coupling of the Al and Cl atoms through the A1Π molecular electronic state, which undergoes radiative transition to the X1Σ+ ground state, is the most efficient transition to form AlCl. The rate constant was found to vary with temperature according to the expressions k(T) = 1.22 × 10-16(T/300)0.40exp (-748/T) cm3 s-1 for temperatures between 300 and 1000 K, and k(T) = 2.20 × 10-16(T/300)0.175exp (-1067/T) cm3 s-1 for temperatures between 1000 and 14 000 K.

  8. Reactive mineral removal relative to soil organic matter heterogeneity and implications for organic contaminant sorption.

    PubMed

    Li, Fangfang; Pan, Bo; Liang, Ni; Chang, Zhaofeng; Zhou, Yuwei; Wang, Lin; Li, Hao; Xing, Baoshan

    2017-08-01

    Soil organic matter (SOM) is generally treated as a static compartment of soil in pollutant fate studies. However, SOM might be altered or fractionated in soil systems, and the details of SOM property/composition changes when coupled with contaminant behavior are unknown. In this study, a mild acid treatment was adopted to remove reactive minerals and partially remove SOM components. After acid treatment, biomarker signatures showed that lignin-derived phenols were released and black carbon (as suggested by benzene-polycarboxylic acids) and lipids were enriched. The biomarker information was consistent with common bulk chemical characterization. The sorption coefficient K d for PHE was two times higher after acid treatment, whereas K d for OFL was three times lower. The organic carbon normalized sorption coefficient K OC values for PHE were higher for soils after acid treatment, indicating stronger interactions between PHE and SOM. The linear regression line between K d and f OC for OFL showed lower intercepts and slopes after reactive mineral removal, suggesting a decreased contribution of minerals and reduced dependence on SOM. These results were attributed to the release of polar compositions in SOM accompanied by reactive mineral removal. Our results suggest that the mobility of ionic organic contaminants increases, whereas that of hydrophobic organic contaminants decreases after acid treatment with respect to reactive mineral depletion. This study emphasized that new insights into the coupling of SOM dynamics should be incorporated into organic contaminant behavior studies. SOM molecular biomarkers offer a useful technique for correlating SOM composition and sorption property changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Modeling the missile-launch tube problem in DYSCO

    NASA Technical Reports Server (NTRS)

    Berman, Alex; Gustavson, Bruce A.

    1989-01-01

    DYSCO is a versatile, general purpose dynamic analysis program which assembles equations and solves dynamics problems. The executive manages a library of technology modules which contain routines that compute the matrix coefficients of the second order ordinary differential equations of the components. The executive performs the coupling of the equations of the components and manages the solution of the coupled equations. Any new component representation may be added to the library if, given the state vector, a FORTRAN program can be written to compute M, C, K, and F. The problem described demonstrates the generality of this statement.

  10. Charge Transfer Between Ground-State Si(3+) and He at Electron-Volt Energies

    NASA Technical Reports Server (NTRS)

    Fang, Z.; Kwong, Victor H. S.

    1997-01-01

    The charge-transfer rate coefficient for the reaction Si(3+)(3s(sup 2)S) + He yields products is measured by means of a combined technique of laser ablation and ion storage. A cylindrical radio-frequency ion trap was used to store Si(3+) ions produced by laser ablation of solid silicon targets. The rate coefficient of the reaction was derived from the decay rate of the ion signal. The measured rate coefficient is 6.27(exp +0.68)(sub -0.52) x 10(exp -10)cu cm/s at T(sub equiv) = 3.9 x 10(exp 3)K. This value is about 30% higher than the Landau-Zener calculation of Butler and Dalgarno and is larger by about a factor of 3 than the recent full quantal calculation of Honvault et al.

  11. Concentration dependence of lipopolymer self-diffusion in supported bilayer membranes

    PubMed Central

    Zhang, Huai-Ying; Hill, Reghan J.

    2011-01-01

    Self-diffusion coefficients of poly(ethylene glycol)2k-derivatized lipids (DSPE-PEG2k-CF) in glass-supported DOPC phospholipid bilayers are ascertained from quantitative fluorescence recovery after photobleaching (FRAP). We developed a first-order reaction–diffusion model to ascertain the bleaching constant, mobile fraction and lipopolymer self-diffusion coefficient Ds at concentrations in the range c ≈ 0.5–5 mol%. In contrast to control experiments with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (DOPE-NBD) in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the lipopolymer self-diffusion coefficient decreases monotonically with increasing concentration, without a distinguishing mushroom-to-brush transition. Our data yield a correlation Ds = D0/(1 + αc), where D0 ≈ 3.36 µm2 s−1 and α ≈ 0.56 (with c expressed as a mole percent). Interpreting the dilute limit with the Scalettar–Abney–Owicki statistical mechanical theory for transmembrane proteins yields an effective disc radius ae ≈ 2.41 nm. On the other hand, the Bussell–Koch–Hammer theory, which includes hydrodynamic interactions, yields ae ≈ 2.92 nm. As expected, both measures are smaller than the Flory radius of the 2 kDa poly(ethylene glycol) (PEG) chains, RF ≈ 3.83 nm, and significantly larger than the nominal radius of the phospholipid heads, al ≈ 0.46 nm. The diffusion coefficient at infinite dilution D0 was interpreted using the Evans–Sackmann theory, furnishing an inter-leaflet frictional drag coefficient bs ≈ 1.33 × 108 N s m−3. Our results suggest that lipopolymer interactions are dominated by the excluded volume of the PEG-chain segments, with frictional drag dominated by the two-dimensional bilayer hydrodynamics. PMID:20504804

  12. An infrared spectroscopic study of the structural phase transition in the perovskite-type layer compound [ n-C 16H 33NH 3] 2CoCl 4

    NASA Astrophysics Data System (ADS)

    Ning, Guo; Guangfu, Zeng; Shiquan, Xi

    1992-12-01

    The solid-solid phase transitions in the perovskite-type layer compound [ n-C 16H 33NH 3] 2CoCl 4 have been studied by infrared spectroscopy. A new phase transition at 340 K was found by comparison with differential scanning calorimetry results. A temperature dependence study of the infrared spectra provides evidence of the occurrence of structural phase transitions related to the dynamics of the alkylammonium ions and hydrogen bonds. The main transition at 374 K corresponds to the conformational order-disorder change in the chain, which probably couples with reorientational motions of the NH 3 polar heads. GTG or GTG' defects appear in the high temperature disordered phase.

  13. Superconductivity in CaBi 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winiarski, M. J.; Wiendlocha, B.; Golba, S.

    We observed superconductivity with critical temperature T c = 2.0 K in self-flux-grown single crystals of CaBi 2. This material adopts the ZrSi 2 structure type with lattice parameters a = 4.696(1) Å, b = 17.081(2) Å and c = 4.611(1) Å. The crystals of CaBi 2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at T c is ΔC/γT c = 1.41, confirming bulk superconductivity; the Sommerfeld coefficient γ = 4.1 mJ mol -1 K -2 and the Debye temperature Θ D = 157 K. The electron–phonon coupling strength ismore » λ el–ph = 0.59, and the thermodynamic critical field H c is low, between 111 and 124 Oe CaBi 2 is a moderate coupling type-I superconductor. Our results of electronic structure calculations are reported and charge densities, electronic bands, densities of states and Fermi surfaces are discussed, focusing on the effects of spin–orbit coupling and electronic property anisotropy. Furthermore, we find a mixed quasi-2D + 3D character in the electronic structure, which reflects the layered crystal structure of the material.« less

  14. Superconductivity in CaBi 2

    DOE PAGES

    Winiarski, M. J.; Wiendlocha, B.; Golba, S.; ...

    2016-07-12

    We observed superconductivity with critical temperature T c = 2.0 K in self-flux-grown single crystals of CaBi 2. This material adopts the ZrSi 2 structure type with lattice parameters a = 4.696(1) Å, b = 17.081(2) Å and c = 4.611(1) Å. The crystals of CaBi 2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at T c is ΔC/γT c = 1.41, confirming bulk superconductivity; the Sommerfeld coefficient γ = 4.1 mJ mol -1 K -2 and the Debye temperature Θ D = 157 K. The electron–phonon coupling strength ismore » λ el–ph = 0.59, and the thermodynamic critical field H c is low, between 111 and 124 Oe CaBi 2 is a moderate coupling type-I superconductor. Our results of electronic structure calculations are reported and charge densities, electronic bands, densities of states and Fermi surfaces are discussed, focusing on the effects of spin–orbit coupling and electronic property anisotropy. Furthermore, we find a mixed quasi-2D + 3D character in the electronic structure, which reflects the layered crystal structure of the material.« less

  15. Bleustein-Gulyaev wave propagation characteristics in KNbO3 and PKN crystals

    NASA Astrophysics Data System (ADS)

    Dvoesherstov, M. Y.; Cherednick, V. I.; Chirimanov, A. P.; Petrov, S. G.

    1999-09-01

    In this paper, theoretical investigation is shown for cuts and propagation directions on KNbO3, PKN substrates where the Bleustein-Gulyaev waves exist. The KNbO3 and PKN crystals Y-cut X-propagating relate to the condition in which the stiffened shear horizontal wave and pure mechanical Rayleigh wave are present. In this symmetry orientation the sagittal and transverse particle displacements also uncouple. In this situation, the potential is coupled to the shear horizontal displacements only. Electromechanical coupling coefficients K2 has a sufficiently large value of above 53 percent with a phase velocity of V equals 3.918 km/s for KNbO3 crystals and factor K2 has a large value of above 23.6 percent and phase velocity V equals 3.054 km/s for PKN crystals.

  16. Ab initio optimization of phonon drag effect for lower-temperature thermoelectric energy conversion.

    PubMed

    Zhou, Jiawei; Liao, Bolin; Qiu, Bo; Huberman, Samuel; Esfarjani, Keivan; Dresselhaus, Mildred S; Chen, Gang

    2015-12-01

    Although the thermoelectric figure of merit zT above 300 K has seen significant improvement recently, the progress at lower temperatures has been slow, mainly limited by the relatively low Seebeck coefficient and high thermal conductivity. Here we report, for the first time to our knowledge, success in first-principles computation of the phonon drag effect--a coupling phenomenon between electrons and nonequilibrium phonons--in heavily doped region and its optimization to enhance the Seebeck coefficient while reducing the phonon thermal conductivity by nanostructuring. Our simulation quantitatively identifies the major phonons contributing to the phonon drag, which are spectrally distinct from those carrying heat, and further reveals that although the phonon drag is reduced in heavily doped samples, a significant contribution to Seebeck coefficient still exists. An ideal phonon filter is proposed to enhance zT of silicon at room temperature by a factor of 20 to ∼ 0.25, and the enhancement can reach 70 times at 100 K. This work opens up a new venue toward better thermoelectrics by harnessing nonequilibrium phonons.

  17. Dielectric and piezoelectric properties of CeO2-added nonstoichiometric (Na0.5K0.5)0.97(Nb0.96Sb0.04)O3 ceramics for piezoelectric energy harvesting device applications.

    PubMed

    Oh, Youngkwang; Noh, Jungrae; Yoo, Juhyun; Kang, Jinhee; Hwang, Larkhoon; Hong, Jaeil

    2011-09-01

    In this study, nonstoichiometric (Na(0.5)K(0.5))(0.97)(Nb(0.96)Sb(0.04))O(3) ceramics were fabricated and their dielectric and piezoelectric properties were investigated according to the CeO(2) addition. In this ceramic composition, CeO(2) addition improved sinterability, electromechanical coupling factor k(p), mechanical quality factor Q(m), piezoelectric constant d(33), and g(33). At the sintering temperature of 1100°C, for the 0.2wt% CeO(2) added specimen, the optimum values of density = 4.359 g/cm(3), k(p) = 0.443, Q(m) = 588, ε(r) = 444, d(33) = 159 pC/N, and g(33) = 35 × 10(-3) V·m/N, were obtained. A piezoelectric energy harvesting device using 0.2 wt% CeO(2)- added lead-free (K(0.5)Na(0.5))(0.97)(Nb(0.96)Sb(0.04))O(3) ceramics and a rectifying circuit for energy harvesting were fabricated and their electrical characteristics were investigated. Under an external vibration acceleration of 0.7 g, when the mass, the frequency of vibration generator, and matching load resistance were 2.4 g, 70 Hz, and 721 Ω, respectively, output voltage and power of piezoelectric harvesting device indicated the optimum values of 24.6 mV(rms) and 0.839 μW, respectively-suitable for application as the electric power source of a ubiquitous sensor network (USN) sensor node.

  18. Substrate integrated waveguide (SIW) 3 dB coupler for K-Band applications

    NASA Astrophysics Data System (ADS)

    Khalid, Nurehansafwanah; Zuraidah Ibrahim, Siti; Wee, Fwen Hoon; Shazuani Mahmud, Farah

    2017-11-01

    This paper presented a designed coupler by using Rogers RO4003C with thickness (h) 0.508 mm and relative permittivity (ɛr) 3.55. The four port network coupler operates in K-band (18-27 GHz) and design by using substrate integrated waveguide (SIW) method. The reflection coefficient and isolation coefficient of propose Substrate Integrated Waveguide (SIW) coupler is below than -10 dB. Meanwhile the coupler requirements are phase shift 90° between coupled port and output. SIW are high performance broadband interconnects with excellent immunity to electromagnetic interference and suitable for use in microwave and communication electronics, as well as increase bandwidth systems. The designs of coupler are investigated using CST Microwave Studio simulation tool. This proposed couplers are varied from parameters that cover the frequency range (21 -24 GHz) and better performance of scattering (S-parameter).

  19. Global sensitivity analysis of groundwater transport

    NASA Astrophysics Data System (ADS)

    Cvetkovic, V.; Soltani, S.; Vigouroux, G.

    2015-12-01

    In this work we address the model and parametric sensitivity of groundwater transport using the Lagrangian-Stochastic Advection-Reaction (LaSAR) methodology. The 'attenuation index' is used as a relevant and convenient measure of the coupled transport mechanisms. The coefficients of variation (CV) for seven uncertain parameters are assumed to be between 0.25 and 3.5, the highest value being for the lower bound of the mass transfer coefficient k0 . In almost all cases, the uncertainties in the macro-dispersion (CV = 0.35) and in the mass transfer rate k0 (CV = 3.5) are most significant. The global sensitivity analysis using Sobol and derivative-based indices yield consistent rankings on the significance of different models and/or parameter ranges. The results presented here are generic however the proposed methodology can be easily adapted to specific conditions where uncertainty ranges in models and/or parameters can be estimated from field and/or laboratory measurements.

  20. Effective potential of the three-dimensional Ising model: The pseudo-ɛ expansion study

    NASA Astrophysics Data System (ADS)

    Sokolov, A. I.; Kudlis, A.; Nikitina, M. A.

    2017-08-01

    The ratios R2k of renormalized coupling constants g2k that enter the effective potential and small-field equation of state acquire the universal values at criticality. They are calculated for the three-dimensional scalar λϕ4 field theory (3D Ising model) within the pseudo-ɛ expansion approach. Pseudo-ɛ expansions for the critical values of g6, g8, g10, R6 =g6 / g42, R8 =g8 / g43 and R10 =g10 / g44 originating from the five-loop renormalization group (RG) series are derived. Pseudo-ɛ expansions for the sextic coupling have rapidly diminishing coefficients, so addressing Padé approximants yields proper numerical results. Use of Padé-Borel-Leroy and conformal mapping resummation techniques further improves the accuracy leading to the values R6* = 1.6488 and R6* = 1.6490 which are in a brilliant agreement with the result of advanced lattice calculations. For the octic coupling the numerical structure of the pseudo-ɛ expansions is less favorable. Nevertheless, the conform-Borel resummation gives R8* = 0.868, the number being close to the lattice estimate R8* = 0.871 and compatible with the result of 3D RG analysis R8* = 0.857. Pseudo-ɛ expansions for R10* and g10* are also found to have much smaller coefficients than those of the original RG series. They remain, however, fast growing and big enough to prevent obtaining fair numerical estimates.

  1. Microstructure, Piezoelectric, and Ferroelectric Properties of BZT-Modified BiFeO3-BaTiO3 Multiferroic Ceramics with MnO2 and CuO Addition

    NASA Astrophysics Data System (ADS)

    Guan, Shibo; Yang, Huabin; Chen, Guangcong; Zhang, Rui

    2018-02-01

    A new lead-free piezoelectric ceramic, 0.67BiFeO3-0.33BaTiO3-xBi(Zn0.5Ti0.5) O3 + 0.0035MnO2 + 0.004CuO, was prepared through the solid-state reaction route. The ceramic was sintered in the 950-990°C range. In this paper, the crystal structure of the sample is pure perovskite structure with a pseudo-cubic structure in the range of x = 0-0.05, and does not change greatly with the increase of x. The grain size increases first and then decreases with the increase of x. The addition of Bi(Zn0.5Ti0.5) O3(BZT) promoted the grain growth of the sample. The piezoelectric constant reached the maximum value of d 33 = 188 pC/N, electromechanical coupling coefficient k p = 0.301 and the remanent polarization P r = 61.20 μC/cm2 at x = 0.03. It has a high Curie temperature of T c = 420°C. On the other hand, the depolarization temperature reaches the maximum value, T d = 426°C, at x = 0. A small amount of BZT doping can improve the piezoelectric, dielectric, and ferroelectric properties of the samples. Therefore, this material can be considered as a promising lead-free piezoelectric ceramic material in the application field of high-temperature materials.

  2. Strain, temperature, and electric-field effects on the phase transition and piezoelectric responses of K0.5Na0.5NbO3 thin films

    NASA Astrophysics Data System (ADS)

    Zhou, Meng-Jun; Wang, Jian-Jun; Chen, Long-Qing; Nan, Ce-Wen

    2018-04-01

    A KNbO3-based solid solution system is environmentally friendly with good electromechanical performance. This work established the misfit strain-strain and temperature-strain phase diagrams for K0.5Na0.5NbO3 thin films and calculated the polarization switching, phase transition, and piezoelectric responses of K0.5Na0.5NbO3 thin films under various strains, temperatures, and electric fields. The results show that the piezoelectric coefficient d33 can be enhanced near the phase boundaries. For the ferroelectric phase with a nonzero out-of-plane polarization component, an optimal electric field is identified for maximizing d33, which is desired in applications such as thin-film piezoelectric micro-electromechanical systems, transducers for ultrasound medical imaging, and energy harvesting. The present results are expected to provide guidance for the future experimental study of KxNa1-xNbO3 thin films and the optimization of ferroelectric thin film-based devices.

  3. Collisional excitation of HC3N by para- and ortho-H2

    NASA Astrophysics Data System (ADS)

    Faure, Alexandre; Lique, François; Wiesenfeld, Laurent

    2016-08-01

    New calculations for rotational excitation of cyanoacetylene by collisions with hydrogen molecules are performed to include the lowest 38 rotational levels of HC3N and kinetic temperatures to 300 K. Calculations are based on the interaction potential of Wernli et al. whose accuracy is checked against spectroscopic measurements of the HC3N-H2 complex. The quantum coupled-channel approach is employed and complemented by quasi-classical trajectory calculations. Rate coefficients for ortho-H2 are provided for the first time. Hyperfine resolved rate coefficients are also deduced. Collisional propensity rules are discussed and comparisons between quantum and classical rate coefficients are presented. This collisional data should prove useful in interpreting HC3N observations in the cold and warm ISM, as well as in protoplanetary discs.

  4. Effect of modified graphene on thermal, mechanical and tribological performance of polyimide based composites

    NASA Astrophysics Data System (ADS)

    Li, Duxin; Yang, Wenyan; Chen, Yue; Xiao, Chunguang; Wei, Mengling

    2018-06-01

    The graphene oxide sheets (GO) were modified by silane coupling before incorporation into the aromatic polyimide (PI) matrix via in situ polymerization. The successful grafting of silane coupling onto the surface of the graphene was confirmed by FTIR, x-ray diffraction, and Raman spectroscopy. The incorporation of modified graphene oxide(K-GO) sheets significantly enhanced the thermal stability and tensile properties of PI. It was found that the tensile stress and the Young’s modulus of 0.5 wt%K-GO/PI were increased by 27.2% and 28.0% from pure PI, respectively. The T5% values of 0.5%K-GO/PI (507 °C) were obviously higher than that of pure PI (491 °C). Compared to pure PI, the PI composites with the K-GO addition of 0.5 wt% exhibits much lower friction coefficient (0.361) and wear rate (1.247 × 10‑5 mm3 N‑1m‑1). This can be attributed to the enhanced effect of K-GO addition on the properties of the composites. This study aims to expand the range of applications of graphene and to solve wear-related mechanical failures for polymer parts.

  5. Inelastic rate coefficients for collisions of C6H- with H2 and He

    NASA Astrophysics Data System (ADS)

    Walker, Kyle M.; Lique, François; Dumouchel, Fabien; Dawes, Richard

    2017-04-01

    The recent detection of anions in the interstellar medium has shown that they exist in a variety of astrophysical environments - circumstellar envelopes, cold dense molecular clouds and star-forming regions. Both radiative and collisional processes contribute to molecular excitation and de-excitation in these regions so that the 'local thermodynamic equilibrium' approximation, where collisions cause the gas to behave thermally, is not generally valid. Therefore, along with radiative coefficients, collisional excitation rate coefficients are needed to accurately model the anionic emission from these environments. We focus on the calculation of state-to-state rate coefficients of the C6H- molecule in its ground vibrational state in collisions with para-H2, ortho-H2 and He using new potential energy surfaces. Dynamical calculations for the pure rotational excitation of C6H- were performed for the first 11 rotational levels (up to j1 = 10) using the close-coupling method, while the coupled-states approximation was used to extend the H2 rate coefficients to j1 = 30, where j1 is the angular momentum quantum number of C6H-. State-to-state rate coefficients were obtained for temperatures ranging from 2 to 100 K. The rate coefficients for H2 collisions for Δj1 = -1 transitions are of the order of 10-10 cm3 s-1, a factor of 2 to 3 greater than those of He. Propensity rules are discussed. The collisional excitation rate coefficients produced here impact astrophysical modelling since they are required for obtaining accurate C6H- level populations and line emission for regions that contain anions.

  6. Numerical Study On Propulsion Performance Of The Parabolic Laser Thruster With Elongate Cylinder Nozzle

    NASA Astrophysics Data System (ADS)

    Cheng, Fuqiang; Hong, Yanji; Li, Qian; Wen, Ming

    2011-11-01

    Laser thrusters with a single nozzle, e.g. parabolic or conical, failed to constrict the flow field of high pressure effectively, resulting in poor propulsive performance. Under the condition of air-breathing mode, parabolic thruster models with an elongate cylinder nozzle were studied numerically by building a physical computation model. Initially, to verify the computation model, the influence of cylinder length on the momentum coupling coefficient was computed and compared with the experiments, which shows a good congruence. A model of diameter 20 mm and cylindrical length 80 mm obtains about 627.7 N/MW at single pulse energy density 1.5 J/cm2. Then, the influence of expanding angle of the parabolic nozzle on propulsion performance was gained for different laser pulse energies, and the evolution process of the flow field was analyzed. The results show: as the expanding angel increases, the momentum coupling coefficient increases remarkably at first and descends relative slowly after reaching a peak value; moreover, the peak positions stay constant around 33° with little variation when laser energy differs.

  7. Prevalence of consanguineous marriages in Syria.

    PubMed

    Othman, Hasan; Saadat, Mostafa

    2009-09-01

    Consanguineous marriage is the union of individuals having at least one common ancestor. The present cross-sectional study was done in order to illustrate the prevalence and types of consanguineous marriages in the Syrian Arab Republic. Data on consanguineous marriages were collected using a simple questionnaire. The total number of couples in this study was 67,958 (urban areas: 36,574 couples; rural areas: 31,384 couples) from the following provinces: Damascus, Hamah, Tartous, Latakia, Al Raqa, Homs, Edlep and Aleppo. In each province urban and rural areas were surveyed. Consanguineous marriage was classified by the degree of relationship between couples: double first cousins (F=1/8), first cousins (F=1/16), second cousins (F=1/64) and beyond second cousins (F<1/64). The coefficient of inbreeding (F) was calculated for each couple and the mean coefficient of inbreeding (alpha) estimated for the population of each province, stratified by rural and urban areas. The results showed that the overall frequency of consanguinity was 30.3% in urban and 39.8% in rural areas. Total rate of consanguinity was found to be 35.4%. The equivalent mean inbreeding coefficient (alpha) was 0.0203 and 0.0265 in urban and rural areas, respectively. The mean proportion of consanguineous marriages ranged from 67.5% in Al Raqa province to 22.1% in Latakia province. The alpha-value ranged from 0.0358 to 0.0127 in these two provinces, respectively. The western and north-western provinces (including Tartous, Lattakia and Edlep) recorded lower levels of inbreeding than the central, northern and southern provinces. The overall alpha-value was estimated to be about 0.0236 for the studied populations. First cousin marriages (with 20.9%) were the most common type of consanguineous marriages, followed by double first cousin (with 7.8%) and second cousin marriages (with 3.3%), and beyond second cousin was the least common type.

  8. Inter-diffusion analysis of joint interface of tungsten-rhenium couple

    NASA Astrophysics Data System (ADS)

    Hua, Y. F.; Li, Z. X.; Zhang, X.; Du, J. H.; Huang, C. L.; Du, M. H.

    2011-09-01

    The tungsten-rhenium couple was prepared by using glow plasma physical vapor deposition (PVD) on the isotropic fine grained graphite (IG) substrates. Diffusion anneals of the tungsten-rhenium couple were conducted at the temperature from 1100 °C to 1400 °C to investigate the inter-diffusion behaviors. The results showed that the thickness of the inter-diffusion zone increased with increasing annealing temperature. The relationship between the inter-diffusion coefficient and the annealing temperature accorded with the Arrhenius manner. The value of inter-diffusion activation energies was 189 kJ/mole (1.96 eV). The service time of tungsten-rhenium multilayer diffusion barrier was limited by the inter-diffusion for rhenium and tungsten rather than the diffusion of carbon in rhenium.

  9. New piezoelectric materials for SAW filters

    NASA Astrophysics Data System (ADS)

    Anghelescu, Adrian; Nedelcu, Monica

    2010-11-01

    Scientific research of surface acoustic wave (SAW) devices had an early start by the end of 1960s and led to the development of high frequency and small size piezo devices. A sustained effort was dedicated for these components to be transformed into many more interesting applications for telecom market. Recently the employment of new piezo materials and crystallographic orientations open new opportunities for SAW filters. New piezoelectric crystals of gallium orthophosphate (GaPO4) provide higher electromechanical coupling than quartz, while maintaining temperature compensated characteristics similar to quartz. Based on this material phase transition of 970°C, development of new piezo devices to operate at higher temperatures up to 800°C can be done. SAW velocities about 30% lower than ST-X quartz, favors smaller and more compact devices. Other advantages of GaPO4 are: stability with high resistance to stress induced twinning, 3~4 times higher electromechanical coupling than quartz and existence of SAW temperature compensated orientations. Another family of new materials of the trigonal 32 class has received much attention recently because of their temperature behavior similar to quartz and the promise of higher electromechanical coupling coefficients. It is the family of langasite (LGS, La3Ga5SiO14), langatate (LGT, La3Ga5.5Ta0.5O14) and langanite (La3Ga5.5Nb0.5O14). Langasite crystals, easier to obtain and with the value of electromechanical coupling coefficient intermediate between quartz and lithium tantalate (k2=0.32% for 0°, 140°, 22.5° orientation and k2=0.38% for 0°, 140°, 25° orientation), enable us to design SAW filters with a relative pass band of 0.3% to 0.85%. Other piezoelectric materials are reviewed for comparison.

  10. Lateral diffusion and retrograde movements of individual cell surface components on single motile cells observed with Nanovid microscopy

    PubMed Central

    1991-01-01

    A recently introduced extension of video-enhanced light microscopy, called Nanovid microscopy, documents the dynamic reorganization of individual cell surface components on living cells. 40-microns colloidal gold probes coupled to different types of poly-L-lysine label negative cell surface components of PTK2 cells. Evidence is provided that they bind to negative sialic acid residues of glycoproteins, probably through nonspecific electrostatic interactions. The gold probes, coupled to short poly-L-lysine molecules (4 kD) displayed Brownian motion, with a diffusion coefficient in the range 0.1-0.2 micron2/s. A diffusion coefficient in the 0.1 micron2/s range was also observed with 40-nm gold probes coupled to an antibody against the lipid-linked Thy-1 antigen on 3T3 fibroblasts. Diffusion of these probes is largely confined to apparent microdomains of 1-2 microns in size. On the other hand, the gold probes, coupled to long poly-L-lysine molecules (240 kD) molecules and bound to the leading lamella, were driven rearward, toward the boundary between lamelloplasm and perinuclear cytoplasm at a velocity of 0.5-1 micron/min by a directed ATP-dependent mechanism. This uniform motion was inhibited by cytochalasin, suggesting actin microfilament involvement. A similar behavior on MO cells was observed when the antibody-labeled gold served as a marker for the PGP-1 (GP-80) antigen. These results show that Nanovid microscopy, offering the possibility to observe the motion of individual specific cell surface components, provides a new and powerful tool to study the dynamic reorganization of the cell membrane during locomotion and in other biological contexts as well. PMID:1670778

  11. A flow-through aqueous standard generation system for thin film microextraction investigations of UV filters and biocides partitioning to different environmental compartments.

    PubMed

    Ahmadi, Fardin; Sparham, Chris; Pawliszyn, Janusz

    2017-11-01

    In this paper problems associated with preparation of aqueous standard of highly hydrophobic compounds such as partial precipitation, being lost on the surfaces, low solubility in water and limited sample volume for accurate determination of their distribution coefficients are addressed. The following work presents two approaches that utilize blade thin film microextraction (TFME) to investigate partitioning of UV filters and biocides to humic acid (dissolved organic carbon) and sediment. A steady-state concentration of target analytes in water was generated using a flow-through aqueous standard generation (ASG) system. Dialysis membranes, a polytetrafluoroethylene permeation tube, and a frit porous (0.5 μm) coated by epoxy glue were basic elements used for preparation of the ASG system. In the currently presented study, negligible depletion TFME using hydrophilic-lipophilic balance (HLB) and octadecyl silica-based (C18) sorbents was employed towards the attainment of free concentration values of target analytes in the studied matrices. Thin film geometry provided a large volume of extraction phase, which improved the sensitivity of the method towards highly matrix-bound analytes. Extractions were performed in the equilibrium regime so as to prevent matrix effects and with aims to reach maximum method sensitivity for all analytes under study. Partitioning of analytes on dissolved organic carbon (DOC) was investigated in ASG to facilitate large sample volume conditions. Binding percentages and DOC distribution coefficients (Log K DOC ) ranged from 20 to 98% and 3.71-6.72, respectively. Furthermore, sediment-water partition coefficients (K d ), organic-carbon normalized partition coefficients (Log K OC ), and DOC distribution coefficients (Log K DOC ) were investigated in slurry sediment, and ranged from 33 to 2860, 3.31-5.24 and 4.52-5.75 Lkg -1 , respectively. The obtained results demonstrated that investigations utilizing ASG and TFME can yield reliable binding information for compounds with high log K OW values. This information is useful for study of fate, transport, and ecotoxicological effects of UV filters and biocides in aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Charge Transfer in Collisions of S^4+ with H.

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.

    2001-05-01

    Charge transfer processes due to collisions of ground state S^4+ ions with atomic hydrogen were investigated for energies between 1 meV/u and 10 MeV/u using the quantum-mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC), and continuum distorted wave methods. The MOCC calculations utilized ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially-stripped S^3+ excited classical states. Hydrogen target isotope effects were explored and rate coefficients for temperatures between 100 and 10^6 K will be presented

  13. A candidate reference method for serum potassium measurement by inductively coupled plasma mass spectrometry.

    PubMed

    Yan, Ying; Han, Bingqing; Zeng, Jie; Zhou, Weiyan; Zhang, Tianjiao; Zhang, Jiangtao; Chen, Wenxiang; Zhang, Chuanbao

    2017-08-28

    Potassium is an important serum ion that is frequently assayed in clinical laboratories. Quality assurance requires reference methods; thus, the establishment of a candidate reference method for serum potassium measurements is important. An inductively coupled plasma mass spectrometry (ICP-MS) method was developed. Serum samples were gravimetrically spiked with an aluminum internal standard, digested with 69% ultrapure nitric acid, and diluted to the required concentration. The 39K/27Al ratios were measured by ICP-MS in hydrogen mode. The method was calibrated using 5% nitric acid matrix calibrators, and the calibration function was established using the bracketing method. The correlation coefficients between the measured 39K/27Al ratios and the analyte concentration ratios were >0.9999. The coefficients of variation were 0.40%, 0.68%, and 0.22% for the three serum samples, and the analytical recovery was 99.8%. The accuracy of the measurement was also verified by measuring certified reference materials, SRM909b and SRM956b. Comparison with the ion selective electrode routine method and international inter-laboratory comparisons gave satisfied results. The new ICP-MS method is specific, precise, simple, and low-cost, and it may be used as a candidate reference method for standardizing serum potassium measurements.

  14. Ultrahigh frequency tunability of aperture-coupled microstrip antenna via electric-field tunable BST

    NASA Astrophysics Data System (ADS)

    Du, Hong-Lei; Xue, Qian; Gao, Xiao-Yang; Yao, Feng-Rui; Lu, Shi-Yang; Wang, Ye-Long; Liu, Chun-Heng; Zhang, Yong-Cheng; Lü, Yue-Guang; Li, Shan-Dong

    2015-12-01

    A composite ceramic with nominal composition of 45.0 wt%(Ba0.5Sr0.5)TiO3-55.0 wt%MgO (acronym is BST-MgO) is sintered for fabricating a frequency reconfigurable aperture-coupled microstrip antenna. The calcined BST-MgO composite ceramic exhibits good microwave dielectric properties at X-band with appropriate dielectric constant ɛr around 85, lower dielectric loss tan δ about 0.01, and higher permittivity tunability 14.8% at 8.33 kV/cm. An ultrahigh E-field tunability of working frequency up to 11.0% (i.e., from 9.1 GHz to 10.1 GHz with a large frequency shift of 1000 MHz) at a DC bias field from 0 to 8.33 kV/cm and a considerably large center gain over 7.5 dB are obtained in the designed frequency reconfigurable microstrip antenna. These results demonstrate that BST materials are promising for the frequency reconfigurable antenna. Project supported by the National Natural Science Foundation of China (Grant No. 11074040) and the Key Project of Shandong Provincial Department of Science and Technology, China (Grant No. ZR2012FZ006).

  15. Li diffusion and the effect of local structure on Li mobility in Li2O-SiO2 glasses.

    PubMed

    Bauer, Ute; Welsch, Anna-Maria; Behrens, Harald; Rahn, Johanna; Schmidt, Harald; Horn, Ingo

    2013-12-05

    Aimed to improve the understanding of lithium migration mechanisms in ion conductors, this study focuses on Li dynamics in binary Li silicate glasses. Isotope exchange experiments and conductivity measurements were carried out to determine self-diffusion coefficients and activation energies for Li migration in Li2Si3O7 and Li2Si6O13 glasses. Samples of identical composition but different isotope content were combined for diffusion experiments in couples or triples. Diffusion profiles developed between 511 and 664 K were analyzed by femtosecond laser ablation combined with multiple collector inductively coupled plasma mass spectrometry (fs LA-MC-ICP-MS) and secondary ion mass spectrometry (SIMS). Analyses of diffusion profiles and comparison of diffusion data reveal that the isotope effect of lithium diffusion in silicate glasses is rather small, consistent with classical diffusion behavior. Ionic conductivity of glasses was measured between 312 and 675 K. The experimentally obtained self-diffusion coefficient, D(IE), and ionic diffusion coefficient, D(σ), derived from specific DC conductivity provided information about correlation effects during Li diffusion. The D(IE)/D(σ) is higher for the trisilicate (0.27 ± 0.05) than that for the hexasilicate (0.17 ± 0.02), implying that increasing silica content reduces the efficiency of Li jumps in terms of long-range movement. This trend can be rationalized by structural concepts based on nuclear magnetic resonance (NMR) and Raman spectroscopy as well as molecular dynamic simulations, that is, lithium is percolating in low-dimensional, alkali-rich regions separated by a silica-rich matrix.

  16. Dissociative Recombination of FeO(+) with Electrons: Implications for Plasma Layers in the Ionosphere.

    PubMed

    Bones, D L; Plane, J M C; Feng, W

    2016-03-10

    The dissociative recombination (DR) of FeO(+) ions with electrons has been studied in a flowing afterglow reactor. FeO(+) was generated by the pulsed laser ablation of a solid Fe target, and then entrained in an Ar(+) ion/electron plasma where the absolute electron density was measured using a Langmuir probe. A kinetic model describing gas-phase chemistry and diffusion to the reactor walls was fitted to the experimental data, yielding a DR rate coefficient at 298 K of k(FeO(+) + e(-)) = (5.5 ± 1.0) × 10(-7) cm(3) molecule(-1) s(-1), where the quoted uncertainty is at the 2σ level. Fe(+) ions in the lower thermosphere are oxidized by O3 to FeO(+), and this DR reaction is shown to provide a more important route for neutralizing Fe(+) below 110 km than the radiative/dielectronic recombination of Fe(+) with electrons. The experimental system was first validated by measuring two other DR reaction rate coefficients: k(O2(+) + e(-)) = (2.0 ± 0.4) × 10(-7) and k(N2O(+) + e(-)) = (3.3 ± 0.8) × 10(-7) cm(3) molecule(-1) s(-1), which are in good agreement with the recent literature.

  17. Balanced electron-hole transport in spin-orbit semimetal SrIrO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Manca, Nicola; Groenendijk, Dirk J.; Pallecchi, Ilaria; Autieri, Carmine; Tang, Lucas M. K.; Telesio, Francesca; Mattoni, Giordano; McCollam, Alix; Picozzi, Silvia; Caviglia, Andrea D.

    2018-02-01

    Relating the band structure of correlated semimetals to their transport properties is a complex and often open issue. The partial occupation of numerous electron and hole bands can result in properties that are seemingly in contrast with one another, complicating the extraction of the transport coefficients of different bands. The 5 d oxide SrIrO3 hosts parabolic bands of heavy holes and light electrons in gapped Dirac cones due to the interplay between electron-electron interactions and spin-orbit coupling. We present a multifold approach relying on different experimental techniques and theoretical calculations to disentangle its complex electronic properties. By combining magnetotransport and thermoelectric measurements in a field-effect geometry with first-principles calculations, we quantitatively determine the transport coefficients of different conduction channels. Despite their different dispersion relationships, electrons and holes are found to have strikingly similar transport coefficients, yielding a holelike response under field-effect and thermoelectric measurements and a linear electronlike Hall effect up to 33 T.

  18. UV Spectrophotometric Method for Estimation of Polypeptide-K in Bulk and Tablet Dosage Forms

    NASA Astrophysics Data System (ADS)

    Kaur, P.; Singh, S. Kumar; Gulati, M.; Vaidya, Y.

    2016-01-01

    An analytical method for estimation of polypeptide-k using UV spectrophotometry has been developed and validated for bulk as well as tablet dosage form. The developed method was validated for linearity, precision, accuracy, specificity, robustness, detection, and quantitation limits. The method has shown good linearity over the range from 100.0 to 300.0 μg/ml with a correlation coefficient of 0.9943. The percentage recovery of 99.88% showed that the method was highly accurate. The precision demonstrated relative standard deviation of less than 2.0%. The LOD and LOQ of the method were found to be 4.4 and 13.33, respectively. The study established that the proposed method is reliable, specific, reproducible, and cost-effective for the determination of polypeptide-k.

  19. Hyperfine excitation of CH in collisions with atomic and molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-04-01

    We investigate here the excitation of methylidene (CH) induced by collisions with atomic and molecular hydrogen (H and H2). The hyperfine-resolved rate coefficients were obtained from close coupling nuclear-spin-free scattering calculations. The calculations are based upon recent, high-accuracy calculations of the CH(X2Π)-H(2S) and CH(X2Π)-H2 potential energy surfaces. Cross-sections and rate coefficients for collisions with atomic H, para-H2, and ortho-H2 were computed for all transitions between the 32 hyperfine levels for CH(X2Π) involving the n ≤ 4 rotational levels for temperatures between 10 and 300 K. These rate coefficients should significantly aid in the interpretation of astronomical observations of CH spectra. As a first application, the excitation of CH is simulated for conditions in typical molecular clouds.

  20. Processing of Piezoelectric (Li,Na,K)NbO3 Porous Ceramics and (Li,Na,K)NbO3/KNbO3 Composites

    NASA Astrophysics Data System (ADS)

    Kakimoto, Ken-ichi; Imura, Tomoya; Fukui, Yasuchika; Kuno, Masami; Yamagiwa, Katsuya; Mitsuoka, Takeshi; Ohbayashi, Kazushige

    2007-10-01

    Porous Li0.06(Na0.5K0.5)0.94NbO3 (LNKN-6) ceramics with different pore volumes have been prepared using preceramic powder and phenol resin fiber (KynolTM) as a pore former. It was confirmed that the porous ceramics synthesized by the “two-stage firing method” suppressed the loss of alkali elements from the porous body during heat treatment. The porous LNKN-6 ceramics were then converted to LNKN-6/KNbO3 composites through soaking and heat treatment using a sol-gel precursor source composed of KNbO3 to form 3-3-type composites. The microstructure, dielectric, and piezoelectric properties of the porous LNKN-6 ceramics and LNKN-6/KNbO3 composites were characterized and compared. The LNKN-6/KNbO3 composites had a hollow structure whose pores in the region near the surface were filled and coated with KNbO3 precipitates; however, a large amount of residual air was trapped in the pores inside the composites. As a result, the LNKN-6/KNbO3 composites fabricated using 30 vol % KynolTM showed an enhanced piezoelectric voltage output coefficient (g33) of 63.0× 10-3 V\\cdotm/N, compared with monolithic LNKN-6 ceramics having a g33 of 30.2× 10-3 V\\cdotm/N.

  1. Characterization of the effective electrostriction coefficients in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Kholkin, A. L.; Akdogan, E. K.; Safari, A.; Chauvy, P.-F.; Setter, N.

    2001-06-01

    Electromechanical properties of a number of ferroelectric films including PbZrxTi1-xO3(PZT), 0.9PbMg1/3Nb2/3O3-0.1PbTiO3(PMN-PT), and SrBi2Ta2O9(SBT) are investigated using laser interferometry combined with conventional dielectric measurements. Effective electrostriction coefficients of the films, Qeff, are determined using a linearized electrostriction equation that couples longitudinal piezoelectric coefficient, d33, with the polarization and dielectric constant. It is shown that, in PZT films, electrostriction coefficients slightly increase with applied electric field, reflecting the weak contribution of non-180° domains to piezoelectric properties. In contrast, in PMN-PT and SBT films electrostriction coefficients are field independent, indicating the intrinsic nature of the piezoelectric response. The experimental values of Qeff are significantly smaller than those of corresponding bulk materials due to substrate clamping and possible size effects. Electrostriction coefficients of PZT layers are shown to depend strongly on the composition and preferred orientation of the grains. In particular, Qeff of (100) textured rhombohedral films (x=0.7) is significantly greater than that of (111) layers. Thus large anisotropy of the electrostrictive coefficients is responsible for recently observed large piezoelectric coefficients of (100) textured PZT films. Effective electrostriction coefficients obtained by laser interferometry allow evaluation of the electromechanical properties of ferroelectric films based solely on the dielectric parameters and thus are very useful in the design and fabrication of microsensors and microactuators.

  2. Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications.

    PubMed

    Chan, H W; Unsworth, J

    1989-01-01

    A theoretical model is presented for combining parameters of 1-3 ultrasonic composite materials in order to predict ultrasonic characteristics such as velocity, acoustic impedance, electromechanical coupling factor, and piezoelectric coefficients. Hence, the model allows the estimation of resonance frequencies of 1-3 composite transducers. This model has been extended to cover more material parameters, and they are compared to experimental results up to PZT volume fraction nu of 0.8. The model covers calculation of piezoelectric charge constants d(33) and d(31). Values are found to be in good agreement with experimental results obtained for PZT 7A/Araldite D 1-3 composites. The acoustic velocity, acoustic impedance, and electromechanical coupling factor are predicted and found to be close to the values determined experimentally.

  3. Evaluation of argon ages and integrity of fluid-inclusion compositions: Stepwise noble gas heating experiments on 1.87 Ga alunite from Tapajós Province, Brazil

    USGS Publications Warehouse

    Landis, G.P.; Snee, L.W.; Juliani, Caetano

    2005-01-01

    Diffusion coefficients and activation energies for the diffusion of Ar and He, as determined using Arrhenius plots, indicate two distinct groups definable by their differences in activation energies. Argon log Do=2.45 and 15.33, with activation energies of 225 and 465 kJ mol−1, respectively; the diffusion of He in alunite is quantified with log Do=−4.33 and E=106.8 kJ mol−1. Model calculations of simplistic 1/e-folding times and diffusion distance–time curves indicate that He should remain in alunite for millions of years at ≤100°C, whereas at <200–220°C, the alunite will retain Ar almost indefinitely. The data demonstrate why alunite is suitable for Ar geochronological applications and also show that, unless the alunite is subjected to metamorphic deformation, the inclusion fluids should retain their primary compositions.

  4. The excitation of OH by H2 revisited - I: fine-structure resolved rate coefficients

    NASA Astrophysics Data System (ADS)

    Kłos, J.; Ma, Q.; Dagdigian, P. J.; Alexander, M. H.; Faure, A.; Lique, F.

    2017-11-01

    Observations of OH in molecular clouds provide crucial constraints on both the physical conditions and the oxygen and water chemistry in these clouds. Accurate modelling of the OH emission spectra requires the calculation of rate coefficients for excitation of OH by collisions with the most abundant collisional partner in the molecular clouds, namely the H2 molecule. We report here theoretical calculations for the fine-structure excitation of OH by H2 (both para- and ortho-H2) using a recently developed highly accurate potential energy surface. Full quantum close coupling rate coefficients are provided for temperatures ranging from 10 to 150 K. Propensity rules are discussed and the new OH-H2 rate coefficients are compared to the earlier values that are currently used in astrophysical modelling. Significant differences were found: the new rate coefficients are significantly larger. As a first application, we simulate the excitation of OH in typical cold molecular clouds and star-forming regions. The new rate coefficients predict substantially larger line intensities. As a consequence, OH abundances derived from observations will be reduced from the values predicted by the earlier rate coefficients.

  5. Stability of dust ion acoustic solitary waves in a collisionless unmagnetized nonthermal plasma in presence of isothermal positrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sardar, Sankirtan; Bandyopadhyay, Anup, E-mail: abandyopadhyay1965@gmail.com; Das, K. P.

    A three-dimensional KP (Kadomtsev Petviashvili) equation is derived here describing the propagation of weakly nonlinear and weakly dispersive dust ion acoustic wave in a collisionless unmagnetized plasma consisting of warm adiabatic ions, static negatively charged dust grains, nonthermal electrons, and isothermal positrons. When the coefficient of the nonlinear term of the KP-equation vanishes an appropriate modified KP (MKP) equation describing the propagation of dust ion acoustic wave is derived. Again when the coefficient of the nonlinear term of this MKP equation vanishes, a further modified KP equation is derived. Finally, the stability of the solitary wave solutions of the KPmore » and the different modified KP equations are investigated by the small-k perturbation expansion method of Rowlands and Infeld [J. Plasma Phys. 3, 567 (1969); 8, 105 (1972); 10, 293 (1973); 33, 171 (1985); 41, 139 (1989); Sov. Phys. - JETP 38, 494 (1974)] at the lowest order of k, where k is the wave number of a long-wavelength plane-wave perturbation. The solitary wave solutions of the different evolution equations are found to be stable at this order.« less

  6. Energetic and dynamic analysis of transport of Na + and K + through a cyclic peptide nanotube in water and in lipid bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yeonho; Lee, Ji Hye; Hwang, Hoon

    Potential of mean force (PMF) profiles and position-dependent diffusion coefficients of Na + and K + are calculated to elucidate the translocation of ions through a cyclic peptide nanotube, composed of 8 × cyclo[-(D-Leu-Trp) 4-] rings, in water and in hydrated DMPC bilayers. The PMF profiles and PMF decomposition analysis for the monovalent cations show that favorable interactions of the cations with the CPN as well as the lipid bilayer and dehydration free energy penalties are two major competing factors which determine the free energy surface for ion transport through CPNs both in water and lipid bilayers, and that themore » selectivity of CPNs to cations mainly arises from favorable interaction energies of cations with CPNs and lipid bilayers that are more dominant than the dehydration penalties. Calculations of the position-dependent diffusion coefficients and dynamic friction kernels of the cations indicate that the dehydration process along with the molecular rearrangements occurring outside the channel and the coupling of the ion motions with the chain-structured water movements inside the channel lead to decrease of the diffusion coefficients far away from the channel entrance and also reduced coefficients inside the channel. Here the PMF and diffusivity profiles for Na + and K + reveal that the energetics of ion transport through the CPN are governed by global interactions of ions with all the components in the system while the diffusivity of ions through the channel is mostly determined by local interactions of ions with the confined water molecules inside the channel. Comparison of Na + and K + ion distributions based on overdamped Brownian dynamics simulations based on the PMF and diffusivity profiles with the corresponding results from molecular dynamics shows good agreement, indicating accuracy of the Bayesian inference method for determining diffusion coefficients in this application. In addition this work shows that position-dependent diffusion coefficients of ions are required to explain the dynamics and conductance of ions through the CPN properly.« less

  7. Energetic and dynamic analysis of transport of Na + and K + through a cyclic peptide nanotube in water and in lipid bilayers

    DOE PAGES

    Song, Yeonho; Lee, Ji Hye; Hwang, Hoon; ...

    2016-11-04

    Potential of mean force (PMF) profiles and position-dependent diffusion coefficients of Na + and K + are calculated to elucidate the translocation of ions through a cyclic peptide nanotube, composed of 8 × cyclo[-(D-Leu-Trp) 4-] rings, in water and in hydrated DMPC bilayers. The PMF profiles and PMF decomposition analysis for the monovalent cations show that favorable interactions of the cations with the CPN as well as the lipid bilayer and dehydration free energy penalties are two major competing factors which determine the free energy surface for ion transport through CPNs both in water and lipid bilayers, and that themore » selectivity of CPNs to cations mainly arises from favorable interaction energies of cations with CPNs and lipid bilayers that are more dominant than the dehydration penalties. Calculations of the position-dependent diffusion coefficients and dynamic friction kernels of the cations indicate that the dehydration process along with the molecular rearrangements occurring outside the channel and the coupling of the ion motions with the chain-structured water movements inside the channel lead to decrease of the diffusion coefficients far away from the channel entrance and also reduced coefficients inside the channel. Here the PMF and diffusivity profiles for Na + and K + reveal that the energetics of ion transport through the CPN are governed by global interactions of ions with all the components in the system while the diffusivity of ions through the channel is mostly determined by local interactions of ions with the confined water molecules inside the channel. Comparison of Na + and K + ion distributions based on overdamped Brownian dynamics simulations based on the PMF and diffusivity profiles with the corresponding results from molecular dynamics shows good agreement, indicating accuracy of the Bayesian inference method for determining diffusion coefficients in this application. In addition this work shows that position-dependent diffusion coefficients of ions are required to explain the dynamics and conductance of ions through the CPN properly.« less

  8. Metal-Organic-Inorganic Nanocomposite Thermal Interface Materials with Ultralow Thermal Resistances.

    PubMed

    Yegin, Cengiz; Nagabandi, Nirup; Feng, Xuhui; King, Charles; Catalano, Massimo; Oh, Jun Kyun; Talib, Ansam J; Scholar, Ethan A; Verkhoturov, Stanislav V; Cagin, Tahir; Sokolov, Alexei V; Kim, Moon J; Matin, Kaiser; Narumanchi, Sreekant; Akbulut, Mustafa

    2017-03-22

    As electronic devices get smaller and more powerful, energy density of energy storage devices increases continuously, and moving components of machinery operate at higher speeds, the need for better thermal management strategies is becoming increasingly important. The removal of heat dissipated during the operation of electronic, electrochemical, and mechanical devices is facilitated by high-performance thermal interface materials (TIMs) which are utilized to couple devices to heat sinks. Herein, we report a new class of TIMs involving the chemical integration of boron nitride nanosheets (BNNS), soft organic linkers, and a copper matrix-which are prepared by the chemisorption-coupled electrodeposition approach. These hybrid nanocomposites demonstrate bulk thermal conductivities ranging from 211 to 277 W/(m K), which are very high considering their relatively low elastic modulus values on the order of 21.2-28.5 GPa. The synergistic combination of these properties led to the ultralow total thermal resistivity values in the range of 0.38-0.56 mm 2 K/W for a typical bond-line thickness of 30-50 μm, advancing the current state-of-art transformatively. Moreover, its coefficient of thermal expansion (CTE) is 11 ppm/K, forming a mediation zone with a low thermally induced axial stress due to its close proximity to the CTE of most coupling surfaces needing thermal management.

