Science.gov

Sample records for coupling material usage

  1. Operant Techniques and Material Usage

    ERIC Educational Resources Information Center

    Toomey, George

    1969-01-01

    Certain materials - crayons, paints, clay - stimulate different levels of behavior. Whenever materials are relevant to the attainment of certain behavioral objectives they seem to serve as the center of the activity in terms of establishing and maintaining the desired behaviors. (CK)

  2. 21 CFR 211.122 - Materials examination and usage criteria.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Materials examination and usage criteria. 211.122 Section 211.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Packaging and...

  3. 21 CFR 211.122 - Materials examination and usage criteria.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Materials examination and usage criteria. 211.122 Section 211.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Packaging and...

  4. 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources

    SciTech Connect

    Sturgeon, Richard W.

    2012-06-27

    This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are

  5. Lunar Regolith Simulant Materials: Recommendations for Standardization, Production, and Usage

    NASA Technical Reports Server (NTRS)

    Sibille, L.; Carpenter, P.; Schlagheck, R.; French, R. A.

    2006-01-01

    Experience gained during the Apollo program demonstrated the need for extensive testing of surface systems in relevant environments, including regolith materials similar to those encountered on the lunar surface. As NASA embarks on a return to the Moon, it is clear that the current lunar sample inventory is not only insufficient to support lunar surface technology and system development, but its scientific value is too great to be consumed by destructive studies. Every effort must be made to utilize standard simulant materials, which will allow developers to reduce the cost, development, and operational risks to surface systems. The Lunar Regolith Simulant Materials Workshop held in Huntsville, AL, on January 24 26, 2005, identified the need for widely accepted standard reference lunar simulant materials to perform research and development of technologies required for lunar operations. The workshop also established a need for a common, traceable, and repeatable process regarding the standardization, characterization, and distribution of lunar simulants. This document presents recommendations for the standardization, production and usage of lunar regolith simulant materials.

  6. Coupling between protein level selection and codon usage optimization in the evolution of bacteria and archaea.

    PubMed

    Ran, Wenqi; Kristensen, David M; Koonin, Eugene V

    2014-03-25

    The relationship between the selection affecting codon usage and selection on protein sequences of orthologous genes in diverse groups of bacteria and archaea was examined by using the Alignable Tight Genome Clusters database of prokaryote genomes. The codon usage bias is generally low, with 57.5% of the gene-specific optimal codon frequencies (Fopt) being below 0.55. This apparent weak selection on codon usage contrasts with the strong purifying selection on amino acid sequences, with 65.8% of the gene-specific dN/dS ratios being below 0.1. For most of the genomes compared, a limited but statistically significant negative correlation between Fopt and dN/dS was observed, which is indicative of a link between selection on protein sequence and selection on codon usage. The strength of the coupling between the protein level selection and codon usage bias showed a strong positive correlation with the genomic GC content. Combined with previous observations on the selection for GC-rich codons in bacteria and archaea with GC-rich genomes, these findings suggest that selection for translational fine-tuning could be an important factor in microbial evolution that drives the evolution of genome GC content away from mutational equilibrium. This type of selection is particularly pronounced in slowly evolving, "high-status" genes. A significantly stronger link between the two aspects of selection is observed in free-living bacteria than in parasitic bacteria and in genes encoding metabolic enzymes and transporters than in informational genes. These differences might reflect the special importance of translational fine-tuning for the adaptability of gene expression to environmental changes. The results of this work establish the coupling between protein level selection and selection for translational optimization as a distinct and potentially important factor in microbial evolution. IMPORTANCE Selection affects the evolution of microbial genomes at many levels, including both

  7. The Usage of Recycle Materials for Science Practicum: Is There Any Effect on Science Process Skills?

    ERIC Educational Resources Information Center

    Prajoko, Setiyo; Amin, Mohamad; Rohman, Fatchur; Gipayana, Muhana

    2017-01-01

    This study aimed at determining the effect of recycle materials usage for science practicum on students' basic science process skills of the Open University, Surakarta. Recycle materials are the term used for the obtained materials and equipment from the students' environment by taking back the garbage or secondhand objects into goods or new…

  8. Usage of Raman DTS for wooden material analysis

    NASA Astrophysics Data System (ADS)

    Vasinek, Vladimir; Latal, Jan; Koudelka, Petr; Papes, Martin; Liner, Andrej; Rasnerova, Vladimira

    2013-05-01

    The contribution deals with a usage of Raman DTS for thermal transmittance monitoring and moisture monitoring in wooden buildings and constructions. Temperature measurement and thermal transmittance is notable for an analysis of moisture distribution inside of wooden girders that are the basic construction parts of wooden buildings during their seasoning and sanitation. In this contribution the results from measurements within real wooden objects will be presented and these results will be compared with laboratory experiments under controlled conditions. For wood sanitation two types of heating are used - flow of hot air and microwave heating. A multimode fiber 62,5/125 in primary coating is applied for measurements, this fiber is putted on the inside and outside surface of wooden construction. Here the fiber meanders are created inside of wooden girders with spacing of 1 cm. Optical fibers are laid in two mutual perpendicular cuts with usage of temperature resolution better than 0,05°C. The measured length of wooden girder is 1,4 m for unambiguously temperature specification inside the girder and its thermal transmittance. The temperature maps of various types of wooden girders are the results of analysis. Different multimode fibers with particular fiber coatings are included in the analysis. These measurements have been provided with Sentinel DTS and they are parts of a wide set DTS application for building industry. We are trying to specify the influence of fiber bending on temperature sensitivity, how to join measuring fiber to transporting fiber, critical length of both fibers and many others. Raman DTS can replace large number of thermometers and provide continuous information about temperature distribution.

  9. Toward sustainable material usage: evaluating the importance of market motivated agency in modeling material flows.

    PubMed

    Gaustad, Gabrielle; Olivetti, Elsa; Kirchain, Randolph

    2011-05-01

    Increasing recycling will be a key strategy for moving toward sustainable materials usage. There are many barriers to increasing recycling, including quality issues in the scrap stream. Repeated recycling can compound this problem through the accumulation of tramp elements over time. This paper explores the importance of capturing recycler decision-making in accurately modeling accumulation and the value of technologies intended to mitigate it. A method was developed combining dynamic material flow analysis with allocation of those materials into production portfolios using blending models. Using this methodology, three scrap allocation methods were explored in the context of a case study of aluminum use: scrap pooling, pseudoclosed loop, and market-based. Results from this case analysis suggest that market-driven decisions and upgrading technologies can partially mitigate the negative impact of accumulation on scrap utilization, thereby increasing scrap use and reducing greenhouse gas emissions. A market-based allocation method for modeling material flows suggests a higher value for upgrading strategies compared to a pseudoclosed loop or pooling allocation method for the scenarios explored.

  10. Usage and perceptions of phosphodiesterase type 5 inhibitors among the male partners of infertile couples.

    PubMed

    Song, Seung-Hun; Kim, Dong Suk; Shim, Sung Han; Lim, Jung Jin; Yang, Seung Choul

    2016-03-01

    We aimed to investigate the prevalence of erectile dysfunction (ED) and the usage of phosphodiesterase type 5 (PDE5) inhibitors for ED treatment in infertile couples. A total of 260 male partners in couples reporting infertility lasting at least 1 year were included in this study. In addition to an evaluation of infertility, all participants completed the International Index of Erectile Function (IIEF)-5 questionnaire to evaluate their sexual function. The participants were asked about their use of PDE5 inhibitors while trying to conceive during their partner's ovulatory period and about their concerns regarding the risks of PDE5 inhibitor use to any eventual pregnancy and/or the fetus. Based on the IIEF-5 questionnaire, 41.5% of the participants (108/260) were classified as having mild ED (an IIEF-5 score of 17-21), while 10.4% of the participants (27/260) had greater than mild ED (an IIEF-5 score of 16 or less). The majority (74.2%, 193/260) of male partners of infertile couples had a negative perception of the safety of using a PDE5 inhibitor while trying to conceive. Only 11.1% of men (15/135) with ED in infertile couples had used a PDE5 inhibitor when attempting conception. ED was found to be common in the male partners of infertile couples, but the use of PDE5 inhibitors among these men was found to be very low. The majority of male partners were concerned about the risks of using PDE5 inhibitors when attempting to conceive. Appropriate counseling about this topic and treatment when necessary would likely be beneficial to infertile couples in which the male partner has ED.

  11. Usage of humic materials for formulation of stable microbial inoculants

    NASA Astrophysics Data System (ADS)

    Kydralieva, K. A.; Khudaibergenova, B. M.; Elchin, A. A.; Gorbunova, N. V.; Muratov, V. S.; Jorobekova, Sh. J.

    2009-04-01

    of the product. It is known that humic substances can increase of live organism resistance to stress loads, in particular to chemical stress, low and high temperature. Spray- and fluidized-bed drying and addition of humate-based drying protectants were evaluated for the development of dry formulations of biocontrol and plant growth promoting rhizobacteria. The drying protectants - humic acids and sodium humate gave the highest initial survival rates and the most stable formulations, without significant losses of viability after storage for 1 month at 30oC. As a result, the specific plant growth promoting effect is retained. Thus, humic materials have an unfulfilled potential for biotechnology industries based on such applications. Acknowledgement. This research was supported by the grant of ISTC KR-993.2.

  12. The usage of plastic waste as a secondary raw material for the modification of sandcrete properties

    NASA Astrophysics Data System (ADS)

    Klovas, A.; Daukšys, M.; Venčkauskas, L.

    2015-03-01

    Recently the usage of various industry wastes as a secondary raw material tends to increase its relevancy. One of possible options to decrease the amount of waste is to use them to produce new products or materials. The operation of various secondary raw materials (tire rubber, tire cord, ground glass shards, ground ceramic waste products) during the concrete mixture preparation allows to change its as well as cured concrete properties. Recently polymer and steel fibers are used for concrete reinforcement. This study analyses the usage possibility of plastic shavings for the reinforcement of concrete. The technological properties of cement slurry (sand, fraction of 0/4 and 10 kg/m3, 15 kg/m3 and 20 kg/m3 of plastic shavings) as well as mechanical, physical and porosity properties of cured sandcrete were established during the experimental research. The geometric characteristics of mill-shredded plastic shavings were established. Experimental results revealed that the usage of plastic shavings decreased slurry slump and density. The minor decrease of cured sandcrete density (~2200 kg/m3) was noticed with the addition of plastic shavings within the limits of 10 - 20 kg/m3. The flexural strength of cured sandcrete increased from 36 % to 57 % compared with reference specimen (without plastic shavings). The dependence of flexural force and deflection was obtained. Study revealed that the residual strength after crack opening is bigger with the usage of plastic shavings as a secondary raw material compared with reference specimen.

  13. Investigation of Teacher Candidates' Opinions about Instructional Technologies and Material Usage

    ERIC Educational Resources Information Center

    Orhan-Karsak, Hanife Gülhan

    2017-01-01

    The purpose of this study is to determine the awareness of teacher candidates about instructional technologies and materials and the ways of giving place in instruction by integrating them with different activities, to reveal opinions about their usage. Seventeen female and eight male, in total twenty five participants are sampling. The ages of…

  14. Pre-Service Science and Technology Teachers' Efficacy Beliefs about Information and Communication Technologies (ICT) Usage and Material Design

    ERIC Educational Resources Information Center

    Bursal, Murat; Yigit, Nevzat

    2012-01-01

    In this study, a scale entitled "Information and Communication Technologies Usage and Material Design Efficacy [ICT_MDE]" is developed to investigate pre-service science and technology teachers' efficacy beliefs regarding ICT usage and Material Design and the factors impacting these beliefs. By using the validity and reliability data…

  15. Screening of redox couples and electrode materials

    NASA Technical Reports Server (NTRS)

    Giner, J.; Swette, L.; Cahill, K.

    1976-01-01

    Electrochemical parameters of selected redox couples that might be potentially promising for application in bulk energy storage systems were investigated. This was carried out in two phases: a broad investigation of the basic characteristics and behavior of various redox couples, followed by a more limited investigation of their electrochemical performance in a redox flow reactor configuration. In the first phase of the program, eight redox couples were evaluated under a variety of conditions in terms of their exchange current densities as measured by the rotating disk electrode procedure. The second phase of the program involved the testing of four couples in a redox reactor under flow conditions with a varity of electrode materials and structures.

  16. Mechanical properties of aircraft materials subjected to long periods of service usage

    SciTech Connect

    Scheuring, J.N.; Grandt, A.F. Jr.

    1997-10-01

    This paper evaluates changes in the behavior of aircraft materials which result from aging and/or corrosion that occurs during long periods of service usage. The primary objective was to determine whether damage tolerant analyses for older aircraft should employ updated properties that more accurately represent the current state of the material, or if the virgin material properties continue to properly characterize the aged/corroded alloy. Specifically, tensile stress-strain curves, cyclic stress life (SN) tests, and fatigue crack growth tests were used to characterize the aged aircraft materials. These properties were compared with handbook properties for virgin material of the same pedigree. The aluminum alloys tested were obtained from fuselage and wing panels of retired KC-135 aircraft. Computer controlled tests were conducted using specimens machined from the retired aircraft components. Different configurations were used to observe the effects of aging and/or corrosion on material behavior. In the crack growth specimens, various levels of corrosion were observed, thus the crack growth rates could be categorized as a function of the level of corrosion present. The SN and da/dN-{Delta}K curves for the aged only materials were compared with the fatigue properties of virgin material of the same alloy. Similar comparisons were performed for the tensile stress-strain properties.

  17. A Cost Analysis and Usage Study of the Reserved Materials Collection of the University of Arizona Main Library.

    ERIC Educational Resources Information Center

    Jensen, Ford

    A study of the reserve materials collection at the Main Library from a usage and cost analysis perspective revealed that 93.7% of all items that circulated could have been circulated an equal number of times through the standard circulation procedure which allows material to be used for seven days. The remaining 6.3% of the material which…

  18. Coupled improvement between thermoelectric and piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Montgomery, David; Hewitt, Corey; Dun, Chaochao; Carroll, David

    A novel coupling effect in a thermoelectric and piezoelectric meta-structure is discussed. Thermo-piezoelectric generators (TPEGs) exhibit a synergistic effect that amplifies output voltage, and has been observed to increase piezoelectric voltages over 500% of initial values a time dependent thermoelectric/pyroelectric effect. The resulting improvement in voltage has been observed in carbon nanotubes as well as inorganics such as two-dimensional Bismuth Selenide platelets and Telluride nanorods thin-film thermoelectrics. TPEGs are built by integrating insulating layers of polyvinylidene fluoride (PVDF) piezoelectric films between flexible thin film p-type and n-type thermoelectrics. The physical phenomena arising in the interaction between thermoelectric and piezoelectrics is discussed and a model is presented to quantify the expected coupling voltage as a function of stress, thermal gradient, and different thermoelectric materials. TPEG are ideal to capture waste heat and vibrational energy while creating larger voltages and minimizing space when compared with similar thermoelectric or piezoelectric generators.

  19. Material Usage in High Pressure Oxygen Systems for the International Space Station

    NASA Technical Reports Server (NTRS)

    Kravchenko, Michael; Sievers, D. Elliott

    2014-01-01

    The Nitrogen/Oxygen Recharge System (NORS) for the International Space Station (ISS) Program was required as part of the Space Shuttle retirement efforts to sustain the ISS life support systems. The system is designed around a 7000 psia Oxygen or Nitrogen Recharge Tank Assembly which is able to be utilized both internally and externally to the ISS. Material selection and usage were critical to ensure oxygen compatibility for the design, while taking into consideration toxicity, weldability, brazability and general fabrication and assembly techniques. The system uses unique hardware items such a composite overwrap pressure vessel (COPV), high pressure mechanical gauges, compact regulators and valves, quick disconnects, metal tubing and flexhoses. Numerous challenges and anomalies were encountered due to the exotic nature of this project which will be discussed in detail. The knowledge gained from these anomalies and failure resolutions can be applied to more than space applications, but can also be applicable to industry pressurized systems.

  20. An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material.

    PubMed

    Gürü, Metin; Çubuk, M Kürşat; Arslan, Deniz; Farzanian, S Ali; Bilici, İbrahim

    2014-08-30

    This study investigates an application area for Polyethylene Terephthalate (PET) bottle waste which has become an environmental problem in recent decades as being a considerable part of the total plastic waste bulk. Two novel additive materials, namely Thin Liquid Polyol PET (TLPP) and Viscous Polyol PET (VPP), were chemically derived from waste PET bottles and used to modify the base asphalt separately for this aim. The effects of TLPP and VPP on the asphalt and hot mix asphalt (HMA) mixture properties were detected through conventional tests (Penetration, Softening Point, Ductility, Marshall Stability, Nicholson Stripping) and Superpave methods (Rotational Viscosity, Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR)). Also, chemical structures were described by Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared (FTIR) techniques. Since TLPP and VPP were determined to improve the low temperature performance and fatigue resistance of the asphalt as well as the Marshall Stability and stripping resistance of the HMA mixtures based on the results of the applied tests, the usage of PET waste as an asphalt roadway pavement material offers an alternative and a beneficial way of disposal of this ecologically hazardous material. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Usage of Nest Materials by House Sparrow (Passer domesticus) Along an Urban to Rural Gradient in Coimbatore, India

    PubMed Central

    Radhamany, Dhanya; Das, Karumampoyil Sakthidas Anoop; Azeez, Parappurath Abdul; Wen, Longying; Sreekala, Leelambika Krishnan

    2016-01-01

    The house sparrow (Passer domesticus) is a widely distributed bird species found throughout the world. Being a species which has close association with humans, they chiefly nest on man-made structures. Here we describe the materials used by the house sparrow for making nests along an urban to rural gradient. For the current study, we selected the Coimbatore to Anaikatty road (State Highway-164), a 27 km inter-state highway, which traverses along an urban core to rural outstretch of Coimbatore. Of the 30 nests observed, 15 nests were from the rural, 8 were from the suburban, and 7 were from the urban areas. The nests had two distinct layers, specifically the structural layer and the inner lining. In the current study, we identified 11 plant species, 2 types of animal matter, and 6 types of anthropogenic matter, including plastic pieces and fine rope. The amount of anthropogenic materials in the nest formation varied along the gradients. The usage of anthropogenic materials was high in urban areas (p<0.05) whereas it did not differ at the sub-urban regions (p>0.05). A gradual decrease in the usage of plant matter towards the urban area was noticed (p<0.05). This study explicitly documents the links between nest material usage along an urban to rural gradient, in a human associated bird. PMID:27688856

  2. Usage of Nest Materials by House Sparrow (Passer domesticus) Along an Urban to Rural Gradient in Coimbatore, India.

    PubMed

    Radhamany, Dhanya; Das, Karumampoyil Sakthidas Anoop; Azeez, Parappurath Abdul; Wen, Longying; Sreekala, Leelambika Krishnan

    2016-08-01

    The house sparrow (Passer domesticus) is a widely distributed bird species found throughout the world. Being a species which has close association with humans, they chiefly nest on man-made structures. Here we describe the materials used by the house sparrow for making nests along an urban to rural gradient. For the current study, we selected the Coimbatore to Anaikatty road (State Highway-164), a 27 km inter-state highway, which traverses along an urban core to rural outstretch of Coimbatore. Of the 30 nests observed, 15 nests were from the rural, 8 were from the suburban, and 7 were from the urban areas. The nests had two distinct layers, specifically the structural layer and the inner lining. In the current study, we identified 11 plant species, 2 types of animal matter, and 6 types of anthropogenic matter, including plastic pieces and fine rope. The amount of anthropogenic materials in the nest formation varied along the gradients. The usage of anthropogenic materials was high in urban areas (p<0.05) whereas it did not differ at the sub-urban regions (p>0.05). A gradual decrease in the usage of plant matter towards the urban area was noticed (p<0.05). This study explicitly documents the links between nest material usage along an urban to rural gradient, in a human associated bird.

  3. Identity Confusion and Materialism Mediate the Relationship Between Excessive Social Network Site Usage and Online Compulsive Buying.

    PubMed

    Sharif, Saeed Pahlevan; Khanekharab, Jasmine

    2017-08-01

    This study investigates the mediating role of identity confusion and materialism in the relationship between social networking site (SNS) excessive usage and online compulsive buying among young adults. A total of 501 SNS users aged 17 to 23 years (M = 19.68, SD = 1.65) completed an online survey questionnaire. A serial multiple mediator model was developed and hypotheses were tested using structural equation modeling. The results showed that excessive young adult SNS users had a higher tendency toward compulsive buying online. This was partly because they experienced higher identity confusion and developed higher levels of materialism. Targeted psychological interventions seeking to gradually increase identity clarity to buffer the detrimental effects of SNS usage and identity confusion in young adults are suggested.

  4. On the usage of agricultural raw materials--energy or food? An assessment from an economics perspective.

    PubMed

    Lenk, Fabian; Bröring, Stefanie; Herzog, Philipp; Leker, Jens

    2007-12-01

    Bioenergies are promoted across the globe as the answer for global warming and the chance to reduce dependency from fossil energy sources. Despite the fact that renewable energy sources offer the opportunity to reduce CO2 emission and present a chance to increase agricultural incomes, they also come along with some drawbacks that have been mostly neglected in the current discussion. This paper seeks to build a basis for discussing the impacts of the growing subsidization of bioenergy and the resulting usage competition of agricultural raw materials between foods and energy. To assess the usage competition and the subsidization of bioenergy, this article employs a welfare economics perspective associated with an emphasize on the construct of externalities. This will help to foster the discussion on the further subsidization of bioenergy, where funding for R&D on new ways of using non-food raw materials ought to play a significant role.

  5. Uncovering Meaningful Correlation between Student Academic Performance and Library Material Usage

    ERIC Educational Resources Information Center

    Wong, Shun Han Rebekah; Webb, T. D.

    2011-01-01

    Academic libraries must demonstrate empirically that library usage does contribute positively to student academic performance and, thereby, to the university's effectiveness. While customary academic library assessment practices may not be sufficient for this purpose, the Hong Kong Baptist University (HKBU) Library undertook an experimental…

  6. Uncovering Meaningful Correlation between Student Academic Performance and Library Material Usage

    ERIC Educational Resources Information Center

    Wong, Shun Han Rebekah; Webb, T. D.

    2011-01-01

    Academic libraries must demonstrate empirically that library usage does contribute positively to student academic performance and, thereby, to the university's effectiveness. While customary academic library assessment practices may not be sufficient for this purpose, the Hong Kong Baptist University (HKBU) Library undertook an experimental…

  7. Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation

    NASA Technical Reports Server (NTRS)

    Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.

  8. Computational methods for coupling microstructural and micromechanical materials response simulations

    SciTech Connect

    HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.; FANG,HUEI ELIOT; RINTOUL,MARK DANIEL; VEDULA,VENKATA R.; GLASS,S. JILL; KNOROVSKY,GERALD A.; NEILSEN,MICHAEL K.; WELLMAN,GERALD W.; SULSKY,DEBORAH; SHEN,YU-LIN; SCHREYER,H. BUCK

    2000-04-01

    Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.

  9. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1990-01-01

    A method for making fine power using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The starting material used in the method is in solid form.

  10. Materials science. Materials that couple sensing, actuation, computation, and communication.

    PubMed

    McEvoy, M A; Correll, N

    2015-03-20

    Tightly integrating sensing, actuation, and computation into composites could enable a new generation of truly smart material systems that can change their appearance and shape autonomously. Applications for such materials include airfoils that change their aerodynamic profile, vehicles with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics with a realistic sense of touch. Although integrating sensors and actuators into composites is becoming increasingly common, the opportunities afforded by embedded computation have only been marginally explored. Here, the key challenge is the gap between the continuous physics of materials and the discrete mathematics of computation. Bridging this gap requires a fundamental understanding of the constituents of such robotic materials and the distributed algorithms and controls that make these structures smart.

  11. Transfer having a coupling coefficient higher than its active material

    NASA Technical Reports Server (NTRS)

    Lesieutre, George A. (Inventor); Davis, Christopher L. (Inventor)

    2001-01-01

    A coupling coefficient is a measure of the effectiveness with which a shape-changing material (or a device employing such a material) converts the energy in an imposed signal to useful mechanical energy. Device coupling coefficients are properties of the device and, although related to the material coupling coefficients, are generally different from them. This invention describes a class of devices wherein the apparent coupling coefficient can, in principle, approach 1.0, corresponding to perfect electromechanical energy conversion. The key feature of this class of devices is the use of destabilizing mechanical pre-loads to counter inherent stiffness. The approach is illustrated for piezoelectric and thermoelectrically actuated devices. The invention provides a way to simultaneously increase both displacement and force, distinguishing it from alternatives such as motion amplification, and allows transducer designers to achieve substantial performance gains for actuator and sensor devices.

  12. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1989-01-01

    A method for coating surfaces or implanting ions in an object using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The coating material or implantation material is intitially in solid form.

  13. The Opinions of Primary School Teachers' Candidates towards Material Preparation and Usage

    ERIC Educational Resources Information Center

    Genc, Zeynep

    2016-01-01

    Instruction materials help students to acquire more memorable information. Instruction materials have an important effect on providing more permanent and simple way of learning in every step of education. Instruction materials are the most frequently used by primary school teachers. Primary school teachers should support their lectures with…

  14. Review of air-coupled ultrasonic materials characterization.

    PubMed

    Chimenti, D E

    2014-09-01

    This article presents a review of air-coupled ultrasonics employed in the characterization or nondestructive inspection of industrial materials. Developments in air-coupled transduction and electronics are briefly treated, although the emphasis here is on methods of characterization and inspection, and in overcoming limitations inherent in the use of such a tenuous sound coupling medium as air. The role of Lamb waves in plate characterization is covered, including the use of air-coupled acoustic beams to measure the elastic and/or viscoelastic properties of a material. Air-coupled acoustic detection, when other methods are employed to generate high-amplitude sound beams is also reviewed. Applications to civil engineering, acoustic tomography, and the characterization of both paper and wood are dealt with here. A brief summary of developments in air-coupled acoustic arrays and the application of air-coupled methods in nonlinear ultrasonics complete the review. In particular, the work of Professor Bernard Hosten and his collaborators at Bordeaux is carefully examined. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Usage Bibliometrics

    NASA Astrophysics Data System (ADS)

    Kurtz, Michael J.; Bollen, Johan

    2010-01-01

    Scholarly usage data provides unique opportunities to address the known shortcomings of citation analysis. However, the collection, processing and analysis of usage data remains an area of active research. This article provides a review of the state-of-the-art in usage-based informetric, i.e. the use of usage data to study the scholarly process.

  16. Modulation power of porous materials and usage as ripple filter in particle therapy

    NASA Astrophysics Data System (ADS)

    Printz Ringbæk, Toke; Simeonov, Yuri; Witt, Matthias; Engenhart-Cabillic, Rita; Kraft, Gerhard; Zink, Klemens; Weber, Uli

    2017-04-01

    Porous materials with microscopic structures like foam, sponges, lung tissues and lung substitute materials have particular characteristics, which differ from those of solid materials. Ion beams passing through porous materials show much stronger energy straggling than expected for non-porous solid materials of the same thickness. This effect depends on the microscopic fine structure, the density and the thickness of the porous material. The beam-modulating effect from a porous plate enlarges the Bragg peak, yielding similar benefits in irradiation time reduction as a ripple filter. A porous plate can additionally function as a range shifter, which since a higher energy can be selected for the same penetration depth in the body reduces the scattering at the beam line and therefore improves the lateral fall-off. Bragg curve measurements of ion beams passing through different porous materials have been performed in order to determine the beam modulation effect of each. A mathematical model describing the correlation between the mean material density, the porous pore structure size and the strength of the modulation has been developed and a new material parameter called ‘modulation power’ is defined as the square of the Gaussian sigma divided by the mean water-equivalent thickness of the porous absorber. Monte Carlo simulations have been performed in order to validate the model and to investigate the Bragg peak enlargement, the scattering effects of porosity and the lateral beam width at the end of the beam range. The porosity is found to only influence the lateral scattering in a negligible way. As an example of a practical application, it is found that a 20 mm and 50 mm plate of Gammex LN300 performs similar to a 3 mm and 6 mm ripple filter, respectively, and at the same time can improve the sharpness of the lateral beam due to its multifunctionality as a ripple filter and a range shifter.

  17. Modulation power of porous materials and usage as ripple filter in particle therapy.

    PubMed

    Printz Ringbæk, Toke; Simeonov, Yuri; Witt, Matthias; Engenhart-Cabillic, Rita; Kraft, Gerhard; Zink, Klemens; Weber, Uli

    2017-04-07

    Porous materials with microscopic structures like foam, sponges, lung tissues and lung substitute materials have particular characteristics, which differ from those of solid materials. Ion beams passing through porous materials show much stronger energy straggling than expected for non-porous solid materials of the same thickness. This effect depends on the microscopic fine structure, the density and the thickness of the porous material. The beam-modulating effect from a porous plate enlarges the Bragg peak, yielding similar benefits in irradiation time reduction as a ripple filter. A porous plate can additionally function as a range shifter, which since a higher energy can be selected for the same penetration depth in the body reduces the scattering at the beam line and therefore improves the lateral fall-off. Bragg curve measurements of ion beams passing through different porous materials have been performed in order to determine the beam modulation effect of each. A mathematical model describing the correlation between the mean material density, the porous pore structure size and the strength of the modulation has been developed and a new material parameter called 'modulation power' is defined as the square of the Gaussian sigma divided by the mean water-equivalent thickness of the porous absorber. Monte Carlo simulations have been performed in order to validate the model and to investigate the Bragg peak enlargement, the scattering effects of porosity and the lateral beam width at the end of the beam range. The porosity is found to only influence the lateral scattering in a negligible way. As an example of a practical application, it is found that a 20 mm and 50 mm plate of Gammex LN300 performs similar to a 3 mm and 6 mm ripple filter, respectively, and at the same time can improve the sharpness of the lateral beam due to its multifunctionality as a ripple filter and a range shifter.

  18. Advanced thermoplastic composites: An attractive new material for usage in highly loaded vehicle components

    SciTech Connect

    Mehn, R.; Seidl, F.; Peis, R.; Heinzmann, D.; Frei, P.

    1995-10-01

    Beside the lightweight potential and further well known advantages of advanced composite materials, continuous fiber reinforced thermoplastics employed in vehicle structural parts especially offer short manufacturing cycle times and an additional economically viable manufacturing process. Presenting a frame structure concept for two highly loaded vehicle parts, a safety seat and a side door, numerous features concerning the choice of suitable composite materials, design aspects, investigations to develop a thermoforming technique, mature for a series production of vehicle parts, are discussed.

  19. Project: Strategies for Sex Fairness. Instructional Materials--Usage Despite Bias.

    ERIC Educational Resources Information Center

    Mook, Corena; Legg, Marilyn

    One of a series of instructional packets to aid schools in reducing sex stereotypes, this inservice guide for use with school personnel is designed to increase their awareness of ways textbooks and instructional materials contribute toward limiting student options. Included are avenues personnel can take to counter stereotypical messages relayed…

  20. Air-coupled ultrasound inspection of various materials.

    PubMed

    Stoessel, R; Krohn, N; Pfleiderer, K; Busse, G

    2002-05-01

    Conventional ultrasound inspection, a standard non-destructive testing method, uses a coupling medium (e.g. water) because of impedance mismatch. This liquid contact is a drawback because it prevents inspection of many materials. There is a need, then, for air-coupled ultrasound testing, which is now feasible because of low impedance focused narrow band transducers and sensitive electronics, both of which improve the signal-to-noise ratio. We present results obtained on fibre-reinforced plastics, water sensitive materials (e.g. reinforced ceramics), and "shape adaptive" structures to reveal delaminations, impacts, and growth of internal defects. Actuators embedded in "adaptive" structures are used as transmitters while the receiver records the signals. Thus it is possible to image defect areas and non-linear behaviour of potential defects.

  1. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, D.E.; Bieniewski, T.M.

    1987-04-13

    A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

  2. Coupling of exothermic and endothermic hydrogen storage materials

    SciTech Connect

    Brooks, Kriston P.; Bowden, Mark E.; Karkamkar, Abhijeet J.; Houghton, Adrian Y.; Autrey, S. Thomas

    2016-08-01

    Chemical hydrogen storage (CHS) materials are a high-storage-density alternative to the gaseous compressed hydrogen currently used to provide hydrogen for fuel cell vehicles. One of the challenges of CHS materials is addressing the thermodynamic and kinetic barriers required to break the chemical bonds and release the hydrogen. Coupling CHS reactions that are endothermic and exothermic during the dehydrogenation can improve the system on-board energy efficiency and thermal control, making such materials viable. Acceptable coupling between reactions requires both thermodynamic and kinetics considerations. Models were developed to predict the reaction enthalpy and rate required to achieve high conversions for both reactions based on experimental measurements. These modeling results show that the efficiency of coupling of an exothermic and endothermic reaction is more sensitive the magnitude of the ratio of the exothermic and endothermic enthalpies than the ratio of the rates of the two steps. The modeling shows further that a slower rate of the endothermic step is desirable to permit sufficient heating of the reactor by the exothermic step. We look at two examples of a sequential and parallel reaction scheme and provide some of the first insight into the required temperature range to maximize the H2 release from 1,2-BN cyclohexane and indoline.

  3. Coupling of exothermic and endothermic hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Brooks, Kriston P.; Bowden, Mark E.; Karkamkar, Abhijeet J.; Houghton, Adrian Y.; Autrey, S. Thomas

    2016-08-01

    Chemical hydrogen storage (CHS) materials are a high-storage-density alternative to the gaseous compressed hydrogen currently used to provide hydrogen for fuel cell vehicles. One of the challenges of CHS materials is addressing the energy barriers required to break the chemical bonds and release the hydrogen. Coupling CHS reactions that are endothermic and exothermic during dehydrogenation can improve onboard energy efficiency and thermal control for the system, making such materials viable. Acceptable coupling between reactions requires both thermodynamic and kinetic considerations. In this work, models were developed to predict the reaction enthalpy and rate required to achieve high conversions for both reactions based on experimental measurements. Modeling results show that the coupling efficiency of exothermic and endothermic reactions is more sensitive to the ratio of the exothermic and endothermic enthalpies than to the ratio of the rates of the two steps. Modeling results also show that a slower endothermic step rate is desirable to permit sufficient heating of the reactor by the exothermic step. We look at two examples of a sequential and parallel reaction scheme and provide some of the first published insight into the required temperature range to maximize the hydrogen release from 1,2-BN cyclohexane and indoline.

  4. Numerical and Experimental Analysis on Inorganic Phase Change Material Usage in Construction

    NASA Astrophysics Data System (ADS)

    Muthuvel, S.; Saravanasankar, S.; Sudhakarapandian, R.; Muthukannan, M.

    2014-12-01

    This work demonstrates the significance of Phase Change Material (PCM) in the construction of working sheds and product storage magazines in fireworks industries to maintain less temperature variation by passive cooling. The inorganic PCM, namely Calcium Chloride Hexahydrate (CCH) is selected in this study. First, the performance of two models with inbuilt CCH was analysed, using computational fluid dynamics. A significant change in the variation of inner wall temperature was observed, particularly during the working hours. This is mainly due to passive cooling, where the heat transfer from the surroundings to the room is partially used for the phase change from solid to liquid. The experiment was carried out by constructing two models, one with PCM packed in hollow brick walls and roof, and the other one as a conventional construction. The experimental results show that the temperature of the room got significantly reduced up to 7 °C. The experimental analysis results had good agreement with the numerical analysis results, and this reveals the advantage of the PCM in the fireworks industry construction.

  5. Water Based Inkjet Material Deposition Of Donor-Acceptor Nanoparticles For Usage In Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Penmetcha, Anirudh Raju

    Significant efficiency increases are being made for bulk heterojunction organic photovoltaic prototype devices with world records at 11%. However the chlorinated solvents most frequently used in prototype manufacture would cause local health and safety concerns or large scale environmental pollution upon expansion of these techniques for commercialization. Moreover, research to bridge prototype and large-scale production of these solar cells is still in its infancy. Most prototype devices are made in inert glove box environments using spin-coating. There is a need to develop a non-toxic ink and incorporate it into a material deposition system that can be used in mass production. In this thesis, P3HT:PCBM organic photovoltaic devices were fabricated with the help of inkjet printing. P3HT:PCBM blends were dissolved in organic solvent systems, and this solution was used as the ink for the printer. The "coffee-ring effect" as well as the effect of inkjet printing parameters on film formation were highlighted - thus the inkjet printing method was validated as a stepping stone between lab-scale production of OPVs and large-scale roll-to-roll manufacturing. To address the need of a non-toxic ink, P3HT:PCBM blends were then dispersed in water, using the miniemulsion method. The nanoparticles were characterized for their size, as well as the blending between the P3HT and PCBM within the nanoparticle. These dispersions were then converted into inks. Finally, these nanoparticle inks were inkjet-printed to fabricate OPV devices. Based on the results obtained here, tentative "next steps" have been outlined in order to improve upon this research work, in the future.

  6. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis.

    PubMed

    Liang, Yongye; Li, Yanguang; Wang, Hailiang; Dai, Hongjie

    2013-02-13

    Electrochemical systems, such as fuel cell and water splitting devices, represent some of the most efficient and environmentally friendly technologies for energy conversion and storage. Electrocatalysts play key roles in the chemical processes but often limit the performance of the entire systems due to insufficient activity, lifetime, or high cost. It has been a long-standing challenge to develop efficient and durable electrocatalysts at low cost. In this Perspective, we present our recent efforts in developing strongly coupled inorganic/nanocarbon hybrid materials to improve the electrocatalytic activities and stability of inorganic metal oxides, hydroxides, sulfides, and metal-nitrogen complexes. The hybrid materials are synthesized by direct nucleation, growth, and anchoring of inorganic nanomaterials on the functional groups of oxidized nanocarbon substrates including graphene and carbon nanotubes. This approach affords strong chemical attachment and electrical coupling between the electrocatalytic nanoparticles and nanocarbon, leading to nonprecious metal-based electrocatalysts with improved activity and durability for the oxygen reduction reaction for fuel cells and chlor-alkali catalysis, oxygen evolution reaction, and hydrogen evolution reaction. X-ray absorption near-edge structure and scanning transmission electron microscopy are employed to characterize the hybrids materials and reveal the coupling effects between inorganic nanomaterials and nanocarbon substrates. Z-contrast imaging and electron energy loss spectroscopy at single atom level are performed to investigate the nature of catalytic sites on ultrathin graphene sheets. Nanocarbon-based hybrid materials may present new opportunities for the development of electrocatalysts meeting the requirements of activity, durability, and cost for large-scale electrochemical applications.

  7. Mechanism of the metallic metamaterials coupled to the gain material

    DOE PAGES

    Huang, Zhixiang; Droulias, Sotiris; Koschny, Thomas; ...

    2014-11-10

    In this study, we present evidence of strong coupling between the gain material and the metallic metamaterials. It is of vital importance to understand the mechanism of the coupling of metamaterials with the gain medium. Using a four-level gain system, the numerical pump-probe experiments are performed in several configurations (split–ring resonators (SRRs), inverse SRRs and fishnets) of metamaterials, demonstrating reduction of the resonator damping in all cases and hence the possibility for loss compensation. We find that the differential transmittance ΔT/T can be negative in different SRR configurations, such as SRRs on the top of the gain substrate, gain inmore » the SRR gap and gain covering the SRR structure, while in the fishnet metamaterial with gain ΔT/T is positive.« less

  8. Capillary Waves And Energy Coupling In Laser Materials Processing

    NASA Astrophysics Data System (ADS)

    Gasser, A.; Herziger, G.; Holtgen, B.; Kreutz, E. W.; Treusch, H. G.

    1987-09-01

    Static and dynamic measurements of the incident laser power, of the diffuse and specular reflected power have been performed in order to determine the absorption behavior of various metals and semiconductors during the interaction with powerful CO2-and Nd:YAG-laser-radiation. The absorptivity of the vapor and laser-induced plasma was probed by high-speed photography and measurements of conductivity transients as a function of intensity, composition, and pressure of the ambient atmosphere. For Icoupling is given by the temperature-dependent refractive index and absorption coefficient of matter. For I>IB the intensity-dependent energy coupling is governed by the generation of photon-induced plasma in the surface region in combination with the dynamics of the molten and vaporized material within the interaction zone giving in addition indication for capillary waves.

  9. Mechanism of the metallic metamaterials coupled to the gain material

    SciTech Connect

    Huang, Zhixiang; Droulias, Sotiris; Koschny, Thomas; Soukoulis, Costas M.

    2014-11-10

    In this study, we present evidence of strong coupling between the gain material and the metallic metamaterials. It is of vital importance to understand the mechanism of the coupling of metamaterials with the gain medium. Using a four-level gain system, the numerical pump-probe experiments are performed in several configurations (split–ring resonators (SRRs), inverse SRRs and fishnets) of metamaterials, demonstrating reduction of the resonator damping in all cases and hence the possibility for loss compensation. We find that the differential transmittance ΔT/T can be negative in different SRR configurations, such as SRRs on the top of the gain substrate, gain in the SRR gap and gain covering the SRR structure, while in the fishnet metamaterial with gain ΔT/T is positive.

  10. On the Usage of Locally Dense Basis Sets in the Calculation of NMR Indirect Nuclear Spin-Spin Coupling Constants

    NASA Astrophysics Data System (ADS)

    Sanchez, Marina; Provasi, Patricio F.; Aucar, Gustavo A.; Sauer, Stephan P. A.

    Locally dense basis sets (couplings in several saturated and unsaturated fluorinated hydrocarbons. We find that the choice of the basis set for each atom belonging to our studied model compounds depends on its location with respect to the coupled fluorine atoms and on the cis/trans or synperiplanar/antiperiplanar conformation of the molecule. Carbon atoms in the bonding path connecting the coupled fluorine atoms have to be described with better basis sets than the carbon atoms outside this path. For the hydrogen atoms directly connected to the coupling pathway in molecules with trans or antiperiplanar conformations and for all hydrogen atoms not directly connected to the coupling pathway one can employ a minimal basis set with only one s-function. Employing these type of LDBSs we can reduce the number of necessary basis functions by about 30% without losing more than about 1 Hz in accuracy. The analysis of the four contributions to the vicinal fluorine-fluorine coupling constants shows that the non-contact orbital paramagnetic term is the most important contribution followed by the also non-contact spin-dipolar term. The Fermi contact term is the largest contribution only in the synperiplanar conformations of 1,2-difluoroethane and -propane.