  9. High energy density soft X-ray momentum coupling to comet analogs for NEO mitigation

    DOE PAGES

    Remo, J. L.; Lawrence, R. J.; Jacobsen, S. B.; ...

    2016-09-27

    Here, we applied MBBAY high fluence pulsed radiation intensity driven momentum transfer analysis to calculate X-ray momentum coupling coefficients C M=(Pa s)/(J/m 2) for two simplified comet analog materials: i) water ice, and ii) 70% water ice and 30% distributed olivine grains. The momentum coupling coefficients (C M) max of 50×10 –5 s/m, are about an order of magnitude greater than experimentally determined and computed MBBAY values for meteoritic materials that are analogs for asteroids. From the values for comet analog materials we infer applied energies (via momentum transfer) required to deflect an Earth crossing comet from impacting Earth bymore » a sufficient amount (~1 cm/s) to avert collision ~a year in advance. Comet model calculations indicate for C M = 5 × 10 –4 s/m the deflection of a 2 km comet with a density 600 kg/m 3 by 1 cm/s requires an applied energy on the target surface of 5 × 10 13 J, the equivalent of 12 kT of TNT. Depending on the geometrical configuration of the interaction the explosive yield required could be an order of magnitude higher.« less

  10. Thermochemistry and Kinetics of the Cl+O2 Association Reaction

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Kreutter, K. D.; Shackelford, C. J.; Wine, P. H.

    1997-01-01

    Laser flash photolysis of Cl2/O2 mixtures has been employed in conjunction with Cl((sup 2)P(sub 3/2)) detection by time-resolved fluorescence spectroscopy to investigate equilibration kinetics for the reactions Cl + O2 + O is in equilibrium with ClOO + O2 at temperatures of 181-200 K and O2 pressures of 15-40 Torr. The third-order rate coefficient for the association reaction at 186.5 +/- 5.5 K is (8.9 +/- 2.9) x 10(exp -33) cm(exp 6) molecule(exp -2) s(exp -1) and the equilibrium constant (K(p)) at 185.4 K is 18.9 atm(exp -1) (factor of 1.7 uncertainty). A third law analysis of our data leads to a value for the Cl-OO bond dissociation energy of 4.76 +/- 0.49 kcal mol(exp -1).

  11. Potential energy surface and rate coefficients of protonated cyanogen (HNCCN+) induced by collision with helium (He) at low temperature

    NASA Astrophysics Data System (ADS)

    Bop, Cheikh T.; Faye, N. AB; Hammami, K.

    2018-05-01

    Nitriles have been identified in space. Accurately modeling their abundance requires calculations of collisional rate coefficients. These data are obtained by first computing potential energy surfaces (PES) and cross-sections using high accurate quantum methods. In this paper, we report the first interaction potential of the HNCCN+-He collisional system along with downward rate coefficients among the 11 lowest rotational levels of HNCCN+. The PES was calculated using the explicitly correlated coupled cluster approach with simple, second and non-iterative triple excitation (CCSD(T)-F12) in conjunction with the augmented-correlation consistent-polarized valence triple zeta (aug-cc-pVTZ) Gaussian basis set. It presents two local minima of ˜283 and ˜136 cm-1, the deeper one is located at R = 9 a0 towards the H end (HeṡṡṡHNCCN+). Using the so-computed PES, we calculated rotational cross-sections of HNCCN+ induced by collision with He for energies ranging up to 500 cm-1 with the exact quantum mechanical close coupling (CC) method. Downward rate coefficients were then worked out by thermally averaging the cross-sections at low temperature (T ≤ 100 K). The discussion on propensity rules showed that the odd Δj transitions were favored. The results obtained in this work may be crucially needed to accurately model the abundance of cyanogen and its protonated form in space.

  12. Enhanced electrical properties of SrBi4Ti4O15 ceramic with addition of ZrO2

    NASA Astrophysics Data System (ADS)

    Mamatha, B.; Rani, G. Neeraja; Shankar, J.

    2018-04-01

    Polycrystalline SrBi4Ti3.95Zr0.05O15 (SBZT) ceramic was prepared by solid-state double sintering method. It was characterized by X-Ray Diffraction (XRD) and Scanning Electron Micrograph (SEM). With the increased addition of ZrO2, the electrical properties as dielectric, ferroelectric and piezoelectric were studied. From XRD, single-phase formation with orthorhombic structure was identified by the increase of ZrO2. The remnant polarization (Pr) and dielectric constant was found to be increased with the increase of ZrO2. With the increase of ZrO2, Curie temperature (Tc) was found to be decreased. The planar electromechanical coupling coefficient (Kp = 0.57) and Piezoelectric coefficient (d33 = 18 pC/N) was found to be increased with the increase of ZrO2.

  13. (100)-Textured KNN-based thick film with enhanced piezoelectric property for intravascular ultrasound imaging

    PubMed Central

    Zhu, Benpeng; Zhang, Zhiqiang; Ma, Teng; Yang, Xiaofei; Li, Yongxiang; Shung, K. Kirk; Zhou, Qifa

    2015-01-01

    Using tape-casting technology, 35 μm free-standing (100)-textured Li doped KNN (KNLN) thick film was prepared by employing NaNbO3 (NN) as template. It exhibited similar piezoelectric behavior to lead containing materials: a longitudinal piezoelectric coefficient (d33) of ∼150 pm/V and an electromechanical coupling coefficient (kt) of 0.44. Based on this thick film, a 52 MHz side-looking miniature transducer with a bandwidth of 61.5% at −6 dB was built for Intravascular ultrasound (IVUS) imaging. In comparison with 40 MHz PMN-PT single crystal transducer, the rabbit aorta image had better resolution and higher noise-to-signal ratio, indicating that lead-free (100)-textured KNLN thick film may be suitable for IVUS (>50 MHz) imaging. PMID:25991874

  14. Modified cantilevers to probe unambiguously out-of-plane piezoresponse

    NASA Astrophysics Data System (ADS)

    Alyabyeva, Natalia; Ouvrard, Aimeric; Lindfors-Vrejoiu, Ionela; Kolomiytsev, Alexey; Solodovnik, Maxim; Ageev, Oleg; McGrouther, Damien

    2018-06-01

    We demonstrate and investigate the coupling of contributions from both in-plane (IP) polarization and out-of-plane (OP) components in BiFeO3 (BFO) thin-film polarization probed by piezoresponse force microscopy (PFM). Such coupling leads to image artifacts which prevent the correct determination of OP polarization vector directions and the corresponding piezoelectric coefficient d33. Using material strength theory with a one-dimensional modeling of the cantilever oscillation amplitude under electrostatic and elastic forces as a function of the tip length, we have evidenced the impact of IP piezoresponse to the OP signal for tip length longer than 4 μm. The IP polarization vector induces a significant longitudinal bending of the cantilever, due to the small spring constant of long tips, which provokes a normal deviation superimposed to the OP piezoresponse. These artifacts can be reduced by increasing the longitudinal spring constant of the cantilever by shortening the tip length. Standard cantilevers with 15-μm-long tips were modified to reach the desired tip length, using focused ion-beam techniques and tested using PFM on the same BFO thin film. Tip length shortening has strongly reduced IP artifacts as expected, while the impact of nonlocal electrostatic forces, becoming predominant for tips shorter than 1 μm, has led to a non-negligible deflection offset. For shorter tips, a strong electric field from a cantilever beam can induce polarization switching as observed for a 0.5-μm-long tip. Tip length ranging from 1 to 4 μm allowed minimizing both artifacts to probe unambiguously OP piezoresponse and quantify the d33 piezoelectric coefficient.

  15. Commercial glass beads as TLDs in radiotherapy produced by different manufacturers

    NASA Astrophysics Data System (ADS)

    Jafari, S. M.; Bates, N. M.; Jupp, T.; Abdul Sani, S. F.; Nisbet, A.; Bradley, D. A.

    2017-08-01

    While commercial jewellery glass beads offer the basis of novel radiotherapy TL dosimetry (Jafari et al. 2014a,b,c, 2015a,b), detailed study of TL variation is required for the products from various manufacturers. Investigation is made for glass beads from four manufacturers from four countries: China (Rocaille), Japan (Mill Hill), Indonesia (TOHO™) and Czech Republic (Czech). Sample composition was determined using an energy-dispersive X-ray unit coupled to a scanning electron microscope. Values of mass attenuation coefficient, μ/ρ, as a function of photon energy were then calculated for photons of energy 1 keV to 10 MeV, using the National Institute of Standards and Technology XCOM program. Radiation and energy response were determined using X-rays generated at accelerating potentials from 80 kVp to 6 MV (TPR20/10=0.670). All bead types showed TL to be linear with dose (R2>0.999). Glow curve dosimetric peaks reached a maximum value at 300 °C for the Toho and 290 °C for the Czech and Mill Hill products but was between 200-250 °C for the Rocaille product. Radiation sensitivity following mass normalisation varied within an order of magnitude; Toho samples showed the greatest and Rocaille the least sensitivity. For the Toho, Czech, Rocaille and Mill Hill samples the energy responses at 80 kVp were 5.0, 4.0, 3.6 and 3.3 times that obtained at 6 MV. All four glass bead types offer potential use as TL dosimeters over doses commonly applied in radiotherapy. Energy response variation was <1% at 6 MV but significant variation was found for photon beam energies covering the kV range; careful characterisation is required if use at this range is intended.

  16. A new ~1 μm laser crystal Nd:Gd2SrAl2O7: growth, thermal, spectral and lasing properties

    NASA Astrophysics Data System (ADS)

    Yuan, Feifei; Liao, Wenbin; Huang, Yisheng; Zhang, Lizhen; Sun, Shijia; Wang, Yeqing; Lin, Zhoubin; Wang, Guofu; Zhang, Ge

    2018-03-01

    Nd:Gd2SrAl2O7 crystals were grown by the Czochralski technique; thermal, spectral and laser properties were investigated in detail. The average thermal expansion coefficients along a- and c-axis are 12.6  ×  10-6 K-1 and 14.9  ×  10-6 K-1, respectively. At room temperature, the thermal conductivities are 4.98 and 5.24 W (m-1 * K-1) along the a- and c-axis, respectively. The absorption cross sections at ~808 nm are 13.7  ×  10-20 cm2 with a FWHM of 3.3 nm for π-polarization and 11.84  ×  10-20 cm2 with a FWHM of 3.4 nm for σ-polarization. The emission cross sections at ~1080 nm are 15  ×  10-20 cm2 and 12.7  ×  10-20 cm2 with a FWHM of about 5.1 nm and 12.5 nm for π- and σ-polarization, respectively. The fluorescence lifetime for the 4F3/2  →  4I11/2 transition was fitted to be 118 µs. Pumped by a fiber-coupled 808 nm laser diode, the maximum 1.55 W continuous-wave laser output at ~1.08 µm was achieved with a slope efficiency of 30.5%. All the results show that Nd:Gd2SrAl2O7 crystal is a promising laser material.

  17. Electron capture in collisions of S4+ with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.

    2001-06-01

    Charge transfer processes due to collisions of ground state S4+(3s2 1S) ions with atomic hydrogen are investigated for energies between 1 meV u-1 and 10 MeV u-1 using the quantum mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC) and continuum distorted wave methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially stripped S3+ excited classical states. Hydrogen target isotope effects are explored and rate coefficients for temperatures between 100 and 106 K are also presented.

  18. Non-linear optical measurement of the twist elastic constant in thermotropic and DNA lyotropic chiral nematics.

    PubMed

    Lucchetti, Liana; Fraccia, Tommaso P; Ciciulla, Fabrizio; Bellini, Tommaso

    2017-07-10

    Throughout the whole history of liquid crystals science, the balancing of intrinsic elasticity with coupling to external forces has been the key strategy for most application and investigation. While the coupling of the optical field to the nematic director is at the base of a wealth of thoroughly described optical effects, a significant variety of geometries and materials have not been considered yet. Here we show that by adopting a simple cell geometry and measuring the optically induced birefringence, we can readily extract the twist elastic coefficient K 22 of thermotropic and lyotropic chiral nematics (N*). The value of K 22 we obtain for chiral doped 5CB thermotropic N* well matches those reported in the literature. With this same strategy, we could determine for the first time K 22 of the N* phase of concentrated aqueous solutions of DNA oligomers, bypassing the limitations that so far prevented measuring the elastic constants of this class of liquid crystalline materials. The present study also enlightens the significant nonlinear optical response of DNA liquid crystals.

  19. Electrical and thermoelectric transport properties of two-dimensional fermionic systems with k-cubic spin-orbit coupling.

    PubMed

    Mawrie, Alestin; Verma, Sonu; Ghosh, Tarun Kanti

    2017-10-25

    We investigate the effect of k-cubic spin-orbit interaction on the electrical and thermoelectric transport properties of two-dimensional fermionic systems. We obtain exact analytical expressions of the inverse relaxation time (IRT) and the Drude conductivity for long-range Coulomb and short-range delta scattering potentials. The IRT reveals that the scattering is completely suppressed along the three directions [Formula: see text] with [Formula: see text]. We also obtain analytical results of the thermopower and thermal conductivity at low temperature. The thermoelectric transport coefficients obey the Wiedemann-Franz law, even in the presence of k-cubic Rashba spin-orbit interaction (RSOI) at low temperature. In the presence of a quantizing magnetic field, the signature of the RSOI is revealed through the appearance of the beating pattern in the Shubnikov-de Haas (SdH) oscillations of thermopower and thermal conductivity in the low magnetic field regime. The empirical formulae for the SdH oscillation frequencies accurately describe the locations of the beating nodes. The beating pattern in magnetothermoelectric measurement can be used to extract the spin-orbit coupling constant.

  20. Optimum Tilt Angle of Flow Guide in Steam Turbine Exhaust Hood Considering the Effect of Last Stage Flow Field

    NASA Astrophysics Data System (ADS)

    CAO, Lihua; LIN, Aqiang; LI, Yong; XIAO, Bin

    2017-07-01

    Heat transfer and vacuum in condenser are influenced by the aerodynamic performance of steam turbine exhaust hood. The current research on exhaust hood is mainly focused on analyzing flow loss and optimal design of its structure without consideration of the wet steam condensing flow and the exhaust hood coupled with the front and rear parts. To better understand the aerodynamic performance influenced by the tilt angle of flow guide inside a diffuser, taking a 600 MW steam turbine as an example, a numerical simulator CFX is adopted to solve compressible three-dimensional (3D) Reynolds time-averaged N-S equations and standard k- ɛ turbulence model. And the exhaust hood flow field influenced by different tilt angles of flow guide is investigated with consideration of the wet steam condensing flow and the exhaust hood coupled with the last stage blades and the condenser throat. The result shows that the total pressure loss coefficient and the static pressure recovery coefficient of exhaust hood change regularly and monotonously with the gradual increase of tilt angle of flow guide. When the tilt angle of flow guide is within the range of 30° to 40°, the static pressure recovery coefficient is in the range of 15.27% to 17.03% and the total pressure loss coefficient drops to approximately 51%, the aerodynamic performance of exhaust hood is significantly improved. And the effective enthalpy drop in steam turbine increases by 0.228% to 0.274%. It is feasible to obtain a reasonable title angle of flow guide by the method of coupling the last stage and the condenser throat to exhaust hood in combination of the wet steam model, which provides a practical guidance to flow guide transformation and optimal design in exhaust hood.

  1. Transport of dissolved organic matter in Boom Clay: Size effects

    NASA Astrophysics Data System (ADS)

    Durce, D.; Aertsens, M.; Jacques, D.; Maes, N.; Van Gompel, M.

    2018-01-01

    A coupled experimental-modelling approach was developed to evaluate the effects of molecular weight (MW) of dissolved organic matter (DOM) on its transport through intact Boom Clay (BC) samples. Natural DOM was sampled in-situ in the BC layer. Transport was investigated with percolation experiments on 1.5 cm BC samples by measuring the outflow MW distribution (MWD) by size exclusion chromatography (SEC). A one-dimensional reactive transport model was developed to account for retardation, diffusion and entrapment (attachment and/or straining) of DOM. These parameters were determined along the MWD by implementing a discretisation of DOM into several MW points and modelling the breakthrough of each point. The pore throat diameter of BC was determined as 6.6-7.6 nm. Below this critical size, transport of DOM is MW dependent and two major types of transport were identified. Below MW of 2 kDa, DOM was neither strongly trapped nor strongly retarded. This fraction had an averaged capacity factor of 1.19 ± 0.24 and an apparent dispersion coefficient ranging from 7.5 × 10- 11 to 1.7 × 10- 11 m2/s with increasing MW. DOM with MW > 2 kDa was affected by both retardation and straining that increased significantly with increasing MW while apparent dispersion coefficients decreased. Values ranging from 1.36 to 19.6 were determined for the capacity factor and 3.2 × 10- 11 to 1.0 × 10- 11 m2/s for the apparent dispersion coefficient for species with 2.2 kDa < MW < 9.3 kDa. Straining resulted in an immobilisation of in average 49 ± 6% of the injected 9.3 kDa species. Our findings show that an accurate description of DOM transport requires the consideration of the size effects.

  2. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion.

    PubMed

    Zhang, Zhiping; Sun, Weikang; Liu, Hongfei; Xie, Guanhua; Chen, Xiaobing; Zeng, Xianghua

    2017-01-01

    Zr 2 WP 2 O 12 /ZrO 2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr 2 WP 2 O 12 /ZrO 2 composites with different mass ratio. Relative densities of all the resulting Zr 2 WP 2 O 12 /ZrO 2 samples were also tested by Archimedes' methods. The obtained Zr 2 WP 2 O 12 /ZrO 2 composites were comprised of orthorhombic Zr 2 WP 2 O 12 and monoclinic ZrO 2 . As the increase of the Zr 2 WP 2 O 12 , the relative densities of Zr 2 WP 2 O 12 /ZrO 2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr 2 WP 2 O 12 /ZrO 2 composites can be tailored from 4.1 × 10 -6 K -1 to -3.3 × 10 -6 K -1 by changing the content of Zr 2 WP 2 O 12 . The 2:1 Zr 2 WP 2 O 12 /ZrO 2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of -0.09 × 10 -6 K -1 . These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  3. Molecular composition and extinction coefficient of native botulinum neurotoxin complex produced by Clostridium botulinum hall A strain.

    PubMed

    Bryant, Anne-Marie; Davis, Jenny; Cai, Shuowei; Singh, Bal Ram

    2013-02-01

    Seven distinct strains of Clostridium botulinum (type A to G) each produce a stable complex of botulinum neurotoxin (BoNT) along with neurotoxin-associated proteins (NAPs). Type A botulinum neurotoxin (BoNT/A) is produced with a group of NAPs and is commercially available for the treatment of numerous neuromuscular disorders and cosmetic purposes. Previous studies have indicated that BoNT/A complex composition is specific to the strain, the method of growth and the method of purification; consequently, any variation in composition of NAPs could have significant implications to the effectiveness of BoNT based therapeutics. In this study, a standard analytical technique using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and densitometry analysis was developed to accurately analyze BoNT/A complex from C. botulinum type A Hall strain. Using 3 batches of BoNT/A complex the molar ratio was determined as neurotoxin binding protein (NBP, 124 kDa), heavy chain (HC, 90 kDa), light chain (LC, 53 kDa), NAP-53 (50 kDa), NAP-33 (36 kDa), NAP-22 (24 kDa), NAP-17 (17 kDa) 1:1:1:2:3:2:2. With Bradford, Lowry, bicinchoninic acid (BCA) and spectroscopic protein estimation methods, the extinction coefficient of BoNT/A complex was determined as 1.54 ± 0.26 (mg/mL)(-1)cm(-1). These findings of a reproducible BoNT/A complex composition will aid in understanding the molecular structure and function of BoNT/A and NAPs.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieroda, Pawel; Zybala, Rafal; Wojciechowski, Krzysztof T.

    The aim of the study was to develop a fast and simple method for preparation of polycrystalline Mg{sub 2}Si. For this purpose a Spark Plasma Sintering (SPS) method was used and synthesis conditions were adjusted in such a manner that no excess Mg was required. Materials were synthesized by the direct reaction of Mg and Si raw powders. To determine the phase and chemical composition, the fabricated samples were studied by X-ray diffraction and SEM microscopy coupled with EDX chemical analysis. Thermoelectric properties of samples (thermal conductivity, electrical conductivity and Seebeck coefficient) were measured all over temperature range of 300-650more » K. The analysis by the scanning thermoelectric microprobe (STM) shows that samples have uniform distribution of Seebeck coefficient with mean value of about -405 {mu}VK{sup -1} and standard deviation of 94 {mu}VK{sup -1}. Prepared materials have intrinsic band gap of 0.45 eV and thermal conductivity {lambda}= 7.5 Wm{sup -1}K{sup -1} at room temperature.« less

  5. [Modeling evapotranspiration of greenhouse tomato under different water conditions based on the dual crop coefficient method].

    PubMed

    Gong, Xue Wen; Liu, Hao; Sun, Jing Sheng; Ma, Xiao Jian; Wang, Wan Ning; Cui, Yong Sheng

    2017-04-18

    An experiment was conducted to investigate soil evaporation (E), crop transpiration (T), evapotranspiration (ET) and the ratio of evaporation to evapotranspiration (E/ET) of drip-irrigated tomato, which was planted in a typical solar greenhouse in the North China, under different water conditions [irrigation amount was determined based on accumulated pan evaporation (E p ) of 20 cm pan evaporation, and two treatments were designed with full irrigation (0.9E p ) and deficit irrigation (0.5E p )] at different growth stages in 2015 and 2016 at Xinxiang Comprehensive Experimental Station, Chinese Academy of Agricultural Sciences. Effects of deficit irrigation on crop coefficient (K c ) and variation of water stress coefficient (K s ) throughout the growing season were also discussed. E, T and ET of tomato were calculated with a dual crop coefficient approach, and compared with the measured data. Results indicated that E in the full irrigation was 21.5% and 20.4% higher than that in the deficit irrigation in 2015 and 2016, respectively, accounting for 24.0% and 25.0% of ET in the whole growing season. The maximum E/ET was measured in the initial stage of tomato, while the minimum obtained in the middle stage. The K c the full irrigation was 0.45, 0.89, 1.06 and 0.93 in the initial, development, middle, and late stage of tomato, and 0.45, 0.89, 0.87 and 0.41 the deficit irrigation. The K s the deficit irrigation was 0.98, 0.93, 0.78 and 0.39 in the initial, development, middle, and late stage, respectively. The dual crop coefficient method could accurately estimate ET of greenhouse tomato under different water conditions in 2015 and 2016 seasons with the mean absolute error (MAE) of 0.36-0.48 mm·d -1 , root mean square error (RMSE) of 0.44-0.65 mm·d -1 . The method also estimated E and T accurately with MAE of 0.15-0.19 and 0.26-0.56 mm·d -1 , and with RMSE of 0.20-0.24 and 0.33-0.72 mm·d -1 , respectively.

  6. An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling.

    PubMed

    Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min

    2017-06-11

    The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10 - 7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications.

  7. Approximate Probabilistic Methods for Survivability/Vulnerability Analysis of Strategic Structures.

    DTIC Science & Technology

    1978-07-15

    weapon yield, in kilotons; K = energy coupling factor; C = coefficient determined from linear regression; a, b = exponents determined from linear...hn(l + .582 00 = 0.54 In the case of the applied pressure, according to Perret and Bass (1975), the variabilities in the exponents a and b of Eq. 32...ATTN: WESSF, L. Ingram ATTN: ATC-T ATTN: Library ATTN: F. Brown BMD Systems Command ATTN: J. Strange Deoartment of the Army ATTN: BMDSC-H, N. Hurst

  8. Rapid label-free identification of Klebsiella pneumoniae antibiotic resistant strains by the drop-coating deposition surface-enhanced Raman scattering method

    NASA Astrophysics Data System (ADS)

    Cheong, Youjin; Kim, Young Jin; Kang, Heeyoon; Choi, Samjin; Lee, Hee Joo

    2017-08-01

    Although many methodologies have been developed to identify unknown bacteria, bacterial identification in clinical microbiology remains a complex and time-consuming procedure. To address this problem, we developed a label-free method for rapidly identifying clinically relevant multilocus sequencing typing-verified quinolone-resistant Klebsiella pneumoniae strains. We also applied the method to identify three strains from colony samples, ATCC70063 (control), ST11 and ST15; these are the prevalent quinolone-resistant K. pneumoniae strains in East Asia. The colonies were identified using a drop-coating deposition surface-enhanced Raman scattering (DCD-SERS) procedure coupled with a multivariate statistical method. Our workflow exhibited an enhancement factor of 11.3 × 106 to Raman intensities, high reproducibility (relative standard deviation of 7.4%), and a sensitive limit of detection (100 pM rhodamine 6G), with a correlation coefficient of 0.98. All quinolone-resistant K. pneumoniae strains showed similar spectral Raman shifts (high correlations) regardless of bacterial type, as well as different Raman vibrational modes compared to Escherichia coli strains. Our proposed DCD-SERS procedure coupled with the multivariate statistics-based identification method achieved excellent performance in discriminating similar microbes from one another and also in subtyping of K. pneumoniae strains. Therefore, our label-free DCD-SERS procedure coupled with the computational decision supporting method is a potentially useful method for the rapid identification of clinically relevant K. pneumoniae strains.

  9. Thermodynamic properties of La-Ga-Al and U-Ga-Al alloys and the separation factor of U/La couple in the molten salt-liquid metal system

    NASA Astrophysics Data System (ADS)

    Novoselova, A.; Smolenski, V.; Volkovich, V. A.; Ivanov, A. B.; Osipenko, A.; Griffiths, T. R.

    2015-11-01

    The electrochemical behaviour of lanthanum and uranium was studied in fused 3LiCl-2KCl eutectic and Ga-Al eutectic liquid metal alloy between 723 and 823 K. Electrode potentials were recorded vs. Cl-/Cl2 reference electrode and the temperature dependencies of the apparent standard potentials of La-(Ga-Al) and U-(Ga-Al) alloys were determined. Lanthanum and uranium activity coefficients and U/La couple separation factor were calculated. Partial excess free Gibbs energy, partial enthalpy of mixing and partial excess entropy of La-(Ga-Al) and U-(Ga-Al) alloys were estimated.

  10. Causality Analysis: Identifying the Leading Element in a Coupled Dynamical System

    PubMed Central

    BozorgMagham, Amir E.; Motesharrei, Safa; Penny, Stephen G.; Kalnay, Eugenia

    2015-01-01

    Physical systems with time-varying internal couplings are abundant in nature. While the full governing equations of these systems are typically unknown due to insufficient understanding of their internal mechanisms, there is often interest in determining the leading element. Here, the leading element is defined as the sub-system with the largest coupling coefficient averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM) method has been employed to determine causality and dominant component in weakly coupled systems with constant coupling coefficients. In this study, CCM is applied to a pair of coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching between dominant sub-systems in different periods. Four sets of numerical experiments are carried out. The first three cases consist of different coupling coefficient schemes: I) Periodic–constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experiment of cases II and III are repeated with imposed temporal uncertainties as well as additive normal noise. Our results show that, through detecting directional interactions, CCM identifies the leading sub-system in all cases except when the average coupling coefficients are approximately equal, i.e., when the dominant sub-system is not well defined. PMID:26125157

  11. Enhanced caloric effect induced by magnetoelastic coupling in NiMnGaCu Heusler alloys: Experimental study and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Zhao, Dewei; Castán, Teresa; Planes, Antoni; Li, Zongbin; Sun, Wen; Liu, Jian

    2017-12-01

    On the basis of a phenomenological Landau model combined with comprehensive experimental studies, the magnetostructural transition behavior and field induced caloric effects for NiMnGaCu Heusler alloys have been investigated. In Ni50Mn25 -xGa25Cux alloys with x =5.5 , 6, and 6.5, both magnetocaloric entropy change (Δ S ) and elastocaloric temperature change (Δ T ) increase with the increment of Cu content. The maximum Δ S of 1.01 J /mol K and Δ T of 8.1 K are obtained for the alloy with x =6.5 . In order to explore the physical origin behind the large caloric effect, here we quantitatively propose a crucial coefficient of magnetoelastic coupling κ ˜ by utilizing a thermodynamic formalism within the framework of the Landau approach. It has been verified that the enhancement of the strength of magnetoelastic coupling between lattice and magnetic freedoms results in the increased caloric response for NiMnGaCu alloys. Thus, the strengthened coupling of the magnetoelastic effect can be considered as an effective way to improve the caloric performance for these alloys having the same sign of magnetic and elastic entropy changes contributed to the total caloric effect.

  12. Raising the superconducting Tc of gallium: In situ characterization of the transformation of α -Ga into β -Ga

    NASA Astrophysics Data System (ADS)

    Campanini, D.; Diao, Z.; Rydh, A.

    2018-05-01

    Gallium (Ga) displays several metastable phases. Superconductivity is strongly enhanced in the metastable β -Ga with a critical temperature Tc=6.04 (5 ) K , while stable α -Ga has a much lower Tc<1.2 K . Here we use a membrane-based nanocalorimeter to initiate the transition from α -Ga to β -Ga on demand, as well as study the specific heat of the two phases on one and the same sample. The in situ transformation is initiated by bringing the temperature to about 10 K above the melting temperature of α -Ga. After such treatment, the liquid supercools down to 232 K , where β -Ga solidifies. We find that β -Ga is a strong-coupling type-I superconductor with Δ (0 ) /kBTc=2.00 (5 ) and a Sommerfeld coefficient γn=1.53 (4 ) mJ /molK2 , 2.55 times higher than that in the α phase. The results allow a detailed comparison of fundamental thermodynamic properties between the two phases.

  13. Engineered SOI slot waveguide ring resonator V-shape resonance combs for refraction index sensing up to 1300nm/RIU (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Serna, Samuel; Le Roux, Xavier; Vivien, Laurent; Cassan, Eric

    2016-05-01

    Bio-detection based on CMOS technology boosts the miniaturization of detection systems and the success on highly efficient, robust, accurate, and low coast Lab-on-Chip detection schemes. Such on chip detection technologies have covered healthy related harmful gases, bio-chemical analytes, genetic micro RNA, etc. Their monitoring accuracy is mainly qualified in terms of sensitivity and limit of the detection (LOD) of the detection system. In this context, recently developed silicon on insulator (SOI) optical devices have displayed highly performant detection abilities that LOD could go beyond 10-8RIU and sensitivity could exceeds 103nm/RIU. The SOI integrated optical sensing devices include strip/slotted waveguide consisting in structures like Mach-Zehnder interferometers (MZI), ring resonators (RR), nano cavities, etc. Typically, hollow core RR and nano-cavities could exhibit higher sensitivity due to their optical mode confinement properties with a partial localization of the electric field in low index sensing regions than devices based on evanescent field tails outside of the optical cores. Furthermore, they also provide larger sensing areas for surface functionalization to reach higher sensitivities and lower LODs. The state of art of hollow core devices, either based on Bragg gratings formed from a slot waveguide cavity or photonic crystal slot cavities, show sensitivities (S) up to 400nm/RIU and Figure of Merit (FOM) around 3,000 in water environment, FOM being defined as the inverse of LOD and precisely as FOM=SQ/λ, with λ the resonance wavelength and Q the quality factor of the considered resonator. Such high achieved FOMs in nano cavities are mainly due to their large Q factors around 15,000. While for mostly used RR, which do not require particular design strategies, relatively low Q factors around 1800 in water are met and moderate sensitivities about 300nm/RIU are found. In this work, we present here a novel slot ring resonator design to make breakthrough of the performance of slot ring resonator sensing ability. Different from the normal sensing regime by monitoring one specific resonance (λres) peak shift, the proposed approach stems from the sensitivity of the RR critical coupling. The critical coupling peak is auto-selected out by matching the following condition: the ring resonator's round trip attenuation coefficient a(λ) being equal to the coupler self-coupling coefficient k(λ), thus resulting in the deepest extinction ratio (ER) among the spectrum RR comb. The obtained sensing comb, based on a V-shape spectrum envelop, is engineered by controlling a(λ) and k(λ) with opposite monotonicities. Both a(λ)and k(λ) are tuned to have a large dispersion along the wavelength, which means that |a(λ)-k(λ)| keeps rapidly increasing as λres is far away from λc, eliminating the resonance ER quickly down to 0. Experimentally, slot waveguide ring resonators with a radius of 50µm have been fabricated on a standard silicon platform with a Si thickness of 220nm, loaded by racetrack couplers with a straight coupling length of 20µm. Sensing experiments have been carried out by changing the top cladding material from a series of Cargille optical liquids with refraction index values ranging from 1.3 to 1.5. The Q factors of critical coupling resonances was monitored from 2,000 to 6,000, and measured wavelength shifts of this peak are from 1.41µm to 1.56µm. The maximum sensitivity of 1300nm/RIU is observed in the cladding index range 1.30-1.35. To conclude, a new sensing regime by tracking the critical coupling resonance λc of slot waveguide ring resonators is demonstrated. The reported sensitivity is up 1300nm/RIU around the water RI of 1.33, and the monitored sensing FOM is about 2300, which is very close to the FOM values achieved from nanobeam cavities. This work can thus contribute to future integrated optical sensing schemes based on slot RRs.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, H., E-mail: hide-yamada@mg.ngkntk.co.jp; Matsuoka, T.; Kozuka, H.

    Two phases of (K,Na)NbO{sub 3} (KNN) co-exist in a KNN-based composite lead-free piezoelectric ceramic 0.910(K{sub 1−x}Na{sub x}){sub 0.86}Ca{sub 0.04}Li{sub 0.02}Nb{sub 0.85}O{sub 3−δ}–0.042K{sub 0.85}Ti{sub 0.85}Nb{sub 1.15}O{sub 5} –0.036BaZrO{sub 3}–0.0016Co{sub 3}O{sub 4}– 0.0025Fe{sub 2}O{sub 3}–0.0069ZnO system, over a wide range of Na fractions, where 0.56 ≤ x ≤ 0.75. The crystal systems of the two KNN phases are identified to tetragonal and orthorhombic by analyzing the synchrotron powder X-ray diffraction (XRD) data, high-resolution transmission electron microscopy (HR-TEM), and selected-area electron diffraction (SAD). In the range 0.33 ≤ x ≤ 0.50, the main component of the composite system is found to be single-phase KNN with a tetragonal structure. Granular nanodomains ofmore » the orthorhombic phase dispersed in the tetragonal matrix have been identified by HR-TEM and SAD for 0.56 ≤ x ≤ 0.75. Only a trace amount of the orthorhombic phase has been found in the SAD patterns at the composition x = 0.56. However, the number of orthorhombic nanodomains gradually increases with increasing Na content up to x < 0.75, as observed from the HR-TEM images. An abrupt increase and agglomeration of the nanodomains are observed at x = 0.75, where weak diffraction peaks of the orthorhombic phase have also become detectable from the XRD data. The maximum value of the electromechanical coupling coefficient, k{sub p} = 0.56, has been observed at the composition x = 0.56.« less

  15. Investigation of static and dynamic behavior of functionally graded piezoelectric actuated Poly-Si micro cantilever probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Vibhuti Bhushan; Parashar, Sandeep Kumar, E-mail: skparashar@rtu.ac.in

    In the present paper a novel functionally graded piezoelectric (FGP) actuated Poly-Si micro cantilever probe is proposed for atomic force microscope. The shear piezoelectric coefficient d{sub 15} has much higher value than coupling coefficients d{sub 31} and d{sub 33}, hence in the present work the micro cantilever beam actuated by d{sub 15} effect is utilized. The material properties are graded in the thickness direction of actuator by a simple power law. A three dimensional finite element analysis has been performed using COMSOL Multiphysics® (version 4.2) software. Tip deflection and free vibration analysis for the micro cantilever probe has been done.more » The results presented in the paper shall be useful in the design of micro cantilever probe and their subsequent utilization in atomic force microscopes.« less

  16. 133Cs-NMR study on aligned powder of competing spin chain compound Cs2Cu2Mo3O12

    NASA Astrophysics Data System (ADS)

    Yagi, A.; Matsui, K.; Goto, T.; Hase, M.; Sasaki, T.

    2018-03-01

    S = 1/2 competing spin chain compound Cs2Cu2Mo3O12 has two dominant exchange interactions of the nearest neighbouring ferromagnetic J 1 = 93 K and the second nearest neighbouring antiferromagnetic J 2 = +33 K, and is expected to show the nematic Tomonaga-Luttinger liquid (TLL) state under high magnetic field region. The recent theoretical study by Sato et al. has shown that in the nematic TLL state, the spin fluctuations are expected to be highly anisotropic, that is, its transverse component is suppressed. Our previous NMR study on the present system showed that the dominant contribution to nuclear spin relaxation comes from the longitudinal component. In order to conclude that the transverse component of spin fluctuations is suppressed, the knowledge of hyperfine coupling is indispensable. This article is solely devoted to investigate the hyperfine coupling of 133Cs-NMR site to prove that the anisotropic part of hyperfine coupling, which connects the nuclear spin relaxation with the transverse spin fluctuations is considerably large to be A an = +770 Oe/μB.

  17. A Waveguide-coupled Thermally-isolated Radiometric Source

    NASA Technical Reports Server (NTRS)

    Rostem, Karwan; Chuss, David T.; Lourie, Nathan P.; Voellmer, George M.; Wollack, Edward

    2013-01-01

    The design and validation of a dual polarization source for waveguide-coupled millimeter and sub-millimeter wave cryogenic sensors is presented. The thermal source is a waveguide mounted absorbing conical dielectric taper. The absorber is thermally isolated with a kinematic suspension that allows the guide to be heat sunk to the lowest bath temperature of the cryogenic system. This approach enables the thermal emission from the metallic waveguide walls to be subdominant to that from the source. The use of low thermal conductivity Kevlar threads for the kinematic mount effectively decouples the absorber from the sensor cold stage. Hence, the absorber can be heated to significantly higher temperatures than the sensor with negligible conductive loading. The kinematic suspension provides high mechanical repeatability and reliability with thermal cycling. A 33-50 GHz blackbody source demonstrates an emissivity of 0.999 over the full waveguide band where the dominant deviation from unity arises from the waveguide ohmic loss. The observed thermal time constant of the source is 40 s when the absorber temperature is 15 K. The specific heat of the lossy dielectric MF-117 is well approximated by Cv(T) = 0.12 T(exp 2.06) mJ/g/K between 3.5 K and 15 K.

  18. Electron-temperature dependence of dissociative recombination of electrons with CO(+)-(CO)n-series ions

    NASA Technical Reports Server (NTRS)

    Whitaker, M.; Biondi, M. A.; Johnsen, R.

    1980-01-01

    A microwave afterglow mass spectrometer apparatus is used to determine the dependence on electron temperature T sub e of the recombination coefficients alpha sub n of the dimer and trimer ions of the series CO+.(CO) sub n. It is found that alpha sub 1 = (1.3 + or - 0.3)x 0.000001 (T sub e(K)/300) to the -0.34; and alpha sub 2 = (1.9 + or - 0.4)x 0.000001 (T sub e(K)/300) to the -0.33 cu cm/sec. These dependences on T sub e are quite different from those obtained previously for polar-cluster ions of the hydronium and ammonium series but are similar to that for simple diatomic ions.

  19. Radiation-MHD simulations for the development of a spark discharge channel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niederhaus, John Henry; Jorgenson, Roy E.; Warne, Larry K.

    The growth of a cylindrical s park discharge channel in water and Lexan is studied using a series of one - dimensional simulations with the finite - element radiation - magnetohydrodynamics code ALEGRA. Computed solutions are analyzed in order to characterize the rate of growth and dynamics of the spark c hannels during the rising - current phase of the drive pulse. The current ramp rate is varied between 0.2 and 3.0 kA/ns, and values of the mechanical coupling coefficient K p are extracted for each case. The simulations predict spark channel expansion veloc ities primarily in the range ofmore » 2000 to 3500 m/s, channel pressures primarily in the range 10 - 40 GPa, and K p values primarily between 1.1 and 1.4. When Lexan is preheated, slightly larger expansion velocities and smaller K p values are predicted , but the o verall behavior is unchanged.« less

  20. Transfer having a coupling coefficient higher than its active material

    NASA Technical Reports Server (NTRS)

    Lesieutre, George A. (Inventor); Davis, Christopher L. (Inventor)

    2001-01-01

    A coupling coefficient is a measure of the effectiveness with which a shape-changing material (or a device employing such a material) converts the energy in an imposed signal to useful mechanical energy. Device coupling coefficients are properties of the device and, although related to the material coupling coefficients, are generally different from them. This invention describes a class of devices wherein the apparent coupling coefficient can, in principle, approach 1.0, corresponding to perfect electromechanical energy conversion. The key feature of this class of devices is the use of destabilizing mechanical pre-loads to counter inherent stiffness. The approach is illustrated for piezoelectric and thermoelectrically actuated devices. The invention provides a way to simultaneously increase both displacement and force, distinguishing it from alternatives such as motion amplification, and allows transducer designers to achieve substantial performance gains for actuator and sensor devices.

  1. Effective diffusion coefficients of gas mixture in heavy oil under constant-pressure conditions

    NASA Astrophysics Data System (ADS)

    Li, Huazhou Andy; Sun, Huijuan; Yang, Daoyong

    2017-05-01

    We develop a method to determine the effective diffusion coefficient for each individual component of a gas mixture in a non-volatile liquid (e.g., heavy oil) at high pressures with compositional analysis. Theoretically, a multi-component one-way diffusion model is coupled with the volume-translated Peng-Robinson equation of state to quantify the mass transfer between gas and liquid (e.g., heavy oil). Experimentally, the diffusion tests have been conducted with a PVT setup for one pure CO2-heavy oil system and one C3H8-CO2-heavy oil system under constant temperature and pressure, respectively. Both the gas-phase volume and liquid-phase swelling effect are simultaneously recorded during the measurement. As for the C3H8-CO2-heavy oil system, the gas chromatography method is employed to measure compositions of the gas phase at the beginning and end of the diffusion measurement, respectively. The effective diffusion coefficients are then determined by minimizing the discrepancy between the measured and calculated gas-phase composition at the end of diffusion measurement. The newly developed technique can quantify the contributions of each component of mixture to the bulk mass transfer from gas into liquid. The effective diffusion coefficient of C3H8 in the C3H8-CO2 mixture at 3945 ± 20 kPa and 293.85 K, i.e., 18.19 × 10^{ - 10} {{m}}^{ 2} / {{s}}, is found to be much higher than CO2 at 3950 ± 18 kPa and 293.85 K, i.e., 8.68 × 10^{ - 10} {{m}}^{ 2} / {{s}}. In comparison with pure CO2, the presence of C3H8 in the C3H8-CO2 mixture contributes to a faster diffusion of CO2 from the gas phase into heavy oil and consequently a larger swelling factor of heavy oil.

  2. Characteristics of surface acoustic waves in (11\\bar 2 0)ZnO film/ R-sapphire substrate structures

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhang, ShuYi; Xu, Jing; Xie, YingCai; Lan, XiaoDong

    2018-02-01

    (11\\bar 2 0)ZnO film/ R-sapphire substrate structure is promising for high frequency acoustic wave devices. The propagation characteristics of SAWs, including the Rayleigh waves along [0001] direction and Love waves along [1ī00] direction, are investigated by using 3 dimensional finite element method (3D-FEM). The phase velocity ( v p), electromechanical coupling coefficient ( k 2), temperature coefficient of frequency ( TCF) and reflection coefficient ( r) of Rayleigh wave and Love wave devices are theoretically analyzed. Furthermore, the influences of ZnO films with different crystal orientation on SAW properties are also investigated. The results show that the 1st Rayleigh wave has an exceedingly large k 2 of 4.95% in (90°, 90°, 0°) (11\\bar 2 0)ZnO film/ R-sapphire substrate associated with a phase velocity of 5300 m/s; and the 0th Love wave in (0°, 90°, 0°) (11\\bar 2 0)ZnO film/ R-sapphire substrate has a maximum k 2 of 3.86% associated with a phase velocity of 3400 m/s. And (11\\bar 2 0)ZnO film/ R-sapphire substrate structures can be used to design temperature-compensated and wide-band SAW devices. All of the results indicate that the performances of SAW devices can be optimized by suitably selecting ZnO films with different thickness and crystal orientations deposited on R-sapphire substrates.

  3. Measuring the flexoelectric coefficient of bulk barium titanate from a shock wave experiment

    NASA Astrophysics Data System (ADS)

    Hu, Taotao; Deng, Qian; Liang, Xu; Shen, Shengping

    2017-08-01

    In this paper, a phenomenon of polarization introduced by shock waves is experimentally studied. Although this phenomenon has been reported previously in the community of physics, this is the first time to link it to flexoelectricity, the coupling between electric polarization and strain gradients in dielectrics. As the shock waves propagate in a dielectric material, electric polarization is thought to be induced by the strain gradient at the shock front. First, we control the first-order hydrogen gas gun to impact and generate shock waves in unpolarized bulk barium titanate (BT) samples. Then, a high-precision oscilloscope is used to measure the voltage generated by the flexoelectric effect. Based on experimental results, strain elastic wave theory, and flexoelectric theory, a longitudinal flexoelectric coefficient of the bulk BT sample is calculated to be μ 11 = 17.33 × 10 - 6 C/m, which is in accord with the published transverse flexoelectric coefficient. This method effectively suppresses the majority of drawbacks in the quasi-static and low frequency dynamic techniques and provides more reliable results of flexoelectric behaviors.

  4. Large self-biased and multi-peak magnetoelectric coupling in transducer of Pb(Zr,Ti)O3 plates and H-type magnetization-graded ferromagnetic fork

    NASA Astrophysics Data System (ADS)

    Shen, Yongchun; Ling, Zhihao; Lu, Caijiang

    2015-12-01

    This paper develops a self-biased magnetoelectric (ME) composite Metglas/H-type-FeNi/PZT (MHFP) of H-type magnetization-graded Metglas/H-type-FeNi fork and piezoelectric Pb(Zr,Ti)O3 (PZT) plate. By using the magnetization-graded magnetostrictive layer and symmetrical H-type structure, giant self-biased ME coupling and multi-peak phenomenon are observed. The zero-biased ME voltage coefficient of MHFP composite reaches ˜63.8 V/cm Oe, which is ˜37.5 times higher than that of traditional FeNi/PZT laminate. The output ME voltage has a good near linear relation with Hac and is determined to be ˜5.1 V/Oe and ˜10.6 mV/Oe at ˜65 kHz and 1 kHz, respectively. These indicate that the proposed composite show promising applications for ME transducers and high-sensitivity self-biased magnetic sensors.

  5. Collisional rate coefficients of C3H2 and the determination of physical conditions in molecular clouds

    NASA Technical Reports Server (NTRS)

    Avery, L. W.; Green, Sheldon

    1989-01-01

    Collisional excitation rates for C3H2, calculated using the coupled states approximation at temperatures of 10-30 K, are presented. C3H2 produces a number of spectral line pairs whose members are close together in frequency but arise from levels with different excitation energies. The rates are used in statistical equilibrium calculations to illustrate the excitation properties and density-dependent behavior of various C3H2 line ratios.

  6. Ultrasonic attenuation in superconducting molybdenum-rhenium alloys.

    NASA Technical Reports Server (NTRS)

    Ashkin, M.; Deis, D. W.; Gottlieb, M.; Jones, C. K.

    1971-01-01

    Investigation of longitudinal sound attenuation in superconducting Mo-Re alloys as a function of temperature, magnetic field, and frequency. Evaporated thin film CdS transducers were used for the measurements at frequencies up to 3 GHz. The normal state attenuation coefficient was found to be proportional to the square of frequency over this frequency range. Measurements in zero magnetic field yielded a value of the energy gap parameter close to the threshold value of 3.56 kTc, appropriate to a weakly coupled dirty limit superconductor.

  7. Electron-phonon interaction in the binary superconductor lutetium carbide LuC2 via first-principles calculations

    NASA Astrophysics Data System (ADS)

    Dilmi, S.; Saib, S.; Bouarissa, N.

    2018-06-01

    Structural, electronic, electron-phonon coupling and superconducting properties of the intermetallic compound LuC2 are investigated by means of ab initio pseudopotential plane wave method within the generalized gradient approximation. The calculated equilibrium lattice parameters yielded a very good accord with experiment. There is no imaginary phonon frequency in the whole Brillouin zone supporting thus the dynamical stability in the material of interest. The average electron-phonon coupling parameter is found to be 0.59 indicating thus a weak-coupling BCS superconductor. Using a reasonable value of μ* = 0.12 for the effective Coulomb repulsion parameter, the superconducting critical temperature Tc is found to be 3.324 which is in excellent agreement with the experimental value of 3.33 K. The effect of the spin-orbit coupling on the superconducting properties of the material of interest has been examined and found to be weak.

  8. Supersonic jet cooled rotational spectrum of 2,4-difluorophenol

    NASA Astrophysics Data System (ADS)

    Nair, K. P. Rajappan; Dewald, David; Wachsmuth, Dennis; Grabow, Jens-Uwe

    2017-05-01

    The microwave spectrum of the cis form of aromatic 2,4-difluorophenol (DFP) has been recorded and analyzed in the frequency range of 5-25 GHz using a pulsed-jet Fourier transform microwave spectrometer. Rotational transitions were measured for the parent and all unique single 13C substituted isotopologues and 18O in natural abundance and on enriched deuterium species on the hydroxyl group. The rotational (MHz), centrifugal distortion (kHz), and quadrupole coupling constants (MHz) in deuterium species were determined. The rotational constants for the parent species are obtained as A = 3125.04158(43) MHz, B = 1290.154481(54) MHz, C = 913.197424(36) MHz, DJ = 0.020899(162) kHz, DK = 0.9456(100) kHz, DJK = 0.09273(65) kHz, d1 = -0.00794(14) kHz, d2 = -0.002356(93) kHz and for the deuterated species A = 3125.38579(44) MHz, B = 1261.749784(48) MHz, C = 898.927184(27) MHz, DJ = 0.02096(19) kHz, DK = 0.379(74) kHz, DJK = 0.0880(11) kHz, d1 = -0.00691(11) kHz, d2 = -0.00183(11) kHz. The deuterium quadrupole coupling constants are χaa = -0.0109(33) MHz, and (χbb - χcc) = 0.2985(59) MHz. The rs substitution structure was determined using the measured rotational constants of the isotopologues, a nonlinear least squares fit was performed to obtain the best fit gas phase r0 effective structure. Supporting ab initio (MP2) and density functional calculations provided consistent values for the rotational parameters, and molecular structure.