  11. Coupling of elasticity to capillarity in soft aerated materials.

    PubMed

    Ducloué, Lucie; Pitois, Olivier; Goyon, Julie; Chateau, Xavier; Ovarlez, Guillaume

    2014-07-28

    We study the elastic properties of soft solids containing air bubbles. Contrary to standard porous materials, the softness of the matrix allows for a coupling of the matrix elasticity to surface tension forces acting on the bubble surface. Thanks to appropriate experiments on model systems, we demonstrate how the elastic response of the soft porous solid is governed by two dimensionless parameters: the gas volume fraction and a capillary number comparing the elasticity of the matrix with the stiffness of the bubbles. Furthermore, we show that our experimental results are accurately predicted by computations of the shear modulus through a micro-mechanical approach.

  12. Coupled transport/hyperelastic model for nastic materials

    NASA Astrophysics Data System (ADS)

    Homison, Chris; Weiland, Lisa M.

    2006-03-01

    Nastic materials are high energy density active materials that mimic processes used in the plant kingdom to produce large deformations through the conversion of chemical energy. These materials utilize the controlled transport of charge and fluid across a selectively-permeable membrane to achieve bulk deformation in a process referred to in the plant kingdom as nastic movements. The nastic material being developed consists of synthetic membranes containing biological ion pumps, ion channels, and ion exchangers surrounding fluid-filled cavities embedded within a polymer matrix. In this paper the formulation of a biological transport model and its coupling with a hyperelastic finite element model of the polymer matrix is discussed. The transport model includes contributions from ion pumps, ion exchangers, and solvent flux. This work will form the basis for a feedback loop in material synthesis efforts. The goal of these studies is to determine the relative importance of the various parameters associated with both the polymer matrix and the biological transport components.

  13. Thermomechanical coupling in fatigue fracture of viscoelastic materials

    NASA Technical Reports Server (NTRS)

    Hufferd, W. L.; Laheru, K. L.

    1975-01-01

    Subcritical crack growth in a linear viscoelastic material subjected to cyclic loading is investigated starting with the thermodynamic power balance. Physically, it is supposed that the subcritical slow crack growth is due to local weakening of the material in the neighborhood of the crack tip. Under fatigue loading it is assumed that all energy dissipation goes into heat and that this heat build-up is the dominant irreversible process governing crack growth. The cycle averaged temperature distribution around the crack tip is obtained from local application of the first law of thermodynamics (i.e., conservation of energy). The analysis leads to the solution of a nonlinear integro-differential equation for crack length as a function of time which is coupled with the local energy equation. A regular perturbation technique is used to obtain an analytical solution which compares very well with experimental results.

  14. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials

    NASA Astrophysics Data System (ADS)

    Revil, A.; Mahardika, H.

    2013-02-01

    A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy and Ohm constitutive equations of transport are extended to unsaturated conditions. This model accounts for inertial effects and for the polarization of porous materials. Rather than using the zeta potential, like in conventional theories for the saturated case, the key parameter used here is the quasi-static volumetric charge density of the pore space, which can be directly computed from the quasi-static permeability. The apparent permeability entering Darcy's law is also frequency dependent with a critical relaxation time that is, in turn, dependent on saturation. A decrease of saturation increases the associated relaxation frequency. The final form of the equations couples the Maxwell equations and a simplified form of two-fluid phases Biot theory accounting for water saturation. A generalized expression of the Richard equation is derived, accounting for the effect of the vibration of the skeleton during the passage of seismic waves and the electrical field. A new expression is obtained for the effective stress tensor. The model is tested against experimental data regarding the saturation and frequency dependence of the streaming potential coupling coefficient. The model is also adapted for two-phase flow conditions and a numerical application is shown for water flooding of a nonaqueous phase liquid (NAPL, oil) contaminated aquifer. Seismoelectric conversions are mostly taking place at the NAPL (oil)/water encroachment front and can be therefore used to remotely track the

  15. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials

    PubMed Central

    Revil, A; Mahardika, H

    2013-01-01

    A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy and Ohm constitutive equations of transport are extended to unsaturated conditions. This model accounts for inertial effects and for the polarization of porous materials. Rather than using the zeta potential, like in conventional theories for the saturated case, the key parameter used here is the quasi-static volumetric charge density of the pore space, which can be directly computed from the quasi-static permeability. The apparent permeability entering Darcy's law is also frequency dependent with a critical relaxation time that is, in turn, dependent on saturation. A decrease of saturation increases the associated relaxation frequency. The final form of the equations couples the Maxwell equations and a simplified form of two-fluid phases Biot theory accounting for water saturation. A generalized expression of the Richard equation is derived, accounting for the effect of the vibration of the skeleton during the passage of seismic waves and the electrical field. A new expression is obtained for the effective stress tensor. The model is tested against experimental data regarding the saturation and frequency dependence of the streaming potential coupling coefficient. The model is also adapted for two-phase flow conditions and a numerical application is shown for water flooding of a nonaqueous phase liquid (NAPL, oil) contaminated aquifer. Seismoelectric conversions are mostly taking place at the NAPL (oil)/water encroachment front and can be therefore used to remotely track the

  16. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials.

    PubMed

    Revil, A; Mahardika, H

    2013-02-01

    A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy and Ohm constitutive equations of transport are extended to unsaturated conditions. This model accounts for inertial effects and for the polarization of porous materials. Rather than using the zeta potential, like in conventional theories for the saturated case, the key parameter used here is the quasi-static volumetric charge density of the pore space, which can be directly computed from the quasi-static permeability. The apparent permeability entering Darcy's law is also frequency dependent with a critical relaxation time that is, in turn, dependent on saturation. A decrease of saturation increases the associated relaxation frequency. The final form of the equations couples the Maxwell equations and a simplified form of two-fluid phases Biot theory accounting for water saturation. A generalized expression of the Richard equation is derived, accounting for the effect of the vibration of the skeleton during the passage of seismic waves and the electrical field. A new expression is obtained for the effective stress tensor. The model is tested against experimental data regarding the saturation and frequency dependence of the streaming potential coupling coefficient. The model is also adapted for two-phase flow conditions and a numerical application is shown for water flooding of a nonaqueous phase liquid (NAPL, oil) contaminated aquifer. Seismoelectric conversions are mostly taking place at the NAPL (oil)/water encroachment front and can be therefore used to remotely track the

  17. Secondary fluorescence in electron probe microanalysis of material couples

    NASA Astrophysics Data System (ADS)

    Llovet, X.; Pinard, P. T.; Donovan, J. J.; Salvat, F.

    2012-06-01

    We describe a semi-analytical method for the fast calculation of secondary fluorescence in electron probe microanalysis of material couples. The calculation includes contributions from primary K-, L- and M-shell characteristic x-rays and bremsstrahlung photons. The required physical interaction parameters (subshell partial cross sections, attenuation coefficients, etc) are extracted from the database of the Monte Carlo simulation code system PENELOPE. The calculation makes use of the intensities of primary photons released in interactions of beam electrons and secondary electrons. Since these intensities are not readily available and do not allow analytical calculation, they are generated from short Monte Carlo simulation runs. The reliability of the proposed calculation method has been assessed by comparing calculated, distance-dependent k-ratios with experimental data available in the literature and with results from simulations with PENELOPE. Numerical results are found to be in close agreement with both simulated and experimental data.

  18. Experimental identification of smart material coupling effects in composite structures

    NASA Astrophysics Data System (ADS)

    Chesne, S.; Jean-Mistral, C.; Gaudiller, L.

    2013-07-01

    Smart composite structures have an enormous potential for industrial applications, in terms of mass reduction, high material resistance and flexibility. The correct characterization of these complex structures is essential for active vibration control or structural health monitoring applications. The identification process generally calls for the determination of a generalized electromechanical coupling coefficient. As this process can in practice be difficult to implement, an original approach, presented in this paper, has been developed for the identification of the coupling effects of a smart material used in a composite curved beam. The accuracy of the proposed identification technique is tested by applying active modal control to the beam, using a reduced model based on this identification. The studied structure was as close to reality as possible, and made use of integrated transducers, low-cost sensors, clamped boundary conditions and substantial, complex excitation sources. PVDF (polyvinylidene fluoride) and MFC (macrofiber composite) transducers were integrated into the composite structure, to ensure their protection from environmental damage. The experimental identification described here was based on a curve fitting approach combined with the reduced model. It allowed a reliable, powerful modal control system to be built, controlling two modes of the structure. A linear quadratic Gaussian algorithm was used to determine the modal controller-observer gains. The selected modes were found to have an attenuation as strong as -13 dB in experiments, revealing the effectiveness of this method. In this study a generalized approach is proposed, which can be extended to most complex or composite industrial structures when they are subjected to vibration.

  19. Flaw investigation in a multi-layered, multi-material composite: Using air-coupled ultrasonic resonance imaging

    NASA Astrophysics Data System (ADS)

    Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.

    2012-05-01

    Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. Defects in the tile, during manufacture or after usage, are expected to change the resonance frequencies and resonance images of the tile. The comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be a quantitative damage metric. By examining the vibrational behavior of these tiles and the composite lay-up with Finite Element Modeling and analytical plate vibration equations, the development of a new Nondestructive Evaluation technique is possible. This study examines the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a hexagonal ceramic tile and a multi-material, multi-layered composite.

  20. Microflow liquid chromatography coupled to mass spectrometry--an approach to significantly increase sensitivity, decrease matrix effects, and reduce organic solvent usage in pesticide residue analysis.

    PubMed

    Uclés Moreno, Ana; Herrera López, Sonia; Reichert, Barbara; Lozano Fernández, Ana; Hernando Guil, María Dolores; Fernández-Alba, Amadeo Rodríguez

    2015-01-20

    This manuscript reports a new pesticide residue analysis method employing a microflow-liquid chromatography system coupled to a triple quadrupole mass spectrometer (microflow-LC-ESI-QqQ-MS). This uses an electrospray ionization source with a narrow tip emitter to generate smaller droplets. A validation study was undertaken to establish performance characteristics for this new approach on 90 pesticide residues, including their degradation products, in three commodities (tomato, pepper, and orange). The significant benefits of the microflow-LC-MS/MS-based method were a high sensitivity gain and a notable reduction in matrix effects delivered by a dilution of the sample (up to 30-fold); this is as a result of competition reduction between the matrix compounds and analytes for charge during ionization. Overall robustness and a capability to withstand long analytical runs using the microflow-LC-MS system have been demonstrated (for 100 consecutive injections without any maintenance being required). Quality controls based on the results of internal standards added at the samples' extraction, dilution, and injection steps were also satisfactory. The LOQ values were mostly 5 μg kg(-1) for almost all pesticide residues. Other benefits were a substantial reduction in solvent usage and waste disposal as well as a decrease in the run-time. The method was successfully applied in the routine analysis of 50 fruit and vegetable samples labeled as organically produced.

  1. Giant and universal magnetoelectric coupling in soft materials and concomitant ramifications for materials science and biology.

    PubMed

    Liu, Liping; Sharma, Pradeep

    2013-10-01

    Magnetoelectric coupling-the ability of a material to magnetize upon application of an electric field and, conversely, to polarize under the action of a magnetic field-is rare and restricted to a rather small set of exotic hard crystalline materials. Intense research activity has recently ensued on materials development, fundamental scientific issues, and applications related to this phenomenon. This tantalizing property, if present in adequate strength at room temperature, can be used to pave the way for next-generation memory devices such as miniature magnetic random access memories and multiple state memory bits, sensors, energy harvesting, spintronics, among others. In this Rapid Communication, we prove the existence of an overlooked strain mediated nonlinear mechanism that can be used to universally induce the giant magnetoelectric effect in all (sufficiently) soft dielectric materials. For soft polymer foams-which, for instance, may be used in stretchable electronics-we predict room-temperature magnetoelectric coefficients that are comparable to the best known (hard) composite materials created. We also argue, based on a simple quantitative model, that magnetoreception in some biological contexts (e.g., birds) most likely utilizes this very mechanism.

  2. Further study of coupling materials on aluminum sample using sonic IR

    NASA Astrophysics Data System (ADS)

    Song, Yuyang; Han, Xiaoyan

    2012-05-01

    Sonic Infrared (IR) Imaging has been proving as a very promising NDE technology even though it has not been around for very long. This technology uses acoustic/ultrasound excitation externally and infrared imaging to identify defects in materials. Typically, coupling materials are employed between the sound transducer and a target. It has been shown that this coupling has shown importance in SonicIR. We have learned that coupling materials affect the vibration and heating in cracks. More systematic study has been done quantitatively by the authors over some selected coupling materials through experimental study on aluminum samples. In this paper, we present our results over this topic.

  3. Mechanical coupling for a rotor shaft assembly of dissimilar materials

    DOEpatents

    Shi, Jun [Glastonbury, CT; Bombara, David [New Hartford, CT; Green, Kevin E [Broad Brook, CT; Bird, Connic [Rocky Hill, CT; Holowczak, John [South Windsor, CT

    2009-05-05

    A mechanical coupling for coupling a ceramic disc member to a metallic shaft includes a first wedge clamp and a second wedge clamp. A fastener engages a threaded end of a tie-bolt to sandwich the ceramic disc between the wedge clamps. An axial spring is positioned between the fastener and the second wedge clamp to apply an axial preload along the longitudinal axis. Another coupling utilizes a rotor shaft end of a metallic rotor shaft as one wedge clamp. Still another coupling includes a solid ceramic rotor disc with a multiple of tie-bolts radially displaced from the longitudinal axis to exert the preload on the solid ceramic rotor disc.

  4. Flaw detection in a multi-material multi-layered composite: using fem and air-coupled ut

    SciTech Connect

    Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.

    2011-06-23

    Ceramic tiles are the main ingredient of a multi-layer multi-material composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. This study is aimed at modeling the vibration modes of the tiles and the composite lay-up with finite element analysis and comparing the results with the resonance modes observed in air-coupled ultrasonic excitation of the tiles and armor samples. Defects in the tile, during manufacturing and/or after usage, are expected to change the resonance modes. The comparison of a pristine tile/lay-up and a defective tile/lay-up will thus be a quantitative damage metric. The understanding of the vibration behavior of the tile, both by itself and in the composite lay-up, can provide useful guidance to the nondestructive evaluation of armor panels containing ceramic tiles.

  5. Predicting the Coupling Properties of Axially-Textured Materials

    PubMed Central

    Fuentes-Cobas, Luis E.; Muñoz-Romero, Alejandro; Montero-Cabrera, María E.; Fuentes-Montero, Luis; Fuentes-Montero, María E.

    2013-01-01

    A description of methods and computer programs for the prediction of “coupling properties” in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge’s symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals) physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones. PMID:28788370

  6. Tightly Coupled Mechanistic Study of Materials in the Extreme Space Environment

    DTIC Science & Technology

    2016-10-11

    AFRL-AFOSR-VA-TR-2016-0338 Tightly Coupled Mechanistic Study of Materials in the Extreme Space Environment Adrianus Van Duin PENNSYLVANIA STATE...To)      01 Jul 2011 to 30 Jun 2016 4.  TITLE AND SUBTITLE Tightly Coupled Mechanistic Study of Materials in the Extreme Space Environment 5a...Public Release 13.  SUPPLEMENTARY NOTES 14.  ABSTRACT The Tightly Coupled Mechanistic Study of Materials in the Extreme Space Environment Group has worked

  7. The analysis of some evidential materials by inductively coupled plasma-optical emission spectrometry.

    PubMed

    Carpenter, R C

    1985-03-01

    Inductively coupled plasma-optical emission spectrometry (ICP-OES) is under evaluation at the Central Research Establishment for the analysis of evidential materials. The analysis of standard reference materials has demonstrated that quantitative multi-element data can be obtained from small samples of a variety of materials. The results of some determinations carried out in support of casework investigations are reported.

  8. Electrets in soft materials: nonlinearity, size effects, and giant electromechanical coupling.

    PubMed

    Deng, Qian; Liu, Liping; Sharma, Pradeep

    2014-07-01

    Development of soft electromechanical materials is critical for several tantalizing applications such as soft robots and stretchable electronics, among others. Soft nonpiezoelectric materials can be coaxed to behave like piezoelectrics by merely embedding charges and dipoles in their interior and assuring some elastic heterogeneity. Such so-called electret materials have been experimentally shown to exhibit very large electromechanical coupling. In this work, we derive rigorous nonlinear expressions that relate effective electromechanical coupling to the creation of electret materials. In contrast to the existing models, we are able to both qualitatively and quantitatively capture the known experimental results on the nonlinear response of electret materials. Furthermore, we show that the presence of another form of electromechanical coupling, flexoelectricity, leads to size effects that dramatically alter the electromechanical response at submicron feature sizes. One of our key conclusions is that nonlinear deformation (prevalent in soft materials) significantly enhances the flexoelectric response and hence the aforementioned size effects.

  9. Production and application of chemical fibers with special properties for manufacturing composite materials and goods of different usage

    NASA Technical Reports Server (NTRS)

    Levit, R.

    1993-01-01

    The development of modern technologies demands the creation of new nonmetallic, fibrous materials with specific properties. The fibers and materials developed by NII 'Chimvolokno', St. Petersburg, can be divided into two groups. The first group includes heat-resistant fibers, fire-resistant fibers, thermotropic fibers, fibers for medical application, and textile structures. The second group contains refractory fibers, chemoresistant and antifriction fibers, fibers on the basis of polyvinyl alcohol, microfiltering films, and paperlike and nonwoven materials. In cooperation with NPO 'Chimvolokno' MYTITSHI, we developed and started producing heat-resistant high-strength fibers on the base of polyhetarearilin and aromatic polyimides (SVM and terlon); heat-resistant fibers on the base of polyemede (aramid); fire-retardant fibers (togilen); chemoresistant and antifriction fibers on the basis of homo and copolymers of polytetrafluoroethylene (polyfen and ftorin); and water soluble, acetylated, and high-modulus fibers from polyvinyl alcohol (vylen). Separate reports will deal with textile structures and thermotropic fibers, as well as with medical fibers. One of the groups of refractory fibers carbon fibers (CF) and the corresponding paperlike nonwoven materials are discussed in detail. Also, composite materials (CM) and their base, which is the subject of the author's research since 1968, is discussed.

  10. Air-coupled ultrasonic evaluation of food materials.

    PubMed

    Pallav, P; Hutchins, D A; Gan, T H

    2009-02-01

    This research was performed with the aim of detecting foreign bodies and additives within food products, and to measure selected acoustic properties, without contact to the sample. This would allow use in manufacturing plants on production lines, where contacting the product for ultrasonic inspection would not be feasible. Images of internal structure are reported. The air-coupled system uses capacitive devices which are able to provide sufficient bandwidth for many measurements, including the detection of foreign bodies in cheese, the detection of deliberate additives to chocolate, the detection of fill level and content of metallic food cans, and measurements of frozen dough products. The approach demonstrates that ultrasound has the potential for application to many industrial food packaging environments where non-metallic objects within food need to be detected.

  11. Experimental evidence of Willis coupling in a one-dimensional effective material element

    NASA Astrophysics Data System (ADS)

    Muhlestein, Michael B.; Sieck, Caleb F.; Wilson, Preston S.; Haberman, Michael R.

    2017-06-01

    The primary objective of acoustic metamaterial research is to design subwavelength systems that behave as effective materials with novel acoustical properties. One such property couples the stress-strain and the momentum-velocity relations. This response is analogous to bianisotropy in electromagnetism, is absent from common materials, and is often referred to as Willis coupling after J.R., Willis, who first described it in the context of the dynamic response of heterogeneous elastic media. This work presents two principal results: first, experimental and theoretical demonstrations, illustrating that Willis properties are required to obtain physically meaningful effective material properties resulting solely from local behaviour of an asymmetric one-dimensional isolated element and, second, an experimental procedure to extract the effective material properties from a one-dimensional isolated element. The measured material properties are in very good agreement with theoretical predictions and thus provide improved understanding of the physical mechanisms leading to Willis coupling in acoustic metamaterials.

  12. Experimental evidence of Willis coupling in a one-dimensional effective material element.

    PubMed

    Muhlestein, Michael B; Sieck, Caleb F; Wilson, Preston S; Haberman, Michael R

    2017-06-13

    The primary objective of acoustic metamaterial research is to design subwavelength systems that behave as effective materials with novel acoustical properties. One such property couples the stress-strain and the momentum-velocity relations. This response is analogous to bianisotropy in electromagnetism, is absent from common materials, and is often referred to as Willis coupling after J.R., Willis, who first described it in the context of the dynamic response of heterogeneous elastic media. This work presents two principal results: first, experimental and theoretical demonstrations, illustrating that Willis properties are required to obtain physically meaningful effective material properties resulting solely from local behaviour of an asymmetric one-dimensional isolated element and, second, an experimental procedure to extract the effective material properties from a one-dimensional isolated element. The measured material properties are in very good agreement with theoretical predictions and thus provide improved understanding of the physical mechanisms leading to Willis coupling in acoustic metamaterials.

  13. Extension to the definition of quasistatic material coupling factor to include losses.

    PubMed

    Lamberti, Nicola; Sherrit, Stewart; Pappalardo, Massimo; Iula, Antonio

    2005-06-01

    In general the coupling factor is a dimensionless coefficient, defined as a particular combination of the dielectric, elastic, and piezoelectric coefficients that may be useful for the internal energy conversion description in piezoelectric materials. In order to extend the definition of the quasistatic coupling factor as ratio of energies to dynamic conditions and to lossy materials, its current definition and its derivation are reviewed. It is shown that this parameter can be computed as ratio of energies also in dynamic conditions, and the factors obtained in the static and the dynamic case are simply related by a proportionality coefficient. The coupling factor is computed as the square root of the ratio between the converted (from mechanical to electrical or vice versa) and the total energy involved in a transformation cycle for lossy materials in quasistatic conditions, obtaining a complex quantity related to the complex material parameters taking the losses into account. In order to apply this definition to the element vibrating around its resonance frequency, the kinetic is considered as the total energy and the electrical potential as the converted energy. The obtained result is a complex quantity related to the complex material coupling factor by means of the same proportionality coefficient of the case without losses. Finally, it is shown that both the material and the dynamic coupling factors still can be considered as real parameters for real lossy materials. It also is shown that the obtained results do not depend on the wave propagation direction (longitudinal or transverse).

  14. Fully scalable implementation of a volume coupling scheme for the modeling of multiscale materials

    NASA Astrophysics Data System (ADS)

    Schlittler, Thiago Milanetto; Cottereau, Régis

    2017-07-01

    We present in this paper a new implementation of a multi-scale, multi-model coupling algorithm, with a proposed parallelization scheme for the construction of the coupling terms between the models. This allows one to study such problems with a fully scalable algorithm on large computer clusters, even when the models and/or the coupling have a high number of degrees of freedom. As an application example, we will consider a system composed by an homogeneous, macroscopic Elastic model and an anisotropic polycrystalline material model, with a volume coupling based on the Arlequin framework.

  15. Large Elasto-Plastic Deformations in Bi-Material Components by Coupled FE-EFGM

    NASA Astrophysics Data System (ADS)

    Harmain, G. A.; Jameel, Azher; Najar, Farooq A.; Masoodi, Junaid H.

    2017-08-01

    In the recent years, the coupled finite element-element free Galerkin method (coupled FE-EFGM) has found wide application in modeling large elasto-plastic deformations in bi-material components. The coupled FE-EFGM applies EFGM in the portion of the domain where large deformations are expected to occur, whereas the rest of the domain is discretized into conventional finite elements. The large deformation occurring in the domain has been modeled by using the total Lagrangian approach. The non-linear elasto-plastic behavior of the material has been represented by the Ramberg-Osgood model. Finally, two numerical problems are solved by the coupled FE-EFGM to illustrate its applicability, efficiency and accuracy in modeling large elasto-plastic deformations in bi-material samples.

  16. Achieving synchronization with active hybrid materials: Coupling self-oscillating gels and piezoelectric films

    PubMed Central

    Yashin, Victor V.; Levitan, Steven P.; Balazs, Anna C.

    2015-01-01

    Lightweight, deformable materials that can sense and respond to human touch and motion can be the basis of future wearable computers, where the material itself will be capable of performing computations. To facilitate the creation of “materials that compute”, we draw from two emerging modalities for computation: chemical computing, which relies on reaction-diffusion mechanisms to perform operations, and oscillatory computing, which performs pattern recognition through synchronization of coupled oscillators. Chemical computing systems, however, suffer from the fact that the reacting species are coupled only locally; the coupling is limited by diffusion as the chemical waves propagate throughout the system. Additionally, oscillatory computing systems have not utilized a potentially wearable material. To address both these limitations, we develop the first model for coupling self-oscillating polymer gels to a piezoelectric (PZ) micro-electro-mechanical system (MEMS). The resulting transduction between chemo-mechanical and electrical energy creates signals that can be propagated quickly over long distances and thus, permits remote, non-diffusively coupled oscillators to communicate and synchronize. Moreover, the oscillators can be organized into arbitrary topologies because the electrical connections lift the limitations of diffusive coupling. Using our model, we predict the synchronization behavior that can be used for computational tasks, ultimately enabling “materials that compute”. PMID:26105979

  17. Performance of Transducers with Segmented Piezoelectric Stacks using Materials with High Electromechanical Coupling Coefficient

    DTIC Science & Technology

    2012-12-03

    transducers , particularly tonpilz transducer elements. Included is discussion of transducer designs using single crystal piezoelectric material with... tonpilz transducer elements. Included is discussion of transducer designs using single crystal piezoelectric material with high coupling coefficient...Conclusions 14 References 16 Appendix 18 v This page intentionally left blank. vi List of Figures Figure 1 The tonpilz transducer element used in this

  18. Update of Environmental and Safety Analyses for the National Ignition Facility: Using a New Model to Track Target Material Usage

    SciTech Connect

    Gillich, D; Tobin, M; Singh, M; Kalantar, D; Brereton, S; MacGowan, B

    2001-08-03

    The purpose of this paper is to report the methodology and assumptions, data, and results of calculations concerning safety and environmental issues related to excursions to currently planned NIF operations. Many possible uses of NIF have been suggested over the years. While some of these possible uses have been adopted into the baseline plans for NIF, many others have not. While we do not yet know all of the possible approved uses for NIF, one of the items that would bear on whether a certain course use might be adopted or not would be its environmental and safety impact. Here we examine certain excursions from the existing planned operations to determine their environmental and safety impacts. These excursions are related to the use of ''cocktail'' hohlraums as the baseline target for ignition experiments in the National Ignition Facility (NIF) as well as possible increased utilization of beryllium and uranium. This paper also addresses the fission products produced from cocktail hohlraum use for high yield experiments. Again, this analyses does not imply an authorization to proceed with such modes of operation, or any intent to proceed beyond this analyses. A detailed analysis of a range of postulated experiments for NIF was conducted for the years 2003 through 2011. The goal was to quantify the amount of target material introduced into the target bay per year. The assumptions outlined in this paper are based on the worst-case scenario from an environmental perspective. A spreadsheet was developed to integrate all the gathered information and to calculate the total amount of materials per year. The spreadsheet was also designed as a tool for future analyses. The total amount of material was used to justify and establish a proposed upper bound for the amount of beryllium and uranium introduced into the target bay in a given year. The cocktail hohlraum and associated appendages were modeled with the neutron transport code TART98 to determine neutron fluxes within

  19. A Study on Usage of on-site Multi-monitoring System in Laser Processing of Paper Materials

    NASA Astrophysics Data System (ADS)

    Piili, Heidi

    Laser technology provides advantages for paper material processing as it is non-contact method and provides freedom of geometry and reliable technology for non-stop production. Reason for low utilization of lasers in paper manufacturing is lack of published research. This is main reason to study utilization of on-site multi-monitoring system (MMS) in characterization of interaction between laser beam and paper materials. Target of MMS is to be able to control processing of paper, but also to get better understanding of basic phenomena. Laser equipment used was TRUMPF TLF 2700 CO2 laser (wavelength 10.6 μm) with power range of 190-2500 W. MMS consisted of spectrometer, pyrometer and active illumination imaging system. This on-site study was carried out by treating dried kraft pulp (grammage of 67 g m-2) with different laser power levels, focal plane position settings and interaction times. It was concluded that spectrometer and pyrometer are best devices in MMS; set-up of them to laser process is easy, they detect data fast enough and analysis of data is easy afterwards. Active illumination imaging system is capable for capturing images of different phases of interaction but analysis of images is time-consuming. When active illumination imaging system is combined with spectrometer and pyrometer i.e. using of MMS, it reveals basic phenomena occurring during interaction. For example, it was noticed that holes created after laser exposure are formed gradually. Firstly, small hole is formed to interaction area and after that hole expands, until interaction is ended.

  20. Optical coupling to spin waves in multiferroic materials

    NASA Astrophysics Data System (ADS)

    de Sousa, Rogerio

    2009-05-01

    The coexistence of ferroelectricity and magnetism in multiferroic materials leads to several interesting effects related to the interplay of light with complex electric and magnetic order. One notable example is bismuth ferrite (BiFeO3), a room temperature multiferroic that exhibits a large ferroelectric moment coexisting with a spiral antiferromagnetic phase in the form of a cycloid. I will describe a theory of bulk BiFeO3, which predicts the appearance of several magnon branches related to magnetic fluctuations at integer multiples of the cycloid wavevector. These magnons get admixed with optical phonons at zero wavevector, giving rise to two series of electromagnon resonances in the far infrared spectrum [1], which were recently observed using Raman spectroscopy [2]. I will show that these results are helpful in designing low loss electronic devices based on spin-wave propagation [3]. [4pt] [1] R. de Sousa and J.E. Moore, Phys. Rev. B. 77, 012406 (2008). [0pt] [2] M. Cazayous, Y. Gallais, A. Sacuto, R. de Sousa, D. Lebeugle, and D. Colson, Phys. Rev. Lett. 101, 037601 (2008). [0pt] [3] R. de Sousa and J.E. Moore, Appl. Phys. Lett. 92, 022514 (2008).

  1. Flaw detection in multi-layer, multi-material composites by resonance imaging: Utilizing Air-coupled Ultrasonics and Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Livings, Richard Andrew

    2011-12-01

    Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. Defects in the tile, during manufacture or after usage, are expected to change the resonance frequencies and resonance images of the tile. The comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be a quantitative damage metric. By examining the vibrational behavior of these tiles and the composite lay-up with Finite Element Modeling and analytical plate vibration equations, the development of a new Nondestructive Evaluation technique is possible. This study examines the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a hexagonal ceramic tile and a multi-material, multi-layered composite.

  2. Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays.

    PubMed

    Tran, Toan Trong; Wang, Danqing; Xu, Zai-Quan; Yang, Ankun; Toth, Milos; Odom, Teri W; Aharonovich, Igor

    2017-04-12

    Quantum emitters in two-dimensional materials are promising candidates for studies of light-matter interaction and next generation, integrated on-chip quantum nanophotonics. However, the realization of integrated nanophotonic systems requires the coupling of emitters to optical cavities and resonators. In this work, we demonstrate hybrid systems in which quantum emitters in 2D hexagonal boron nitride (hBN) are deterministically coupled to high-quality plasmonic nanocavity arrays. The plasmonic nanoparticle arrays offer a high-quality, low-loss cavity in the same spectral range as the quantum emitters in hBN. The coupled emitters exhibit enhanced emission rates and reduced fluorescence lifetimes, consistent with Purcell enhancement in the weak coupling regime. Our results provide the foundation for a versatile approach for achieving scalable, integrated hybrid systems based on low-loss plasmonic nanoparticle arrays and 2D materials.

  3. Nonlinear air-coupled emission: The signature to reveal and image microdamage in solid materials

    SciTech Connect

    Solodov, Igor; Busse, Gerd

    2007-12-17

    It is shown that low-frequency elastic vibrations of near-surface planar defects cause high-frequency ultrasonic radiation in surrounding air. The frequency conversion mechanism is concerned with contact nonlinearity of the defect vibrations and provides efficient generation of air-coupled higher-order ultraharmonics, ultrasubharmonics, and combination frequencies. The nonlinear air-coupled ultrasonic emission is applied for location and high-resolution imaging of damage-induced defects in a variety of solid materials.

  4. Development of wireless coupling methods in ultrasonic instruments for determining the strength of materials

    NASA Astrophysics Data System (ADS)

    Korolev, M. V.; Starikov, B. P.; Konovalov, A. A.; Karpelson, A. E.

    Two methods of wireless coupling in ultrasonic instruments for determining the strength of materials are described, i.e., radio coupling and acoustic coupling through the object being tested. Particular attention is given to the latter; this method is used to develop an instrument consisting of two miniaturized electronic units with built-in transmitting and receiving transducers. These units are electrically and structurally autonomous, with information being passed from one unit to the other through the acoustic channel, i.e., via the objective being tested.

  5. Amalgam to tooth-coloured materials--implications for clinical practice and dental education: governmental restrictions and amalgam-usage survey results.

    PubMed

    Burke, F J Trevor

    2004-07-01

    To review governmental guidelines on amalgam use worldwide and to assess trends in the usage of amalgam and composite materials in restoration of posterior teeth. A letter was sent to 24 government health agencies or representative organisations requesting details of regulations pertaining to amalgam use. A literature search was carried out in order to identify papers in which the incidence of amalgam and composite restorations was stated. Ten replies were received, indicating few restrictions on the use of amalgam. Results obtained from published work appear to indicate that amalgam use is declining, but at rates which are unclear in many countries because of the paucity of published data. Amalgam use has been found to be decreasing in the USA, Australia and Scandinavia, with lesser decreases being apparent in the UK. There are few restrictions to the use of amalgam worldwide. In countries where data are available, such as USA, Australia and Scandinavia, amalgam use has been found to be decreasing, with smaller decreases being apparent in the UK.

  6. Variations in battery life of a heart-lung machine using different pump speeds, pressure loads, boot material, centrifugal pump head, multiple pump usage, and battery age.

    PubMed

    Marshall, Cornelius; Hargrove, Martin; O'Donnell, Aonghus; Aherne, Thomas

    2005-09-01

    Electrical failure during cardiopulmonary bypass (CPB) has previously been reported to occur in 1 of every 1500 cases. Most heart-lung machine pump consoles are equipped with built-in battery back-up units. Battery run times of these devices are variable and have not been reported. Different conditions of use can extend battery life in the event of electrical failure. This study was designed to examine the run time of a fully charged battery under various conditions of pump speed, pressure loads, pump boot material, multiple pump usage, and battery life. Battery life using a centrifugal pump also was examined. The results of this study show that battery life is affected by pump speed, circuit pressure, boot stiffness, and the number of pumps in service. Centrifugal pumps also show a reduced drain on battery when compared with roller pumps. These elements affect the longevity and performance of the battery. This information could be of value to the individual during power failure as these are variables that can affect the battery life during such a challenging scenario.

  7. Variations in Battery Life of a Heart—Lung Machine Using Different Pump Speeds, Pressure Loads, Boot Material, Centrifugal Pump Head, Multiple Pump Usage, and Battery Age

    PubMed Central

    Marshall, Cornelius; Hargrove, Martin; O’Donnell, Aonghus; Aherne, Thomas

    2005-01-01

    Abstract: Electrical failure during cardiopulmonary bypass (CPB) has previously been reported to occur in 1 of every 1500 cases. Most heart—lung machine pump consoles are equipped with built-in battery back-up units. Battery run times of these devices are variable and have not been reported. Different conditions of use can extend battery life in the event of electrical failure. This study was designed to examine the run time of a fully charged battery under various conditions of pump speed, pressure loads, pump boot material, multiple pump usage, and battery life. Battery life using a centrifugal pump also was examined. The results of this study show that battery life is affected by pump speed, circuit pressure, boot stiffness, and the number of pumps in service. Centrifugal pumps also show a reduced drain on battery when compared with roller pumps. These elements affect the longevity and performance of the battery. This information could be of value to the individual during power failure as these are variables that can affect the battery life during such a challenging scenario. PMID:16350380

  8. TIPP usage.

    PubMed

    Krassner, L

    1984-11-01

    In recent years, physicians have become more concerned about the prevention of childhood accidents. Developed to help physicians teach parents how to avoid unintentional injury, The Injury Prevention Program (TIPP) is significant because anticipatory guidance has now been recognized as being as much a part of routine health supervision as the history and physical examination. The American Academy of Pediatrics' policy statement enclosed with each TIPP package states five goals that deal with major causes of childhood mortality; three can be achieved with a single purchase or action--buying a smoke alarm, buying a bottle of ipecac, and turning down hot water temperature. TIPP comprises three elements: A parent questionnaire (the Framingham safety survey) is used to identify at-risk behavior. Safety sheets to be handed out at the next visit reinforce the information provided by the physician in his or her discussion of the questionnaire results. A model counseling schedule suggests how to incorporate the questionnaire and safety sheets into an effective office program. By gradually phasing TIPP into an office practice, physicians can become familiar with TIPP materials and integrate it in a controlled manner. The AAP Committee on Accident and Poison Prevention is studying measures to increase the usefulness of TIPP.

  9. Computational simulation of coupled material degradation processes for probabilistic lifetime strength of aerospace materials

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.

    1992-01-01

    The research included ongoing development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primative variables. These primative variable may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above described constitutive equation using actual experimental materials data together with linear regression of that data, thereby predicting values for the empirical material constraints for each effect or primative variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from the open literature for materials typically of interest to those studying aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.

  10. Air-coupled ultrasonic investigation of multi-layered composite materials.

    PubMed

    Kazys, R; Demcenko, A; Zukauskas, E; Mazeika, L

    2006-12-22

    Air-coupled ultrasonics is fine alternative for the immersion testing technique. Usually a through transmission and a pitch-catch arrangement of ultrasonic transducers are used. The pitch-catch arrangement is very attractive for non-destructive testing and evaluation of materials, because it allows one-side access to the object. However, this technique has several disadvantages. It is sensitive to specularly reflected and edge waves. A spatial resolution depends on a distance between the transducers. A new method for detection and visualisation of inhomogeneities in composite materials using one-side access air-coupled ultrasonic measurement technique is described. Numerical predictions of Lamb wave interaction with a defect in a composite material are carried out and the interaction mechanism is explained. Experimental measurements are carried out with different arrangements of the transducers. The proposed method enables detect delamination and impact type defects in honeycomb materials.

  11. Air-coupled measurement of plane wave, ultrasonic plate transmission for characterising anisotropic, viscoelastic materials

    PubMed

    Castaings; Hosten

    2000-03-01

    Electrostatic, air-coupled, ultrasonic transducers are used to generate and detect plane waves in viscoelastic, isotropic or anisotropic solid plates. The through-transmitted field is measured and compared to numerical predictions. An inversion scheme is then applied for identifying the values of the complex Cij which are representative of the viscoelasticity properties of the materials. The issue of this work is a contact-free, ultrasonic technique for material characterisation.

  12. An Integrated Tool for the Coupled Thermal and Mechanical Analysis of Pyrolyzing Heatshield Materials

    NASA Technical Reports Server (NTRS)

    Pronchick, Stephen W.

    1998-01-01

    Materials that pyrolyze at elevated temperature have been commonly used as thermal protection materials in hypersonic flight, and advanced pyrolyzing materials for this purpose continue to be developed. Because of the large temperature gradients that can arise in thermal protection materials, significant thermal stresses can develop. Advanced applications of pyrolytic materials are calling for more complex heatshield configurations, making accurate thermal stress analysis more important, and more challenging. For non-pyrolyzing materials, many finite element codes are available and capable of performing coupled thermal-mechanical analyses. These codes do not, however, have a built-in capability to perform analyses that include pyrolysis effects. When a pyrolyzing material is heated, one or more components of the original virgin material pyrolyze and create a gas. This gas flows away from the pyrolysis zone to the surface, resulting in a reduction in surface heating. A porous residue, referred to as char, remains in place of the virgin material. While the processes involved can be complex, it has been found that a simple physical model in which virgin material reacts to form char and pyrolysis gas, will yield satisfactory analytical results. Specifically, the effects that must be modeled include: (1) Variation of thermal properties (density, specific heat, thermal conductivity) as the material composition changes; (2) Energy released or absorbed by the pyrolysis reactions; (3) Energy convected by the flow of pyrolysis gas from the interior to the surface; (4) The reduction in surface heating due to surface blowing; and (5) Chemical and mass diffusion effects at the surface between the pyrolysis gas and edge gas Computational tools for the one-dimensional thermal analysis these materials exist and have proven to be reliable design tools. The objective of the present work is to extend the analysis capabilities of pyrolyzing materials to axisymmetric configurations

  13. Potential Energetic Materials Formed from Coupling of Substituted Halo-s-triazines.

    DTIC Science & Technology

    1983-07-27

    from Report) IS. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and Identify by block number) s-triazines, heterocyclic ... chemistry , energetic materials L j ZO. ABSTRACT (Continue on reverse side If necessary and Identify by block number) The coupling of nucleophilic sites on

  14. A strategy to couple the material point method (MPM) and smoothed particle hydrodynamics (SPH) computational techniques

    NASA Astrophysics Data System (ADS)

    Raymond, Samuel J.; Jones, Bruce; Williams, John R.

    2016-12-01

    A strategy is introduced to allow coupling of the material point method (MPM) and smoothed particle hydrodynamics (SPH) for numerical simulations. This new strategy partitions the domain into SPH and MPM regions, particles carry all state variables and as such no special treatment is required for the transition between regions. The aim of this work is to derive and validate the coupling methodology between MPM and SPH. Such coupling allows for general boundary conditions to be used in an SPH simulation without further augmentation. Additionally, as SPH is a purely particle method, and MPM is a combination of particles and a mesh. This coupling also permits a smooth transition from particle methods to mesh methods, where further coupling to mesh methods could in future provide an effective farfield boundary treatment for the SPH method. The coupling technique is introduced and described alongside a number of simulations in 1D and 2D to validate and contextualize the potential of using these two methods in a single simulation. The strategy shown here is capable of fully coupling the two methods without any complicated algorithms to transform information from one method to another.

  15. Giant and universal magnetoelectric coupling in soft materials and concomitant ramifications for materials science and biology

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Sharma, Pradeep

    2013-10-01

    Magnetoelectric coupling—the ability of a material to magnetize upon application of an electric field and, conversely, to polarize under the action of a magnetic field—is rare and restricted to a rather small set of exotic hard crystalline materials. Intense research activity has recently ensued on materials development, fundamental scientific issues, and applications related to this phenomenon. This tantalizing property, if present in adequate strength at room temperature, can be used to pave the way for next-generation memory devices such as miniature magnetic random access memories and multiple state memory bits, sensors, energy harvesting, spintronics, among others. In this Rapid Communication, we prove the existence of an overlooked strain mediated nonlinear mechanism that can be used to universally induce the giant magnetoelectric effect in all (sufficiently) soft dielectric materials. For soft polymer foams—which, for instance, may be used in stretchable electronics—we predict room-temperature magnetoelectric coefficients that are comparable to the best known (hard) composite materials created. We also argue, based on a simple quantitative model, that magnetoreception in some biological contexts (e.g., birds) most likely utilizes this very mechanism.

  16. Stability of a reflective coupling diode with the inclusion of thermal effects in narrow band-gap materials

    NASA Astrophysics Data System (ADS)

    Gilbert, M. J.; Akis, R.; Ferry, D. K.

    2004-04-01

    Despite the difficulty in fabrication, resonant tunnelling diodes (RTD) have found a great deal of usage in the analogue, digital and mixed signal realms as a means of increasing the speed of signal processing circuitry, or in reducing the static power dissipation in the circuitry. Nevertheless, RTDs suffer from their non-planar structure. One possible solution is a planar diode, which operates via coupling of injected electron modes from an input waveguide to a corresponding output waveguide in a semiconductor hetrostructure, or a reflective coupling diode (RCD). In this paper, we investigate the role of temperature on the operation of an RCD.

  17. Influence of optical material properties on strong coupling in organic semiconductor based microcavities

    NASA Astrophysics Data System (ADS)

    Tropf, Laura; Dietrich, Christof P.; Herbst, Stefanie; Kanibolotsky, Alexander L.; Skabara, Peter J.; Würthner, Frank; Samuel, Ifor D. W.; Gather, Malte C.; Höfling, Sven

    2017-04-01

    The optical properties of organic semiconductors are generally characterised by a number of material specific parameters, including absorbance, photoluminescence quantum yield, Stokes shift, and molecular orientation. Here, we study four different organic semiconductors and compare their optical properties to the characteristics of the exciton-polaritons that are formed when these materials are introduced into metal-clad microcavities. We find that the strength of coupling between cavity photons and excitons is clearly correlated with the absorptivity of the material. In addition, we show that anisotropy strongly affects the characteristics of the formed exciton-polaritons.

  18. Ligand coupling symmetry correlates with thermopower enhancement in small-molecule/nanocrystal hybrid materials.

    PubMed

    Lynch, Jared; Kotiuga, Michele; Doan-Nguyen, Vicky V T; Queen, Wendy L; Forster, Jason D; Schlitz, Ruth A; Murray, Christopher B; Neaton, Jeffrey B; Chabinyc, Michael L; Urban, Jeffrey J

    2014-10-28

    We investigate the impact of the coupling symmetry and chemical nature of organic-inorganic interfaces on thermoelectric transport in Cu2-xSe nanocrystal thin films. By coupling ligand-exchange techniques with layer-by-layer assembly methods, we are able to systematically vary nanocrystal-organic linker interfaces, demonstrating how the functionality of the polar headgroup and the coupling symmetry of the organic linkers can change the power factor (S(2)σ) by nearly 2 orders of magnitude. Remarkably, we observe that ligand-coupling symmetry has a profound effect on thermoelectric transport in these hybrid materials. We shed light on these results using intuition from a simplified model for interparticle charge transport via tunneling through the frontier orbital of a bound ligand. Our analysis indicates that ligand-coupling symmetry and binding mechanisms correlate with enhanced conductivity approaching 2000 S/cm, and we employ this concept to demonstrate among the highest power factors measured for quantum-dot based thermoelectric inorganic-organic composite materials of ∼ 30 μW/m · K(2).

  19. Modelling of the evaporation behaviour of particulate material for slurry nebulization inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Merten, D.; Heitland, P.; Broekaert, J. A. C.

    1997-11-01

    This paper is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta, Part B (SAB). This hardcopy text, comprising the main body and an appendix, is accompanied by a disk with programs, data files and a brief manual. The main body discusses purpose, design principle and usage of the computer software for modelling the evaporation behaviour of particles in inductively coupled plasma atomic emission spectrometry (ICP-AES). Computer software has been developed in FORTRAN 77 language in order to simulate the evaporation behaviour of particles of refractory materials such as encountered in the analysis of advanced ceramic powders by slurry nebulization inductively coupled argon plasma atomic spectrometry. The program simulates the evaporation of single particles in the inductively coupled plasma and also enable it to calculate on the base of a given particle size distribution the evaporation behaviour of all the particles contained in a sample. In a so-called "intensity concept", the intensity is calculated as a function of the observation height in order to determine recovery rates for slurries compared with aqueous solutions. This yields a quick insight whether a calibration with aqueous solutions can be used for analysis of slurries of a given powder by slurry nebulization ICP-AES and also is a help in determining the optimal parameters for analyses of powders by means of slurry nebulization ICP-AES. Applications for the evaporation of Al 2O 3 and SiC powders document the usefulness of the model for the case of a 1.5 kW argon ICP of which the temperature at 8 mm above the load coil has been determined to be 6100 K. The model predicts the maximum particle size for SiC and Al 2O 3 that can be transported (10-15 μm) and evaporated for a given efficiency under given experimental conditions. For both Al 2O 3 and SiC, two ceramic powders of different grain size were investigated. The median particle sizes cover

  20. Influence of coupling substances in the measurement of ultrasound velocity in stone materials

    NASA Astrophysics Data System (ADS)

    Giuzio, Beatrice; Alvarez de Buergo, Monica; Fort, Rafael; Masini, Nicola

    2015-04-01

    Ultrasonic (US) testing is widely applied in many fields (i.e. aviation, petrochemical, power engineering, construction and metallurgical industries). In the field of built cultural heritage and science conservation, US testing can provide the quality of the historic building materials (physic-mechanical properties), their heterogeneity/homogeinity and anisotropy, in terms of materials characterization, but also how deterioration processes can affect their quality (either after natural decay or simulation ageing tests in the laboratory). Moreover, US testing is a useful technique in evaluating the effectiveness of conservation and restoration techniques such as assessing the compatibility among original and restoration materials, identification of original quarries, and the success or not in the increase of a material cohesion when applying consolidating products. In order to obtain precise, real and reliable measurements, coupling substances between the material surface and the ultrasonic sensors are frequently used, to provide a proper contact between the transducer and the material, to assure the perfect transmission of the ultrasonic wave. Various coupling agents can be applied for this purpose. According to Wesolowski (2012), the choice of the coupling agent significantly affects the measurement of propagation velocity in material samples and, as a consequence, the US test results. In this paper, the effect of six coupling agents (medical gel used for ultrasonography, gel + parafilm, plasticine, honey, glicerine and a plastic material provided for ultrasound measurement by Panametrics) on ultrasonic measurements conducted on specific building materials is investigated on two different types of building stones (granite and dolostone from the area of Madrid, traditionally used in the construction of the built heritage, 4 stone specimens for each rock variety, 20 x 6 x 8 cm). Direct and indirect modes measuring were performed, the first one with the transducers

  1. Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials

    PubMed Central

    Xu, Shiqing; Kim, Eun Hoo; Wei, Alexander; Negishi, Ei-ichi

    2014-01-01

    Organic molecules and polymers with extended π-conjugation are appealing as advanced electronic materials, and have already found practical applications in thin-film transistors, light emitting diodes, and chemical sensors. Transition metal (TM)-catalyzed cross-coupling methodologies have evolved over the past four decades into one of the most powerful and versatile methods for C–C bond formation, enabling the construction of a diverse and sophisticated range of π-conjugated oligomers and polymers. In this review, we focus our discussion on recent synthetic developments of several important classes of π-conjugated systems using TM-catalyzed cross-coupling reactions, with a perspective on their utility for organic electronic materials. PMID:27877696

  2. Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials.

    PubMed

    Xu, Shiqing; Kim, Eun Hoo; Wei, Alexander; Negishi, Ei-Ichi

    2014-08-01

    Organic molecules and polymers with extended π-conjugation are appealing as advanced electronic materials, and have already found practical applications in thin-film transistors, light emitting diodes, and chemical sensors. Transition metal (TM)-catalyzed cross-coupling methodologies have evolved over the past four decades into one of the most powerful and versatile methods for C-C bond formation, enabling the construction of a diverse and sophisticated range of π-conjugated oligomers and polymers. In this review, we focus our discussion on recent synthetic developments of several important classes of π-conjugated systems using TM-catalyzed cross-coupling reactions, with a perspective on their utility for organic electronic materials.

  3. Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Hoo Kim, Eun; Wei, Alexander; Negishi, Ei-ichi

    2014-08-01

    Organic molecules and polymers with extended π-conjugation are appealing as advanced electronic materials, and have already found practical applications in thin-film transistors, light emitting diodes, and chemical sensors. Transition metal (TM)-catalyzed cross-coupling methodologies have evolved over the past four decades into one of the most powerful and versatile methods for C-C bond formation, enabling the construction of a diverse and sophisticated range of π-conjugated oligomers and polymers. In this review, we focus our discussion on recent synthetic developments of several important classes of π-conjugated systems using TM-catalyzed cross-coupling reactions, with a perspective on their utility for organic electronic materials.

  4. Electrically coupling complex oxides to semiconductors: A route to novel material functionalities

    DOE PAGES

    Ngai, J. H.; Ahmadi-Majlan, K.; Moghadam, J.; ...

    2017-01-12

    Complex oxides and semiconductors exhibit distinct yet complementary properties owing to their respective ionic and covalent natures. By electrically coupling complex oxides to traditional semiconductors within epitaxial heterostructures, enhanced or novel functionalities beyond those of the constituent materials can potentially be realized. Essential to electrically coupling complex oxides to semiconductors is control of the physical structure of the epitaxially grown oxide, as well as the electronic structure of the interface. In this paper, we discuss how composition of the perovskite A- and B-site cations can be manipulated to control the physical and electronic structure of semiconductor—complex oxide heterostructures. Two prototypicalmore » heterostructures, Ba1-xSrxTiO3/Ge and SrZrxTi1-xO3/Ge, will be discussed. In the case of Ba1-xSrxTiO3/Ge, we discuss how strain can be engineered through A-site composition to enable the re-orientable ferroelectric polarization of the former to be coupled to carriers in the semiconductor. In the case of SrZrxTi1-xO3/Ge we discuss how B-site composition can be exploited to control the band offset at the interface. Finally, analogous to heterojunctions between compound semiconducting materials, control of band offsets, i.e., band-gap engineering, provides a pathway to electrically couple complex oxides to semiconductors to realize a host of functionalities.« less

  5. Analysis of biological reference materials, prepared by microwave dissolution, using inductively coupled plasma mass spectrometry.

    PubMed

    Friel, J K; Skinner, C S; Jackson, S E; Longerich, H P

    1990-03-01

    A procedure has been developed for the analysis of biological materials by inductively coupled plasma mass spectrometry (ICP-MS). Fast, efficient and complete sample digestion is achieved by a combined microwave-nitric acid/open beaker-nitric acid-hydrogen peroxide procedure. The ICP-MS analysis is performed with an on-line five-element internal standard to correct for matrix and instrumental drift effects. Results are presented for 24 elements in three biological reference materials (National Institute of Standards and Technology Standard Reference Materials 5277a Liver and 1566 Oyster and International Atomic Energy Agency Certified Reference Material H4 Animal Muscle). For all elements significantly above the detection limit and reagent blank concentrations, good agreement exists between ICP-MS and certified values.

  6. Determination of trace metals in marine biological reference materials by inductively coupled plasma mass spectrometry

    SciTech Connect

    Beauchemin, D.; McLaren, J.W.; Willie, S.N.; Berman, S.S.

    1988-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) was used for the analysis of two marine biological reference materials (dogfish liver tissue (DOLT-1) and dogfish muscle tissue (DORM-1)). The materials were put into solution by digestion in a nitric acid/hydrogen peroxide mixture. Thirteen elements (Na, Mg, Cr, Fe, Mn, Co, Ni, Cu, Zn, As, Cd, Hg, and Pb) were then determined. Accurate results were obtained by standard additions or isotope dilution techniques for all of these elements in DORM-1 and for all but Cr in DOLT-1.

  7. Some aspects of coupled electrical-mechanical effects in dielectric materials

    NASA Astrophysics Data System (ADS)

    Teyssedre, Gilbert; Berquez, Laurent; Laurent, Christian

    2015-05-01

    The propensity of electrically insulating materials to generate/store electrical charges leads to a panel of electromechanical phenomena that can be either exploited in applications relevant to electrical engineering, or represent limitations in the performance of insulating materials. The aim of this contribution is to describe various features of these electrical-mechanical coupling phenomena with focus on the field-induced strain measurement of charged polymers, on the charge distribution measurement by pulsed electroacoustic method and on the contribution of electromechanical effects in electrical ageing phenomena. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014)", edited by Adel Razek

  8. A general one-dimension nonlinear magneto-elastic coupled constitutive model for magnetostrictive materials

    SciTech Connect

    Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao

    2015-10-15

    For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions. The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications.

  9. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  10. Enantiomeric Profiling of Chiral Pharmacologically Active Compounds in the Environment with the Usage of Chiral Liquid Chromatography 
Coupled with Tandem Mass Spectrometry.

    PubMed

    Camacho-Muñoz, Dolores; Petrie, Bruce; Castrignanò, Erika; Kasprzyk-Hordern, Barbara

    2016-08-01

    The issue of drug chirality is attracting increasing attention among the scientific community. The phenomenon of chirality has been overlooked in environmental research (environmental occurrence, fate and toxicity) despite the great impact that chiral pharmacologically active compounds (cPACs) can provoke on ecosystems. The aim of this paper is to introduce the topic of chirality and its implications in environmental contamination. Special attention has been paid to the most recent advances in chiral analysis based on liquid chromatography coupled with mass spectrometry and the most popular protein based chiral stationary phases. Several groups of cPACs of environmental relevance, such as illicit drugs, human and veterinary medicines were discussed. The increase in the number of papers published in the area of chiral environmental analysis indicates that researchers are actively pursuing new opportunities to provide better understanding of environmental impacts resulting from the enantiomerism of cPACs.

  11. Enantiomeric Profiling of Chiral Pharmacologically Active Compounds in the Environment with the Usage of Chiral Liquid Chromatography 
Coupled with Tandem Mass Spectrometry

    PubMed Central

    Camacho-Muñoz, Dolores; Petrie, Bruce; Castrignanò, Erika; Kasprzyk-Hordern, Barbara

    2016-01-01

    The issue of drug chirality is attracting increasing attention among the scientific community. The phenomenon of chirality has been overlooked in environmental research (environmental occurrence, fate and toxicity) despite the great impact that chiral pharmacologically active compounds (cPACs) can provoke on ecosystems. The aim of this paper is to introduce the topic of chirality and its implications in environmental contamination. Special attention has been paid to the most recent advances in chiral analysis based on liquid chromatography coupled with mass spectrometry and the most popular protein based chiral stationary phases. Several groups of cPACs of environmental relevance, such as illicit drugs, human and veterinary medicines were discussed. The increase in the number of papers published in the area of chiral environmental analysis indicates that researchers are actively pursuing new opportunities to provide better understanding of environmental impacts resulting from the enantiomerism of cPACs. PMID:27713682

  12. Symmetries and Topological Order: Realizations and Signals in Correlated Strong Spin-Orbit Coupled Materials

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Ping

    Spin-orbit coupling exists in materials in general. However, it entangles the spin and orbital degrees of freedom and complicates the model. Thus, theorists usually neglect the effects induced by spin-orbit coupling first and consider spin-orbit coupling as perturbation next. The non-perturbative effects brought up by spin-orbit coupling are thus often less studied or overlooked. On the other hand, the majority in the study of interacting topological order focusing on the general structure of theories and made significant advances by leaving material details behind. It is thus important to find possible microscopic models that could realize the new phases in laboratories and benefits from the progress of theories to make experimental predictions. In this thesis, we study the physical effects due to strong spin-orbit coupling from the perspective of searching new quantum orders and the non-trivial responses. (i) The first project, we propose the nontrivial dipolar-octupolar(DO) doublets on the pyrochlore lattice. By studying the most general symmetry allowed model at the localized and the itinerant limit for DO doublets, we found two 3D symmetry enriched topological orders and topological insulator correspondingly. (ii) In the second project, we analyze the 2D model descending from the localized limit of DO doublets on pyrochlore. The discrete onsite symmetry and space group symmetry could lead to a symmetry-enriched topological order with symmetry fractionalization pattern that cannot emerge from a spin model with continuous spin rotational symmetry. The non-trivial symmetry fractionalization pattern contributes to the striking numerical signal that can help identifying the topological order. (iii) In the third project, we develop a theory to understand the high-energy Raman signal in Sr2IrO4.

  13. Performance of tonpilz transducers with segmented piezoelectric stacks using materials with high electromechanical coupling coefficient.

    PubMed

    Thompson, Stephen C; Meyer, Richard J; Markley, Douglas C

    2014-01-01

    Tonpilz acoustic transducers for use underwater often include a stack of piezoelectric material pieces polarized along the length of the stack and having alternating polarity. The pieces are interspersed with electrodes, bonded together, and electrically connected in parallel. The stack is normally much shorter than a quarter wavelength at the fundamental resonance frequency so that the mechanical behavior of the transducer is not affected by the segmentation. When the transducer bandwidth is less than a half octave, as has conventionally been the case, for example, with lead zirconate titanate (PZT) material, stack segmentation has no significant effect on the mechanical behavior of the device in its normal operating band near the fundamental resonance. However, when a high coupling coefficient material such as lead magnesium niobate-lead titanate (PMN-PT) is used to achieve a wider bandwidth with the tonpilz, the performance difference between a segmented stack and a similar piezoelectric section with electrodes only at the two ends can be significant. This paper investigates the effects of stack segmentation on the performance of wideband underwater tonpilz acoustic transducers. Included is a discussion of a particular tonpilz transducer design using single crystal piezoelectric material with high coupling coefficient compared with a similar design using more traditional PZT ceramics.

  14. Corrosion investigation of two materials for implant supraconstructions coupled to a titanium implant.

    PubMed

    Ravnholt, G; Jensen, J

    1991-04-01

    The corrosion of two materials for implant supraconstructions, a carbon fiber/PMMA composite and a silver-palladium alloy, was investigated in vitro, the materials being galvanically coupled to a titanium implant. Corrosion current and pH of the electrolyte were monitored, and corrosion products were identified by powder X-ray diffraction. The carbon composite and the silver-palladium per se did not corrode, whereas a silver-palladium specimen brazed with the recommended brazing alloy corroded unmistakably, yielding copper-containing corrosion products. The action of local corrosion cells around the brazed joint is considered, and it is concluded that the two materials seem well suited for implant supraconstructions, provided that brazing the silver-palladium can be avoided. Considering the clinical relevance of the experimental model used, it is concluded that the model is likely to predict a lower corrosion susceptibility than the one found in vivo.

  15. Cellular polypropylene polymer foam as air-coupled ultrasonic transducer materials.

    PubMed

    Satyanarayan, L; Haberman, Michael R; Berthelot, Yves H

    2010-10-01

    Cellular polypropylene polymer foams, also known as ferroelectrets, are compelling candidates for air-coupled ultrasonic transducer materials because of their excellent acoustic impedance match to air and because they have a piezoelectric d(33) coefficient superior to that of PVDF. This study investigates the performance of ferroelectret transducers in the generation and reception of ultrasonic waves in air. As previous studies have noted, the piezoelectric coupling coefficients of these foams depend on the number, size, and distribution of charged voids in the microstructure. The present work studies the influence of these parameters both theoretically and experimentally. First, a three-dimensional model is employed to explain the variation of piezoelectric coupling coefficients, elastic stiffness, and dielectric permittivity as a function of void fraction based on void-scale physics and void geometry. Laser Doppler vibrometer (LDV) measurements of the effective d(33) coefficient of a specially fabricated prototype transmitting transducer are then shown which clearly indicate that the charged voids in the ferroelectret material are randomly distributed in the plane of the foam. The frequency-dependent dynamic d(33) coefficient is then reported from 50 to 500 kHz for different excitation voltages and shown to be largely insensitive to drive voltage. Lastly, two ferroelectret transducers are operated in transmit-receive mode and the received signal is shown to accurately represent the corresponding signal generated by the transmitting transducer as measured using LDV.

  16. Optimisation and coupling of high-performance photocyclic initiating systems for efficient holographic materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ley, Christian; Carré, Christian; Ibrahim, Ahmad; Allonas, Xavier

    2017-05-01

    For fabrication of diffractive optical elements or for holographic data storage, photopolymer materials have turned out to be serious candidates, taking into account their performances such as high spatial resolution, dry processing capability, ease of use, high versatility. From the chemical point of view, several organic materials are able to exhibit refractive index changes resulting from polymerization, crosslinking or depolymerization, such as mixtures of monomers with several reactive functions and oligomers, associated to additives, fillers and to a photoinitiating system (PIS). In this work, the efficiencies of two and three component PIS as holographic recording materials are analyzed in term of photopolymerization kinetics and diffraction yield. The selected systems are based on visible dyes, electron donor and electron acceptor. In order to investigate the influence of the photophysical properties of dye on the holographic recording material performance time resolved and steady state spectroscopic studies of the PIS are presented. This detailed photochemical studies of the PIS outline the possible existence of photocyclic initiating systems (PCIS) where the dye is regenerated during the chemical process. Simultaneously, these visible systems are associated to fluorinated acrylate monomers for the recording of transmission gratings. To get more insight into the hologram formation, gratings' recording curves were compared to those of monomer to polymer conversion obtained by real time Fourier transform infrared spectroscopy. This work outlines the importance of the coupling of the the photochemical reactions and the holographic resin. Moreover the application of the PCIS in holographic recording outlines the importance of the photochemistry on final holographic material properties: here a sensitive material with high diffraction yield is described. Indeed, this work outlines the importance of the coupling between the photochemistry underlying the radicals

  17. Thermal and Chemical Characterization of Non-Metallic Materials Using Coupled Thermogravimetric Analysis and Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    2002-01-01

    Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR. The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected realtime, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in

  18. Thermal and Chemical Characterization of Non-metallic Materials Using Coupled Thermogravimetric Analysis and Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.; Griffin, Dennis E. (Technical Monitor)

    2001-01-01

    Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR, The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected real-time, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in

  19. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.

    PubMed

    Wang, Hailiang; Dai, Hongjie

    2013-04-07

    The global shift of energy production from fossil fuels to renewable energy sources requires more efficient and reliable electrochemical energy storage devices. In particular, the development of electric or hydrogen powered vehicles calls for much-higher-performance batteries, supercapacitors and fuel cells than are currently available. In this review, we present an approach to synthesize electrochemical energy storage materials to form strongly coupled hybrids (SC-hybrids) of inorganic nanomaterials and novel graphitic nano-carbon materials such as carbon nanotubes and graphene, through nucleation and growth of nanoparticles at the functional groups of oxidized graphitic nano-carbon. We show that the inorganic-nano-carbon hybrid materials represent a new approach to synthesize electrode materials with higher electrochemical performance than traditional counterparts made by simple physical mixtures of electrochemically active inorganic particles and conducting carbon materials. The inorganic-nano-carbon hybrid materials are novel due to possible chemical bonding between inorganic nanoparticles and oxidized carbon, affording enhanced charge transport and increased rate capability of electrochemical materials without sacrificing specific capacity. Nano-carbon with various degrees of oxidation provides a novel substrate for nanoparticle nucleation and growth. The interactions between inorganic precursors and oxidized-carbon substrates provide a degree of control over the morphology, size and structure of the resulting inorganic nanoparticles. This paper reviews the recent development of inorganic-nano-carbon hybrid materials for electrochemical energy storage and conversion, including the preparation and functionalization of graphene sheets and carbon nanotubes to impart oxygen containing groups and defects, and methods of synthesis of nanoparticles of various morphologies on oxidized graphene and carbon nanotubes. We then review the applications of the SC

  20. Investigation of a Coupled Arrhenius-Type/Rossard Equation of AH36 Material.

    PubMed

    Qin, Qin; Tian, Ming-Liang; Zhang, Peng

    2017-04-13

    High-temperature tensile testing of AH36 material in a wide range of temperatures (1173-1573 K) and strain rates (10(-4)-10(-2) s(-1)) has been obtained by using a Gleeble system. These experimental stress-strain data have been adopted to develop the constitutive equation. The constitutive equation of AH36 material was suggested based on the modified Arrhenius-type equation and the modified Rossard equation respectively. The results indicate that the constitutive equation is strongly influenced by temperature and strain, especially strain. Moreover, there is a good agreement between the predicted data of the modified Arrhenius-type equation and the experimental results when the strain is greater than 0.02. There is also good agreement between the predicted data of the Rossard equation and the experimental results when the strain is less than 0.02. Therefore, a coupled equation where the modified Arrhenius-type equation and Rossard equation are combined has been proposed to describe the constitutive equation of AH36 material according to the different strain values in order to improve the accuracy. The correlation coefficient between the computed and experimental flow stress data was 0.998. The minimum value of the average absolute relative error shows the high accuracy of the coupled equation compared with the two modified equations.

  1. Investigation of a Coupled Arrhenius-Type/Rossard Equation of AH36 Material

    PubMed Central

    Qin, Qin; Tian, Ming-Liang; Zhang, Peng

    2017-01-01

    High-temperature tensile testing of AH36 material in a wide range of temperatures (1173–1573 K) and strain rates (10−4–10−2 s−1) has been obtained by using a Gleeble system. These experimental stress-strain data have been adopted to develop the constitutive equation. The constitutive equation of AH36 material was suggested based on the modified Arrhenius-type equation and the modified Rossard equation respectively. The results indicate that the constitutive equation is strongly influenced by temperature and strain, especially strain. Moreover, there is a good agreement between the predicted data of the modified Arrhenius-type equation and the experimental results when the strain is greater than 0.02. There is also good agreement between the predicted data of the Rossard equation and the experimental results when the strain is less than 0.02. Therefore, a coupled equation where the modified Arrhenius-type equation and Rossard equation are combined has been proposed to describe the constitutive equation of AH36 material according to the different strain values in order to improve the accuracy. The correlation coefficient between the computed and experimental flow stress data was 0.998. The minimum value of the average absolute relative error shows the high accuracy of the coupled equation compared with the two modified equations. PMID:28772767

  2. Sterilization of beehive material with a double inductively coupled low pressure plasma

    NASA Astrophysics Data System (ADS)

    Priehn, M.; Denis, B.; Aumeier, P.; Kirchner, W. H.; Awakowicz, P.; Leichert, L. I.

    2016-09-01

    American Foulbrood is a severe, notifiable disease of the honey bee. It is caused by infection of bee larvae with spores of the gram-positive bacterium Paenibacillus larvae. Spores of this organism are found in high numbers in an infected hive and are highly resistant to physical and chemical inactivation methods. The procedures to rehabilitate affected apiaries often result in the destruction of beehive material. In this study we assess the suitability of a double inductively coupled low pressure plasma as a non-destructive, yet effective alternative inactivation method for bacterial spores of the model organism Bacillus subtilis on beehive material. Plasma treatment was able to effectively remove spores from wax, which, under protocols currently established in veterinary practice, normally is destroyed by ignition or autoclaved for sterilization. Spores were removed from wooden surfaces with efficacies significantly higher than methods currently used in veterinary practice, such as scorching by flame treatment. In addition, we were able to non-destructively remove spores from the highly delicate honeycomb wax structures, potentially making treatment of beehive material with double inductively coupled low pressure plasma part of a fast and reliable method to rehabilitate infected bee colonies with the potential to re-use honeycombs.

  3. Soft X-ray Shock Loading and Momentum Coupling in Meteorite and Planetary Materials^1

    NASA Astrophysics Data System (ADS)

    Remo, J. L.; Furnish, M. D.; Lawrence, R. J.

    2011-06-01

    X-ray momentum coupling coefficients, CM, for planetary materials were determined by measuring stress waveforms produced by impulsive radiation loading from the SNL Z- machine. Targets were iron and stone meteorites, solid and powdered dunite, and Si, Al, and Fe. All samples were ˜ 1 mm thick and, except for Si, backed by LiF single-crystal windows. The x-ray spectra included thermal radiation (blackbody 170 to 237 eV) and line emissions from the pinch material (Cu, Ni, Al, or stainless steel). Target fluences of 0.4 to 1.7 kJ/cm^2 at intensities 43 to 260 GW/cm^2 produced front surface plasma pressures of 2.6 to 12.4 GPa. Stress waves driven into the samples were attenuating due to the short (˜ 5 ns) duration of the drive pulse. CM was determined using the fact that an attenuating wave impulse is constant, and accounted for the mechanical impedance mismatch between samples and window. Related experiments in the literature are discussed. Values ranged from 0.8 to 3.1 x 10-5 s/m. CTH hydrocode modeling of x-ray coupling to porous and fully dense silica supported the experimental measurements and extrapolations to other materials. ^1 Work supported by Sandia National Labs, operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. DOE's NNSA under contract DE-AC04-94AL85000.

  4. Soft X-ray shock loading and momentum coupling in meteorite and planetary materials

    NASA Astrophysics Data System (ADS)

    Remo, J. L.; Furnish, M. D.; Lawrence, R. J.

    2012-03-01

    X-ray momentum coupling coefficients, CM, were determined by measuring stress waveforms in planetary materials subjected to impulsive radiation loading from the SNL Z-machine. Targets were prepared from iron and stone meteorites, dunite (primarily magnesium rich olivine) in solid and powder forms (~5 - 300 μm grains), and Si, Al, and Fe. All samples were ~1 mm thick and, except for Si, backed by LiF single-crystal windows. The spectra of the incident x-rays included thermal radiation (blackbody 170 - 237 eV) and line emissions from the pinch material (Cu, Ni, Al, or stainless steel). Target fluences of 0.4 - 1.7 kJ/cm2 at intensities 43 - 260 GW/cm2 produced front surface plasma pressures of 2.6 - 12.4 GPa. Stress waves driven into the samples were attenuating due to the short ~5 ns duration of the drive pulse. CM was determined using the fact that an attenuating wave impulse is constant, and accounted for the mechanical impedance mismatch between samples and window. Values ranged from 0.8 - 3.1 x 10-5 s/m. CTH hydrocode modeling of x-ray coupling to porous and fully dense silica corroborated experimental results and extrapolations to other materials.

  5. Damage sensitivity investigations of EMI technique on different materials through coupled field analysis

    NASA Astrophysics Data System (ADS)

    Joshi, Bhrigu; Adhikari, Sailesh; Bhalla, Suresh

    2016-04-01

    This paper presents a comparative study through the piezoelectric coupled field analysis mode of finite element method (FEM) on detection of damages of varying magnitude, encompassing three different types of structural materials, using piezo impedance transducers. An aluminum block, a concrete block and a steel block of dimensions 48×48×10 mm were modelled in finite element software ANSYS. A PZT patch of 10×10×0.3 mm was also included in the model as surface bonded on the block. Coupled field analysis (CFA) was performed to obtain the admittance signatures of the piezo sensor in the frequency range of 0-250 kHz. The root mean square deviation (RMSD) index was employed to quantify the degree of variation of the signatures. It was found that concrete exhibited deviation in the signatures only with the change of damping values. However, the other two materials showed variation in the signatures even with changes in density and elasticity values in a small portion of the specimen. The comparative study shows that the PZT patches are more sensitive to damage detection in materials with low damping and the sensitivity typically decreases with increase in the damping.

  6. Multidimensional fully-coupled thermal/chemical/mechanical response of reactive materials

    SciTech Connect

    Hobbs, M.L.; Baer, M.R.

    1995-11-01

    A summary of multidimensional modeling is presented which describes coupled thermals chemical and mechanical response of reactive and nonreactive materials. This modeling addresses cookoff of energetic material (EM) prior to the onset of ignition. Cookoff, lasting from seconds to days, sensitizes the EM whereupon combustion of confined, degraded material determines the level of violence. Such processes are dynamic, occurring over time scales of millisecond to microsecond, and thus more amenable for shock physics analysis. This work provides preignition state estimates such as the amount of decomposition, morphological changes, and quasistatic stress states for subsequent dynamic analysis. To demonstrate a fully-coupled thermal/chemical/quasistatic mechanical capability, several example simulations have been performed: (1) the one-dimensional time-to-explosion experiments, (2) the Naval Air Weapon Center`s (NAWC) small scale cookoff bomb, (3) a small hot cell experiment and (4) a rigid, highly porous, closed-cell polyurethane foam. Predictions compared adequately to available data. Deficiencies in the model and future directions are discussed.

  7. Effects of hydrogen isotope in coupling between confinement, wall material and SoL turbulence

    NASA Astrophysics Data System (ADS)

    Itoh, K.; Itoh, S.-I.; Sasaki, M.; Kosuga, Y.

    2017-05-01

    The hydrogen isotope effect on confinement is discussed by investigating the coupling between confinement, wall material and scrape-off-layer (SoL) turbulence. An emphasis is placed upon the dependence of the neutral density on the hydrogen mass number. The momentum loss via CX process in the barrier is studied, and its influence on the radial electric field in the barrier (so as to modify the suppression of transport) is discussed. The penetration of slow neutrals and the reflection of fast neutrals on the wall are considered. Combining these processes, the influence of hydrogen mass number on the atomic, molecular, material and plasma interactions is investigated. The penetration of strong fluctuations in the SoL plasma into the confined plasma via the fuelling of neutral particles (i.e. fuelling fuels turbulence) is also discussed. The hydrogen isotope effect on this source of edge turbulence, which can affect the core-confinement, is discussed.

  8. Multielement analysis of geologic materials by inductively coupled plasma-atomic emission spectroscopy

    SciTech Connect

    Christensen, O.D.; Kroneman, R.L.; Capuano, R.M.

    1980-03-01

    Atomic emission spectroscopy using an inductively coupled plasma (ICP) source permits the rapid acquisition of multielement geochemical data from a wide variety of geologic materials. Rocks or other solid samples are taken into solution with a four acid digestion procedure and introduced directly into the plasma; fluid samples are acidified or analyzed directly. The entire process is computer-controlled, fully-automated, and requires less than five minutes per sample for quantitative determination of 37 elements. The procedures and instrumentation employed at the ESL for multielement ICP analysis of geologic materials are described and these are intended as a guide for evaluating analytic results reported from this laboratory. The quality of geochemical data can be characterized by precision, limits of quantitative determination, and accuracy. Precision values are a measure of the repeatability of analyses. In general, major element and analyses have precision of better than 5% and trace elements of better than 10% of the amount present. (MHR)

  9. Achieving synchronization with active hybrid materials: Coupling self-oscillating gels and piezoelectric films

    NASA Astrophysics Data System (ADS)

    Yashin, Victor V.; Levitan, Steven P.; Balazs, Anna C.

    Our goal is to develop materials that compute by using non-linear oscillating chemical reactions to perform spatio-temporal recognition tasks. The material of choice is a polymer gel undergoing the oscillatory Belousov-Zhabotinsky reaction. The novelty of our approach is in employing hybrid gel-piezoelectric micro-electro-mechanical systems (MEMS) to couple local chemo-mechanical oscillations over long distances by electrical connection. Our modeling revealed that (1) interaction between the MEMS units is sufficiently strong for synchronization; (2) the mode of synchronization depends on the number of units, type of circuit connection (serial of parallel), and polarity of the units; (3) each mode has a distinctive pattern in phase of oscillations and generated voltage. The results indicate feasibility of using the hybrid gel-piezoelectric MEMS for oscillator based unconventional computing.

  10. Coupling of Spin and Charge Ordering and Elastic Finescales in Complex Electronic Materials

    NASA Astrophysics Data System (ADS)

    Lookman, T.; Saxena, A.; Albers, R. C.; Bishop, A. R.; Shenoy, S. R.

    2000-03-01

    There has been an intense focus in the past decade on complex electronic/magnetic materials such as high temperature cuprate and bismuthate superconductors, colossal magnetoresistance manganites, martensitic (and shape memory) alloys, ferroelectric as well as relaxor titanates and zirconates. Various high-resolution microscopies probing spin, charge and lattice degrees of freedom have revealed new, intrinsically inhomogeneous phases, with complex multiscale patterning over hundreds of lattice spacings. We show that long-range anisotropic strain interactions arising from general elastic compatibility considerations, linking components of the strain tensor, can enable interfaces or atomic-scale defects, to induce global strain textures. Symmetry-allowed couplings between strains and electronic/magnetic variables can then generate effective strain-mediated long-range interactions between these variables. This provides a generic elastic mechanism for mutual multiscale texturing of spin, charge and microstructural variables in the above complex materials.

  11. Application of coupled mode theory on radiative heat transfer between layered Lorentz materials

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo

    2017-05-01

    The coupled mode theory (CMT) provides a simple and clear framework to analyze the radiation energy exchange between reservoirs. We apply CMT to analyze the radiative heat transfer between layered Lorentz materials whose dielectric functions can be approximated by the Lorentz oscillator model. By comparing the transmissivity computed by the exact solution to that computed by CMT, we find that CMT generally gives a good approximation for this class of materials. The biggest advantage of CMT analysis, in our opinion, is that only the (complex) resonant energies are needed to obtain the radiation energy transfer; the knowledge of the spatial profile of resonances is not required. Several issues, including how to choose the resonant modes, what these modes represent, and the limitation of this method, are discussed. Finally, we also apply the CMT method to the electronic systems, demonstrating the generality of this formalism.

  12. Coupled LC-GC techniques for the characterisation of polycyclic aromatic compounds in fuel materials

    SciTech Connect

    Askey, S.A.; Holden, K.M.L.; Bartle, K.D.

    1995-12-31

    Exposure to polycyclic aromatic compounds (PAC) has long been identified as of considerable environmental concern. Originating from both natural and anthropogenic sources, many PAC exhibit significant carcinogenic and mutagenic properties. Multi-dimensional chromatographic techniques which provide separation by virtue of chemical class (group-type) or by molecular mass greatly simplifies the analysis of inherently complex fuel materials. In this study, on-line LC-GC techniques in which high resolution gas chromatography (HPLC) have been investigated. Comprehensive characterisation of fuel feedstocks and post-pyrolysis and combustion products was achieved by coupling LC-GC to low resolution ion trap mass spectrometry (ITD-MS) and atomic emission detection (AED). The identification of PAC in diesel and coal materials, as well as urban air and diesel exhaust particulate extracts has provided valuable insight into the source, formation and distribution of such compounds pre- and post processing.

  13. Fe Simulation of Guided Waves in Composite Materials Generated and Detected by Air-Coupled Transducers

    NASA Astrophysics Data System (ADS)

    Hosten, Bernard

    2009-03-01

    The measured characteristics (efficiency and sensitivity) of two air-coupled transducers allow for the prediction of the absolute values of the pressure of the bulk waves generated in air and for the measurement of the pressure of the field radiated in air by guided waves propagating in a structure. With Finite Element software, the pressure field generated by an air-coupled transducer is simulated by introducing a right-hand side member in the Helmholtz equation, which is used for computing the propagation from the transducer to a plate. The simulated source is rotated in order to impose an angle of incidence with respect to the normal of the plate and generate the corresponding guided mode. Inside the plate, the propagation is simulated with the dynamic equations of equilibrium and a complex stiffness tensor to take into account the viscoelastic anisotropy of the material. For modeling the three-dimensional fields of the guided modes propagating in a two-dimensional non-symmetry plane, a 2.5 dimensional model is introduced. The model computes the value of the pressure field radiated in air by the plates for any guided modes and can predict the detectability of the system for a known defect in a structure. A test bed incorporating 2 air-coupled transducers is used to generate and receive various guided modes in a carbon-epoxy plate. The pressure measured by the receiver at various positions is compared to the results of the model to validate it.

  14. Coupled heat transfer model and experiment study of semitransparent barrier materials in aerothermal environment

    NASA Astrophysics Data System (ADS)

    Wang, Da-Lin; Qi, Hong

    Semi-transparent materials (such as IR optical windows) are widely used for heat protection or transfer, temperature and image measurement, and safety in energy , space, military, and information technology applications. They are used, for instance, ceramic coatings for thermal barriers of spacecrafts or gas turbine blades, and thermal image observation under extreme or some dangerous environments. In this paper, the coupled conduction and radiation heat transfer model is established to describe temperature distribution of semitransparent thermal barrier medium within the aerothermal environment. In order to investigate this numerical model, one semi-transparent sample with black coating was considered, and photothermal properties were measured. At last, Finite Volume Method (FVM) was used to solve the coupled model, and the temperature responses from the sample surfaces were obtained. In addition, experiment study was also taken into account. In the present experiment, aerodynamic heat flux was simulated by one electrical heater, and two experiment cases were designed in terms of the duration of aerodynamic heating. One case is that the heater irradiates one surface of the sample continually until the other surface temperature up to constant, and the other case is that the heater works only 130 s. The surface temperature responses of these two cases were recorded. Finally, FVM model of the coupling conduction-radiation heat transfer was validated based on the experiment study with relative error less than 5%.

  15. Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Lichte, F.E.; Meier, A.L.; Crock, J.G.

    1987-01-01

    A method of analysis of geological materials for the determination of the rare-earth elements using the Inductively coupled plasma mass spectrometric technique (ICP-MS) has been developed. Instrumental parameters and factors affecting analytical results have been first studied and then optimized. Samples are analyzed directly following an acid digestion, without the need for separation or preconcentration with limits of detection of 2-11 ng/g, precision of ?? 2.5% relative standard deviation, and accuracy comparable to inductively coupled plasma emission spectrometry and instrumental neutron activation analysis. A commercially available ICP-MS instrument is used with modifications to the sample introduction system, torch, and sampler orifice to reduce the effects of high salt content of sample solutions prepared from geologic materials. Corrections for isobaric interferences from oxide ions and other diatomic and triatomic ions are made mathematically. Special internal standard procedures are used to compensate for drift in metahmetal oxide ratios and sensitivity. Reference standard values are used to verify the accuracy and utility of the method.

  16. A coupled theory of fluid permeation and large deformations for elastomeric materials

    NASA Astrophysics Data System (ADS)

    Chester, Shawn A.; Anand, Lallit

    2010-11-01

    An elastomeric gel is a cross-linked polymer network swollen with a solvent (fluid). A continuum-mechanical theory to describe the various coupled aspects of fluid permeation and large deformations (e.g., swelling and squeezing) of elastomeric gels is formulated. The basic mechanical force balance laws and the balance law for the fluid content are reviewed, and the constitutive theory that we develop is consistent with modern treatments of continuum thermodynamics, and material frame-indifference. In discussing special constitutive equations we limit our attention to isotropic materials, and consider a model for the free energy based on a Flory-Huggins model for the free energy change due to mixing of the fluid with the polymer network, coupled with a non-Gaussian statistical-mechanical model for the change in configurational entropy—a model which accounts for the limited extensibility of polymer chains. As representative examples of application of the theory, we study (a) three-dimensional swelling-equilibrium of an elastomeric gel in an unconstrained, stress-free state; and (b) the following one-dimensional transient problems: (i) free-swelling of a gel; (ii) consolidation of an already swollen gel; and (iii) pressure-difference-driven diffusion of organic solvents across elastomeric membranes.