  9. Enhanced electrostricitive properties and thermal endurance of textured (Bi0.5Na0.5)TiO3-BaTiO3-(K0.5Na0.5)NbO3 ceramics

    NASA Astrophysics Data System (ADS)

    Hao, Jigong; Ye, Chenggen; Shen, Bo; Zhai, Jiwei

    2013-08-01

    Textured 0.92(Bi0.5Na0.5)TiO3-0.06BaTiO3-0.02(K0.5Na0.5)NbO3 (BNT-BT-KNN) ceramics have been produced by tape casting with pure-phase (Bi0.5Na0.5)TiO3 templates. Through the approach of texture construction, enhanced electrostrictive response was obtained with an electrostrictive coefficient Q33 (˜0.024 m4/C2 at 60 kV/cm) and good thermostability comparable with that of traditional Pb-based electrostrictors. Even at an electric-field as low as 35 kV/cm or at a temperature as high as 180 °C, samples still possess a large electrostrictive response with Q33 > 0.022 m4/C2, suggesting it is very promising for practical applications as a lead-free electrostrictive material owning to its wide usage range. Moreover, reducing the applied electric-filed or increasing temperature can both induce the predominant to pure electrostriction transition due to the little contributions of electrostriction strain from ferroelectric domain switching. Our work may provide a new recipe for designing high-performance BNT-based lead-free electrostrictive materials by means of texture construction.

  10. Reliability and validity of the Korean version of organizational justice questionnaire.

    PubMed

    Park, Hanul; Lee, Kang-Sook; Park, Yong-Jun; Lee, Dong-Joon; Lee, Hyun-Kyung

    2018-01-01

    Many studies show that organizational justice (OJ) is related to psychological determinants of employee health. To prevent health problems related to OJ in Korean workplaces and to accurately measure OJ, we developed the Korean version of the Organizational Justice Questionnaire (K-OJQ) and assessed its validity and reliability. A questionnaire draft of the K-OJQ was developed using back-translation methods, which was preliminary tested by 32 employees in Korea. Feedback was received and the K-OJQ was finalized. This study used data from 303 workers (172 males, 131 females) in Korea using the K-OJQ, job stress, and lifestyle questionnaires. Cronbach's α coefficients of the internal consistency reliability was 0.92 for procedural justice and 0.94 for interactional justice. Factor analyses using SPSS 24 and Amos 23 extracted two expected factors, named procedural justice (7 items; range, 1.0-5.0) and interactional justice (6 items; range, 1.0-5.0) and showed a reliable fit (χ 2  = 182; p  = .000; GFI = .912; AGFI = .877; CFI = .965; RMSEA = .077). Furthermore, higher procedural justice and interactional justice levels were correlated with lower job demand (- 0.33; - 0.36), insufficient job control (- 0.36; - 0.41), interpersonal conflict (- 0.45; - 0.51), job insecurity (- 0.33; - 0.34), organizational system (- 0.64; - 0.64), and lack of reward (- 0.55; - 0.63). The K-OJQ was objectively validated through statistical methods.

  11. 7 CFR 3300.10 - Measurement of the K-coefficient of an insulated body.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Measurement of the K-coefficient of an insulated body... SPECIAL EQUIPMENT Procedures for Testing of Equipment § 3300.10 Measurement of the K-coefficient of an insulated body. The K-coefficient shall be measured according to the procedures in ATP, Annex 1, Appendix 2...

  12. 7 CFR 3300.10 - Measurement of the K-coefficient of an insulated body.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Measurement of the K-coefficient of an insulated body... SPECIAL EQUIPMENT Procedures for Testing of Equipment § 3300.10 Measurement of the K-coefficient of an insulated body. The K-coefficient shall be measured according to the procedures in ATP, Annex 1, Appendix 2...

  13. 7 CFR 3300.10 - Measurement of the K-coefficient of an insulated body.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Measurement of the K-coefficient of an insulated body... SPECIAL EQUIPMENT Procedures for Testing of Equipment § 3300.10 Measurement of the K-coefficient of an insulated body. The K-coefficient shall be measured according to the procedures in ATP, Annex 1, Appendix 2...

  14. 7 CFR 3300.10 - Measurement of the K-coefficient of an insulated body.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Measurement of the K-coefficient of an insulated body... SPECIAL EQUIPMENT Procedures for Testing of Equipment § 3300.10 Measurement of the K-coefficient of an insulated body. The K-coefficient shall be measured according to the procedures in ATP, Annex 1, Appendix 2...

  15. 7 CFR 3300.10 - Measurement of the K-coefficient of an insulated body.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Measurement of the K-coefficient of an insulated body... SPECIAL EQUIPMENT Procedures for Testing of Equipment § 3300.10 Measurement of the K-coefficient of an insulated body. The K-coefficient shall be measured according to the procedures in ATP, Annex 1, Appendix 2...

  16. Coupling intensity between discharge and magnetic circuit in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Wei, Liqiu; Yang, Xinyong; Ding, Yongjie; Yu, Daren; Zhang, Chaohai

    2017-03-01

    Coupling oscillation is a newly discovered plasma oscillation mode that utilizes the coupling between the discharge circuit and magnetic circuit, whose oscillation frequency spectrum ranges from several kilohertz to megahertz. The coupling coefficient parameter represents the intensity of coupling between the discharge and magnetic circuits. According to previous studies, the coupling coefficient is related to the material and the cross-sectional area of the magnetic coils, and the magnetic circuit of the Hall thruster. However, in our recent study on coupling oscillations, it was found that the Hall current equivalent position and radius have important effects on the coupling intensity between the discharge and magnetic circuits. This causes a difference in the coupling coefficient for different operating conditions of Hall thrusters. Through non-intrusive methods for measuring the Hall current equivalent radius and the axial position, it is found that with an increase in the discharge voltage and magnetic field intensity, the Hall current equivalent radius increases and its axial position moves towards the exit plane. Thus, both the coupling coefficient and the coupling intensity between the discharge and magnetic circuits increase. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.

  17. Using the HELIOS facility for assessment of bundle-jacket thermal coupling in a CICC

    NASA Astrophysics Data System (ADS)

    Lacroix, B.; Rousset, B.; Cloez, H.; Decool, P.; Duchateau, J. L.; Hoa, C.; Luchier, N.; Nicollet, S.; Topin, F.

    2016-12-01

    In a Cable In Conduit Conductor (CICC) cooled by forced circulation of supercritical helium, the heat exchange in the bundle region can play a significant role for conductor safe operation, while remaining a quite uncertain parameter. Heat exchange between bundle and jacket depends on the relative contributions of convective heat transfer due to the helium flow inside the bundle and of thermal resistance due to the wrappings between the cable and the conduit. In order to qualify this thermal coupling at realistic operating conditions, a dedicated experiment on a 1.2 m sample of ITER Toroidal Field (TF) dummy conductor was designed and performed in the HELIOS test facility at CEA Grenoble. Several methods were envisaged, and the choice was made to assess bundle-jacket heat transfer coefficient by measuring the temperature of a solid copper cylinder inserted over the conductor jacket and submitted to heat deposition on its outer surface. The mock-up was manufactured and tested in spring 2015. Bundle-jacket heat transfer coefficient was found in the range 300-500 W m-2 K-1. Results analysis suggests that the order of magnitude of convective heat transfer coefficient inside bundle is closer to Colburn-Reynolds analogy than to Dittus-Boelter correlation, and that bundle-jacket thermal coupling is mainly limited by thermal resistance due to wrappings. A model based on an equivalent layer of stagnant helium between wraps and jacket was proposed and showed a good consistency with the experiment, with relevant values for the helium layer thickness.

  18. Accurate virial coefficients of gaseous krypton from state-of-the-art ab initio potential and polarizability of the krypton dimer

    NASA Astrophysics Data System (ADS)

    Song, Bo; Waldrop, Jonathan M.; Wang, Xiaopo; Patkowski, Konrad

    2018-01-01

    We have developed a new krypton-krypton interaction-induced isotropic dipole polarizability curve based on high-level ab initio methods. The determination was carried out using the coupled-cluster singles and doubles plus perturbative triples method with very large basis sets up to augmented correlation-consistent sextuple zeta as well as the corrections for core-core and core-valence correlation and relativistic effects. The analytical function of polarizability and our recently constructed reference interatomic potential [J. M. Waldrop et al., J. Chem. Phys. 142, 204307 (2015)] were used to predict the thermophysical and electromagnetic properties of krypton gas. The second pressure, acoustic, and dielectric virial coefficients were computed for the temperature range of 116 K-5000 K using classical statistical mechanics supplemented with high-order quantum corrections. The virial coefficients calculated were compared with the generally less precise available experimental data as well as with values computed from other potentials in the literature {in particular, the recent highly accurate potential of Jäger et al. [J. Chem. Phys. 144, 114304 (2016)]}. The detailed examination in this work suggests that the present theoretical prediction can be applied as reference values in disciplines involving thermophysical and electromagnetic properties of krypton gas.

  19. On the effect of polarization direction on the converse magnetoelectric response of multiferroic composite rings

    NASA Astrophysics Data System (ADS)

    Youssef, George; Lopez, Mario; Newacheck, Scott

    2017-03-01

    The application domain of composite multiferroic materials with magnetoelectric coupling has been widening on the nano-, micro- and macro-scales. Generally, a composite multiferroic material consists of two, or more, layers of a piezoelectric material and a magnetostrictive material. In turn, the proliferation of multiferroics in more applications is accompanied by a keen focus on understanding the effect of material phases, geometry, bonding interface and arrangement of phases by performing theoretical, numerical and experimental studies to fundamentally elucidate the response. In this experimental study, a focus is given to exploit the effect of the polarization direction of the piezoelectric phase on the overall converse magnetoelectric (CME) response of a composite concentric PZT/Terfenol-D structure. Specifically, radially and axially polarized PZT rings were concentrically bonded to the outer surface of two Terfenol-D rings, respectively. It was found that the maximum, near resonance, CME coefficient of the axially-poled configuration is 443 mG V-1 when tested at 34 kHz, 80 kV m-1 electric field and 784 Oe bias magnetic field. On the other hand, the near resonance CME value for the radially-poled configuration remained nearly constant at 281.9 ± 5.3 mG V-1 between bias magnetic fields of 532 Oe and 1524 Oe at AC electric field of 80 kV m-1 with a frequency of 36 kHz. Interestingly, the CME coefficient of radially-poled composite structure exhibits a saturation behavior, while the CME coefficient for axially-poled structure is distinguished by a single peak. The difference in the response is attributed to the amount strain transduction due to the polarization direction.

  20. Unexpected Effects of K+ and Adenosine Triphosphate on the Thermal Stability of Na+,K+-ATPase.

    PubMed

    Placenti, M Agueda; Kaufman, Sergio B; González Flecha, F Luis; González Lebrero, Rodolfo M

    2017-05-18

    Na + ,K + -ATPase is an integral membrane protein which couples ATP hydrolysis to the transport of three Na + out and two K + into the cell. The aim of this work is to characterize the effect of K + , ATP, and Mg 2+ (essential activator) on the Na + ,K + -ATPase thermal stability. Under all conditions tested, thermal inactivation of the enzyme is concomitant with a structural change involving the ATP binding site and membrane-associated regions. Both ligands exert a clear stabilizing effect due to both enthalpic and entropic contributions. Competition experiments between ATP and K + showed that, when ATP is present, the inactivation rate coefficient exhibits a biphasic dependence on K + concentration. At low [K + ], destabilization of the enzyme is observed, while stabilization occurred at larger cation concentrations. This is not expected for a simple competition between the enzyme and two ligands that individually protect the enzyme. A model that includes enzyme species with none, one, or two K + and/or one molecule of ATP bound explains the experimental data. We concluded that, despite both ligands stabilizing the enzyme, the species with one K + and one ATP simultaneously bound is unstable.

  1. Electrical and thermoelectric transport properties of two-dimensional fermionic systems with k-cubic spin-orbit coupling.

    PubMed

    Mawrie, Alestin; Verma, Sonu; Ghosh, Tarun Kanti

    2017-09-01

    We investigate effect of <i>k</i>-cubic spin-orbit interaction on electrical and thermoelectric transport properties of two-dimensional fermionic systems. We obtain exact analytical expressions of the inverse relaxation time (IRT) and the Drude conductivity for long-range Coulomb and short-range delta scattering potentials. The IRT reveals that the scattering is completely suppressed along the three directions θ = (2n+1)π/3 with n=1,2,3. We also obtain analytical results of the thermopower and thermal conductivity at low temperature. The thermoelectric transport coefficients obey the Wiedemann-Franz law, even in the presence of <i>k</i>-cubic Rashba spin-orbit interaction (RSOI) at low temperature. In the presence of quantizing magnetic field, the signature of the RSOI is revealed through the appearance of the beating pattern in the Shubnikov-de Haas (SdH) oscillations of thermopower and thermal conductivity in low magnetic field regime. The empirical formulae for the SdH oscillation frequencies accurately describe the locations of the beating nodes. The beating pattern in magnetothermoelectric measurement can be used to extract the spin-orbit coupling constant. © 2017 IOP Publishing Ltd.

  2. Electrical and thermoelectric transport properties of two-dimensional fermionic systems with k-cubic spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Mawrie, Alestin; Verma, Sonu; Kanti Ghosh, Tarun

    2017-11-01

    We investigate the effect of k-cubic spin-orbit interaction on the electrical and thermoelectric transport properties of two-dimensional fermionic systems. We obtain exact analytical expressions of the inverse relaxation time (IRT) and the Drude conductivity for long-range Coulomb and short-range delta scattering potentials. The IRT reveals that the scattering is completely suppressed along the three directions θ^\\prime = (2n+1)π/3 with n=1, 2, 3 . We also obtain analytical results of the thermopower and thermal conductivity at low temperature. The thermoelectric transport coefficients obey the Wiedemann-Franz law, even in the presence of k-cubic Rashba spin-orbit interaction (RSOI) at low temperature. In the presence of a quantizing magnetic field, the signature of the RSOI is revealed through the appearance of the beating pattern in the Shubnikov-de Haas (SdH) oscillations of thermopower and thermal conductivity in the low magnetic field regime. The empirical formulae for the SdH oscillation frequencies accurately describe the locations of the beating nodes. The beating pattern in magnetothermoelectric measurement can be used to extract the spin-orbit coupling constant.

  3. Ferroelectric, piezoelectric, and leakage current properties of (K0.48Na0.48Li0.04)(Nb0.775Ta0.225)O3 thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, D. Y.; Lin, D. M.; Kwok, K. W.; Chan, N. Y.; Dai, J. Y.; Li, S.; Chan, H. L. W.

    2011-01-01

    Lead-free (K0.48Na0.48Li0.04)(Nb0.775Ta0.225)O3 (KNLNT) thin films were deposited on Pt(111)/Ti/SiO2/Si(001) substrates using pulsed laser deposition. The film exhibited a well-defined ferroelectric hysteresis loop with a remnant polarization 2Pr of 22.6 μC/cm2 and a coercive field Ec of 10.3 kV/mm. The effective piezoelectric coefficient d33,f of the KNLNT thin films was found to be about 49 pm/V by piezoelectric force microscope. The dominant conduction mechanisms of Au/KNLNT/Pt thin film capacitor were determined to be bulk-limited space-charge-limited-current and Poole-Frenkle emission at low and high electric field strengths, respectively, within a measured temperature range of 130-370 K.

  4. An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling

    PubMed Central

    Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min

    2017-01-01

    The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10−7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications. PMID:28604610

  5. Thermal coefficients of the methyl groups within ubiquitin

    PubMed Central

    Sabo, T Michael; Bakhtiari, Davood; Walter, Korvin F A; McFeeters, Robert L; Giller, Karin; Becker, Stefan; Griesinger, Christian; Lee, Donghan

    2012-01-01

    Physiological processes such as protein folding and molecular recognition are intricately linked to their dynamic signature, which is reflected in their thermal coefficient. In addition, the local conformational entropy is directly related to the degrees of freedom, which each residue possesses within its conformational space. Therefore, the temperature dependence of the local conformational entropy may provide insight into understanding how local dynamics may affect the stability of proteins. Here, we analyze the temperature dependence of internal methyl group dynamics derived from the cross-correlated relaxation between dipolar couplings of two CH bonds within ubiquitin. Spanning a temperature range from 275 to 308 K, internal methyl group dynamics tend to increase with increasing temperature, which translates to a general increase in local conformational entropy. With this data measured over multiple temperatures, the thermal coefficient of the methyl group order parameter, the characteristic thermal coefficient, and the local heat capacity were obtained. By analyzing the distribution of methyl group thermal coefficients within ubiquitin, we found that the N-terminal region has relatively high thermostability. These results indicate that methyl groups contribute quite appreciably to the total heat capacity of ubiquitin through the regulation of local conformational entropy. PMID:22334336

  6. Interaction of Ethyl Alcohol Vapor with Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2006-01-01

    We investigated the uptake of ethyl alcohol (ethanol) vapor by sulfuric acid solutions over the range approx.40 to approx.80 wt % H2SO4 and temperatures of 193-273 K. Laboratory studies used a fast flow-tube reactor coupled to an electron-impact ionization mass spectrometer for detection of ethanol and reaction products. The uptake coefficients ((gamma)) were measured and found to vary from 0.019 to 0.072, depending upon the acid composition and temperature. At concentrations greater than approx.70 wt % and in dilute solutions colder than 220 K, the values approached approx.0.07. We also determined the effective solubility constant of ethanol in approx.40 wt % H2SO4 in the temperature range 203-223 K. The potential implications to the budget of ethanol in the global troposphere are briefly discussed.

  7. Quenching of para-H{sub 2} with an ultracold antihydrogen atom H{sub 1s}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sultanov, Renat A.; Guster, Dennis; Adhikari, Sadhan K.

    2010-02-15

    In this work we report the results of calculation for quantum-mechanical rotational transitions in molecular hydrogen, H{sub 2}, induced by an ultracold ground-state antihydrogen atom H{sub 1s}. The calculations are accomplished using a nonreactive close-coupling quantum-mechanical approach. The H{sub 2} molecule is treated as a rigid rotor. The total elastic-scattering cross section {sigma}{sub el}({epsilon}) at energy {epsilon}, state-resolved rotational transition cross sections {sigma}{sub jj}{sup '}({epsilon}) between states j and j{sup '}, and corresponding thermal rate coefficients k{sub jj}{sup '}(T) are computed in the temperature range 0.004 K < or approx. T < or approx. 4 K. Satisfactory agreement with othermore » calculations (variational) has been obtained for {sigma}{sub el}({epsilon}).« less

  8. β-FeSi II as a Kankyo (environmentally friendly) semiconductor for solar cells in the space application

    NASA Astrophysics Data System (ADS)

    Makita, Yunosuke; Ootsuka, Teruhisa; Fukuzawa, Yasuhiro; Otogawa, Naotaka; Abe, Hironori; Liu, Zhengxin; Nakayama, Yasuhiko

    2006-04-01

    β-FeSi II defined as a Kankyo (Environmentally Friendly) semiconductor is regarded as one of the 3-rd generation semiconductors after Si and GaAs. Versatile features about β-FeSi II are, i) high optical absorption coefficient (>10 5cm -1), ii) chemical stability at temperatures as high as 937°C, iii) high thermoelectric power (Seebeck coefficient of k ~ 10 -4/K), iv) a direct energy band-gap of 0.85 eV, corresponding to 1.5μm of quartz optical fiber communication, v) lattice constant nearly well-matched to Si substrate, vi) high resistance against the humidity, chemical attacks and oxidization. Using β-FeSi II films, one can fabricate various devices such as Si photosensors, solar cells and thermoelectric generators that can be integrated basically on Si-LSI circuits. β-FeSi II has high resistance against the exposition of cosmic rays and radioactive rays owing to the large electron-empty space existing in the electron cloud pertinent to β-FeSi II. Further, the specific gravity of β-FeSi II (4.93) is placed between Si (2.33) and GaAs ((5.33). These features together with the aforementioned high optical absorption coefficient are ideal for the fabrication of solar cells to be used in the space. To demonstrate fascinating capabilities of β-FeSi II, one has to prepare high quality β-FeSi II films. We in this report summarize the current status of β-FeSi II film preparation technologies. Modified MBE and facing-target sputtering (FTS) methods are principally discussed. High quality β-FeSi II films have been formed on Si substrates by these methods. Preliminary structures of n-β-FeSi II /p-Si and p-β-FeSi II /n-Si solar cells indicated an energy conversion efficiency of 3.7%, implying that β-FeSi II is practically a promising semiconductor for a photovoltaic device.

  9. Anisotropic thermal expansion in a metal-organic framework.

    PubMed

    Madsen, Solveig Røgild; Lock, Nina; Overgaard, Jacob; Iversen, Bo Brummerstedt

    2014-06-01

    Ionothermal reaction between Mn(II)(acetate)2·4H2O and 1,3,5-benzenetricarboxylic acid (H3BTC) in either of the two ionic liquids 1-ethyl-3-methylimidazolium bromide (EMIMBr) and 1-ethyl-3-methylimidazolium tosylate (EMIMOTs) resulted in the formation of the new metal-organic framework (MOF) EMIM[Mn(II)BTC] (BTC = 1,3,5-benzenetricarboxylate). The compound crystallizes in the orthorhombic space group Pbca with unit-cell parameters of a = 14.66658 (12), b = 12.39497 (9), c = 16.63509 (14) Å at 100 K. Multi-temperature single-crystal (15-340 K) and powder X-ray diffraction studies (100-400 K) reveal strongly anisotropic thermal expansion properties. The linear thermal expansion coefficients, αL(l), attain maximum values at 400 K along the a- and b-axis, with αL(a) = 115 × 10(-6) K(-1) and αL(b) = 75 × 10(-6) K(-1). At 400 K a negative thermal expansion coefficient of -40 × 10(-6) K(-1) is observed along the c-axis. The thermal expansion is coupled to a continuous deformation of the framework, which causes the structure to expand in two directions. Due to the rigidity of the linker, the expansion in the ab plane causes the network to contract along the c-axis. Hirshfeld surface analysis has been used to describe the interaction between the framework structure and the EMIM cation that resides within the channel. This reveals a number of rather weak interactions and one governing hydrogen-bonding interactions.

  10. Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer

    PubMed Central

    Xu, Jie; Lin, Shuyu; Ma, Yan; Tang, Yifan

    2017-01-01

    Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer. PMID:29292785

  11. Non-adiabatic quantum reactive scattering in hyperspherical coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendrick, Brian K.

    A new electronically non-adiabatic quantum reactive scattering methodology is presented based on a time-independent coupled channel formalism and the adiabatically adjusting principal axis hyperspherical coordinates of Pack and Parker [J. Chem. Phys. 87, 3888 (1987)]. The methodology computes the full state-to-state scattering matrix for A + B 2(v, j) ↔ AB(v', j') + B and A + AB(v, j) → A + AB(v', j') reactions that involve two coupled electronic states which exhibit a conical intersection. The methodology accurately treats all six degrees of freedom relative to the center-of-mass which includes non-zero total angular momentum J and identical particle exchangemore » symmetry. The new methodology is applied to the ultracold hydrogen exchange reaction for which large geometric phase effects have been recently reported [B. K. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Rate coefficients for the H/D + HD(v = 4, j = 0) → H/D + HD(v', j') reactions are reported for collision energies between 1 μK and 100 K (total energy ≈1.9 eV). A new diabatic potential energy matrix is developed based on the Boothroyd, Keogh, Martin, and Peterson (BKMP2) and double many body expansion plus single-polynomial (DSP) adiabatic potential energy surfaces for the ground and first excited electronic states of H 3, respectively. The rate coefficients computed using the new non-adiabatic methodology and diabatic potential matrix reproduce the recently reported rates that include the geometric phase and are computed using a single adiabatic ground electronic state potential energy surface (BKMP2). The dramatic enhancement and suppression of the ultracold rates due to the geometric phase are confirmed as well as its effects on several shape resonances near 1 K. In conclusion, the results reported here represent the first fully non-adiabatic quantum reactive scattering calculation for an ultracold reaction and validate the importance of the geometric phase on the Wigner threshold behavior.« less

  12. Non-adiabatic quantum reactive scattering in hyperspherical coordinates

    NASA Astrophysics Data System (ADS)

    Kendrick, Brian K.

    2018-01-01

    A new electronically non-adiabatic quantum reactive scattering methodology is presented based on a time-independent coupled channel formalism and the adiabatically adjusting principal axis hyperspherical coordinates of Pack and Parker [J. Chem. Phys. 87, 3888 (1987)]. The methodology computes the full state-to-state scattering matrix for A + B2(v , j) ↔ AB(v ', j') + B and A + AB(v , j) → A + AB(v ', j') reactions that involve two coupled electronic states which exhibit a conical intersection. The methodology accurately treats all six degrees of freedom relative to the center-of-mass which includes non-zero total angular momentum J and identical particle exchange symmetry. The new methodology is applied to the ultracold hydrogen exchange reaction for which large geometric phase effects have been recently reported [B. K. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Rate coefficients for the H/D + HD(v = 4, j = 0) → H/D + HD(v ', j') reactions are reported for collision energies between 1 μK and 100 K (total energy ≈1.9 eV). A new diabatic potential energy matrix is developed based on the Boothroyd, Keogh, Martin, and Peterson (BKMP2) and double many body expansion plus single-polynomial (DSP) adiabatic potential energy surfaces for the ground and first excited electronic states of H3, respectively. The rate coefficients computed using the new non-adiabatic methodology and diabatic potential matrix reproduce the recently reported rates that include the geometric phase and are computed using a single adiabatic ground electronic state potential energy surface (BKMP2). The dramatic enhancement and suppression of the ultracold rates due to the geometric phase are confirmed as well as its effects on several shape resonances near 1 K. The results reported here represent the first fully non-adiabatic quantum reactive scattering calculation for an ultracold reaction and validate the importance of the geometric phase on the Wigner threshold behavior.

  13. Non-adiabatic quantum reactive scattering in hyperspherical coordinates

    DOE PAGES

    Kendrick, Brian K.

    2018-01-28

    A new electronically non-adiabatic quantum reactive scattering methodology is presented based on a time-independent coupled channel formalism and the adiabatically adjusting principal axis hyperspherical coordinates of Pack and Parker [J. Chem. Phys. 87, 3888 (1987)]. The methodology computes the full state-to-state scattering matrix for A + B 2(v, j) ↔ AB(v', j') + B and A + AB(v, j) → A + AB(v', j') reactions that involve two coupled electronic states which exhibit a conical intersection. The methodology accurately treats all six degrees of freedom relative to the center-of-mass which includes non-zero total angular momentum J and identical particle exchangemore » symmetry. The new methodology is applied to the ultracold hydrogen exchange reaction for which large geometric phase effects have been recently reported [B. K. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Rate coefficients for the H/D + HD(v = 4, j = 0) → H/D + HD(v', j') reactions are reported for collision energies between 1 μK and 100 K (total energy ≈1.9 eV). A new diabatic potential energy matrix is developed based on the Boothroyd, Keogh, Martin, and Peterson (BKMP2) and double many body expansion plus single-polynomial (DSP) adiabatic potential energy surfaces for the ground and first excited electronic states of H 3, respectively. The rate coefficients computed using the new non-adiabatic methodology and diabatic potential matrix reproduce the recently reported rates that include the geometric phase and are computed using a single adiabatic ground electronic state potential energy surface (BKMP2). The dramatic enhancement and suppression of the ultracold rates due to the geometric phase are confirmed as well as its effects on several shape resonances near 1 K. In conclusion, the results reported here represent the first fully non-adiabatic quantum reactive scattering calculation for an ultracold reaction and validate the importance of the geometric phase on the Wigner threshold behavior.« less

  14. Thermodynamic analysis of active sodium and potassium transport in the frog corneal epithelium.

    PubMed

    Candia, O A; Reinach, P S

    1982-06-01

    The formalism of linear nonequilibrium thermodynamics for a three-flow system was applied to the isolated frog corneal epithelium to study the coupling between metabolism and the Na-K transport system across this layer. There is little or no net ion transport across the isolated frog corneal epithelium bathed in Na2SO4 Ringer. Addition of amphotericin B to the tear side solution increases apical membrane permeability, which results in a net Na transport (from tear to stroma) and a net K transport in the opposite direction. Corneas were mounted in a modified Ussing chamber that permitted the simultaneous measurements of electrical parameters and O2 consumption by means of Clark-type oxygen electrodes. The overall degree of coupling, q, of the Na-K transport system to metabolism was calculated from measuring the suprabasal O2 consumption rate at "static head" and "level flow" conditions and by a second independent technique. Measurements of electrical conductance used in conjunction with other previously measured parameters allowed the calculation of the affinity, A, of the metabolic reaction driving transport, all phenomenological coefficients, and the electromotive forces of sodium (ENa) and potassium transport (EK). Values of q determined by the two techniques agreed (q = 0.80 and 0.84, respectively). This indicates incomplete coupling and a variable stoichiometric relationship among O2 consumption rate, net Na transport, and net K transport. The value calculated for A was 70.5 kcal.mol-1, for ENa 142.5 mV, and for EK -34.9 mV.

  15. Transcutaneous RF-Powered Implantable Minipump Driven by a Class-E Transmitter

    PubMed Central

    Moore, William H.; Holschneider, Daniel P.; Givrad, Tina K.

    2007-01-01

    We describe the design and testing of an inductive coupling system used to power an implantable minipump for applications in ambulating rats. A 2 MHz class-E oscillator driver powered a coil transmitter wound around a 33-cm-diameter rat cage. A receiver coil, a filtered rectifier, and a voltage-sensitive switch powered the implant. The implant DC current at the center of the primary coil (5.1 V) exceeded the level required to activate the solenoid valve in the pump. The variations of the implant current in the volume of the primary coil reflected the variations of the estimated coupling coefficient between the two coils. The pump could be activated in-vivo, while accommodating the vertical and horizontal movements of the animal. Advantages of this design include a weight reduction for the implant, an operation independent from a finite power source, and a remote activation/deactivation. PMID:16916107

  16. Transcutaneous RF-powered implantable minipump driven by a class-E transmitter.

    PubMed

    Moore, William H; Holschneider, Daniel P; Givrad, Tina K; Maarek, Jean-Michel I

    2006-08-01

    We describe the design and testing of an inductive coupling system used to power an implantable minipump for applications in ambulating rats. A 2 MHz class-E oscillator driver powered a coil transmitter wound around a 33-cm-diameter rat cage. A receiver coil, a filtered rectifier, and a voltage-sensitive switch powered the implant. The implant DC current at the center of the primary coil (5.1 V) exceeded the level required to activate the solenoid valve in the pump. The variations of the implant current in the volume of the primary coil reflected the variations of the estimated coupling coefficient between the two coils. The pump could be activated in-vivo, while accommodating the vertical and horizontal movements of the animal. Advantages of this design include a weight reduction for the implant, an operation independent from a finite power source, and a remote activation/deactivation.

  17. Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Derek D.; Greenfield, Michael L., E-mail: greenfield@egr.uri.edu

    2014-01-21

    The dynamics properties of a new “next generation” model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxationmore » rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ∼42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion.« less

  18. Organ dose conversion coefficients for pediatric reference computational phantoms in external photon radiation fields

    NASA Astrophysics Data System (ADS)

    Chang, Lienard A.

    In the event of a radiological accident or attack, it is important to estimate the organ doses to those exposed. In general, it is difficult to measure organ dose directly in the field and therefore dose conversion coefficients (DCC) are needed to convert measurable values such as air kerma to organ dose. Previous work on these coefficients has been conducted mainly for adults with a focus on radiation protection workers. Hence, there is a large gap in the literature for pediatric values. This study coupled a Monte Carlo N-Particle eXtended (MCNPX) code with International Council of Radiological Protection (ICRP)-adopted University of Florida and National Cancer Institute pediatric reference phantoms to calculate a comprehensive list of dose conversion coefficients (mGy/mGy) to convert air-kerma to organ dose. Parameters included ten phantoms (newborn, 1-year, 5-year, 10-year, 15-year old male and female), 28 organs over 33 energies between 0.01 and 20 MeV in six (6) irradiation geometries relevant to a child who might be exposed to a radiological release: anterior-posterior (AP), posterior-anterior (PA), right-lateral (RLAT), left-lateral (LLAT), rotational (ROT), and isotropic (ISO). Dose conversion coefficients to the red bone marrow over 36 skeletal sites were also calculated. It was hypothesized that the pediatric organ dose conversion coefficients would follow similar trends to the published adult values as dictated by human anatomy, but be of a higher magnitude. It was found that while the pediatric coefficients did yield similar patterns to that of the adult coefficients, depending on the organ and irradiation geometry, the pediatric values could be lower or higher than that of the adult coefficients.

  19. Acoustic anisotropy in uniaxial tungsten bronze ferroelectric single crystals studied by Brillouin light scattering

    NASA Astrophysics Data System (ADS)

    Ko, Jae-Hyeon; Lushnikov, S. G.; Kim, Do Han; Kojima, Seiji; Jun, Byeong-Eog; Hwang, Yoon Hwae

    2008-11-01

    Acoustic properties were investigated for four tungsten bronze (TB) uniaxial ferroelectric crystals, i.e., (Sr0.61Ba0.39)5Nb10O30 (SBN61), Cu-doped (K0.5Na0.5)1.0(Sr0.75Ba0.25)4.5Nb10O30 (KNSBN:Cu), K5.80Li3.82Nb10.12O30, and K4.74Li3.07Nb10.44O30 of which the spontaneous polarization is directed along the polar c axis. Large acoustic anisotropy between the two elastic constants C11 and C33 have been observed from all samples. C33 exhibits a significant softening on approaching the diffuse phase transition temperature from high-temperature side while C11 does not show any substantial change in the same temperature range. This softening is accompanied by substantial growth of hypersonic damping, appearance and growth of central peak (CP), and slowing down of the relevant dynamics of CP represented by the reducing half width. All these results indicate that the lattice motions along the c axis couple strongly to the one-component order parameter of the polar nanoregions (PNRs) or precursor polar clusters which form and grow below a certain temperature in the paraelectric phase. The inverse dielectric constant measured along the c axis of SBN61 and KNSBN:Cu can be described by two linear regions divided by a crossover temperature at which the change in the magnitude of dipole moments and the strength of the dipole couplings are expected due to the formation of PNRs. C33 of SBN61 becomes continuously softened upon cooling even when the temperature crosses the Burns temperature TB at which PNRs begin to appear. It may suggest that additional relaxation process other than that of PNRs may exist at high temperatures above TB and couple to the longitudinal acoustic waves propagating along the polar axis. Recent observation of a single-particle relaxation at high temperatures and its transformation into a collective relaxation of PNRs by dielectric spectroscopy [Belous et al., J. Appl. Phys. 102, 014111 (2007)] might be related to the anomalous acoustic behavior of SBN61 observed above TB.

  20. Tubular fluoropolymer arrays with high piezoelectric response

    NASA Astrophysics Data System (ADS)

    Zhukov, Sergey; Eder-Goy, Dagmar; Biethan, Corinna; Fedosov, Sergey; Xu, Bai-Xiang; von Seggern, Heinz

    2018-01-01

    Polymers with electrically charged internal air cavities called ferroelectrets exhibit a pronounced piezoelectric effect and are regarded as soft functional materials suitable for sensor and actuator applications. In this work, a simple method for fabricating piezoelectret arrays with open-tubular channels is introduced. A set of individual fluoroethylenepropylene (FEP) tubes is compressed between two heated metal plates. The squeezed FEP tubes are melted together at +270 °C. The resulting structure is a uniform, multi-tubular, flat array that reveals a strong piezoelectric response after a poling step. The fabricated arrays have a high ratio between piezoelectrically active and non-active areas. The optimal charging voltage and stability of the piezoelectric coefficients with pressures and frequency were experimentally investigated for two specific array structures with wall thickness of 50 and 120 μm. The array fabricated from 50 μm thick FEP tubes reveals a stable and high piezoelectric coefficient of {d}33 = 120-160 pC N-1 with a flat frequency response between 0.1 Hz and 10 kHz for pressures between 1 and 100 kPa. An increase of wall thickness to 120 μm is accompanied by a more than twofold decrease in the piezoelectric coefficient as a result of a simultaneously higher effective array stiffness and lower remanent polarization. The obtained experimental results can be used to optimize the array design with regard to the electromechanical performance.

  1. Aqueous Binary Lanthanide(III) Nitrate Ln(NO3)3 Electrolytes Revisited: Extended Pitzer and Bromley Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sayandev; Campbell, Emily L.; Neiner, Doinita

    To date, only limited thermodynamic models describing activity coefficients of the aqueous solutions of lanthanide ions are available. This work expands the existing experimental osmotic coefficient data obtained by classical isopiestic technique for the aqueous binary trivalent lanthanide nitrate Ln(NO3)3 solutions using a combination of water activity and vapor pressure osmometry measurements. The combined osmotic coefficient database for each aqueous lanthanide nitrate at 25°C, consisting of literature available data as well as data obtained in this work, was used to test the validity of Pitzer and Bromley thermodynamic models for the accurate prediction of mean molal activity coefficients of themore » Ln(NO3)3 solutions in wide concentration ranges. The new and improved Pitzer and Bromley parameters were calculated. It was established that the Ln(NO3)3 activity coefficients in the solutions with ionic strength up to 12 mol kg-1 can be estimated by both Pitzer and single-parameter Bromley models, even though the latter provides for more accurate prediction, particularly in the lower ionic strength regime (up to 6 mol kg-1). On the other hand for the concentrated solutions, the extended three-parameter Bromley model can be employed to predict the Ln(NO3)3 activity coefficients with remarkable accuracy. The accuracy of the extended Bromley model in predicting the activity coefficients was greater than ~95% and ~90% for all solutions with the ionic strength up to 12 mol kg-1 and and 20 mol kg-1, respectively. This is the first time that the activity coefficients for concentrated lanthanide solutions have been predicted with such a remarkable accuracy.« less

  2. Kinetic Studies of the Thermal Decomposition of Methylperoxynitrate and of Ozone-Olefin Reactions.

    NASA Astrophysics Data System (ADS)

    Bahta, Abraha

    This research concerns the thermal decomposition kinetics of CH(,3)O(,2)NO(,2) and laboratory kinetic measurements of ozone-olefin reactions. In the first system, the thermal decomposition rate of CH(,3)O(,2)NO(,2) was studied in the temperature range of 256-268 K at (TURN)350 torr total pressure and in the pressure range of 50-720 torr at 263 K by the perturbation of the equilibrium: (UNFORMATTED TABLE FOLLOWS). CH(,3)O(,2) + NO(,2) (+M) (DBLARR) CH(,3)O(,2)NO(,2) (+M) (3,-3). with NO. CH(,3)O(,2) + NO (--->) CH(,3)O + NO(,2) (4). (TABLE ENDS). The CH(,3)O(,2)NO(,2) was generated in situ by the photolysis of Cl(,2) in the presence of O(,2), CH(,4) and NO(,2). The decomposition kinetics were monitored in the presence of NO by the change in ultraviolet absorption at 250 nm. The Arrhenius expression obtained for the thermal decomposition is k(,-3) = 6 x 10('15) exp{-(21,000 (+OR-) 1500)/RT} sec('-1) at (TURNEQ)350 torr total pressure (mostly CH(,4)) where R = 1.987 cal/mole('-) K. The uncertainty in the Arrhenius parameters can be greatly reduced by combining this expression with data for k(,3) and thermodynamics data to give k(,-3) = (6 (+OR-) 3) x 10('15) exp{-(21,300 (+OR-) 300)/RT} sec('-1) at (TURNEQ)350 torr total pressure. Computations based on the pressure dependence of the forward reaction give k(,-3)('(INFIN)) = 2.1 x 10('16) exp{-(21,700 (+OR -) 300)/RT} sec('-1) k(,-3)('(DEGREES)) = 3.3 x 10(' -4) exp{-(20,150 x 300)/RT} cm('3) sec('-1). At 263 K the equilibrium constant K(,3,-3){263 K} is determined to be (2.68 (+OR-) 0.26) x 10('-10) cm('3). In the stratosphere the CH(,3)O(,2)NO(,2) lifetime will be controlled by play a role in the NO(,x) budget of the lower stratosphere. In the second part, the kinetics of the reactions of O(,3) with C(,2)H(,4), C(,3)H(,4), 1,3-C(,4)H(,6), and trans-1,3-C(,5)H(,8) were studied with initial olefin-to -ozone ratios (GREATERTHEQ) 4.9, in the presence of excess O(,2), and over the temperature range 232 to 300 K. The initial O(,3) pressure was varied from 5-18 mtorr, and the olefin pressure was varied from 0.1 to 4.5 torr (C(,2)H(,4)), 2.8 to 39.6 torr (allene), 52.7 to 600 mtorr (1,3-C(,4)H(,6)), or 26.2 to 106 mtorr (1,3-C(,5)H(,8)). The O(,3) decay was monitored by ultraviolet absorption. The reaction is first order in both O(,3) and olefin. The rate coefficients are independent of the O(,2) pressure (100-400 torr), and in the case of the O(,3)/C(,2)H(,4) system, the rate coefficients are independent of the nature of the diluent gas--N(,2), O(,2), and air were used. These measured rate coefficients were found to fit the Arrhenius expressions: (UNFORMATTED TABLE FOLLOWS). For C(,2)H(,4): k{232-298 K}=(7.88(+OR -)0.46)x10('-15) exp{-(5085(+OR-)580)/RT}. For C(,3)H(,4): k{252-298 K}=(1.92(+OR -)0.14)x10('-15) exp{-(5430(+OR-)830)/RT}. For 1,3-C(,4)H(,6): k{254-299 K}=(2.43(+OR -)0.15)x10('-14) exp{-(4900(+OR-)670)}. and. For t-1,3-C(,5)H(,8): k{262-298 K}=(6.56(+OR -)0.40)x10('-12). exp{-(7140(+OR-)860)/RT}. (TABLE ENDS). cm('3) s('-1), where the uncertainties represent one standard deviation.

  3. Dielectric, Piezoelectric, and Vibration Properties of the LiF-Doped (Ba0.95Ca0.05)(Ti0.93Sn0.07)O₃ Lead-Free Piezoceramic Sheets.

    PubMed

    Cheng, Chien-Min; Chen, Kai-Huang; Lee, Da-Huei; Jong, Fuh-Cheng; Chen, Mei-Li; Chang, Jhih-Kai

    2018-01-24

    By the conventional solid state reaction method, a small amount of lithium fluoride (LiF) was used as the sintering promoter to improve the sintering and piezoelectric characteristics of (Ba 0.95 Ca 0.05 )(Ti 0.93 Sn 0.07 )O₃ (BCTS) lead-free piezoceramic sheets. Using X-ray diffraction (XRD) and a scanning electron microscope (SEM), the inferences of the crystalline and surface microstructures were obtained and analyzed. Then, the impedance analyzer and d 33 -meter were used to measure the dielectric and piezoelectric characteristics. In this study, the optimum sintering temperature of the BCTS sheets decreased from 1450 °C to 1390 °C due to LiF doping. For the 0.07 wt % LiF-doped BCTS sheets sintered at 1390 °C, the piezoelectric constant (d 33 ) is 413 pC/N, the electric-mechanical coupling coefficient (k p ) is 47.5%, the dielectric loss (tan δ) is 3.9%, and the dielectric constant (ε r ) is 8100, which are all close to or even better than that of the pure undoped BCTS ceramics. The Curie temperature also improved, from 85 °C for pure BCTS to 140 °C for BCTS-0.07 LiF sheets. Furthermore, by using the vibration system and fixing 1.5 g tip mass at the end of the sheets, as the vibration frequency is 20 Hz, the proposed piezoelectric ceramic sheets also reveal a good energy harvesting performance at the maximum output peak voltage of 4.6 V, which is large enough and can be applied in modern low-power electronic products.

  4. Temperature dependence of the helium induced broadening and shift of the Rb D1 and D2 lines

    NASA Astrophysics Data System (ADS)

    Miller, Wooddy S.; Rice, Christopher A.; Perram, Glen P.

    2018-02-01

    The rates for collisional broadening and shifting of the Rb D1 (52S1/2 - 52P1/2) and D2 (52S1/2 - 52P3/2) transition induced by 4He have been measured at elevated temperatures of 373-723 K. The shift coefficients exhibit an increase of 20% from 4.36 MHz/Torr to 5.35 MHz/Torr for the D1 line and an 80% increase from 0.42 MHz/Torr to 0.99 MHz/Torr for the D2 line over the observed temperature range. Broadening coefficients exhibit a 6% increase from 17.8 MHz/Torr to 18.9 MHz/Torr and 10% from 18.5 MHz/Torr to 20.5 MHz/Torr for the D1 and D2 lines, respectively. The experimental values agree well with prior reported values within the temperature overlap regions of T < 394 K. Comparison to prior predictions from the Anderson-Talman theory using spin orbit multi reference (SOCI) ab initio potentials are superior to quantum treatments involving Allard and Baranger coupling.

  5. The case for future hadron colliders from B → K (*) μ + μ - decays

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Gripaios, Ben; You, Tevong

    2018-03-01

    Recent measurements in B → K (*) μ + μ - decays are somewhat discrepant with Standard Model predictions. They may be harbingers of new physics at an energy scale potentially accessible to direct discovery. We estimate the sensitivity of future hadron colliders to the possible new particles that may be responsible for the anomalies at tree-level: leptoquarks or Z's. We consider luminosity upgrades for a 14 TeV LHC, a 33 TeV LHC, and a 100 TeV pp collider such as the FCC-hh. In the most conservative and pessimistic models, for narrow particles with perturbative couplings, Z' masses up to 20 TeV and leptoquark masses up to 41 TeV may in principle explain the anomalies. Coverage of Z' models is excellent: a 33 TeV 1 ab-1 LHC is expected to cover most of the parameter space up to 8 TeV in mass, whereas the 100 TeV FCC-hh with 10 ab-1 will cover all of it. A smaller portion of the leptoquark parameter space is covered by future colliders: for example, in a μ + μ - jj di-leptoquark search, a 100 TeV 10 ab-1 collider has a projected sensitivity up to leptoquark masses of 12 TeV (extendable to 21 TeV with a strong coupling for single leptoquark production).

  6. Enhanced MicroChannel Heat Transfer in Macro-Geometry using Conventional Fabrication Approach

    NASA Astrophysics Data System (ADS)

    Ooi, KT; Goh, AL

    2016-09-01

    This paper presents studies on passive, single-phase, enhanced microchannel heat transfer in conventionally sized geometry. The intention is to allow economical, simple and readily available conventional fabrication techniques to be used for fabricating macro-scale heat exchangers with microchannel heat transfer capability. A concentric annular gap between a 20 mm diameter channel and an 19.4 mm diameter insert forms a microchannel where heat transfer occurs. Results show that the heat transfer coefficient of more than 50 kW/m·K can be obtained for Re≈4,000, at hydraulic diameter of 0.6 mm. The pressure drop values of the system are kept below 3.3 bars. The present study re-confirms the feasibility of fabricating macro-heat exchangers with microchannel heat transfer capability.

  7. All-optical beam deflection method for simultaneous thermal conductivity and thermo-optic coefficient ( d n / d T ) measurements

    NASA Astrophysics Data System (ADS)

    Putnam, Shawn A.; Fairchild, Steven B.; Arends, Armando A.; Urbas, Augustine M.

    2016-05-01

    This work describes an all-optical beam deflection method to simultaneously measure the thermal conductivity ( Λ) and thermo-optic coefficient ( d n / d T ) of materials that are absorbing at λ = 10.6 μm and are transparent to semi-transparent at λ = 632.8 nm. The technique is based on the principle of measuring the beam deflection of a probe beam (632.8 nm) in the frequency-domain due to a spatially and temporally varying index gradient that is thermally induced by 50:50 split pump beam from a CO2 laser (10.6 μm). The technique and analysis methods are validated with measurements of 10 different optical materials having Λ and d n / d T properties ranging between 0.7 W/m K ≲ Λ ≲ 33.5 W/m K and -12 × 10-6 K-1 ≲ d n / d T ≲ 14 × 10-6 K-1, respectively. The described beam deflection technique is highly related to other well-established, all-optical materials characterization methods, namely, thermal lensing and photothermal deflection spectroscopy. Likewise, due to its all-optical, pump-probe nature, it is applicable to materials characterization in extreme environments with minimal errors due to black-body radiation. In addition, the measurement principle can be extended over a broad range of electromagnetic wavelengths (e.g., ultraviolet to THz) provided the required sources, detectors, and focusing elements are available.

  8. Coupling coefficients for tensor product representations of quantum SU(2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groenevelt, Wolter, E-mail: w.g.m.groenevelt@tudelft.nl

    2014-10-15

    We study tensor products of infinite dimensional irreducible {sup *}-representations (not corepresentations) of the SU(2) quantum group. We obtain (generalized) eigenvectors of certain self-adjoint elements using spectral analysis of Jacobi operators associated to well-known q-hypergeometric orthogonal polynomials. We also compute coupling coefficients between different eigenvectors corresponding to the same eigenvalue. Since the continuous spectrum has multiplicity two, the corresponding coupling coefficients can be considered as 2 × 2-matrix-valued orthogonal functions. We compute explicitly the matrix elements of these functions. The coupling coefficients can be considered as q-analogs of Bessel functions. As a results we obtain several q-integral identities involving q-hypergeometricmore » orthogonal polynomials and q-Bessel-type functions.« less

  9. Retrieval of Aerosol Parameters from Continuous H24 Lidar-Ceilometer Measurements

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Barnaba, F.; Costabile, F.; Di Liberto, L.; Gobbi, G. P.; Wille, H.

    2016-06-01

    Ceilometer technology is increasingly applied to the monitoring and the characterization of tropospheric aerosols. In this work, a method to estimate some key aerosol parameters (extinction coefficient, surface area concentration and volume concentration) from ceilometer measurements is presented. A numerical model has been set up to derive a mean functional relationships between backscatter and the above mentioned parameters based on a large set of simulated aerosol optical properties. A good agreement was found between the modeled backscatter and extinction coefficients and the ones measured by the EARLINET Raman lidars. The developed methodology has then been applied to the measurements acquired by a prototype Polarization Lidar-Ceilometer (PLC). This PLC instrument was developed within the EC- LIFE+ project "DIAPASON" as an upgrade of the commercial, single-channel Jenoptik CHM15k system. The PLC run continuously (h24) close to Rome (Italy) for a whole year (2013-2014). Retrievals of the aerosol backscatter coefficient at 1064 nm and of the relevant aerosol properties were performed using the proposed methodology. This information, coupled to some key aerosol type identification made possible by the depolarization channel, allowed a year-round characterization of the aerosol field at this site. Examples are given to show how this technology coupled to appropriate data inversion methods is potentially useful in the operational monitoring of parameters of air quality and meteorological interest.