  17. Design of coupled cavity with energy modulated electron cyclotron resonance ion source for materials irradiation research

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Chen, J. E.; Kang, M. L.; Lu, Y. R.; Xia, W. L.; Gao, S. L.; Guo, Z. Y.; Liu, G.; Peng, S. X.; Ren, H. T.; Yan, X. Q.; Zhao, J.; Zhu, K.

    2012-05-01

    The surface topography of samples after irradiation with heavy ions, protons, and helium ions based on accelerators is an important issue in the study of materials irradiation. We have coupled the separated function radio frequency quadrupole (SFRFQ) electrodes and the traditional RFQ electrodes into a single cavity that can provide a 0.8 MeV helium beam for our materials irradiation project. The higher accelerating efficiency has been verified by the successful commissioning of the prototype SFRFQ cavity. An energy modulated electron cyclotron resonance (ECR) ion source can achieve a well-bunched beam by loading a sine wave voltage onto the extracted electrodes. Bunching is achieved without the need for an external bunch cavity, which can substantially reduce the cost of the system and the length of the beam line. The coupled RFQ-SFRFQ with an energy modulated ECR ion source will lead to a more compact accelerator system. The conceptual design of this novel structure is presented in this paper.

  18. An Investigation on the Coupled Thermal-Mechanical-Electrical Response of Automobile Thermoelectric Materials and Devices

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Mu, Yu; Zhai, Pengcheng; Li, Guodong; Zhang, Qingjie

    2013-07-01

    Thermoelectric (TE) materials, which can directly convert heat to electrical energy, possess wide application potential for power generation from waste heat. As TE devices in vehicle exhaust power generation systems work in the long term in a service environment with coupled thermal-mechanical-electrical conditions, the reliability of their mechanical strength and conversion efficiency is an important issue for their commercial application. Based on semiconductor TE devices wih multiple p- n couples and the working environment of a vehicle exhaust power generation system, the service conditions of the TE devices are simulated by using the finite-element method. The working temperature on the hot side is set according to experimental measurements, and two cooling methods, i.e., an independent and shared water tank, are adopted on the cold side. The conversion efficiency and thermal stresses of the TE devices are calculated and discussed. Numerical results are obtained, and the mechanism of the influence on the conversion efficiency and mechanical properties of the TE materials is revealed, aiming to provide theoretical guidance for optimization of the design and commercial application of vehicle TE devices.

  19. Laser-material interactions: A study of laser energy coupling with solids

    SciTech Connect

    Shannon, Mark Alan

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding.

  20. Determination of rare earth elements in environmental materials by inductively coupled plasma mass spectrometry

    SciTech Connect

    Panday, V.K.; Hoppstock, K.; Becker, J.S.; Dietze, H.J.

    1996-09-01

    Despite the fact that rare earth elements (REE) have found increasing use in modern technology only few data are available on their concentrations in biological and environmental samples. Inductively coupled plasma mass spectrometry (ICP-MS) has been employed to study the concentration of rare earth elements (REE) in various environmental materials (e.g., pine needles, mussel tissue, apple leaves) available from National Institute of Standards and Technology (NIST), the Bureau of European Communities (BCR), and the German Environmental Specimens Bank. After the decomposition of the environmental samples with HNO{sub 3}, the REE (present mostly in the ng/g-range) were separated from the matrix and simultaneously preconcentrated using liquid-liquid extraction with bis(2-ethyl hexyl)-ortho-phosphoric acid (HDEHP) in toluene as a selective reagent at pH = 2 and subsequent back extraction of the elements into the aqueous by 6M HNO{sub 3}. Recoveries of better 90% were obtained for almost all REE. A Perkin Elmer/Sciex ELAN 5000 ICP-MS and HR-ICP-MS ELEMENT from Finnigan MAT were used for quantitative analysis (by external calibration and ID-ICP-MS) of REE. The results of determination of REE concentrations agree well with the data available on some of these materials. Further supplement information on the contents of various REE in these materials.

  1. Determination of additives in PVC material by UV laser ablation inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Hemmerlin, M.; Mermet, J. M.; Bertucci, M.; Zydowicz, P.

    1997-04-01

    UV laser ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES) has been applied to the direct determination of additives in solid poly(vinyl chloride) materials. A Nd:YAG laser, operating at its fourth harmonic (266 nm), was used with a beam masking device, in the most reproducible conditions, to introduce solid particles into the plasma torch of a simultaneous ICP-AES system. Emphasis was placed on both precision and accuracy in the analysis of PVC materials by LA-ICP-AES. A series of six in-house PVC reference materials was prepared by incorporating several additives in increasing concentrations. Three alternative methods were evaluated to certify the amount of incorporated elements: ICP-AES with sample dissolution, NAA and XRF. Satisfactory results and good agreement were obtained for seven elements (Al, Ca, Cd, Mg, Sb, Sn and Ti) among the ten incorporated. Sample homogeneity appeared to be satisfactory, and calibration graphs obtained by LA-ICP-AES for several elements are presented. Finally, the performance of the technique in terms of repeatability (1.6-5%), reproducibility (2-5%), and limits of detection was investigated.

  2. High-resolution, air-coupled ultrasonic imaging of thin materials.

    PubMed

    Gan, Tat-Hean; Hutchins, David A; Billson, Duncan R; Schindel, David W

    2003-11-01

    This paper describes the use of a focused air-coupled capacitance transducer combined with pulse compression techniques to form high-resolution images of thin materials in air. The focusing of the device is achieved by using an off-axis parabolic mirror. The lateral resolution of the focused transducer, operating over a bandwidth of 1.2 MHz, was found to be less than 0.5 mm. A combination of the focused transducer as a source and a planar receiver in through-transmission mode has been developed for the measurement of different features in paper products, with a lateral resolution in through-transmission imaging of approximately 0.4 mm. Images in air of thin samples such as bank notes, high-quality writing paper, stamps, and sealed joints were obtained without contact to the sample.

  3. Spin-relaxation time in materials with broken inversion symmetry and large spin-orbit coupling.

    PubMed

    Szolnoki, Lénárd; Kiss, Annamária; Dóra, Balázs; Simon, Ferenc

    2017-08-30

    We study the spin-relaxation time in materials where a large spin-orbit coupling (SOC) is present which breaks the spatial inversion symmetry. Such a spin-orbit coupling is realized in zincblende structures and heterostructures with a transversal electric field and the spin relaxation is usually described by the so-called D'yakonov-Perel' (DP) mechanism. We combine a Monte Carlo method and diagrammatic calculation based approaches in our study; the former tracks the time evolution of electron spins in a quasiparticle dynamics simulation in the presence of the built-in spin-orbit magnetic fields and the latter builds on the spin-diffusion propagator by Burkov and Balents. Remarkably, we find a parameter free quantitative agreement between the two approaches and it also returns the conventional result of the DP mechanism in the appropriate limit. We discuss the full phase space of spin relaxation as a function of SOC strength, its distribution, and the magnitude of the momentum relaxation rate. This allows us to identify two novel spin-relaxation regimes; where spin relaxation is strongly non-exponential and the spin relaxation equals the momentum relaxation. A compelling analogy between the spin-relaxation theory and the NMR motional narrowing is highlighted.

  4. Measurement of thermal energy coupling to metallic materials in millisecond laser based on optical diffraction

    NASA Astrophysics Data System (ADS)

    Zhu, Huazhong; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua; Zhang, Hongchao

    2017-05-01

    A method which is based on the theory of Fraunhofer diffraction, thermal expansion effect, as well as lumped parameter approximation is presented to measure the laser absorptance of metallic materials under the irradiation of pulse laser. Experiments were made in a vacuum condition, using a Q-switched Nd: YAG laser at wavelength of 1064 nm and pulse duration of 0.4 ms. Fine copper wires with bare and oxidized surfaces were respectively studied as samples. In order to eliminate the complicated influence of laser ablation, the intensities used in this work were all below the damage threshold of copper. With this approach the quantitative result of coupling efficiency is obtained by analyzing the fringe spacing of diffraction without the temperature measurement. The experimental result shows a dramatic increase in laser absorptance from 0.03 (bare copper) to 0.09 (oxidized copper), implying that the efficiency of laser energy coupling to metals can be influenced significantly by surface oxidation. In addition, the average temperature rise and diameter variation of samples are calculated by the proposed method and compared with the results of simulation. Furthermore, an additional test that painted sample wire get a permanent damage is performed and discussed.

  5. Phosphorus speciation by coupled HPLC-ICPMS: low level determination of reduced phosphorus in natural materials

    NASA Astrophysics Data System (ADS)

    Atlas, Zachary; Pasek, Matthew; Sampson, Jacqueline

    2015-04-01

    Phosphorus is a geologically important minor element in the Earth's crust commonly found as relatively insoluble apatite. This constraint causes phosphorus to be a key limiting nutrient in biologic processes. Despite this, phosphorus plays a direct role in the formation of DNA, RNA and other cellular materials. Recent works suggest that since reduced phosphorus is considerably more soluble than oxidized phosphorus that it was integrally involved in the development of life on the early Earth and may continue to play a role in biologic productivity to this day. This work examines a new method for quantification and identification of reduced phosphorus as well as applications to the speciation of organo-phosphates separated by coupled HPLC - ICP-MS. We show that reduced phosphorus species (P1+, P3+ and P5+) are cleanly separated in the HPLC and coupled with the ICPMS reaction cell, using oxygen as a reaction gas to effectively convert elemental P to P-O. Analysis at M/Z= 47 producing lower background and flatter baseline chromatography than analyses performed at M/Z = 31. Results suggest very low detection limits (0.05 μM) for P species analyzed as P-O. Additionally we show that this technique has potential to speciate at least 5 other forms of phosphorus compounds. We verified the efficacy of method on numerous materials including leached Archean rocks, suburban retention pond waters, blood and urine samples and most samples show small but detectible levels of reduced phosphorus and or organo-phaospates. This finding in nearly all substances analyzed supports the assumption that the redox processing of phosphorus has played a significant role throughout the history of the Earth and it's presence in the present environment is nearly ubiquitous with the reduced oxidation state phosphorus compounds, phosphite and hypophosphite, potentially acting as significant constituents in the anaerobic environment.

  6. Effects of the methyltrimethoxysilane coupling agent on phenolic and miscanthus composites containing calcium sulfite scrubber material

    NASA Astrophysics Data System (ADS)

    Jones, Sean

    The purpose of this research is to test the effects of methyltrimethoxysilane coupling agent on composite material containing calcium sulfite obtained from the Southern Illinois Power Co-operative. This scrubber material and the miscanthus plant are of interest due to their use in coal burning power plants to reduce toxic emission. When calcium sulfate is passed through coal fire gas emissions it absorbs mercury and sulfur. In these composites it is used as filler to reduce cost. Miscanthus is a source of both cellulose reinforcement and some natural resin. This plant has low care requirements, little mineral content, useful energy return, and positive environmental effects. Under investigation is whether a post-cure procedure or a silane coupling agent will positively impact the composite. Hot pressing alone may not be enough to fully cure the phenolic. It is hoped that the silane will increase the strength characteristics of the composite by enhancing adhesion between the calcium sulfite and phenolic resin. Possible effects on the miscanthus by the silane will also be tested. Phenolic is being utilized because of its recycling and biodegradable properties along with cost effectiveness in mass production. Composite mechanical performance was measured through 3-point bending to measure flexural strength and strain at breakage. A dynamic mechanical analyzer (DMA) was used to find thermomechanical properties. The post-cure was found to be effective, particularly on the final composite containing silane. When methyltrimethoxysilane was added to the miscanthus prior to fabrication, it was found to reduce flexural strength and density. However the addition of methyltrimethoxysilane to the calcium sulfite altered thermo-mechanical properties to a state more like pure phenolic, with added flexibility and thermal stability.

  7. Nuclear Magnetic Resonance Studies of Topological Insulators and Materials with a Large Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Nisson, David Mark

    Nuclear magnetic resonance (NMR) studies were performed on large single crystals of the topological insulator materials Bi2Se 3 and Bi2Te2Se, as well as the doped topological superconductor candidate CuxBi2Se3. Samples were grown using the facilities of the Department of Physics at the University of California, Davis. Bi2Se3 crystals were grown under different conditions to control the intrinsic concentration of carrier electrons, which arises from an inherent tendency for Se vacancies to form during growth. The electrical properties, including carrier concentration of each sample, were then characterized by electrical transport measurements. Frequency swept 209Bi spectra for these samples reveal a relatively weak electric field gradient producing a splitting of about 160 kHz, and a shift that depends on the carrier concentration. The correlation between shift and intrinsic carrier concentration determines the hyperfine coupling strength between the Bi nuclei and the bulk carrier electrons. The spin-lattice relaxation rate T1--1 was also measured as a function of temperature. It is mostly temperature-independent, indicating that in samples of Bi2Se3 grown by the Bridgman method, relaxation may occur by spin diffusion to impurities rather than by previously reported mechanisms. Nuclear magnetic resonance measurements were also performed on single crystals of Bi2Se3 as a function of the angle between the field and the c-axis of the crystal lattice. These frequency-swept measurements revealed anomalous behavior that deviated significantly from what would be expected of the angular dependence of the resonance spectrum. Powder samples reveal spectra that differ still from the expectations from the single-crystal data. These phenomena are explained in part by the fact that the nutation time tpi/2) depends on the angle as a result of overlap between the central and satellite transitions, but may in addition be the result of screening of the radiofrequency field by the

  8. Rapid determination of methanol content in paper materials by alkaline extraction, coupled with headspace analysis.

    PubMed

    Zhang, Chun-Yun; Li, Ling-Ling; Chai, Xin-Sheng; Barnes, Donald G

    2014-07-11

    This study reports on a rapid method for the determination of methanol in paper-based materials by alkaline extraction, coupled with headspace analysis. Methanol partition equilibria between solid-liquid phases and vapor-liquid phases were conducted in two separate containers, from which an equation for calculating the total methanol content in the original paper sample was derived. It was found that the extraction equilibrium of methanol from solid sample could be achieved within 5min at room temperature using a high-speed disintegrator, and a subsequent neutralization step is an effective way to prevent methanol from being regenerated at high temperature during headspace equilibration. The results showed that the relative standard deviations for reproducibility tests were in the range of 1.86-6.03%, and the recoveries were in the range of 92.3-107%. The present method is simple and practical; it can be an efficient tool for quantifying the methanol content in paper-based materials and thus play an important role in the investigation of methanol migration behavior in food and beverage packaging.

  9. Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis.

    PubMed

    Long, Ran; Li, Yu; Song, Li; Xiong, Yujie

    2015-08-26

    Enabled by surface plasmons, noble metal nanostructures can interact with and harvest incident light. As such, they may serve as unique media to generate heat, supply energetic electrons, and provide strong local electromagnetic fields for chemical reactions through different mechanisms. This solar-to-chemical pathway provides a new approach to solar energy utilization, alternative to conventional semiconductor-based photocatalysis. To provide readers with a clear picture of this newly recognized process, this review presents coupling solar energy into chemical reactions through plasmonic nanostructures. It starts with a brief introduction of surface plasmons in metallic nanostructures, followed by a demonstration of tuning plasmonic features by tailoring their physical parameters. Owing to their tunable plasmonic properties, metallic materials offer a platform to trigger and drive chemical reactions at the nanoscale, as systematically overviewed in this article. The design rules for plasmonic materials for catalytic applications are further outlined based on existing examples. At the end of this article, the challenges and opportunities for further development of plasmonic-mediated catalysis toward energy and environmental applications are discussed.

  10. Coupled thermal/chemical/mechanical modeling of energetic materials in ALE3D

    SciTech Connect

    Nichols, A.L.; Couch, R.; Maltby, J.D.; McCallen, R.C.; Otero, I.; Sharp, R.

    1996-10-01

    We must improve our ability to model the response of energetic ma@ to thmnal stimuli and the processes involved m the energetic response. Traditionally, the analyses of energeuc have mvolved coupled thermal chemical reaction codes. This provides only a reasonable estimate of the dw and location of ensuing rapid reaction. To predict the violence of the reaction, the m cal motion must be included in the wide range of time scales as with the th@ hazard. Ile ALE3D code has been modified to the hazards associated with heaung energetic ma@ in weapons. We have merged the thermal models from TOPAZ3D and the chemistry models &vel@ in Chemical TOPAZ into ALE3D. We have developed and use an impMt time step option to efficiently and accurately compute the hours that the energetic material can take to react. Since on these longer fim scales materials can be expected to have signifimt motion, it is even more important to provide high- ordcr advection for all components, including the chemical species. We will show an example cook-off problem to illustrate these capabilities.

  11. A macroscopic reaction: direct covalent bond formation between materials using a Suzuki-Miyaura cross-coupling reaction.

    PubMed

    Sekine, Tomoko; Kakuta, Takahiro; Nakamura, Takashi; Kobayashi, Yuichiro; Takashima, Yoshinori; Harada, Akira

    2014-09-18

    Cross-coupling reactions are important to form C-C covalent bonds using metal catalysts. Although many different cross-coupling reactions have been developed and applied to synthesize complex molecules or polymers (macromolecules), if cross-coupling reactions are realized in the macroscopic real world, the scope of materials should be dramatically broadened. Here, Suzuki-Miyaura coupling reactions are realized between macroscopic objects. When acrylamide gel modified with an iodophenyl group (I-gel) reacts with a gel possessing a phenylboronic group (PB-gel) using a palladium catalyst, the gels bond to form a single object. This concept can also be adapted for bonding between soft and hard materials. I-gel or PB-gel selectively bonds to the glass substrates whose surfaces are modified with an electrophile or nucleophile, respectively.

  12. Compatibility enhancement of polyimide-silica hybrid sol-gel materials without incorporation of silane-coupling agent.

    PubMed

    Hung, Wei-I; Weng, Chang-Jian; Huang, Kuan-Yeh; Wu, Pei-Shan; Dai, Jiun-Kuang; Chang, Ya-Han; Tsai, Mei-Hui; Yeh, Jui-Ming; Yu, Yuan-Hsiang

    2011-04-01

    A facile route has been developed to enhance compatibility between organic polyimide matrix and dispersed phase of inorganic silica particles without addition of conventional silane-coupling agent. The as-prepared hybrid sol-gel materials having reduced size of SiO2 particle dispersed in polyimide matrix were successfully synthesized through pre-catalyzed sol-gel route using an organic diamine base. The PI-silica hybrid materials through conventional polyamic acid-catalyzed sol-gel route with/without silane-coupling agent were also prepared for comparative control studies. Morphological feature of as-prepared sol-gel materials prepared from three different approaches was also compared based on the studies of transmission electron microscopy. Effects of the material composition, in three different catalyzed routes, were investigated by thermal stability, mechanical strength, optical clarity, gas barrier and water absorption measurements of polyimide and a series of polyimide-silica hybrid sol-gel materials, respectively.

  13. Laser ablation inductively coupled plasma optical emission spectrometry for analysis of pellets of plant materials

    NASA Astrophysics Data System (ADS)

    Gomes, Marcos S.; Schenk, Emily R.; Santos, Dário; Krug, Francisco José; Almirall, José R.

    An evaluation of laser ablation inductively coupled plasma optical emission spectroscopy (LAICP OES) for the direct analysis of pelleted plant material is reported. Ground leaves of orange citrus, soy and sugarcane were comminuted using a high-speed ball mill, pressed into pellets and sampled directly with laser ablation and analyzed by ICP OES. The limits of detection (LODs) for the method ranged from as low as 0.1 mg kg- 1 for Zn to as high as 94 mg kg- 1 for K but were generally below 6 mg kg- 1 for most of the elements of interest. A certified reference material consisting of a similar matrix (NIST SRM 1547 peach leaves) was used to check the accuracy of the calibration and the reported method resulted in an average bias of ~ 5% for all the elements of interest. The precision for the reported method ranged from as low as 4% relative standard deviation (RSD) for Mn to as high as 17% RSD for Zn but averaged ~ 6.5% RSD for all the elements (n = 10). The proposed method was tested for the determination of Ca, Mg, P, K, Fe, Mn, Zn and B, and the results were in good agreement with those obtained for the corresponding acid digests by ICP-OES, no differences being observed by applying a paired t-test at the 95% confidence level. The reported direct solid sampling method provides a fast alternative to acid digestion that results in similar and appropriate analytical figures of merit with regard to sensitivity, accuracy and precision for plant material analysis.

  14. Flexible diaphragm-extreme temperature usage

    NASA Technical Reports Server (NTRS)

    Lerma, Guillermo (Inventor)

    1991-01-01

    A diaphragm suitable for extreme temperature usage, such as encountered in critical aerospace applications, is fabricated by a unique method, and of a unique combination of materials. The materials include multilayered lay-ups of diaphragm materials sandwiched between layers of bleeder fabrics. After being formed in the desired shape on a mold, they are vacuum sealed and then cured under pressure, in a heated autoclave. A bond capable of withstanding extreme temperatures are produced.

  15. Opportunistic in vitro spontaneous generation of bioactive material via longitudinal coupling electrostatic discharge during cell sorting

    SciTech Connect

    Durack, G.; Kelley, S.; Ragheb, K.; Lawler, G.; Robinson, J.P. )

    1993-01-01

    It has previously been reported by numerous, investigators and therefore generally accepted, that at sample flow rates greater than 2,000 cells per second a sorting purity of 100% cannot achieved for sorts lasting 2 hours or more. The authors have developed a theoretical model, based on Maxwell's electromagnetic equations and basic quantum mechanics as applied to a Newtonian frame of reference, which explains to their satisfaction this phenomenon. Basically, as charged droplets containing cells selected for sorting are accelerated through the varying density electromagnetic field produced by the sorting plates, there is a 0.1% probability that a high energy gamma particle will strike the ground plane of the flow cytometer. If this occurs while the instantaneous acceleration of the cell in the droplet is less than 9.74 m/s[sup 2] the alpha particles scattered tangentially from the ground plane can be longitudinally coupled to the volume immediately surrounding the cell encased by the droplet. The radius of curvature of the droplet is such that the resulting bio-radiation undergoes total internal reflection (TIR) which effectively produces a pseudo-bireactive Dirac function. A Hilbert transform of this function clearly indicates that all possible solutions that balance this function can only be obtained if there is additional bioactive material present within droplet radius. Subsequent testing has repeatedly shown that in fact most of what was erroneously thought to be contamination during sorting can be explained through application of this theory. Further investigation is expected to lead to classification of this bioactive material as an other life form.

  16. Soft x-ray shock loading and momentum coupling in meteorite and planetary materials.

    SciTech Connect

    Lawrence, R. Jeffery; Remo, John L.; Furnish, Michael David

    2010-12-01

    X-ray momentum coupling coefficients, C{sub M}, were determined by measuring stress waveforms in planetary materials subjected to impulsive radiation loading from the Sandia National Laboratories Z-machine. Results from the velocity interferometry (VISAR) diagnostic provided limited equation-of-state data as well. Targets were iron and stone meteorites, magnesium rich olivine (dunite) solid and powder ({approx}5--300 {mu}m), and Si, Al, and Fe calibration targets. All samples were {approx}1 mm thick and, except for Si, backed by LiF single-crystal windows. The x-ray spectrum included a combination of thermal radiation (blackbody 170--237 eV) and line emissions from the pinch material (Cu, Ni, Al, or stainless steel). Target fluences 0.4--1.7 kJ/cm{sup 2} at intensities 43--260 GW/cm{sup 2} produced front surface plasma pressures 2.6--12.4 GPa. Stress waves driven into the samples were attenuating due to the short ({approx}5 ns) duration of the drive pulse. Attenuating wave impulse is constant allowing accurate C{sub M} measurements provided mechanical impedance mismatch between samples and the window are known. Impedance-corrected C{sub M} determined from rear-surface motion was 1.9--3.1 x 10{sup -5} s/m for stony meteorites, 2.7 and 0.5 x 10{sup -5} s/m for solid and powdered dunite, 0.8--1.4 x 10{sup -5}.

  17. A PERSPECTIVE ON USAGE.

    ERIC Educational Resources Information Center

    GOVE, PHILIP B.

    APPROPRIATE ENGLISH USAGE SHOULD NOT BE DETERMINED BY RIGID AND ARTIFICAL REGULATIONS SET UP BY SCHOLARS MORE INTERESTED IN DEMONSTRATING THEIR OWN SUPERIORITY THAN IN DESCRIBING THE WAY LANGUAGE IS ACTUALLY USED. INSTEAD, GOOD ENGLISH SHOULD REVEAL ITSELF AS "THE PRODUCT OF CUSTOM" AND SHOULD CHANGE WITH "THE ORGANIC LIFE OF THE LANGUAGE." THUS,…

  18. Mechanism study of biopolymer hair as a coupled thermo-water responsive smart material

    NASA Astrophysics Data System (ADS)

    Xiao, Xueliang; Zhou, Hongtao; Qian, Kun

    2017-03-01

    Animal hairs existing broadly in nature are found to be effectively responsive to stimuli of heat and water in sequence for shape deformation and recovery, namely, coupled shape memory function (CSMF). In the paper, the ability of thermo-water sensitive CSMF was first time investigated for animal hairs, the structural and molecular networks for net-points and switches were therefrom identified. Experimentally, animal hair manifested a high ability of shape fixation in thermal processing and good shape recovery by water stimulus. Characterizations of two stimuli (heating and hydration) were performed systematically on hair’s deformation, recovery, viscoelasticity and chemical components (crystalline phase, key bonds inamorphous area). The variations of related chemical components in molecular networks were also explored. A hybrid structural network model was thereafter proposed to interpret the thermo-water sensitive CSMF of hair. This study of two-sequential-stimuli CSMF is original and inspired to explore more complex functions of other smart natural materials and expected to make much smarter synthetic polymers.

  19. Spark ablation-inductively coupled plasma spectrometry for analysis of geologic materials

    USGS Publications Warehouse

    Golightly, D.W.; Montaser, A.; Smith, B.L.; Dorrzapf, A.F.

    1989-01-01

    Spark ablation-inductively coupled plasma (SA-ICP) spectrometry is applied to the measurement of hafnium-zirconium ratios in zircons and to the determination of cerium, cobalt, iron, lead, nickel and phosphorus in ferromanganese nodules. Six operating parameters used for the high-voltage spark and argon-ICP combination are established by sequential simplex optimization of both signal-to-background ratio and signal-to-noise ratio. The time-dependences of the atomic emission signals of analytes and matrix elements ablated from a finely pulverized sample embedded in a pressed disk of copper demonstrate selective sampling by the spark. Concentration ratios of hafnium to zirconium in zircons are measured with a precision of 4% (relative standard deviation, RSD). For ferromanganese nodules, spectral measurements based on intensity ratios of analyte line to the Mn(II) 257.610 nm line provide precisions of analysis in the range from 7 to 14% RSD. The accuracy of analysis depends on use of standard additions of the reference material USGS Nod P-1, and an independent measurement of the Mn concentration. ?? 1989.

  20. Superconductivity and spin-orbit coupling in non-centrosymmetric materials: a review.

    PubMed

    Smidman, M; Salamon, M B; Yuan, H Q; Agterberg, D F

    2017-03-01

    In non-centrosymmetric superconductors, where the crystal structure lacks a centre of inversion, parity is no longer a good quantum number and an electronic antisymmetric spin-orbit coupling (ASOC) is allowed to exist by symmetry. If this ASOC is sufficiently large, it has profound consequences on the superconducting state. For example, it generally leads to a superconducting pairing state which is a mixture of spin-singlet and spin-triplet components. The possibility of such novel pairing states, as well as the potential for observing a variety of unusual behaviors, led to intensive theoretical and experimental investigations. Here we review the experimental and theoretical results for superconducting systems lacking inversion symmetry. Firstly we give a conceptual overview of the key theoretical results. We then review the experimental properties of both strongly and weakly correlated bulk materials, as well as two dimensional systems. Here the focus is on evaluating the effects of ASOC on the superconducting properties and the extent to which there is evidence for singlet-triplet mixing. This is followed by a more detailed overview of theoretical aspects of non-centrosymmetric superconductivity. This includes the effects of the ASOC on the pairing symmetry and the superconducting magnetic response, magneto-electric effects, superconducting finite momentum pairing states, and the potential for non-centrosymmetric superconductors to display topological superconductivity.

  1. Pore-Scale Process Coupling and Effective Surface Reaction Rates in Heterogeneous Subsurface Materials

    SciTech Connect

    Liu, Chongxuan; Liu, Yuanyuan; Kerisit, Sebastien N.; Zachara, John M.

    2015-09-01

    This manuscript provides a review of pore-scale researches in literature including experimental and numerical approaches, and scale-dependent behavior of geochemical and biogeochemical reaction rates in heterogeneous porous media. A mathematical equation that can be used to predict the scale-dependent behavior of geochemical reaction rates in heterogeneous porous media has been derived. The derived effective rate expression explicitly links the effective reaction rate constant to the intrinsic rate constant, and to the pore-scale variations in reactant concentrations in porous media. Molecular simulations to calculate the intrinsic rate constants were provided. A few examples of pore-scale simulations were used to demonstrate the application of the equation to calculate effective rate constants in heterogeneous materials. The results indicate that the deviation of effective rate constant from the intrinsic rate in heterogeneous porous media is caused by the pore-scale distributions of reactants and their correlation, which are affected by the pore-scale coupling of reactions and transport.

  2. Spark ablation-inductively coupled plasma spectrometry for analysis of geologic materials.

    PubMed

    Golightly, D W; Montaser, A; Smith, B L; Dorrzapf, A F

    1989-01-01

    Spark ablation-inductively coupled plasma (SA-ICP) spectrometry is applied to the measurement of hafnium-zirconium ratios in zircons and to the determination of cerium, cobalt, iron, lead, nickel and phosphorus in ferromanganese nodules. Six operating parameters used for the high-voltage spark and argon-ICP combination are established by sequential simplex optimization of both signal-to-background ratio and signal-to-noise ratio. The time-dependences of the atomic emission signals of analytes and matrix elements ablated from a finely pulverized sample embedded in a pressed disk of copper demonstrate selective sampling by the spark. Concentration ratios of hafnium to zirconium in zircons are measured with a precision of 4% (relative standard deviation, RSD). For ferromanganese nodules, spectral measurements based on intensity ratios of analyte line to the Mn(II) 257.610 nm line provide precisions of analysis in the range from 7 to 14% RSD. The accuracy of analysis depends on use of standard additions of the reference material USGS Nod P-1, and an independent measurement of the Mn concentration.

  3. Air-coupled detection of nonlinear Rayleigh surface waves to assess material nonlinearity.

    PubMed

    Thiele, Sebastian; Kim, Jin-Yeon; Qu, Jianmin; Jacobs, Laurence J

    2014-08-01

    This research presents a new technique for nonlinear Rayleigh surface wave measurements that uses a non-contact, air-coupled ultrasonic transducer; this receiver is less dependent on surface conditions than laser-based detection, and is much more accurate and efficient than detection with a contact wedge transducer. A viable experimental setup is presented that enables the robust, non-contact measurement of nonlinear Rayleigh surface waves over a range of propagation distances. The relative nonlinearity parameter is obtained as the slope of the normalized second harmonic amplitudes plotted versus propagation distance. This experimental setup is then used to assess the relative nonlinearity parameters of two aluminum alloy specimens (Al 2024-T351 and Al 7075-T651). These results demonstrate the effectiveness of the proposed technique - the average standard deviation of the normalized second harmonic amplitudes, measured at locations along the propagation path, is below 2%. Experimental validation is provided by a comparison of the ratio of the measured nonlinearity parameters of these specimens with ratios from the absolute nonlinearity parameters for the same materials measured by capacitive detection of nonlinear longitudinal waves.

  4. Electrical switching of antiferromagnets via strongly spin-orbit coupled materials

    NASA Astrophysics Data System (ADS)

    Li, Xi-Lai; Duan, Xiaopeng; Semenov, Yuriy G.; Kim, Ki Wook

    2017-01-01

    Electrically controlled ultra-fast switching of an antiferromagnet (AFM) is shown to be realizable by interfacing it with a material of strong spin-orbit coupling. The proximity interaction between the sublattice magnetic moments of a layered AFM and the spin-polarized free electrons at the interface offers an efficient way to manipulate antiferromagnetic states. A quantitative analysis, using the combination with a topological insulator as an example, demonstrates highly reliable 90° and 180° rotations of AFM magnetic states under two different mechanisms of effective torque generation at the interface. The estimated switching speed and energy requirement are in the ps and aJ ranges, respectively, which are about two-three orders of magnitude better than the ferromagnetic counterparts. The observed differences in the magnetization dynamics may explain the disparate characteristic responses. Unlike the usual precessional/chiral motions in the ferromagnets, those of the AFMs can essentially be described as a damped oscillator with a more direct path. The impact of random thermal fluctuations is also examined.

  5. Superconductivity and spin-orbit coupling in non-centrosymmetric materials: a review

    NASA Astrophysics Data System (ADS)

    Smidman, M.; Salamon, M. B.; Yuan, H. Q.; Agterberg, D. F.

    2017-03-01

    In non-centrosymmetric superconductors, where the crystal structure lacks a centre of inversion, parity is no longer a good quantum number and an electronic antisymmetric spin-orbit coupling (ASOC) is allowed to exist by symmetry. If this ASOC is sufficiently large, it has profound consequences on the superconducting state. For example, it generally leads to a superconducting pairing state which is a mixture of spin-singlet and spin-triplet components. The possibility of such novel pairing states, as well as the potential for observing a variety of unusual behaviors, led to intensive theoretical and experimental investigations. Here we review the experimental and theoretical results for superconducting systems lacking inversion symmetry. Firstly we give a conceptual overview of the key theoretical results. We then review the experimental properties of both strongly and weakly correlated bulk materials, as well as two dimensional systems. Here the focus is on evaluating the effects of ASOC on the superconducting properties and the extent to which there is evidence for singlet-triplet mixing. This is followed by a more detailed overview of theoretical aspects of non-centrosymmetric superconductivity. This includes the effects of the ASOC on the pairing symmetry and the superconducting magnetic response, magneto-electric effects, superconducting finite momentum pairing states, and the potential for non-centrosymmetric superconductors to display topological superconductivity.

  6. Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method.

    PubMed

    Daniels, Alice; Zhu, Meiling; Tiwari, Ashutosh

    2013-12-01

    Piezoelectric material properties have substantial influence on electrical power output from piezoelectric energy harvesters (PEHs). Understanding their influences is the first step in designing effective PEHs to generate higher power outputs. This paper uses a coupled piezoelectric-circuit-finite element method to study the power outputs of different types of piezoelectric materials, including single crystal, polyvinylidene fluoride (PVDF), and soft and hard lead zirconate titanate (PZT) materials. The purpose of this study is to try to gain an understanding of which piezoelectric material property--the elastic compliance s11, the piezoelectric strain constant d31, the piezoelectric stress constant g31, and the relative dielectric constant ϵ(T)r33, and the associated material properties of the d31 × g31, called the figure of merit (FOM), and the coupling coefficient k31--dominates the power output. A rectangular piezoelectric plate under a low-frequency excitation is used to evaluate piezoelectric material properties for a higher power output. It was found that 1) d31 is a more dominant material property over other material properties for higher power output; 2) FOM was more linearly related to the power output than either the k31 or the d31; and 3) ϵ(T)r33 had some role; when the materials have an identical d31; a lower ϵ(T)r33 was preferred. Because of unexplained outliers, no single material parameter was able to be recommended as selection criteria, but combined FOM with d31 parameters is recommended for selection of piezoelectric material for a higher power output from PEHs.

  7. Using the material point method to model chemical/mechanical coupling in the deformation of a silicon anode

    NASA Astrophysics Data System (ADS)

    Gritton, Chris; Guilkey, James; Hooper, Justin; Bedrov, Dmitry; Kirby, Robert M.; Berzins, Martin

    2017-06-01

    The lithiation and delithiation of a silicon battery anode is modeled using the material point method (MPM). The main challenges in modeling this process using the MPM is to simulate stress dependent diffusion coupled with concentration dependent stress within a material that undergoes large deformations. MPM is chosen as the numerical method of choice because of its ability to handle large deformations. A method for modeling diffusion within MPM is described. A stress dependent model for diffusivity and three different constitutive models that fully couple the equations for stress with the equations for diffusion are considered. Verifications tests for the accuracy of the numerical implementations of the models and validation tests with experimental results show the accuracy of the approach. The application of the fully coupled stress diffusion model implemented in MPM is applied to modeling the lithiation and delithiation of silicon nanopillars.

  8. Coupled fluid and solid mechanics study for improved permeability estimation of fines' invaded porous materials

    NASA Astrophysics Data System (ADS)

    Mirabolghasemi, M.; Prodanovic, M.

    2012-12-01

    The problem of fine particle infiltration is seen in fields from subsurface transport, to drug delivery to industrial slurry flows. Sediment filtration and pathogen retention are well-known subsurface engineering problems that have been extensively studied through different macroscopic, microscopic and experimental modeling techniques Due to heterogeneity, standard constitutive relationships and models yield poor predictions for flow (e.g. permeability) and rock properties (e.g. elastic moduli) of the invaded (damaged) porous media. This severely reduces our ability to, for instance, predict retention, pressure build-up, newly formed flow pathways or porous medium mechanical behavior. We chose a coupled computational fluid dynamics (CFD) - discrete element modeling (DEM) approach to simulate the particulate flow through porous media represented by sphere packings. In order to minimize the uncertainty involved in estimating the flow properties of porous media on Darcy scale and address the dynamic nature of filtration process, this microscopic approach is adapted as a robust method that can incorporate particle interaction physics as well as the heterogeneity of the porous medium.. The coupled simulation was done in open-source packages which has both CFD (openFOAM) and DEM components (LIGGGHTS). We ran several sensitivity analyses over different parameters such as particle/grain size ratio, fluid viscosity, flow rate and sphere packing porosity in order to investigate their effects on the depth of invasion and damaged porous medium permeability. The response of the system to the variation of different parameters is reflected through different clogging mechanism; for instance, bridging is the dominant mechanism of pore-throat clogging when larger particles penetrate into the packing, whereas, in case of fine particles which are much smaller than porous medium grains (1/20 in diameter), this mechanism is not very effective due to the frequent formation and

  9. Industrial Technology Modernization Program. Project 80. Increase Efficiency of Card Test/Device Test Areas by the Usage of Improved Material Handling Systems. Revision 1. Phase 2

    DTIC Science & Technology

    1988-03-01

    Honeywell will be viewed as the leading supplier of Military Avionics products. While this is of important strategic value from a marketing ...FailtyTorsTech Mo Pouct Systm FacilityTuurenI Operations Description Physical Environments Producto Flow Material Flow Intoffna*lon Flow currentNew Stemns, CIM...standard hours were projected for ten years using an established percentage growth for the FM & TS operations derived from FSO marketing projections

  10. Predicate Adjective Usage in Standard Russian.

    ERIC Educational Resources Information Center

    Benson, Morton

    1959-01-01

    This paper describes predicate adjective usage in modern standard Russian using a corpus of written Russian derived from "Pravda" (neutral literary style) and "Krokodil" (conversational material). The short, long nominative, and instrumental forms are examined in relation to the type of adjective, copulative verb, sentence subject, and other…

  11. Optimality criteria-based topology optimization of a bi-material model for acoustic-structural coupled systems

    NASA Astrophysics Data System (ADS)

    Shang, Linyuan; Zhao, Guozhong

    2016-06-01

    This article investigates topology optimization of a bi-material model for acoustic-structural coupled systems. The design variables are volume fractions of inclusion material in a bi-material model constructed by the microstructure-based design domain method (MDDM). The design objective is the minimization of sound pressure level (SPL) in an interior acoustic medium. Sensitivities of SPL with respect to topological design variables are derived concretely by the adjoint method. A relaxed form of optimality criteria (OC) is developed for solving the acoustic-structural coupled optimization problem to find the optimum bi-material distribution. Based on OC and the adjoint method, a topology optimization method to deal with large calculations in acoustic-structural coupled problems is proposed. Numerical examples are given to illustrate the applications of topology optimization for a bi-material plate under a low single-frequency excitation and an aerospace structure under a low frequency-band excitation, and to prove the efficiency of the adjoint method and the relaxed form of OC.

  12. Transmission properties of a Fibonacci quasi-crystals containing single-negative materials and their usage as multi-channel filters

    NASA Astrophysics Data System (ADS)

    Charkhesht, Ali; Pashaei Adl, Hamid; Roshan Entezar, Samad

    2014-03-01

    One of the interesting phenomena appearing in Fibonacci quasi-crystals is wave localization, so that the field becomes spatially confined in some suitable regions, or delocalized in some other parts. Many theoretical works have been written on this interesting subject. The periodic Fibonacci structure properties lead to a transmission spectrum that exhibits some band gap, and it is possible to control these band gaps by the generation number of this structures. All these properties make Fibonacci quasi-crystals materials very attractive from an optical point of view. Accordingly, the transmission properties of Fibonacci quasi-crystals containing single-negative materials are investigated with the transfer matrix method. It is shown that the periodic structures created by repeating the Fibonacci quasi-crystal generations, have some omnidirectional band gaps at the single-negative frequency region. Moreover, it is shown these band gaps depends on the number of Fibonacci photonic crystal unit cell. In other words, when generation number of Fibonacci photonic crystal unit cell increases, some sub band gaps appears within this omnidirectional band gap. In this work by using Fibonacci quasi-periodic structures we demonstrate that by increasing Generation Number of Unit cell, some omnidirectional sub-gaps will appear which can be used as a multichannel filter.

  13. Effect of galvanic coupling between overpack materials for high-level nuclear waste containers

    SciTech Connect

    Dunn, D.S.; Cragnolino, G.A.; Sridhar, N.

    1998-12-31

    The effect of environmental parameters and area ratio on the galvanic protection of Alloy 825 by A516 steel was studied. A simplified model was used to calculate the potential and corrosion current density of the bimetallic couple as a function of the galvanic coupling efficiency. Galvanic corrosion tests were performed to gain confidence in the calculated values. Both the calculations and laboratory testing indicate that, with highly efficient coupling, the potential of the galvanic couple is maintained below the repassivation potential for Alloy 825 in chloride-containing solutions. As a result, the initiation of localized corrosion on Alloy 825 is prevented. The formation of oxides, scales, and corrosion product layers between the barriers is shown to reduce the efficiency of the galvanic couple, which may result in conditions under which the localized corrosion of the inner corrosion resistant barrier can occur.

  14. 40 CFR 52.254 - Organic solvent usage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Organic solvent usage. 52.254 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.254 Organic solvent usage. (a) This...) No person shall discharge into the atmosphere more than 15 pounds of organic materials in any 1...

  15. 40 CFR 52.254 - Organic solvent usage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Organic solvent usage. 52.254 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.254 Organic solvent usage. (a) This...) No person shall discharge into the atmosphere more than 15 pounds of organic materials in any 1...

  16. Electron-Vibration Coupling in Molecular Materials: Assignment of Vibronic Modes from Photoelectron Momentum Mapping.

    PubMed

    Graus, M; Grimm, M; Metzger, C; Dauth, M; Tusche, C; Kirschner, J; Kümmel, S; Schöll, A; Reinert, F

    2016-04-08

    Electron-phonon coupling is one of the most fundamental effects in condensed matter physics. We here demonstrate that photoelectron momentum mapping can reveal and visualize the coupling between specific vibrational modes and electronic excitations. When imaging molecular orbitals with high energy resolution, the intensity patterns of photoelectrons of the vibronic sidebands of molecular states show characteristic changes due to the distortion of the molecular frame in the vibronically excited state. By comparison to simulations, an assignment of specific vibronic modes is possible, thus providing unique information on the coupling between electronic and vibronic excitation.

  17. Hybrid optical materials of plasmon-coupled CdSe/ZnS coreshells for photonic applications

    PubMed Central

    Seo, Jaetae; Fudala, Rafal; Kim, Wan-Joong; Rich, Ryan; Tabibi, Bagher; Cho, Hyoyeong; Gryczynski, Zygmunt; Gryczynski, Ignacy; Yu, William

    2013-01-01

    A hybrid optical nanostructure of plasmon-coupled SQDs was developed for photonic applications. The coupling distances between the mono-layers of Au nanoparticles with a surface concentration of ~9.18 × 10−4 nm−2 and CdSe/ZnS SQDs with that of ~3.7 × 10−3 nm−2 were controlled by PMMA plasma etching. Time-resolved spectroscopy of plasmon-coupled SQDs revealed a strong shortening of the longest lifetime and ~9-fold PL enhancement. Polarization-resolved PL spectroscopy displayed linear polarization and depolarization at near- and far-field plasmon-coupling, respectively. The physical origin of PL enhancement could be attributable to both the large local field enhancement and the fast resonant energy transfer. PMID:23457661

  18. Radio frequency coupling apparatus and method for measuring minority carrier lifetimes in semiconductor materials

    DOEpatents

    Johnston, Steven W.; Ahrenkiel, Richard K.

    2002-01-01

    An apparatus for measuring the minority carrier lifetime of a semiconductor sample using radio-frequency coupling. The measuring apparatus includes an antenna that is positioned a coupling distance from a semiconductor sample which is exposed to light pulses from a laser during sampling operations. A signal generator is included to generate high frequency, such as 900 MHz or higher, sinusoidal waveform signals that are split into a reference signal and a sample signal. The sample signal is transmitted into a sample branch circuit where it passes through a tuning capacitor and a coaxial cable prior to reaching the antenna. The antenna is radio-frequency coupled with the adjacent sample and transmits the sample signal, or electromagnetic radiation corresponding to the sample signal, to the sample and receives reflected power or a sample-coupled-photoconductivity signal back. To lower impedance and speed system response, the impedance is controlled by limiting impedance in the coaxial cable and the antenna reactance. In one embodiment, the antenna is a waveguide/aperture hybrid antenna having a central transmission line and an adjacent ground flange. The sample-coupled-photoconductivity signal is then transmitted to a mixer which also receives the reference signal. To enhance the sensitivity of the measuring apparatus, the mixer is operated to phase match the reference signal and the sample-coupled-photoconductivity signal.

  19. Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator

    NASA Astrophysics Data System (ADS)

    Hu, Ji-Ying; Li, Zhao-Hui; Sun, Yang; Li, Qi-Hu

    2016-12-01

    Shear-mode piezoelectric materials have been widely used to shunt the damping of vibrations where utilizing surface or interface shear stresses. The thick-shear mode (TSM) elastic constant and the mechanical loss factor can change correspondingly when piezoelectric materials are shunted to different electrical circuits. This phenomenon makes it possible to control the performance of a shear-mode piezoelectric damping system through designing the shunt circuit. However, due to the difficulties in directly measuring the TSM elastic constant and the mechanical loss factor of piezoelectric materials, the relationships between those parameters and the shunt circuits have rarely been investigated. In this paper, a coupling TSM electro-mechanical resonant system is proposed to indirectly measure the variations of the TSM elastic constant and the mechanical loss factor of piezoelectric materials. The main idea is to transform the variations of the TSM elastic constant and the mechanical loss factor into the changes of the easily observed resonant frequency and electrical quality factor of the coupling electro-mechanical resonator. Based on this model, the formular relationships are set up theoretically with Mason equivalent circuit method and they are validated with finite element (FE) analyses. Finally, a prototype of the coupling electro-mechanical resonator is fabricated with two shear-mode PZT5A plates to investigate the TSM elastic constants and the mechanical loss factors of different circuit-shunted cases of the piezoelectric plate. Both the resonant frequency shifts and the bandwidth changes observed in experiments are in good consistence with the theoretical and FE analyses under the same shunt conditions. The proposed coupling resonator and the obtained relationships are validated with but not limited to PZT5A. Project supported by the National Defense Foundation of China (Grant No. 9149A12050414JW02180).

  20. A Coupled Thermal/Material Flow Model of Friction Stir Welding Applied to Sc-Modified Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Hamilton, Carter; Kopyściański, Mateusz; Senkov, Oleg; Dymek, Stanislaw

    2013-04-01

    A coupled thermal/material flow model of friction stir welding was developed and applied to the joining of Sc-modified aluminum alloy (7042-T6) extrusions. The model reveals that surface material is pulled from the retreating side into the weld zone where it is interleaved with in situ material. Due to frictional contact with the shoulder, the surface material is hotter than the in situ material, so that the final weld microstructure is composed of bands of material with different temperature histories. For this alloy and the associated FSW heating rates, secondary phase dissolution/precipitation temperatures are in proximity to the welding temperatures. Therefore, depending on the surface and in situ material temperatures in relation to these transformation temperatures, disparate precipitate distributions can develop in the bands of material comprising the weld nugget. Based on the numerical simulation and on thermal analysis data from differential scanning calorimetry, a mechanism for the formation of onion rings within the weld zone is presented.

  1. Improving the sensitivity of J coupling measurements in solids with application to disordered materials

    SciTech Connect

    Guerry, Paul; Brown, Steven P.; Smith, Mark E.

    2016-05-15

    It has been shown previously that for magic angle spinning (MAS) solid state NMR the refocused INADEQUATE spin-echo (REINE) experiment can usefully quantify scalar (J) couplings in disordered solids. This paper focuses on the two z filter components in the original REINE pulse sequence, and investigates by means of a product operator analysis and fits to density matrix simulations the effects that their removal has on the sensitivity of the experiment and on the accuracy of the extracted J couplings. The first z filter proves unnecessary in all the cases investigated here and removing it increases the sensitivity of the experiment by a factor ∼1.1–2.0. Furthermore, for systems with broad isotropic chemical shift distributions (namely whose full widths at half maximum are greater than 30 times the mean J coupling strength), the second z filter can also be removed, thus allowing whole-echo acquisition and providing an additional √2 gain in sensitivity. Considering both random and systematic errors in the values obtained, J couplings determined by fitting the intensity modulations of REINE experiments carry an uncertainty of 0.2–1.0 Hz (∼1−10 %).

  2. Coupled hydro-mechanical effects in a poro-hyperelastic material

    NASA Astrophysics Data System (ADS)

    Selvadurai, A. P. S.; Suvorov, A. P.

    2016-06-01

    Fluid-saturated materials are encountered in several areas of engineering and biological applications. Geologic media saturated with water, oil and gas and biological materials such as bone saturated with synovial fluid, soft tissues containing blood and plasma and synthetic materials impregnated with energy absorbing fluids are some examples. In many instances such materials can be examined quite successfully by appeal to classical theories of poroelasticity where the skeletal deformations can be modelled as linear elastic. In the case of soft biological tissues and even highly compressible organic geological materials, the porous skeleton can experience large strains and, unlike rubberlike materials, the fluid plays an important role in maintaining the large strain capability of the material. In some instances, the removal of the fluid can render the geological or biological material void of any hyperelastic effects. While the fluid component can be present at various scales and forms, a useful first approximation would be to treat the material as hyperelastic where the fabric can experience large strains consistent with a hyperelastic material and an independent scalar pressure describes the pore fluid response. The flow of fluid within the porous skeleton is defined by Darcy's law for an isotropic material, which is formulated in terms of the relative velocity between the pore fluid and the porous skeleton. It is assumed that the form of Darcy's law remains unchanged during the large strain behaviour. This approach basically extends Biot's theory of classical poroelasticity to include finite deformations. The developments are used to examine the poro-hyperelastic behaviour of certain one-dimensional problems.

  3. Aluminium content of some processed foods, raw materials and food additives in China by inductively coupled plasma-mass spectrometry.

    PubMed

    Deng, Gui-Fang; Li, Ke; Ma, Jing; Liu, Fen; Dai, Jing-Jing; Li, Hua-Bin

    2011-01-01

    The level of aluminium in 178 processed food samples from Shenzhen city in China was evaluated using inductively coupled plasma-mass spectrometry. Some processed foods contained a concentration of up to 1226 mg/kg, which is about 12 times the Chinese food standard. To establish the main source in these foods, Al levels in the raw materials were determined. However, aluminium concentrations in raw materials were low (0.10-451.5 mg/kg). Therefore, aluminium levels in food additives used in these foods was determined and it was found that some food additives contained a high concentration of aluminium (0.005-57.4 g/kg). The results suggested that, in the interest of public health, food additives containing high concentrations of aluminium should be replaced by those containing less. This study has provided new information on aluminium levels in Chinese processed foods, raw materials and a selection of food additives.

  4. Determination of rare earth elements in geological materials by inductively coupled argon plasma/atomic emission spectrometry

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    Inductively coupled argon plasma/optical emission spectrometery (ICAP/OES) is useful as a simultaneous, multielement analytical technique for the determination of trace elements in geological materials. A method for the determination of trace-level rare earth elements (REE) in geological materials using an ICAP 63-channel emission spectrometer is described. Separation and preconcentration of the REE and yttrium from a sample digest are achieved by a nitric acid gradient cation exchange and hydrochloric acid anion exchange. Precision of 1-4% relative standard deviation and comparable accuracy are demonstrated by the triplicate analysis of three splits of BCR-1 and BHVO-1. Analyses of other geological materials including coals, soils, and rocks show comparable precision and accuracy.

  5. Sparing carbapenem usage.

    PubMed

    Wilson, A Peter R

    2017-09-01

    Carbapenem resistance in Gram-negative bacteria is increasing in many countries and use of carbapenems and antibiotics to which resistance is linked should be reduced to slow its emergence. There are no directly equivalent antibiotics and the alternatives are less well supported by clinical trials. The few new agents are expensive. To provide guidance on strategies to reduce carbapenem usage. A literature review was performed as described in the BSAC/HIS/BIA/IPS Joint Working Party on Multiresistant Gram-negative Infection Report. Older agents remain active against some of the pathogens, although expectations of broad-spectrum cover for empirical treatment have risen. Education, expert advice on treatment and antimicrobial stewardship can produce significant reductions in use. More agents may need to be introduced onto the antibiotic formulary of the hospital, despite the poor quality of scientific studies in some cases.

  6. TAP usage in SIMBAD

    NASA Astrophysics Data System (ADS)

    Oberto, Anaïs, O.; Mantelet, Gregory; Wenger, Marc

    2015-09-01

    TAP (Table Access Protocol promoted by IVOA) is available on SIMBAD web site since July 2012. We will have a look of all kinds of uses and try to figure out how people use it in SIMBAD. Thanks to ADQL (Astronomical Data Query Language), everyone can write their own query using criteria on all data available in the database. In the SIMBAD database, more than 30 tables are available. It can be rather difficult to write a complex query. We will see how many joins between tables are used, and how many fields are used in the queries. The SIMBAD usage is going to change thanks to this new feature, a new way to search in the database.

  7. [Smartphone usage among adolescents].

    PubMed

    Körmendi, Attila

    2015-01-01

    Among our technological gadgets smartphones play the most important role, new generation devices offer other functions beyond calling (internet availability, computer games, music player, camera functions etc.) In everydays can be experienced that youth spend more and more time with their smartphones and despite the actuality of this issue there are no studies on the excessive smartphone usage in Hungary and we can find only a few international studies. Our goal is to examine smartphone usage in primary and secondary schools in Hajdu-Bihar county, Hungary and its relationship with personality traits. Our sample consist of 263 youth from primary and secondary schools. We measured the characteristics of smartphone using and attitudes with a Mobilephone Using Questionnare. Personality traits are measured with Impulsiveness, Venturesomeness, Empathy Scale. The Child Behavior Checklist gives information about peer relationships, mental state and emotions. Average phone using time is 4,48 hours per day regarding the whole sample. This mean for boys is 3,40 hour for girls 5,39 hour. Average phone using time is higher at 16 (6,35 hour per day). The most frequent used applications are calling and visiting community sites. There is no connection between phone using and grades. The smartphone using time per day shows a significant positive relationship with Impulsivity, Anxiety and Depression, Attention deficits and Somatic problems within 17-19 ages. One of the explanation of excessive smartphone using may be the frequent visiting of community sites. Mobile phones in this case raise the availability of addictive object (community site) therefore contribute to the development of community site addiction. The connection with impulsivity, somatic problems and attention deficits refer to the anxiety reducing role of smartphones within 17-19 ages.

  8. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials.

    PubMed

    Sánchez, J C Rojas; Vila, L; Desfonds, G; Gambarelli, S; Attané, J P; De Teresa, J M; Magén, C; Fert, A

    2013-01-01

    The Rashba effect is an interaction between the spin and the momentum of electrons induced by the spin-orbit coupling (SOC) in surface or interface states. Its potential for conversion between charge and spin currents has been theoretically predicted but never clearly demonstrated for surfaces or interfaces of metals. Here we present experiments evidencing a large spin-charge conversion by the Bi/Ag Rashba interface. We use spin pumping to inject a spin current from a NiFe layer into a Bi/Ag bilayer and we detect the resulting charge current. As the charge signal is much smaller (negligible) with only Bi (only Ag), the spin-to-charge conversion can be unambiguously ascribed to the Rashba coupling at the Bi/Ag interface. This result demonstrates that the Rashba effect at interfaces can be used for efficient charge-spin conversion in spintronics.

  9. Brillouin-Wigner theory for Floquet topological phase transitions in spin-orbit-coupled materials

    NASA Astrophysics Data System (ADS)

    Mohan, Priyanka; Saxena, Ruchi; Kundu, Arijit; Rao, Sumathi

    2016-12-01

    We develop the high-frequency expansion based on the Brillouin-Wigner (B-W) perturbation theory for driven systems with spin-orbit coupling which is applicable to the cases of silicene, germanene, and stanene. We compute the effective Hamiltonian in the zero-photon subspace not only to order O (ω-1) but by keeping all the important terms to order O (ω-2) and obtain the photoassisted correction terms to both the hopping and the spin-orbit terms, as well as longer-ranged hopping terms. We then use the effective static Hamiltonian to compute the phase diagram in the high-frequency limit and compare it with the results of direct numerical computation of the Chern numbers of the Floquet bands and show that at sufficiently large frequencies, the B-W theory high-frequency expansion works well even in the presence of spin-orbit-coupling terms.

  10. Coupled thermal/chemical/mechanical modeling of energetic materials in ALE3D

    NASA Technical Reports Server (NTRS)

    Nichols, A. L.; Couch, R.; Maltby, J. D.; McCallen, R. C.; Otero, I.

    1996-01-01

    We must improve our ability to model the response of energetic materials to thermal stimuli and the processes involved in the energetic response. We have developed and used a time step option to efficiently and accurately compute the hours that the energetic material can take to react. Since on these longer film scales, materials can be expected to have significant motion, it is even more important to provide high-order advection for all components, including the chemical species. We show an example cook-off problem to illustrate these capabilities.

  11. Molecular dynamics simulation with weak coupling to heat and material baths

    NASA Astrophysics Data System (ADS)

    Eslami, Hossein; Mojahedi, Fatemeh; Moghadasi, Jalil

    2010-08-01

    A method for performing molecular dynamics simulation in the grand canonical ensemble is developed. The molecular dynamics, with coupling to an external bath, simulation method of [Berendsen et al., J. Chem. Phys. 81, 3684 (1984)] is extended for this purpose. Here the physical system of interest consists of real indistinguishable particles plus one fractional particle, whose potential energy of interaction with the rest of particles is scaled by a coupling parameter, ranging dynamically between zero and one. This coupling changes the number of particles in the system gradually and dynamically, depending on the target values of the excess chemical potential, temperature, and volume. A nonlinear scaling scheme has been adopted to scale the potential energy of interaction of the fractional particle with the rest of the system. The method has been employed to predict the density of compressed Lennard-Jones fluid, compatible with the target values of temperature and the excess chemical potential, over a wide range of temperatures and densities. The method has further been applied to do molecular dynamics simulation in the grand canonical ensemble for water and to predict its vapor-liquid phase coexistence point. The results obtained using this method are in complete agreement with previously reported results in the literature.

  12. Solid-material-based coupling efficiency analyzed with time-of-flight secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Muenster, Bastian; Welle, Alexander; Ridder, Barbara; Althuon, Daniela; Striffler, Jakob; Foertsch, Tobias C.; Hahn, Lothar; Thelen, Richard; Stadler, Volker; Nesterov-Mueller, Alexander; Breitling, Frank; Loeffler, Felix F.

    2016-01-01

    The coupling behavior of a microparticle embedded amino acid active-ester into a Poly(ethylene glycol)methacrylate-film, synthesized onto a silicon wafer by a grafting from approach, is characterized using dynamic time-of-flight secondary ion mass spectrometry (ToF-SIMS) to analyze the 3d distribution of the amino acids in the polymer film. Besides standard solid phase peptide synthesis, employing solubilized amino acids in a solvent, we used solid polymer microparticles, incorporating the amino acids. These microparticles were especially designed for a new technique to produce high-density combinatorial peptide microarrays: upon heating, the particles become viscous, which releases the embedded amino acids to diffuse and couple to the surface. In the scope of the development of this new particle-based application, ToF-SIMS is used to analyze a complex chemically modified polymer surface layer. Due to depth profile measurements, it is possible to investigate the particle-based coupling reaction not only on the surface, but also into the depth of the PEGMA film.

  13. Habitat coupling writ large: pelagic-derived materials fuel benthivorous macroalgal reef fishes in an upwelling zone.

    PubMed

    Docmac, Felipe; Araya, Miguel; Hinojosa, Ivan A; Dorador, Cristina; Harrod, Chris

    2017-09-01

    Coastal marine upwelling famously supports elevated levels of pelagic biological production, but can also subsidize production in inshore habitats via pelagic-benthic coupling. Consumers inhabiting macroalgae-dominated rocky reef habitats are often considered to be members of a food web fuelled by energy derived from benthic primary production; conversely, they may also be subsidized by materials transported from pelagic habitats. Here, we used stable isotopes (δ(13) C, δ(15) N) to examine the relative contribution of pelagic and benthic materials to an ecologically and economically important benthivorous fish assemblage inhabiting subtidal macroalgae-dominated reefs along ~1,000 km of the northern Chilean coast where coastal upwelling is active. Fish were isotopically most similar to the pelagic pathway and Bayesian mixing models indicated that production of benthivorous fish was dominated (median 98%, range 69-99%) by pelagic-derived C and N. Although the mechanism by which these materials enter the benthic food web remains unknown, our results clearly highlight the importance of pelagic-benthic coupling in the region. The scale of this subsidy has substantial implications for our basic understanding of ecosystem functioning and the management of nearshore habitats in northern Chile and other upwelling zones worldwide. © 2017 by the Ecological Society of America.

  14. Analysis of trace impurities in organometallic semiconductor grade reagent materials using electrothermal vaporization - inductively coupled plasma spectrometry

    SciTech Connect

    Argentine, M.D.

    1993-12-31

    Trace impurity determinations in volatile, pyrophoric organometallic materials is complicated owing to its chemical nature. Furthermore, trends toward high semiconductor circuit density demand that impurity determinations are performed at increasingly low levels. Volatility of the impurities is also desired as it plays a significant role in impurity incorporation in semiconductor products. Determination of both volatile and nonvolatile impurities in semiconductor-grade organometallic reagent materials has been accomplished using electrothermal vaporization-inductively coupled plasma spectrometry. Solid or liquid materials can be dispensed directly onto a graphite microboat, and application of an appropriate time-temperature ramp allows separation of impurities based on volatility. Temporal separation allows quantitative capabilities on both volatile and nonvolatile signals in a single ETV run. Calibration efforts for volatile impurities have been compared with results from exponential dilution and direct vapor sampling techniques. Nonvolatile impurity determinations can be reasonably performed with aqueous external standard calibration. Inductively coupled plasma-mass spectrometry provides an alternate and more sensitive, multielement detection method. Several spectroscopic and non-spectroscopic difficulties with volatile impurity detection remain. Nonetheless, qualitative and semiquantitative (<50% RSD) determination of most impurities may be performed in a single ETV run.

  15. An analytical and explicit multi-field coupled nonlinear constitutive model for Terfenol-D giant magnetostrictive material

    NASA Astrophysics Data System (ADS)

    Zhou, Hao-Miao; Li, Meng-Han; Li, Xiao-Hong; Zhang, Da-Guang

    2016-08-01

    For a giant magnetostrictive rod under the action of multiple physical loads, such as an external magnetic field, temperature and axial pre-stress, this paper proposes a general one-dimensional nonlinear magneto-thermo-mechanical coupled constitutive model. This model is based on the Taylor expansion of the elastic Gibbs free energy of giant magnetostrictive material and thermodynamic relations from the perspective of macro continuum mechanics. Predictions made using this model are in good agreement with experimental data for magnetization and the magnetostrictive strain curve under the collective effect of pre-stress and temperature. Additionally, the model overcomes the drawback of the existing magneto-thermo-mechanical constitutive model that cannot accurately predict the magnetization and magnetostrictive strain curve for different temperatures and pre-stresses. Furthermore, the constitutive model does not contain an implicit function and is compact, and can thus be applied in both situations of tensile and compressive stress and to both positive and negative magnetostrictive materials, and it is thus appropriate for engineering applications. Comprehensive analysis shows that the model fully describes the nonlinear coupling properties of a magnetic field, magnetostrictive strain and elasticity of a magnetostrictive material subjected to stress, a magnetic field and heat.

  16. Manipulation of surface plasmon polariton propagation on isotropic and anisotropic two-dimensional materials coupled to boron nitride heterostructures

    SciTech Connect

    Inampudi, Sandeep; Nazari, Mina; Forouzmand, Ali; Mosallaei, Hossein

    2016-01-14

    We present a comprehensive analysis of surface plasmon polariton dispersion characteristics associated with isotropic and anisotropic two-dimensional atomically thin layered materials (2D sheets) coupled to h-BN heterostructures. A scattering matrix based approach is presented to compute the electromagnetic fields and related dispersion characteristics of stacked layered systems composed of anisotropic 2D sheets and uniaxial bulk materials. We analyze specifically the surface plasmon polariton (SPP) dispersion characteristics in case of isolated and coupled two-dimensional layers with isotropic and anisotropic conductivities. An analysis based on residue theorem is utilized to identify optimum optical parameters (surface conductivity) and geometrical parameters (separation between layers) to maximize the SPP field at a given position. The effect of type and degree of anisotropy on the shapes of iso-frequency curves and propagation characteristics is discussed in detail. The analysis presented in this paper gives an insight to identify optimum setup to enhance the SPP field at a given position and in a given direction on the surface of two-dimensional materials.

  17. Materials considerations for the coupling of thermochemical hydrogen cycles to tandem mirror reactors

    SciTech Connect

    Krikorian, O.H.

    1980-10-10

    Candidate materials are discussed and initial choices made for the critical elements in a liquid Li-Na Cauldron Tandem Mirror blanket and the General Atomic Sulfur-Iodine Cycle for thermochemical hydrogen production. V and Ti alloys provide low neutron activation, good radiation damage resistance, and good chemical compatibility for the Cauldron design. Aluminide coated In-800H and siliconized SiC are materials choices for heat exchanger components in the thermochemical cycle interface.

  18. Plasma-driven Z-pinch X-ray loading and momentum coupling in meteorite and planetary materials

    NASA Astrophysics Data System (ADS)

    Remo, John L.; Furnish, Michael D.; Lawrence, R. Jeffery; Lawrence

    2013-04-01

    X-ray momentum coupling coefficients, C M, were determined by measuring stress waveforms in planetary materials subjected to impulsive radiation loading from the Sandia National Laboratories Z-machine. Velocity interferometry (VISAR) diagnostics provided equation-of-state data. Targets were iron and stone meteorites, magnesium-rich olivine (dunite) solid and powder (~5-300 μm), and Si, Al, and Fe calibration targets. Samples were ~1-mm thick and, except for Si, backed by LiF single-crystal windows. X-ray spectra combined thermal radiation (blackbody 170-237 eV) and line emissions from pinch materials (Cu, Ni, Al, or stainless steel). Target fluences of 0.4-1.7 kJ/cm2 at intensities of 43-260GW/cm2 produced plasma pressures of 2.6-12.4 GPa. The short (~5 ns) drive pulses gave rise to attenuating stress waves in the samples. The attenuating wave impulse is constant, allowing accurate C M measurements from rear-surface motion. C M was 1.9 - 3.1 × 10-5 s/m for stony meteorites, 2.7 and 0.5 × 10-5 s/m for solid and powdered dunite, 0.8 - 1.4 × 10-5 s/m for iron meteorites, and 0.3, 1.8, and 2.7 × 10-5 s/m respectively for Si, Fe, and Al calibration targets. Results are consistent with geometric scaling from recent laser hohlraum measurements. CTH hydrocode modeling of X-ray coupling to porous silica corroborated experimental measurements and supported extrapolations to other materials. CTH-modeled C M for porous materials was low and consistent with experimental results. Analytic modeling (BBAY) of X-ray radiation-induced momentum coupling to selected materials was also performed, often producing higher C M values than experimental results. Reasons for the higher values include neglect of solid ejecta mechanisms, turbulent mixing of heterogeneous phases, variances in heats of melt/vaporization, sample inhomogeneities, wave interactions at the sample/window boundary, and finite sample/window sizes. The measurements validate application of C M to (inhomogeneous

  19. Photograph Usage in History Education

    ERIC Educational Resources Information Center

    Akbaba, Bulent

    2009-01-01

    In this study, the effect of photograph usage in history education to the students' achievement was tried to be identified. In the study which was done with a pre-test post-test control group design, a frame was tried to be established between the experimental group and the analytical usage of the photograph, the control group's courses were done…

  20. Factors Affecting Radiologist's PACS Usage.

    PubMed

    Forsberg, Daniel; Rosipko, Beverly; Sunshine, Jeffrey L

    2016-12-01

    The purpose of this study was to determine if any of the factors radiologist, examination category, time of week, and week effect PACS usage, with PACS usage defined as the sequential order of computer commands issued by a radiologist in a PACS during interpretation and dictation. We initially hypothesized that only radiologist and examination category would have significant effects on PACS usage. Command logs covering 8 weeks of PACS usage were analyzed. For each command trace (describing performed activities of an attending radiologist interpreting a single examination), the PACS usage variables number of commands, number of command classes, bigram repetitiveness, and time to read were extracted. Generalized linear models were used to determine the significance of the factors on the PACS usage variables. The statistical results confirmed the initial hypothesis that radiologist and examination category affect PACS usage and that the factors week and time of week to a large extent have no significant effect. As such, this work provides direction for continued efforts to analyze system data to better understand PACS utilization, which in turn can provide input to enable optimal utilization and configuration of corresponding systems. These continued efforts were, in this work, exemplified by a more detailed analysis using PACS usage profiles, which revealed insights directly applicable to improve PACS utilization through modified system configuration.

  1. A Novel Trihybrid Material Based on Renewables: An Efficient Recyclable Heterogeneous Catalyst for C-C Coupling and Reduction Reactions.

    PubMed

    Majumdar, Rakhi; Tantayanon, Supawan; Gopal Bag, Braja

    2016-09-06

    The generation of organic-inorganic hybrid materials from renewable resources and their utilization in basic and applied areas has been at the forefront of research in recent years for sustainable development. Herein, a novel organic-inorganic trihybrid material was synthesized by in situ generation of palladium nanoparticles (PdNPs) in a hybrid gel matrix based on renewable chemicals. Constituents of the hybrid gel included a pentacyclic triterpenoid arjunolic acid extractable from Terminalia arjuna and the leaf extract of Chrysophyllum cainito rich in flavonoids. We took advantage of the presence of flavonoid molecules in this hybrid gel to generate an advanced trihybrid gel through in situ reduction of doped Pd(II) salts to stable PdNPs. The xerogel of this trihybrid material was used as a recyclable heterogeneous catalyst for C-C coupling and reduction reactions in aqueous media. We also demonstrated that the in situ generated PdNPs containing trihybrid material was a more efficient catalyst than the trihybrid material generated with presynthesized PdNPs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Air-coupled ultrasonic spectroscopy of highly damping materials using pulse compression.

    PubMed

    Pallav, Prakash; Hutchins, David A; Yin, Xiaokang

    2009-06-01

    Air-coupled ultrasonic spectroscopy is described, whereby the output from a pulse compression system is used. It is demonstrated that the cross-correlation operation used within a pulse-compression system preserves amplitude and phase information. This approach allows the signal-to-noise ratio and, hence, signal-detection capability to be improved by the cross-correlation, while allowing noncontact spectral information for solid samples to be obtained. Results are presented for chocolate samples, where measurements of interest to the food industry have been obtained.

  3. Headspace single drop microextraction coupled with microwave extraction of essential oil from plant materials.

    PubMed

    Zhai, Yujuan; Sun, Shuo; Wang, Ziming; Zhang, Yupu; Liu, He; Sun, Ye; Zhang, Hanqi; Yu, Aimin

    2011-05-01

    Headspace single drop microextraction (HS-SDME) coupled with microwave extraction (ME) was developed and applied to the extraction of the essential oil from dried Syzygium aromaticum (L.) Merr. et Perry and Cuminum cyminum L. The operational parameters, such as microdrop volume, microwave absorption medium (MAM), extraction time, and microwave power were optimized. Ten microliters of decane was used as the microextraction solvent. Ionic liquid and carbonyl iron powder were used as MAM. The extraction time was less than 7 min at the microwave power of 440 W. The proposed method was compared with hydrodistillation (HD). There were no obvious differences in the constituents of essential oils obtained by the two methods.

  4. A Perspective on Coupled Multiscale Simulation and Validation in Nuclear Materials

    SciTech Connect

    M. P. Short; D. Gaston; C. R. Stanek; S. Yip

    2014-01-01

    The field of nuclear materials encompasses numerous opportunities to address and ultimately solve longstanding industrial problems by improving the fundamental understanding of materials through the integration of experiments with multiscale modeling and high-performance simulation. A particularly noteworthy example is an ongoing study of axial power distortions in a nuclear reactor induced by corrosion deposits, known as CRUD (Chalk River unidentified deposits). We describe how progress is being made toward achieving scientific advances and technological solutions on two fronts. Specifically, the study of thermal conductivity of CRUD phases has augmented missing data as well as revealed new mechanisms. Additionally, the development of a multiscale simulation framework shows potential for the validation of a new capability to predict the power distribution of a reactor, in effect direct evidence of technological impact. The material- and system-level challenges identified in the study of CRUD are similar to other well-known vexing problems in nuclear materials, such as irradiation accelerated corrosion, stress corrosion cracking, and void swelling; they all involve connecting materials science fundamentals at the atomistic- and mesoscales to technology challenges at the macroscale.

  5. DWPF coupled feed flowsheet material balance with batch one sludge and copper nitrate catalyst

    SciTech Connect

    Choi, A.S.

    1993-09-28

    The SRTC has formally transmitted a recommendation to DWPF to replace copper formate with copper nitrate as the catalyst form during precipitate hydrolysis [1]. The SRTC was subsequently requested to formally document the technical bases for the recommendation. A memorandum was issued on August 23, 1993 detailing the activities (and responsible individuals) necessary to address the impact of this change in catalyst form on process compatibility, safety, processibility environmental impact and product glass quality [2]. One of the activities identified was the preparation of a material balance in which copper nitrate is substituted for copper formate and the identification of key comparisons between this material balance and the current Batch 1 sludge -- Late Wash material balance [3].

  6. Recognition of wall materials through active thermography coupled with numerical simulations.

    PubMed

    Pietrarca, Francesca; Mameli, Mauro; Filippeschi, Sauro; Fantozzi, Fabio

    2016-09-01

    In the framework of historical buildings, wall thickness as well as wall constituents are not often known a priori, and active IR thermography can be exploited as a nonintrusive method for detecting what kind of material lies beneath the external plaster layer. In the present work, the wall of a historical building is subjected to a heating stimulus, and the surface temperature temporal trend is recorded by an IR camera. A hybrid numerical model is developed in order to simulate the transient thermal response of a wall made of different known materials underneath the plaster layer. When the numerical thermal contrast and the appearance time match with the experimental thermal images, the material underneath the plaster can be qualitatively identified.

  7. Ultrasonic Air-Coupled Inspection of Textile Materials Using Ferroelectret-Based Phased Arrays

    NASA Astrophysics Data System (ADS)

    Ealo, J.; Camacho, J.; Seco, F.; Fritsch, C.

    2010-02-01

    Most common defects in textile manufacturing processes include weaving errors (such as missing threads), oil spots and material inhomogeneities. In this work, we demonstrate the feasibility of using ferroelectret-based transducers for the inspection of woven material. A linear array of 32 elements was built for this purpose following an easy fabrication procedure recently proposed. Electronic focusing at the textile sample position allowed us to detect weaving errors and oil spots of up to ˜1 mm of width in through transmission mode, at normal incidence and with a good signal-to-noise ratio.

  8. Determination of organomercury in biological reference materials by inductively coupled plasma mass spectrometry using flow injection analysis

    SciTech Connect

    Beauchemin, D.; Siu, K.W.; Berman, S.S.

    1988-12-01

    Inductively coupled plasma mass spectrometry was used for the determination of organomercury in two marine biological standard reference materials for trace metals (dogfish muscle tissue DORM-1 and lobster hepatopancreas TORT-1). In most parts of this study, the organomercury was extracted as the chloride from the material with toluene and back extracted into an aqueous medium of cysteine acetate. Since the final extracts contained more than 4% sodium, isotope dilution and flow injection analysis were used to respectively counter the effect of concomitant elements and avoid clogging the interface. Comparison of results with gas chromatography shows that the only significant organomercury is methyl-mercury. At least 93% of mercury in DORM-1 and 39% of mercury in TORT-1 exist as methylmercury.

  9. Coupling Hollow Fe3O4-Fe Nanoparticles with Graphene Sheets for High-Performance Electromagnetic Wave Absorbing Material.

    PubMed

    Qu, Bin; Zhu, Chunling; Li, Chunyan; Zhang, Xitian; Chen, Yujin

    2016-02-17

    We developed a strategy for coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. The hollow Fe3O4-Fe nanoparticles with average diameter and shell thickness of 20 and 8 nm, respectively, were uniformly anchored on the graphene sheets without obvious aggregation. The minimal reflection loss RL values of the composite could reach -30 dB at the absorber thickness ranging from 2.0 to 5.0 mm, greatly superior to the solid Fe3O4-Fe/G composite and most magnetic EM wave absorbing materials recently reported. Moreover, the addition amount of the composite into paraffin matrix was only 18 wt %.

  10. Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination

    SciTech Connect

    Barada, Daisuke; Juman, Guzhaliayi; Yoshida, Itsuki; Miyamoto, Katsuhiko; Omatsu, Takashige; Kawata, Shigeo; Ohno, Seigo

    2016-02-01

    It was discovered that optical vortices twist isotropic and homogenous materials, e.g., azo-polymer films to form spiral structures on a nano- or micro-scale. However, the formation mechanism has not yet been established theoretically. To understand the mechanism of the spiral surface relief formation in the azo-polymer film, we theoretically investigate the optical radiation force induced in an isotropic and homogeneous material under irradiation using a continuous-wave optical vortex with arbitrary topological charge and polarization. It is revealed that the spiral surface relief formation in azo-polymer films requires the irradiation of optical vortices with a positive (negative) spin angular momentum and a positive (negative) orbital angular momentum (constructive spin-orbital angular momentum coupling), i.e., the degeneracy among the optical vortices with the same total angular momentum is resolved.

  11. Coupled production in biorefineries--combined use of biomass as a source of energy, fuels and materials.

    PubMed

    Lyko, Hildegard; Deerberg, Görge; Weidner, Eckhard

    2009-06-01

    In spite of high prices for fossil raw materials the production of biomass-based products is rarely economically successful today. Depending on the location feedstock prices are currently so high that products from renewable resources are not marketable when produced in existing process chains. Apart from the higher feedstock costs one reason is that at present no optimized production systems exist in contrast to the chemical and petrochemical industry where these systems have been established over the last decades. If we succeed in developing production systems modelled on those of petroleum refineries where we can provide a flexible coupled production of energy, fuels, materials and chemicals chances are good to enable a lastingly successful production on the basis of renewable resources. Based on examples of fat-based and sugar-based concepts ideas for platform oriented biorefineries are outlined.

  12. High-Energy-Density LCA-Coupled Structural Energetic Materials for Counter WMD Applications

    DTIC Science & Technology

    2014-04-01

    morphology , etc.) of reactants. In the case of the equivolumetric Ta+Fe2O3 powder mixtures, pre-densification results in generating Fe2O3 as the more...published in the following papers. • N.N. Thadhani and J.K. Cochran, "Energetic Materials", DTRA Basic and Applied Research Program Newsletter , V2, N3, p

  13. UMAT Implementation of Coupled, Multilevel, Structural Deformation and Damage Analysis of General Hereditary Materials

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Saleeb, A. F.; Wilt, T. E.; Trowbridge, D.

    2000-01-01

    Extensive research efforts have been made over the years on the phenomenological representations of constitutive material behavior in the inelastic analysis and life assessment of structures composed of advanced monolithic and composite (CMC, MMC, and PMC) materials. Recently, emphasis has been placed on concurrently addressing three important and related areas of constitutive and degradation modeling; i.e. (i) mathematical formulation, (ii) algorithmic developments for the updating (integrating) of external (e.g. stress) and internal state variable, as well as (iii) parameter estimation for the characterization of the specific model. This concurrent perspective has resulted in; i) the formulation of a fully-associative viscoelastoplastic model (GVIPS), (ii) development of an efficient implicit integration and it's associative, symmetric, consistent tangent stiffness matrix algorithm for integration of the underlying rate flow/evolutionary equations, and iii) a robust, stand-alone, Constitutive Material Parameter Estimator (COMPARE) for automatically characterizing the various time-dependent, nonlinear, material models. Furthermore, to provide a robust multi-scale framework for the deformation and life analysis of structures composed of composite materials, NASA Glenn has aggressively pursued the development of a sufficiently general, accurate, and efficient micromechanics approach known as the generalized method of cells (GMC). This work has resulted in the development of MAC/GMC, a stand-alone micromechanics analysis tool that can easily and accurately design/analyze multiphase (composite) materials subjected to complex histories. MAC/GMC admits generalized, physically based, deformation and damage models for each constituent and provides "closed-form" expressions for the macroscopic composite response in terms of the properties, size, shape, distribution, and response of the individual constituents or phases that comprise the material. Consequently, MAC/GMC can

  14. Multiscale Coupling of Monte Carlo Binary-Collision-Approximation Codes with Particle-in-Cells for Plasma-Material Interaction

    NASA Astrophysics Data System (ADS)

    Curreli, Davide; Lindquist, Kyle; Ruzic, David N.

    2013-10-01

    Techniques based on Monte Carlo Binary Collision Approximation (BCA) are widely used for the evaluation of particle interactions with matter, but rarely coupled with a consistent kinetic plasma solver like a Particle-in-Cell. The TRIM code [Eckstein; Biersack and Haggmark, 1980] and its version including dynamic-composition TRIDYN [Moller and Eckstein, 1984] are two popular implementations of BCA, where single-particle projectiles interact with a target of amorphous material according to the classical Carbon-Krypton interaction potential. The effect of surface roughness can be included as well, thanks to the Fractal-TRIM method [Ruzic and Chiu, 1989]. In the present study we couple BCA codes with Particles-in-Cells. The Lagrangian treatment of particle motion usually implemented in PiC codes suggests a natural coupling of PiC's with BCA's, even if a number of caveats has to be taken into account, related to the discrete nature of computational particles, to the difference between the two approaches and most important to the multiple spatial and temporal scales involved. The break down of BCA at low energies (unless the projectiles are channeling through an oriented crystal layer [Hobler and Betz, 2001]) has been supplemented by Yamamura's semi-empirical relations.

  15. Point defect modeling in materials: Coupling ab initio and elasticity approaches

    NASA Astrophysics Data System (ADS)

    Varvenne, Céline; Bruneval, Fabien; Marinica, Mihai-Cosmin; Clouet, Emmanuel

    2013-10-01

    Modeling point defects at an atomic scale requires careful treatment of the long-range atomic relaxations. This elastic field can strongly affect point defect properties calculated in atomistic simulations because of the finite size of the system under study. This is an important restriction for ab initio methods which are limited to a few hundred atoms. We propose an original approach coupling ab initio calculations and linear elasticity theory to obtain the properties of an isolated point defect for reduced supercell sizes. The reliability and benefit of our approach are demonstrated for three problematic cases: the self-interstitial in zirconium, clusters of self-interstitials in iron, and the neutral vacancy in silicon.

  16. The Galvanic Corrosion of Graphite Epoxy Composite Materials Coupled with Alloys

    DTIC Science & Technology

    1975-12-01

    301, Borderline-Aluminum Graphite, MA-87, SS- 440C , A1-2024-TG, A1-2024 T3, 1020, Al-70󈨏-T6, 4130, Unacceptable-lO Ni Mod, 300M, Al-2020-T651, and...1020 Steel/GECM Couples in 3.5% NaCl Solution at Ambient Temperature ........ .................... 71 31 Galvanic Current vs Time for SS- 440C Stainless...Borderline-Aluminum- Graphite, MA-87, SS- 440C , Al-2024-T6, Al-2024-T3, 1020, Al-7075-T6, 4130, x GkE/MC/7.rD--8 Unacceptable-lO Ni Mod, 300M, Al-2020-T651

  17. Arsenic and antimony determination in non- and biodegradable materials by hydride generation capacitively coupled plasma microtorch optical emission spectrometry.