  10. Non-Born-Oppenheimer molecular dynamics of the spin-forbidden reaction O(3P) + CO(X 1Σ+) → CO2(tilde X{}^1Σ _g^ +)

    NASA Astrophysics Data System (ADS)

    Jasper, Ahren W.; Dawes, Richard

    2013-10-01

    The lowest-energy singlet (1 1A') and two lowest-energy triplet (1 3A' and 1 3A″) electronic states of CO2 are characterized using dynamically weighted multireference configuration interaction (dw-MRCI+Q) electronic structure theory calculations extrapolated to the complete basis set (CBS) limit. Global analytic representations of the dw-MRCI+Q/CBS singlet and triplet surfaces and of their CASSCF/aug-cc-pVQZ spin-orbit coupling surfaces are obtained via the interpolated moving least squares (IMLS) semiautomated surface fitting method. The spin-forbidden kinetics of the title reaction is calculated using the coupled IMLS surfaces and coherent switches with decay of mixing non-Born-Oppenheimer molecular dynamics. The calculated spin-forbidden association rate coefficient (corresponding to the high pressure limit of the rate coefficient) is 7-35 times larger at 1000-5000 K than the rate coefficient used in many detailed chemical models of combustion. A dynamical analysis of the multistate trajectories is presented. The trajectory calculations reveal direct (nonstatistical) and indirect (statistical) spin-forbidden reaction mechanisms and may be used to test the suitability of transition-state-theory-like statistical methods for spin-forbidden kinetics. Specifically, we consider the appropriateness of the "double passage" approximation, of assuming statistical distributions of seam crossings, and of applications of the unified statistical model for spin-forbidden reactions.

  11. Vicinal fluorine-fluorine coupling constants: Fourier analysis.

    PubMed

    San Fabián, J; Westra Hoekzema, A J A

    2004-10-01

    Stereochemical dependences of vicinal fluorine-fluorine nuclear magnetic resonance coupling constants (3JFF) have been studied with the multiconfigurational self-consistent field in the restricted active space approach, with the second-order polarization propagator approximation (SOPPA), and with density functional theory. The SOPPA results show the best overall agreement with experimental couplings. The relationship with the dihedral angle between the coupled fluorines has been studied by Fourier analysis, the result is very different from that of proton-proton couplings. The Fourier coefficients do not resemble those of a typical Karplus equation. The four nonrelativistic contributions to the coupling constants of 1,2-difluoroethane configurations have been studied separately showing that up to six Fourier coefficients are required to reproduce the calculated values satisfactorily. Comparison with Fourier coefficients for matching hydrogen fluoride dimer configurations suggests that the higher order Fourier coefficients (Cn> or =3) originate mainly from through-space Fermi contact interaction. The through-space interaction is the main reason 3JFF do not follow the Karplus equation. (c) 2004 American Institute of Physics

  12. Vicinal fluorine-fluorine coupling constants: Fourier analysis

    NASA Astrophysics Data System (ADS)

    San Fabián, J.; Westra Hoekzema, A. J. A.

    2004-10-01

    Stereochemical dependences of vicinal fluorine-fluorine nuclear magnetic resonance coupling constants (3JFF) have been studied with the multiconfigurational self-consistent field in the restricted active space approach, with the second-order polarization propagator approximation (SOPPA), and with density functional theory. The SOPPA results show the best overall agreement with experimental couplings. The relationship with the dihedral angle between the coupled fluorines has been studied by Fourier analysis, the result is very different from that of proton-proton couplings. The Fourier coefficients do not resemble those of a typical Karplus equation. The four nonrelativistic contributions to the coupling constants of 1,2-difluoroethane configurations have been studied separately showing that up to six Fourier coefficients are required to reproduce the calculated values satisfactorily. Comparison with Fourier coefficients for matching hydrogen fluoride dimer configurations suggests that the higher order Fourier coefficients (Cn⩾3) originate mainly from through-space Fermi contact interaction. The through-space interaction is the main reason 3JFF do not follow the Karplus equation.

  13. Low-temperature Kinetic Studies of OH Radical Reactions Relevant to Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Townsend, T. M.; Antiñolo, M.; Ballesteros, B.; Jimenez, E.; Canosa, A.

    2011-05-01

    In the solar system, the temperature (T) of the atmosphere of giant planets or their satellites is only several tens of Kelvin (K). The temperature of the tropopause of Titan (satellite of Saturn) and the surface of Mars is 70 K and 210 K, respectively. In the Earth's atmosphere, T decreases from 298 K (surface) to 210 K close to the T-inversion region (tropopause). The principal oxidants in the Earth's lower atmosphere are ozone, the hydroxyl (OH) radical and hydrogen peroxide. A number of critical atmospheric chemical problems depend on the Earth's oxidising capacity, which is essentially the global burden of these oxidants. In the interstellar clouds and circumstellar envelopes, OH radicals have also been detected. As the chemistry of atmospheres is highly influenced by temperature, the knowledge of the T-dependence of the rate coefficients for OH-reactions (k) is the key to understanding the underlying molecular mechanisms. In general, these reactions take place on a short temporal scale. Therefore, a detection technique with high temporal resolution is required. Measurements of k at low temperatures can be achieved by maintaining a thermalised environment using either cryogenic cooling (T>200 K) or supersonic gas expansion with a Laval nozzle (several tens of K). The pulsed laser photolysis technique coupled with laser induced fluorescence detection has been widely used in our laboratory to determine the rate coefficients of OH-reactions with different volatile organic compounds, such as alcohols (1), saturated and unsaturated aliphatic aldehydes (2), linear ketones (3), as a function of temperature (260 350 K). An experimental system based on the CRESU (Cinetique de Reaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) technique is currently under construction. This technique will allow the performance of kinetic studies of OH-reactions of astrophysical interest at temperatures lower than 200 K.

  14. A waveguide-coupled thermally isolated radiometric source.

    PubMed

    Rostem, K; Chuss, D T; Lourie, N P; Voellmer, G M; Wollack, E J

    2013-04-01

    The design and validation of a dual polarization source for waveguide-coupled millimeter and sub-millimeter wave cryogenic sensors is presented. The thermal source is a waveguide mounted absorbing conical dielectric taper. The absorber is thermally isolated with a kinematic suspension that allows the guide to be heat sunk to the lowest bath temperature of the cryogenic system. This approach enables the thermal emission from the metallic waveguide walls to be subdominant to that from the source. The use of low thermal conductivity Kevlar threads for the kinematic mount effectively decouples the absorber from the sensor cold stage. Hence, the absorber can be heated to significantly higher temperatures than the sensor with negligible conductive loading. The kinematic suspension provides high mechanical repeatability and reliability with thermal cycling. A 33-50 GHz blackbody source demonstrates an emissivity of 0.999 over the full waveguide band where the dominant deviation from unity arises from the waveguide ohmic loss. The observed thermal time constant of the source is 40 s when the absorber temperature is 15 K. The specific heat of the lossy dielectric, MF-117, is well approximated by C(v)(T) = 0.12 T (2.06) mJ g(-1) K(-1) between 3.5 K and 15 K.

  15. Infrared absorption spectra of partially deuterated methoxy radicals CH2DO and CHD2O isolated in solid para-hydrogen.

    PubMed

    Haupa, Karolina A; Johnson, Britta A; Sibert, Edwin L; Lee, Yuan-Pern

    2017-10-21

    The investigation of partially deuterated methoxy radicals is important because the symmetry lowering from C 3v to C s provides new insights into the couplings between rovibronic states via Jahn-Teller and spin-orbit interactions. The vibrational spectrum of the partially deuterated methoxy radical CH 2 DO in a matrix of p-H 2 has been recorded. This species was prepared by irradiating a p-H 2 matrix containing deuterated d 1 -nitritomethane (CH 2 DONO) at 3.3 K with laser light at 355 nm. The identification of the radical is based on the photochemical behavior of the precursor and comparison of observed vibrational wavenumbers and infrared (IR) intensities with those predicted from a refined quartic, curvilinear, internal coordinate force field calculated with the coupled-cluster singles and doubles with perturbative triples/cc-pVTZ method. CH 2 DO reacts with H 2 with a rate coefficient (3.5 ± 1.0) × 10 -3 s -1 . Predominantly c-CHDOH and a negligibly small amount of t-CHDOH were produced. This stereoselectivity results from the reaction H + C s -CH 2 DOH, which was demonstrated by an additional experiment on irradiation of a CH 2 DOH/Cl 2 /p-H 2 matrix with ultraviolet and IR light to induce the H + CH 2 DOH reaction; only c-CHDOH was observed from this experiment. Even though the energies of transition states and products for the formation of c-CHDOH and t-CHDOH differ by only ∼10 cm -1 , the selective formation of c-CHDOH can be explained by tunneling of the hydrogen atom via an optimal tunneling path. Similarly, the vibronic spectrum for the partially deuterated specie d 2 -methoxy radical (CHD 2 O) was obtained upon irradiation of d 2 -nitritomethane (CHD 2 ONO) at 355 nm. Lines associated with the fundamental vibrational modes were observed and assigned; line positions agree with theoretically predicted vibrational wavenumbers. CHD 2 O reacts with H 2 with a rate coefficient (6.0 ± 1.4) × 10 -3 s -1 ; CD 2 OH was produced as a major product because the barrier for the formation of CHDOH from H + CHD 2 OH is greater by ∼400 cm -1 . Rate coefficients of the decays of CH 3 O, CH 2 DO, CHD 2 O, and CD 3 O and their corresponding potential energy surfaces are compared.

  16. Infrared absorption spectra of partially deuterated methoxy radicals CH2DO and CHD2O isolated in solid para-hydrogen

    NASA Astrophysics Data System (ADS)

    Haupa, Karolina A.; Johnson, Britta A.; Sibert, Edwin L.; Lee, Yuan-Pern

    2017-10-01

    The investigation of partially deuterated methoxy radicals is important because the symmetry lowering from C3v to Cs provides new insights into the couplings between rovibronic states via Jahn-Teller and spin-orbit interactions. The vibrational spectrum of the partially deuterated methoxy radical CH2DO in a matrix of p-H2 has been recorded. This species was prepared by irradiating a p-H2 matrix containing deuterated d1-nitritomethane (CH2DONO) at 3.3 K with laser light at 355 nm. The identification of the radical is based on the photochemical behavior of the precursor and comparison of observed vibrational wavenumbers and infrared (IR) intensities with those predicted from a refined quartic, curvilinear, internal coordinate force field calculated with the coupled-cluster singles and doubles with perturbative triples/cc-pVTZ method. CH2DO reacts with H2 with a rate coefficient (3.5 ± 1.0) × 10-3 s-1. Predominantly c-CHDOH and a negligibly small amount of t-CHDOH were produced. This stereoselectivity results from the reaction H + Cs-CH2DOH, which was demonstrated by an additional experiment on irradiation of a CH2DOH/Cl2/p-H2 matrix with ultraviolet and IR light to induce the H + CH2DOH reaction; only c-CHDOH was observed from this experiment. Even though the energies of transition states and products for the formation of c-CHDOH and t-CHDOH differ by only ˜10 cm-1, the selective formation of c-CHDOH can be explained by tunneling of the hydrogen atom via an optimal tunneling path. Similarly, the vibronic spectrum for the partially deuterated specie d2-methoxy radical (CHD2O) was obtained upon irradiation of d2-nitritomethane (CHD2ONO) at 355 nm. Lines associated with the fundamental vibrational modes were observed and assigned; line positions agree with theoretically predicted vibrational wavenumbers. CHD2O reacts with H2 with a rate coefficient (6.0 ± 1.4) × 10-3 s-1; CD2OH was produced as a major product because the barrier for the formation of CHDOH from H + CHD2OH is greater by ˜400 cm-1. Rate coefficients of the decays of CH3O, CH2DO, CHD2O, and CD3O and their corresponding potential energy surfaces are compared.

  17. Controllability of a multichannel system

    NASA Astrophysics Data System (ADS)

    Ivanov, Sergei A.; Wang, Jun Min

    2018-02-01

    We consider the system consisting of K coupled acoustic channels with the different sound velocities cj. Channels are interacting at any point via the pressure and its time derivatives. Using the moment approach and the theory of exponential families with vector coefficients we establish two controllability results: the system is exactly controllable if (i) the control uj in the jth channel acts longer than the double travel time of a wave from the start to the end of the j-th channel; (ii) all controls uj act more than or equal to the maximal double travel time.

  18. Effect of material constants on power output in piezoelectric vibration-based generators.

    PubMed

    Takeda, Hiroaki; Mihara, Kensuke; Yoshimura, Tomohiro; Hoshina, Takuya; Tsurumi, Takaaki

    2011-09-01

    A possible power output estimation based on material constants in piezoelectric vibration-based generators is proposed. A modified equivalent circuit model of the generator was built and was validated by the measurement results in the generator fabricated using potassium sodium niobate-based and lead zirconate titanate (PZT) ceramics. Subsequently, generators with the same structure using other PZT-based and bismuth-layered structure ferroelectrics ceramics were fabricated and tested. The power outputs of these generators were expressed as a linear functions of the term composed of electromechanical coupling coefficients k(sys)(2) and mechanical quality factors Q*(m) of the generator. The relationship between device constants (k(sys)(2) and Q*(m)) and material constants (k(31)(2) and Q(m)) was clarified. Estimation of the power output using material constants is demonstrated and the appropriate piezoelectric material for the generator is suggested.

  19. Phase-coherent engineering of electronic heat currents with a Josephson modulator

    NASA Astrophysics Data System (ADS)

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    In this contribution we report the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of electronic thermal currents. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase-engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  20. Magnetization reversal mechanism for Co nanoparticles revealed by a magnetic hysteresis scaling technique

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoru; Sato, Takuma; Li, Zhang; Dong, Xing-Long; Murakami, Takeshi

    2018-05-01

    We report results of magnetic hysteresis scaling of minor loops for cobalt nanoparticles with variable mean particle size of 53 and 95 nm. A power-law scaling with an exponent of 1.40±0.05 was found to hold true between minor-loop remanence and hysteresis loss in the wide temperature range of 10 - 300 K, irrespective of particle size and cooling field. A coefficient deduced from the scaling law steeply increases with decreasing temperature and exhibits a cooling field dependence below T ˜ 150 K. The value obtained after field cooling at 5 T was lower than that after zero-field cooling, being opposite to a behavior of major-loop coercivity. These observations were explained from the viewpoint of the exchange coupling between ferromagnetic Co core and antiferromagnetic CoO shell, which becomes effective below T ˜ 150 K.

  1. Superconducting properties of Rh 9 In 4 S 4 single crystals

    DOE PAGES

    Kaluarachchi, Udhara S.; Lin, Qisheng; Xie, Weiwei; ...

    2016-03-28

    The synthesis and crystallographic, thermodynamic, and transport properties of single crystalline Rh 9In 4S 4 were studied. The resistivity, magnetization, and specific heat measurements all clearly indicate bulk superconductivity with a critical temperature, T c~2.25 K. The Sommerfeld coefficient γ and the Debye temperature (ΘD) were found to be 34 mJ mol –1 K –2 and 217 K, respectively. The observed specific heat jump, ΔC/γT c=1.66, is larger than the expected BCS weak coupling value of 1.43. Ginzburg-Landau (GL) ratio of the low-temperature GL-penetration depth, λ GL≈5750 Å, to the GL-coherence length, ξ GL≈94 Å, is large: κ ~60. However,more » we observed a peak effect in the resistivity measurement as a function of both temperature and magnetic field.« less

  2. Sequentially evaporated thin film YBa2Cu3O(7-x) superconducting microwave ring resonator

    NASA Technical Reports Server (NTRS)

    Rohrer, Norman J.; To, Hing Y.; Valco, George J.; Bhasin, Kul B.; Chorey, Chris; Warner, Joseph D.

    1990-01-01

    There is great interest in the application of thin film high temperature superconductors in high frequency electronic circuits. A ring resonator provides a good test vehicle for assessing the microwave losses in the superconductor and for comparing films made by different techniques. Ring resonators made of YBa2Cu3O(7-x) have been investigated on LaAlO3 substrates. The superconducting thin films were deposited by sequential electron beam evaporation of Cu, Y, and BaF2 with a post anneal. Patterning of the superconducting film was done using negative photolithography. A ring resonator was also fabricated from a thin gold film as a control. Both resonators had a gold ground plane on the backside of the substrate. The ring resonators' reflection coefficients were measured as a function of frequency from 33 to 37 GHz at temperatures ranging from 20 K to 68 K. The resonator exhibited two resonances which were at 34.5 and 35.7 GHz at 68 K. The resonant frequencies increased with decreasing temperature. The magnitude of the reflection coefficients was in the calculation of the unloaded Q-values. The performance of the evaporated and gold resonator are compared with the performance of a laser ablated YBa2Cu3O(7-x) resonator. The causes of the double resonance are discussed.

  3. Study on the electromechanical coupling coefficient of Rayleigh-type surface acoustic waves in semi-infinite piezoelectrics/non-piezoelectrics superlattices.

    PubMed

    Chen, Shi; Zhang, Yinhong; Lin, Shuyu; Fu, Zhiqiang

    2014-02-01

    The electromechanical coupling coefficient of Rayleigh-type surface acoustic waves in semi-infinite piezoelectrics/non-piezoelectrics superlattices is investigated by the transfer matrix method. Research results show the high electromechanical coupling coefficient can be obtained in these systems. The optimization design of it is also discussed fully. It is significantly influenced by electrical boundary conditions on interfaces, thickness ratios of piezoelectric and non-piezoelectric layers, and material parameters (such as velocities of pure longitudinal and transversal bulk waves in non-piezoelectric layers). In order to obtain higher electromechanical coupling coefficient, shorted interfaces, non-piezoelectric materials with large velocities of longitudinal and transversal bulk waves, and proper thickness ratios should be chosen. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Terahertz Magnetoelectric Resonance Enhanced by Mutual Coupling of Electromagnons

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Yamasaki, Y.; Tokura, Y.

    2013-07-01

    Both electric- and magnetic-dipole active spin excitations, i.e., electromagnons, which mediate the dynamical magnetoelectric effect, have been investigated for a multiferroic perovskite of manganite by optical spectroscopy at terahertz frequencies. Upon the magnetoelectric resonance at 1 meV in the multiferroic phase with the bc-plane spin cycloidal order, a gigantic dynamical magnetoelectric effect has been observed as a nonreciprocal directional dichroism or birefringence. The light k-vector-dependent difference (Δκ=κ+-κ-) of the extinction coefficient (κ±) is as large as Δκ˜1 or 2Δκ/(κ++κ-)˜0.7 at the lowest-lying electromagnon energy. We clarified the mutual coupling of the Eω∥a-polarized electromagnons of the different origins, leading to the enhancement of the magnetoelectric resonance.

  5. Implications of Marcus-Hush theory for steady-state heterogeneous electron transfer at an inlaid disk electrode.

    PubMed

    Feldberg, Stephen W

    2010-06-15

    For an outer-sphere heterogeneous electron transfer, Ox + e = Red, between an electrode and a redox couple, the Butler-Volmer formalism predicts that the operative heterogeneous rate constant, k(red) (cm s(-1)) for reduction (or k(ox) for oxidation) increases without limit as an exponential function of -alpha (E - E(0)) for reduction (or (1 - alpha)(E - E(0)) for oxidation), where E is the applied electrode potential, alpha (~1/2) is the transfer coefficient and E(0) is the formal potential. The Marcus-Hush formalism, as exposited by Chidsey (Chidsey, C. E. D. Science 1991, 215, 919), predicts that the value of k(red) or k(ox) limits at sufficiently large values of -(E - E(0)) or (E - E(0)). The steady-state currents at an inlaid disk electrode obtained for a redox species in solution were computed using both formalisms with the Oldham-Zoski approximation (Oldham, K. B.; Zoski, C. G. J. Electroanal. Chem. 1988, 256, 11). Significant differences are noted for the two formalisms. When k(0)r(0)/D is sufficiently small (k(0) is the standard rate constant, r(0) is the radius of the disk electrode, and D is the diffusion coefficient of the redox species), the Marcus-Hush formalism effects a limiting current that can be significantly smaller than the mass transport limited current. This is easily explained in terms of the limiting values of k(red) and k(ox) predicted by the Marcus-Hush formalism. The experimental conditions that must be met to effect significant differences in behavior are discussed; experimental conditions that effect virtually identical behavior are also discussed. As a caveat for experimentalists, applications of the Butler-Volmer formalism to systems that are more properly described using the Marcus-Hush formalism are shown to yield incorrect values of k(0) and meaningless values of alpha, which serves only as a fitting parameter.

  6. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...

  7. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...

  8. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...

  9. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...

  10. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...

  11. Evidence of s-wave superconductivity in the noncentrosymmetric La7Ir3.

    PubMed

    Li, B; Xu, C Q; Zhou, W; Jiao, W H; Sankar, R; Zhang, F M; Hou, H H; Jiang, X F; Qian, B; Chen, B; Bangura, A F; Xu, Xiaofeng

    2018-01-12

    Superconductivity in noncentrosymmetric compounds has attracted sustained interest in the last decades. Here we present a detailed study on the transport, thermodynamic properties and the band structure of the noncentrosymmetric superconductor La 7 Ir 3 (T c  ~ 2.3 K) that was recently proposed to break the time-reversal symmetry. It is found that La 7 Ir 3 displays a moderately large electronic heat capacity (Sommerfeld coefficient γ n  ~ 53.1 mJ/mol K 2 ) and a significantly enhanced Kadowaki-Woods ratio (KWR ~32 μΩ cm mol 2 K 2 J -2 ) that is greater than the typical value (~10 μΩ cm mol 2 K 2 J -2 ) for strongly correlated electron systems. The upper critical field H c2 was seen to be nicely described by the single-band Werthamer-Helfand-Hohenberg model down to very low temperatures. The hydrostatic pressure effects on the superconductivity were also investigated. The heat capacity below T c reveals a dominant s-wave gap with the magnitude close to the BCS value. The first-principles calculations yield the electron-phonon coupling constant λ = 0.81 and the logarithmically averaged frequency ω ln  = 78.5 K, resulting in a theoretical T c  = 2.5 K, close to the experimental value. Our calculations suggest that the enhanced electronic heat capacity is more likely due to electron-phonon coupling, rather than the electron-electron correlation effects. Collectively, these results place severe constraints on any theory of exotic superconductivity in this system.

  12. Determination of coupling coefficients at various zenith angles of the basis of the cosmic ray azimuth effect

    NASA Technical Reports Server (NTRS)

    Belskiy, S. A.; Dmitriev, B. A.; Romanov, A. M.

    1975-01-01

    The value of EW asymmetry and coupling coefficients at different zenith angles were measured by means of a double coincidence crossed telescope which gives an opportunity to measure simultaneously the intensity of the cosmic ray hard component at zenith angles from 0 to 84 deg in opposite azimuths. The advantages of determining the coupling coefficients by the cosmic ray azimuth effect as compared to their measurement by the latitudinal effect are discussed.

  13. Determination of nonlinear nanomechanical resonator-qubit coupling coefficient in a hybrid quantum system.

    PubMed

    Geng, Qi; Zhu, Ka-Di

    2016-07-10

    We have theoretically investigated a hybrid system that is composed of a traditional optomechanical component and an additional charge qubit (Cooper pair box) that induces a new nonlinear interaction. It is shown that the peak in optomechanically induced transparency has been split by the new nonlinear interaction, and the width of the splitting is proportional to the coupling coefficient of this nonlinear interaction. This may give a way to measure the nanomechanical oscillator-qubit coupling coefficient in hybrid quantum systems.

  14. Effective anomalous Hall coefficient in an ultrathin Co layer sandwiched by Pt layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Wu, Di; Jiang, Zhengsheng

    2014-02-14

    Anomalous Hall effect in Co/Pt multilayer is important to study the effect of interface with strong spin-orbit coupling. However, the shunting effect of the layers in such system and the circuit in the plane perpendicular to the injected current were overlooked in most works and thus, anomalous Hall coefficient in Co/Pt multilayer has not been determined accurately. Considering the shunting effect and the equivalent circuit, we show that the effective anomalous Hall coefficient of a 0.5 nm thick Co layer sandwiched by Pt layers R{sub S} is 0.29 ± 0.01 μΩ cm/T at the zero temperature limit and increases to about 0.73 μΩ cm/T at the temperaturemore » of 300 K. R{sub S} is one order larger than that in bulk Co film, indicating the large contribution of the Co/Pt interface. R{sub S} increases with the resistivity of Co as well as a resistivity independent contribution of −0.23 ± 0.01 μΩ cm/T. The equivalent anomalous Hall current in the Co layer has a maximum of 1.1% of the injected transverse current in the Co layer around the temperature of 80 K.« less

  15. Inbreeding coefficients and degree of consanguineous marriages in Spain: a review.

    PubMed

    Fuster, Vicente; Colantonio, Sonia Edith

    2003-01-01

    The contribution of consanguineous marriages corresponding to uncle-niece or aunt-nephew (C12), first cousin (C22), first cousin once removed (C23), and second cousin (C33) to the inbreeding coefficient (alpha) was analyzed from a sample of Spanish areas and periods. Multiple regressions were performed taking as independent variables the different degrees of consanguinity previously selected (C12, C22, C23, and C33) and as dependent variable the inbreeding coefficient (alpha). According to the results obtained for any degree and period, rural frequencies always surpass urban. However, the pattern is similar in both areas. In the period where consanguinity was more elevated (1890-1929) the C22/C33 ratio increased. Its variation is not due to C22 and C33 changes in the same way. In rural areas, this ratio surpasses the expected value by a factor of 2-3, but in urban areas it was 7-10 times larger, in some cases due to migration. While in rural Spain the C33 frequency was approximately 1.5 times C22, in cities C22 was 1.5 times C33. The best fit among the various types of consanguineous matings and alpha involves a lineal relationship. Regardless of the number of variables contributing significantly to alpha, C22 matings are always present. Moreover, their standardized (beta) coefficients are the highest. The above indicates that this consanguineous relationship conditions the inbreeding coefficient the most. In the period of greater consanguinity, close relationships, uncle-niece C12, and first cousin once removed (C23) make a significant contribution to alpha. In rural Spain second cousins (C33) always significantly determined alpha; however, in cities the inbreeding variation was mainly due to C12 and C23. Copyright 2003 Wiley-Liss, Inc.

  16. Use of complex frequency plane to design broadband and sub-wavelength absorbers.

    PubMed

    Romero-García, V; Theocharis, G; Richoux, O; Pagneux, V

    2016-06-01

    The reflection of sound of frequency below 1 kHz, by a rigid-backed structure that contains sub-wavelength resonators is studied in this work. In particular, only single mode reflected waves are considered, an approximation which is accurate in this low frequency regime. A method of analysis of absorption that uses the structure of the reflection coefficient in the complex frequency plane is proposed. In the absence of losses, the reflection coefficient supports pairs of poles and zeros that are complex conjugate and which have imaginary parts linked to the energy leakage by radiation. When losses are introduced and balanced to the leakage, the critical coupling condition is satisfied and total absorption is obtained. Examples of a slot resonator and of multiple Helmholtz resonators are analyzed to obtain both narrow and broadband total absorption.

  17. Siegert-state expansion for nonstationary systems. IV. Three-dimensional case

    NASA Astrophysics Data System (ADS)

    Tolstikhin, Oleg I.

    2008-03-01

    The Siegert-state expansion approach [O. I. Tolstikhin, Phys. Rev. A 73, 062705 (2006)] is extended to the three-dimensional case. Coupled equations defining the time evolution of coefficients in the expansion of the solution to the time-dependent Schrödinger equation in terms of partial-wave Siegert states are derived, and physical observables (probabilities of transitions to discrete states and the momentum distribution of ejected particles) are expressed in terms of these coefficients. The approach is implemented in terms of Siegert pseudostates and illustrated by calculations of the photodetachment of H- by strong high-frequency laser pulses. The present calculations demonstrate that the interference effect in the laser-atom interaction dynamics found recently in the one-dimensional case [K. Toyota , Phys. Rev. A 76, 043418 (2007)] reveals itself in the three-dimensional case as well.

  18. Plasmon dispersion in strongly correlated superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, D.; Golden, K.I.; Kalman, G.

    The dielectric response function of a strongly correlated superlattice is calculated in the quasilocalized charge (QLC) approximation. The resulting QLC static local-field correction, which contains both intralayer and interlayer pair-correlational effects, is identical to the correlational part of the third-frequency-moment sum-rule coefficient. This approximation treats the interlayer and intralayer couplings on an equal footing. The resulting dispersion relation is first analyzed to determine the effect of intralayer coupling on the out-of-phase acoustic-mode dispersion; in this approximation the interlayer coupling is suppressed and the mutual interaction of the layers is taken into account only through the average random-phase approximation (RPA) field.more » In the resulting mode dispersion, the onset of a finite-{ital k} ({ital k} being the in-plane wave number) reentrant low-frequency excitation developing (with decreasing {ital d}/{ital a}) into a dynamical instability is indicated ({ital a} being the in-plane Wigner-Seitz radius and {ital d} the distance between adjacent lattice planes). This dynamical instability parallels a static structural instability reported earlier both for a bilayer electron system and a superlattice and presumably indicates a structural change in the electron liquid. If one takes account of interlayer correlations beyond the RPA, the acoustic excitation spectrum is dramatically modified by the appearance of an energy gap which also has a stabilizing effect on the instability. We extend a previous energy gap study at {ital k}=0 [G. Kalman, Y. Ren, and K. I. Golden, Phys Rev. B {bold 50}, 2031 (1994)] to a calculation of the dispersion of the gapped acoustic excitation spectrum in the long-wavelength domain. {copyright} {ital 1996 The American Physical Society.}« less

  19. Lead Barium Potassium Sodium Niobate Ceramics for Piezoelectric Applications

    NASA Astrophysics Data System (ADS)

    Sambasiva Rao, K.; Vallisnath, N.; Prasad, T. N. V. K. V.; Ch. Varada Rajulu, K.; Tilak, B.; Lee, Joon Hyung

    This paper reports a systematic study of tungsten bronze morphotropic phase boundary (MPB) system Pb2-2X-3Y/2Ba2xREyK1-xNaxNb5O15, where, x = 0.20, 0.25, 0.30, RE = Pr and Bi and y = 0.05 and their structure, microstructure, hysteresis, dielectric, piezoelectric, and Pyroelectric properties. Enhanced piezoelectric constants kp, kt, k31, d31, d33, g31, g33, S11 E as 30.8%, 47.6%, 18.9%, 57 × 10-12 C/N, 159 × 10-12 C/N, 6.89 × 10-3 mV/N, 19.23 × 10-3 mV/N, and 13.88 × 10-12 m2/N respectively are observed in the composition for which y = 0, and x = 0.30, which is above MPB. Also, a change in thickness, 0.0159 μm has been developed for a thickness of the sample 1.2 mm, d33 = 159 × 10-12 C/N and for an applied voltage of 100 V. The same material produces a length extension, 0.0475 μm for d31 = 57 × 10-12 C/N, l = 10 mm, t = 1.2 mm, for an applied voltage of 100 V. Thus the material may be useful for a piezoelectric transducer. Enhanced piezoelectric coefficients, d31 = 96 × 10-12 C/N and g33 = 12.95 × 10-3 mV/N are also observed in the composition for which RE = Pr and x = 0.25.

  20. The NaK 1 1,3delta states: theoretical and experimental studies of fine and hyperfine structure of rovibrational levels near the dissociation limit.

    PubMed

    Wilkins, A D; Morgus, L; Hernandez-Guzman, J; Huennekens, J; Hickman, A P

    2005-09-22

    Earlier high-resolution spectroscopic studies of the fine and hyperfine structure of rovibrational levels of the 1 3delta state of NaK have been extended to include high lying rovibrational levels with v < or = 59, of which the highest levels lie within approximately 4 cm(-1) of the dissociation limit. A potential curve is determined using the inverted perturbation approximation method that reproduces these levels to an accuracy of approximately 0.026 cm(-1). For the largest values of v, the outer turning points occur near R approximately 12.7 angstroms, which is sufficiently large to permit the estimation of the C6 coefficient for this state. The fine and hyperfine structure of the 1 3delta rovibrational levels has been fit using the matrix diagonalization method that has been applied to other states of NaK, leading to values of the spin-orbit coupling constant A(v) and the Fermi contact constant b(F). New values determined for v < or = 33 are consistent with values determined by a simpler method and reported earlier. The measured fine and hyperfine structure for v in the range 44 < or = v < or = 49 exhibits anomalous behavior whose origin is believed to be the mixing between the 1 3delta and 1 1delta states. The matrix diagonalization method has been extended to treat this interaction, and the results provide an accurate representation of the complicated patterns that arise. The analysis leads to accurate values for A(v) and b(F) for all values of v < or = 49. For higher v (50 < or = v < or = 59), several rovibrational levels have been assigned, but the pattern of fine and hyperfine structure is difficult to interpret. Some of the observed features may arise from effects not included in the current model.

  1. All fiber-coupled, long-term stable timing distribution for free-electron lasers with few-femtosecond jitter

    PubMed Central

    Şafak, K.; Xin, M.; Callahan, P. T.; Peng, M. Y.; Kärtner, F. X.

    2015-01-01

    We report recent progress made in a complete fiber-optic, high-precision, long-term stable timing distribution system for synchronization of next generation X-ray free-electron lasers. Timing jitter characterization of the master laser shows less than 170-as RMS integrated jitter for frequencies above 10 kHz, limited by the detection noise floor. Timing stabilization of a 3.5-km polarization-maintaining fiber link is successfully achieved with an RMS drift of 3.3 fs over 200 h of operation using all fiber-coupled elements. This all fiber-optic implementation will greatly reduce the complexity of optical alignment in timing distribution systems and improve the overall mechanical and timing stability of the system. PMID:26798814

  2. Analysis and design of an ultrahigh temperature hydrogen-fueled MHD generator

    NASA Technical Reports Server (NTRS)

    Moder, Jeffrey P.; Myrabo, Leik N.; Kaminski, Deborah A.

    1993-01-01

    A coupled gas dynamics/radiative heat transfer analysis of partially ionized hydrogen, in local thermodynamic equilibrium, flowing through an ultrahigh temperature (10,000-20,000 K) magnetohydrodynamic (MHD) generator is performed. Gas dynamics are modeled by a set of quasi-one-dimensional, nonlinear differential equations which account for friction, convective and radiative heat transfer, and the interaction between the ionized gas and applied magnetic field. Radiative heat transfer is modeled using nongray, absorbing-emitting 2D and 3D P-1 approximations which permit an arbitrary variation of the spectral absorption coefficient with frequency. Gas dynamics and radiative heat transfer are coupled through the energy equation and through the temperature- and density-dependent absorption coefficient. The resulting nonlinear elliptic problem is solved by iterative methods. Design of such MHD generators as onboard, open-cycle, electric power supplies for a particular advanced airbreathing propulsion concept produced an efficient and compact 128-MWe generator characterized by an extraction ratio of 35.5 percent, a power density of 10,500 MWe/cu m, and a specific (extracted) energy of 324 MJe/kg of hydrogen. The maximum wall heat flux and total wall heat load were 453 MW/sq m and 62 MW, respectively.

  3. Piezoelectric micromachined ultrasonic transducers based on PZT thin films.

    PubMed

    Muralt, Paul; Ledermann, Nicolas; Baborowski, Jacek; Barzegar, Abdolghaffar; Gentil, Sandrine; Belgacem, Brahim; Petitgrand, Sylvain; Bosseboeuf, Alain; Setter, Nava

    2005-12-01

    This paper describes fabrication and characterization results of piezoelectric micromachined ultrasonic transducers (pMUTs) based on 2-microm-thick Pb(Zr0.53Ti0.47O3) (PZT) thin films. The applied structures are circular plates held at four bridges, thus partially unclamped. A simple analytical model for the fully clamped structure is used as a reference to optimize design parameters such as thickness relations and electrodes, and to provide approximate predictions for coupling coefficients related to previously determined thin film properties. The best coupling coefficient was achieved with a 270-microm plate and amounted to kappa2 = 5.3%. This value compares well with the calculated value based on measured small signal dielectric (epsilon = 1050) and piezoelectric (e3l,f = 15 Cm(-2)) properties of the PZT thin film at 100 kV/cm dc bias. The resonances show relatively large Q-factors, which can be partially explained by the small diameters as compared to the sound wavelength in air and in the test liquid (Fluorinert 77). A transmit-receive experiment with two quasi-identical pMUTs was performed showing significant signal transmission up to a distance of 20 cm in air and 2 cm in the test liquid.

  4. A new ab initio potential energy surface for the NH-He complex

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Kłos, J.; Lique, F.

    2018-02-01

    We present a new three-dimensional potential energy surface (PES) for the NH(X3Σ-)-He van der Waals system, which explicitly takes into account the NH vibrational motion. The NH-He PES was obtained using the open-shell single- and double-excitation coupled cluster approach with non-iterative perturbational treatment of triple excitations. The augmented correlation-consistent aug-cc-pVXZ (X = Q, 5, 6) basis sets were employed, and the energies obtained were then extrapolated to the complete basis set limit. Using this new PES, we have studied the spectroscopy of the NH-He complex and we have determined a new rotational constant that agrees well with the available experimental data. Collisional excitation of NH(X3Σ-) by He was also studied at the close-coupling level. Calculations of the collisional excitation cross sections of the fine-structure levels of NH by He were performed for energies up to 3500 cm-1, which yield, after thermal average, rate coefficients up to 350 K. The calculated rate coefficients are compared with available experimental measurements at room temperature, and a reasonably good agreement is found between experimental and theoretical data.

  5. Characteristics of one-port surface acoustic wave resonator fabricated on ZnO/6H-SiC layered structure

    NASA Astrophysics Data System (ADS)

    Li, Qi; Qian, Lirong; Fu, Sulei; Song, Cheng; Zeng, Fei; Pan, Feng

    2018-04-01

    Characteristics of one-port surface acoustic wave (SAW) resonators fabricated on ZnO/6H-SiC layered structure were investigated experimentally and theoretically. Phase velocities (V p), electromechanical coupling coefficients (K 2), quality factors (Q), and temperature coefficients of frequency (TCF) of Rayleigh wave (0th mode) and first- and second-order Sezawa wave (1st and 2nd modes, respectively) for different piezoelectric film thickness-to-wavelength (h ZnO /λ) ratios were systematically studied. Results demonstrated that one-port SAW resonators fabricated on the ZnO/6H-SiC layered structure were promising for high-frequency SAW applications with moderate K 2 and TCF values. A high K 2 of 2.44% associated with a V p of 5182 m s‑1 and a TCF of  ‑41.8 ppm/°C was achieved at h ZnO /λ  =  0.41 in the 1st mode, while a large V p of 7210 m s‑1 with a K 2 of 0.19% and a TCF of  ‑36.4 ppm/°C was obtained for h ZnO /λ  =  0.31 in the 2nd mode. Besides, most of the parameters were reported for the first time and will be helpful for the future design and optimization of SAW devices fabricated on ZnO/6H-SiC layered structures.

  6. A tunable sound-absorbing metamaterial based on coiled-up space

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhao, Honggang; Yang, Haibin; Zhong, Jie; Zhao, Dan; Lu, Zhongliang; Wen, Jihong

    2018-05-01

    This paper presents a theoretical, numerical, and experimental investigation of a deep-subwavelength absorber based on the concept of coiled-up space. By adjusting a partition panel in the cavity to form an unequal-section channel, it is found that the resonance frequency of the absorber is easily tuned and near-total absorption is acquired under a fixed deep-subwavelength thickness. The absorption mechanism induced by nearly critical coupling is revealed by graphically analyzing the reflection coefficient in the complex plane. In contrast to conventional techniques, near-total absorption can be adjusted over a wider frequency range. To further enhance the absorption, we demonstrate a broadband absorber with a relative bandwidth up to 33.3%.

  7. Effects of the coupling strength of a voltage probe on the conductance coefficients in a three-lead microstructure

    NASA Astrophysics Data System (ADS)

    Iida, S.

    1991-03-01

    Using statistical scattering theory, we calculate the average and the variance of the conductance coefficients at zero temperature for a small disordered metallic wire composed of three arms. Each arm is coupled at the end to a perfectly conducting lead. The disorder is modeled by a microscopic random Hamiltonian belonging to the Gaussian orthogonal ensemble. As the coupling strength of the third arm (voltage probe) is increased, the variance of the conductance coefficient of the main track changes from the universal value of the two-lead geometry to that of the three-lead geometry. The variance of the resistance coefficient is strongly affected by the coupling strength of the arm whose resistance is being measured and has a relatively weak dependence on those of the other two arms.

  8. Extraction of the gate capacitance coupling coefficient in floating gate non-volatile memories: Statistical study of the effect of mismatching between floating gate memory and reference transistor in dummy cell extraction methods

    NASA Astrophysics Data System (ADS)

    Rafhay, Quentin; Beug, M. Florian; Duane, Russell

    2007-04-01

    This paper presents an experimental comparison of dummy cell extraction methods of the gate capacitance coupling coefficient for floating gate non-volatile memory structures from different geometries and technologies. These results show the significant influence of mismatching floating gate devices and reference transistors on the extraction of the gate capacitance coupling coefficient. In addition, it demonstrates the accuracy of the new bulk bias dummy cell extraction method and the importance of the β function, introduced recently in [Duane R, Beug F, Mathewson A. Novel capacitance coupling coefficient measurement methodology for floating gate non-volatile memory devices. IEEE Electr Dev Lett 2005;26(7):507-9], to determine matching pairs of floating gate memory and reference transistor.

  9. TU-F-CAMPUS-J-02: Evaluation of Textural Feature Extraction for Radiotherapy Response Assessment of Early Stage Breast Cancer Patients Using Diffusion Weighted MRI and Dynamic Contrast Enhanced MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Y; Wang, C; Horton, J

    Purpose: To investigate the feasibility of using classic textural feature extraction in radiotherapy response assessment, we studied a unique cohort of early stage breast cancer patients with paired pre - and post-radiation Diffusion Weighted MRI (DWI-MRI) and Dynamic Contrast Enhanced MRI (DCE-MRI). Methods: 15 female patients from our prospective phase I trial evaluating preoperative radiotherapy were included in this retrospective study. Each patient received a single-fraction radiation treatment, and DWI and DCE scans were conducted before and after the radiotherapy. DWI scans were acquired using a spin-echo EPI sequence with diffusion weighting factors of b = 0 and b =more » 500 mm{sup 2} /s, and the apparent diffusion coefficient (ADC) maps were calculated. DCE-MRI scans were acquired using a T{sub 1}-weighted 3D SPGR sequence with a temporal resolution of about 1 minute. The contrast agent (CA) was intravenously injected with a 0.1 mmol/kg bodyweight dose at 2 ml/s. Two parameters, volume transfer constant (K{sup trans} ) and k{sub ep} were analyzed using the two-compartment Tofts kinetic model. For DCE parametric maps and ADC maps, 33 textural features were generated from the clinical target volume (CTV) in a 3D fashion using the classic gray level co-occurrence matrix (GLCOM) and gray level run length matrix (GLRLM). Wilcoxon signed-rank test was used to determine the significance of each texture feature’s change after the radiotherapy. The significance was set to 0.05 with Bonferroni correction. Results: For ADC maps calculated from DWI-MRI, 24 out of 33 CTV features changed significantly after the radiotherapy. For DCE-MRI pharmacokinetic parameters, all 33 CTV features of K{sup trans} and 33 features of k{sub ep} changed significantly. Conclusion: Initial results indicate that those significantly changed classic texture features are sensitive to radiation-induced changes and can be used for assessment of radiotherapy response in breast cancer.« less

  10. Improved ferroelectric, piezoelectric and electrostrictive properties of dense BaTiO{sub 3} ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baraskar, Bharat G.; Kakade, S. G.; Kambale, R. C., E-mail: rckambale@gmail.com

    2016-05-23

    The ferroelectric, piezoelectric and electrostrictive properties of BaTiO{sub 3} (BT) dense ceramic synthesized by solid-state reaction were investigated. X-ray diffraction study confirmed tetragonal crystal structure having c/a ~1.0144. The dense microstructure was evidenced from morphological studies with an average grain size ~7.8 µm. Temperature dependent dielectric measurement showed the maximum values of dielectric constant, ε{sub r} = 5617 at Curie temperature, T{sub c} = 125 °C. The saturation and remnant polarization, P{sub sat.} = 24.13 µC/cm{sup 2} and P{sub r} =10.42 µC/cm{sup 2} achieved respectively for the first time with lower coercive field of E{sub c}=2.047 kV/cm. The polarization currentmore » density-electric field measurement exhibits the peaking characteristics, confirms the saturation state of polarization for BT. The strain-electric field measurements revealed the “sprout” shape nature instead of typical “butterfly loop”. This shows the excellent converse piezoelectric response with remnant strain ~ 0.212% and converse piezoelectric constant d*{sub 33} ~376.35 pm/V. The intrinsic electrostrictive coefficient was deduced from the variation of strain with polarization with electrostrictive coefficient Q{sub 33}~ 0.03493m{sup 4}/C{sup 2}.« less

  11. An Efficient Statistical Method to Compute Molecular Collisional Rate Coefficients

    NASA Astrophysics Data System (ADS)

    Loreau, Jérôme; Lique, François; Faure, Alexandre

    2018-01-01

    Our knowledge about the “cold” universe often relies on molecular spectra. A general property of such spectra is that the energy level populations are rarely at local thermodynamic equilibrium. Solving the radiative transfer thus requires the availability of collisional rate coefficients with the main colliding partners over the temperature range ∼10–1000 K. These rate coefficients are notoriously difficult to measure and expensive to compute. In particular, very few reliable collisional data exist for inelastic collisions involving reactive radicals or ions. In this Letter, we explore the use of a fast quantum statistical method to determine molecular collisional excitation rate coefficients. The method is benchmarked against accurate (but costly) rigid-rotor close-coupling calculations. For collisions proceeding through the formation of a strongly bound complex, the method is found to be highly satisfactory up to room temperature. Its accuracy decreases with decreasing potential well depth and with increasing temperature, as expected. This new method opens the way to the determination of accurate inelastic collisional data involving key reactive species such as {{{H}}}3+, H2O+, and H3O+ for which exact quantum calculations are currently not feasible.

  12. A Radiation Solver for the National Combustion Code

    NASA Technical Reports Server (NTRS)

    Sockol, Peter M.

    2015-01-01

    A methodology is given that converts an existing finite volume radiative transfer method that requires input of local absorption coefficients to one that can treat a mixture of combustion gases and compute the coefficients on the fly from the local mixture properties. The Full-spectrum k-distribution method is used to transform the radiative transfer equation (RTE) to an alternate wave number variable, g . The coefficients in the transformed equation are calculated at discrete temperatures and participating species mole fractions that span the values of the problem for each value of g. These results are stored in a table and interpolation is used to find the coefficients at every cell in the field. Finally, the transformed RTE is solved for each g and Gaussian quadrature is used to find the radiant heat flux throughout the field. The present implementation is in an existing cartesian/cylindrical grid radiative transfer code and the local mixture properties are given by a solution of the National Combustion Code (NCC) on the same grid. Based on this work the intention is to apply this method to an existing unstructured grid radiation code which can then be coupled directly to NCC.

  13. An experimental study of the thermodynamic properties of 1,1-difluoroethane

    NASA Astrophysics Data System (ADS)

    Tamatsu, T.; Sato, T.; Sato, H.; Watanabe, K.

    1992-11-01

    Experimental vapor pressures and P-ρ-T data of an important alternative refrigerant, 1, 1-difluoroethane (HFC-152a), have been measured by means of a constant-volume method coupled with expansion procedures. Sixty P-ρ-T data were measured along eight isochores in a range of temperatures T from 330 to 440 K, at pressures P from 1.6 to 9.3 MPa, and at densities ρ from 51 to 811 kg·m-3. Forty-six vapor pressures were also measured at temperatures from 320 K to the critical temperature. The uncertainties of the temperature and pressure measurements are within ±7mK and ±2kPa, respectively, while the uncertainty of the density values is within ±0.1%. The purity of the sample used is 99.9 wt%. On the basis of the measurements along each isochore, five saturation points were determined and the critical pressure was determined by correlating the vapor-pressure measurements. The second and third virial coefficients for temperatures from 360 to 440 K have also been determined.

  14. Transfer coefficients in ultracold strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.

    2018-03-01

    We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.

  15. Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials

    PubMed Central

    2017-01-01

    A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac–Coulomb and Dirac–Coulomb–Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved. PMID:28595411

  16. High sensitivity zero-biased magnetic field sensor based on multiphase laminate heterostructures with FeCuNbSiB nanocrystalline soft magnetic alloy

    NASA Astrophysics Data System (ADS)

    Qiu, Jing; Wen, Yumei; Li, Ping; Chen, Hengjia

    2016-05-01

    In this paper, a high sensitivity zero-biased magnetic field sensor based on multiphase laminate heterostructures consisting of FeCuNbSiB/Terfenol-D (Tb1-xDyxFe2)/PZT (Pb(Zr1-x,Tix)O3)/Terfenol-D/PZT/Ternol-D/FeCuNbSiB (FMPMPMF) is presented, whose ME coupling characteristics and sensing performances have been investigated. Compared to traditional Terfenol-D/PZT/Terfenol-D (MPM) and Terfenol-D/PZT/Terfenol-D/PZT/Terfenol-D (MPMPM) sensors, the zero-biased ME coupling characteristics of FMPMPMF sensor were significantly improved, owing to a build-in magnetic field in FeCuNbSiB/Terfenol-D layers. The optimum zero-biased resonant ME voltage coefficient of 3.02 V/Oe is achieved, which is 1.65 times as great as that of MPMPM and 2.51 times of MPM sensors. The mean value of low-frequency ME field coefficient of FMPMPMF reaches 122.53 mV/cm Oe, which is 2.39 times as great as that of MPMPM and 1.79 times of MPM sensors. Meanwhile, the induced zero-biased ME voltage of FMPMPMF sensor shows an excellent linear relationship to ac magnetic field both at the low frequency (1 kHz) and the resonant frequency (106.6 kHz). Remarkably, it indicates that the proposed zero-biased magnetic field sensor give the prospect of being able to applied to the field of highly sensitive ac magnetic field sensing.

  17. Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials

    NASA Astrophysics Data System (ADS)

    Jäger, Benjamin; Bich, Eckard

    2017-06-01

    A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac-Coulomb and Dirac-Coulomb-Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved.

  18. Time-reversing light pulses by adiabatic coupling modulation in coupled-resonator optical waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Martini, Rainer; Search, Christopher P.

    2012-12-01

    We introduce a mechanism to time reverse short optical pulses in coupled resonator optical waveguides (CROWs) by direct modulation of the coupling coefficients between microresonators. The coupling modulation is achieved using phase modulation of a Mach-Zehnder interferometer coupler. We demonstrate that by adiabatic modulation of the coupling between resonators we can time reverse or store light pulses with bandwidths up to a few hundred GHz. The large pulse bandwidths, small device footprint, robustness with respect to resonator losses, and easy tuning process of the coupling coefficients make this method more practical than previous proposals.

  19. A composite approach boosts transduction coefficients of piezoceramics for energy harvesting

    NASA Astrophysics Data System (ADS)

    Yu, Xiaole; Hou, Yudong; Zheng, Mupeng; Zhao, Haiyan; Zhu, Mankang

    2018-03-01

    Piezoelectric energy harvesting is a hotspot in the field of new energy, the core goal of which is to prepare piezoceramics with a high transduction coefficient (d33×g33). The traditional solid-solution design strategy usually causes the same variation trend of d33 and ɛr, resulting in a low d33×g33 value. In this work, a composite design strategy was proposed that uses PZN-PZT/ZnAl2O4 as an example. By introducing ZnAl2O4, which is nonferroelectric with low ɛr, to the PZN-PZT piezoelectric matrix, ɛr decreased rapidly while d33 remained relatively stable. This behavior was ascribed to the increase of Q33 caused by an interfacial effect facilitating the formation of micro-domain structure.