    PubMed

    Mihaltan, Alin I; Frentiu, Tiberiu; Ponta, Michaela; Petreus, Dorin; Frentiu, Maria; Darvasi, Eugen; Marutoiu, Constantin

    2013-05-15

    A sensitive method using a miniature analytical system with a capacitively coupled plasma microtorch (25 W, 13.56 MHz, 0.4 l min(-1) Ar) was developed and evaluated for the determination of As and Sb in recyclable plastics and biodegradable materials by hydride generation optical emission spectrometry. Given their toxicity, As and Sb should be subject to monitoring in such materials despite not being included within the scope of Restriction of Hazardous Substances Directive. The advantages of the proposed approach are better detection limits and lower analysis cost relative to conventional systems based on inductively coupled plasma optical emission and flame atomic absorption spectrometry with/without derivatization. Samples were subjected to acidic microwave-assisted digestion in a nitric-sulfuric acid mixture. Chemical hydride generation with 0.5% NaBH4 after the prereduction of As(V) and Sb(V) with 0.3% L-cysteine in 0.01 mol l(-1) HCl (10 min contact time at 90±5°C) was used. Under the optimal hydride generation conditions and analytical system operation the detection limits (mg kg(-1)) were 0.5 (As) and 0.1 (Sb), whereas the precision was 0.4-7.1% for 10.2-46.2 mg kg(-1) As and 0.4-3.2% for 7.1-156 mg kg(-1) Sb. Analysis of two polyethylene CRMs revealed recoveries of 101±2% As and 100±1% Sb.

  18. New Effective Material Couple--Oxide Ceramic and Carbon Nanotube-- Developed for Aerospace Microsystem and Micromachine Technologies

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; VanderWal, Randall L.; Tomasek, Aaron J.; Sayir, Ali; Farmer, Serene C.

    2004-01-01

    The prime driving force for using microsystem and micromachine technologies in transport vehicles, such as spacecraft, aircraft, and automobiles, is to reduce the weight, power consumption, and volume of components and systems to lower costs and increase affordability and reliability. However, a number of specific issues need to be addressed with respect to using microsystems and micromachines in aerospace applications--such as the lack of understanding of material characteristics; methods for producing and testing the materials in small batches; the limited proven durability and lifetime of current microcomponents, packaging, and interconnections; a cultural change with respect to system designs; and the use of embedded software, which will require new product assurance guidelines. In regards to material characteristics, there are significant adhesion, friction, and wear issues in using microdevices. Because these issues are directly related to surface phenomena, they cannot be scaled down linearly and they become increasingly important as the devices become smaller. When microsystems have contacting surfaces in relative motion, the adhesion and friction affect performance, energy consumption, wear damage, maintenance, lifetime and catastrophic failure, and reliability. Ceramics, for the most part, do not have inherently good friction and wear properties. For example, coefficients of friction in excess of 0.7 have been reported for ceramics and ceramic composite materials. Under Alternate Fuels Foundation Technologies funding, two-phase oxide ceramics developed for superior high-temperature wear resistance in NASA's High Operating Temperature Propulsion Components (HOTPC) project and new two-layered carbon nanotube (CNT) coatings (CNT topcoat/iron bondcoat/quartz substrate) developed in NASA's Revolutionary Aeropropulsion Concepts (RAC) project have been chosen as a materials couple for aerospace applications, including micromachines, in the nanotechnology

  19. Coupling Effects of Heat and Moisture on the Saturation Processes of Buffer Material in a Deep Geological Repository

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Hsing

    2017-04-01

    Clay barrier plays a major role for the isolation of radioactive wastes in a underground repository. This paper investigates the resaturation behavior of clay barrier, with emphasis on the coupling effects of heat and moisture of buffer material in the near-field of a repository during groundwater intrusion processes. A locally available clay named "Zhisin clay" and a standard bentotine material were adopted in the laboratory program. Water uptake tests were conducted on clay specimens compacted at various densities to simulate the intrusion of groundwater into the buffer material. Soil suction of clay specimens was measured by psychrometers embedded in clay specimens and by vapor equilibrium technique conducted at varying temperatures. Using the soil water characteristic curve, an integration scheme was introduced to estimate the hydraulic conductivity of unsaturated clay. The finite element program ABAQUS was then employed to carry out the numerical simulation of the saturation process in the near field of a repository. Results of the numerical simulation were validated using the degree of saturation profile obtained from the water uptake tests on Zhisin clay. The numerical scheme was then extended to establish a model simulating the resaturation process after the closure of a repository. It was found that, due to the variation in suction and thermal conductivity with temperature of clay barrier material, the calculated temperature field shows a reduction as a result of incorporating the hydro-properties in the calculations.

  20. Military usage of connectors

    NASA Technical Reports Server (NTRS)

    Schade, R.

    1972-01-01

    Military specifications with general purpose parameters and termination data covering flat connectors and flat cables are proposed. The material, design, coating, and insulation are discussed, and drafts of specifications for flat cables including quality assurance provisions, and inspection are presented.

  1. A Coupled Damage and Reaction Model for Simulating Energetic Material Response to Impact Hazards

    SciTech Connect

    BAER,MELVIN R.; DRUMHELLER,D.S.; MATHESON,E.R.

    1999-09-01

    The Baer-Nunziato multiphase reactive theory for a granulated bed of energetic material is extended to allow for dynamic damage processes, that generate new surfaces as well as porosity. The Second Law of Thermodynamics is employed to constrain the constitutive forms of the mass, momentum, and energy exchange functions as well as those for the mechanical damage model ensuring that the models will be dissipative. The focus here is on the constitutive forms of the exchange functions. The mechanical constitutive modeling is discussed in a companion paper. The mechanical damage model provides dynamic surface area and porosity information needed by the exchange functions to compute combustion rates and interphase momentum and energy exchange rates. The models are implemented in the CTH shock physics code and used to simulate delayed detonations due to impacts in a bed of granulated energetic material and an undamaged cylindrical sample.

  2. A micro-macro coupling approach of MD-SPH method for reactive energetic materials

    NASA Astrophysics Data System (ADS)

    Liu, Gui Rong; Wang, Guang Yu; Peng, Qing; De, Suvranu

    2017-01-01

    The simulation of reactive energetic materials has long been the interest of researchers because of the extensive applications of explosives. Much research has been done on the subject at macro scale in the past and research at micro scale has been initiated recently. Equation of state (EoS) is the relation between physical quantities (pressure, temperature, energy and volume) describing thermodynamic states of materials under a given set of conditions. It plays a significant role in determining the characteristics of energetic materials, including Chapman-Jouguet point and detonation velocity. Furthermore, EoS is the key to connect microscopic and macroscopic phenomenon when simulating the macro effects of an explosion. For instance, an ignition and growth model for high explosives uses two JWL EoSs, one for solid explosive and the other for gaseous products, which are often obtained from experiments that can be quite expensive and hazardous. Therefore, it is ideal to calculate the EoS of energetic materials through computational means. In this paper, the EoSs for both solid and gaseous products of β-HMX are calculated using molecular dynamics simulation with ReaxFF-d3, a reactive force field obtained from quantum mechanics. The microscopic simulation results are then compared with experiments and the continuum ignition and growth model. Good agreement is observed. Then, the EoSs obtained through micro-scale simulation is applied in a smoothed particle hydrodynamics (SPH) code to simulate the macro effects of explosions. Simulation results are compared with experiments.

  3. Coupled acoustic and electromagnetic disturbances in a granular material saturated by a fluid electrolyte

    NASA Astrophysics Data System (ADS)

    Block, Gareth Ian

    The U.S. Navy has an ongoing need for a reliable model of acoustics in ocean sediments. Viscoelastic fluid and solid descriptions are commonly used, but are often unable to account for the variability exhibited by different types of sediments. Poroelasticity (also known as Biot theory) relates the seabed's observed behavior to sediment microstructure and pore-fluid motion explicitly. Traditional acoustical techniques have had difficulty distinguishing between Biot theory predictions and those based on fluid and solid models. Electrokinetic (EK) phenomena---the coupling of relative fluid motion and grain surface chemistry---are generated by wave propagation in electrolyte-saturated sediments. The coupled EK-Biot theory developed by Pride (1994) describes how acoustic waves generate electromagnetic fields, and simultaneously, how electromagnetic fields affect wave behavior. We devised two reciprocal experiments to study these phenomena. "EK transmission" occurs when an applied voltage creates an electro-acoustic wave; in practice, this leads to thermoelastic motion, as well as electrokinetics, so that we have had to account for both effects. Conversely, "EK reception" occurs when a pressure wave generates a measurable voltage in electrolyte-saturated sediments. The EK reception apparatus made use of a submerged, acoustic transducer to insonify a water-sediment interface with short, 50 kHz sine-wave bursts and chirped pulses from 10--800 kHz. The resulting wave motion was monitored using Ag/AgCl electrodes fixed in a vertical array above and below the sediment interface. We measured the conductivity dependence of two kinds of EK behavior: (1) voltages generated within the samples that were localized around the transmitted "fast" waves, and (2) electromagnetic (EM) waves produced at the water-sediment interface. Fast-wave voltages were often greater than 500 muV, while the EM-wave potentials were usually 100 muV in magnitude. A model of plane-wave reflection from a

  4. Coupled electrostatic and material surface stresses yield anomalous particle interactions and deformation

    SciTech Connect

    Kemp, B. A. Nikolayev, I.; Sheppard, C. J.

    2016-04-14

    Like-charges repel, and opposite charges attract. This fundamental tenet is a result of Coulomb's law. However, the electrostatic interactions between dielectric particles remain topical due to observations of like-charged particle attraction and the self-assembly of colloidal systems. Here, we show, using both an approximate description and an exact solution of Maxwell's equations, that nonlinear charged particle forces result even for linear material systems and can be responsible for anomalous electrostatic interactions such as like-charged particle attraction and oppositely charged particle repulsion. Furthermore, these electrostatic interactions and the deformation of such particles have fundamental implications for our understanding of macroscopic electrodynamics.

  5. Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyan; Hou, Lili; Samorì, Paolo

    2016-04-01

    Multifunctional carbon-based nanomaterials offer routes towards the realization of smart and high-performing (opto)electronic (nano)devices, sensors and logic gates. Meanwhile photochromic molecules exhibit reversible transformation between two forms, induced by the absorption of electromagnetic radiation. By combining carbon-based nanomaterials with photochromic molecules, one can achieve reversible changes in geometrical structure, electronic properties and nanoscale mechanics triggering by light. This thus enables a reversible modulation of numerous physical and chemical properties of the carbon-based nanomaterials towards the fabrication of cognitive devices. This review examines the state of the art with respect to these responsive materials, and seeks to identify future directions for investigation.

  6. Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials.

    PubMed

    Zhang, Xiaoyan; Hou, Lili; Samorì, Paolo

    2016-04-12

    Multifunctional carbon-based nanomaterials offer routes towards the realization of smart and high-performing (opto)electronic (nano)devices, sensors and logic gates. Meanwhile photochromic molecules exhibit reversible transformation between two forms, induced by the absorption of electromagnetic radiation. By combining carbon-based nanomaterials with photochromic molecules, one can achieve reversible changes in geometrical structure, electronic properties and nanoscale mechanics triggering by light. This thus enables a reversible modulation of numerous physical and chemical properties of the carbon-based nanomaterials towards the fabrication of cognitive devices. This review examines the state of the art with respect to these responsive materials, and seeks to identify future directions for investigation.

  7. Strong Magneto-Optical Response of Nonmagnetic Organic Materials Coupled to Plasmonic Nanostructures.

    PubMed

    Melnikau, Dzmitry; Govyadinov, Alexander A; Sánchez-Iglesias, Ana; Grzelczak, Marek; Liz-Marzán, Luis M; Rakovich, Yury P

    2017-03-08

    Plasmonic nanoparticles (PNPs) can significantly modify the optical properties of nearby organic molecules and thus present an attractive opportunity for sensing applications. However, the utilization of PNPs in conventional absorption, fluorescence, or Raman spectroscopy techniques is often ineffective due to strong absorption background and light scattering, particularly in the case of turbid solutions, cell suspensions, and biological tissues. Here we show that nonmagnetic organic molecules may exhibit magneto-optical response due to binding to a PNP. Specifically, we detect strong magnetic circular dichroism signal from supramolecular J-aggregates, a representative organic dye, upon binding to silver-coated gold nanorods. We explain this effect by strong coupling between the J-aggregate exciton and the nanoparticle plasmon, leading to the formation of a hybrid state in which the exciton effectively acquires magnetic properties from the plasmon. Our findings are fully corroborated by theoretical modeling and constitute a novel magnetic method for chemo- and biosensing, which (upon adequate PNP functionalization) is intrinsically insensitive to the organic background and thus offers a significant advantage over conventional spectroscopy techniques.

  8. Correlation between charge transfer and exchange coupling in carbon-based magnetic materials

    SciTech Connect

    Nguyen, Anh Tuan; Nguyen, Van Thanh; Nguyen, Huy Sinh; Pham, Thi Tuan Anh; Do, Viet Thang; Dam, Hieu Chi

    2015-10-15

    Several forms of carbon-based magnetic materials, i.e. single radicals, radical dimers, and alternating stacks of radicals and diamagnetic molecules, have been investigated using density-functional theory with dispersion correction and full geometry optimization. Our calculated results demonstrate that the C{sub 31}H{sub 15} (R{sub 4}) radical has a spin of ½. However, in its [R{sub 4}]{sub 2} dimer structure, the net spin becomes zero due to antiferromagnetic spin-exchange between radicals. To avoid antiferromagnetic spin-exchange of identical face-to-face radicals, eight alternating stacks, R{sub 4}/D{sub 2m}/R{sub 4} (with m = 3-10), were designed. Our calculated results show that charge transfer (Δn) between R{sub 4} radicals and the diamagnetic molecule D{sub 2m} occurs with a mechanism of spin exchange (J) in stacks. The more electrons that transfer from R{sub 4} to D{sub 2m}, the stronger the ferromagnetic spin-exchange in stacks. In addition, our calculated results show that Δn can be tailored by adjusting the electron affinity (E{sub a}) of D{sub 2m}. The correlation between Δn, E{sub a}, m, and J is discussed. These results give some hints for the design of new ferromagnetic carbon-based materials.

  9. Influence of Surface Material on the BCl Density in Inductively Coupled Discharges

    SciTech Connect

    Blain, M.G.; Hamilton, T.W.; Hebner, G.A.

    1999-03-15

    The relative density of BCl radicals has been measured in a modified Applied Materials DPS metal etch chamber using laser-induced fluorescence. In plasmas containing mixtures of BCl{sub 3} with Cl{sub 2}, Ar and/or N{sub 2}, the relative BCl density was measured as a function of source and bias power, pressure, flow rate, BCl{sub 3}/Cl{sub 2} ratio and argon addition. To determine the influence of surface materials on the bulk plasma properties, the relative BCl density was measured using four different substrate types; aluminum, alumina, photoresist, and photoresist-patterned aluminum. In most cases, the relative BCl density was highest above photoresist-coated wafers and lowest above blanket aluminum wafers. The BCl density increased with increasing source power and the ratio of BCl{sub 3} to Cl{sub 2}, while the addition of N{sub 2} to a BCl{sub 3}/Cl{sub 2} plasma resulted in a decrease in BCl density. The BCl density was relatively insensitive to changes in the other plasma parameters.

  10. A Coupled Damage and Reaction Model for Simulating Energetic Material Response to Impact Hazards

    NASA Astrophysics Data System (ADS)

    Matheson, Erik; Drumheller, Doug; Baer, Mel

    1999-06-01

    The Baer-Nunziatio multiphase reactive theory for a granulated bed of energetic material is extended to allow for dynamic damage processes, which generate new surfaces as well as porosity. A theoretical foundation constraining the forms of the mass, momentum, and energy exchange functions as well as the mechanical damage models for viscoelastic-viscoplastic energetic materials is developed. The constitutive forms of the exchange functions and the mechanical models are simultaneously constrained by the second law of thermodynamics ensuring that the models will be dissipative. The focus here is on the multiphase hydrodynamics and the constitutive forms of the exchange functions. The mechanical constitutive modeling is discussed in a companion paper. The mechanical damage model provides dynamic surface area and porosity information needed by the exchange functions to compute combustion rates and interphase forces, work rates, and heat exchange rates. The models are implemented in the CTH shock physics code and correlated to dynamic porous bed compaction data in which delayed detonation is observed. Moreover, comparisons are made to the impact of a cylindrical sample onto a steel plate in which unkown-to-detonation transition, or XDT, is observed.

  11. Importance of water sorption and solubility studies for couple bonding agent--resin-based filling material.

    PubMed

    Mortier, Eric; Gerdolle, David Alain; Jacquot, Bruno; Panighi, Marc M

    2004-01-01

    This study investigated the water sorption and solubility of two light-cured resin composites (Filtek P60 and Solitaire 2), one compomer (Compoglass F), one ormocer (Admira) and the associated bonding agents (Scotchbond 1 [Scotchbond 1 = Scotchbond Single Bond in USA], Gluma One Bond, Excite and Admira Bond, respectively) and of a RMGIC (Fuji II LC). Five disks of each product type were subjected to water sorption and solubility tests based on ISO 4049 requirements. The data were subjected to Kruskal-Wallis and non-parametric multiple-comparison tests using ranked sums at 95% confidence interval. Fuji II LC showed the highest water sorption (167.5 microg/mm(-3)). Fuji II LC and Compoglass F had higher solubility values (8.3 and 10.0 microg/mm(-3), respectively) than the other materials. Bonding agents have very high water sorption and solubility values (between 77.4 and 355.4 microg/mm(-3) and between 75.9 and 144.9 microg/mm(-3), respectively) compared to the restorative materials. Gluma One Bond and Admira Bond showed lower sorption and solubility than Excite and Scotchbond 1.

  12. Remarriage Preparation: Usage, Perceived Helpfulness, and Dyadic Adjustment

    ERIC Educational Resources Information Center

    Higginbotham, Brian J.; Miller, Julie J.; Niehuis, Sylvia

    2009-01-01

    This study provides a contemporary evaluation of 10 different forms of remarriage preparation. Utilizing a subsample of 303 remarried couples from a larger study of newlyweds, we report usage of remarriage preparation and perceived helpfulness as well as differences in dyadic adjustment between respondents who did or did not prepare. Those who…

  13. Marijuana Usage and Hypnotic Susceptibility

    ERIC Educational Resources Information Center

    Franzini, Louis R.; McDonald, Roy D.

    1973-01-01

    Anonymous self-reported drug usage data and hypnotic susceptibility scores were obtained from 282 college students. Frequent marijuana users (more than 10 times) showed greater susceptibility to hypnosis than nonusers. (Author)

  14. Marijuana Usage and Hypnotic Susceptibility

    ERIC Educational Resources Information Center

    Franzini, Louis R.; McDonald, Roy D.

    1973-01-01

    Anonymous self-reported drug usage data and hypnotic susceptibility scores were obtained from 282 college students. Frequent marijuana users (more than 10 times) showed greater susceptibility to hypnosis than nonusers. (Author)

  15. Green Power Community Usage Requirements

    EPA Pesticide Factsheets

    Green Power Communities are a subset of the Green Power Partnership; municipalities or tribal governments where government, businesses, and residents collectively use enough green power to meet GPP requirements. Learn about GPC Usage Requirements.

  16. Plasma etching of dielectric materials using inductively and capacitively coupled fluorocarbon discharges: Mechanistic studies of the surface chemistry

    NASA Astrophysics Data System (ADS)

    Ling, Li

    Fluorocarbon (FC) plasmas are commonly used for dielectric materials etching. Our initial work was performed using an inductively coupled plasma (ICP) system to produce FC discharges. We first examined the effect of CO addition to C4F8 or C4F8/Ar plasmas for selective etching of organosilicate glass (OSG), which is a typical low k (LK) material over etch stop layers. The chemical activity of CO when added to either C4F8 Or C4F8/80% Ar can be understood in terms of the CO dissociation energy threshold relative to energies of inelastic electron collision processes of the dominant feedgas component. We also studied the plasma etching behavior of 193 nm and 248 nm photoresist in FC discharges used for dielectric etching. We showed that ion-enhanced selective volatilization of carbonyl groups of the 193 nm photoresist polymer backbone which is absent for the 248 nm material, along with modulation of the ion-interaction with the photoresist material by fluorocarbon surface passivation, may be responsible for the introduction of pronounced surface roughness of 193 nm photoresists. Current industrial efforts are aimed primarily at capacitively coupled plasma (CCP) systems. A home-built dual frequency CCP reactor was used to investigate additional aspects of dielectric materials plasma etching. We designed a gap structure to simulate sidewall surface processes occurring during high aspect ratio trench etching. In particular, we showed that the FC film deposition rates measured using the gap structure qualitatively correlate with the trench sidewall angles produced in LK dielectrics in both C 4F8/Ar and CF4/H2 based gas chemistries: The lower the FC deposition rate on the sidewall, the more vertical the trench sidewall. This approach was used to study surface chemistry aspects of FC film deposition with and without ion bombardment. For the gap structure film deposition takes place without ion bombardment and we observed a novel FC film growth phenomenon in pure C4F8 plasmas

  17. Femtosecond snapshots of the electron-boson coupling in copper oxides and other correlated materials

    NASA Astrophysics Data System (ADS)

    Giannetti, Claudio

    One of the pivotal questions in the physics of unconventional superconductors is whether the low-energy dynamics of the charge carriers is mediated by bosons with a characteristic timescale. This issue has remained elusive as electronic correlations are expected to greatly accelerate the electron-boson scattering processes, confining them to the very femtosecond timescale. Recent advances in ultrafast spectroscopy allowed us to simultaneously push the time resolution and frequency range of transient reflectivity measurements, up to the point of direct observing the effective electron-boson interaction in doped copper oxides. The extremely fast timescale (~15 fs) is in agreement with numerical calculations based on the t - J model and the repulsive Hubbard model, in which the relaxation of the photo-excited charges is achieved via inelastic scattering with short-range antiferromagnetic excitations with an energy spectrum extending up to ~300 meV. Our results support a scenario in which the strong local magnetic correlations provide a dissipative channel that is effective on the 10 fs timescale. Secondly, we will present very recent results on the model system Na2IrO3, in which the interplay of the spin-orbit coupling, the onsite Coulomb repulsion and the hopping within the Ir hexagons gives rise to a complex magnetic ground state, characterized by strong antiferromagnetic correlations below 100 K and the emergence of a zig-zag magnetic phase at T =12 K. The energy exchange between the photoexcited charge carriers and the antiferromagnetic background is observed by monitoring a specific high-energy quasi-molecular orbital, which turns out to be sensitive to the magnetization of the system.

  18. Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials

    PubMed Central

    Zhang, Xiaoyan; Hou, Lili; Samorì, Paolo

    2016-01-01

    Multifunctional carbon-based nanomaterials offer routes towards the realization of smart and high-performing (opto)electronic (nano)devices, sensors and logic gates. Meanwhile photochromic molecules exhibit reversible transformation between two forms, induced by the absorption of electromagnetic radiation. By combining carbon-based nanomaterials with photochromic molecules, one can achieve reversible changes in geometrical structure, electronic properties and nanoscale mechanics triggering by light. This thus enables a reversible modulation of numerous physical and chemical properties of the carbon-based nanomaterials towards the fabrication of cognitive devices. This review examines the state of the art with respect to these responsive materials, and seeks to identify future directions for investigation. PMID:27067387

  19. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry.

    PubMed

    Frentiu, Tiberiu; Mihaltan, Alin I; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-10-15

    A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min(-1) Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl(2) reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO(3)-H(2)SO(4) mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml(-1) or 0.08 μg g(-1) in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg(-1), while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level).

  20. Laser scanning confocal microscopy coupled with hydraulic permeability measurements for elucidating fluid flow across porous materials: application to human dentine.

    PubMed

    Williams, Cara G; Macpherson, Julie V; Unwin, Patrick R; Parkinson, Charles

    2008-04-01

    Laser scanning confocal microscopy (LSCM) coupled to a constant volume flow-pressure measuring system is introduced as a new technique for the quantitative measurement of fluid flow across porous materials. Such processes are ubiquitous from the life sciences to materials science and the methodology herein could find widespread application. The methodology has been applied to the detection of fluid flow through human dentine, in-vitro, and in the assessment of occlusion actives. Dentine is a calcareous material sandwiched between the pulp and enamel in the tooth structure that contains tubules which traverse dentine in the pulp to enamel direction. The tubules become patent during enamel erosion or gum recession, leading to dentinal hypersensitivity. Understanding the nature of fluid flow is important, as a pressure gradient exists across dentine in-vivo and this has implications for the development of suitable treatments. The methodology described herein firstly allows a ready assessment of the general efficacy of treatments via hydraulic permeability measurements. Second, LSCM images allow the nature of the flow process and the mode of action of the treatments to be revealed at high spatial resolution. For the particular case of dentine, we demonstrate how the method allows candidate treatments to be compared and assessed.

  1. Rapid discrimination of plastic packaging materials using MIR spectroscopy coupled with independent components analysis (ICA)

    SciTech Connect

    Kassouf, Amine; Maalouly, Jacqueline; Rutledge, Douglas N.; Chebib, Hanna; Ducruet, Violette

    2014-11-15

    Highlights: • An innovative technique, MIR-ICA, was applied to plastic packaging separation. • This study was carried out on PE, PP, PS, PET and PLA plastic packaging materials. • ICA was applied to discriminate plastics and 100% separation rates were obtained. • Analyses performed on two spectrometers proved the reproducibility of the method. • MIR-ICA is a simple and fast technique allowing plastic identification/classification. - Abstract: Plastic packaging wastes increased considerably in recent decades, raising a major and serious public concern on political, economical and environmental levels. Dealing with this kind of problems is generally done by landfilling and energy recovery. However, these two methods are becoming more and more expensive, hazardous to the public health and the environment. Therefore, recycling is gaining worldwide consideration as a solution to decrease the growing volume of plastic packaging wastes and simultaneously reduce the consumption of oil required to produce virgin resin. Nevertheless, a major shortage is encountered in recycling which is related to the sorting of plastic wastes. In this paper, a feasibility study was performed in order to test the potential of an innovative approach combining mid infrared (MIR) spectroscopy with independent components analysis (ICA), as a simple and fast approach which could achieve high separation rates. This approach (MIR-ICA) gave 100% discrimination rates in the separation of all studied plastics: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polylactide (PLA). In addition, some more specific discriminations were obtained separating plastic materials belonging to the same polymer family e.g. high density polyethylene (HDPE) from low density polyethylene (LDPE). High discrimination rates were obtained despite the heterogeneity among samples especially differences in colors, thicknesses and surface textures. The reproducibility of

  2. Coal ash usage in environmental restoration at the Hanford Site

    SciTech Connect

    Scanlon, P.L.; Sonnichsen, J.C.; Phillips, S.J.

    1995-09-01

    This paper discusses the use of coal ash from Hanford Nuclear Reservation steam plants as codisposal waste rock, landfill, or tank stabilization material; usage as a fuel source for energy recovery, as pipe or foundation backfill, or as an ornamental brick additive; and as aquarium rock, jewelry, or oyster bed stabilization material. Reducing the amount of waste produced is also discussed.

  3. Crystalline hybrid solid materials of palladium and decamethylcucurbit[5]uril as recoverable precatalysts for Heck cross-coupling reactions.

    PubMed

    Li, Hongfang; Lü, Jian; Lin, Jingxiang; Huang, Yuanbiao; Cao, Minna; Cao, Rong

    2013-11-11

    A series of MPdMe10 CB[5] (M=Li, Na, K, Rb, and Cs; Me10 CB[5]=decamethylcucurbit[5]uril) hybrid solid materials have been successfully synthesized for the first time through a simple diffusion method. These as-prepared hybrid solids have been applied as phosphine-free precatalysts for Heck cross-coupling reactions with excellent catalytic performance and good recyclability. In the processes of the catalytic reactions, the activated Pd(II) species were released from the crystalline hybrid precatalysts and transformed into catalytically active Pd nanoparticles, which have been demonstrated as key to carry on the catalytic reactions for the recoverable precatalysts MPdMe10 CB[5] (M=K, Rb, and Cs). It has also been rationalized that the introduction of different alkali metals afforded crystalline hybrid precatalysts with different crystal structures, which are responsible for their diversified stability and reusability presented in Heck reactions.

  4. Determination of aluminum and silicon in biological materials by inductively coupled plasma atomic emission spectrometry with electrothermal vaporization

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Barnes, Ramon M.

    An atomic emission spectrometric method is described for the determination of trace elements in microvolume samples especially of biological materials. Based upon the arrangement of a commercial electrothermal vaporizer and a 40-MHz inductively coupled plasma, the direct determination of aluminum and silicon in human body fluids such as urine and serum and aluminum in hemodialysis solution is performed. The instrumental system involves vaporizing the sample from a modified graphite electrode followed by atomization and excitation of the vapors in the ICP discharge. Compromise experimental conditions are reported and calibration functions compared. Limits of detection in 5-μl samples were 8 pg Al and 2.5 ng Si, and after preconcentration of Al with a poly(acrylamidoxime) resin, the detection limit was 1 pg Al. Recovery of 5 μg Si/ml and 10 ng Al/ml from aqueous and synthetic standards was 80-85% and 96-103%, respectively.

  5. Measuring Inductive-Heating Coupling Coefficients and Thermal Loss Characteristics as a Function of Crucible Geometry and Material Selection

    NASA Astrophysics Data System (ADS)

    Gomes, Jay

    A power measurement system has been designed for an ultra-high temperature inductively heated molten oxide electrolysis (MOE) reactor. The work presented in this research contributes to three different aspects of the induction heated MOE reactor facility: mathematical modeling of coil-to-workpiece power transfer, numerical modeling of heat transfer within the reactor, and experiments to measure the total hemispherical emittance of potential crucible materials. Facility-specific coupling coefficients for various samples have been experimentally determined for the MOE reactor facility. An analytical model coupling the predicted power input with heat transfer software was developed using COMSOL Multiphysics, and validated with experimental measurements of the steady state temperature gradient inside the reactor. These models were used to support the design of an experiment to measure the total hemispherical emissivity (epsilon) of conductive samples using a transient calorimetric technique. Results of epsilon are presented over a wide range of temperatures for copper, nickel, graphite and molybdenum. Furthermore, an investigation into optimizing the reactor system for heating will be discussed.

  6. Coupling solid-phase microextraction and laser desorption ionization for rapid identification of biological material.

    PubMed

    Perera, Sirantha; Berthod, Alain; Dodbiba, Edra; Armstrong, Daniel W

    2012-04-15

    Solid phase microextraction (SPME) use small fibers directly plunged in the solution under investigation to quickly extract and quantify by different techniques the amount of selected dissolved compounds. Biological materials, peptides or proteins are accurately identified by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). They are difficult to extract by SPME. This work looks for a chemical to be deposited onto fibers and able to act as a good SPME extractant as well as efficient matrix for MALDI detection. 3-Hydroxy-2-naphthoic acid (HNA) and 2-hydroxy-1-(2-hydroxy-4-sulfo-1-naphthylazo)-3-naphthoic acid (HHSNNA) were compared to two classical matrices: α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydrobenzoic acid (DHB). Bound to silica particles, DHB and HNA were found to be good MALDI matrices. Only the wide pore particles gave observable spectra. These particles were then attached in a thin layer onto wires to be used as fiber tips in SPME. Fibers loaded with peptides were introduced into the mass spectrometer to record fiber laser desorption ionization (FILDI) spectra. SPME-FILDI experiments could quickly identify peptides and proteins in solutions. More work is needed to find the best matrix and the way to fix it onto the fiber. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Practical aspects of mobile roof support usage

    SciTech Connect

    Chase, F.E.; Mark, C.; Barczak, T.M.

    1996-12-01

    Mobile roof supports are shield-type support units mounted on crawler tracks. Mobile roof support (MRS) units are used during retreat mining, and they eliminate the setting of roadway, turn, and crosscut breaker posts which are required during pillar recovery operations. Mobiles are a more effective ground support than timbers, and their usage enhance the safety of section personnel and reduces material handling injuries. MRS usage is rapidly increasing, and approximately 40 U.S. coal mines have successfully employed this relatively new technology. This paper is in response to increasing requests from operators, State and Federal Regulatory Agencies, and others on the practical aspects of MRS usage in underground coal mines. During this investigation, nearly half of the U.S. mines which have utilized mobiles were visited. This report depicts the more common pillar extraction methods which operators have found success. The Christmas tree and outside lift methods are illustrated and discussed. Roof control plans that do not require breaker posts or allow pillar extraction with fewer than four mobiles are also examined. In addition, operators` experiences with setting pressures, loads, and rates of loading during pillar extraction are addressed. Mining and support strategies to more effectively control hillseams, weak roof, and gob overrides which have entrapped equipment are also discussed.

  8. Accelerating bioelectric functional development of neural stem cells by graphene coupling: Implications for neural interfacing with conductive materials.

    PubMed

    Guo, Rongrong; Zhang, Shasha; Xiao, Miao; Qian, Fuping; He, Zuhong; Li, Dan; Zhang, Xiaoli; Li, Huawei; Yang, Xiaowei; Wang, Ming; Chai, Renjie; Tang, Mingliang

    2016-11-01

    In order to govern cell-specific behaviors in tissue engineering for neural repair and regeneration, a better understanding of material-cell interactions, especially the bioelectric functions, is extremely important. Graphene has been reported to be a potential candidate for use as a scaffold and neural interfacing material. However, the bioelectric evolvement of cell membranes on these conductive graphene substrates remains largely uninvestigated. In this study, we used a neural stem cell (NSC) model to explore the possible changes in membrane bioelectric properties - including resting membrane potentials and action potentials - and cell behaviors on graphene films under both proliferation and differentiation conditions. We used a combination of single-cell electrophysiological recordings and traditional cell biology techniques. Graphene did not affect the basic membrane electrical parameters (capacitance and input resistance), but resting membrane potentials of cells on graphene substrates were more strongly negative under both proliferation and differentiation conditions. Also, NSCs and their progeny on graphene substrates exhibited increased firing of action potentials during development compared to controls. However, graphene only slightly affected the electric characterizations of mature NSC progeny. The modulation of passive and active bioelectric properties on the graphene substrate was accompanied by enhanced NSC differentiation. Furthermore, spine density, synapse proteins expressions and synaptic activity were all increased in graphene group. Modeling of the electric field on conductive graphene substrates suggests that the electric field produced by the electronegative cell membrane is much higher on graphene substrates than that on control, and this might explain the observed changes of bioelectric development by graphene coupling. Our results indicate that graphene is able to accelerate NSC maturation during development, especially with regard to

  9. Etch characteristics of magnetic tunnel junction materials using bias pulsing in the CH4/N2O inductively coupled plasma.

    PubMed

    Jeon, Min Hwan; Youn, Ji Youn; Yang, Kyung Chae; Yun, Deok Hyun; Lee, Du Yeong; Shim, Tae Hun; Park, Jea Gun; Yeom, Geun Young

    2014-12-01

    The etch characteristics of magnetic tunneling junction (MTJ) related materials such as CoFeB, MgO, FePt, Ru, and W as hard mask have been investigated as functions of rf pulse biasing, substrate heating, and CH4/N2O gas combination in an inductively coupled plasma system. When CH4/N2O gas ratio was varied, at CH4/N2O gas ratio of 2:1, not only the highest etch rates but also the highest etch selectivity over W could be obtained. By increasing the substrate temperature, the linear increase of both the etch rates of MTJ materials and the etch selectivity over W could be obtained. The use of the rf pulse biasing improved the etch selectivity of the MTJ materials over hard mask such as W further. The surface roughness and residual thickness remaining on the etched surface of the CoFeB were also decreased by using rf pulse biasing and with the decrease of rf duty percentage. The improvement of etch characteristics by substrate heating and rf pulse biasing was possibly related to the formation of more stable and volatile etch compounds and the removal of chemically reacted compounds more easily on the etched CoFeB surface. Highly selective etching of MTJ materials over the hard mask could be obtained by using the rf pulse biasing of 30% of duty ratio and by increasing the substrate temperature to 200 degrees C in the CH4/N2O (2:1) plasmas.

  10. Rapid discrimination of plastic packaging materials using MIR spectroscopy coupled with independent components analysis (ICA).

    PubMed

    Kassouf, Amine; Maalouly, Jacqueline; Rutledge, Douglas N; Chebib, Hanna; Ducruet, Violette

    2014-11-01

    Plastic packaging wastes increased considerably in recent decades, raising a major and serious public concern on political, economical and environmental levels. Dealing with this kind of problems is generally done by landfilling and energy recovery. However, these two methods are becoming more and more expensive, hazardous to the public health and the environment. Therefore, recycling is gaining worldwide consideration as a solution to decrease the growing volume of plastic packaging wastes and simultaneously reduce the consumption of oil required to produce virgin resin. Nevertheless, a major shortage is encountered in recycling which is related to the sorting of plastic wastes. In this paper, a feasibility study was performed in order to test the potential of an innovative approach combining mid infrared (MIR) spectroscopy with independent components analysis (ICA), as a simple and fast approach which could achieve high separation rates. This approach (MIR-ICA) gave 100% discrimination rates in the separation of all studied plastics: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polylactide (PLA). In addition, some more specific discriminations were obtained separating plastic materials belonging to the same polymer family e.g. high density polyethylene (HDPE) from low density polyethylene (LDPE). High discrimination rates were obtained despite the heterogeneity among samples especially differences in colors, thicknesses and surface textures. The reproducibility of the proposed approach was also tested using two spectrometers with considerable differences in their sensitivities. Discrimination rates were not affected proving that the developed approach could be extrapolated to different spectrometers. MIR combined with ICA is a promising tool for plastic waste separation that can help improve performance in this field; however further technological improvements and developments are required before it can be applied

  11. Three-dimensional hybrid model for predicting air-coupled generation of guided waves in composite material plates.

    PubMed

    Masmoudi, Mohamed; Castaings, Michel

    2012-01-01

    For contact-less, non-destructive testing (NDT) purposes using air-coupled ultrasonic transducers, it is often required to numerically simulate the propagation of ultrasonic waves in solid media, and their coupling through air with specific transducers. At that point, one could simulate the propagation in the air and then in the solid component, using a Finite Element (FE) model. However, when three-dimensional (3D) modeling becomes necessary, such a solution reveals to be extremely demanding in terms of number of degrees of freedom and computational time. In this paper, to avoid such difficulties, the propagation in air from an ultrasonic transmitter to a tested solid plate is modeled in 3D using a closed-form solution. The knowledge of the transducer characteristics (diameter, frequency bandwidth, efficiency in Pa/V) allows the spatial distribution and actual pressure (in Pa) of the acoustic field produced in the air to be predicted, for a given input voltage. This pressure field is applied in turn as a boundary condition in a 3D FE model, to predict the plate response (displacement and stress guided beams) for a given distance between the transmitter and the plate, and for a given angle of orientation of the transmitter with respect to the plate. The FE model is so restricted to modeling of the solid structure only, thus reducing very significantly the number of degrees of freedom and computational time. The material constituting the plate is considered to be an anisotropic and viscoelastic medium. To validate the whole modeling process, an air-coupled ultrasonic transducer is used and oriented at a specific angle chosen for generating one specific Lamb mode guided along a composite plate sample, and a laser probe measures the normal velocity at different locations on the surface of the plate. In the field of NDT, it is generally suitable to excite a pure Lamb mode in order to ease the interpretation of received signals that would represent waves scattered by

  12. [Detection of Ethoprophos Using SERS Coupled with Magnetic Fe3O4/Ag Composite Materials].

    PubMed

    Yuan, Rong-hui; Liu, Wen-han; Teng, Yuan-jie; Nie, Jing; Ma, Su-zhen

    2015-05-01

    The magnetic Fe3O4/Ag composite materials were synthesized by reducing AgNO3 with sodium citrate in the presence of Fe3O4 which were prepared by co-precipitation firstly. The enrichment and extraction of ethoprophos assembled on Fe3O4/Ag were achieved with the applied magnetic field. The different concentrations of ethoprophos adsorbed on Fe3O4/Ag were analyzed by SERS and it was showed that the trace analysis of ethoprophos had been established, while the enhancement factor of probe molecules on Fe3O4/Ag was 1. 48 X 10(5). The structure and morphology of Fe3O4/Ag were characterized by UV-Vis, EDX and TEM. Compared with Ag, the UV-Vis absorption peak of Fe3O4/Ag shifted from 417 to 369 nm, and the UV-Vis of Fe3O4 almost had no characteristic absorption peak in this region. At the same time, it was showed that the surface properties of Fe3O4/Ag changed with Raman enhancement effect during the aggregation process of Ag around the surface of Fe3O4. Further EDX images of micro area element analysis suggested that the chemical composition of products were Ag, Fe and O while the Cu peak was from the copper mesh. In addition, TEM images indicated that the average particle size of Fe3O4 was between 30 and 60 nm with shape tended to be spherical. And the silver nanoparticles were attached to the Fe3O4 particles and agglomeration occured. Density functional theory calculations which can be applied to qualitative judgment of molecule was carried out to obtain the molecular optimization structure and theoretical Raman spectra. It was found that the stabilized SERS signals were detected under the saturated adsorption equilibrium after 15 min. Finally, Raman response of ethoprophos was achieved with lower than 2 X 10(-8) mol . L-1 , indicatint that the established method had reached the requirements of ethoprophos residues detection and could be used for analysis of sulfur-containing organophosphorus pesticide.

  13. Bay-Ocean Coupling and the Proximal Fate of Water-Borne Material Exported from San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Largier, J. L.

    2012-12-01

    The coupling between San Francisco Bay and the ocean is poorly known: how ocean waters intrude into bay and how bay waters flow out into the ocean. Here we address the outflow from the Bay with a view to describing the proximal fate of water-borne material in the coastal ocean, specifically finer particles and dissolved material. Flow trajectories longer than that in the tidal jet are thus the focus of this study - time scales of hours to days. We present data collected in both winter/runoff and spring/upwelling seasons that reflect the importance of tides and also the importance of wind, which introduces either northward or southward along-coast flow. Southward flow is offshore and typically this Bay effluent is removed from nearshore waters. In contrast, northward flow tends to remain attached to shore, and there is persistent presence of Bay waters in the surface layer up to Point Reyes, only occasionally separated from the coast by local upwelling within Drakes Bay. Perhaps most dramatic is outflow during winter storms, when wind is southerly and pushes water on shore in Drakes Bay as well as inducing an intense flow around Point Reyes, which turns cyclonically to reconnect with the shore in the vicinity of Bodega Bay before forming a wind-accelerated coast-attached current that looks very much like a coastal buoyancy current. This is the time when large volumes of low-salinity and high-load waters are exported from the Bay.

  14. Atmospheric inductively coupled Ar/H2 plasma torch for spraying B4C/Cu functionally gradient material

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Li, Lin; Guo, Qijia; Ni, Guohua; Zhang, Xiaodong; Institute of Plasma Physics, Chinese Academy of Sciences Team

    2016-09-01

    For preparing plasma facing material (PFM) in fusion device, an Ar/H2 inductively coupled plasma torch driven by a 24-60 MHz RF power is developed for spraying B4C/Cu functionally gradient material (FGM). In previous studies, we found that by adding a fractional amount of H2 gas into Ar plasma, quality of B4C/Cu coating was significantly improved. To discuss the effect of ingredient and the flow rate of plasma gas and frequency of the RF power on plasma characteristics, the optical emission spectroscopy (OES) measurement was performed. The gas rotational temperature is determined by simulating experimental hydroxyl spectra. The excitation temperature is estimated by the ratio of the intensities of the spectral lines of Ar I based on Boltzmann's method. The effects on B4C/Cu coating quality were studied by means of X-ray photoelectron spectrometry (XPS), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). All the plasma properties and the results of B4C/Cu coating would give us an insight on the mechanism and the possibility of improving the process.

  15. Molecular plasmonics: The role of rovibrational molecular states in exciton-plasmon materials under strong-coupling conditions

    NASA Astrophysics Data System (ADS)

    Sukharev, Maxim; Charron, Eric

    2017-03-01

    We extend the model of exciton-plasmon materials to include a rovibrational structure of molecules using wave-packet propagations on electronic potential energy surfaces. Our model replaces conventional two-level emitters with more complex molecules, allowing us to examine the influence of alignment and vibrational dynamics on strong coupling with surface plasmon-polaritons. We apply the model to a hybrid system comprising a thin layer of molecules placed on top of a periodic array of slits. Rigorous simulations are performed for two types of molecular systems described by vibrational bound-bound and bound-continuum electronic transitions. Calculations reveal new features in transmission, reflection, and absorption spectra, including the observation of significantly higher values of the Rabi splitting and vibrational patterns clearly seen in the corresponding spectra. We also examine the influence of anisotropic initial conditions on optical properties of hybrid materials, demonstrating that the optical response of the system is significantly affected by an initial prealignment of the molecules. Our work demonstrates that prealigned molecules could serve as an efficient probe for the subdiffraction characterization of the near-field near metal interfaces.

  16. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    DOE PAGES

    Kim, Jihoon; Moridis, George J.

    2014-12-01

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gasmore » causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design

  17. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    SciTech Connect

    Kim, Jihoon; Moridis, George J.

    2014-12-01

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gas causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design production

  18. First-principles method for electron-phonon coupling and electron mobility: Applications to two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Gunst, Tue; Markussen, Troels; Stokbro, Kurt; Brandbyge, Mads

    2016-01-01

    We present density functional theory calculations of the phonon-limited mobility in n -type monolayer graphene, silicene, and MoS2. The material properties, including the electron-phonon interaction, are calculated from first principles. We provide a detailed description of the normalized full-band relaxation time approximation for the linearized Boltzmann transport equation (BTE) that includes inelastic scattering processes. The bulk electron-phonon coupling is evaluated by a supercell method. The method employed is fully numerical and does therefore not require a semianalytic treatment of part of the problem and, importantly, it keeps the anisotropy information stored in the coupling as well as the band structure. In addition, we perform calculations of the low-field mobility and its dependence on carrier density and temperature to obtain a better understanding of transport in graphene, silicene, and monolayer MoS2. Unlike graphene, the carriers in silicene show strong interaction with the out-of-plane modes. We find that graphene has more than an order of magnitude higher mobility compared to silicene in the limit where the silicene out-of-plane interaction is reduced to zero (by substrate interaction, clamping, or similar). If the out-of-plane interaction is not actively reduced, the mobility of silicene will essentially be zero. For MoS2, we obtain several orders of magnitude lower mobilities compared to graphene in agreement with other recent theoretical results. The simulations illustrate the predictive capabilities of the newly implemented BTE solver applied in simulation tools based on first-principles and localized basis sets.

  19. Recent aspects of self-oscillating polymeric materials: designing self-oscillating polymers coupled with supramolecular chemistry and ionic liquid science.

    PubMed

    Ueki, Takeshi; Yoshida, Ryo

    2014-06-14

    Herein, we summarise the recent developments in self-oscillating polymeric materials based on the concepts of supramolecular chemistry, where aggregates of molecular building blocks with non-covalent bonds evolve the temporal or spatiotemporal structure. By utilising the rhythmic oscillation of the association/dissociation of molecular aggregates coupled with the redox oscillation by the BZ reaction, novel soft materials that express similar functions as those of living matter will be achieved. Further, from the viewpoint of materials science, our recent approach to prepare self-oscillating materials that operate long-term under mild conditions will be introduced.

  20. Code Usage Analysis System (CUAS)

    NASA Technical Reports Server (NTRS)

    Horsley, P. H.; Oliver, J. D.

    1976-01-01

    A set of computer programs is offered to aid a user in evaluating performance of an application program. The system provides reports of subroutine usage, program errors, and segment loading which occurred during the execution of an application program. It is presented in support of the development and validation of the space vehicle dynamics project.

  1. Dictionary of Caribbean English Usage.

    ERIC Educational Resources Information Center

    Allsopp, Richard, Ed.

    This dictionary is designed to provide an inventory of English usage in the Caribbean environment and lifestyle as known and spoken in each territory but not recorded in the standard British and American desk dictionaries. It cross-references different names for the same item throughout the anglophone Caribbean, identifies different items called…

  2. Video personalization for usage environment

    NASA Astrophysics Data System (ADS)

    Tseng, Belle L.; Lin, Ching-Yung; Smith, John R.

    2002-07-01

    A video personalization and summarization system is designed and implemented incorporating usage environment to dynamically generate a personalized video summary. The personalization system adopts the three-tier server-middleware-client architecture in order to select, adapt, and deliver rich media content to the user. The server stores the content sources along with their corresponding MPEG-7 metadata descriptions. Our semantic metadata is provided through the use of the VideoAnnEx MPEG-7 Video Annotation Tool. When the user initiates a request for content, the client communicates the MPEG-21 usage environment description along with the user query to the middleware. The middleware is powered by the personalization engine and the content adaptation engine. Our personalization engine includes the VideoSue Summarization on Usage Environment engine that selects the optimal set of desired contents according to user preferences. Afterwards, the adaptation engine performs the required transformations and compositions of the selected contents for the specific usage environment using our VideoEd Editing and Composition Tool. Finally, two personalization and summarization systems are demonstrated for the IBM Websphere Portal Server and for the pervasive PDA devices.

  3. Modeling Educational Usage of Facebook

    ERIC Educational Resources Information Center

    Mazman, Sacide Guzin; Usluel, Yasemin Kocak

    2010-01-01

    The purpose of this study is to design a structural model explaining how users could utilize Facebook for educational purposes. In order to shed light on the educational usage of Facebook, in constructing the model, the relationship between users' Facebook adoption processes and their educational use of Facebook were included indirectly while the…

  4. Modeling Educational Usage of Facebook

    ERIC Educational Resources Information Center

    Mazman, Sacide Guzin; Usluel, Yasemin Kocak

    2010-01-01

    The purpose of this study is to design a structural model explaining how users could utilize Facebook for educational purposes. In order to shed light on the educational usage of Facebook, in constructing the model, the relationship between users' Facebook adoption processes and their educational use of Facebook were included indirectly while the…

  5. Dictionary of Caribbean English Usage.

    ERIC Educational Resources Information Center

    Allsopp, Richard, Ed.

    This dictionary is designed to provide an inventory of English usage in the Caribbean environment and lifestyle as known and spoken in each territory but not recorded in the standard British and American desk dictionaries. It cross-references different names for the same item throughout the anglophone Caribbean, identifies different items called…

  6. Users, Use, and Usage Statistics

    ERIC Educational Resources Information Center

    Grogg, Jill E.

    2010-01-01

    For the August/September 2010 issue of "Library Technology Reports" (LTR) published by the American Library Association Techsource division, the author and her colleague, Rachel A. Fleming-May, focused on use and usage, both of electronic resources and use of libraries in general. In this article, the author discusses a few of the findings from an…

  7. Users, Use, and Usage Statistics

    ERIC Educational Resources Information Center

    Grogg, Jill E.

    2010-01-01

    For the August/September 2010 issue of "Library Technology Reports" (LTR) published by the American Library Association Techsource division, the author and her colleague, Rachel A. Fleming-May, focused on use and usage, both of electronic resources and use of libraries in general. In this article, the author discusses a few of the findings from an…

  8. A continuum three-dimensional, fully coupled, dynamic, non-linear finite element formulation for magnetostrictive materials

    NASA Astrophysics Data System (ADS)

    Pérez-Aparicio, José L.; Sosa, Horacio

    2004-06-01

    Magnetostriction is a phenomenon observed in all ferromagnetic materials. It couples elastic, electric, magnetic and in some situations also thermal fields and is of great industrial interest for use in sensors, actuators, adaptive or functional structures, robotics, transducers and MEMS. In this work, the governing equations of the three-field problem (i.e., the interactions of elastic, electric and magnetic effects) are formulated in three dimensions, accounting for non-linear (through magnetic body forces represented by the Maxwell tensor) and dynamic effects, and with constitutive equations resembling those of piezoelectricity. Through manipulation of Maxwell equations it is possible to find suitable expressions for developing the numerical weak, Galerkin and matrix forms in a natural way, including seven residuals (one for each nodal degree of freedom) and non-symmetric tangent, 'capacity' and mass consistent matrices. Simple backward Euler and central difference schemes can be used for the time domain integration. The only assumption made in this work for simplification is that the time variation of electric induction is negligible. This is justified by the relatively low frequencies ({\\ll }1 GHz) under which magnetostrictive materials usually work. The principal feature of the equations is the use of a magnetic potential (without much physical meaning) that allows a complete 'displacement' finite element formulation: all elastic, electric and magnetic nodal unknowns are zero derivatives. This allows the algorithm to be treated in a standard way, and important effects such as eddy currents can be obtained naturally. The formulation is implemented in the research finite element code FEAP. Although seven degrees of freedom per node is computer expensive to solve (especially for 3D problems), the current trend in the performance of computers, even personal ones, makes it worthwhile to build complete finite elements following the well-established (in mechanics

  9. Recycling of organic materials and solder from waste printed circuit boards by vacuum pyrolysis-centrifugation coupling technology.

    PubMed

    Zhou, Yihui; Wu, WenBiao; Qiu, Keqiang

    2011-12-01

    Here, we focused on the recycling of waste printed circuit boards (WPCBs) using vacuum pyrolysis-centrifugation coupling technology (VPCT) aiming to obtain valuable feedstock and resolve environmental pollution. The two types of WPCBs were pyrolysed at 600°C for 30 min under vacuum condition. During the pyrolysis process, the solder of WPCBs was separated and recovered when the temperature range was 400-600°C, and the rotating drum was rotated at 1000 rpm for 10 min. The type-A of WPCBs pyrolysed to form an average of 67.91 wt.% residue, 27.84 wt.% oil, and 4.25 wt.% gas; and pyrolysis of the type-B of WPCBs led to an average mass balance of 72.22 wt.% residue, 21.57 wt.% oil, and 6.21 wt.% gas. The GC-MS and FT-IR analyses showed that the two pyrolysis oils consisted mainly of phenols and substituted phenols. The pyrolysis oil can be used for fuel or chemical feedstock for further processing. The recovered solder can be recycled directly and it can also be a good resource of lead and tin for refining. The pyrolysis residues contained various metals, glass fibers and other inorganic materials, which could be recovered after further treatment. The pyrolysis gases consisted mainly of CO, CO(2), CH(4), and H(2), which could be collected and recycled.

  10. Efficacy of denture cleaners on the surface roughness and Candida albicans adherence of sealant agent coupled denture base materials.

    PubMed

    Köroğlu, Ayşegül; Şahin, Onur; Dede, Doğu Ömür; Deniz, Şule Tuğba; Karacan Sever, Nurdan; Özkan, Serkan

    2016-01-01

    This study investigated the effect of denture cleansers on the surface roughness and Candida albicans adherence of surface sealant agent coupled denture base resins. One hundred and twenty specimens were fabricated from 2 polymethyl methacrylate (PMMA) (Meliodent; Acron MC) and 1 polyamide (Deflex) denture base materials, coated with a sealant agent (Palaseal) and divided into 4 groups (n=10) according to overnight cleaning procedures: distilled water (control), 5% sodium hypochlorite (NaOCl) and two different sodium perborate (Corega; Rapident). The surface roughness values were measured with a profilometer before (Ra0) and after 90 days immersion in denture cleaners (Ra1). Specimens were incubated with Candida albicans suspension and Candida colony- forming units (CFU) (Cfu/mm) were counted. Significant differences were found, between the Ra0 and Ra1 values of 5% NaOCl applied Acron MC, Deflex and also Rapident applied Deflex groups (p<0.05). Denture cleaning procedures had no significant effects on the quantitiy of Candida albicans.

  11. Influence of dielectric materials on uniformity of large-area capacitively coupled plasmas for N2/Ar discharges

    NASA Astrophysics Data System (ADS)

    Liang, Ying-Shuang; Zhang, Yu-Ru; Wang, You-Nian

    2016-10-01

    The effect of the dielectric ring on the plasma radial uniformity is numerically investigated in the practical 450-mm capacitively coupled plasma reactor by a two-dimensional self-consistent fluid model. The simulations were performed for N2/Ar discharges at the pressure of 300 Pa, and the frequency of 13.56 MHz. In the practical plasma treatment process, the wafer is always surrounded by a dielectric ring, which is less studied. In this paper, the plasma characteristics are systematically investigated by changing the properties of the dielectric ring, i.e., the relative permittivity, the thickness and the length. The results indicate that the plasma parameters strongly depend on the properties of the dielectric ring. As the ratio of the thickness to the relative permittivity of the dielectric ring increases, the electric field at the wafer edge becomes weaker due to the stronger surface charging effect. This gives rise to the lower ion density, flux and N atom density at the wafer edge. Thus the homogeneous plasma density is obtained by selecting optimal dielectric ring relative permittivity and thickness. In addition, we also find that the length of the dielectric ring should be as short as possible to avoid the discontinuity of the dielectric materials, and thus obtain the large area uniform plasma. Project supported by the National Natural Science Foundation of China (Grant Nos. 11335004 and 11405019) and the Important National Science and Technology Specific Project of China (Grant No. 2011ZX02403-001).

  12. Tribological properties of the disc brake friction couple materials in the range of small and very small speeds

    NASA Astrophysics Data System (ADS)

    Stoica, N. A.; Petrescu, A. M.; Tudor, A.; Predescu, A.

    2017-02-01

    The tribological properties of the friction couple materials have a major influence on the brake system operation and its failure. One of the main phenomena associated as a symptom of failure in the brake system are the noises and vibrations produced during braking. The stick-slip phenomenon is attributed as the cause of these noises and vibrations. The stick-slip phenomenon usually appears at low and very low sliding speeds and is described as intermittences in the friction process caused by the differences between the values of the kinetic and the static friction coefficients. The present paper addresses an investigation about the influence of the static and kinetic friction on the occurrence of above mentioned noises and vibrations in the disc brake system. For this, extensive experimental work was performed on a laboratory tribometer in the form of pin-on-disc tests, where the pin was manufactured out of an automotive brake pad and the disc was manufactured out of an automotive grey cast iron brake disc. The results highlight the effects of the sliding speed and contact pressure on the friction coefficient and its influence on the brake noises and vibrations caused by the stick-slip phenomenon.

  13. Trace analysis of energetic materials via direct analyte-probed nanoextraction coupled to direct analysis in real time mass spectrometry.

    PubMed

    Clemons, Kristina; Dake, Jeffrey; Sisco, Edward; Verbeck, Guido F

    2013-09-10

    Direct analysis in real time mass spectrometry (DART-MS) has proven to be a useful forensic tool for the trace analysis of energetic materials. While other techniques for detecting trace amounts of explosives involve extraction, derivatization, solvent exchange, or sample clean-up, DART-MS requires none of these. Typical DART-MS analyses directly from a solid sample or from a swab have been quite successful; however, these methods may not always be an optimal sampling technique in a forensic setting. For example, if the sample were only located in an area which included a latent fingerprint of interest, direct DART-MS analysis or the use of a swab would almost certainly destroy the print. To avoid ruining such potentially invaluable evidence, another method has been developed which will leave the fingerprint virtually untouched. Direct analyte-probed nanoextraction coupled to nanospray ionization-mass spectrometry (DAPNe-NSI-MS) has demonstrated excellent sensitivity and repeatability in forensic analyses of trace amounts of illicit drugs from various types of surfaces. This technique employs a nanomanipulator in conjunction with bright-field microscopy to extract single particles from a surface of interest and has provided a limit of detection of 300 attograms for caffeine. Combining DAPNe with DART-MS provides another level of flexibility in forensic analysis, and has proven to be a sufficient detection method for trinitrotoluene (TNT), RDX, and 1-methylaminoanthraquinone (MAAQ).

  14. Solution of problems with material nonlinearities with a coupled finite element/boundary element scheme using an iterative solver. Yucca Mountain Site Characterization Project

    SciTech Connect

    Koteras, J.R.

    1996-01-01

    The prediction of stresses and displacements around tunnels buried deep within the earth is an important class of geomechanics problems. The material behavior immediately surrounding the tunnel is typically nonlinear. The surrounding mass, even if it is nonlinear, can usually be characterized by a simple linear elastic model. The finite element method is best suited for modeling nonlinear materials of limited volume, while the boundary element method is well suited for modeling large volumes of linear elastic material. A computational scheme that couples the finite element and boundary element methods would seem particularly useful for geomechanics problems. A variety of coupling schemes have been proposed, but they rely on direct solution methods. Direct solution techniques have large storage requirements that become cumbersome for large-scale three-dimensional problems. An alternative to direct solution methods is iterative solution techniques. A scheme has been developed for coupling the finite element and boundary element methods that uses an iterative solution method. This report shows that this coupling scheme is valid for problems where nonlinear material behavior occurs in the finite element region.

  15. Cell phone usage and erectile function

    PubMed Central

    Patzak, Johanna; Fischereder, Katja; Pummer, Karl; Shamloul, Rany

    2013-01-01

    Introduction The objective of this pilot study was to report our experience concerning the effects of cell phone usage on erectile function (EF) in men. Material and Methods We recruited 20 consecutive men complaining of erectile dysfunction (ED) for at least six months (Group A), and another group of 10 healthy men with no complaints of ED (Group B). Anamnesis, basic laboratory investigations, and clinical examinations were performed. All men completed the German version of the Sexual Health Inventory for Men (SHIM) for evaluation of the International Index of Erectile Function (IIEF), as well as another questionnaire designed by our clinicians that assessed cell phone usage habits. Results There was no significant difference between both groups regarding age, weight, height, and total testosterone (Table 1). The SHIM scores of Group A were significantly lower than that of Group B, 11.2 ±5 and 24.2 ±2.3, respectively. Total time spent talking on the cell phone per week was not significantly higher in Group A over B, 17.6 ±11.1 vs. 12.5 ±7 hours. Men with ED were found to carry their ‘switched on’ cell phones for a significantly longer time than those without ED, 4.4 ±3.6 vs. 1.8 ±1 hours per day. Conclusions We found a potential correlation with cell phone usage and a negative impact on EF. Further large–scale studies confirming our initial data and exploring the mechanisms involved in this phenomenon are recommended. PMID:24578997

  16. OER Usage by Instructional Designers and Training Managers in Corporations

    ERIC Educational Resources Information Center

    Merkel, Eli; Cohen, Anat

    2015-01-01

    Since the development of Open Educational Resources (OERs), different models regarding the usage of these resources in education have appeared in the literature. Wiley's 4-Rs model is considered to be one of the leading models. Research based on Wiley's model shows that using materials without making changes is the most common use. Compared to the…

  17. Reading and Cognitive Capacity Usage: Effects of Text Difficulty.

    ERIC Educational Resources Information Center

    Britton, Bruce K.; And Others

    Three experiments, in which subjects read passages of variable readability, measured "cognitive capacity usage" (the attention level to reading material) by recording by subjects reaction times in a secondary task (responding to a "click"). The data indicated that the easy texts filled cognitive capacity more completely than the difficult texts,…

  18. Reading and Cognitive Capacity Usage: Effects of Text Difficulty.

    ERIC Educational Resources Information Center

    Britton, Bruce K.; And Others

    Three experiments, in which subjects read passages of variable readability, measured "cognitive capacity usage" (the attention level to reading material) by recording by subjects reaction times in a secondary task (responding to a "click"). The data indicated that the easy texts filled cognitive capacity more completely than the difficult texts,…

  19. OER Usage by Instructional Designers and Training Managers in Corporations

    ERIC Educational Resources Information Center

    Merkel, Eli; Cohen, Anat

    2015-01-01

    Since the development of Open Educational Resources (OERs), different models regarding the usage of these resources in education have appeared in the literature. Wiley's 4-Rs model is considered to be one of the leading models. Research based on Wiley's model shows that using materials without making changes is the most common use. Compared to the…

  20. Weather dissemination and public usage

    NASA Technical Reports Server (NTRS)

    Stacey, M. S.

    1973-01-01

    The existing public usage of weather information was examined. A survey was conducted to substantiate the general public's needs for dissemination of current (0-12 hours) weather information, needs which, in a previous study, were found to be extensive and urgent. The goal of the study was to discover how the general public obtains weather information, what information they seek and why they seek it, to what use this information is put, and to further ascertain the public's attitudes and beliefs regarding weather reporting and the diffusion of weather information. Major findings from the study include: 1. The public has a real need for weather information in the 0-6 hour bracket. 2. The visual medium is preferred but due to the lack of frequent (0-6 hours) forecasts, the audio media only, i.e., telephone recordings and radio weathercasts, were more frequently used. 3. Weather information usage is sporadic.

  1. The effect of dielectric top lids on materials processing in a low frequency inductively coupled plasma (LF-ICP) reactor

    NASA Astrophysics Data System (ADS)

    Lim, J. W. M.; Chan, C. S.; Xu, L.; Xu, S.

    2014-08-01

    The advent of the plasma revolution began in the 1970's with the exploitation of plasma sources for anisotropic etching and processing of materials. In recent years, plasma processing has gained popularity, with research institutions adopting projects in the field and industries implementing dry processing in their production lines. The advantages of utilizing plasma sources would be uniform processing over a large exposed surface area, and the reduction of toxic emissions. This leads to reduced costs borne by manufacturers which could be passed down as consumer savings, and a reduction in negative environmental impacts. Yet, one constraint that plagues the industry would be the control of contaminants in a plasma reactor which becomes evident when reactions are conducted in a clean vacuum environment. In this work, amorphous silicon (a-Si) thin films were grown on glass substrates in a low frequency inductively coupled plasma (LF-ICP) reactor with a top lid made of quartz. Even though the chamber was kept at high vacuum ( 10-4 Pa), it was evident through secondary ion mass spectroscopy (SIMS) and Fourier-transform infra-red spectroscopy (FTIR) that oxygen contaminants were present. With the aid of optical emission spectroscopy (OES) the contaminant species were identified. The design of the LF-ICP reactor was then modified to incorporate an Alumina (Al2O3) lid. Results indicate that there were reduced amounts of contaminants present in the reactor, and that an added benefit of increased power transfer to the plasma, improving deposition rate of thin films was realized. The results of this study is conclusive in showing that Al2O3 is a good alternative as a top-lid of an LF-ICP reactor, and offers industries a solution in improving quality and rate of growth of thin films.

  2. Opportunistic Resource Usage in CMS

    SciTech Connect

    Kreuzer, Peter; Hufnagel, Dirk; Dykstra, D.; Gutsche, O.; Tadel, M.; Sfiligoi, I.; Letts, J.; Wuerthwein, F.; McCrea, A.; Bockelman, B.; Fajardo, E.; Linares, L.; Wagner, R.; Konstantinov, P.; Blumenfeld, B.; Bradley, D.

    2014-01-01

    CMS is using a tiered setup of dedicated computing resources provided by sites distributed over the world and organized in WLCG. These sites pledge resources to CMS and are preparing them especially for CMS to run the experiment's applications. But there are more resources available opportunistically both on the GRID and in local university and research clusters which can be used for CMS applications. We will present CMS' strategy to use opportunistic resources and prepare them dynamically to run CMS applications. CMS is able to run its applications on resources that can be reached through the GRID, through EC2 compliant cloud interfaces. Even resources that can be used through ssh login nodes can be harnessed. All of these usage modes are integrated transparently into the GlideIn WMS submission infrastructure, which is the basis of CMS' opportunistic resource usage strategy. Technologies like Parrot to mount the software distribution via CVMFS and xrootd for access to data and simulation samples via the WAN are used and will be described. We will summarize the experience with opportunistic resource usage and give an outlook for the restart of LHC data taking in 2015.

  3. Opportunistic Resource Usage in CMS

    NASA Astrophysics Data System (ADS)

    Kreuzer, Peter; Hufnagel, Dirk; Dykstra, D.; Gutsche, O.; Tadel, M.; Sfiligoi, I.; Letts, J.; Wuerthwein, F.; McCrea, A.; Bockelman, B.; Fajardo, E.; Linares, L.; Wagner, R.; Konstantinov, P.; Blumenfeld, B.; Bradley, D.; Cms Collaboration

    2014-06-01

    CMS is using a tiered setup of dedicated computing resources provided by sites distributed over the world and organized in WLCG. These sites pledge resources to CMS and are preparing them especially for CMS to run the experiment's applications. But there are more resources available opportunistically both on the GRID and in local university and research clusters which can be used for CMS applications. We will present CMS' strategy to use opportunistic resources and prepare them dynamically to run CMS applications. CMS is able to run its applications on resources that can be reached through the GRID, through EC2 compliant cloud interfaces. Even resources that can be used through ssh login nodes can be harnessed. All of these usage modes are integrated transparently into the GlideIn WMS submission infrastructure, which is the basis of CMS' opportunistic resource usage strategy. Technologies like Parrot to mount the software distribution via CVMFS and xrootd for access to data and simulation samples via the WAN are used and will be described. We will summarize the experience with opportunistic resource usage and give an outlook for the restart of LHC data taking in 2015.

  4. Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples

    SciTech Connect

    Colombier, J. P.; Audouard, E.; Stoian, R.; Combis, P.

    2006-12-01

    We present results describing the efficiency of energy coupling in laser-irradiated metallic surfaces by ultrashort laser pulses with different intensity envelopes. Subsequently, we discuss probable thermodynamic paths for material ejection under the laser action. Ion and neutral emission from the excited sample is used as a sensitive method to probe the efficiency of energy deposition in the material. With support from numerical simulations of the hydrodynamic advance of the excited matter, consequences of optimized energy coupling relevant for applications in material processing are revealed. Despite the reduced sensitivity to intensity-dependent effects for linear materials, the overall absorption efficiency can be elevated if the proper conditions of density and temperature are met for the expanding material layers. In this respect, short sub-ps single pulse irradiation is compared with picosecond sequences. We show that in particular irradiation regimes, characterized by fluences superior to the material removal threshold, laser energy delivery extending on several picoseconds leads to significant superheating of the superficial layers as compared to femtosecond irradiation and to a swift acceleration of the emitted particles. Subsequently, the lifetime of the post-irradiation liquid layer is diminished, which, in turn, translates into a reduction in droplet ejection. In contrast, short pulse irradiation at moderate fluences generates a higher quantity of removed material that is ejected in a dense mixture of gas and liquid-phase particulates.

  5. Expletive Deleted: A Study of Language Usage.

    ERIC Educational Resources Information Center

    Nykodym, Nick; Boyd, John A.

    The research findings of profane language usage need to be extended so that more may be learned about human communication. In order to establish profane language usage norms, eighty-six university students were asked to estimate their profane language usage in each of three categories (excretory, religious, and sexual) in reference to three…

  6. International Variation in Drug Usage

    PubMed Central

    Nolte, Ellen; Corbett, Jennie

    2015-01-01

    Abstract This article explores the range of possible causes that might explain observed international variations in the usage of medicines for selected disease areas: dementia, osteoporosis, cancer, diabetes and hepatitis C. Commissioned by the UK Department of Health, through its Policy Research Programme, it complements a quantitative analysis of medicines uptake carried out by the Office for Health Economics (OHE) of medicines uptake across 16 classes of medicines in 13 high-income countries in 2012/13. Both studies build on an earlier study led by Professor Sir Mike Richards (UK) into the extent and causes of international variations in drug usage, published in 2010. Drawing on a rapid evidence assessment, we explore, for each of the five disease areas, epidemiological factors such as the disease burden and aspects of health system and service organisation that were shown to have a direct or indirect impact on drug usage, such as reimbursement mechanisms, access to diagnosis and treatment more broadly. We also provide a summary overview of key features of the health systems and of the principles of drug assessment or approval processes across the countries included in the OHE analysis. We find that a range of factors are likely to play a role in explaining international variation in medicines use, but their relative importance will vary depending on the disease area in question and the system context. Any given level of use of a given medicine in one country is likely determined by a set of factors the combination and the relative weight of which will be different in another country. PMID:28083348

  7. Using a Coupled Thermal/Material Flow Model to Predict Residual Stress in Friction Stir Processed AlMg9Si

    NASA Astrophysics Data System (ADS)

    Hamilton, C.; Węglowski, M. St.; Dymek, S.; Sedek, P.

    2015-03-01

    A coupled thermal/material flow model of friction stir processing is developed for friction stir processing of an as-cast AlSi9Mg aluminum alloy. By capturing material flow during processing, an asymmetric temperature distribution is generated with higher processing temperatures on the advancing side than on the retreating side. The temperature distribution from the coupled model is then incorporated into a thermomechanical model to predict the residual stress state after processing. These numerical results are compared with the residual stresses experimentally measured by the trepanation method. Experimental results show that the tensile residual stresses are higher on the advancing side than on the retreating side. The simulation successfully captures the asymmetric behavior of the residual stress profile, and the predicted maximum residual stress values show relatively good agreement with the experimental values. The simulated profile, however, is narrower than the experimental profile, yielding a smaller region of tensile residual stresses around the process zone than experimentally observed.

  8. Enhanced heat transfer through filler-polymer interface by surface-coupling agent in heat-dissipation material: A non-equilibrium molecular dynamics study

    SciTech Connect

    Tanaka, Kouichi; Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki; Kitsunezuka, Masashi; Shinma, Atsushi

    2013-11-21

    Developing a composite material of polymers and micrometer-sized fillers with higher heat conductance is crucial to realize modular packaging of electronic components at higher densities. Enhancement mechanisms of the heat conductance of the polymer-filler interfaces by adding the surface-coupling agent in such a polymer composite material are investigated through the non-equilibrium molecular dynamics (MD) simulation. A simulation system is composed of α-alumina as the filler, bisphenol-A epoxy molecules as the polymers, and model molecules for the surface-coupling agent. The inter-atomic potential between the α-alumina and surface-coupling molecule, which is essential in the present MD simulation, is constructed to reproduce the calculated energies with the electronic density-functional theory. Through the non-equilibrium MD simulation runs, we find that the thermal resistance at the interface decreases significantly by increasing either number or lengths of the surface-coupling molecules and that the effective thermal conductivity of the system approaches to the theoretical value corresponding to zero thermal-resistance at the interface. Detailed analyses about the atomic configurations and local temperatures around the interface are performed to identify heat-transfer routes through the interface.

  9. Application of low pressure capacitively coupled rf hydrogen plasma for low temperature reduction of iron clusters in structure of fe-pillared materials

    NASA Astrophysics Data System (ADS)

    Starshinova, V. L.; Gorelysheva, V. E.; Shinka Jr., A. A., rev; Gnevashev, S. G.; Kulevtsov, G. N.; Shinkarev, A. A.

    2017-01-01

    The unique properties of pillared materials determine their use in catalysis, purification and separation. The paper studies the reduction of composite catalysts, Fe-pillared materials. The authors compare their reduction in low temperature capacitively coupled RF hydrogen discharge of low pressure to their conventional direct hydrogen reduction in a tubular muffle furnace. X-ray diffraction analysis was used to characterize the iron-bearing phases. The results show that the reduction of iron hydro/oxide clusters associated with an aluminosilicate matrix to metallic iron is very challenging due to the degree of the pore space availability for hydrogen.

  10. Determination of nickel in biological materials after microwave dissolution using inductively coupled plasma atomic emission spectrometry with prior extraction into butan-1-ol.

    PubMed

    Vereda Alonso, E; García de Torres, A; Cano Pavón, J M

    1992-07-01

    A sensitive procedure has been developed for the determination of ultratrace amounts of nickel in biological materials by inductively coupled plasma atomic emission spectrometry after extraction of the nickel ion into butan-1-ol by using 1,5-bis(di-2-pyridylmethylene)thiocarbonohydrazide as the extracting reagent. Fast, efficient and complete sample digestion is achieved by an HNO3-HCl poly(tetrafluoroethylene) bomb dissolution technique using microwave heating. Results obtained for eleven certified reference materials agreed with the certified values.

  11. Henipavirus receptor usage and tropism.

    PubMed

    Pernet, Olivier; Wang, Yao E; Lee, Benhur

    2012-01-01

    Nipah (NiV) and Hendra (HeV) viruses are the deadliest human pathogens within the Paramyxoviridae family, which include human and animal pathogens of global biomedical importance. NiV and HeV infections cause respiratory and encephalitic illness with high mortality rates in humans. Henipaviruses (HNV) are the only Paramyxoviruses classified as biosafety level 4 (BSL4) pathogens due to their extreme pathogenicity, potential for bioterrorism, and lack of licensed vaccines and therapeutics. HNV use ephrin-B2 and ephrin-B3, highly conserved proteins, as viral entry receptors. This likely accounts for their unusually broad species tropism, and also provides opportunities to study how receptor usage, cellular tropism, and end-organ pathology relates to the pathobiology of HNV infections. The clinical and pathologic manifestations of NiV and HeV virus infections are reviewed in the chapters by Wong et al. and Geisbert et al. in this issue. Here, we will review the biology of the HNV receptors, and how receptor usage relates to HNV cell tropism in vitro and in vivo.

  12. Divergence in codon usage of Lactobacillus species.

    PubMed Central

    Pouwels, P H; Leunissen, J A

    1994-01-01

    We have analyzed codon usage patterns of 70 sequenced genes from different Lactobacillus species. Codon usage in lactobacilli is highly biased. Both inter-species and intra-species heterogeneity of codon usage bias was observed. Codon usage in L. acidophilus is similar to that in L. helveticus, but dissimilar to that in L. bulgaricus, L. casei, L. pentosus and L. plantarum. Codon usage in the latter three organisms is not significantly different, but is different from that in L. bulgaricus. Inter-species differences in codon usage can, at least in part, be explained by differences in mutational drift. L. bulgaricus shows GC drift, whereas all other species show AT drift. L. acidophilus and L. helveticus rarely use NNG in family-box (a set of synonymous) codons, in contrast to all other species. This result may be explained by assuming that L. acidophilus and L. helveticus, but not other species examined, use a single tRNA species for translation of family-box codons. Differences in expression level of genes are positively correlated with codon usage bias. Highly expressed genes show highly biased codon usage, whereas weakly expressed genes show much less biased codon usage. Codon usage patterns at the 5'-end of Lactobacillus genes is not significantly different from that of entire genes. The GC content of codons 2-6 is significantly reduced compared with that of the remainder of the gene. The possible implications of a reduced GC content for the control of translation efficiency are discussed. PMID:8152923

  13. Materialism.

    PubMed

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website.

  14. Explorating coupled production of dissolved organic material and methyl mercury in a tidal wetland using the intrinsic chemical composition of the organic material

    NASA Astrophysics Data System (ADS)

    Bergamaschi, B. A.; Fleck, J. A.; Downing, B.; Stephenson, M.; Hernes, P. J.; Boss, E.

    2007-12-01

    Elevated methyl mercury (MeHg) levels found in biota of the San Francisco Estuary have been attributed to methylation processes in the peat-rich tidal wetlands of the Estuary, where the concentration of dissolved organic matter (DOM) is tightly coupled to that of MeHg (r2=0.95). We sought to understand the geochemical processes that contribute to MeHg production by examining the composition of the co-occurring DOM. We measured spectral absorbance and fluorescence properties of DOM, as well as intrinsic chemical properties such as isotopic composition, lignin content, carbohydrate content, and bulk chemical functionality (by CPMAS-NMR). Carbon quality parameters independent of concentration such as specific UV absorbance, lignin abundance, aromatic content, biodegradability, and others were closely coupled to MeHg concentrations. This coupling, combined with the hydrologic forcing within the wetland, suggest that the zones of MeHg production are biogeochemically related to the zones of DOM release, thus providing a means to examine the underlying processes. The observed relationships were robust through the winter, spring, and fall seasons, despite a three- fold variation in MeHg and DOM concentration. The pattern of variation suggests sources of DOM and MeHg within peat pore waters rather than within the litter layer or water column. The various relationships with individual parameters will be discussed.

  15. Pulsed two-frequency capacitively coupled plasma simulation with H_2/N2 mixtures for the etching of low-k materials

    NASA Astrophysics Data System (ADS)

    Shon, C. H.; Makabe, T.

    2002-10-01

    As the critical dimension of integrated circuit is scaled down, the resistance-capacitance (RC) delay of signals through interconnection materials becomes important. As a solution, the new materials like Cu and low-k dielectric polymers have been used to reduce the signal delay in interconnect. As a result, low-k materials etching becomes a big issue in the plasma etching process. In this research, we present the simulation results of a pulsed two-frequency capacitively coupled plasma (2f-CCP)[1,2] based on relaxation continuum (RCT) model[3,4] in H_2/N2 mixtures. The electrons, ions of each gas and NHx radicals are followed in the model. The characteristics of a pulsed plasma are investigated. In addition, the flux of ions and radicals toward the biased substrate which has great importance in etching process is also discussed. sep = -1mm [[1

  16. [The application of inductively coupled plasma atomic emission spectrometry/mass spectrometry to the analysis of advanced ceramic materials].

    PubMed

    Wang, Zheng; Wang, Shi-Wei; Qiu, De-Ren; Yang, Peng-Yuan

    2009-10-01

    Advanced ceramics have been applied to various important fields such as information science, aeronautics and astronautics, and life sciences. However, the optics and electric properties of ceramics are significantly affected by the micro and trace impurities existing in the material even at very low concentration level. Thus, the accurate determination of impurities is important for materials preparation and performance. Methodology of the analysis of advanced ceramic materials using ICP-AES/MS was reviewed in the present paper for the past decade. Various techniques of sample introduction, especially advances in the authors' recent work, are described in detail. The developing trend is also presented. Sixty references are cited.

  17. Laser Shock Processing of Metallic Materials: Coupling of Laser-Plasma Interaction and Material Behaviour Models for the Assessment of Key Process Issues

    SciTech Connect

    Ocana, J. L.; Morales, M.; Molpeceres, C.; Porro, J. A.

    2010-10-08

    Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm{sup 2} with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals. The main advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Although significant work from the experimental side has been contributed to explore the optimum conditions of application of the treatments and to assess their ultimate capability to provide enhanced mechanical behaviour to work-pieces of typical materials, only limited attempts have been developed in the way of full comprehension and predictive assessment of the characteristic physical processes and material transformations with a specific consideration of real material properties. In the present paper, a review on the physical issues dominating the development of LSP processes from a high intensity laser-matter interaction point of view is presented along with the theoretical and computational methods developed by the authors for their predictive assessment and practical results at laboratory scale on the application of the technique to different materials.

  18. Laser Shock Processing of Metallic Materials: Coupling of Laser-Plasma Interaction and Material Behaviour Models for the Assessment of Key Process Issues

    NASA Astrophysics Data System (ADS)

    Ocaña, J. L.; Morales, M.; Molpeceres, C.; Porro, J. A.

    2010-10-01

    Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals. The main advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Although significant work from the experimental side has been contributed to explore the optimum conditions of application of the treatments and to assess their ultimate capability to provide enhanced mechanical behaviour to work-pieces of typical materials, only limited attempts have been developed in the way of full comprehension and predictive assessment of the characteristic physical processes and material transformations with a specific consideration of real material properties. In the present paper, a review on the physical issues dominating the development of LSP processes from a high intensity laser-matter interaction point of view is presented along with the theoretical and computational methods developed by the authors for their predictive assessment and practical results at laboratory scale on the application of the technique to different materials.

  19. MRI usage in a pediatric emergency department: an analysis of usage and usage trends over 5 years.

    PubMed

    Scheinfeld, Meir H; Moon, Jee-Young; Fagan, Michele J; Davoudzadeh, Reubin; Wang, Dan; Taragin, Benjamin H

    2017-03-01

    Magnetic resonance imaging (MRI) usage has anecdotally increased due to the principles of ALARA and the desire to Image Gently. Aside from a single abstract in the emergency medicine literature, pediatric emergency department MRI usage has not been described. Our objective was to determine whether MRI use is indeed increasing at a high-volume urban pediatric emergency department with 24/7 MRI availability. Also, we sought to determine which exams, time periods and demographics influenced the trend. Institutional Review Board exemption was obtained. Emergency department patient visit and exam data were obtained from the hospital database for the 2011-2015 time period. MRI usage data were normalized using emergency department patient visit data to determine usage rates. The z-test was used to compare MRI use by gender. The chi-square test was used to test for trends in MRI usage during the study period and in patient age. MRI usage for each hour and each weekday were tabulated to determine peak and trough usage times. MRI usage rate per emergency department patient visit was 0.36%. Headache, pain and rule-out appendicitis were the most common indications for neuroradiology, musculoskeletal and trunk exams, respectively. Usage in female patients was significantly greater than in males (0.42% vs. 0.29%, respectively, P<0.001). Usage significantly increased during the 5-year period (P<0.001). Use significantly increased from age 3 to 17 (0.011% to 1.1%, respectively, P<0.001). Sixty percent of exams were performed after-hours, the highest volume during the 10 p.m. hour and lowest between 4 a.m. and 9 a.m. MRI use was highest on Thursdays and lowest on Sundays (MRI on 0.45% and 0.22% of patients, respectively). MRI use in children increased during the study period, most notably in females, on weekdays and after-hours.