  20. Confidence bounds and hypothesis tests for normal distribution coefficients of variation

    Treesearch

    Steve Verrill; Richard A. Johnson

    2007-01-01

    For normally distributed populations, we obtain confidence bounds on a ratio of two coefficients of variation, provide a test for the equality of k coefficients of variation, and provide confidence bounds on a coefficient of variation shared by k populations.

  1. Determination of drying kinetics and convective heat transfer coefficients of ginger slices

    NASA Astrophysics Data System (ADS)

    Akpinar, Ebru Kavak; Toraman, Seda

    2016-10-01

    In the present work, the effects of some parametric values on convective heat transfer coefficients and the thin layer drying process of ginger slices were investigated. Drying was done in the laboratory by using cyclone type convective dryer. The drying air temperature was varied as 40, 50, 60 and 70 °C and the air velocity is 0.8, 1.5 and 3 m/s. All drying experiments had only falling rate period. The drying data were fitted to the twelve mathematical models and performance of these models was investigated by comparing the determination of coefficient ( R 2), reduced Chi-square ( χ 2) and root mean square error between the observed and predicted moisture ratios. The effective moisture diffusivity and activation energy were calculated using an infinite series solution of Fick's diffusion equation. The average effective moisture diffusivity values and activation energy values varied from 2.807 × 10-10 to 6.977 × 10-10 m2/s and 19.313-22.722 kJ/mol over the drying air temperature and velocity range, respectively. Experimental data was used to evaluate the values of constants in Nusselt number expression by using linear regression analysis and consequently, convective heat transfer coefficients were determined in forced convection mode. Convective heat transfer coefficient of ginger slices showed changes in ranges 0.33-2.11 W/m2 °C.

  2. An investigation of angular stiffness and damping coefficients of an axial spline coupling in high-speed rotating machinery

    NASA Technical Reports Server (NTRS)

    Ku, C.-P. Roger; Walton, James F., Jr.; Lund, Jorgen W.

    1994-01-01

    This paper provided an opportunity to quantify the angular stiffness and equivalent viscous damping coefficients of an axial spline coupling used in high-speed turbomachinery. A unique test methodology and data reduction procedures were developed. The bending moments and angular deflections transmitted across an axial spline coupling were measured while a nonrotating shaft was excited by an external shaker. A rotor dynamics computer program was used to simulate the test conditions and to correlate the angular stiffness and damping coefficients. In addition, sensitivity analyses were performed to show that the accuracy of the dynamic coefficients do not rely on the accuracy of the data reduction procedures.

  3. New Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbZrO3-PbTiO3 Quaternary Ceramics: Morphotropic Phase Boundary Design and Electrical Properties.

    PubMed

    Luo, Nengneng; Zhang, Shujun; Li, Qiang; Xu, Chao; Yang, Zhanlue; Yan, Qingfeng; Zhang, Yiling; Shrout, Thomas R

    2016-06-22

    Four series of Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbZrO3-PbTiO3 (PMN-PIN-PZ-PT) quaternary ceramics with compositions located at the morphotropic phase boundary (MPB) regions were prepared. The MPBs of the multicomponent system were predicted using a linear combination rule and experimentally confirmed by X-ray powder diffraction and electrical measurement. The positions of MPBs in multicomponent systems were found in linear correlation with the tolerance factor and ionic radii of non-PT end-members. The phase structure, piezoelectric coefficient, electromechanical coupling coefficient, unipolar strains, and dielectric properties of as-prepared ceramics were systematically investigated. The largest d33s were obtained at S36.8, L37.4, M39.6, and N35.8, with the corresponding values of 580, 450, 420, and 530 pC/N, respectively, while the largest kps were found at S34.8, L37.4, M39.6, and N35.8, with the respective values of 0.54, 0.50, 0.47, and 0.53. The largest unipolar strain Smax and high-field piezoelectric strain coefficients d33* were also observed around the respective MPB regions. The rhombohedral-to-tetragonal phase transition temperature Trt increased with increasing PIN and PZ contents. Of particular importance is that high Trt of 140-197 °C was achieved in the M series with PZ and PIN contents being around 0.208 and 0.158, which will broaden the temperature usage range.

  4. Suggestion for search of ethylene oxide (c-C2H4O) in a cosmic object

    NASA Astrophysics Data System (ADS)

    Sharma, M. K.; Sharma, M.; Chandra, S.

    2018-05-01

    Ethylene oxide (c-C2H4O) and its isomer acetaldehyde (CH3CHO) are important organic molecules because of their potential role in the formation of amino acids. The c-C2H4O molecule is a b-type asymmetric top molecule and owing to half-spin of each of the four hydrogen atoms, it has two distinct ortho (nuclear spin one) and para (nuclear spin zero and two) species. It has been detected in the Sgr B2N. Using the rotational and centrifugal distortion constants along with the electric dipole moment, we have calculated energies of 100 rotational levels of each of the ortho and para species of c-C2H4O molecule and the Einstein A-coefficients for radiative transitions between the levels. The values of Einstein A-coefficients along with the scaled values for the collisional rate coefficients are used for solving a set of statistical equilibrium equations coupled with the equations of radiative transfer. Brightness-temperatures of five rotational transitions of each of the ortho and para species of c-C2H4O molecule are investigated. Out of these ten transitions, three transitions are found to show the anomalous absorption and rest seven are found to show the emission feature. We have also investigated seven transitions observed unblended in the Sgr B2(N). We have found that the transitions 3_{3 0} - 3_{2 1} (23.134 GHz), 2_{2 0} - 2_{1 1} (15.603 GHz), 3_{3 1} - 3_{2 2} (39.680 GHz) and 1_{1 1} - 0_{0 0} (39.582 GHz) may play important role for the identification of ethylene oxide in a cosmic object.

  5. Structural Transition and Electrical Properties of (1 - x)(Na0.4K0.1Bi0.5)TiO3- xSrTiO3 Lead-Free Piezoceramics

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Zhai, Jiwei; Shen, Bo; Li, Feng; Li, Peng

    2017-10-01

    (1 - x)(Na0.4K0.1Bi0.5)TiO3- xSrTiO3 (NKBT- xST) ceramics with x = 0 mol.%, 3 mol.%, and 5 mol.% (0ST, 3ST, and 5ST) have been prepared by a conventional solid-state reaction method and their ferroelectric, electrostrictive, and pyroelectric properties investigated. Addition of ST considerably disrupted the long-range ferroelectric order of NKBT- xST ceramics, and the 5ST ceramic exhibited ergodic relaxor phase structure. T FR shifted to near or below room temperature for 5ST ceramic, accompanied by a significant decline of ferroelectricity and enhanced strain. As the temperature approached T FR, the NKBT- xST ceramics exhibited predominantly electrostrictive effect, and the 5ST ceramic presented relatively high electrostrictive coefficient Q 33 of 0.0193 m4/C2. High pyroelectric response was observed for 0ST, 3ST, and 5ST ceramics in the vicinity of T FR due to the large polarization release during the ferroelectric-relaxor structural transition. The 5ST ceramic exhibited high and frequency-insensitive (100 Hz to 10 kHz) room-temperature pyroelectric properties with pyroelectric coefficient p of 656 μC m-2 K-1 and figures of merit F i, F v, and F d reaching 233 pm/V, 0.013 m2/C, and 7.61 μPa-1/2, respectively, indicating that 5ST ceramic is a promising candidate to replace PZT-based ceramics.

  6. Rate coefficients for the reaction of O(1D) with the atmospherically long-lived greenhouse gases NF3, SF3CF3, CHF3, C2F6, c-C3F8, n-C5F12, and n-C6F14

    NASA Astrophysics Data System (ADS)

    Baasandorj, M.; Hall, B. D.; Burkholder, J. B.

    2012-09-01

    The contribution of atmospherically persistent (long-lived) greenhouse gases to the radiative forcing of Earth has increased over the past several decades. The impact of highly fluorinated saturated compounds, in particular perfluorinated compounds, on climate change is a concern because of their long atmospheric lifetimes, which are primarily determined by stratospheric loss processes, as well as their strong absorption in the infrared "window" region. A potentially key stratospheric loss process for these compounds is their gas-phase reaction with electronically excited oxygen atoms, O(1D). Therefore, accurate reaction rate coefficient data is desired for input to climate change models. In this work, rate coefficients, k, were measured for the reaction of O(1D) with several key long-lived greenhouse gases, namely NF3, SF5CF3, CHF3 (HFC-23), C2F6, c-C4F8, n-C5F12, and n-C6F14. Room temperature rate coefficients for the total reaction, kTot, corresponding to loss of O(1D), and reactive channel, kR, corresponding to the loss of the reactant compound, were measured for NF3 and SF5CF3 using competitive reaction and relative rate methods, respectively. kR was measured for the CHF3 reaction and improved upper-limits were determined for the perfluorinated compounds included in this study. For NF3, kTot was determined to be (2.55 ± 0.38) × 10-11 cm3 molecule-1 s-1 and kR, which was measured using CF3Cl, N2O, CF2ClCF2Cl (CFC-114), and CF3CFCl2 (CFC-114a) as reference compounds, was determined to be (2.21 ± 0.33) × 10-11 cm3 molecule-1 s-1 corresponding to a reactive branching ratio of 0.87 ± 0.13. For SF5CF3, kTot = (3.24 ± 0.50) × 10-13 cm3 molecule-1 s-1 and kR < 5.8 × 10-14 cm3 molecule-1 s-1 were measured, where kR is a factor of three lower than the current recommendation of kTot for use in atmospheric modeling. For CHF3, kR was determined to be (2.35 ± 0.35) × 10-12 cm3 molecule-1 s-1, which corresponds to a reactive channel yield of 0.26 ± 0.04, and resolves a large discrepancy among previously reported values. The quoted uncertainties are 2σ and include estimated systematic errors. Upper-limits for kR for the C2F6, c-C4F8, n-C5F12, and n-C6F14 reactions were determined to be 3.0, 3.5, 5.0, and 16 (in units of 10-14 cm3 molecule-1 s-1), respectively. The results from this work are compared with results from previous studies.

  7. CoBi3-the first binary compound of cobalt with bismuth: high-pressure synthesis and superconductivity

    NASA Astrophysics Data System (ADS)

    Tencé, S.; Janson, O.; Krellner, C.; Rosner, H.; Schwarz, U.; Grin, Y.; Steglich, F.

    2014-10-01

    The first compound in the cobalt bismuth system was synthesized by high-pressure high-temperature synthesis at 5 GPa and 450 °C. CoBi3 crystallizes in space group Pnma (no. 62) with lattice parameters of a = 8.8464(7) Å, b = 4.0697(4) Å and c = 11.5604(9) Å adopting a NiBi3-type crystal structure. CoBi3 undergoes a superconducting transition at Tc = 0.48(3) K as evidenced by electrical-resistivity and specific-heat measurements. Based on the anomaly of the specific heat at Tc and considering the estimated electron-phonon coupling, the new Bi-rich compound can be classified as a Bardeen-Cooper-Schrieffer-type superconductor with weak electron-phonon coupling. Density-functional theory calculations disclose a sizable influence of the spin-orbit coupling to the valence states and proximity to a magnetic instability, which accounts for a significantly enhanced Sommerfeld coefficient.

  8. Saugus River and Tributaries, Lynn Malden, Revere and Saugus, Massachusetts. Flood Damage Reduction. Volume 8. Appendix K. Environmental

    DTIC Science & Technology

    1989-06-01

    K10 Summary of Soil Analyses for the Salt Marsh Transects K32 KI1 Plant Community Composition Data Along Compartment K33 B Transect K12 Plant...Community Composition Data Along Compartment K33 I Transect K13 Plant Community Composition Data Along Compartment K33 K1 Transect K14 Plant Community... Composition Data Along Compartment K34 K3 Transect K15 Plant Community Composition Data Along Compartment K34 L2 Transect K16 Plant Community Composition

  9. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO 3 material

    DOE PAGES

    Yan, Yongke; Zhou, Jie E.; Maurya, Deepam; ...

    2016-10-11

    A rapid surge in the research on piezoelectric sensors is occurring with the arrival of the Internet of Things. Single-phase oxide piezoelectric materials with giant piezoelectric voltage coefficient (g, induced voltage under applied stress) and high Curie temperature (T c) are crucial towards providing desired performance for sensing, especially under harsh environmental conditions. Here, we report a grain-oriented (with 95% <001> texture) modified PbTiO 3 ceramic that has a high T c (364°C) and an extremely large g 33 (115 × 10 -3 Vm N -1) in comparison with other known single-phase oxide materials. Our results reveal that self-polarization duemore » to grain orientation along the spontaneous polarization direction plays an important role in achieving large piezoelectric response in a domain motion-confined material. Finally, the phase field simulations confirm that the large piezoelectric voltage coefficient g 33 originates from maximized piezoelectric strain coefficient d 33 and minimized dielectric permittivity ε 33 in [001]-textured PbTiO 3 ceramics where domain wall motions are absent.« less

  10. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material

    PubMed Central

    Yan, Yongke; Zhou, Jie E.; Maurya, Deepam; Wang, Yu U.; Priya, Shashank

    2016-01-01

    A rapid surge in the research on piezoelectric sensors is occurring with the arrival of the Internet of Things. Single-phase oxide piezoelectric materials with giant piezoelectric voltage coefficient (g, induced voltage under applied stress) and high Curie temperature (Tc) are crucial towards providing desired performance for sensing, especially under harsh environmental conditions. Here, we report a grain-oriented (with 95% <001> texture) modified PbTiO3 ceramic that has a high Tc (364 °C) and an extremely large g33 (115 × 10−3 Vm N−1) in comparison with other known single-phase oxide materials. Our results reveal that self-polarization due to grain orientation along the spontaneous polarization direction plays an important role in achieving large piezoelectric response in a domain motion-confined material. The phase field simulations confirm that the large piezoelectric voltage coefficient g33 originates from maximized piezoelectric strain coefficient d33 and minimized dielectric permittivity ɛ33 in [001]-textured PbTiO3 ceramics where domain wall motions are absent. PMID:27725634

  11. Effects of temperature, pH, and ionic strength on the Henry's law constant of triethylamine

    NASA Astrophysics Data System (ADS)

    Leng, Chun-Bo; Roberts, Jason E.; Zeng, Guang; Zhang, Yun-Hong; Liu, Yong

    2015-05-01

    The Henry's law constants (KH) of triethylamine (TEA) in pure water and in 1-octanol were measured for the temperatures pertinent to the lower troposphere (278-298 K) using a bubble column system coupled to a Fourier transform infrared spectrometer. The KH values of TEA in water and 1-octanol at 298 K are 5.75 ± 0.86 mol L-1 atm-1 and 115.62 ± 5.78 mol L-1 atm-1. The KH values display strong dependence on temperature, pH, and ionic strength. The characteristic times for TEA to establish an equilibrium between gas and droplet with a size of 5.6 µm are ~33 s (298 K, pH = 5.6); ~8.9 × 102 s (278 K, pH = 5.6); ~1.3 × 103 s (298 K, pH = 4.0); and 3.6 × 104 s (278 K, pH = 4.0). The evaluation of TEA partitioning between gas phase and condensed phase implies that TEA predominantly resides in rainwater, and TEA loss to organic aerosol is negligible.

  12. Absorption and radiation of nonminimally coupled scalar field from charged BTZ black hole

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Chen, Juhua; Wang, Yongjiu

    2018-06-01

    In this paper we investigate the absorption and radiation of nonminimally coupled scalar field from the charged BTZ black hole. We find the analytical expressions for the reflection coefficient, the absorption cross section and the decay rate in strong coupling case. We find that the reflection coefficient is directly governed by Hawking temperature TH, scalar wave frequency ω , Bekenstein-Hawking entropy S_{BH}, angular momentum m and coupling constant ξ.

  13. Weak Maser Emission of Methyl Formate toward Sagittarius B2(N) in the Green Bank Telescope PRIMOS Survey

    NASA Astrophysics Data System (ADS)

    Faure, A.; Remijan, A. J.; Szalewicz, K.; Wiesenfeld, L.

    2014-03-01

    A non-LTE radiative transfer treatment of cis-methyl formate (HCOOCH3) rotational lines is presented for the first time using a set of theoretical collisional rate coefficients. These coefficients have been computed in the temperature range 5-30 K by combining coupled-channel scattering calculations with a high accuracy potential energy surface for HCOOCH3-He. The results are compared to observations toward the Sagittarius B2(N) molecular cloud using the publicly available PRIMOS survey from the Green Bank Telescope. A total of 49 low-lying transitions of methyl formate, with upper levels below 25 K, are identified. These lines are found to probe a presumably cold (~30 K), moderately dense (~104 cm-3), and extended region surrounding Sgr B2(N). The derived column density of ~4 × 1014 cm-2 is only a factor of ~10 larger than the column density of the trans conformer in the same source. Provided that the two conformers have the same spatial distribution, this result suggests that strongly non-equilibrium processes must be involved in their synthesis. Finally, our calculations show that all detected emission lines with a frequency below 30 GHz are (collisionally pumped) weak masers amplifying the continuum of Sgr B2(N). This result demonstrates the importance and generality of non-LTE effects in the rotational spectra of complex organic molecules at centimeter wavelengths.

  14. Piezoelectric thin films and their applications for electronics

    NASA Astrophysics Data System (ADS)

    Yoshino, Yukio

    2009-03-01

    ZnO and AlN piezoelectric thin films have been studied for applications in bulk acoustic wave (BAW) resonator. This article introduces methods of forming ZnO and AlN piezoelectric thin films by radio frequency sputtering and applications of BAW resonators considering the relationship between the crystallinity of piezoelectric thin films and the characteristics of the BAW resonators. Using ZnO thin films, BAW resonators were fabricated for a contour mode at 3.58 MHz and thickness modes from 200 MHz to 5 GHz. The ZnO thin films were combined with various materials, substrates, and thin films to minimize the temperature coefficient of frequency (TCF). The minimum TCF of BAW resonators was approximately 2 ppm/°C in the range -20 to 80 °C. The electromechanical coupling coefficient (k2) in a 1.9 GHz BAW resonator was 6.9%. Using AlN thin films, 5-20 GHz BAW resonators with an ultrathin membrane were realized. The membrane thickness of a 20 GHz BAW resonator was about 200 nm, k2 was 6.1%, and the quality factor (Q) was about 280. Q decreased with increasing resonant frequency. The value of k2 is almost the same for 5-20 GHz resonators. This result could be obtained by improving the thickness uniformity, by controlling internal stress of thin films, and by controlling the crystallinity of AlN piezoelectric thin film.

  15. Growth and piezoelectric properties of Ca3Nb(Al0.5Ga0.5)3Si2O14 crystals with langasite structure

    NASA Astrophysics Data System (ADS)

    Xiong, Kainan; Zheng, Yanqing; Tu, Xiaoniu; Jiang, Bohan; Cao, Shuoliang; Shi, Erwei

    2017-06-01

    Piezoelectric crystals Ca3Nb(Al0.5Ga0.5)3Si2O14 (CNAGS) with langasite structure have been successfully grown by Czochralski method. In this work, the crystal structure, quality, chemical composition, piezoelectric properties, electric resistivity and optical properties of the as-grown crystals were characterized. The full width at half-maximum (FWHM) of the rocking curve of CNAGS was found to be 23″. The chemical compositions of CNAGS crystals are very close to that of initial compositions. At room temperature, the piezoelectric coefficients d11 and d14 of CNAGS crystals are 4.12 pC/N and -5.03 pC/N, and the electromechanical coupling coefficients k12 and k26 are also determined as 11.6% and 18.3%, respectively. The electric resistivity of as-growth crystal was found to be on the order of 2×108 Ω cm at 500 °C and 1×106 Ω cm at 800 °C. And the transmittances of CNAGS crystals were found to be over 80% in the wavelength range of 700-2700 nm.

  16. Absolute Measurements of Field Enhanced Dielectronic Recombination and Electron Impact Excitation

    NASA Astrophysics Data System (ADS)

    Savin, Daniel Wolf

    Absolute measurements have been made of the dielectronic recombination (DR) rate coefficient for C^ {3+}, via the 2s-2p core -excitation, in an external electric field of 11.4 +/- 0.9(1sigma) V cm ^{-1}; and of the electron impact excitation (EIE) rate coefficient for C ^{3+}(2s-2p) at energies near threshold. The ion-rest-frame FWHM of the electron energy spread was 1.74 +/- 0.22(1sigma) eV. The measured DR rate, at a mean electron energy of 8.26 +/- 0.07(1sigma ) eV, was (2.76+/- 0.75)times 10^{-10} cm^{3 } s^{-1}. The uncertainty quoted for the DR rate is the total experimental uncertainty at a 1sigma<=vel. The present DR result appears to agree with an intermediate coupling calculation which uses the isolated-resonance, single-configuration approximation. In comparing with theory, a semi-classical formula was used to determine which recombined ions were field-ionized by the 4.65 kV cm^{-1} fields in the final-charge-state analyzer and not detected. A more precise treatment of field-ionization, which includes the lifetime of the high Rydberg C^{2+} ions in the external field and the time evolution and rotation of the fields experienced by the recombined ions, is needed before a definitive comparison between experiment and theory can be made. For the EIE results, at an ion-rest-frame energy of 10.10 eV, the measured rate coefficient was (7.79+/- 2.10)times 10^{ -8} cm^3 s^ {-1}. The measured cross section was (4.15+/- 1.12)times 10^{ -16} cm^2. The uncertainties quoted here represent the total experimental uncertainty at a 90 percent confidence level. Good agreement is found with other measurements. Agreement is not good with Coulomb -Born with exchange and two-state close-coupling calculations which fall outside the 90-percent-confidence uncertainty limits. Agreement is better with a nine-state close-coupling calculation which lies at the extreme of the uncertainty limits. Taking into account previous measurements in C ^{3+} and also a measurement of EIE in Be^+ which lies 19 percent below close-coupling calculations, there is a suggestion that the C^{3+}(2s-2p) EIE rate coefficient may fall slightly below presently accepted values.

  17. Extremal Correlators in the Ads/cft Correspondence

    NASA Astrophysics Data System (ADS)

    D'Hoker, Eric; Freedman, Daniel Z.; Mathur, Samir D.; Matusis, Alec; Rastelli, Leonardo

    The non-renormalization of the 3-point functions

  18. Electron capture in collisions of N+ with H and H+ with N

    NASA Astrophysics Data System (ADS)

    Lin, C. Y.; Stancil, P. C.; Gu, J. P.; Buenker, R. J.; Kimura, M.

    2005-06-01

    Charge-transfer processes due to collisions of N+ with atomic hydrogen and H+ with atomic nitrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational couplings obtained with the multireference single- and double-excitation configuration interaction approach. Total and state-selective cross sections for the energy range 0.1meV/u-1keV/u are presented and compared with existing experimental and theoretical data. A large number of low-energy resonances are obtained for exoergic channels and near thresholds of endoergic channels. Rate coefficients are also obtained and comparison to previous calculations suggests nonadiabatic effects dominate for temperatures greater than 20 000 K, but that the spin-orbit interaction plays a major role for lower temperatures.

  19. Tuning Rashba spin-orbit coupling in homogeneous semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Wójcik, Paweł; Bertoni, Andrea; Goldoni, Guido

    2018-04-01

    We use k .p theory to estimate the Rashba spin-orbit coupling (SOC) in large semiconductor nanowires. We specifically investigate GaAs- and InSb-based devices with different gate configurations to control symmetry and localization of the electron charge density. We explore gate-controlled SOC for wires of different size and doping, and we show that in high carrier density SOC has a nonlinear electric field susceptibility, due to large reshaping of the quantum states. We analyze recent experiments with InSb nanowires in light of our calculations. Good agreement is found with the SOC coefficients reported in Phys. Rev. B 91, 201413(R) (2015), 10.1103/PhysRevB.91.201413, but not with the much larger values reported in Nat. Commun. 8, 478 (2017), 10.1038/s41467-017-00315-y. We discuss possible origins of this discrepancy.

  20. Artificial Intelligence Techniques to Optimize the EDC/NHS-Mediated Immobilization of Cellulase on Eudragit L-100

    PubMed Central

    Zhang, Yu; Xu, Jing-Liang; Yuan, Zhen-Hong; Qi, Wei; Liu, Yun-Yun; He, Min-Chao

    2012-01-01

    Two artificial intelligence techniques, namely artificial neural network (ANN) and genetic algorithm (GA) were combined to be used as a tool for optimizing the covalent immobilization of cellulase on a smart polymer, Eudragit L-100. 1-Ethyl-3-(3-dimethyllaminopropyl) carbodiimide (EDC) concentration, N-hydroxysuccinimide (NHS) concentration and coupling time were taken as independent variables, and immobilization efficiency was taken as the response. The data of the central composite design were used to train ANN by back-propagation algorithm, and the result showed that the trained ANN fitted the data accurately (correlation coefficient R2 = 0.99). Then a maximum immobilization efficiency of 88.76% was searched by genetic algorithm at a EDC concentration of 0.44%, NHS concentration of 0.37% and a coupling time of 2.22 h, where the experimental value was 87.97 ± 6.45%. The application of ANN based optimization by GA is quite successful. PMID:22942683

  1. O (6 ) algebraic theory of three nonrelativistic quarks bound by spin-independent interactions

    NASA Astrophysics Data System (ADS)

    Dmitrašinović, V.; Salom, Igor

    2018-05-01

    We apply the newly developed theory of permutation-symmetric O (6 ) hyperspherical harmonics to the quantum-mechanical problem of three nonrelativistic quarks confined by a spin-independent three-quark potential. We use our previously derived results to reduce the three-body Schrödinger equation to a set of coupled ordinary differential equations in the hyper-radius R with coupling coefficients expressed entirely in terms of (i) a few interaction-dependent O (6 ) expansion coefficients and (ii) O (6 ) hyperspherical harmonics matrix elements that have been evaluated in our previous paper. This system of equations allows a solution to the eigenvalue problem with homogeneous three-quark potentials, the class of which includes a number of standard Ansätze for the confining potentials, such as the Y- and Δ -string ones. We present analytic formulas for the K =2 , 3, 4, 5 shell states' eigenenergies in homogeneous three-body potentials, which we then apply to the Y and Δ strings as well as the logarithmic confining potentials. We also present numerical results for power-law pairwise potentials with the exponent ranging between -1 and +2 . In the process, we resolve the 25-year-old Taxil and Richard vs Bowler et al. controversy regarding the ordering of states in the K =3 shell, in favor of the former. Finally, we show the first clear difference between the spectra of Δ - and Y-string potentials, which appears in K ≥3 shells. Our results are generally valid, not just for confining potentials but also for many momentum-independent permutation-symmetric homogenous potentials that need not be pairwise sums of two-body terms. The potentials that can be treated in this way must be square integrable under the O (6 ) hyperangular integral, the class of which, however, does not include the Dirac δ function.

  2. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jäger, Benjamin, E-mail: benjamin.jaeger@uni-rostock.de; Hellmann, Robert, E-mail: robert.hellmann@uni-rostock.de; Bich, Eckard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only atmore » a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.« less

  3. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas.

    PubMed

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.

  4. Chirp resonance spectroscopy of single lipid-coated microbubbles using an "acoustical camera".

    PubMed

    Renaud, G; Bosch, J G; van der Steen, A F W; de Jong, N

    2012-12-01

    An acoustical method was developed to study the resonance of single lipid-coated microbubbles. The response of 127 SonoVue microbubbles to a swept sine excitation between 0.5 and 5.5 MHz with a peak acoustic pressure amplitude of 70 kPa was measured by means of a 25 MHz probing wave. The relative amplitude modulation in the signal scattered in response to the probing wave is approximately equal to the radial strain induced by the swept sine excitation. An average damping coefficient of 0.33 and an average resonance frequency of 2.5 MHz were measured. Microbubbles experienced an average peak radial strain of 20%.

  5. Relations among low ionosphere parameters and high frequency radio wave absorption

    NASA Technical Reports Server (NTRS)

    Cipriano, J. P.

    1973-01-01

    Charged particle conductivities measured in the very low ionosphere at White Sands Missile Range, New Mexico, and Wallops Island, Virginia, are compared with atmospheric parameters and high frequency radio wave absorption measurements. Charged particle densities are derived from the conductivity data. Between 33 and 58 km, positive conductivity correlated well with neutral atmospheric temperature, with temperature coefficients as large as 4.6%/deg K. Good correlations were also found between HF radio wave absorption and negative conductivity at altitudes as low as 53 km, indicating that the day-to-day absorption variations were principally due to variations in electron loss rate.

  6. Aerodynamic characteristics of the 10-percent-thick NASA supercritical airfoil 33 designed for a normal-force coefficient of 0.7

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1975-01-01

    A 10-percent-thick supercritical airfoil based on an off-design sonic-pressure plateau criterion was developed and experimental aerodynamic characteristics measured. The airfoil had a design normal-force coefficient of 0.7 and was identified as supercritical airfoil 33. Results show the airfoil to have good drag rise characteristics over a wide range of normal-force coefficients with no measurable shock losses up to the Mach numbers at which drag divergence occurred for normal-force coefficients up to 0.7. Comparisons of experimental and theoretical characteristics were made and composite drag rise characteristics were derived for normal-force coefficients of 0.5 and 0.7 and a Reynolds number of 40 million.

  7. Serine 192 in the tiny RS repeat of the adenoviral L4-33K splicing enhancer protein is essential for function and reorganization of the protein to the periphery of viral replication centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oestberg, Sara, E-mail: sara.ostberg@imbim.uu.se; Toermaenen Persson, Heidi, E-mail: heidi.tormanen.persson@imbim.uu.se; Akusjaervi, Goeran, E-mail: goran.akusjarvi@imbim.uu.se

    2012-11-25

    The adenovirus L4-33K protein is a key regulator involved in the temporal shift from early to late pattern of mRNA expression from the adenovirus major late transcription unit. L4-33K is a virus-encoded alternative splicing factor, which enhances processing of 3 Prime splice sites with a weak sequence context. Here we show that L4-33K expressed from a plasmid is localized at the nuclear margin of uninfected cells. During an infection L4-33K is relocalized to the periphery of E2A-72K containing viral replication centers. We also show that serine 192 in the tiny RS repeat of the conserved carboxy-terminus of L4-33K, which ismore » critical for the splicing enhancer function of L4-33K, is necessary for the nuclear localization and redistribution of the protein to viral replication sites. Collectively, our results show a good correlation between the activity of L4-33K as a splicing enhancer protein and its localization to the periphery of viral replication centers.« less

  8. Investigation of the marine boundary layer cloud and CCN properties under coupled and decoupled conditions over the Azores

    DOE PAGES

    Dong, Xiquan; Schwantes, Adam C.; Xi, Baike; ...

    2015-06-10

    Here, six coupled and decoupled marine boundary layer (MBL) clouds were chosen from the 19 month Atmospheric Radiation Measurement Mobile Facility data set over the Azores. Thresholds of liquid water potential temperature difference Δθ L < 0.5 K (>0.5 K) and total water mixing ratio difference Δq t < 0.5 g/kg (>0.5 g/kg) below the cloud base were used for selecting the coupled (decoupled) cases. A schematic diagram was given to demonstrate the coupled and decoupled MBL vertical structures and how they associate with nondrizzle, virga, and rain drizzle events. Out of a total of 2676 5 min samples, 34.5%more » were classified as coupled and 65.5% as decoupled, 36.2% as nondrizzle and 63.8% as drizzle (47.7% as virga and 16.1% as rain), and 33.4% as daytime and 66.6% as nighttime. The decoupled cloud layer is deeper (0.406 km) than coupled cloud layer (0.304 km), and its liquid water path and cloud droplet effective radius (r e) values (122.1 gm -2 and 13.0 µm) are higher than coupled ones (83.7 gm -2 and 10.4 µm). Conversely, decoupled stratocumuli have lower cloud droplet number concentration (N d) and surface cloud condensation nucleus (CCN) concentration (N CCN) (74.5 cm -3 and 150.9 cm -3) than coupled stratocumuli (111.7 cm -3 and 216.4 cm -3). The linear regressions between r e and N d with N CCN have demonstrated that coupled r e and N d strongly depend on N CCN and have higher correlations (-0.56 and 0.59) with N CCN than decoupled results (-0.14 and 0.25). The MBL cloud properties under nondrizzle and virga drizzle conditions are similar to each other but significantly different to those of rain drizzle.« less

  9. Maneuvering Aerothermal Technology (MAT) Program. A Method for Coupled Three-Dimensional Inviscid and Integral Boundary Layer Calculations

    DTIC Science & Technology

    1982-05-01

    impervious, flat plate. The friction coefficient and Stanton number for laminar flow are: 0.245 (4.24) 2 e 27. I. V C , tD 0.22 (4.25) and for...A I0 I iISl~i Ai i iI# 2.- cIC ,C ,c c , C ;C - 0Ki of IWc -K.lm0. wowFC 0p-- U. 4~~.0 w mN N a’ IN g e.F .0 f cfýN@-,4 a No pc c % 2 C-, r-’, 4F -6

  10. Mode I analysis of a cracked circular disk subject to a couple and a force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1977-01-01

    Mode 1 stress intensity coefficients were obtained for an edge-cracked disk (round compact specimen). Results for this plane elastostatic problem, obtained by a boundary collocation analysis are presented for ratios 0.35 less than A/D less than 1, where A is the crack length and D is the disk diameter. The results presented are for two complementary types of loading. By superposition of these results the stress intensity factor K sub I for any practical load line location of a pin-loaded round compact specimen can be obtained.

  11. Rotational cross sections and rate coefficients of aluminium monoxide AlO(X2Σ+) induced by its collision with He(1 S) at low temperature

    NASA Astrophysics Data System (ADS)

    Tchakoua, Théophile; Nkot Nkot, Pierre René; Fifen, Jean Jules; Nsangou, Mama; Motapon, Ousmanou

    2018-06-01

    We present the first potential energy surface (PES) for the AlO(X2Σ+)-He(1 S) van der Waals complex. This PES has been calculated at the RCCSD(T) level of theory. The mixed Gaussian/Exponential Extrapolation Scheme of complete basis set [CBS(D,T,Q)] was employed. The PES was fitted using global analytical method. This fitted PES was used subsequently in the close-coupling approach for the computation of the state-to-state collisional excitation cross sections of the fine-structure levels of the AlO-He complex. Collision energies were taken up to 2500 cm-1 and they yield after thermal averaging, state-to-state rate coefficients up to 300 K. The propensity rules between the lowest fine-structure levels were studied. These rules show, on one hand, a strong propensity in favour of odd ΔN transitions, and on the other hand, that cross sections and collisional rate coefficients for Δj = ΔN transitions are larger than those for Δj ≠ ΔN transitions.

  12. Modal sound transmission loss of a single leaf panel: Effects of inter-modal coupling.

    PubMed

    Wang, Chong

    2015-06-01

    Sound transmission through a single leaf panel has mostly been discussed and explained by using the approaching wave concept, from which the well-known mass law can be derived. In this paper, the modal behavior in sound transmission coefficients is explored, and it is shown that the mutual modal radiation impedances in modal sound transmission coefficients may not be ignored even for a panel immersed in a light fluid. By introducing the equivalent modal impedance which incorporates the inter-modal coupling effect, an analytical expression for the modal sound transmission coefficient is derived, and the overall sound transmission coefficient is simply a modal superposition of modal sound transmission coefficients. A good correlation is obtained between analytical calculation and boundary element method. In addition, it is found that inter-modal coupling has noticeable effects in modal sound transmission coefficients in the subsonic region but may be ignored as modes become supersonic. It is also shown that the well-known mass law performance is attributed to all the supersonic modes.

  13. Specific heat, Electrical resistivity and Electronic band structure properties of noncentrosymmetric Th7Fe3 superconductor.

    PubMed

    Tran, V H; Sahakyan, M

    2017-11-17

    Noncentrosymmetric superconductor Th 7 Fe 3 has been investigated by means of specific heat, electrical resisitivity measurements and electronic properties calculations. Sudden drop in the resistivity at 2.05 ± 0.15 K and specific heat jump at 1.98 ± 0.02 K are observed, rendering the superconducting transition. A model of two BCS-type gaps appears to describe the zero-magnetic-field specific heat better than those based on the isotropic BCS theory or anisotropic functions. A positive curvature of the upper critical field H c2 (T c ) and nonlinear field dependence of the Sommerfeld coefficient at 0.4 K qualitatively support the two-gap scenario, which predicts H c2 (0) = 13 kOe. The theoretical densities of states and electronic band structures (EBS) around the Fermi energy show a mixture of Th 6d- and Fe 3d-electrons bands, being responsible for the superconductivity. Furthermore, the EBS and Fermi surfaces disclose significantly anisotropic splitting associated with asymmetric spin-orbit coupling (ASOC). The ASOC sets up also multiband structure, which presumably favours a multigap superconductivity. Electron Localization Function reveals the existence of both metallic and covalent bonds, the latter may have different strengths depending on the regions close to the Fe or Th atoms. The superconducting, electronic properties and implications of asymmetric spin-orbit coupling associated with noncentrosymmetric structure are discussed.

  14. Mitigation of Hexavalent Chromium in Storm Water Resulting from Demolition of Large Concrete Structure at the East Tennessee Technology Park - 12286

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britto, Ronnie; Brown, Bridget; Hale, Timothy B.

    American Recovery and Reinvestment Act (ARRA) funding was provided to supplement the environmental management program at several DOE sites, including the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Demolition of the ETTP K-33 Building, the largest building to be demolished to date in Oak Ridge, was awarded to LSRS in FY-2010 under the ARRA program. The K-33 building was an 82 foot tall 2-story structure covering approximately 32 acres. Once this massive building was brought down to the ground, the debris was segregated and consolidated into piles of concrete rubble and steel across the remaining pad. The processmore » of demolishing the building, tracking across concrete debris with heavy equipment, and stockpiling the concrete rubble caused it to become pulverized. During and after storm events, hexavalent chromium leached from the residual cement present in the large quantities of concrete. Storm water control measures were present to preclude migration of contaminants off-site, but these control measures were not designed to control hexavalent chromium dissolved in storm water from reaching nearby receiving water. The following was implemented to mitigate hexavalent chromium in storm water: - Steel wool was distributed around K-33 site catch basins and in water pools as an initial step in addressing hexavalent chromium. - Since the piles of concrete were too massive and unsafe to tarp, they were placed into windrows in an effort to reduce total surface area. - A Hach colorimetric field meter was acquired by the K-33 project to provide realtime results of hexavalent chromium in site surface water. - Three hexavalent chromium treatment systems were installed at three separate catch basins that receive integrated storm water flow from the K-33 site. Sodium bisulfite is being used as a reducing agent for the immobilization of hexavalent chromium while also assisting in lowering pH. Concentrations initially were 310 - 474 ppb of hexavalent chromium in surface water at the out-falls that discharge to nearby receiving water. After implementation of the actions described above, concentrations of hexavalent chromium have been effectively reduced to less than 25 ppb at the out-falls. The LSRS team completed demolition of K-33 five months ahead of schedule, and debris removal was completed three months ahead of schedule. A total of 164,000 tons of steel and concrete from the building demolition, accounting for 13,000 shipments, were disposed to the EMWMF. Because of the high toxicity of hexavalent chromium at low concentrations, hexavalent chromium had to be controlled at ppb levels. Hexavalent chromium contaminant concentrations were successfully reduced by over 90% in surface water discharged from the K-33 demolition site into nearby receiving water. Initial efforts of wind-rowing debris piles and obtaining real-time hexavalent chromium measurements to focus initiatives coupled with placement of steel wool in pools or catch basins had some effectiveness. More significant reductions were obtained as the debris piles were removed/disposed in EMWMF, and treatment of surface water with sodium bisulfite in integrated manholes occurred. (authors)« less

  15. Abstract: Correlation of Mössbauer studies on Metglas 2605 alloys with magnetomechanical coupling

    NASA Astrophysics Data System (ADS)

    Bucci, C. A.; Methaseri, T.; Clark, A. E.; Savage, H. T.

    1982-03-01

    The present work correlates the direction and spread of the magnetization measured by 57Fe Mössbauer absorption with the magnetoelastic coupling factor k for amorphous field-annealed ribbons of the 2605 Metglas family: 2605Co and 2605SC with k = 0.71 and ≳0.9, respectively. The absorption line intensities measured for different orientations of the ribbons relative to the γ-rays allow us to determine the direction of M relative to the ribbon. In particular, the component of the magnetization in the direction of the annealing field ma is maximum for the same annealing temperatures (360 °C for 2605Co and 400 °C for 2605SC) that induce the maximum coupling coefficient. In both cases the in-plane magnetization is maximum along the direction of the annealing field, and ma is as high as 0.95 for 2605SC, while it is 0.75 for 2605Co, thus indicating that the overall spread of magnetization directions in the sample is quite small for the SC ribbon. This implies that the dependence of k on bias field can be understood in terms of a simple moment-rotation model. In studying the effect of higher annealing temperatures, the Mössbauer spectra also show that, for SC ribbons, surface crystallization is produced near 420 °C followed by bulk crystallization near 440 °C, whereas for CO ribbons, bulk crystallization is first observed at 370 °C. In both cases the correlation between the decrease in k and the onset of either surface on bulk crystallization is clear. In addition to the previous results on k, a direct determination of (1-k2) is independently performed by using frequency-dependent ac susceptibility measurements in the range between 1 kHz (constant stress regime) and 1 MHz (near constant strain regime). Although the high-frequency side of the data requires accurate corrections for Eddy-current losses, the kCo and kSC values so far determined are 0.7 and 0.92, respectively. a)Metglas is a registered trademark of the Allied Chemical Corporation. b)Associated with American University. c)Associated with Naval Surface Weapons Center. 1C. Modzelewski, H. Savage, L. Kabacoff, and A. Clark, IEEE Trans. Magn., MAG-17, 2837 (1981).

  16. Reversible piezomagnetoelectric switching in bulk polycrystalline ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, T., E-mail: t.j.stevenson@leeds.ac.uk; Bennett, J.; Brown, A. P.

    2014-08-01

    Magnetoelectric (ME) coupling in materials offer tremendous advantages in device functionality enabling technologies including advanced electronic memory, combining electronic speed, and efficiency with magnetic robustness. However, low cost polycrystalline ME materials are excluded from most commercial applications, operating only at cryogenic temperatures, impractically large electric/magnetic fields, or with low ME coefficients (1-100 mV/cm Oe). Despite this, the technological potential of single compound ME coupling has continued to drive research into multiferroics over the last two decades. Here we show that by manipulating the large induced atomic strain within the polycrystalline, room temperature multiferroic compound 0.7BiFeO{sub 3}–0.3PbTiO{sub 3}, we can induce amore » reversible, piezoelectric strain controlled ME effect. Employing an in situ neutron diffraction experiment, we have demonstrated that this piezomagnetoelectric effect manifests with an applied electric field >8 kV/mm at the onset of piezoelectric strain, engineered in to the compound by crystallographic phase mixing. This produces a remarkable intrinsic ME coefficient of 1276 mV/cm Oe, due to a strain driven modification to the oxygen sub-lattice, inducing an increase in magnetic moment per Fe{sup 3+} ion of +0.142 μ{sub B}. This work provides a framework for investigations into strain engineered nanostructures to realize low-cost ME devices designed from the atoms up, as well as contributing to the deeper understanding of single phase ME coupling mechanisms.« less

  17. Performance of shrub willows (Salix spp.) as an evapotranspiration cover on Solvay wastebeds

    NASA Astrophysics Data System (ADS)

    Mirck, Jaconette

    2009-12-01

    Soda ash (Na2CO3) production in the Syracuse New York area created 607 ha of wastebeds over the course of about 100 years. Today the primary concern of the Solvay wastebeds is high chloride concentrations in the leachate and storm water that may end up in the groundwater and nearby Onondaga Lake. The potential of shrub willow evapotranspiration (ET) covers to minimize leaching and to manage storm water was assessed in two studies. A sap flow sensor field study to estimate transpiration rates of four shrub willow varieties over an entire growing season. A greenhouse study focused on recycling saline Solvay storm water onto shrub willows. Annual sap flow and crop coefficients (Kc) were similar among four shrub willows, but differences were present over the course of the growing season. Peak K c values did not coincide with peak leaf area index (LAI), as might be expected if LAI were the main driver of transpiration. Rather than solely being driven by LAI, coupling with the atmosphere was an important factor in stand level sap flow. Estimates of ET were measured during both experiments, the ET/sap flow rankings of the shrub willow varieties were similar; Salix miyabeana (SX64)< S. purpurea (9882-34)< S. miyabeana x S. sachalinensis (9870-23 or 9870-40). In the greenhouse study, Solvay storm water that contained 1,625 mg Cl - L-1 (close to the average storm water concentration) did not significantly decrease ET values or growth for any of the willow varieties. Mass balances of sodium and chloride were carried out to assess the potentials of recycling saline Solvay storm water back onto a shrub willow ET cover during the growing season. During a ten-week study the combination of a shallow depth soil (33 cm) and a high irrigation regime (170% of average precipitation in the Syracuse NY area) resulted in the accumulation of at least 62% of both sodium and chloride in the plant/soil system for all five Solvay storm water treatments. Both studies indicated that shrub willows have the characteristics to be part of a sustainable ET cover on the Solvay wastebeds, which will decrease leaching of sodium and chloride. Key words. Coupling/decoupling, crop coefficient, hydraulic control, leaf area index, mass balance, phytoremediation, sap flow.

  18. Computational modeling and analysis of thermoelectric properties of nanoporous silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.; Yu, Y.; Li, G., E-mail: gli@clemson.edu

    2014-03-28

    In this paper, thermoelectric properties of nanoporous silicon are modeled and studied by using a computational approach. The computational approach combines a quantum non-equilibrium Green's function (NEGF) coupled with the Poisson equation for electrical transport analysis, a phonon Boltzmann transport equation (BTE) for phonon thermal transport analysis and the Wiedemann-Franz law for calculating the electronic thermal conductivity. By solving the NEGF/Poisson equations self-consistently using a finite difference method, the electrical conductivity σ and Seebeck coefficient S of the material are numerically computed. The BTE is solved by using a finite volume method to obtain the phonon thermal conductivity k{sub p}more » and the Wiedemann-Franz law is used to obtain the electronic thermal conductivity k{sub e}. The figure of merit of nanoporous silicon is calculated by ZT=S{sup 2}σT/(k{sub p}+k{sub e}). The effects of doping density, porosity, temperature, and nanopore size on thermoelectric properties of nanoporous silicon are investigated. It is confirmed that nanoporous silicon has significantly higher thermoelectric energy conversion efficiency than its nonporous counterpart. Specifically, this study shows that, with a n-type doping density of 10{sup 20} cm{sup –3}, a porosity of 36% and nanopore size of 3 nm × 3 nm, the figure of merit ZT can reach 0.32 at 600 K. The results also show that the degradation of electrical conductivity of nanoporous Si due to the inclusion of nanopores is compensated by the large reduction in the phonon thermal conductivity and increase of absolute value of the Seebeck coefficient, resulting in a significantly improved ZT.« less

  19. Switching characteristics of (Bi 1/2Na 1/2)TiO 3-BaTiO 3-(Bi 1/2K 1/2)TiO 3 lead-free ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Shieh, J.; Wu, K. C.; Chen, C. S.

    2007-04-01

    The polarization switching characteristics of lead-free a(Bi 1/2Na 1/2)TiO 3-bBaTiO 3-c(Bi 1/2K 1/2)TiO 3 (abbreviated as BNBK 100a/100b/100c) ferroelectric ceramics are investigated. This is achieved through examining their polarization and strain hystereses inside and outside the morphotropic phase boundary (MPB). The total induced electrostrain (ɛ 33,total) and apparent piezoelectric charge coefficient (d 33) first increase dramatically and then decrease gradually as the BNBK composition moves from the tetragonal phase to the MPB and then to the rhombohedral phase. The measured polarization hystereses indicate that the BNBK compositions situated near the rhombohedral side of the MPB typically possess higher coercive field (E c) and remanent polarization (P r), while the compositions situated near the tetragonal side of the MPB possess higher apparent permittivity. Adverse effects on the ferroelectric properties are observed when BNBK is doped with donor dopants such as La and Nb. On the contrary, intricate hysteresis behaviors are observed when acceptor dopant Mn is introduced into BNBK. Under an alternating electric field of +/-5.0 MVm -1, BNBK 85.4/2.6/12, a composition well within the MPB, exhibits an ɛ 33,total of ~0.14%, an apparent d 33 of 295 pCN -1, an E c of 2.5 MVm -1 and a Pr of 22.5 μCcm -2. These notable ferroelectric property values suggest a candidate material for lead-free actuator applications. The present study provides a systematic set of hysteresis measurements which can be used to characterize the switching behaviors of BNBK-based lead-free ferroelectrics.

  20. Na/K-interdiffusion in alkali feldspar: new data on diffusion anisotropy and composition dependence

    NASA Astrophysics Data System (ADS)

    Schaeffer, Anne-Kathrin; Petrishcheva, Elena; Habler, Gerlinde; Abart, Rainer; Rhede, Dieter

    2013-04-01

    Exchange experiments between gem-quality alkali feldspar with an initial XOr of 0.85 or 0.72 and Na/K-salt melts have been conducted at temperatures between 800° and 1000° C. The crystals were prepared as crystallographically oriented plates, the polished surfaces corresponding to the (010) or (001) plane of the feldspar. The composition of the melts was varied systematically to induce a controlled shift of the feldspar towards more Na-rich or K-rich compositions (XOr 0.5 to 1). A molar excess of cations by a factor of 40 in the melt ensured constant concentration boundary conditions for cation exchange. Different geometries of diffusion profiles can be observed depending on the direction of the composition shift. For a shift towards more K-rich compositions the diffusion profile exhibits two plateaus corresponding to an exchanged rim in equilibrium with the melt and a completely unexchanged core, respectively. Between these plateaus an exchange front develops with an inflection point that progresses into the crystal with t1-2. The width of this diffusion front varies greatly with the extent of chemical shift and crystallographic direction. The narrowest profiles are always found in the direction normal to (010), i.e. b, marking the slowest direction of interdiffusion. A shift towards more Na-rich composition leads to the development of a crack system due to the composition strain associated with the substitution of the larger K+ion with the smaller Na+ion. The exchange front developing in this case lacks the inflection point observed for shifts towards more K-rich compositions. The observed geometry of the diffusion fronts can be explained by a composition dependence of the interdiffusion coefficient. We used the Boltzmann transformation to calculate the interdiffusion coefficient in dependence of composition from our data in a range between XOr 0.5 and 1 for profiles normal to both (010) and (001) and for different temperatures. As indicated by the different widths of the front a marked anisotropy in interdiffusion is apparent; it is about 10 times faster perpendicular to (001) than normal to (010). This is in good accordance with results of earlier studies. However, the composition dependence deviates from what is expected from theoretical calculations using the Manning relation for interdiffusion. For profiles normal to (001) the interdiffusion coefficient is nearly constant at 0.3 x 10-15m2s-1over the composition range XOr 0.50 to 0.95 and then rises steeply to values of 2.5 x 10-15m2s-1. Normal to (010) the interdiffusion coefficient is nearly constant at 0.03 x 10-15m2s-1over the composition range XOr 0.50 to 0.97 before, too, rising steeply at higher XOr. Interdiffusion coefficients calculated by Christoffersen et al. (1983) for this composition range also showed this rise but much less localized and steep. The activation energy also shows an anisotropy and slight composition dependence. Normal to (001) it is about 340 kJ/mole while it is 250 kJ/mole normal to (010). In the range between XOr0.94 to 1 it shows a slight rise by about 20 kJ/mole for both directions. ___ References Christoffersen et al. (1983): Interdiffusion of K and Na in alkali feldspar: diffusion couple experiments, -American Mineralogist, Vol. 68, pp. 1126-1133

  1. Kondo behavior and metamagnetic phase transition in the heavy-fermion compound CeBi2

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Xu, C. Q.; Li, B.; Sankar, R.; Zhang, F. M.; Qian, B.; Cao, C.; Dai, J. H.; Lu, Jianming; Jiang, W. X.; Qian, Dong; Xu, Xiaofeng

    2018-05-01

    Heavy fermions represent an archetypal example of strongly correlated electron systems which, due to entanglement among different interactions, often exhibit exotic and fascinating physics involving Kondo screening, magnetism, and unconventional superconductivity. Here we report a comprehensive study on the transport and thermodynamic properties of a cerium-based heavy-fermion compound CeBi2 which undergoes an antiferromagnetic transition at TN˜3.3 K . Its high-temperature paramagnetic state is characterized by an enhanced heat capacity with Sommerfeld coefficient γ over 200 mJ mol-1K-2 . The magnetization in the magnetically ordered state features a metamagnetic transition. Remarkably, a large negative magnetoresistance associated with the magnetism was observed in a wide temperature and field-angle range. Collectively, CeBi2 may serve as an intriguing system to study the interplay between the f electrons and the itinerant Fermi sea.

  2. Three novel electrochemical electrodes for the fabrication of conducting polymer/SWCNTs layered nanostructures and their thermoelectric performance.

    PubMed

    Shi, Hui; Liu, Congcong; Jiang, Qinglin; Xu, Jingkun; Lu, Baoyang; Jiang, Fengxing; Zhu, Zhengyou

    2015-06-19

    Single-walled carbon nanotubes (SWCNTs), PSS/SWCNTs, and SWCNTs/ PSS nanofilms were used as working electrodes to electrodeposit polyaniline (PANI) in a mixed alcohol solution of isopropyl alcohol (IPA), boron trifluoride ethyl ether (BFEE), and polyethylene glycol (PEG). The thermoelectric (TE) performances of the resulting nanofilms were systematically investigated. SWCNTs/ PSS/PANI nanofilms showed a relatively high electrical conductivity value of 232.0 S cm(-1). The Seebeck coefficient was enhanced and exhibited the values of 33.8, 25.6, and 23.0 μV K(-1) for the SWCNTs/PANI, PEDOT:PSS/SWCNTs/PANI, and SWCNTs/ PSS/PANI films, respectively. The maximum power factor achieved was 12.3 μW m(-1) K(-2). This technique offers a facile and versatile approach to a class of layered nanostructures, and it may provide a general strategy for fabricating a new generation of conducting polymer/SWCNTs materials for further practical applications.

  3. Self-diffusion of Si and O in diopside-anorthite melt at high pressures

    NASA Astrophysics Data System (ADS)

    Tinker, David; Lesher, Charles E.; Hutcheon, Ian D.

    2003-01-01

    Self-diffusion coefficients for Si and O in Di 58An 42 liquid were measured from 1 to 4 GPa and temperatures from 1510 to 1764°C. Glass starting powders enriched in 18O and 28Si were mated to isotopically normal glass powders to form simple diffusion couples, and self-diffusion experiments were conducted in the piston cylinder device (1 and 2 GPa) and in the multianvil apparatus (3.5 and 4 GPa). Profiles of 18O/ 16O and 29,30Si/ 28Si were measured using secondary ion mass spectrometry. Self-diffusion coefficients for O (D(O)) are slightly greater than self-diffusion coefficients for Si (D(Si)) and are often the same within error. For example, D(O) = 4.20 ± 0.42 × 10 -11 m 2/s and D(Si) = 3.65 ± 0.37 × 10 -11 m 2/s at 1 GPa and 1662°C. Activation energies for self-diffusion are 215 ± 13 kJ/mol for O and 227 ± 13 kJ/mol for Si. Activation volumes for self-diffusion are -2.1 ± 0.4 cm 3/mol and -2.3 ± 0.4 cm 3/mol for O and Si, respectively. The similar self-diffusion coefficients for Si and O, similar activation energies, and small, negative activation volumes are consistent with Si and O transport by a cooperative diffusion mechanism, most likely involving the formation and disassociation of a high-coordinated intermediate species. The small absolute magnitudes of the activation volumes imply that Di 58An 42 liquid is close to a transition from negative to positive activation volume, and Adam-Gibbs theory suggests that this transition is linked to the existence of a critical fraction (˜0.6) of bridging oxygen.

  4. The gas-phase reaction between silylene and 2-butyne: kinetics, isotope studies, pressure dependence studies and quantum chemical calculations.

    PubMed

    Becerra, Rosa; Cannady, J Pat; Dormer, Guy; Walsh, Robin

    2009-07-14

    Time-resolved kinetic studies of the reactions of silylene, SiH(2), and dideutero-silylene, SiD(2), generated by laser flash photolysis of phenylsilane and phenylsilane-d(3), respectively, have been carried out to obtain rate coefficients for their bimolecular reactions with 2-butyne, CH(3)C[triple bond, length as m-dash]CCH(3). The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF(6) bath gas at five temperatures in the range 294-612 K. The second-order rate coefficients, obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equations where the error limits are single standard deviations: log(k(H)(Infinity)/cm(3) molecule(-1) s(-1) = (-9.67 +/- 0.04) + (1.71 +/- 0.33) kJ mol(1)/RTIn10log(k(D)(Infinity)/cm(3) molecule(-1) s(-1) = (-9.65 +/- 0.01) + (1.92 +/- 0.13) kJ mol(-1)/RTIn10. Additionally, pressure-dependent rate coefficients for the reaction of SiH(2) with 2-butyne in the presence of He (1-100 Torr) were obtained at 301, 429 and 613 K. Quantum chemical (ab initio) calculations of the SiC(4)H(8) reaction system at the G3 level support the formation of 2,3-dimethylsilirene [cyclo-SiH(2)C(CH(3))[double bond, length as m-dash]C(CH(3))-] as the sole end product. However, reversible formation of 2,3-dimethylvinylsilylene [CH(3)CH[double bond, length as m-dash]C(CH(3))SiH] is also an important process. The calculations also indicate the probable involvement of several other intermediates, and possible products. RRKM calculations are in reasonable agreement with the pressure dependences at an enthalpy value for 2,3-dimethylsilirene fairly close to that suggested by the ab initio calculations. The experimental isotope effects deviate significantly from those predicted by RRKM theory. The differences can be explained by an isotopic scrambling mechanism, involving H-D exchange between the hydrogens of the methyl groups and the D-atoms in the ring in 2,3-dimethylsilirene-1,1-d(2). A detailed mechanism involving several intermediate species, which is consistent with the G3 energy surface, is proposed to account for this.

  5. Effects of soot absorption coefficient-Planck function correlation on radiative heat transfer in oxygen-enriched propane turbulent diffusion flame

    NASA Astrophysics Data System (ADS)

    Consalvi, J. L.; Nmira, F.

    2016-03-01

    The main objective of this article is to quantify the influence of the soot absorption coefficient-Planck function correlation on radiative loss and flame structure in an oxygen-enhanced propane turbulent diffusion flame. Calculations were run with and without accounting for this correlation by using a standard k-ε model and the steady laminar flamelet model (SLF) coupled to a joint Probability Density Function (PDF) of mixture fraction, enthalpy defect, scalar dissipation rate, and soot quantities. The PDF transport equation is solved by using a Stochastic Eulerian Field (SEF) method. The modeling of soot production is carried out by using a flamelet-based semi-empirical acetylene/benzene soot model. Radiative heat transfer is modeled by using a wide band correlated-k model and turbulent radiation interactions (TRI) are accounted for by using the Optically-Thin Fluctuation Approximation (OTFA). Predicted soot volume fraction, radiant wall heat flux distribution and radiant fraction are in good agreement with the available experimental data. Model results show that soot absorption coefficient and Planck function are negatively correlated in the region of intense soot emission. Neglecting this correlation is found to increase significantly the radiative loss leading to a substantial impact on flame structure in terms of mean and rms values of temperature. In addition mean and rms values of soot volume fraction are found to be less sensitive to the correlation than temperature since soot formation occurs mainly in a region where its influence is low.

  6. Temperature characteristics of SAW resonators on Sc0.26Al0.74N/polycrystalline diamond heterostructures

    NASA Astrophysics Data System (ADS)

    Sinusía Lozano, M.; Chen, Z.; Williams, Oliver A.; Iriarte, G. F.

    2018-07-01

    Surface acoustic wave (SAW) resonators have been fabricated on a 2 μm scandium aluminium nitride (ScAlN) film deposited by means of pulsed-DC reactive magnetron sputtering on a 5.8 μm polycrystalline diamond substrate. Thin film characterization comprised of the assessment of the thin film texture by means of x-ray diffraction (XRD) measurements, reporting highly c-axis oriented ScAlN thin films with a full width at half maximum (FWHM) of the ω-θ scans below 2°. Compositional and piezoelectric analyses of the thin films synthesized with the sputtering parameters used in this work, namely a sputtering power of 700 W and a synthesis pressure of 0.53 Pa, have reported a thin film composition of Sc0.26Al0.74N together with a piezoelectric d33 constant of ‑11 pC/N. Finally, a SAW resonator has been characterized using a vector network analyser (VNA) under various substrate temperature conditions with two iterations. The resulting temperature coefficient of frequency (TCF) values show a highly linear behaviour within two temperature ranges, namely from 20 K to room temperature (300 K) (‑12.5 ppm/K) as well as from 300 K up to 450 K (‑34.6 ppm/K).

  7. Phototransformation Rate Constants of PAHs Associated with Soot Particles

    PubMed Central

    Kim, Daekyun; Young, Thomas M.; Anastasio, Cort

    2013-01-01

    Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k0p), the effective diffusion coefficients (Deff), and the light penetration depths (z0.5) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2-3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z0.5 is more sensitive to the soot layer thickness than the k0p value. As the thickness of the soot layer increases, the z0.5 values increase, but the k0p values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k0p and z0.5 in thinner layers, Deff should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. PMID:23247292

  8. The Biot coefficient for a low permeability heterogeneous limestone

    NASA Astrophysics Data System (ADS)

    Selvadurai, A. P. S.

    2018-04-01

    This paper presents the experimental and theoretical developments used to estimate the Biot coefficient for the heterogeneous Cobourg Limestone, which is characterized by its very low permeability. The coefficient forms an important component of the Biot poroelastic model that is used to examine coupled hydro-mechanical and thermo-hydro-mechanical processes in the fluid-saturated Cobourg Limestone. The constraints imposed by both the heterogeneous fabric and its extremely low intact permeability [K \\in (10^{-23},10^{-20}) m2 ] require the development of alternative approaches to estimate the Biot coefficient. Large specimen bench-scale triaxial tests (150 mm diameter and 300 mm long) that account for the scale of the heterogeneous fabric are complemented by results for the volume fraction-based mineralogical composition derived from XRD measurements. The compressibility of the solid phase is based on theoretical developments proposed in the mechanics of multi-phasic elastic materials. An appeal to the theory of multi-phasic elastic solids is the only feasible approach for examining the compressibility of the solid phase. The presence of a number of mineral species necessitates the use of the theories of Voigt, Reuss and Hill along with the theories proposed by Hashin and Shtrikman for developing bounds for the compressibility of the multi-phasic geologic material composing the skeletal fabric. The analytical estimates for the Biot coefficient for the Cobourg Limestone are compared with results for similar low permeability rocks reported in the literature.

  9. Rotational excitation of HCN by para- and ortho-H₂.

    PubMed

    Vera, Mario Hernández; Kalugina, Yulia; Denis-Alpizar, Otoniel; Stoecklin, Thierry; Lique, François

    2014-06-14

    Rotational excitation of the hydrogen cyanide (HCN) molecule by collisions with para-H2(j = 0, 2) and ortho-H2(j = 1) is investigated at low temperatures using a quantum time independent approach. Both molecules are treated as rigid rotors. The scattering calculations are based on a highly correlated ab initio 4-dimensional (4D) potential energy surface recently published. Rotationally inelastic cross sections among the 13 first rotational levels of HCN were obtained using a pure quantum close coupling approach for total energies up to 1200 cm(-1). The corresponding thermal rate coefficients were computed for temperatures ranging from 5 to 100 K. The HCN rate coefficients are strongly dependent on the rotational level of the H2 molecule. In particular, the rate coefficients for collisions with para-H2(j = 0) are significantly lower than those for collisions with ortho-H2(j = 1) and para-H2(j = 2). Propensity rules in favor of even Δj transitions were found for HCN in collisions with para-H2(j = 0) whereas propensity rules in favor of odd Δj transitions were found for HCN in collisions with H2(j ⩾ 1). The new rate coefficients were compared with previously published HCN-para-H2(j = 0) rate coefficients. Significant differences were found due the inclusion of the H2 rotational structure in the scattering calculations. These new rate coefficients will be crucial to improve the estimation of the HCN abundance in the interstellar medium.

  10. Diffusion of Siderophile Elements in Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Watson, H. C.; Watson, E. B.

    2001-12-01

    Preliminary results for diffusion of siderophile elements (Cu, Os, Pd, Re, Os, and Mo) in an iron meteorite analog were obtained at 1400° C and 1GPa from diffusion couple experiments in a piston-cylinder apparatus. Alloys were prepared by synthesizing mixtures of pure metal powders. The alloys were made from a 90 wt% Fe and 10 wt% Ni base mixture, and approximately 1wt% of the various siderophile elements was added (individually) to the same base mixture to make the doped alloys. The powders were packed in pre-drilled holes (~1 mm dia. by 8 mm deep) in MgO cylinders, and run in a piston cylinder apparatus at 1400° C and 1GPa for 48 hours. The resulting homogeneous alloys were then sectioned into wafers approximately 1mm thick, and the faces were polished to prepare for the diffusion experiments. A diffusion couple experiment was conducted by mating a pure alloy wafer and a doped wafer, and placing the couple into an MgO capsule for pressurization and heating in the piston cylinder. The duration of the diffusion experiments ranged from 33 hours to 72 hours. Upon run completion, the diffusion couples were extracted, sectioned lengthwise, and polished for analysis. Diffusion profiles were measured using an electron microprobe. From these experiments it was found that at 1400° C and 1GPa the diffusion coefficient of Os is 1.6E-14 m2/s, the diffusion coefficient of Re is 2.8E-14 m2/s, for Pd it is 9.2E-14 m2/s, for Cu it is 1.2E-13 m2/s, and for Mo it is 2.3E-13 m2/s. These preliminary results raise the possibility that significant diffusive fraction of siderophile elements may occur in metal-silicate systems that fail to equilibrate fully, or under disequilibrium crystallization in pure metal systems.

  11. Research and Development of Methods for Estimating Physicochemical Properties of Organic Compounds of Environmental Concern

    DTIC Science & Technology

    1979-02-01

    coefficient (at equilibrium) when hysteresis is apparent. 6. Coefficient n in Freundlich equation for 1/n soil or sediment adsorption isotherms ýX - KC . 7...Biodegradation Chemical structures cal clasaes (e.g., Diffusion Correlations phenols). General Diffusion coefficients Equations terms for organic...OF THE FATE AND TRANSPORT OF ORGANIC CHEMICALS Adsorption coefficients: K, n* from Freundlich equation + Desorption coefficients: K’*, n’* from

  12. Kinetics of hydrogen isotope exchange in β-phase Pd-H-D

    DOE PAGES

    Luo, Weifang; Cowgill, Donald F.

    2015-07-22

    Hydrogen isotope gas exchange within palladium powders is examined using a batch-type reactor coupled to a residual gas analyzer (RGA). Furthermore, the exchange rates in both directions (H 2 + PdD and D 2 + PdH) are measured in the temperature range 178–323 K for the samples with different particle sizes. The results show this batch-type exchange is closely approximated as a first-order kinetic process with a rate directly proportional to the surface area of the powder particles. An exchange rate constant of 1.40 ± 0.24 μmol H 2/atm cm 2 s is found for H 2 + PdD atmore » 298 K, 1.4 times higher than that for D 2 + PdH, with an activation energy of 25.0 ± 3.2 kJ/mol H for both exchange directions. Finally, a comparison of exchange measurement techniques shows these coefficients, and the fundamental exchange probabilities are in good agreement with those obtained by NMR and flow techniques.« less

  13. Spontaneous symmetry breaking, conformal anomaly and incompressible fluid turbulence

    NASA Astrophysics Data System (ADS)

    Oz, Yaron

    2017-11-01

    We propose an effective conformal field theory (CFT) description of steady state incompressible fluid turbulence at the inertial range of scales in any number of spatial dimensions. We derive a KPZ-type equation for the anomalous scaling of the longitudinal velocity structure functions and relate the intermittency parameter to the boundary Euler (A-type) conformal anomaly coefficient. The proposed theory consists of a mean field CFT that exhibits Kolmogorov linear scaling (K41 theory) coupled to a dilaton. The dilaton is a Nambu-Goldstone gapless mode that arises from a spontaneous breaking due to the energy flux of the separate scale and time symmetries of the inviscid Navier-Stokes equations to a K41 scaling with a dynamical exponent z=2/3 . The dilaton acts as a random measure that dresses the K41 theory and introduces intermittency. We discuss the two, three and large number of space dimensions cases and how entanglement entropy can be used to characterize the intermittency strength.

  14. Mathematical models for prediction of rheological parameters in vinasses derived from sugar cane

    NASA Astrophysics Data System (ADS)

    Chacua, Leidy M.; Ayala, Germán; Rojas, Hernán; Agudelo, Ana C.

    2016-04-01

    The rheological behaviour of vinasses derived from sugar cane was studied as a function of time (0 and 600 s), soluble solids content (44 and 60 °Brix), temperature (10 and 50°C), and shear rate (0.33 and 1.0 s-1). The results indicated that vinasses were time-independent at 25°C, where shear stress values ranged between 0.01 and 0.08 Pa. Flow curves showed a shear-thinning rheological behaviour in vinasses with a flow behaviour index between 0.69 and 0.89, for temperature between 10 and 20°C. With increasing temperature, the flow behaviour index was modified, reaching values close to 1.0. The Arrhenius model described well the thermal activation of shear stress and the consistency coefficient as a function of temperature. Activation energy from the Arrhenius model ranged between 31 and 45 kJ mol-1. Finally, the consistency coefficient as a function of the soluble solids content and temperature was well fitted using an exponential model (R2 = 0.951), showing that the soluble solids content and temperature have an opposite effect on consistency coefficient values.

  15. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling

    NASA Astrophysics Data System (ADS)

    Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C.; Joyce, Kevin P.; Kovalenko, Andriy

    2016-11-01

    Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing (R=0.98 for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining R=0.73 compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to R=0.93. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple pK_{ {a}} correction improved agreement with experiment from R=0.54 to R=0.66, despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.

  16. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester.

    PubMed

    Gupta, Manoj Kumar; Kim, Sang-Woo; Kumar, Binay

    2016-01-27

    Lead-free piezoelectric nano- and microstructure-based generators have recently attracted much attention due to the continuous demand of self-powered body implantable devices. We report the fabrication of a high-performance flexible piezoelectric microgenerator based on lead-free inorganic piezoelectric Na0.47K0.47Li0.06NbO3 (NKLN) microcubes for the first time. The composite generator is fabricated using NKLN microcubes and polydimethylsiloxane (PDMS) polymer on a flexible substrate. The flexible device exhibits excellent performance with a large recordable piezoelectric output voltage of 48 V and output current density of 0.43 μA/cm(2) under vertical compressive force of 2 kgf, for which an energy conversion efficiency of about 11% has been achieved. Piezoresponse and ferroelectric studies reveal that NKLN microcubes exhibited high piezoelectric charge coefficient (d33) as high as 460 pC/N and a well-defined hysteresis loops with remnant polarization and coercive field of 13.66 μC/cm(2) and 19.45 kV/cm, respectively. The piezoelectric charge generation mechanism from NKLN microgenerator are discussed in the light of the high d33 and alignment of electric dipoles in polymer matrix and dielectric constant of NKLN microcubes. It has been demonstrated that the developed power generator has the potential to generate high electric output power under mechanical vibration for powering biomedical devices in the near future.

  17. Evaluation of Computational Fluid Dynamics and Coupled Fluid-Solid Modeling for a Direct Transfer Preswirl System.

    PubMed

    Javiya, Umesh; Chew, John; Hills, Nick; Dullenkopf, Klaus; Scanlon, Timothy

    2013-05-01

    The prediction of the preswirl cooling air delivery and disk metal temperature are important for the cooling system performance and the rotor disk thermal stresses and life assessment. In this paper, standalone 3D steady and unsteady computation fluid dynamics (CFD), and coupled FE-CFD calculations are presented for prediction of these temperatures. CFD results are compared with previous measurements from a direct transfer preswirl test rig. The predicted cooling air temperatures agree well with the measurement, but the nozzle discharge coefficients are under predicted. Results from the coupled FE-CFD analyses are compared directly with thermocouple temperature measurements and with heat transfer coefficients on the rotor disk previously obtained from a rotor disk heat conduction solution. Considering the modeling limitations, the coupled approach predicted the solid metal temperatures well. Heat transfer coefficients on the rotor disk from CFD show some effect of the temperature variations on the heat transfer coefficients. Reasonable agreement is obtained with values deduced from the previous heat conduction solution.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaluarachchi, Udhara S.; Xie, Weiwei; Lin, Qisheng

    Single crystals of Bi 2Rh 3S 2 and Bi 2Rh 3.5S 2 were synthesized by solution growth, and the crystal structures and thermodynamic and transport properties of both compounds were studied. In the case of Bi 2Rh 3S 2, a structural first-order transition at around 165 K is identified by single-crystal diffraction experiments, with clear signatures visible in resistivity, magnetization, and specific heat data. No superconducting transition for Bi 2Rh 3S 2 was observed down to 0.5 K. In contrast, no structural phase transition at high temperature was observed for Bi 2Rh 3.5S 2; however, bulk superconductivity with a criticalmore » temperature, T c ≈ 1.7 K, was observed. The Sommerfeld coefficient γ and the Debye temperature (Θ D) were found to be 9.41 mJ mol –1K –2 and 209 K, respectively, for Bi 2Rh 3S 2, and 22 mJ mol –1K –2 and 196 K, respectively, for Bi 2Rh 3.5S 2. As a result, the study of the specific heat in the superconducting state of Bi 2Rh 3.5S 2 suggests that Bi 2Rh 3.5S 2 is a weakly coupled, BCS superconductor.« less

  19. Metal–Organic–Inorganic Nanocomposite Thermal Interface Materials with Ultralow Thermal Resistances

    DOE PAGES

    Yegin, Cengiz; Nagabandi, Nirup; Feng, Xuhui; ...

    2017-02-27

    As electronic devices get smaller and more powerful, energy density of energy storage devices increases continuously, and moving components of machinery operate at higher speeds, the need for better thermal management strategies is becoming increasingly important. The removal of heat dissipated during the operation of electronic, electrochemical, and mechanical devices is facilitated by high-performance thermal interface materials (TIMs) which are utilized to couple devices to heat sinks. Here in this paper, we report a new class of TIMs involving the chemical integration of boron nitride nanosheets (BNNS), soft organic linkers, and a copper matrix -- which are prepared by chemisorption-coupledmore » electrodeposition approach. These hybrid nanocomposites demonstrate bulk thermal conductivities ranging from 211 to 277 W/(m.K), which are very high considering their relatively low elastic modulus values on the order of 21.2 to 28.5 GPa. The synergistic combination of these properties lead to the ultra-low total thermal resistivity values in the range of 0.38 to 0.56 mm 2.K/W for a typical bondline thickness of 30-50 um, advancing the current state-of-art transformatively. Moreover, its coefficient of thermal expansion (CTE) is 11 ppm/K, forming a mediation zone with a low thermally-induced axial stress due to its close proximity to the CTE of most coupling surfaces needing thermal management.« less

  20. Metal–Organic–Inorganic Nanocomposite Thermal Interface Materials with Ultralow Thermal Resistances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yegin, Cengiz; Nagabandi, Nirup; Feng, Xuhui

    As electronic devices get smaller and more powerful, energy density of energy storage devices increases continuously, and moving components of machinery operate at higher speeds, the need for better thermal management strategies is becoming increasingly important. The removal of heat dissipated during the operation of electronic, electrochemical, and mechanical devices is facilitated by high-performance thermal interface materials (TIMs) which are utilized to couple devices to heat sinks. Here in this paper, we report a new class of TIMs involving the chemical integration of boron nitride nanosheets (BNNS), soft organic linkers, and a copper matrix -- which are prepared by chemisorption-coupledmore » electrodeposition approach. These hybrid nanocomposites demonstrate bulk thermal conductivities ranging from 211 to 277 W/(m.K), which are very high considering their relatively low elastic modulus values on the order of 21.2 to 28.5 GPa. The synergistic combination of these properties lead to the ultra-low total thermal resistivity values in the range of 0.38 to 0.56 mm 2.K/W for a typical bondline thickness of 30-50 um, advancing the current state-of-art transformatively. Moreover, its coefficient of thermal expansion (CTE) is 11 ppm/K, forming a mediation zone with a low thermally-induced axial stress due to its close proximity to the CTE of most coupling surfaces needing thermal management.« less

  1. Collisional excitation of CH2 rotational/fine-structure levels by helium

    NASA Astrophysics Data System (ADS)

    Dagdigian, P. J.; Lique, F.

    2018-02-01

    Accurate determination of the abundance of CH2 in interstellar media relies on both radiative and collisional rate coefficients. We investigate here the rotational/fine-structure excitation of CH2 induced by collisions with He. We employ a recoupling technique to generate fine-structure-resolved cross-sections and rate coefficients from close coupling spin-free scattering calculations. The calculations are based on a recent, high-accuracy CH2-He potential energy surface computed at the coupled clusters level of theory. The collisional cross-section calculations are performed for all fine-structure transitions among the first 22 and 24 energy levels of ortho- and para-CH2, respectively, and for temperatures up to 300 K. As a first application, we simulate the excitation of CH2 in typical molecular clouds. The excitation temperatures of the CH2 lines are found to be small at typical densities of molecular clouds, showing that the non-local thermodynamic equilibrium approach has to be used to analyse interstellar spectra. We also found that the fine-structure lines connected with the 404 - 313 and 505 - 414 rotational transitions show possible maser emissions so that they can be easily seen in emission. These calculations show that CH2 may have to be detected mainly through absorption spectra.

  2. Combination of Carrier Concentration Regulation and High Band Degeneracy for Enhanced Thermoelectric Performance of Cu3SbSe4.

    PubMed

    Zhang, Dan; Yang, Junyou; Jiang, Qinghui; Zhou, Zhiwei; Li, Xin; Xin, Jiwu; Basit, Abdul; Ren, Yangyang; He, Xu; Chu, Weijing; Hou, Jingdi

    2017-08-30

    The effect of Al-, Ga-, and In-doping on the thermoelectric (TE) properties of Cu 3 SbSe 4 has been comparatively studied on the basis of theoretical prediction and experimental validation. It is found that tiny Al/Ga/In substitution leads to a great enhancement of electrical conductivity with high carrier concentration and also large Seebeck coefficient due to the preserved high band degeneracy and thereby a remarkably high power factor. Ultimately, coupled with the depressed lattice thermal conductivity, all three elements (Al/Ga/In) substituted samples have obtained a highly improved thermoelectric performance with respect to undoped Cu 3 SbSe 4 . Compared to the samples at the same Al/In doping level, the slightly Ga-doped sample presents better TE performance over the wide temperature range, and the Cu 3 Sb 0.995 Ga 0.005 Se 4 sample presents a record high ZT value of 0.9 among single-doped Cu 3 SbSe 4 at 623 K, which is about 80% higher than that of pristine Cu 3 SbSe 4 . This work offers an alternative approach to boost the TE properties of Cu 3 SbSe 4 by selecting efficient dopant to weaken the coupling between electrical conductivity and Seebeck coefficient.

  3. D/H diffusion in serpentine

    NASA Astrophysics Data System (ADS)

    Pilorgé, Hélène; Reynard, Bruno; Remusat, Laurent; Le Floch, Sylvie; Montagnac, Gilles; Cardon, Hervé

    2017-08-01

    Interactions between aqueous fluids and ultrabasic rocks are essential processes in a broad range of contexts including hydrothermal alteration on the parent body of carbonaceous chondrites, at mid-oceanic ridge, and in subduction zones. Tracking these processes and understanding reaction kinetics require knowledge of the diffusion of water in rocks, and of isotope fractionation in major minerals forming under hydrous conditions, such as serpentines. We present a study of D/H inter-diffusion in antigorite, a common variety of serpentine. Experiments were performed in a belt apparatus at 315 °C, 450 °C and 540 °C and at 3.0 GPa on natural antigorite powders saturated with interstitial D2O. An experiment was performed in a diamond anvil cell at 350 °C and 2.5 GPa on an antigorite single-crystal loaded with pure D2O. D/(D + H) ratios were mapped using Raman spectroscopy for the experiments at 315 °C, 450 °C and 540 °C and by NanoSIMS for the experiment at 350 °C. As antigorite is a phyllosilicate, diffusion coefficients were obtained for crystallographic directions parallel and perpendicular to the silicate layers (perpendicular and parallel to the c∗-axis, respectively). Arrhenius relations for D/H inter-diffusion coefficients were determined to be DD/H (m2/s) = 4.71 × 10-2 × exp(-207(-33/+58) (kJ/mol)/RT) and DD/H (m2/s) = 1.61 × 10-4 × exp(-192(-34/+93) (kJ/mol)/RT) perpendicular and parallel to the c∗-axis, respectively, and DD/H (m2/s) = 7.09 × 10-3 × exp(-202(-33/+70) (kJ/mol)/RT) for the bulk diffusivity. Assuming D/H inter-diffusion coefficients for antigorite are the same for all serpentine species, closure temperature and diffusion durations are applied to hydrothermal alteration in the oceanic lithosphere, and in CI, CM and CR chondrites. Closure temperatures lie below 300 °C for terrestrial hydrothermal alteration and depend on serpentine variety because they have different typical grain sizes. Closure temperatures lie below 160 °C for carbonaceous chondrites, indicating that D/H isotopic exchange may have persisted down to very low temperatures in their parent bodies. Local D/H isotopic compositions may be associated with grain size heterogeneities in carbonaceous chondrites due to protracted alteration of fine-grained material with the lowest closure temperatures (ca 80 °C).

  4. Synchronization of distributed power grids with the external loading system

    NASA Astrophysics Data System (ADS)

    Wei, Duqu; Mei, Chuncao

    2018-06-01

    In this paper, the synchronization between spatially distributed power plants and their supported consumers is studied, where the case of Kuramoto-like model power grids connected to an external permanent magnet synchronous motor (PMSM) is taken as an example. We focus on the dependence of the synchronization on the coupling coefficient. To quantitatively study the synchronization degree, we introduce the order parameter and the frequency deviation to measure the synchronization of the coupled system. It is found that as the external coupling coefficient is increased, the distributed power grids and the loading system become more and more synchronized in space, and the complete synchronization appears at a particular value of external coupling coefficient. Our results may provide a useful tip for analyzing the synchronous ability of distributed power grids.

  5. 47 CFR 87.303 - Frequencies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... only. (f) Frequency assignments for Flight Test VHF Stations may be based on either 8.33 kHz or 25 kHz spacing. Assignable frequencies include the interstitial frequencies 8.33 kHz from the VHF frequencies listed in paragraphs (a) and (b) of this section. Each 8.33 kHz interstitial frequency is subject to the...

  6. 47 CFR 87.303 - Frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... only. (f) Frequency assignments for Flight Test VHF Stations may be based on either 8.33 kHz or 25 kHz spacing. Assignable frequencies include the interstitial frequencies 8.33 kHz from the VHF frequencies listed in paragraphs (a) and (b) of this section. Each 8.33 kHz interstitial frequency is subject to the...

  7. 47 CFR 87.303 - Frequencies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... only. (f) Frequency assignments for Flight Test VHF Stations may be based on either 8.33 kHz or 25 kHz spacing. Assignable frequencies include the interstitial frequencies 8.33 kHz from the VHF frequencies listed in paragraphs (a) and (b) of this section. Each 8.33 kHz interstitial frequency is subject to the...

  8. 47 CFR 87.303 - Frequencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... only. (f) Frequency assignments for Flight Test VHF Stations may be based on either 8.33 kHz or 25 kHz spacing. Assignable frequencies include the interstitial frequencies 8.33 kHz from the VHF frequencies listed in paragraphs (a) and (b) of this section. Each 8.33 kHz interstitial frequency is subject to the...

  9. Kinetics of the gas-phase reaction between ozone and three unsaturated oxygenated compounds: Ethyl 3,3-dimethyl acrylate, 2-methyl-2-pentenal and 6-methyl-5-hepten-2-one at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Gaona Colmán, Elizabeth; Blanco, María B.; Barnes, Ian; Teruel, Mariano A.

    2015-05-01

    Rate coefficients for the gas-phase reactions of O3 molecules with three unsaturated oxygenated compounds have been determined using the relative kinetic technique in an environmental chamber with FTIR detection of the reactants at (298 ± 2) K in 760 Torr total pressure of synthetic air. The following rate coefficients (in units of 10-17 cm3 molecule-1 s-1) were determined: ethyl 3,3-dimethyl acrylate (0.82 ± 0.19), 2-methyl-2-pentenal (0.71 ± 0.16) and 6-methyl-5-hepten-2-one (26 ± 7). The different reactivity of the unsaturated oxygenated compounds toward O3 is discussed in terms of their chemical structure. In addition, a correlation between the reactivity of structurally different unsaturated compounds (alkenes and unsaturated oxygenated VOCs, such as ethers, esters, aldehydes, ketones and alcohols) toward O3 molecules and the HOMO (Highest Occupied Molecular Orbital) of the compounds is presented. Using the kinetic parameters determined in this work, residence times of these unsaturated compounds in the atmosphere with respect to reaction with O3 have been calculated. In urban and rural areas the main sink of 6-methyl-5-hepten-2-one is reaction with O3 molecules with a residence time in the order of few minutes.

  10. An experimental study of the thermodynamic properties of 1,1-difluoroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamatsu, T.; Sato, T.; Sato, H.

    1992-01-01

    Experimental vapor pressures and P-[rho]-T data of an important alternative refrigerant, 1,1-difluoroethane (HFC-152a), have been measured by means of a constant-volume method coupled with expansion procedures. Sixty P-[rho]-T data were measured along eight isochores in a range of temperatures T from 330 to 440 K, at pressures P from 1.6 to 9.3 MPa, and at densities [rho] from 51 to 811 kg [times] m[sup [minus]3]. Forty-six vapor pressures were also measured at temperatures from 320K to the critical temperature. The uncertainties of the temperature and pressure measurements are within [plus minus]7 mK and [plus minus]2kPa, respectively, while the uncertainties ofmore » the density values is within [plus minus]1%. The purity of the sample used is 99.9 wt%. On the basis of the measurements along each isochore, five saturation points were determined and the critical pressure was determined by correlating the vapor-pressure measurements. The second and third viral coefficients for temperatures from 360 to 440 K have also been determined. 21 refs., 9 figs., 5 tabs.« less

  11. Sludge reduction and microbial community structure in an anaerobic/anoxic/oxic process coupled with potassium ferrate disintegration.

    PubMed

    An, Ying; Zhou, Zhen; Yao, Jie; Niu, Tianhao; Qiu, Zhan; Ruan, Danian; Wei, Haijuan

    2017-12-01

    An anaerobic/anoxic/oxic (AAO) wastewater treatment system combining with a potassium ferrate (K 2 FeO 4 ) oxidation side-stream reactor (SSR) was proposed for sludge reduction. Batch experiments showed that optimal K 2 FeO 4 dosage and reaction time for sludge disintegration was 100mg/g suspended solids (SS) and 24h, respectively. Subsequently, an AAO-SSR and a conventional AAO were operated in parallel to investigate effects of K 2 FeO 4 oxidation on process performance, sludge characteristics and microbial community structures. The AAO-SSR process operated under the optimized condition achieved efficient COD and NH 4 + -N removal, and reduced sludge by 47.5% with observed yield coefficient of 0.21gSS/g COD. K 2 FeO 4 addition broke sludge particles, increased dissolved organic matters in the mixed liquor, and improved sludge dewaterability. Illumina-MiSeq sequencing results showed that K 2 FeO 4 oxidation in the AAO-SSR decreased microbial richness and diversity, enriched slow growers (Dechloromonas), anaerobic fermentative bacteria (Azospira) and Fe(III)-reducing bacteria (Ferribacterium), but limited the growth of phosphate-accumulating organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Rate coefficients for the reaction of O(1D) with the atmospherically long-lived greenhouse gases NF3, SF5CF3, CHF3, C2F6, c-C4F8, n-C5F12, and n-C6F14

    NASA Astrophysics Data System (ADS)

    Baasandorj, M.; Hall, B. D.; Burkholder, J. B.

    2012-12-01

    The contribution of atmospherically persistent (long-lived) greenhouse gases to the radiative forcing of Earth has increased over the past several decades. The impact of highly fluorinated, saturated compounds, in particular perfluorinated compounds, on climate change is a concern because of their long atmospheric lifetimes, which are primarily determined by stratospheric loss processes, as well as their strong absorption in the infrared "window" region. A potentially key stratospheric loss process for these compounds is their gas-phase reaction with electronically excited oxygen atoms, O(1D). Therefore, accurate reaction rate coefficient data is desired for input to climate change models. In this work, rate coefficients, k, were measured for the reaction of O(1D) with several key long-lived greenhouse gases, namely NF3, SF5CF3, CHF3 (HFC-23), C2F6, c-C4F8, n-C5F12, and n-C6F14. Room temperature rate coefficients for the total reaction, kTot, corresponding to loss of O(1D), and reactive channel, kR, corresponding to the loss of the reactant compound, were measured for NF3 and SF5CF3 using competitive reaction and relative rate methods, respectively. kR was measured for the CHF3 reaction and improved upper-limits were determined for the perfluorinated compounds included in this study. For NF3, kTot was determined to be (2.55 ± 0.38) × 10-11 cm3 molecule-1 s-1 and kR, which was measured using CF3Cl, N2O, CF2ClCF2Cl (CFC-114), and CF3CFCl2 (CFC-114a) as reference compounds, was determined to be (2.21 ± 0.33) × 10-11 cm3 molecule-1 s-1. For SF5CF3, kTot = (3.24 ± 0.50) × 10-13 cm3 molecule-1 s-1 and kR < 5.8 × 10×14 cm3 molecule-1 s-1 were measured, where kR is a factor of three lower than the current recommendation of kTot for use in atmospheric modeling. For CHF3 kR was determined to be (2.35 ± 0.35) × 10-12 cm3 molecule-1 s-1, which corresponds to a reactive channel yield of 0.26 ± 0.04, and resolves a large discrepancy among previously reported values. The quoted uncertainties are 2σ and include estimated systematic errors. Upper-limits for kR for the C2F6, c-C4F8, n-C5F12, and n-C6F14 reactions were determined to be 3.0, 3.5, 5.0, and 16 (in units of 10-14 cm3 molecule-1 s-1), respectively. The results from this work are compared with results from previous studies. As part of this work, infrared absorption band strengths for NF3 and SF5CF3 were measured and found to be in good agreement with recently reported values.

  13. Acoustically driven degradation in single crystalline silicon solar cell

    NASA Astrophysics Data System (ADS)

    Olikh, O. Ya.

    2018-05-01

    The influence of ultrasound on current-voltage characteristics of crystalline silicon solar sell was investigated experimentally. The transverse and longitudinal acoustic waves were used over a temperature range of 290-340 K. It was found that the ultrasound loading leads to the reversible decrease in the photogenerated current, open-circuit voltage, fill factor, carrier lifetime, and shunt resistance as well as the increase in the ideality factor. The experimental results were described by using the models of coupled defect level recombination, Shockley-Read-Hall recombination, and dislocation-induced impedance. The contribution of the boron-oxygen related defects, iron-boron pairs, and oxide precipitates to both the carrier recombination and acousto-defect interaction was discussed. The experimentally observed phenomena are associated with the increase in the distance between coupled defects as well as the extension of the carrier capture coefficient of complex point defects and dislocations.

  14. Feasibility of hydroxyl concentration measurements by laser-saturated fluorescence in high-pressure flames

    NASA Technical Reports Server (NTRS)

    Carter, Campbell D.; King, Galen B.; Laurendeau, Normand M.; Salmon, J. Thaddeus

    1987-01-01

    The effect of pressure on the laser-saturated fluorescence method for measuring OH concentration in high-pressure flames is studied using calculations for the burned-gas region of a stoichiometric H2-O2 flame at 2000 K. A numerical model of the excitation dynamics of OH is developed to explore the validity of the balanced cross-rate model at higher pressures. It is shown that depopulation of the laser-coupled levels is sensitive to collisions which depopulate v-double-prime (VDP) = 0 and to rate coefficients for rotational transfer in the ground state which are smaller than those in the excited state. In particular, it is shown that the depopulation of VDP = 0, and hence the laser-coupled levels, depends on the probability of electronic quenching to vibrational levels for which VDP is greater than 0 and vibrational relaxation to VDP = 0.

  15. GaN Micromechanical Resonators with Meshed Metal Bottom Electrode.

    PubMed

    Ansari, Azadeh; Liu, Che-Yu; Lin, Chien-Chung; Kuo, Hao-Chung; Ku, Pei-Cheng; Rais-Zadeh, Mina

    2015-03-17

    This work describes a novel architecture to realize high-performance gallium nitride (GaN) bulk acoustic wave (BAW) resonators. The method is based on the growth of a thick GaN layer on a metal electrode grid. The fabrication process starts with the growth of a thin GaN buffer layer on a Si (111) substrate. The GaN buffer layer is patterned and trenches are made and refilled with sputtered tungsten (W)/silicon dioxide (SiO₂) forming passivated metal electrode grids. GaN is then regrown, nucleating from the exposed GaN seed layer and coalescing to form a thick GaN device layer. A metal electrode can be deposited and patterned on top of the GaN layer. This method enables vertical piezoelectric actuation of the GaN layer using its largest piezoelectric coefficient ( d 33 ) for thickness-mode resonance. Having a bottom electrode also results in a higher coupling coefficient, useful for the implementation of acoustic filters. Growth of GaN on Si enables releasing the device from the frontside using isotropic xenon difluoride (XeF₂) etch and therefore eliminating the need for backside lithography and etching.

  16. Strong spin-lattice coupling in CrSiTe 3

    DOE PAGES

    Casto, L. D.; Clune, A. J.; Yokosuk, M. O.; ...

    2015-03-19

    CrSiTe 3 has attracted recent interest as a candidate single-layer ferromagnetic semiconductor, but relatively little is known about the bulk properties of this material. Here, we report single-crystal X-ray diffraction, magnetic properties, thermal conductivity, vibrational, and optical spectroscopies and compare our findings with complementary electronic structure and lattice dynamics principles calculations. The high temperature paramagnetic phase is characterized by strong spin-lattice interactions that give rise to glassy behavior, negative thermal expansion, and an optical response that reveals that CrSiTe 3 is an indirect gap semiconductor with indirect and direct band gaps at 0.4 and 1.2 eV, respectively. Measurements of themore » phonons across the 33 K ferromagnetic transition provide additional evidence for strong coupling between the magnetic and lattice degrees of freedom. In conclusion, the Si-Te stretching and Te displacement modes are sensitive to the magnetic ordering transition, a finding that we discuss in terms of the superexchange mechanism. Lastly, spin-lattice coupling constants are also extracted.« less

  17. Theoretical calculation of CH3F/N2-broadening coefficients and their temperature dependence

    NASA Astrophysics Data System (ADS)

    Jellali, C.; Maaroufi, N.; Aroui, H.

    2018-07-01

    Using Robert and Bonamy formalism (with parabolic and exact trajectories) based on the semi-classical impact theory, N2-broadening coefficients of methyl fluoride CH3F were calculated for transitions belonging to the PP-, PQ-, PR-, RP-, RQ- and RR- sub-branches of the ν6 perpendicular band near 8.5 μm. The calculations showed the predominance of the dipole-quadruple interaction. The J and K rotational quantum numbers dependencies of the computed coefficients that are consistent with previous measurements were clearly observed in this study. For a fixed value of J, we noticed a decrease in the broadening coefficients, which was more significant at lower J values. In order to deduce the temperature exponent, the N2-broadening coefficients of CH3F were calculated at various temperatures of atmospheric interest between 183 and 296 K with J ≤ 60 and K ≤ 10. These exponents were, in general, J-dependent and K-independent, except for K close to J.

  18. Fabrication and thermoelectric properties of Ca-Co-O ceramics with negative Seebeck coefficient

    NASA Astrophysics Data System (ADS)

    Gong, Chunlin; Shi, Zongmo; Zhang, Yi; Chen, Yongsheng; Hu, Jiaxin; Gou, Jianjun; Qin, Mengjie; Gao, Feng

    2018-06-01

    Ca-Co-O ceramics is typically p-type thermoelectric materials and possesses positive Seebeck coefficient. In this work, n-type Ca-Co-O ceramics with negative Seebeck coefficients were fabricated by sintering and annealing in a reducing atmosphere. The microstructures and thermoelectric properties of the ceramics were investigated. The results show that the carrier concentration and the carrier mobility dramatically increase after the samples were annealed in the reducing atmosphere. The electrical resistivity increases from 0.0663 mΩ·cm to 0.2974 mΩ·cm, while the negative Seebeck coefficients varies from -24.9 μV/K to -56.3 μV/K as the temperature increases from 323 K to 823 K, and the maximum power factor (PF, 1.536 mW/m·K2) is obtained at 623 K. The samples have n-type thermoelectric properties with large PF values and ZT value (ZT = 0.39, 823 K). The unusual results will pave a new way for studying Ca-Co-O thermoelectric ceramics.

  19. Confidence bounds and hypothesis tests for normal distribution coefficients of variation

    Treesearch

    Steve P. Verrill; Richard A. Johnson

    2007-01-01

    For normally distributed populations, we obtain confidence bounds on a ratio of two coefficients of variation, provide a test for the equality of k coefficients of variation, and provide confidence bounds on a coefficient of variation shared by k populations. To develop these confidence bounds and test, we first establish that estimators based on Newton steps from n-...

  20. Constraints on the off-shell Higgs boson signal strength in the high-mass ZZ and WW final states with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Piqueras, D. Álvarez; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, R.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Childers, J. T.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Cunha Sargedas De Sousa, M. J. Da; Via, C. Da; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dwuznik, M.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Martinez, P. Fernandez; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hann, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R. W.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kim, Y.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saimpert, M.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simoniello, R.; Sinervo, P.; Sinev, N. B.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spalla, M.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Denis, R. D. St.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2015-07-01

    Measurements of the ZZ and WW final states in the mass range above the and thresholds provide a unique opportunity to measure the off-shell coupling strength of the Higgs boson. This paper presents constraints on the off-shell Higgs boson event yields normalised to the Standard Model prediction (signal strength) in the , and final states. The result is based on pp collision data collected by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 20.3 fb at a collision energy of TeV. Using the method, the observed 95 confidence level (CL) upper limit on the off-shell signal strength is in the range 5.1-8.6, with an expected range of 6.7-11.0. In each case the range is determined by varying the unknown and background K-factor from higher-order quantum chromodynamics corrections between half and twice the value of the known signal K-factor. Assuming the relevant Higgs boson couplings are independent of the energy scale of the Higgs boson production, a combination with the on-shell measurements yields an observed (expected) 95 CL upper limit on in the range 4.5-7.5 (6.5-11.2) using the same variations of the background K-factor. Assuming that the unknown background K-factor is equal to the signal K-factor, this translates into an observed (expected) 95 CL upper limit on the Higgs boson total width of 22.7 (33.0) MeV.

  1. Preliminary Determination of the Temperature Dependence of Siderophile Element Diffusion in Iron Meteorites at 1GPa

    NASA Astrophysics Data System (ADS)

    Watson, H. C.; Watson, B.

    2002-05-01

    Preliminary results for diffusion of siderophile elements (Cu, Pd, Re, Os, and Mo) in an iron meteorite analog were obtained at temperatures ranging from 1175° C to 1400° C and 1GPa from diffusion couple experiments in a piston-cylinder apparatus. Alloys were prepared by synthesizing mixtures of pure metal powders. The alloys were made from a 90 wt% Fe and 10 wt% Ni base mixture, and approximately 1wt% of the various siderophile elements was added (individually) to the same base mixture to make the doped alloys. The powders were packed in pre-drilled holes ( ~1 mm diameter by 8 mm deep) in MgO cylinders, and run in a piston cylinder apparatus at 1400° C and 1GPa for 48 hours. The resulting homogeneous alloys were then sectioned into wafers approximately 1mm thick, and the faces were polished to prepare for the diffusion experiments. A diffusion couple experiment was conducted by mating a pure alloy wafer and a doped wafer, and placing the couple into an MgO capsule for pressurization and heating in the piston cylinder. The duration of the diffusion experiments ranged from 12 hours to 100 hours. Upon run completion, the diffusion couples were extracted, sectioned lengthwise, and polished for analysis. Diffusion profiles were measured using standard electron microprobe techniques. Preliminary Arrhenius relations have been found as follows: DMo=2.12E-1+/-0.20 m2/s exp(390.86+/-40.46 kJ/mol/RT) DCu=1.37E-3+/-1.25E-3 m2/s exp(315.24+/-31.64 kJ/mol/RT) DPd=2.40E-5+/-2.40E-5 m2/s exp(269.64+/-87.49 kJ/mol/RT) Diffusion coefficients have also been found for Re and Os at 1325° C. They are: DRe=7.89E-15+/-6.70 m2/s and DOs=9.69E-15+/-8.24 m2/s

  2. Multiscale Modeling and Multifunctional Composites

    DTIC Science & Technology

    2013-07-17

    dλ α µ α= − − = +E Eθ θ (9) 6 where α is the coefficient of thermal expansion , and ,e d...longitudinal and transverse coefficient of thermal expansion , respectively. The piezoelectric constants are related by (Bahei-El-Din, 2009) 31 31 33 33 31...is coded into the user defined subroutine UEXPAN of the ABAQUS finite element program. This serves as the interface between the global finite element

  3. Enhanced electrical properties, color-tunable up-conversion luminescence, and temperature sensing behaviour in Er-doped Bi3Ti1.5W0.5O9 multifunctional ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Li, Jun; Chai, Xiaona; Wang, Xusheng; Li, Yongxiang; Yao, Xi

    2017-03-01

    Er-doped Bi3Ti1.5W0.5O9 (BTW-x) ferroelectric ceramics were prepared by a conventional solid-state reaction synthesis method, and their structure, electrical properties, up-conversion (UC) luminescence, and temperature sensing behaviour were investigated. A high piezoelectric coefficient d33 (9.6 pC/N), a large remnant polarization Pr (12.75 μC/cm2), a high Curie temperature Tc (730.2 °C), and the optimal luminescent intensity are obtained for the samples at x = 0.05. By changing the Er doped concentration, the BTW-x ceramics are capable of generating various UC spectra and the color could be tunable from green to yellow. According to the fluorescence intensity ratio of green emissions at 532.6 nm and 549.2 nm in the temperature range from 83 K to 423 K, optical temperature sensing properties are investigated and the maximum sensing sensitivity is found to be 0.00314 K-1 at 423 K. The results conclude that BTW-x would be a candidate in high temperature sensor, fluorescence thermometry, and opto-electronic integration applications.

  4. Thermoelectric properties of (DyNiSn)1-x(DyNiSb)x composite

    NASA Astrophysics Data System (ADS)

    Synoradzki, Karol; Ciesielski, Kamil; Kępiński, Leszek; Kaczorowski, Dariusz

    2018-05-01

    High temperature thermoelectric properties of bulk and ball-milled cold-pressed (DyNiSn)1-x(DyNiSb)x composite materials have been studied. For bulk pure DyNiSn and DyNiSb samples the Seebeck coefficient reaches - 5.5 μV/K at 480 K and 120 μV/K at 540 K, respectively. Composite materials show metallic-like electrical resistivity and positive sign of Seebeck coefficient with values up to 50 times higher than in pure DyNiSn compound at 1000 K. Only for the sample with x = 0.47, the ball-milling drives to increase of Seebeck coefficient of about 37% at 650 K.

  5. New version: GRASP2K relativistic atomic structure package

    NASA Astrophysics Data System (ADS)

    Jönsson, P.; Gaigalas, G.; Bieroń, J.; Fischer, C. Froese; Grant, I. P.

    2013-09-01

    A revised version of GRASP2K [P. Jönsson, X. He, C. Froese Fischer, I.P. Grant, Comput. Phys. Commun. 177 (2007) 597] is presented. It supports earlier non-block and block versions of codes as well as a new block version in which the njgraf library module [A. Bar-Shalom, M. Klapisch, Comput. Phys. Commun. 50 (1988) 375] has been replaced by the librang angular package developed by Gaigalas based on the theory of [G. Gaigalas, Z.B. Rudzikas, C. Froese Fischer, J. Phys. B: At. Mol. Phys. 30 (1997) 3747, G. Gaigalas, S. Fritzsche, I.P. Grant, Comput. Phys. Commun. 139 (2001) 263]. Tests have shown that errors encountered by njgraf do not occur with the new angular package. The three versions are denoted v1, v2, and v3, respectively. In addition, in v3, the coefficients of fractional parentage have been extended to j=9/2, making calculations feasible for the lanthanides and actinides. Changes in v2 include minor improvements. For example, the new version of rci2 may be used to compute quantum electrodynamic (QED) corrections only from selected orbitals. In v3, a new program, jj2lsj, reports the percentage composition of the wave function in LSJ and the program rlevels has been modified to report the configuration state function (CSF) with the largest coefficient of an LSJ expansion. The bioscl2 and bioscl3 application programs have been modified to produce a file of transition data with one record for each transition in the same format as in ATSP2K [C. Froese Fischer, G. Tachiev, G. Gaigalas, M.R. Godefroid, Comput. Phys. Commun. 176 (2007) 559], which identifies each atomic state by the total energy and a label for the CSF with the largest expansion coefficient in LSJ intermediate coupling. All versions of the codes have been adapted for 64-bit computer architecture. Program SummaryProgram title: GRASP2K, version 1_1 Catalogue identifier: ADZL_v1_1 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADZL_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 730252 No. of bytes in distributed program, including test data, etc.: 14808872 Distribution format: tar.gz Programming language: Fortran. Computer: Intel Xeon, 2.66 GHz. Operating system: Suse, Ubuntu, and Debian Linux 64-bit. RAM: 500 MB or more Classification: 2.1. Catalogue identifier of previous version: ADZL_v1_0 Journal reference of previous version: Comput. Phys. Comm. 177 (2007) 597 Does the new version supersede the previous version?: Yes Nature of problem: Prediction of atomic properties — atomic energy levels, oscillator strengths, radiative decay rates, hyperfine structure parameters, Landé gJ-factors, and specific mass shift parameters — using a multiconfiguration Dirac-Hartree-Fock approach. Solution method: The computational method is the same as in the previous GRASP2K [1] version except that for v3 codes the njgraf library module [2] for recoupling has been replaced by librang [3,4]. Reasons for new version: New angular libraries with improved performance are available. Also methodology for transforming from jj- to LSJ-coupling has been developed. Summary of revisions: New angular libraries where the coefficients of fractional parentage have been extended to j=9/2, making calculations feasible for the lanthanides and actinides. Inclusion of a new program jj2lsj, which reports the percentage composition of the wave function in LSJ. Transition programs have been modified to produce a file of transition data with one record for each transition in the same format as Atsp2K [C. Froese Fischer, G. Tachiev, G. Gaigalas and M.R. Godefroid, Comput. Phys. Commun. 176 (2007) 559], which identifies each atomic state by the total energy and a label for the CSF with the largest expansion coefficient in LSJ intermediate coupling. Updated to 64-bit architecture. A comprehensive user manual in pdf format for the program package has been added. Restrictions: The packing algorithm restricts the maximum number of orbitals to be ≤214. The tables of reduced coefficients of fractional parentage used in this version are limited to subshells with j≤9/2 [5]; occupied subshells with j>9/2 are, therefore, restricted to a maximum of two electrons. Some other parameters, such as the maximum number of subshells of a CSF outside a common set of closed shells are determined by a parameter.def file that can be modified prior to compile time. Unusual features: The bioscl3 program reports transition data in the same format as in Atsp2K [6], and the data processing program tables of the latter package can be used. The tables program takes a name.lsj file, usually a concatenated file of all the .lsj transition files for a given atom or ion, and finds the energy structure of the levels and the multiplet transition arrays. The tables posted at the website http://atoms.vuse.vanderbilt.edu are examples of tables produced by the tables program. With the extension of coefficients of fractional parentage to j=9/2, calculations for the lanthanides and actinides become possible. Running time: CPU time required to execute test cases: 70.5 s.

  6. Correlation characteristics of phase and amplitude chimeras in an ensemble of nonlocally coupled maps

    NASA Astrophysics Data System (ADS)

    Vadivasova, T. E.; Strelkova, G. I.; Bogomolov, S. A.; Anishchenko, V. S.

    2017-01-01

    Correlation characteristics of chimera states have been calculated using the coefficient of mutual correlation of elements in a closed-ring ensemble of nonlocally coupled chaotic maps. Quantitative differences between the coefficients of mutual correlation for phase and amplitude chimeras are established for the first time.

  7. FTIR gas-phase kinetic study on the reactions of some acrylate esters with OH radicals and Cl atoms.

    PubMed

    Moreno, A; Gallego-Iniesta, M P; Taccone, R; Martín, M P; Cabañas, B; Salgado, M S

    2014-10-01

    Acrylate esters are α,β-unsaturated esters that contain vinyl groups directly attached to the carbonyl carbon. These compounds are widely used in the production of plastics and resins. Atmospheric degradation processes of these compounds are currently not well understood. The kinetics of the gas phase reactions of OH radicals with methyl 3-methylacrylate and methyl 3,3-dimethylacrylate were determined using the relative rate technique in a 50 L Pyrex photoreactor using in situ FTIR spectroscopy at room temperature (298 ± 2 K) and atmospheric pressure (708 ± 8 Torr) with air as the bath gas. Rate coefficients obtained were (in units cm(3) molecule(-1) s(-1)): (3.27 ± 0.33) × 10(-11) and (4.43 ± 0.42) × 10(-11), for CH3CH═CHC(O)OCH3 and (CH3)2CH═CHC(O)OCH3, respectively. The same technique was used to study the gas phase reactions of hexyl acrylate and ethyl hexyl acrylate with OH radicals and Cl atoms. In the experiments with Cl, N2 and air were used as the bath gases. The following rate coefficients were obtained (in cm(3) molecule(-1) s(-1)): k3 (CH2═CHC(O)O(CH2)5CH3 + Cl) = (3.31 ± 0.31) × 10(-10), k4(CH2═CHC(O)OCH2CH(CH2CH3)(CH2)3CH3 + Cl) = (3.46 ± 0.31) × 10(-10), k5(CH2═CHC(O)O(CH2)5CH3 + OH) = (2.28 ± 0.23) × 10(-11), and k6(CH2═CHC(O)OCH2CH(CH2CH3)(CH2)3CH3 + OH) = (2.74 ± 0.26) × 10(-11). The reactivity increased with the number of methyl substituents on the double bond and with the chain length of the alkyl group in -C(O)OR. Estimations of the atmospheric lifetimes clearly indicate that the dominant atmospheric loss process for these compounds is their daytime reaction with the hydroxyl radical. In coastal areas and in some polluted environments, Cl atom-initiated degradation of these compounds can be significant, if not dominant. Maximum Incremental Reactivity (MIR) index and global warming potential (GWP) were also calculated, and it was concluded that these compounds have significant MIR values, but they do not influence global warming.

  8. Piezoelectric shear wave resonator and method of making same

    DOEpatents

    Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.

    1988-01-01

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.

  9. Method of making a piezoelectric shear wave resonator

    DOEpatents

    Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.

    1987-02-03

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.

  10. Kinetic modeling of α-hydrogen abstractions from unsaturated and saturated oxygenate compounds by carbon-centered radicals.

    PubMed

    Paraskevas, Paschalis D; Sabbe, Maarten K; Reyniers, Marie-Françoise; Papayannakos, Nikos; Marin, Guy B

    2014-06-23

    Hydrogen abstractions are important elementary reactions in a variety of reacting media at high temperatures in which oxygenates and hydrocarbon radicals are present. Accurate kinetic data are obtained from CBS-QB3 ab initio (AI) calculations by using conventional transition-state theory within the high-pressure limit, including corrections for hindered rotation and tunneling. From the obtained results, a group-additive (GA) model is developed that allows the Arrhenius parameters and rate coefficients for abstraction of the α-hydrogen from a wide range of oxygenate compounds to be predicted at temperatures ranging from 300 to 1500 K. From a training set of 60 hydrogen abstractions from oxygenates by carbon-centered radicals, 15 GA values (ΔGAV°s) are obtained for both the forward and reverse reactions. Among them, four ΔGAV°s refer to primary contributions, and the remaining 11 ΔGAV°s refer to secondary ones. The accuracy of the model is further improved by introducing seven corrections for cross-resonance stabilization of the transition state from an additional set of 43 reactions. The determined ΔGAV°s are validated upon a test set of AI data for 17 reactions. The mean absolute deviation of the pre-exponential factors (log A) and activation energies (E(a)) for the forward reaction at 300 K are 0.238 log(m(3)  mol(-1)  s(-1)) and 1.5 kJ mol(-1), respectively, whereas the mean factor of deviation <ρ> between the GA-predicted and the AI-calculated rate coefficients is 1.6. In comparison with a compilation of 33 experimental rate coefficients, the <ρ> between the GA-predicted values and these experimental values is only 2.2. Hence, the constructed GA model can be reliably used in the prediction of the kinetics of α-hydrogen-abstraction reactions between a broad range of oxygenates and oxygenate radicals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nonperturbative renormalization of quark bilinear operators and B{sub K} using domain wall fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Y.; Dawson, C.; Brookhaven National Laboratory, Upton, New York 11973

    2008-09-01

    We present a calculation of the renormalization coefficients of the quark bilinear operators and the K-K mixing parameter B{sub K}. The coefficients relating the bare lattice operators to those in the RI/MOM scheme are computed nonperturbatively and then matched perturbatively to the MS scheme. The coefficients are calculated on the RBC/UKQCD 2+1 flavor dynamical lattice configurations. Specifically we use a 16{sup 3}x32 lattice volume, the Iwasaki gauge action at {beta}=2.13 and domain wall fermions with L{sub s}=16.

  12. Viscosity and thermal conductivity coefficients of gaseous and liquid oxygen

    NASA Technical Reports Server (NTRS)

    Hanley, H. J. M.; Mccarty, R. D.; Sengers, J. V.

    1974-01-01

    Equations and tables are presented for the viscosity and thermal conductivity coefficients of gaseous and liquid oxygen at temperatures between 80 K and 400 K for pressures up to 200 atm. and at temperatures between 80 K and 2000 K for the dilute gas. A description of the anomalous behavior of the thermal conductivity in the critical region is included. The tabulated coefficients are reliable to within about 15% except for a region in the immediate vicinity of the critical point. Some possibilities for future improvements of this reliability are discussed.

  13. Renormalization group estimates of transport coefficients in the advection of a passive scalar by incompressible turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE; Vahala, George

    1993-01-01

    The advection of a passive scalar by incompressible turbulence is considered using recursive renormalization group procedures in the differential sub grid shell thickness limit. It is shown explicitly that the higher order nonlinearities induced by the recursive renormalization group procedure preserve Galilean invariance. Differential equations, valid for the entire resolvable wave number k range, are determined for the eddy viscosity and eddy diffusivity coefficients, and it is shown that higher order nonlinearities do not contribute as k goes to 0, but have an essential role as k goes to k(sub c) the cutoff wave number separating the resolvable scales from the sub grid scales. The recursive renormalization transport coefficients and the associated eddy Prandtl number are in good agreement with the k-dependent transport coefficients derived from closure theories and experiments.

  14. Theoretical study of radiative electron attachment to CN, C{sub 2}H, and C{sub 4}H radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douguet, Nicolas; Fonseca dos Santos, S.; Orel, Ann E.

    A first-principle theoretical approach to study the process of radiative electron attachment is developed and applied to the negative molecular ions CN{sup −}, C{sub 4}H{sup −}, and C{sub 2}H{sup −}. Among these anions, the first two have already been observed in the interstellar space. Cross sections and rate coefficients for formation of these ions by direct radiative electron attachment to the corresponding neutral radicals are calculated. For the CN molecule, we also considered the indirect pathway, in which the electron is initially captured through non-Born-Oppenheimer coupling into a vibrationally resonant excited state of the anion, which then stabilizes by radiativemore » decay. We have shown that the contribution of the indirect pathway to the formation of CN{sup −} is negligible in comparison to the direct mechanism. The obtained rate coefficients for the direct mechanism at 30 K are 7 × 10{sup −16} cm{sup 3}/s for CN{sup −}, 7 × 10{sup −17} cm{sup 3}/s for C{sub 2}H{sup −}, and 2 × 10{sup −16} cm{sup 3}/s for C{sub 4}H{sup −}. These rates weakly depend on temperature between 10 K and 100 K. The validity of our calculations is verified by comparing the present theoretical results with data from recent photodetachment experiments.« less

  15. Measurement of Soret and Fickian diffusion coefficients by orthogonal phase-shifting interferometry and its application to protein aqueous solutions

    NASA Astrophysics Data System (ADS)

    Torres, Juan F.; Komiya, Atsuki; Henry, Daniel; Maruyama, Shigenao

    2013-08-01

    We have developed a method to measure thermodiffusion and Fickian diffusion in transparent binary solutions. The measuring instrument consists of two orthogonally aligned phase-shifting interferometers coupled with a single rotating polarizer. This high-resolution interferometer, initially developed to measure isothermal diffusion coefficients in liquid systems [J. F. Torres, A. Komiya, E. Shoji, J. Okajima, and S. Maruyama, Opt. Lasers Eng. 50, 1287 (2012)], was modified to measure transient concentration profiles in binary solutions subject to a linear temperature gradient. A convectionless thermodiffusion field was created in a binary solution sample that is placed inside a Soret cell. This cell consists of a parallelepiped cavity with a horizontal cross-section area of 10 × 20 mm2, a variable height of 1-2 mm, and transparent lateral walls. The small height of the cell reduces the volume of the sample, shortens the measurement time, and increases the hydrodynamic stability of the system. An additional free diffusion experiment with the same optical apparatus provides the so-called contrast factors that relate the unwrapped phase and concentration gradients, i.e., the measurement technique is independent and robust. The Soret coefficient is determined from the concentration and temperature differences between the upper and lower boundaries measured by the interferometer and thermocouples, respectively. The Fickian diffusion coefficient is obtained by fitting a numerical solution to the experimental concentration profile. The method is validated through the measurement of thermodiffusion in the well-known liquid pairs of ethanol-water (ethanol 39.12 wt.%) and isobutylbenzene-dodecane (50.0 wt.%). The obtained coefficients agree with the literature values within 5.0%. Finally, the developed technique is applied to visualize biomolecular thermophoresis. Two protein aqueous solutions at 3 mg/ml were used as samples: aprotinin (6.5 kDa)-water and lysozyme (14.3 kDa)-water. It was found that the former protein molecules are thermophilic and the latter thermophobic. In contrast to previously reported methods, this technique is suitable for both short time and negative Soret coefficient measurements.

  16. Characterization of bovine serum albumin partitioning behaviors in polymer-salt aqueous two-phase systems.

    PubMed

    Chow, Yin Hui; Yap, Yee Jiun; Tan, Chin Ping; Anuar, Mohd Shamsul; Tejo, Bimo Ario; Show, Pau Loke; Ariff, Arbakariya Bin; Ng, Eng-Poh; Ling, Tau Chuan

    2015-07-01

    In this paper, a linear relationship is proposed relating the natural logarithm of partition coefficient, ln K for protein partitioning in poly (ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS) to the square of tie-line length (TLL(2)). This relationship provides good fits (r(2) > 0.98) to the partition of bovine serum albumin (BSA) in PEG (1450 g/mol, 2000 g/mol, 3350 g/mol, and 4000 g/mol)-phosphate ATPS with TLL of 25.0-50.0% (w/w) at pH 7.0. Results also showed that the plot of ln K against pH for BSA partitioning in the ATPS containing 33.0% (w/w) PEG1450 and 8.0% (w/w) phosphate with varied working pH between 6.0 and 9.0 exhibited a linear relationship which is in good agreement (r(2) = 0.94) with the proposed relationship, ln K = α' pH + β'. These results suggested that both the relationships proposed could be applied to correlate and elucidate the partition behavior of biomolecules in the polymer-salt ATPS. The influence of other system parameters on the partition behavior of BSA was also investigated. An optimum BSA yield of 90.80% in the top phase and K of 2.40 was achieved in an ATPS constituted with 33.0% (w/w) PEG 1450 and 8.0% (w/w) phosphate in the presence of 8.5% (w/w) sodium chloride (NaCl) at pH 9.0 for 0.3% (w/w) BSA load. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. [Characteristics of precipitation pH and conductivity at Mt. Huang].

    PubMed

    Shi, Chun-e; Deng, Xue-liang; Wu, Bi-wen; Hong, Jie; Zhang, Su; Yang, Yuan-jian

    2013-05-01

    To understand the general characteristics of pH distribution and pollution in precipitation at Mt. Huang, statistical analyses were conducted for the routine measurements of pH and conductivity (K) at Mt. Huang during 2006-2011. The results showed that: (1) Over the period of study, the annual volume weighted mean (VWM) precipitation pH varied from 4.81 to 5.57, with precipitation acidity strengthening before 2009 and weakening thereafter. The precipitation acidity showed evident seasonal variations, with the VWM pH lowest in winter (4.78), and highest in summer (5.33). The occurrence frequency of acid rain was 46% , accounting for 45% of total rainfalls and with the most frequent pH falling into weak acid to neutral rain. (2) The annual VWM K varied from 16.91 to 27.84 microS x cm(-1), with no evident trend. As for ions pollution, the precipitation was relatively clean at Mt. Huang, with the most frequent K range being below 15 microS x cm(-1), followed by 15-25 microS x cm(-1). From February 2010 to December 2011, precipitation samples were collected on daily basis for ions analysis, as well as pH and K measurement in lab. Detailed comparisons were conducted between the two sets of pH and K, one set from field measurement and the other from lab measurement. The results indicated: (1) The lab measured pH (K) was highly correlated with the field pH (K); however, the lab pH tended to move towards neutral comparing with the corresponding field pH, and the shift range was closely correlated with the field pH and rainfall. The shift range of K from field to lab was highly correlated with the total ion concentration of precipitation. The field K showed evident negative correlation with the field pH with a correlation coefficient of -0.51. (2) When sampling with nylon-polyethylene bags, the statistics showed smaller bias between two sets of pH, with higher correlation coefficient between two sets of K. Furthermore, the lab K also showed evident negative correlation with the lab pH. Comparing with the observations at other alpine sites in central to eastern China, the natural precipitation at Mt. Huang was weaker in acidity and contains lower ion concentration.

  18. The Dissociative Recombination of OH(+)

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1995-01-01

    Theoretical quantum chemical calculations of the cross sections and rates for the dissociative recombination of the upsilon = 0 level of the ground state of OH(+) show that recombination occurs primarily along the 2 (2)Pi diabatic route. The products are 0((1)D) and a hot H atom with 6.1 eV kinetic energy. The coupling to the resonances is very small and the indirect recombination mechanism plays only a minor role. The recommended value for the rate coefficient is (6.3 +/- 0.7) x 10(exp -9)x (T(e)/1300)(exp -0.48) cu.cm/s for 10 less than T(e) less than 1000 K.

  19. Applications of Ferro-Nanofluid on a Micro-Transformer

    PubMed Central

    Tsai, Tsung-Han; Kuo, Long-Sheng; Chen, Ping-Hei; Lee, Da-sheng; Yang, Chin-Ting

    2010-01-01

    An on-chip transformer with a ferrofluid magnetic core has been developed and tested. The transformer consists of solenoid-type coil and a magnetic core of ferrofluid, with the former fabricated by MEMS technology and the latter by a chemical co-precipitation method. The performance of the MEMS transformer with a ferrofluid magnetic core was measured and simulated with frequencies ranging from 100 kHz to 100 MHz. Experimental results reveal that the presence of the ferrofluid increases the inductance of coils and the coupling coefficient of transformer; however, it also increases the resistance owing to the lag between the external magnetic field and the magnetization of the material. PMID:22163647

  20. Applications of ferro-nanofluid on a micro-transformer.

    PubMed

    Tsai, Tsung-Han; Kuo, Long-Sheng; Chen, Ping-Hei; Lee, Da-Sheng; Yang, Chin-Ting

    2010-01-01

    An on-chip transformer with a ferrofluid magnetic core has been developed and tested. The transformer consists of solenoid-type coil and a magnetic core of ferrofluid, with the former fabricated by MEMS technology and the latter by a chemical co-precipitation method. The performance of the MEMS transformer with a ferrofluid magnetic core was measured and simulated with frequencies ranging from 100 kHz to 100 MHz. Experimental results reveal that the presence of the ferrofluid increases the inductance of coils and the coupling coefficient of transformer; however, it also increases the resistance owing to the lag between the external magnetic field and the magnetization of the material.

  1. Turbomachinery Laboratory Texas A and M University research progress on annular gas seals

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.

    1994-01-01

    Three helically-grooved seals were tested and the results were compared to the MTI code SPIRALG. A smooth annular seal was tested at six eccentricity ratios from 0 to 0.5. The following are concluded in this viewgraph presentation: (1) Helical-grooved seals provide a substantial reduction in cross-coupled stiffness coefficients. Negative k(sub xy) values are obtained for no-swirl or low-swirl cases. (2) SPIRALG is completely unsuitable for the type of seal tested, namely, turbulent flow, wide grooves and lands, etc. (3) A good analysis code is needed to guide the design of helically-grooved annular seals including groove and smooth sections.

  2. On the Spacings between C-nomial Coefficients

    DTIC Science & Technology

    2009-09-10

    On the spacings between C -nomial coefficients Florian Luca 1, Diego Marques ∗,2, Pantelimon Stănică 3 1Instituto de Matemáticas, Universidad...all n ≥ 0, where C0 = 0 and C1 = 1. For 1 ≤ k ≤ m− 1 let[ m k ] C = CmCm−1 · · ·Cm−k+1 C1 · · ·Ck be the corresponding C -nomial coefficient. When Cn...AND SUBTITLE On the spacings between C -nomial coefficients 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  3. Tunnel Structured α-MnO 2 with Different Tunnel Cations (H + , K + , Ag + ) as Cathode Materials in Rechargeable Lithium Batteries: The Role of Tunnel Cation on Electrochemistry

    DOE PAGES

    Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo; ...

    2017-07-12

    α-MnO 2 type manganese dioxide is an interesting prospective cathode material for reversible lithium insertion owing to its cation accessible tunnels (0.46nm x 0.46nm), high voltage, and low cost. The tunneled structure is synthetically formed by the assistance of cations acting as structure directing agents where the cations may remain in the tunnel. The electrochemistry of this family of materials is strongly dependent on the morphological and physicochemical (i.e. surface area, crystallite size, and average manganese oxidation state) properties as well as tunnel occupancy. For this work, we prepared a set of materials Mn 8O 16·0.81H 2O, K 0.81Mn 8Omore » 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O with similar nanorod morphology, crystallite size, surface area, and tunnel water content. This set of samples allowed us to investigate the role of tunnel cations in the electrochemistry of α-MnO 2 type manganese dioxide in a lithium based environment while minimizing the effects of the other parameters. The electrochemistry was evaluated using cyclic voltammetry, galvanostatic cycling, rate capability, and galvanostatic intermittent titration type testing. Mn 8O 16·0.81H 2O showed higher loaded voltages, improved capacity retention, and higher specific energy relative to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O. After 100 cycles, Mn 8O 16·0.81H 2O delivered ~200% more capacity than Ag 1.33Mn 8O 16·0.95H 2O (64 vs. 129 mAh/g) and ~35% more capacity than K 0.81Mn 8O 16·0.78H 2O (85 vs. 129 mAh/g). Mn 8O 16·0.81H 2O also showed higher effective lithium diffusion coefficients (DLi+) and higher rate capability compared to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O suggesting faster Li+ ion diffusion in the absence of large metal tunnel cations.« less

  4. Tunnel Structured α-MnO 2 with Different Tunnel Cations (H + , K + , Ag + ) as Cathode Materials in Rechargeable Lithium Batteries: The Role of Tunnel Cation on Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo

    α-MnO 2 type manganese dioxide is an interesting prospective cathode material for reversible lithium insertion owing to its cation accessible tunnels (0.46nm x 0.46nm), high voltage, and low cost. The tunneled structure is synthetically formed by the assistance of cations acting as structure directing agents where the cations may remain in the tunnel. The electrochemistry of this family of materials is strongly dependent on the morphological and physicochemical (i.e. surface area, crystallite size, and average manganese oxidation state) properties as well as tunnel occupancy. For this work, we prepared a set of materials Mn 8O 16·0.81H 2O, K 0.81Mn 8Omore » 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O with similar nanorod morphology, crystallite size, surface area, and tunnel water content. This set of samples allowed us to investigate the role of tunnel cations in the electrochemistry of α-MnO 2 type manganese dioxide in a lithium based environment while minimizing the effects of the other parameters. The electrochemistry was evaluated using cyclic voltammetry, galvanostatic cycling, rate capability, and galvanostatic intermittent titration type testing. Mn 8O 16·0.81H 2O showed higher loaded voltages, improved capacity retention, and higher specific energy relative to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O. After 100 cycles, Mn 8O 16·0.81H 2O delivered ~200% more capacity than Ag 1.33Mn 8O 16·0.95H 2O (64 vs. 129 mAh/g) and ~35% more capacity than K 0.81Mn 8O 16·0.78H 2O (85 vs. 129 mAh/g). Mn 8O 16·0.81H 2O also showed higher effective lithium diffusion coefficients (DLi+) and higher rate capability compared to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O suggesting faster Li+ ion diffusion in the absence of large metal tunnel cations.« less

  5. Pigment spectra and intermolecular interaction potentials in glasses and proteins.

    PubMed

    Renge, I; van Grondelle, R; Dekker, J P

    2007-10-01

    A model is proposed for chromophore optical spectra in solids over a wide range of temperatures and pressures. Inhomogeneous band shapes and their pressure dependence, as well as baric shift coefficients of spectral lines, selected by the frequency, were derived using Lennard-Jones potentials of the ground and excited states. Quadratic electron-phonon coupling constants, describing the thermal shift and broadening of zero-phonon lines, were also calculated. Experimentally, thermal shift and broadening of spectral holes were studied between 5 and 40 K for a synthetic pigment, chlorin, embedded in polymer hosts. The baric effects on holes were determined by applying hydrostatic He gas pressure up to 200 bar, at 6 K. Absorption spectra of pheophytin a, chlorophyll a, and beta-carotene in polymers and plant photosystem II CP47 complex were measured between 5 (or 77) and 300 K, and subject to Voigtian deconvolution. A narrowing of inhomogeneous bandwidth with increasing temperature, predicted on the basis of hole behavior, was observed as the shrinking of Gaussian spectral component. The Lorentzian broadening was ascribed to optical dephasing up to 300 K in transitions with weak to moderate linear electron-phonon coupling strength. The thermal broadening is purely Gaussian in multiphonon transitions (S(2) band of beta-carotene, Soret bands of tetrapyrrolic pigments), and the Lorentz process appears to be suppressed, indicating a lack of exponential dephasing. Density, polarity, polarizability, compressibility, and other local parameters of the pigment binding sites in biologically relevant systems can be deduced from spectroscopic data, provided that sufficient background information is available.

  6. Pigment Spectra and Intermolecular Interaction Potentials in Glasses and Proteins

    PubMed Central

    Renge, I.; van Grondelle, R.; Dekker, J. P.

    2007-01-01

    A model is proposed for chromophore optical spectra in solids over a wide range of temperatures and pressures. Inhomogeneous band shapes and their pressure dependence, as well as baric shift coefficients of spectral lines, selected by the frequency, were derived using Lennard-Jones potentials of the ground and excited states. Quadratic electron-phonon coupling constants, describing the thermal shift and broadening of zero-phonon lines, were also calculated. Experimentally, thermal shift and broadening of spectral holes were studied between 5 and 40 K for a synthetic pigment, chlorin, embedded in polymer hosts. The baric effects on holes were determined by applying hydrostatic He gas pressure up to 200 bar, at 6 K. Absorption spectra of pheophytin a, chlorophyll a, and β-carotene in polymers and plant photosystem II CP47 complex were measured between 5 (or 77) and 300 K, and subject to Voigtian deconvolution. A narrowing of inhomogeneous bandwidth with increasing temperature, predicted on the basis of hole behavior, was observed as the shrinking of Gaussian spectral component. The Lorentzian broadening was ascribed to optical dephasing up to 300 K in transitions with weak to moderate linear electron-phonon coupling strength. The thermal broadening is purely Gaussian in multiphonon transitions (S2 band of β-carotene, Soret bands of tetrapyrrolic pigments), and the Lorentz process appears to be suppressed, indicating a lack of exponential dephasing. Density, polarity, polarizability, compressibility, and other local parameters of the pigment binding sites in biologically relevant systems can be deduced from spectroscopic data, provided that sufficient background information is available. PMID:17557783

  7. Preliminary study of a gas burner-driven and ground-coupled heat pump system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, P.F.

    1995-12-31

    To address the concerns for higher energy efficiency and the immediate phase out of the chlorofluorocarbons (CFCs), a new gas burner-driven, ground-coupled heat pump (GBGCHP) system is proposed for study. The new system is energy efficient and pose no environmental problem. There are three unique features in the proposed system: (1) a patented gas burner-driven compressor with a floating diaphragm piston-cylinder for energy efficiency and accommodating variable load, (2) the ground coupled water-to-air heat exchangers for high coefficient of performance (COPs), and (3) the new refrigerants based on fluoroiodocarbons (FICS) with very little ozone depletion and global warming potential. Amore » preliminary analysis of a prototype heat pump with 3 ton (10.55 kW) heating capacity is presented. The thermodynamics analysis of the system shows that the steady state COP rating higher than 7 is possible with the system operating in heating mode. Additional research work for the GBGCHP system, especially the FICs` thermodynamic properties in the superheated region, is also described.« less

  8. Density Convection near Radiating ICRF Antennas and its Effect on the Coupling of Lower Hybrid Waves

    NASA Astrophysics Data System (ADS)

    Ekedahl, A.; Colas, L.; Mayoral, M.-L.; Beaumont, B.; Bibet, Ph.; Brémond, S.; Kazarian, F.; Mailloux, J.; Noterdaeme, J.-M.; Efda-Jet Contributors

    2003-12-01

    Combined operation of Lower Hybrid (LH) and Ion Cyclotron Resonance Frequency (ICRF) waves can result in a degradation of the LH wave coupling, as observed both in the Tore Supra and JET tokamaks. The reflection coefficient on the part of the LH launcher magnetically connected to the powered ICRF antenna increases, suggesting a local decrease in the electron density in the connecting flux tubes. This has been confirmed by Langmuir probe measurements on the LH launchers in the latest Tore Supra experiments. Moreover, recent experiments in JET indicate that the LH coupling degradation depends on the ICRF power and its launched k//-spectrum. The 2D density distribution around the Tore Supra ICRF antennas has been modelled with the CELLS-code, balancing parallel losses with diffusive transport and sheath induced E×B convection, obtained from RF field mapping using the ICANT-code. The calculations are in qualitative agreement with the experimental observations, i.e. density depletion is obtained, localised mainly in the antenna shadow, and dependent on ICRF power and antenna spectrum.

  9. Charge Transfer Rate in Collisions of H + Ions with Si Atoms

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Sannigrahi, A. B.; Gu, J. P.; Hirsch, G.; Buenker, R. J.; Shimamura, I.

    1996-12-01

    Charge transfer in Si(3P, 1D) + H+ collisions is studied theoretically by using a semiclassical molecular representation with six molecular channels for the triplet manifold and four channels for the singlet manifold at collision energies above 30 eV, and by using a fully quantum mechanical approach with two molecular channels for both triplet and singlet manifolds below 30 eV. The ab initio potential curves and nonadiabatic coupling matrix elements for the HSi+ system are obtained from multireference single- and double-excitation configuration interaction (MRD-CI) calculations employing a relatively large basis set. The present rate coefficients for charge transfer to Si+(4P) formation resulting from H+ + Si(3P) collisions are found to be large with values from 1 x 10-10 cm-3 s-1 at 1000 K to 1 x 10-8 cm-3 s-1 at 100,000 K. The rate coefficient for Si+(2P) formation, resulting from H+ + Si(3P) collisions, is found to be much smaller because of a larger energy defect from the initial state. These calculated rates are much larger than those reported by Baliunas & Butler, who estimated a value of 10-11 cm-3 s-1 in their coronal plasma study. The present result may be relevant to the description of the silicon ionization equilibrium.

  10. PSO-Assisted Development of New Transferable Coarse-Grained Water Models.

    PubMed

    Bejagam, Karteek K; Singh, Samrendra; An, Yaxin; Berry, Carter; Deshmukh, Sanket A

    2018-02-15

    We have employed two-to-one mapping scheme to develop three coarse-grained (CG) water models, namely, 1-, 2-, and 3-site CG models. Here, for the first time, particle swarm optimization (PSO) and gradient descent methods were coupled to optimize the force-field parameters of the CG models to reproduce the density, self-diffusion coefficient, and dielectric constant of real water at 300 K. The CG MD simulations of these new models conducted with various timesteps, for different system sizes, and at a range of different temperatures are able to predict the density, self-diffusion coefficient, dielectric constant, surface tension, heat of vaporization, hydration free energy, and isothermal compressibility of real water with excellent accuracy. The 1-site model is ∼3 and ∼4.5 times computationally more efficient than 2- and 3-site models, respectively. To utilize the speed of 1-site model and electrostatic interactions offered by 2- and 3-site models, CG MD simulations of 1:1 combination of 1- and 2-/3-site models were performed at 300 K. These mixture simulations could also predict the properties of real water with good accuracy. Two new CG models of benzene, consisting of beads with and without partial charges, were developed. All three water models showed good capacity to solvate these benzene models.

  11. Diffusion and Binding of Mismatch Repair Protein, MSH2, in Breast Cancer Cells at Different Stages of Neoplastic Transformation

    PubMed Central

    Sigley, Justin; Jarzen, John; Scarpinato, Karin; Guthold, Martin; Pu, Tracey; Nelli, Daniel; Low, Josiah

    2017-01-01

    The interior of cells is a highly complex medium, containing numerous organelles, a matrix of different fibers and a viscous, aqueous fluid of proteins and small molecules. The interior of cells is also a highly dynamic medium, in which many components move, either by active transport or passive diffusion. The mobility and localization of proteins inside cells can provide important insights into protein function and also general cellular properties, such as viscosity. Neoplastic transformation affects numerous cellular properties, and our goal was to investigate the diffusional and binding behavior of the important mismatch repair (MMR) protein MSH2 in live human cells at various stages of neoplastic transformation. Toward this end, noncancerous, immortal, tumorigenic, and metastatic mammary epithelial cells were transfected with EGFP and EGFP-tagged MSH2. MSH2 forms two MMR proteins (MutSα and MutSβ) and we assume MSH2 is in the complex MutSα, though our results are similar in either case. Unlike the MutS complexes that bind to nuclear DNA, EGFP diffuses freely. EGFP and MutSα-EGFP diffusion coefficients were determined in the cytoplasm and nucleus of each cell type using fluorescence recovery after photobleaching. Diffusion coefficients were 14–24 μm2/s for EGFP and 3–7 μm2/s for MutSα-EGFP. EGFP diffusion increased in going from noncancerous to immortal cells, indicating a decrease in viscosity, with smaller changes in subsequent stages. MutSα produces an effective diffusion coefficient that, coupled with the free EGFP diffusion measurements, can be used to extract a pure diffusion coefficient and a pseudo-equilibrium constant K*. The MutSα nuclear K* increased sixfold in the first stage of cancer and then decreased in the more advanced stages. The ratio of nuclear to cytoplasmic K*for MutSα increased almost two orders of magnitude in going from noncancerous to immortal cells, suggesting that this quantity may be a sensitive metric for recognizing the onset of cancer. PMID:28125613

  12. Determination of mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal.

    PubMed

    Soluch, Waldemar; Brzozowski, Ernest; Lysakowska, Magdalena; Sadura, Jolanta

    2011-11-01

    Mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal were determined. Mass density was obtained from the measured ratio of mass to volume of a cuboid. The dielectric constants were determined from the measured capacitances of an interdigital transducer (IDT) deposited on a Z-cut plate and from a parallel plate capacitor fabricated from this plate. The elastic and piezoelectric constants were determined by comparing the measured and calculated SAW velocities and electromechanical coupling coefficients on the Z- and X-cut plates. The following new constants were obtained: mass density p = 5986 kg/m(3); relative dielectric constants (at constant strain S) ε(S)(11)/ε(0) = 8.6 and ε(S)(11)/ε(0) = 10.5, where ε(0) is a dielectric constant of free space; elastic constants (at constant electric field E) C(E)(11) = 349.7, C(E)(12) = 128.1, C(E)(13) = 129.4, C(E)(33) = 430.3, and C(E)(44) = 96.5 GPa; and piezoelectric constants e(33) = 0.84, e(31) = -0.47, and e(15) = -0.41 C/m(2).

  13. Universality and chaotic dynamics in reactive scattering of ultracold KRb molecules with K atoms

    NASA Astrophysics Data System (ADS)

    Li, Ming; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana; Croft, James F. E.; Balakrishnan, Naduvalath; Kendrick, Brian K.

    2017-04-01

    We study the benchmark reaction between the most-celebrated ultracold polar molecule, KRb, with an ultracold K atom. For the first time we map out an accurate ab initio ground potential energy surface of the K2Rb complex in full dimensionality and performed a numerically exact quantum-mechanical calculation of reaction dynamics based on coupled-channels approach in hyperspherical coordinates. An analysis of the adiabatic hyperspherical potentials reveals a chaotic distribution for the short-range complex that plays a key role in governing the reaction outcome. The equivalent distribution for a lighter collisional system with a smaller density of states (here the Li2Yb trimer) only shows random behavior. We find an extreme sensitivity of our chaotic system to a small perturbation associated with the weak non-additive three-body potential contribution that does not affect the total reaction rate coefficient but leads to a significant change in the rotational distribution in the product molecule. In both cases the distribution of these rates is random or Poissonian. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and PHY-1619788 (S.K.), ARO MURI Grant No. W911NF-12-1-0476 (N.B. & S.K.), and DOE LDRD Grant No. 20170221ER (B.K.).

  14. The Applicability of the Distribution Coefficient, K D, Based on Non-Aggregated Particulate Samples from Lakes with Low Suspended Solids Concentrations

    PubMed Central

    Gormley-Gallagher, Aine Marie; Douglas, Richard William; Rippey, Brian

    2015-01-01

    Separate phases of metal partitioning behaviour in freshwater lakes that receive varying degrees of atmospheric contamination and have low concentrations of suspended solids were investigated to determine the applicability of the distribution coefficient, K D. Concentrations of Pb, Ni, Co, Cu, Cd, Cr, Hg and Mn were determined using a combination of filtration methods, bulk sample collection and digestion and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Phytoplankton biomass, suspended solids concentrations and the organic content of the sediment were also analysed. By distinguishing between the phytoplankton and (inorganic) lake sediment, transient variations in K D were observed. Suspended solids concentrations over the 6-month sampling campaign showed no correlation with the K D (n = 15 for each metal, p > 0.05) for Mn (r 2 = 0.0063), Cu (r 2 = 0.0002, Cr (r 2 = 0.021), Ni (r 2 = 0.0023), Cd (r 2 = 0.00001), Co (r 2 = 0.096), Hg (r 2 = 0.116) or Pb (r 2 = 0.164). The results implied that colloidal matter had less opportunity to increase the dissolved (filter passing) fraction, which inhibited the spurious lowering of K D. The findings conform to the increasingly documented theory that the use of K D in modelling may mask true information on metal partitioning behaviour. The root mean square error of prediction between the directly measured total metal concentrations and those modelled based on the separate phase fractions were ± 3.40, 0.06, 0.02, 0.03, 0.44, 484.31, 80.97 and 0.1 μg/L for Pb, Cd, Mn, Cu, Hg, Ni, Cr and Co respectively. The magnitude of error suggests that the separate phase models for Mn and Cu can be used in distribution or partitioning models for these metals in lake water. PMID:26200885

  15. Reactivity of OH and CH3OH Between 22 and 64 K: Modelling the Gas Phase Production of CH3O in Barnard 1B

    PubMed Central

    Antiñolo, M.; Agúndez, M.; Jiménez, E.; Ballesteros, B.; Canosa, A.; Dib, G. El; Albaladejo, J.; Cernicharo, J.

    2016-01-01

    In the last years, ultra-low temperature chemical kinetic experiments have demonstrated that some gas-phase reactions are much faster than previously thought. One example is the reaction between OH and CH3OH, which has been recently found to be accelerated at low temperatures yielding CH3O as main product. This finding opened the question of whether the CH3O observed in the dense core Barnard 1b could be formed by the gas-phase reaction of CH3OH and OH. Several chemical models including this reaction and grain-surface processes have been developed to explain the observed abundance of CH3O with little success. Here we report for the first time rate coefficients for the gas-phase reaction of OH and CH3OH down to a temperature of 22 K, very close to those in cold interstellar clouds. Two independent experimental set-ups based on the supersonic gas expansion technique coupled to the pulsed laser photolysis-laser induced fluorescence technique were used to determine rate coefficients in the temperature range 22-64 K. The temperature dependence obtained in this work can be expressed as k(22-64 K) = (3.6 ± 0.1) × 10−12(T/300 K)−(1.0±0.2) cm3 molecule−1 s−1. Implementing this expression in a chemical model of a cold dense cloud results in CH3O/CH3OH abundance ratios similar or slightly lower than the value of ∼ 3 × 10−3 observed in Barnard 1b. This finding confirms that the gas-phase reaction between OH and CH3OH is an important contributor to the formation of interstellar CH3O. The role of grain-surface processes in the formation of CH3O, although it cannot be fully neglected, remains controversial. PMID:27279655

  16. Reactivity of OH and CH3OH Between 22 and 64 K: Modelling the Gas Phase Production of CH3O in Barnard 1B.

    PubMed

    Antiñolo, M; Agúndez, M; Jiménez, E; Ballesteros, B; Canosa, A; Dib, G El; Albaladejo, J; Cernicharo, J

    2016-05-20

    In the last years, ultra-low temperature chemical kinetic experiments have demonstrated that some gas-phase reactions are much faster than previously thought. One example is the reaction between OH and CH 3 OH, which has been recently found to be accelerated at low temperatures yielding CH 3 O as main product. This finding opened the question of whether the CH 3 O observed in the dense core Barnard 1b could be formed by the gas-phase reaction of CH 3 OH and OH. Several chemical models including this reaction and grain-surface processes have been developed to explain the observed abundance of CH 3 O with little success. Here we report for the first time rate coefficients for the gas-phase reaction of OH and CH 3 OH down to a temperature of 22 K, very close to those in cold interstellar clouds. Two independent experimental set-ups based on the supersonic gas expansion technique coupled to the pulsed laser photolysis-laser induced fluorescence technique were used to determine rate coefficients in the temperature range 22-64 K. The temperature dependence obtained in this work can be expressed as k (22-64 K) = (3.6 ± 0.1) × 10 -12 ( T/ 300 K) -(1.0±0.2) cm 3 molecule -1 s -1 . Implementing this expression in a chemical model of a cold dense cloud results in CH 3 O/CH 3 OH abundance ratios similar or slightly lower than the value of ∼ 3 × 10 -3 observed in Barnard 1b. This finding confirms that the gas-phase reaction between OH and CH 3 OH is an important contributor to the formation of interstellar CH 3 O. The role of grain-surface processes in the formation of CH 3 O, although it cannot be fully neglected, remains controversial.

  17. The role of stress on close relationships and marital satisfaction.

    PubMed

    Randall, Ashley K; Bodenmann, Guy

    2009-03-01

    Stress is a concept that has received increased attention in marital research during the last decade, showing that it plays an important role in understanding the quality and stability of close relationships. Evidence suggests that stress is a threat to marital satisfaction and its longevity. Research has been based upon theoretical models of stress in close relationships, specifically family stress models [e.g., Hill, R. (1958). Generic features of families under stress. Social Casework, 39, 139-150.; McCubbin, H. I., & Patterson, J. M. (1983). Family transitions: Adaptation to stress. In H. I. McCubbin & C. R. Figley (Eds.), Stress and the family: Coping with normative transitions (Vol. 2, pp. 5-25). New York: Brunner/Mazel] and couple's stress model's proposed by Karney, Story, and Bradbury [Karney, B. R., Story, L. B., & Bradbury, T. N. (2005). Marriages in context: Interactions between chronic an acute stress among newlyweds. In T. A. Revenson, K. Kayser, & G. Bodenmann (Eds.), Couples coping with stress: Emerging perspectives on dyadic coping (pp.13-32). American Psychological Association: Washington, D.C.] and Bodenmann [Bodenmann, G. (1995). A systemic-transactional conceptualization of stress and coping in couples. Swiss Journal of Psychology, 54, 34-49.; Bodenmann, G. (2005). Dyadic coping and its significant for marital functioning. In T. Revenson, K. Kayser, & G. Bodenmann (Eds.), Couples coping with stress: Emerging perspectives on dyadic coping (pp.33-50). American Psychological Association: Washington, D.C.]. In this review we: (1) examine the various theoretical models of stress, (2) analyze and summarize the typologies relating to stress models (internal versus external, major versus minor, acute versus chronic), and (3) summarize findings from stress research in couples that has practical significance and may inspire clinical work. Future directions in research and clincial significance are suggested.

  18. Pressure broadening and pressure shift of diatomic iodine at 675 nm

    NASA Astrophysics Data System (ADS)

    Wolf, Erich N.

    Doppler-limited, steady-state, linear absorption spectra of 127 I2 (diatomic iodine) near 675 nm were recorded with an internally-referenced wavelength modulation spectrometer, built around a free-running diode laser using phase-sensitive detection, and capable of exceeding the signal-to-noise limit imposed by the 12-bit data acquisition system. Observed I2 lines were accounted for by published spectroscopic constants. Pressure broadening and pressure shift coefficients were determined respectively from the line-widths and line-center shifts as a function of buffer gas pressure, which were determined from nonlinear regression analysis of observed line shapes against a Gaussian-Lorentzian convolution line shape model. This model included a linear superposition of the I2 hyperfine structure based on changes in the nuclear electric quadrupole coupling constant. Room temperature (292 K) values of these coefficients were determined for six unblended I 2 lines in the region 14,817.95 to 14,819.45 cm-1 for each of the following buffer gases: the atoms He, Ne, Ar, Kr, and Xe; and the molecules H2, D2, N2, CO2, N2O, air, and H2O. These coefficients were also determined at one additional temperature (388 K) for He and CO2, and at two additional temperatures (348 and 388 K) for Ar. Elastic collision cross-sections were determined for all pressure broadening coefficients in this region. Room temperature values of these coefficients were also determined for several low-J I2 lines in the region 14,946.17 to 14,850.29 cm-1 for Ar. A line shape model, obtained from a first-order perturbation solution of the time-dependent Schrodinger equation for randomly occurring interactions between a two-level system and a buffer gas treated as step-function potentials, reveals a relationship between the ratio of pressure broadening to pressure shift coefficients and a change in the wave function phase-factor, interpreted as reflecting the "cause and effect" of state-changing events in the microscopic domain. Collision cross-sections determined from this model are interpreted as reflecting the inelastic nature of collision-induced state-changing events. A steady-state kinetic model for the two-level system compatible with the Beer-Lambert law reveals thermodynamic constraints on the ensemble-average state-changing rates and collision cross-sections, and leads to the proposal of a relationship between observed asymmetric line shapes and irreversibility in the microscopic domain.

  19. Theory and simulation of the time-dependent rate coefficients of diffusion-influenced reactions.

    PubMed Central

    Zhou, H X; Szabo, A

    1996-01-01

    A general formalism is developed for calculating the time-dependent rate coefficient k(t) of an irreversible diffusion-influenced reaction. This formalism allows one to treat most factors that affect k(t), including rotational Brownian motion and conformational gating of reactant molecules and orientation constraint for product formation. At long times k(t) is shown to have the asymptotic expansion k(infinity)[1 + k(infinity) (pie Dt)-1/2 /4 pie D + ...], where D is the relative translational diffusion constant. An approximate analytical method for calculating k(t) is presented. This is based on the approximation that the probability density of the reactant pair in the reactive region keeps the equilibrium distribution but with a decreasing amplitude. The rate coefficient then is determined by the Green function in the absence of chemical reaction. Within the framework of this approximation, two general relations are obtained. The first relation allows the rate coefficient for an arbitrary amplitude of the reactivity to be found if the rate coefficient for one amplitude of the reactivity is known. The second relation allows the rate coefficient in the presence of conformational gating to be found from that in the absence of conformational gating. The ratio k(t)/k(0) is shown to be the survival probability of the reactant pair at time t starting from an initial distribution that is localized in the reactive region. This relation forms the basis of the calculation of k(t) through Brownian dynamics simulations. Two simulation procedures involving the propagation of nonreactive trajectories initiated only from the reactive region are described and illustrated on a model system. Both analytical and simulation results demonstrate the accuracy of the equilibrium-distribution approximation method. PMID:8913584

  20. Precision Composite Space Structures

    DTIC Science & Technology

    2007-10-15

    large structures. 15. SUBJECT TERMS Composite materials, dimensional stability, microcracking, thermal expansion , space structures, degradation...Figure 32. Variation of normalized coefficients of thermal expansion α11(n), α22(n), and α33(n) with normalized crack density of an AS4/3501-6...coefficients of thermal expansion α11(n), α22(n), and α33(n) with normalized crack density of an AS4/3501-6 composite lamina with a fiber volume

  1. 47 CFR 87.137 - Types of emission.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 2K04A2A 2.74 50 A2D 6K0A2D 50 A2D 5 13K0A2D 50 A3E 2 6K00A3E 50 3 A3E 5K6A3E 8.33 kHz 17 A3X 4 3K20A3X 25... permitted. 17 In the band 117.975-137 MHz, the Commission will not authorize any 8.33 kHz channel spaced... to delivery to their customers. For transmitters certificated to tune to 8.33 kHz channel spacing as...

  2. 47 CFR 87.137 - Types of emission.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 2K04A2A 2.74 50 A2D 6K0A2D 50 A2D 5 13K0A2D 50 A3E 2 6K00A3E 50 3 A3E 5K6A3E 8.33 kHz 17 A3X 4 3K20A3X 25... permitted. 17 In the band 117.975-137 MHz, the Commission will not authorize any 8.33 kHz channel spaced... to delivery to their customers. For transmitters certificated to tune to 8.33 kHz channel spacing as...

  3. 47 CFR 87.137 - Types of emission.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 2K04A2A 2.74 50 A2D 6K0A2D 50 A2D 5 13K0A2D 50 A3E 2 6K00A3E 50 3 A3E 5K6A3E 8.33 kHz 17 A3X 4 3K20A3X 25... permitted. 17 In the band 117.975-137 MHz, the Commission will not authorize any 8.33 kHz channel spaced... to delivery to their customers. For transmitters certificated to tune to 8.33 kHz channel spacing as...

  4. 47 CFR 87.137 - Types of emission.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 2K04A2A 2.74 50 A2D 6K0A2D 50 A2D 5 13K0A2D 50 A3E 2 6K00A3E 50 3 A3E 5K6A3E 8.33 kHz 17 A3X 4 3K20A3X 25... permitted. 17 In the band 117.975-137 MHz, the Commission will not authorize any 8.33 kHz channel spaced... to delivery to their customers. For transmitters certificated to tune to 8.33 kHz channel spacing as...

  5. Perovskite ThTaN3: A large-thermopower topological crystalline insulator

    NASA Astrophysics Data System (ADS)

    Jung, Myung-Chul; Lee, Kwan-Woo; Pickett, Warren E.

    2018-03-01

    ThTaN3, a rare cubic perovskite nitride semiconductor, has been studied using ab initio methods. Spin-orbit coupling (SOC) results in band inversion and a band gap of 150 meV at the zone center. Despite trivial Z2 indices, two pairs of spin-polarized surface bands cross the gap near the zone center, indicating that this system is a topological crystalline insulator with the mirror Chern number of | Cm|=2 protected by the mirror and C4 rotational symmetries. Additionally, SOC doubles the Seebeck coefficient, leading to a maximum of ˜400 μ V /K at 150 K for carrier-doping levels of several 1017/cm3.ThTaN3 combines excellent bulk thermopower with parallel conduction through topological surface states that may point toward new possibilities for platforms for engineering devices with larger figures of merit.

  6. Drift-wave turbulence and zonal flow generation.

    PubMed

    Balescu, R

    2003-10-01

    Drift-wave turbulence in a plasma is analyzed on the basis of the wave Liouville equation, describing the evolution of the distribution function of wave packets (quasiparticles) characterized by position x and wave vector k. A closed kinetic equation is derived for the ensemble-averaged part of this function by the methods of nonequilibrium statistical mechanics. It has the form of a non-Markovian advection-diffusion equation describing coupled diffusion processes in x and k spaces. General forms of the diffusion coefficients are obtained in terms of Lagrangian velocity correlations. The latter are calculated in the decorrelation trajectory approximation, a method recently developed for an accurate measure of the important trapping phenomena of particles in the rugged electrostatic potential. The analysis of individual decorrelation trajectories provides an illustration of the fragmentation of drift-wave structures in the radial direction and the generation of long-wavelength structures in the poloidal direction that are identified as zonal flows.

  7. Structure dependence of the rate coefficients of hydroxyl radical+aromatic molecule reaction

    NASA Astrophysics Data System (ADS)

    Wojnárovits, László; Takács, Erzsébet

    2013-06-01

    The rate coefficients of hydroxyl radical addition to the rings of simple aromatic molecules (kOH) were evaluated based on the literature data. By analyzing the methods of kOH determination and the data obtained the most probable values were selected for the kOH's of individual compounds and thereby the most reliable dataset was created for monosubstituted aromatics and p-substituted phenols. For these compounds the rate coefficients fall in a narrow range between 2×109 mol-1 dm3 s-1 and 1×1010 mol-1 dm3 s-1. Although the values show some regular trend with the electron donating/withdrawing nature of the substituent, the log kOH-σp Hammett substituent constant plots do not give straight lines because these high kOH's are controlled by both, the chemical reactivity and the diffusion. However, the logarithms of the rate coefficients of the chemical reactivity controlled reactions (kchem), are calculated by the equation 1/kOH=1/kchem+1/kdiff, and accepting for the diffusion controlled rate coefficient kdiff=1.1×1010 mol-1 dm3 s-1, show good linear correlation with σp.

  8. Accelerated Electron-Beam Formation with a High Capture Coefficient in a Parallel Coupled Accelerating Structure

    NASA Astrophysics Data System (ADS)

    Chernousov, Yu. D.; Shebolaev, I. V.; Ikryanov, I. M.

    2018-01-01

    An electron beam with a high (close to 100%) coefficient of electron capture into the regime of acceleration has been obtained in a linear electron accelerator based on a parallel coupled slow-wave structure, electron gun with microwave-controlled injection current, and permanent-magnet beam-focusing system. The high capture coefficient was due to the properties of the accelerating structure, beam-focusing system, and electron-injection system. Main characteristics of the proposed systems are presented.

  9. Studies on fluid dynamics of the flow field and gas transfer in orbitally shaken tubes.

    PubMed

    Zhu, Li-Kuan; Song, Bo-Yan; Wang, Zhen-Long; Monteil, Dominique T; Shen, Xiao; Hacker, David L; De Jesus, Maria; Wurm, Florian M

    2017-01-01

    Orbitally shaken cylindrical bioreactors [OrbShake bioreactors (OSRs)] without an impeller or sparger are increasingly being used for the suspension cultivation of mammalian cells. Among small volume OSRs, 50-mL tubes with a ventilated cap (OSR50), originally derived from standard laboratory centrifuge tubes with a conical bottom, have found many applications including high-throughput screening for the optimization of cell cultivation conditions. To better understand the fluid dynamics and gas transfer rates at the liquid surface in OSR50, we established a three-dimensional simulation model of the unsteady liquid forms (waves) in this vessel. The studies verified that the operating conditions have a large effect on the interfacial surface. The volumetric mass transfer coefficient (k L a) was determined experimentally and from simulations under various working conditions. We also determined the liquid-phase mass transfer coefficient (k L ) and the specific interfacial area (a) under different conditions to demonstrate that the value of a affected the gas transfer rate more than did the value of k L . High oxygen transfer rates, sufficient for supporting the high-density culture of mammalian cells, were found. Finally, the average axial velocity of the liquid was identified to be an important parameter for maintaining cells in suspension. Overall these studies provide valuable insights into the preferable operating conditions for the OSR50, such as those needed for cell cultures requiring high oxygen levels. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:192-200, 2017. © 2016 American Institute of Chemical Engineers.

  10. Diffusion and phase transformation behavior in poly-synthetically-twinned (PST) titanium-aluminum/titanium diffusion couple

    NASA Astrophysics Data System (ADS)

    Pan, Ling

    Motivated by the great potential applications of gamma titanium aluminide based alloys and the important effect of diffusion on the properties of gamma-TiAl/alpha2-Ti3Al two-phase lamellar structure, we conduct this thesis research to explore the microstructural evolution and interdiffusion behavior, and their correlations in multi-phase solid state diffusion couples made up of pure titanium and polysynthetically-twinned (PST) Ti-49.3 at.% Al "single" crystal, in the temperature range of 973--1173 K. The diffusion couples are prepared by high vacuum hot-pressing, with the diffusion direction parallel to the lamellar planes. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) are employed to observe the microstructure at various interfaces/interphases. A reaction zone (RZ) of polycrystalline alpha 2-Ti3Al phase forms along the PST Ti-Al/Ti bonding interface having a wavy interface with the PST crystal and exhibits deeper penetration in alpha2 lamellae, consisting of many fine alpha2 and secondary gamma laths, than in primary gamma lamellae. Direct measurement of the RZ thickness on SEM back-scattered electron images reveals a parabolic growth of the RZ, indicating a macroscopically diffusion-controlled growth. Concentration profiles from Ti, through the RZ, into the alpha2 lamellae of the PST crystal are measured by quantitative energy-dispersive x-ray spectroscopy (EDS) in a scanning transmission electron microscope (STEM). A plateau of composition adjacent to the RZ/(mixed alpha2 lath in PST) interface forms in the deeply penetrated RZ grains, implying a diffusion barrier crossing the interface and some extent of interface control in the RZ grain growth. The interdiffusion coefficient is evaluated both independent of composition and as a function of composition. No significant concentration dependence of the interdiffusion coefficients is observed using Boltzmann-Matano analysis. The temperature dependence of the interdiffusion coefficients obeys the Arrhenius relationship with a pre-exponential factor of D 0 = (7.56 +/- 7.14) x 10-5 m2/s and an activation enthalpy of Q = 255.6+8.9-8.3 kJ/mol = (2.65 +/- 0.09) eV/atom. The initial nucleation stage of the RZ grains plays an important role in the later microstructural evolution as does the local mass balance. The interfacial energy and the strain energy in the deeply penetrated RZ grains are possible reasons for the plateau.

  11. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lal, Shankar, E-mail: shankar@rrcat.gov.in; Pant, K. K.

    2016-08-15

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday’s law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled withmore » β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.« less

  12. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient

    NASA Astrophysics Data System (ADS)

    Lal, Shankar; Pant, K. K.

    2016-08-01

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday's law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.

  13. Cooperation and competition between two symmetry breakings in a coupled ratchet

    NASA Astrophysics Data System (ADS)

    Li, Chen-Pu; Chen, Hong-Bin; Fan, Hong; Xie, Ge-Ying; Zheng, Zhi-Gang

    2018-03-01

    We investigate the collective mechanism of coupled Brownian motors in a flashing ratchet in the presence of coupling symmetry breaking and space symmetry breaking. The dependences of directed current on various parameters are extensively studied in terms of numerical simulations and theoretical analysis. Reversed motion can be achieved by modulating multiple parameters including the spatial asymmetry coefficient, the coupling asymmetry coefficient, the coupling free length and the coupling strength. The dynamical mechanism of these transport properties can be reasonably explained by the effective potential theory and the cooperation or competition between two symmetry breakings. Moreover, adjusting the Gaussian white noise intensity, which can induce weak reversed motion under certain condition, can optimize and manipulate the directed transport of the ratchet system.

  14. The effect of the intermolecular potential formulation on the state-selected energy exchange rate coefficients in N2-N2 collisions.

    PubMed

    Kurnosov, Alexander; Cacciatore, Mario; Laganà, Antonio; Pirani, Fernando; Bartolomei, Massimiliano; Garcia, Ernesto

    2014-04-05

    The rate coefficients for N2-N2 collision-induced vibrational energy exchange (important for the enhancement of several modern innovative technologies) have been computed over a wide range of temperature. Potential energy surfaces based on different formulations of the intramolecular and intermolecular components of the interaction have been used to compute quasiclassically and semiclassically some vibrational to vibrational energy transfer rate coefficients. Related outcomes have been rationalized in terms of state-to-state probabilities and cross sections for quasi-resonant transitions and deexcitations from the first excited vibrational level (for which experimental information are available). On this ground, it has been possible to spot critical differences on the vibrational energy exchange mechanisms supported by the different surfaces (mainly by their intermolecular components) in the low collision energy regime, though still effective for temperatures as high as 10,000 K. It was found, in particular, that the most recently proposed intermolecular potential becomes the most effective in promoting vibrational energy exchange near threshold temperatures and has a behavior opposite to the previously proposed one when varying the coupling of vibration with the other degrees of freedom. Copyright © 2014 Wiley Periodicals, Inc.

  15. Thermoelasticity and high- T behaviour of anthophyllite

    NASA Astrophysics Data System (ADS)

    Welch, Mark D.; Cámara, Fernando; Oberti, Roberta

    2011-04-01

    The thermoelastic behaviour of anthophyllite has been determined for a natural crystal with crystal-chemical formula ANa0.01 B(Mg1.30Mn0.57Ca0.09Na0.04) C(Mg4.95Fe0.02Al0.03) T(Si8.00)O22 W(OH)2 using single-crystal X-ray diffraction to 973 K. The best model for fitting the thermal expansion data is that of Berman (J Petrol 29:445-522, 1988) in which the coefficient of volume thermal expansion varies linearly with T as α V,T = a 1 + 2 a 2 ( T - T 0): α298 = a 1 = 3.40(6) × 10-5 K-1, a 2 = 5.1(1.0) × 10-9 K-2. The corresponding axial thermal expansion coefficients for this linear model are: α a ,298 = 1.21(2) × 10-5 K-1, a 2, a = 5.2(4) × 10-9 K-2; α b ,298 = 9.2(1) × 10-6 K-1, a 2, b = 7(2) × 10-10 K-2. α c ,298 = 1.26(3) × 10-5 K-1, a 2, c = 1.3(6) × 10-9 K-2. The thermoelastic behaviour of anthophyllite differs from that of most monoclinic ( C2/ m) amphiboles: (a) the ɛ 1 - ɛ 2 plane of the unit-strain ellipsoid, which is normal to b in anthophyllite but usually at a high angle to c in monoclinic amphiboles; (b) the strain components are ɛ 1 ≫ ɛ 2 > ɛ 3 in anthophyllite, but ɛ 1 ~ ɛ 2 ≫ ɛ 3 in monoclinic amphiboles. The strain behaviour of anthophyllite is similar to that of synthetic C2/ m ANa B(LiMg) CMg5 TSi8 O22 W(OH)2, suggesting that high contents of small cations at the B-site may be primarily responsible for the much higher thermal expansion ⊥(100). Refined values for site-scattering at M4 decrease from 31.64 epfu at 298 K to 30.81 epfu at 973 K, which couples with similar increases of those of M1 and M2 sites. These changes in site scattering are interpreted in terms of Mn ↔ Mg exchange involving M1,2 ↔ M4, which was first detected at 673 K.

  16. Transition and Electron Impact Excitation Collision Rates for O III

    NASA Astrophysics Data System (ADS)

    Tayal, S. S.; Zatsarinny, O.

    2017-12-01

    Transition probabilities, electron excitation collision strengths, and rate coefficients for a large number of O III lines over a broad wavelength range, from the infrared to ultraviolet, have been reported. The collision strengths have been calculated in the close-coupling approximation using the B-spline Breit-Pauli R-matrix method. The multiconfiguration Hartree-Fock method in combination with B-spline expansions is employed for an accurate representation of the target wave functions. The close-coupling expansion contains 202 O2+ fine-structure levels of the 2{s}22{p}2,2s2{p}3, 2{p}4,2{s}22p3s,3p,3d, 4s,4p,4d,4f,5s, and 2s2{p}33s,3p,3d configurations. The effective collision strengths are obtained by averaging electron excitation collision strengths over a Maxwellian distribution of velocities at electron temperatures ranging from 100 to 100,000 K. The calculated effective collision strengths have been reported for the 20,302 transitions between all 202 fine-structure levels. There is an overall good agreement with the recent R-matrix calculations by Storey et al. for the transitions between all levels of the ground 2{s}22{p}2 configuration, but significant discrepancies have been found with Palay et al. for transitions to the 2{s}22{p}2 1 S 0 level. Line intensity ratios between the optical lines arising from the 2{s}22{p}2{}3{P}{0,1,2} - 1 D 2 transitions have been compared with other calculations and observations from the photoionized gaseous nebulae, and good agreement is found. The present calculations provide the most complete and accurate data sets, which should allow a more detailed treatment of the available measured spectra from different ground and space observatories.

  17. Phototransformation rate constants of PAHs associated with soot particles.

    PubMed

    Kim, Daekyun; Young, Thomas M; Anastasio, Cort

    2013-01-15

    Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k(p)(0)), the effective diffusion coefficients (D(eff)), and the light penetration depths (z(0.5)) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2-3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z(0.5) is more sensitive to the soot layer thickness than the k(p)(0) value. As the thickness of the soot layer increases, the z(0.5) values increase, but the k(p)(0) values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k(p)(0) and z(0.5) in thinner layers, D(eff) should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Potential of energy harvesting in barium titanate based laminates from room temperature to cryogenic/high temperatures: measurements and linking phase field and finite element simulations

    NASA Astrophysics Data System (ADS)

    Narita, Fumio; Fox, Marina; Mori, Kotaro; Takeuchi, Hiroki; Kobayashi, Takuya; Omote, Kenji

    2017-11-01

    This paper studies the energy harvesting characteristics of piezoelectric laminates consisting of barium titanate (BaTiO3) and copper (Cu) from room temperature to cryogenic/high temperatures both experimentally and numerically. First, the output voltages of the piezoelectric BaTiO3/Cu laminates were measured from room temperature to a cryogenic temperature (77 K). The output power was evaluated for various values of load resistance. The results showed that the maximum output power density is approximately 2240 nW cm-3. The output voltages of the BaTiO3/Cu laminates were also measured from room temperature to a higher temperature (333 K). To discuss the output voltages of the BaTiO3/Cu laminates due to temperature changes, phase field and finite element simulations were combined. A phase field model for grain growth was used to generate grain structures. The phase field model was then employed for BaTiO3 polycrystals, coupled with the time-dependent Ginzburg-Landau theory and the oxygen vacancies diffusion, to calculate the temperature-dependent piezoelectric coefficient and permittivity. Using these properties, the output voltages of the BaTiO3/Cu laminates from room temperature to both 77 K and 333 K were analyzed by three dimensional finite element methods, and the results are presented for several grain sizes and oxygen vacancy densities. It was found that electricity in the BaTiO3 ceramic layer is generated not only through the piezoelectric effect caused by a thermally induced bending stress but also by the temperature dependence of the BaTiO3 piezoelectric coefficient and permittivity.

  19. Multiferroic and magnetoelectric nanocomposites for data processing

    NASA Astrophysics Data System (ADS)

    Kleemann, Wolfgang

    2017-06-01

    Recent progress in preparing and understanding composite magnetoelectrics is highlighted. Apart from optimized standard solutions novel methods of switching magnetism with electric fields and vice versa with focus on magnetoelectric (ME) data processing in multiferroic and magnetoelectric nanocomposites deserve particular interest. First, we report on the patented MERAM, which uses the electric field control of exchange bias in a layered composite via an epitaxial magnetoelectric Cr2O3 layer exchange coupled to a Pt/Co/Pt trilayer. It promises to crucially reduce Joule energy losses in RAM devices. Second, magnetic switching of the electric polarization by a transverse magnetic field in a composite of CoFe2O4 nanopillars embedded in a vertically poled BaTiO3 thick film produces a regular surface polarization pattern with rectangular local symmetry. Its possible use for data processing is discussed. Third, in the relaxor ferroelectric single-phase compound (BiFe0.9Co0.1O3)0.4-(Bi1/2K1/2TiO3)0.6 polar nanoregions emerging from ferrimagnetic Bi(Fe,Co)O3 regions embedded in a Bi1/2K1/2TiO3 relaxor component transform into ferroelectric clusters and simultaneously enable congruent magnetic clusters. The local polarization and magnetization couple with record-high direct and converse magnetoelectric coupling coefficients, α  ≈  1.0  ×  10-5 s m-1. These ‘multiferroic’ clusters are promising for applications in data storage or processing devices.

  20. Electrostatic environment of hemes in proteins: pK(a)s of hydroxyl ligands.

    PubMed

    Song, Yifan; Mao, Junjun; Gunner, M R

    2006-07-04

    The pK(a)s of ferric aquo-heme and aquo-heme electrochemical midpoints (E(m)s) at pH 7 in sperm whale myoglobin, Aplysia myoblogin, hemoglobin I, heme oxygenase 1, horseradish peroxidase and cytochrome c oxidase were calculated with Multi-Conformation Continuum Electrostatics (MCCE). The pK(a)s span 3.3 pH units from 7.6 in heme oxygenase 1 to 10.9 in peroxidase, and the E(m)s range from -250 mV in peroxidase to 125 mV in Aplysia myoglobin. Proteins with higher in situ ferric aquo-heme pK(a)s tend to have lower E(m)s. Both changes arise from the protein stabilizing a positively charged heme. However, compared with values in solution, the protein shifts the aquo-heme E(m)s more than the pK(a)s. Thus, the protein has a larger effective dielectric constant for the protonation reaction, showing that electron and proton transfers are coupled to different conformational changes that are captured in the MCCE analysis. The calculations reveal a breakdown in the classical continuum electrostatic analysis of pairwise interactions. Comparisons with DFT calculations show that Coulomb's law overestimates the large unfavorable interactions between the ferric water-heme and positively charged groups facing the heme plane by as much as 60%. If interactions with Cu(B) in cytochrome c oxidase and Arg 38 in horseradish peroxidase are not corrected, the pK(a) calculations are in error by as much as 6 pH units. With DFT corrected interactions calculated pK(a)s and E(m)s differ from measured values by less than 1 pH unit or 35 mV, respectively. The in situ aquo-heme pK(a) is important for the function of cytochrome c oxidase since it helps to control the stoichiometry of proton uptake coupled to electron transfer [Song, Michonova-Alexova, and Gunner (2006) Biochemistry 45, 7959-7975].

  1. Physical properties of inorganic PMW-PNN-PZT ceramics

    NASA Astrophysics Data System (ADS)

    Sin, Sang-Hoon; Yoo, Ju-hyun; Kim, Yong-Jin; Baek, Sam-ki; Ha, Jun-Soo; No, Chung-Han; Song, Hyun-Seon; Shin, Dong-Chan

    2015-07-01

    In this work, inorganic Pb(Mg1/2W1/2)0.03(Ni1/3Nb2/3)x(Zr0.5Ti0.5)0.97-xO3 (x = 0.02 ∼ 0.12) composition ceramics were fabricated by the conventional solid state reaction method. And then their micro structure and ferroelectric properties were investigated according to the amount of PNN substitution. Small amounts of Li2CO3 and CaCO3 were used in order to decrease the sintering temperature of the ceramics. The 0.10 mol PNN-substituted PMW-PNN- PZT ceramics sintered at 920°C showed the excellent physical properties of piezoelectric constant (d33), electromechanical coupling factor (kp), mechanical quality coefficient (Qm), and dielectric constant of 566 pC/N, 0.61, 73, and 2183, respectively.

  2. Comparison of fluence-to-dose conversion coefficients for deuterons, tritons and helions.

    PubMed

    Copeland, Kyle; Friedberg, Wallace; Sato, Tatsuhiko; Niita, Koji

    2012-02-01

    Secondary radiation in aircraft and spacecraft includes deuterons, tritons and helions. Two sets of fluence-to-effective dose conversion coefficients for isotropic exposure to these particles were compared: one used the particle and heavy ion transport code system (PHITS) radiation transport code coupled with the International Commission on Radiological Protection (ICRP) reference phantoms (PHITS-ICRP) and the other the Monte Carlo N-Particle eXtended (MCNPX) radiation transport code coupled with modified BodyBuilder™ phantoms (MCNPX-BB). Also, two sets of fluence-to-effective dose equivalent conversion coefficients calculated using the PHITS-ICRP combination were compared: one used quality factors based on linear energy transfer; the other used quality factors based on lineal energy (y). Finally, PHITS-ICRP effective dose coefficients were compared with PHITS-ICRP effective dose equivalent coefficients. The PHITS-ICRP and MCNPX-BB effective dose coefficients were similar, except at high energies, where MCNPX-BB coefficients were higher. For helions, at most energies effective dose coefficients were much greater than effective dose equivalent coefficients. For deuterons and tritons, coefficients were similar when their radiation weighting factor was set to 2.

  3. Turbulence effects on volatilization rates of liquids and solutes

    USGS Publications Warehouse

    Lee, J.-F.; Chao, H.-P.; Chiou, C.T.; Manes, M.

    2004-01-01

    Volatilization rates of neat liquids (benzene, toluene, fluorobenzene, bromobenzene, ethylbenzene, m-xylene, o-xylene, o-dichlorobenzene, and 1-methylnaphthalene) and of solutes (phenol, m-cresol, benzene, toluene, ethylbenzene, o-xylene, and ethylene dibromide) from dilute water solutions have been measured in the laboratory over a wide range of air speeds and water-stirring rates. The overall transfer coefficients (KL) for individual solutes are independent of whether they are in single- or multi-solute solutions. The gas-film transfer coefficients (kG) for solutes in the two-film model, which have hitherto been estimated by extrapolation from reference coefficients, can now be determined directly from the volatilization rates of neatliquids through anew algorithm. The associated liquid-film transfer coefficients (KL) can then be obtained from measured KL and kG values and solute Henry law constants (H). This approach provides a novel means for checking the precision of any kL and kG estimation methods for ultimate prediction of KL. The improved kG estimation enables accurate K L predictions for low-volatility (i.e., low-H) solutes where K L and kGH are essentially equal. In addition, the prediction of KL values for high-volatility (i.e., high-H) solutes, where KL ??? kL, is also improved by using appropriate reference kL values.

  4. Piezoelectric shear wave resonator and method of making same

    DOEpatents

    Wang, J.S.; Lakin, K.M.; Landin, A.R.

    1985-05-20

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.

  5. Piezoelectric shear wave resonator and method of making same

    DOEpatents

    Wang, J.S.; Lakin, K.M.; Landin, A.R.

    1983-10-25

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.

  6. Fine and hyperfine collisional excitation of C6H by He

    NASA Astrophysics Data System (ADS)

    Walker, Kyle M.; Lique, François; Dawes, Richard

    2018-01-01

    Hydrogenated carbon chains have been detected in interstellar and circumstellar media and accurate modelling of their abundances requires collisional excitation rate coefficients with the most abundant species. Among them, the C6H molecule is one of the most abundant towards many lines of sight. Hence, we determined fine and hyperfine-resolved rate coefficients for the excitation of C6H(X2Π) due to collisions with He. We present the first interaction potential energy surface for the C6H-He system, obtained from highly correlated ab initio calculations and characterized by a large anisotropy due to the length of the molecule. We performed dynamical calculations for transitions among the first fine structure levels (up to J = 30.5) of both spin-orbit manifolds of C6H using the close-coupling method, and rate coefficients are determined for temperatures ranging from 5 to 100 K. The largest rate coefficients for even ΔJ transitions conserve parity, while parity-breaking rate coefficients are favoured for odd ΔJ. Spin-orbit changing rate coefficients are several orders of magnitude lower than transitions within a single manifold. State-to-state hyperfine-resolved cross-sections for the first levels (up to J = 13.5) in the Ω = 3/2 spin-orbit manifold are deduced using recoupling techniques. Rate coefficients are obtained and the propensity rule ΔJ = ΔF is seen. These new data will help determine the abundance of C6H in astrophysical environments such as cold dense molecular clouds, star-forming regions and circumstellar envelopes, and will help in the interpretation of the puzzling C6H-/C6H abundance ratios deduced from observations.

  7. Transient-state method for coupled evaluation of Soret and Fick coefficients, and related tortuosity factors, using free and porous packed thermodiffusion cells: application to CuSO4 aqueous solution ( 0.25M).

    PubMed

    Costesèque, P; Pollak, T; Platten, J K; Marcoux, M

    2004-11-01

    The measurement of Soret coefficients in liquids is not easy and usually not very precise because the resulting concentration gradient is small and moreover can be perturbed by undesired convection currents. In order to suppress, or to drastically reduce these convection currents, the use of a porous medium is sometimes suggested. The question arises as to whether the Soret coefficient is the same in free fluid and in porous medium. This is the aim of this paper. To this end, for a given liquid mixture, the time evolution of the vertical concentration gradient is experimentally measured in the same thermodiffusion cell filled first with the free liquid and next with a porous medium followed by saturation by the liquid mixture. Both the isothermal diffusion (Fick) coefficient and the Soret coefficient can be deduced, providing that a correct working equation is used. The proposed equation results from integration of the general mass conservation equation with realistic boundary conditions (zero mass flux at the boundaries) and some simplifying assumptions rendering this equation more tractable than the one proposed some decades ago by Bierlein (J.A. Bierlein, J. Chem. Phys. 23, 10 (1955)). The method is applied here to an electrolytic solution (CuSO4, 0.25 M) at a mean temperature of 37 degrees C. The Soret coefficients in free and porous medium (zircon microspheres in the range of 250-315 x 10(-6) m) may be considered to be equal ( S(T) = 13.2+/-0.5 x 10(-3) K(-1)) and the tortuosity factors for the packed medium are the same relative to thermodiffusion and Fick coefficients (tau = 1.51+/-0.02).

  8. Evolution of frozen magnetic state in co-precipitated ZnδCo1-δFe2O4 (0 ≤ δ ≤ 1) ferrite nanopowders

    NASA Astrophysics Data System (ADS)

    Kubisztal, M.; Kubisztal, J.; Karolus, M.; Prusik, K.; Haneczok, G.

    2018-05-01

    The evolution of frozen magnetic state of ZnδCo1-δFe2O4 (0 ≤ δ ≤ 1) ferrite nanoparticles was studied by applying vibrating sample magnetometer measurements in temperature range 5-350 K and magnetic fields up to 7 T. It was shown that gradual conversion from the inverse spinel (δ = 0) to the normal one (δ = 1.0) is correlated with a drop of freezing temperature Tf (corresponding to blocking of mean magnetic moment of the system) from 238 K (δ = 0) to 9 K (δ = 1.0) and with a decrease of magnetic anisotropy constant K1 from about 8 · 105 J/m3 to about 3 · 105 J/m3. The percolation threshold predicted for bulk ferrites at 1 - δ ≈ 0.33 was observed as a significant weakness of ferrimagnetic coupling. In this case magnetization curves, determined according to the zero field cooling protocol, reveal two distinct maxima indicating that the system splits into two assemblies with specific ions distribution between A and B sites.

  9. Determination of diphenylether herbicides in water samples by solid-phase microextraction coupled to liquid chromatography.

    PubMed

    Sheu, Hong-Li; Sung, Yu-Hsiang; Melwanki, Mahaveer B; Huang, Shang-Da

    2006-11-01

    Solid-phase microextraction (SPME) coupled to LC for the analysis of five diphenylether herbicides (aclonifen, bifenox, fluoroglycofen-ethyl, oxyfluorfen, and lactofen) is described. Various parameters of extraction of analytes onto the fiber (such as type of fiber, extraction time and temperature, pH, impact of salt and organic solute) and desorption from the fiber in the desorption chamber prior to separation (such as type and composition of desorption solvent, desorption mode, soaking time, and flush-out time) were studied and optimized. Four commercially available SPME fibers were studied. PDMS/divinylbenzene (PDMS/DVB, 60 microm) and carbowax/ templated resin (CW/TPR, 50 microm) fibers were selected due to better extraction efficiencies. Repeatability (RSD, < 7%), correlation coefficient (> 0.994), and detection limit (0.33-1.74 and 0.22-1.94 ng/mL, respectively, for PDMS/DVB and CW/TPR) were investigated. Relative recovery (81-104% for PDMS/DVB and 83-100% for CW/TPR fiber) values have also been calculated. The developed method was successfully applied to the analysis of river water and water collected from a vegetable garden.

  10. Role of UV photolysis in accelerating the biodegradation of 2,4,6-TCP.

    PubMed

    Wang, Wenbing; Kirumba, George; Zhang, Yongming; Wu, Yanqing; Rittmann, Bruce E

    2015-09-18

    2,4,6-TCP, a kind of chlorinated aromatic and aliphatic compound, is difficult to be biodegraded by ordinary microorganisms. UV photolysis and biodegradation of 2,4,6-TCP by Bacillus amyloliquefaciens intimate coupling is a potential means to accelerate its biotransformation. The initial steps of 2,4,6-TCP biodegradation involve mono-oxygenation reactions that have molecular oxygen and an intracellular electron carrier as cosubstrates. It was demonstrated that B. amyloliquefaciens has the 2,4,6-TCP monooxygenase gene tcpA which could encode 2,4,6-TCP monooxygenase (TCP-MO). TCP-MO would catalytically decompose 2,4,6-TCP into 2,6-DCHQ. We employed an internal loop photolytic biofilm reactor for 2,4,6-TCP degradation. Sequentially coupled photolysis and biodegradation experimental results suggested that 2,4,6-TCP removal rate in P + B (TCP(UV) + phenol) protocol was higher by 77 and 103 % when compared to B (TCP + phenol) and B (TCP-only) protocols respectively. The corresponding loss rate coefficient (k) values were 0.069, 0.039, 0.034 mg/L·min -1 respectively. This is because UV photolysis converted 2,4,6-TCP into its intermediates: 2,4-dichlorophenol (2,4-DCP), 4-monochlorophenol (4-MCP), phenol, 2,6-dichloro-p-hydroquinone (2,6-DCHQ), with all displaying less inhibition to bacterial action. In addition, phenol was the crucial UV-photolysis product from 2,4,6-TCP, its catabolic oxidation generating internal electron carriers that may accelerate the initial steps of 2,4,6-TCP biodegradation. Intimately coupled photolysis and biodegradation experimental results suggested that 2,4,6-TCP removal rate in P&B (TCP + phenol) protocol was higher by 166 and 681 % when compared to P&B (TCP-only) and P + B protocols respectively. The corresponding loss rate coefficient (k) values were 0.539, 0.203, 0.069 mg/L·min -1 respectively. It provided sufficient evidence to demonstrate that intimately coupled photolysis and biodegradation accelerated 2,4,6-TCP removal much faster than sequentially coupled photolysis and biodegradation. In addition, oxidation of phenol was the mechanism by which intimately coupled photolysis and biodegradation accelerated rapid 2,4,6-TCP removal producing electron equivalents that stimulated the initial mono-oxygenation reactions for 2,4,6-TCP biodegradation. It is important to note that 2,6-DCHQ (produced from UV-photolysis products or initial mono-oxygenation reactions) would be catalytically decomposed into 6-chlorohydroxyquinol (6-CHQ). Based on this, a tentative reaction mechanism for the photo-biodegradation 2,4,6-TCP was proposed.

  11. THE FINAL DEMISE OF EAST TENNESSEE TECHNOLOGY PARK BUILDING K-33 Health Physics Society Annual Meeting West Palm Beach, Florida June 27, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. King

    2011-06-27

    Building K-33 was constructed in 1954 as the final section of the five-stage uranium enrichment cascade at the Oak Ridge Gaseous Diffusion Plant (ORGDP). The two original building (K-25 and K-27) were used to produce weapons grade highly enriched uranium (HEU). Building K-29, K-31, and K-33 were added to produce low enriched uranium (LEU) for nuclear power plant fuel. During ORGDP operations K-33 produced a peak enrichment of 2.5%. Thousands of tons of reactor tails fed into gaseous diffusion plants in the 1950s and early 1960s introducing some fission products and transuranics. Building K-33 was a two-story, 25-meters (82-feet) tallmore » structure with approximately 30 hectare (64 acres) of floor space. The Operations (first) Floor contained offices, change houses, feed vaporization rooms, and auxiliary equipment to support enrichment operations. The Cell (second) Floor contained the enrichment process equipment and was divided into eight process units (designated K-902-1 through K-902-8). Each unit contained ten cells, and each cell contained eight process stages (diffusers) for a total of 640 enrichment stages. 1985: LEU buildings were taken off-line after the anticipated demand for uranium enrichment failed to materialize. 1987: LEU buildings were placed in permanent shutdown. Process equipment were maintained in a shutdown state. 1997: DOE signed an Action Memorandum for equipment removal and decontamination of Buildings K-29, K-31, K-33; BNFL awarded contract to reindustrialize the buildings under the Three Buildings D&D and Recycle Project. 2002: Equipment removal complete and effort shifts to vacuuming, chemical cleaning, scabbling, etc. 2005: Decontamination efforts in K-33 cease. Building left with significant {sup 99}Tc contamination on metal structures and PCB contamination in concrete. Uranium, transuranics, and fission products also present on building shell. 2009: DOE targets Building K-33 for demolition. 2010: ORAU contracted to characterize Building K-33 for final disposition at the Environmental Management Waste Management Facility (EMWMF) in Oak Ridge. ORAU collected 439 samples from May and June. LATA Sharp started removing transite panels in September. 2011: LATA Sharp began demolition in January and expects the last waste shipment to EMWMF in September. Approximately 237,000 m{sup 3} (310,000 yd{sup 3}, bulked) of waste taken to EMWMF in 23,000 truckloads expected by project completion.« less

  12. A toxin fraction (FTX) from the funnel-web spider poison inhibits dihydropyridine-insensitive Ca2+ channels coupled to catecholamine release in bovine adrenal chromaffin cells.

    PubMed

    Duarte, C B; Rosario, L M; Sena, C M; Carvalho, A P

    1993-03-01

    In adrenal chromaffin cells, depolarization-evoked Ca2+ influx and catecholamine release are partially blocked by blockers of L-type voltage-sensitive Ca2+ channels. We have now evaluated the sensitivity of the dihydropyridine-resistant components of Ca2+ influx and catecholamine release to a toxin fraction (FTX) from the funnel-web spider poison, which is known to block P-type channels in mammalian neurons. FTX (1:4,000 dilution, with respect to the original fraction) inhibited K(+)-depolarization-induced Ca2+ influx by 50%, as monitored with fura-2, whereas nitrendipine (0.1-1 microM) and FTX (3:3), a synthetic FTX analogue (1 mM), blocked the [Ca2+]i transients by 35 and 30%, respectively. When tested together, FTX and nitrendipine reduced the [Ca2+]i transients by 70%. FTX or nitrendipine reduced adrenaline and noradrenaline release by approximately 80 and 70%, respectively, but both substances together abolished the K(+)-evoked catecholamine release, as measured by HPLC. The omega-conotoxin GVIA (0.5 microM) was without effect on K(+)-stimulated 45Ca2+ uptake. Our results indicate that FTX blocks dihydropyridine- and omega-conotoxin-insensitive Ca2+ channels that, together with L-type voltage-sensitive Ca2+ channels, are coupled to catecholamine release.

  13. Atmospheric Chemistry of E- and Z-CF3CH═CHF (HFO-1234ze): OH Reaction Kinetics as a Function of Temperature and UV and IR Absorption Cross Sections.

    PubMed

    Antiñolo, María; Bravo, Iván; Jiménez, Elena; Ballesteros, Bernabé; Albaladejo, José

    2017-11-02

    We report here the rate coefficients for the OH reactions (k OH ) with E-CF 3 CH═CHF and Z-CF 3 CH═CHF, potential substitutes of HFC-134a, as a function of temperature (263-358 K) and pressure (45-300 Torr) by pulsed laser photolysis coupled to laser-induced fluorescence techniques. For the E-isomer, the existing discrepancy among previous results on the T dependence of k OH needs to be elucidated. For the Z-isomer, this work constitutes the first absolute determination of k OH . No pressure dependence of k OH was observed, while k OH exhibits a non-Arrhenius behavior: k OH (E) = [Formula: see text] and k OH (Z) = [Formula: see text] cm 3 molecule -1 s -1 , where uncertainties are 2σ. UV absorption cross sections, σ λ , are reported for the first time. From σ λ and considering a photolysis quantum yield of 1, an upper limit for the photolysis rate coefficients and lifetimes due to this process in the troposphere are estimated: 3 × 10 -8 s -1 and >1 year for the E-isomer and 2 × 10 -7 s -1 and >2 months for Z-CF 3 CH═CHF, respectively. Under these conditions, the overall estimated tropospheric lifetimes are 15 days (for the E-isomer) and 8 days (for the Z-isomer), the major degradation pathway being the OH reaction, with a contribution of the photolytic pathway of less than 3% (for E) and 13% (for Z). IR absorption cross sections were determined both experimentally (500-4000 cm -1 ) and theoretically (0-2000 cm -1 ). From the theoretical IR measurements, it is concluded that the contribution of the 0-500 cm -1 region to the total integrated cross sections is appreciable for the E-isomer (9%) but almost negligible for the Z-isomer (0.5%). Nevertheless, the impact on their radiative efficiency and global warming potential is negligible.

  14. Insilico study of the A(2A)R-D (2)R kinetics and interfacial contact surface for heteromerization.

    PubMed

    Prakash, Amresh; Luthra, Pratibha Mehta

    2012-10-01

    G-protein-coupled receptors (GPCRs) are cell surface receptors. The dynamic property of receptor-receptor interactions in GPCRs modulates the kinetics of G-protein signaling and stability. In the present work, the structural and dynamic study of A(2A)R-D(2)R interactions was carried to acquire the understanding of the A(2A)R-D(2)R receptor activation and deactivation process, facilitating the design of novel drugs and therapeutic target for Parkinson's disease. The structure-based features (Alpha, Beta, SurfAlpha, and SurfBeta; GapIndex, Leakiness and Gap Volume) and slow mode model (ENM) facilitated the prediction of kinetics (K (off), K (on), and K (d)) of A(2A)R-D(2)R interactions. The results demonstrated the correlation coefficient 0.294 for K (d) and K (on) and the correlation coefficient 0.635 for K (d) and K (off), and indicated stable interfacial contacts in the formation of heterodimer. The coulombic interaction involving the C-terminal tails of the A(2A)R and intracellular loops (ICLs) of D(2)R led to the formation of interfacial contacts between A(2A)R-D(2)R. The properties of structural dynamics, ENM and KFC server-based hot-spot analysis illustrated the stoichiometry of A(2A)R-D(2)R contact interfaces as dimer. The propensity of amino acid residues involved in A(2A)R-D(2)R interaction revealed the presence of positively (R, H and K) and negatively (E and D) charged structural motif of TMs and ICL3 of A(2A)R and D(2)R at interface of dimer contact. Essentially, in silico structural and dynamic study of A(2A)R-D(2)R interactions will provide the basic understanding of the A(2A)R-D(2)R interfacial contact surface for activation and deactivation processes, and could be used as constructive model to recognize the protein-protein interactions in receptor assimilations.

  15. Optically driven oscillations of ellipsoidal particles. Part I: experimental observations.

    PubMed

    Mihiretie, B M; Snabre, P; Loudet, J-C; Pouligny, B

    2014-12-01

    We report experimental observations of the mechanical effects of light on ellipsoidal micrometre-sized dielectric particles, in water as the continuous medium. The particles, made of polystyrene, have shapes varying between near disk-like (aspect ratio k = 0.2) to very elongated needle-like (k = 8). Rather than the very tightly focused beam geometry of optical tweezers, we use a moderately focused laser beam to manipulate particles individually by optical levitation. The geometry allows us varying the longitudinal position of the particle, and to capture images perpendicular to the beam axis. Experiments show that moderate-k particles are radially trapped with their long axis lying parallel to the beam. Conversely, elongated (k > 3) or flattened (k < 0.3) ellipsoids never come to rest, and permanently "dance" around the beam, through coupled translation-rotation motions. The oscillations are shown to occur in general, be the particle in bulk water or close to a solid boundary, and may be periodic or irregular. We provide evidence for two bifurcations between static and oscillating states, at k ≈ 0.33 and k ≈ 3 for oblate and prolate ellipsoids, respectively. Based on a recently developed 2-dimensional ray-optics simulation (Mihiretie et al., EPL 100, 48005 (2012)), we propose a simple model that allows understanding the physical origin of the oscillations.

  16. Hydrodynamics of the VanA-type VanS histidine kinase: an extended solution conformation and first evidence for interactions with vancomycin

    PubMed Central

    Phillips-Jones, Mary K.; Channell, Guy; Kelsall, Claire J.; Hughes, Charlotte S.; Ashcroft, Alison E.; Patching, Simon G.; Dinu, Vlad; Gillis, Richard B.; Adams, Gary G.; Harding, Stephen E.

    2017-01-01

    VanA-type resistance to glycopeptide antibiotics in clinical enterococci is regulated by the VanSARA two-component signal transduction system. The nature of the molecular ligand that is recognised by the VanSA sensory component has not hitherto been identified. Here we employ purified, intact and active VanSA membrane protein (henceforth referred to as VanS) in analytical ultracentrifugation experiments to study VanS oligomeric state and conformation in the absence and presence of vancomycin. A combination of sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge (SEDFIT, SEDFIT-MSTAR and MULTISIG analysis) showed that VanS in the absence of the ligand is almost entirely monomeric (molar mass M = 45.7 kDa) in dilute aqueous solution with a trace amount of high molar mass material (M ~ 200 kDa). The sedimentation coefficient s suggests the monomer adopts an extended conformation in aqueous solution with an equivalent aspect ratio of ~(12 ± 2). In the presence of vancomycin over a 33% increase in the sedimentation coefficient is observed with the appearance of additional higher s components, demonstrating an interaction, an observation consistent with our circular dichroism measurements. The two possible causes of this increase in s – either a ligand induced dimerization and/or compaction of the monomer are considered. PMID:28397853

  17. Superfluidity of 4He in dense aerogel studied using quartz tuning fork

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Okamoto, R.; Nakajima, A.; Abe, S.

    2018-03-01

    Superfluid 4He in aerogel is of interest because it has a normal component coupling to gel strand due to viscosity and a superfluid component with zero viscosity. Superfluid helium in aerogel has two sound modes, a slow critical mode and a fast one. In this study, quartz tuning fork was used in order to study acoustic properties of liquid 4He in aerogel with 90% porosity. Two pieces of aerogel were glued on both prongs of quartz tuning fork that had a resonance frequency of 33 kHz. The tuning fork was immersed in liquid 4He from 2 to 20 bar. The resonance frequency increased in the superfluid phase due to decrease in loaded mass. Temperature variation of resonance frequency was explained by that of superfluid density. Superfluid transition in aerogel was 2 mK lower than that without gel. Additional dissipation was observed in the temperature range between 1 K and transition temperature.

  18. A 15 kWe (nominal) solar thermal-electric power conversion concept definition study: Steam Rankin reciprocator system

    NASA Technical Reports Server (NTRS)

    Wingenback, W.; Carter, J., Jr.

    1979-01-01

    A conceptual design of a 3600 rpm reciprocation expander was developed for maximum thermal input power of 80 kW. The conceptual design covered two engine configurations; a single cylinder design for simple cycle operation and a two cylinder design for reheat cycle operation. The reheat expander contains a high pressure cylinder and a low pressure cylinder with steam being reheated to the initial inlet temperature after expansion in the high pressure cylinder. Power generation is accomplished with a three-phase induction motor coupled directly to the expander and connected electrically to the public utility power grid. The expander, generator, water pump and control system weigh 297 kg and are dish mounted. The steam condenser, water tank and accessory pumps are ground based. Maximum heat engine efficiency is 33 percent: maximum power conversion efficiency is 30 percent. Total cost is $3,307 or $138 per kW of maximum output power.

  19. Tet(L) and Tet(K) Tetracycline-Divalent Metal/H+ Antiporters: Characterization of Multiple Catalytic Modes and a Mutagenesis Approach to Differences in Their Efflux Substrate and Coupling Ion Preferences

    PubMed Central

    Jin, Jie; Guffanti, Arthur A.; Bechhofer, David H.; Krulwich, Terry A.

    2002-01-01

    The Tet(L) protein encoded in the Bacillus subtilis chromosome and the closely related Tet(K) protein from Staphylococcus aureus plasmids are multifunctional antiporters that have three cytoplasmic efflux substrates: a tetracycline-divalent metal (TC-Me2+) complex that bears a net single positive charge, Na+, and K+. Tet(L) and Tet(K) had been shown to couple efflux of each of these substrates to influx of H+ as the coupling ion. In this study, competitive cross-inhibition between K+ and other cytoplasmic efflux substrates was demonstrated. Tet(L) and Tet(K) had also been shown to use K+ as an alternate coupling ion in support of Na+ or K+ efflux. Here they were shown to couple TC-Me2+ efflux to K+ uptake as well, exhibiting greater use of K+ as a coupling ion as the external pH increased. The substrate and coupling ion preferences of the two Tet proteins differed, especially in the higher preference of Tet(K) than Tet(L) for K+, both as a cytoplasmic efflux substrate and as an external coupling ion. Site-directed mutagenesis was employed to test the hypothesis that some feature of the putative “antiporter motif,” motif C, of Tet proteins would be involved in these characteristic preferences. Mutation of the A157 in Tet(L) to a hydroxyamino acid resulted in a more Tet(K)-like K+ preference both as coupling ion and efflux substrate. A reciprocal S157A mutant of Tet(K) exhibited reduced K+ preference. Competitive inhibition among substrates and the parallel effects of the single mutation upon K+ preference, as both an efflux substrate and coupling ion, are compatible with a model in which a single translocation pathway through the Tet(L) and Tet(K) transporters is used both for the cytoplasmic efflux substrates and for the coupling ions, in an alternating fashion. However, the effects of the A157 and other mutations of Tet(L) indicate that even if there are a shared binding site and translocation pathway, some elements of that pathway are used by all substrates and others are important only for particular substrates. PMID:12169596

  20. Rate coefficients for the gas-phase reaction of the hydroxyl radical with CH2=CHF and CH2=CF2.

    PubMed

    Baasandorj, Munkhbayar; Knight, Gary; Papadimitriou, Vassileios C; Talukdar, Ranajit K; Ravishankara, A R; Burkholder, James B

    2010-04-08

    Rate coefficients, k, for the gas-phase reaction of the OH radical with CH(2)=CHF (k(1)) and CH(2)=CF(2) (k(2)) were measured under pseudo-first-order conditions in OH using pulsed laser photolysis to produce OH and laser-induced fluorescence (PLP-LIF) to detect it. Rate coefficients were measured over a range of temperature (220-373 K) and bath gas pressure (20-600 Torr; He, N(2)). The rate coefficients were found to be independent of pressure. The measured rate coefficient for reaction 1 at room temperature was k(1)(296 K) = (5.18 +/- 0.50) x 10(-12) cm(3) molecule(-1) s(-1), independent of pressure, and the temperature dependence is given by the Arrhenius expression k(1)(T) = (1.75 +/- 0.20) x 10(-12) exp[(316 +/- 25)/T] cm(3) molecule(-1) s(-1); the rate coefficients for reaction 2 were k(2)(296 K) = (2.79 +/- 0.25) x 10(-12) cm(3) molecule(-1) s(-1) and k(2)(T) = (1.75 +/- 0.20) x 10(-12) exp[(140 +/- 20)/T] cm(3) molecule(-1) s(-1). The quoted uncertainties are 2sigma (95% confidence level) and include estimated systematic errors. The fall-off parameters for reaction 2 of k(infinity) = 3 x 10(-12) cm(3) molecule(-1) s(-1) and k(0)(296 K) = 1.8 x 10(-28) cm(6) molecule(-2) s(-1) with F(c) = 0.6 reproduce the room temperature data obtained in this study combined with the low pressure rate coefficient data from Howard (J. Chem. Phys. 1976, 65, 4771). OH radical formation was observed for reactions 1 and 2 in the presence of O(2), and the mechanism was investigated using (18)OH and OD rate coefficient measurements with CH(2)=CHF and CH(2)=CF(2) over a range of temperature (260-373 K) and pressure (20-100 Torr, He). Quantum chemical calculations using density functional theory (DFT) were used to determine the geometries and energies of the reactants and adducts formed in reactions 1 and 2 and the peroxy radicals formed following the addition of O(2). The atmospheric lifetimes of CH(2)=CHF and CH(2)=CF(2) due to loss by reaction with OH are approximately 2 and 4 days, respectively. Infrared absorption spectra of CH(2)=CHF and CH(2)=CF(2) were measured, and global warming potentials (GWP) values of 0.7 for CH(2)=CHF and 0.9 for CH(2)=CF(2) were obtained for the 100 year time horizon.

Top