  20. The forensic analysis of office paper using carbon isotope ratio mass spectrometry. Part 3: Characterizing the source materials and the effect of production and usage on the δ13C values of paper.

    PubMed

    Jones, Kylie; Benson, Sarah; Roux, Claude

    2013-12-10

    When undertaking any study of the isotope abundance values of a bulk material, consideration should be given to the source materials and how they are combined to reach the final product being measured. While it is demonstrative to measure and record the values of clean papers, such as the results published as part one of this series, the majority of forensic casework samples would have undergone some form of writing or printing process prior to examination. Understanding the effects of these processes on the δ(13)C values of paper is essential for interpretation and comparison with clean samples, for example in cases where printed documents need to be compared to paper from an unprinted suspect ream. This study was undertaken so that the source materials, the effects of the production process and the effects of printing and forensic testing could be observed with respect to 80 gsm white office papers. Samples were taken sequentially from the paper production facility at the Australian Paper Mill (Maryvale, VIC). These samples ranged from raw wood chips through the pulping, whitening and refinement steps to the final formed and packed paper. Cellulose was extracted from each sample to observe both fractionation and mixing steps and their effect on the δ(13)C values. Overall, the mixing steps were observed to have a larger effect on the isotopic values of the bulk materials than any potential fractionation. Printing of papers using toner and inkjet printing processes and forensic testing were observed to have little effect on δ(13)C. These experiments highlighted considerations for sampling and confirmed the need for a holistic understanding of sample history to inform the interpretation of results.

  1. Design parameters and the material coupling are decisive for the micromotion magnitude at the stem-neck interface of bi-modular hip implants.

    PubMed

    Jauch, S Y; Huber, G; Haschke, H; Sellenschloh, K; Morlock, M M

    2014-03-01

    Several bi-modular hip prostheses exhibit an elevated number of fretting-related postoperative complications most probably caused by excessive micromotions at taper connections. This study investigated micromotions at the stem-neck interface of two different designs: one design (Metha, Aesculap AG) has demonstrated a substantial number of in vivo neck fractures for Ti-Ti couplings, but there are no documented fractures for Ti-CoCr couplings. Conversely, for a comparable design (H-Max M, Limacorporate) with a Ti-Ti coupling only one clinical failure has been reported. Prostheses were mechanically tested and the micromotions were recorded using a contactless measurement system. For Ti-Ti couplings, the Metha prosthesis showed a trend towards higher micromotions compared to the H-Max M (6.5 ± 1.6 μm vs. 3.6 ± 1.5 μm, p=0.08). Independent of the design, prostheses with Ti neck adapter caused significantly higher interface micromotions than those with CoCr ones (5.1 ± 2.1 μm vs. 0.8 ± 1.6 μm, p=0.001). No differences in micromotions between the Metha prosthesis with CoCr neck and the H-Max M with Ti neck were observed (2.6 ± 2.0 μm, p=0.25). The material coupling and the design are both crucial for the micromotions magnitude. The extent of micromotions seems to correspond to the number of clinically observed fractures and confirm the relationship between those and the occurrence of fretting corrosion. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Abnormal Web Usage Control by Proxy Strategies.

    ERIC Educational Resources Information Center

    Yu, Hsiang-Fu; Tseng, Li-Ming

    2002-01-01

    Approaches to designing a proxy server with Web usage control and to making the proxy server effective on local area networks are proposed to prevent abnormal Web access and to prioritize Web usage. A system is implemented to demonstrate the approaches. The implementation reveals that the proposed approaches are effective, such that the abnormal…

  3. Problematic Internet Usage of ICT Teachers

    ERIC Educational Resources Information Center

    Gunduz, Semseddin

    2017-01-01

    Information and communication technologies (ICT) have affected all area in a society. Human can learn quickly and accurately from the internet. The aim of this study was to investigate what the problematic internet usage of ICT teachers. Therefore, the present study investigated the problematic internet usage, who worked as an ICT teacher in…

  4. Definite Article Usage across Varieties of English

    ERIC Educational Resources Information Center

    Wahid, Ridwan

    2013-01-01

    This paper seeks to explore the extent of definite article usage variation in several varieties of English based on a classification of its usage types. An annotation scheme based on Hawkins and Prince was developed for this purpose. Using matching corpus data representing Inner Circle varieties and Outer Circle varieties, analysis was made on…

  5. Definite Article Usage across Varieties of English

    ERIC Educational Resources Information Center

    Wahid, Ridwan

    2013-01-01

    This paper seeks to explore the extent of definite article usage variation in several varieties of English based on a classification of its usage types. An annotation scheme based on Hawkins and Prince was developed for this purpose. Using matching corpus data representing Inner Circle varieties and Outer Circle varieties, analysis was made on…

  6. Patterns of Drug Usage Among Vietnam Veterans.

    ERIC Educational Resources Information Center

    Fisher, Allan H., Jr.; And Others

    A factor analysis was performed on an intercorrelation matrix of reported drug usage frequencies for seven drug categories at two consecutive periods of time. Subjects were 1,010 Army Vietnam veterans in pay grade E6 or below, aged 26 years or less. Retrospective reporting identified drug usage prior to a tour of Vietnam and during the tour. Four…

  7. Food Supplement Usage by Adolescent Males.

    ERIC Educational Resources Information Center

    Fleischer, Barbara; Read, Marsha

    1982-01-01

    Adolescent males (N=568) responded to a questionnaire examining their food supplement usage, types of food supplements consumed, reasons for use and non-use, relationship of use to concern for health, and demographic and external factors influencing supplement use. Presents factors related to food supplement usage. (RC)

  8. Neurotic Anxiety, Pronoun Usage, and Stress

    ERIC Educational Resources Information Center

    Alban, Lewis Sigmund; Groman, William D.

    1976-01-01

    Attempts to clarify the function of a particular aspect of verbal communication, pronoun usage, by (a) using a Gestalt Therapy theory conceptual framework and (b) experimentally focusing on the relationship of pronoun usage to neurotic anxiety and emotional stress. (Author/RK)

  9. Physical Educators' Technology Competencies and Usage

    ERIC Educational Resources Information Center

    Woods, Marianne L.; Goc Karp, Grace; Miao, Hui; Perlman, Dana

    2008-01-01

    The purpose of this study was to examine K-12 physical education teachers' perceptions of ability and usage of technology. Physical educators (n = 114) completed the Physical Education Technology Usage Survey assessing their perceived technology competency, how and why they utilize technology, challenges they face in implementing technology, and…

  10. Food Supplement Usage by Adolescent Males.

    ERIC Educational Resources Information Center

    Fleischer, Barbara; Read, Marsha

    1982-01-01

    Adolescent males (N=568) responded to a questionnaire examining their food supplement usage, types of food supplements consumed, reasons for use and non-use, relationship of use to concern for health, and demographic and external factors influencing supplement use. Presents factors related to food supplement usage. (RC)

  11. Survey: Computer Usage in Design Courses.

    ERIC Educational Resources Information Center

    Henley, Ernest J.

    1983-01-01

    Presents results of a survey of chemical engineering departments regarding computer usage in senior design courses. Results are categorized according to: computer usage (use of process simulators, student-written programs, faculty-written or "canned" programs; costs (hard and soft money); and available software. Programs offered are…

  12. Interactive publications: creation and usage

    NASA Astrophysics Data System (ADS)

    Thoma, George R.; Ford, Glenn; Chung, Michael; Vasudevan, Kirankumar; Antani, Sameer

    2006-02-01

    As envisioned here, an "interactive publication" has similarities to multimedia documents that have been in existence for a decade or more, but possesses specific differentiating characteristics. In common usage, the latter refers to online entities that, in addition to text, consist of files of images and video clips residing separately in databases, rarely providing immediate context to the document text. While an interactive publication has many media objects as does the "traditional" multimedia document, it is a self-contained document, either as a single file with media files embedded within it, or as a "folder" containing tightly linked media files. The main characteristic that differentiates an interactive publication from a traditional multimedia document is that the reader would be able to reuse the media content for analysis and presentation, and to check the underlying data and possibly derive alternative conclusions leading, for example, to more in-depth peer reviews. We have created prototype publications containing paginated text and several media types encountered in the biomedical literature: 3D animations of anatomic structures; graphs, charts and tabular data; cell development images (video sequences); and clinical images such as CT, MRI and ultrasound in the DICOM format. This paper presents developments to date including: a tool to convert static tables or graphs into interactive entities, authoring procedures followed to create prototypes, and advantages and drawbacks of each of these platforms. It also outlines future work including meeting the challenge of network distribution for these large files.

  13. [Usage of antibiotics in hospitals].

    PubMed

    Ternák, G; Almási, I

    1996-12-29

    The authors publish the results of a survey conducted among hospital records of patients discharged from eight inpatient's institutes between 1-31st of January 1995 to gather information on the indications and usage of antibiotics. The institutes were selected from different part of the country to represent the hospital structure as much as possible. Data from the 13,719 documents were recorded and analysed by computer program. It was found that 27.6% of the patients (3749 cases) received antibiotic treatment. 407 different diagnosis and 365 different surgical procedures (as profilaxis) were considered as indications of antibiotic treatment (total: 4450 indications for 5849 antibiotic treatment). The largest group of patients receiving antibiotics was of antibiotic profilaxis (24.56%, 1093 cases), followed by lower respiratory tract infections (19.89%, 849 cases), uroinfections (10.53%, 469 cases) and upper respiratory tract infections. Relatively large group of patients belonged to those who had fever or subfebrility without known reason (7.35%, 327 cases) and to those who did not have any proof in their document indicating the reasons of antibiotic treatment (6.4%, 285 cases). We can not consider the antibiotic indications well founded in those groups of patients (every sixth or every fifth cases). The most frequently used antibiotics were of [2-nd] generation cefalosporins. The rate of nosocomial infections were found as 6.78% average. The results are demonstrated on diagrams and table.

  14. Absorbents as packing materials in on-line coupling of reversed phase liquid chromatography and gas chromatography via a programmed temperature vaporizer.

    PubMed

    Flores, Gema; Ruiz Del Castillo, Maria Luisa; Herraiz, Marta

    2007-06-15

    A method based on the use of absorbents as packing materials in the interface of the direct coupling between reversed phase liquid chromatography and gas chromatography (RPLC-GC) is proposed. To that end, a comparative study on different adsorbents and absorbents was carried out. Specifically, Tenax TA and Gaschrom were used as adsorbents while polydimethylsiloxane and poly(50% phenyl:50% methylsiloxane) were the absorbents tested. Some experimental variables involved in the solvent elimination were separately optimised for adsorbent and absorbent materials. Relative standard deviations (RSD) lower than 10% were achieved in all cases but the use of absorbents showed interesting advantages with respect to adsorbents, namely a simpler performance of the experimental work, which facilitates the sample preparation step and the subsequent gas chromatographic analysis to be performed.

  15. Ionic Liquid-Hybrid Molecularly Imprinted Material-Filter Solid-Phase Extraction Coupled with HPLC for Determination of 6-Benzyladenine and 4-Chlorophenoxyacetic Acid in Bean Sprouts.

    PubMed

    Han, Yehong; Yang, Chunliu; Zhou, Yang; Han, Dandan; Yan, Hongyuan

    2017-03-01

    A new method involving ionic liquid-hybrid molecularly imprinted material-filter solid-phase extraction coupled to high-performance liquid chromatography (IL-HIM-FSPE-HPLC) was developed for the simultaneous isolation and determination of 6-benzyladenine (6-BA) and 4-chlorophenoxyacetic acid (4-CPA) in bean sprouts. Sample preconcentration was performed using a modified filter, with the new IL-HIM as the adsorbent, which shows double adsorption. The first adsorption involves special recognition of molecular imprinting, and the second involves ion exchange and electrostatic attraction caused by the ionic liquid. This method combines the advantages of ionic liquids, hybrid materials, and molecularly imprinted polymers and was successfully applied to determine 6-BA and 4-CPA in bean sprouts. The adsorption of 6-BA to IL-HIM is based on selective imprinted recognition, whereas the adsorption of 4-CPA is mainly dependent on ion-exchange interactions.

  16. Enantiomeric analysis of beta-pinene and limonene by direct coupling of reversed phase liquid chromatography and gas chromatography using absorbents as packing materials.

    PubMed

    Flores, Gema; Ruiz del Castillo, Maria Luisa; Herraiz, Marta

    2007-11-01

    A method based on the use of absorbents as packing materials inside the interface of the online coupling between RPLC and GC is proposed for the enantiomeric analysis of beta-pinene and limonene in essential oils. For that purpose, a comparison of the RSD, detection limit and recovery provided by two absorbents and one adsorbent is included in this study. The results found in this work proved the validity of absorbents as packing materials in online RPLC-GC to determine minor compounds in complex matrices. In particular, PDMS seemed to be specially useful to analyse nonpolar compounds, such as beta-pinene and limonene, since it provided higher sensitivity for this kind of compounds. The developed method was applied to the evaluation of the natural and non-natural character of commercial essential oils by means of the determination of the enantiomeric composition of beta-pinene and limonene.

  17. Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors

    SciTech Connect

    Phillpot, Simon; Tulenko, James

    2011-09-08

    The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

  18. Galvanic coupling between D6AC steel, 6061-T6 aluminum, Inconel 718 and graphite-epoxy composite material: Corrosion occurrence and prevention

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Higgins, R. H.

    1983-01-01

    The effects of galvanic coupling between D6AC steel, 6061-T6 aluminum, Inconel 718, and graphite-epoxy composite material (G/E) in 3.5% NaCl were studied. Measurements of corrosion potentials, galvanic currents and corrosion rates of the bare metals using weight-loss methods served to establish the need for corrosion protection in cases where D6AC steel and 6061-T6 aluminum are galvanically coupled to G/E in salt water while Inconel 718 was shown to be compatible with G/E. Six tests were made to study corrosion protective methods for eliminating galvanic corrosion in the cases of D6AC steel and 6061-T6 aluminum coupled to G/E. These results indicate that, when the G/E is completely coated with paint or a paint/polyurethane resin combination, satisfactory protection of the D6AC steel is achieved with either a coat of zinc-rich primer or a primer/topcoat combination. Likewise, satisfactory corrosion protection of the aluminum is achieved by coating it with an epoxy coating system.

  19. Development and evaluation of materials for thermochemical heat storage based on the CaO/CaCO3 reaction couple

    NASA Astrophysics Data System (ADS)

    Sakellariou, Kyriaki G.; Tsongidis, Nikolaos I.; Karagiannakis, George; Konstandopoulos, Athanasios G.; Baciu, Diana; Charalambopoulou, Georgia; Steriotis, Theodore; Stubos, Athanasios; Arlt, Wolfgang

    2016-05-01

    The current work relates to the development of synthetic calcium oxide (CaO) based compositions as candidate materials for energy storage under a cyclic carbonation/decarbonation reaction scheme. Although under such a cyclic scheme the energy density of natural lime based CaO is high (˜ 3MJ/kg), the particular materials suffer from notable cycle-to-cycle deactivation. To this direction, pure CaO and CaO/Al2O3 composites have been prepared and preliminarily evaluated under the suggested cyclic carbonation/decarbonation scheme in the temperature range of 600-800°C. For the composite materials, Ca/Al molar ratios were in the range between 95/5 and 52/48 and upon calcination the formation of mixed Ca/Al phases was verified. The preliminary evaluation of materials studied was conducted under 3 carbonation/decarbonation cycles and the loss of activity for the case of natural CaO was obvious. Synthetic materials with superior stability/capture c.f. natural CaO were further subjected to multi-cyclic carbonation/decarbonation, via which the positive effect of alumina addition was made evident. Selected compositions exhibited adequately high CO2 capture capacity and stable performance during multi-cyclic operation. Moreover, this study contains preliminary experiments referring to proof-of-principle validation of a concept based on the utilization of a CaO-based honeycomb reactor/heat exchanger preliminary design. In particular, cordierite monolithic structures were coated with natural CaO and in total 11 cycles were conducted. Upon operation, clear signs of heat dissipation by the imposed flow in the duration of the exothermic reaction step were identified.

  20. Evaluation of electromechanical coupling parameters of piezoelectric materials by using piezoelectric cantilever with coplanar electrode structure in quasi-stasis.

    PubMed

    Zheng, Xuejun; Zhu, Yuankun; Liu, Xun; Liu, Jing; Zhang, Yong; Chen, Jianguo

    2014-02-01

    Based on Timoshenko beam theory, a principle model is proposed to establish the relationship between electric charge and excitation acceleration, and in quasi-stasis we apply the direct piezoelectric effect of multilayer cantilever with coplanar electrode structure to evaluate the piezoelectric strain coefficient d15 and electromechanical coupling coefficient k15. They are measured as 678 pC/N and 0.74 for the commercial piezoelectric ceramic lead zirconate titanate (PZT-51) bulk specimen and 656 pC/N and 0.63 for the lead magnesium niobate (PMN) bulk specimen, and they are in agreement with the calibration and simulation values. The maximum of relative errors is less than 4.2%, so the proposed method is reliable and convenient.

  1. New UPLC coupled to mass spectrometry approaches for screening of non-volatile compounds as potential migrants from adhesives used in food packaging materials.

    PubMed

    Canellas, E; Nerín, C; Moore, R; Silcock, P

    2010-05-07

    The objective of this study was to identify the non-volatile compounds as potential migrants from adhesives used in food packaging. A number of the current acrylic adhesive formulations were extracted and prepared for analysis. The extracts were screened using ultra-performance liquid chromatography coupled to a time-of-flight mass spectrometer detector (UPLC-TOF-MS). This approach allowed the identification of several components by a combination of exact mass and in-source collision induced dissociation (CID). Due to the lack of freely available information on adhesive formulations further analyses were undertaken using ultra-performance liquid chromatography coupled to high definition mass spectrometry (UPLC-HDMS). Using the Mass Fragment tool to interrogate fragmentation data, a wide series of compounds were identified, demonstrating the usefulness and importance of these tools for difficult problems. Moreover, using several packaging materials containing adhesives, qualitative migration tests were performed with Tenax as a food simulant. Several non-volatile compounds were identified as well in the Tenax which emphasizes the importance of this work and demonstrates that even the non-volatile compounds have the potential to migrate into food which is in contact with packaging materials. The main characteristics of the screening study and the results obtained are shown and discussed.

  2. Metallurgical and chemical characterization of copper alloy reference materials within laser ablation inductively coupled plasma mass spectrometry: Method development for minimally-invasive analysis of ancient bronze objects

    NASA Astrophysics Data System (ADS)

    Walaszek, Damian; Senn, Marianne; Faller, Markus; Philippe, Laetitia; Wagner, Barbara; Bulska, Ewa; Ulrich, Andrea

    2013-01-01

    The chemical composition of ancient metal objects provides important information for manufacturing studies and authenticity verification of ancient copper or bronze artifacts. Non- or minimal-destructive analytical methods are preferred to mitigate visible damage. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) enables the determination of major elements as well as impurities down to lower ppm-levels, however, accuracy and precision of analysis strongly depend on the homogeneity of reference materials used for calibration. Moreover, appropriate analytical procedures are required e.g. in terms of ablation strategies (scan mode, spot size, etc.). This study reviews available copper alloy (certified) reference materials — (C)RMs from different sources and contributes new metallurgical data on homogeneity and spatial elemental distribution. Investigations of the standards were performed by optical and scanning electron microscopy with X-ray spectrometry (SEM-EDX) for the following copper alloy and bronze (certified) reference materials: NIST 454, BAM 374, BAM 211, BAM 227, BAM 374, BAM 378, BAS 50.01-2, BAS 50.03-4, and BAS 50.04-4. Additionally, the influence of inhomogeneities on different ablation and calibration strategies is evaluated to define an optimum analytical strategy in terms of line scan versus single spot ablation, variation of spot size, selection of the most appropriate RMs or minimum number of calibration reference materials.

  3. Identification of trace additives in polymer materials by attenuated total reflection Fourier transform infrared mapping coupled with multivariate curve resolution

    NASA Astrophysics Data System (ADS)

    Li, Qian; Tang, Yongjiao; Yan, Zhiwei; Zhang, Pudun

    2017-06-01

    Although multivariate curve resolution (MCR) has been applied to the analysis of Fourier transform infrared (FTIR) imaging, it is still problematic to determine the number of components. The reported methods at present tend to cause the components of low concentration missed. In this paper a new idea was proposed to resolve this problem. First, MCR calculation was repeated by increasing the number of components sequentially, then each retrieved pure spectrum of as-resulted MCR component was directly compared with a real-world pixel spectrum of the local high concentration in the corresponding MCR map. One component was affirmed only if the characteristic bands of the MCR component had been included in its pixel spectrum. This idea was applied to attenuated total reflection (ATR)/FTIR mapping for identifying the trace additives in blind polymer materials and satisfactory results were acquired. The successful demonstration of this novel approach opens up new possibilities for analyzing additives in polymer materials.

  4. Identification of trace additives in polymer materials by attenuated total reflection Fourier transform infrared mapping coupled with multivariate curve resolution.

    PubMed

    Li, Qian; Tang, Yongjiao; Yan, Zhiwei; Zhang, Pudun

    2017-03-07

    Although multivariate curve resolution (MCR) has been applied to the analysis of Fourier transform infrared (FTIR) imaging, it is still problematic to determine the number of components. The reported methods at present tend to cause the components of low concentration missed. In this paper a new idea was proposed to resolve this problem. First, MCR calculation was repeated by increasing the number of components sequentially, then each retrieved pure spectrum of as-resulted MCR component was directly compared with a real-world pixel spectrum of the local high concentration in the corresponding MCR map. One component was affirmed only if the characteristic bands of the MCR component had been included in its pixel spectrum. This idea was applied to attenuated total reflection (ATR)/FTIR mapping for identifying the trace additives in blind polymer materials and satisfactory results were acquired. The successful demonstration of this novel approach opens up new possibilities for analyzing additives in polymer materials.

  5. Development of a 30 kW Inductively Coupled Plasma Torch Facility for Advanced Aerospace Material Investigations

    DTIC Science & Technology

    2012-02-21

    passive oxidation of zirconium diboride forms zirconia and boron oxide, and the passive oxidation of silicon carbide forms silica and carbon monoxide: ZrB2... silicon carbide composites in the ICP wind tunnels. However, this concept has never been explored as an in situ diagnostic for UHTC materials systems...Process- ing, properties, and arc jet oxidation of hafnium diboride/ silicon carbide ultra high temperature ceramics. J Mater Sci 2004;39:5925–37. 12

  6. A homogenization approach for characterization of the fluid-solid coupling parameters in Biot's equations for acoustic poroelastic materials

    NASA Astrophysics Data System (ADS)

    Gao, K.; van Dommelen, J. A. W.; Göransson, P.; Geers, M. G. D.

    2015-09-01

    In this paper, a homogenization method is proposed to obtain the parameters of Biot's poroelastic theory from a multiscale perspective. It is assumed that the behavior of a macroscopic material point can be captured through the response of a microscopic Representative Volume Element (RVE) consisting of both a solid skeleton and a gaseous fluid. The macroscopic governing equations are assumed to be Biot's poroelastic equations and the RVE is governed by the conservation of linear momentum and the adopted linear constitutive laws under the isothermal condition. With boundary conditions relying on the macroscopic solid displacement and fluid pressure, the homogenized solid stress and fluid displacement are obtained based on energy consistency. This homogenization framework offers an approach to obtain Biot's parameters directly through the response of the RVE in the regime of Darcy's flow where the pressure gradient is dominating. A numerical experiment is performed in the form of a sound absorption test on a porous material with an idealized partially open microstructure that is described by Biot's equations where the parameters are obtained through the proposed homogenization approach. The result is evaluated by comparison with Direct Numerical Simulations (DNS), showing a superior performance of this approach compared to an alternative semi-phenomenological model for estimating Biot's parameters of the studied porous material.

  7. Estimating toner usage with laser electrophotographic printers

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Abramsohn, Dennis; Ives, Thom; Shaw, Mark; Allebach, Jan

    2013-02-01

    Accurate estimation of toner usage is an area of on-going importance for laser, electrophotographic (EP) printers. We propose a new two-stage approach in which we first predict on a pixel-by-pixel basis, the absorptance from printed and scanned pages. We then form a weighted sum of these pixel values to predict overall toner usage on the printed page. The weights are chosen by least-squares regression to toner usage measured with a set of printed test pages. Our twostage predictor significantly outperforms existing methods that are based on a simple pixel counting strategy in terms of both accuracy and robustness of the predictions.

  8. Universality and Shannon entropy of codon usage

    NASA Astrophysics Data System (ADS)

    Frappat, L.; Minichini, C.; Sciarrino, A.; Sorba, P.

    2003-12-01

    The distribution functions of codon usage probabilities, computed over all the available GenBank data for 40 eukaryotic biological species and five chloroplasts, are best fitted by the sum of a constant, an exponential, and a linear function in the rank of usage. For mitochondria the analysis is not conclusive. These functions are characterized by parameters that strongly depend on the total guanine and cytosine (GC) content of the coding regions of biological species. It is predicted that the codon usage is the same in all exonic genes with the same GC content. The Shannon entropy for codons, also strongly dependent on the exonic GC content, is computed.

  9. Periodical Usage in an Education-Psychology Library

    ERIC Educational Resources Information Center

    Perk, Lawrence J.; Van Pulis, Noelle

    1977-01-01

    A study was conducted of periodical usage at the Education-Psychology Library, Ohio State University. The library's closed reserve system provided circulation data which were analyzed according to currency of usage and usage of specific titles. (Author)

  10. Dielectric elastomer actuators with granular coupling

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Frediani, Gabriele; Nanni, Massimo; De Rossi, Danilo

    2011-04-01

    So-called 'hydrostatically coupled' dielectric elastomer actuators (HC-DEAs) have recently been shown to offer new opportunities for actuation devices made of electrically responsive elastomeric insulators. HC-DEAs include an incompressible fluid that mechanically couples a dielectric elastomer based active part to a passive part interfaced to the load, so as to enable hydrostatic transmission. Drawing inspiration from that concept, this paper presents a new kind of actuators, analogous to HC-DEAs, except for the fact that the fluid is replaced by fine powder. The related technology, here referred to as 'granularly coupled' DEAs (GC-DEAs), relies entirely on solid-state materials. This permits to avoid drawbacks (such as handling and leakage) inherent to usage of fluids, especially those in liquid phase. The paper presents functionality and actuation performance of bubble-like GC-DEAs, in direct comparison with HC-DEAs. For this purpose, prototype actuators made of two pre-stretched membranes of acrylic elastomer, coupled via talcum powder (for GC-DEA) or silicone grease (for HC-DEA), were manufactured and comparatively tested. As compared to HC-DEAs, GC-DEAs showed a higher maximum stress, the same maximum relative displacement, and nearly the same bandwidth. The paper presents characterization results and discusses advantages and drawbacks of GC-DEAs, in comparison with HC-DEAs.

  11. Characterization of a 50kW Inductively Coupled Plasma Torch for Testing of Ablative Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Greene, Benton R.; Clemens, Noel T.; Varghese, Philip L.; Bouslog, Stanley A.; Del Papa, Steven V.

    2017-01-01

    With the development of new manned spaceflight capabilities including NASA's Orion capsule and the Space-X Dragon capsule, there is a renewed importance of understanding the dynamics of ablative thermal protection systems. To this end, a new inductively coupled plasma torch facility is being developed at UT-Austin. The torch operates on argon and/or air at plasma powers up to 50 kW. In the present configuration the flow issues from a low-speed subsonic nozzle and the hot plume is characterized using slug calorimetry and emission spectroscopy. Preliminary measurements using emission spectroscopy have indicated that the torch is capable of producing an air plasma with a temperature between 6,000 K and 8,000 K depending on the power and flow settings and an argon plasma with a temperature of approximately 12,000 K. The operation envelope was measured, and heat flux measured for every point within the envelope using both a slug calorimeter and a Gardon gauge heat flux sensor. The torch was found to induce a stagnation point heat flux of between 90 and 225 W/sq cm.

  12. Inverse Material Identification in Coupled Acoustic-Structure Interaction using a Modified Error in Constitutive Equation Functional

    PubMed Central

    Warner, James E.; Diaz, Manuel I.; Aquino, Wilkins; Bonnet, Marc

    2014-01-01

    This work focuses on the identification of heterogeneous linear elastic moduli in the context of frequency-domain, coupled acoustic-structure interaction (ASI), using either solid displacement or fluid pressure measurement data. The approach postulates the inverse problem as an optimization problem where the solution is obtained by minimizing a modified error in constitutive equation (MECE) functional. The latter measures the discrepancy in the constitutive equations that connect kinematically admissible strains and dynamically admissible stresses, while incorporating the measurement data as additional quadratic error terms. We demonstrate two strategies for selecting the MECE weighting coefficient to produce regularized solutions to the ill-posed identification problem: 1) the discrepancy principle of Morozov, and 2) an error-balance approach that selects the weight parameter as the minimizer of another functional involving the ECE and the data misfit. Numerical results demonstrate that the proposed methodology can successfully recover elastic parameters in 2D and 3D ASI systems from response measurements taken in either the solid or fluid subdomains. Furthermore, both regularization strategies are shown to produce accurate reconstructions when the measurement data is polluted with noise. The discrepancy principle is shown to produce nearly optimal solutions, while the error-balance approach, although not optimal, remains effective and does not need a priori information on the noise level. PMID:25339790

  13. Inverse material identification in coupled acoustic-structure interaction using a modified error in constitutive equation functional

    NASA Astrophysics Data System (ADS)

    Warner, James E.; Diaz, Manuel I.; Aquino, Wilkins; Bonnet, Marc

    2014-09-01

    This work focuses on the identification of heterogeneous linear elastic moduli in the context of frequency-domain, coupled acoustic-structure interaction (ASI), using either solid displacement or fluid pressure measurement data. The approach postulates the inverse problem as an optimization problem where the solution is obtained by minimizing a modified error in constitutive equation (MECE) functional. The latter measures the discrepancy in the constitutive equations that connect kinematically admissible strains and dynamically admissible stresses, while incorporating the measurement data as additional quadratic error terms. We demonstrate two strategies for selecting the MECE weighting coefficient to produce regularized solutions to the ill-posed identification problem: 1) the discrepancy principle of Morozov, and 2) an error-balance approach that selects the weight parameter as the minimizer of another functional involving the ECE and the data misfit. Numerical results demonstrate that the proposed methodology can successfully recover elastic parameters in 2D and 3D ASI systems from response measurements taken in either the solid or fluid subdomains. Furthermore, both regularization strategies are shown to produce accurate reconstructions when the measurement data is polluted with noise. The discrepancy principle is shown to produce nearly optimal solutions, while the error-balance approach, although not optimal, remains effective and does not need a priori information on the noise level.

  14. Development of a couple of methods for measuring radon exhalation from building materials commonly used in the Iberian Peninsula.

    PubMed

    Miró, C; Andrade, E; Reis, M; Madruga, M J

    2014-07-01

    Radon is considered to be the main contributor to the worldwide population exposure to natural sources of radiation and so a lot of efforts have been made in most countries to assess indoor radon concentrations. Radon exhales from the earth's surface and is part of the radioactive decay series of uranium, which is also present in building materials. In this work, measurements of radon exhalation rates in building materials commonly used in the Iberian Peninsula have been carried out by using two different methods: active and passive techniques. In the first technique, the radon exhalation rate was measured following the radon activity growth as a function of time, by using a continuous radon monitor. The second technique is based on integrated measurements by using solid-state nuclear track detectors and a Spark Counter reading equipment. The results obtained by both measuring methods were found to be consistent. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Material Studies Related to the Use of NaK Heat Exchangers Coupled to Stirling Heater Heads

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Bowman, Cheryl L.; Geng, Steven M.; Robbie, Malcolm G.

    2011-01-01

    NASA has been supporting design studies and technology development that could provide power to an outpost on the Moon, Mars, or an asteroid. Technology development efforts have included fabrication and evaluation of components used in a Stirling engine power conversion system. Destructive material evaluation was performed on a NaK shell heat exchanger that was developed by the NASA Glenn Research Center (GRC) and integrated with a commercial 1 kWe Stirling convertor from Sunpower Incorporated. The NaK Stirling test demonstrated Stirling convertor electrical power generation using a pumped liquid metal heat source under thermal conditions that represent the heat exchanger liquid metal loop in a Fission Power Systems (FPS) reactor. The convertors were operated for a total test time of 66 hr at a maximum temperature of 823 K. After the test was completed and NaK removed, the heat exchanger assembly was sectioned to evaluate any material interactions with the flowing liquid metal. Several dissimilar-metal braze joint options, crucial for the heat exchanger transfer path, were also investigated. A comprehensive investigation was completed and lessons learned for future heat exchanger development efforts are discussed.

  16. College Student Credit Card Usage and Debt.

    ERIC Educational Resources Information Center

    Rybka, Kathryn M.

    2001-01-01

    Provides an overview of the concerns related to credit card usage by college students. Offers information student affairs professionals can use to help college students make responsible choices. (Contains 26 references.) (GCP)

  17. Seat Belt Usage on School Buses.

    ERIC Educational Resources Information Center

    Farmer, Ernest

    1985-01-01

    Studies on seat belt usage conducted under contract with governmental organizations or prepared by professional societies, state and local organizations, and transportation specialists have made significant contributions, but none has successfully resolved the issue. (MLF)

  18. College Student Credit Card Usage and Debt.

    ERIC Educational Resources Information Center

    Rybka, Kathryn M.

    2001-01-01

    Provides an overview of the concerns related to credit card usage by college students. Offers information student affairs professionals can use to help college students make responsible choices. (Contains 26 references.) (GCP)

  19. Personality variables as predictors of Facebook usage.

    PubMed

    Caci, Barbara; Cardaci, Maurizio; Tabacchi, Marco E; Scrima, Fabrizio

    2014-04-01

    This study investigates the role of personality factors as predictors of Facebook usage. Data concerning Facebook usage and personality factors from 654 Facebook users were gathered using a web survey. Using path analysis, the results showed Openness was a predictor of Facebook early adoption, Conscientiousness with sparing use, Extraversion with long sessions and abundant friendships, and Neuroticism with high frequency of sessions. The possible role of Agreeableness in predicting low session frequency and friendships needs further validation.

  20. Ductile Tearing of Thin Aluminum Plates Under Blast Loading. Predictions with Fully Coupled Models and Biaxial Material Response Characterization

    SciTech Connect

    Corona, Edmundo; Gullerud, Arne S.; Haulenbeek, Kimberly K.; Reu, Phillip L.

    2015-06-01

    The work presented in this report concerns the response and failure of thin 2024- T3 aluminum alloy circular plates to a blast load produced by the detonation of a nearby spherical charge. The plates were fully clamped around the circumference and the explosive charge was located centrally with respect to the plate. The principal objective was to conduct a numerical model validation study by comparing the results of predictions to experimental measurements of plate deformation and failure for charges with masses in the vicinity of the threshold between no tearing and tearing of the plates. Stereo digital image correlation data was acquired for all tests to measure the deflection and strains in the plates. The size of the virtual strain gage in the measurements, however, was relatively large, so the strain measurements have to be interpreted accordingly as lower bounds of the actual strains in the plate and of the severity of the strain gradients. A fully coupled interaction model between the blast and the deflection of the structure was considered. The results of the validation exercise indicated that the model predicted the deflection of the plates reasonably accurately as well as the distribution of strain on the plate. The estimation of the threshold charge based on a critical value of equivalent plastic strain measured in a bulge test, however, was not accurate. This in spite of efforts to determine the failure strain of the aluminum sheet under biaxial stress conditions. Further work is needed to be able to predict plate tearing with some degree of confidence. Given the current technology, at least one test under the actual blast conditions where the plate tears is needed to calibrate the value of equivalent plastic strain when failure occurs in the numerical model. Once that has been determined, the question of the explosive mass value at the threshold could be addressed with more confidence.

  1. Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  2. Magnetically coupled system for mixing

    DOEpatents

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2014-04-01

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  3. Magnetically coupled system for mixing

    DOEpatents

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2015-09-22

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  4. (Project 13-5292) Correlating thermal and mechanical coupling based multiphysics behavior of nuclear materials through in-situ measurements

    SciTech Connect

    Tomar, Vikas

    2016-03-15

    Irradiations and post characterization experiments were performed first on Zr samples. This step will help understand the effect of the 2.5% alloying elements on the behavior of Zircaloy-4 (PWR cladding material) when compared to pure Zr. Irradiation flux measurements and sample temperature calibrations were performed at different energies prior to the irradiation experiments. Irradiations were performed with two different energy regimes1: non-displacment energies and displacement energies. Time was also dedicated to optimize transmission electron microscopy (TEM) sample preparation conditions via electropolishing technique. This step is crucial to prepare TEM samples for the in-situ TEM/irradiation experiments (Year 2). In addition, Zircaloy-4 samples are being prepared for irradiation, and a setup is built by one of our collaborators (Dr. Mert Efe) to prepare ultrafine (UF) and nanocrystalline (NC) Zircaloy-4 samples for comparison with the commercial Zircaloy-4 samples.

  5. Reconfigured, close-coupled reconfigured, and Wyodak coal integrated two-stage coal liquefaction process materials from the Wilsonville facility: Chemical and toxicological evaluation

    SciTech Connect

    Wright, C.W.

    1987-03-01

    This document reports the results of the chemical analysis and toxicological testing of process materials sampled during the operation of the Advanced Coal Liquefaction Research and Development Facility (Wilsonville, AL) in the reconfigured, integrated (RITSL run No. 247), the close-coupled, reconfigured, integrated (CCRITSL run No. 249), and the Wyodak coal integrated (ITSL run No. 246) two-stage liquefaction operating modes. Chemical methods of analysis included proton nuclear magnetic resonance spectroscopy, adsorption column chromatography, high resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. Toxicological evaluation of the process materials included a histidine reversion assay for microbial mutagenicity, an initiation/promotion assay for tumorigenicity in mouse skin, and an aquatic toxicity assay using Daphnia magna. The results of these analyses and tests are compared to the previously reported results derived from the Illinois No. 6 coal ITSL and nonintegrated two-stage liquefaction (NTSL) process materials from the Wilsonville facility. 21 refs., 13 figs., 21 tabs.

  6. Inductively coupled plasma mass spectrometry in comparison with neutron activation and ion chromatography with UV/VIS detection for the determination of lanthanides in plant materials.

    PubMed

    Bulska, Ewa; Danko, Bożena; Dybczyński, Rajmund S; Krata, Agnieszka; Kulisa, Krzysztof; Samczyński, Zbigniew; Wojciechowski, Marcin

    2012-08-15

    Analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) for determination of lanthanides in plant materials was investigated and compared with neutron activation analysis (NAA) as well as ion chromatography (IC) with UV-VIS detection. Two sample preparation protocols were tested: (i) microwave assisted digestion by concentrated nitric acid; (ii) microwave digestion involving silica and fluoride removal, followed by the selective and quantitative lanthanides group separation from the plant matrix. Several Certified Reference Materials (CRM) of plant origin were used for the evaluation of the accuracy of the applied analytical procedures. The consistency of results, obtained by various methods, enabled to establish the tentative recommended values (TRV) for several missing elements in one of CRMs. The ICP-MS, due to its very high sensitivity, has the potential to contribute to this aim. The discrepancy of the results obtained by various methods was discussed in a view of possible matrix effects related to the composition of investigated materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Promoter usage and alternative splicing.

    PubMed

    Kornblihtt, Alberto R

    2005-06-01

    Recent findings justify a renewed interest in alternative splicing (AS): the process is more a rule than an exception as it affects the expression of 60% of human genes; it explains how a vast mammalian proteomic complexity is achieved with a limited number of genes; and mutations in AS regulatory sequences are a widespread source of human disease. AS regulation not only depends on the interaction of splicing factors with their target sequences in the pre-mRNA but is coupled to transcription. A clearer picture is emerging of the mechanisms by which transcription affects AS through promoter identity and occupation. These mechanisms involve the recruitment of factors with dual functions in transcription and splicing (i.e. that contain both functional domains and hence link the two processes) and the control of RNA polymerase II elongation.

  8. Reexamining Content-Enriched Access: Its Effect on Usage and Discovery

    ERIC Educational Resources Information Center

    Tosaka, Yuji; Weng, Cathy

    2011-01-01

    Content-enriched metadata in bibliographic records is considered helpful to library users in identifying and selecting library materials for their needs. The paper presents a study, using circulation data from a medium-sized academic library, of the effect of content-enriched records on library materials usage. The study also examines OPAC search…

  9. Worksheet Usage, Reading Achievement, Classes' Lack of Readiness, and Science Achievement: A Cross-Country Comparison

    ERIC Educational Resources Information Center

    Lee, Che-Di

    2014-01-01

    Instructional written materials play important roles as teachers' agents in effective teaching practices. Worksheets are one of the most frequently used materials. In this exploratory study, the relationships between worksheet usage and science achievement in 32 countries were examined through the use of TIMSS and PIRLS data and multiple…

  10. Reexamining Content-Enriched Access: Its Effect on Usage and Discovery

    ERIC Educational Resources Information Center

    Tosaka, Yuji; Weng, Cathy

    2011-01-01

    Content-enriched metadata in bibliographic records is considered helpful to library users in identifying and selecting library materials for their needs. The paper presents a study, using circulation data from a medium-sized academic library, of the effect of content-enriched records on library materials usage. The study also examines OPAC search…

  11. Finite element simulation of the generation and detection by air-coupled transducers of guided waves in viscoelastic and anisotropic materials.

    PubMed

    Hosten, Bernard; Biateau, Christine

    2008-04-01

    The measured characteristics (efficiency and sensitivity) of two air-coupled transducers allow for the prediction of the absolute values of the pressure of the bulk waves generated in air and for the measurement of the pressure of the field radiated in air by guided waves propagating in a structure. With finite element software, the pressure field generated by an air-coupled transducer is simulated by introducing a right-hand side member in the Helmholtz equation, which is used for computing the propagation from the transducer to a plate. The simulated source is rotated in order to impose an angle of incidence with respect to the normal of the plate and generate the corresponding guided mode. Inside the plate, the propagation is simulated with the dynamic equations of equilibrium and a complex stiffness tensor to take into account the viscoelastic anisotropy of the material. For modeling the three-dimensional fields of the guided modes propagating in a two-dimensional non-symmetry plane, a 2.5 dimensional model is introduced. The model computes the value of the pressure field radiated in air by the plates for any guided modes and can predict the detectability of the system for a known defect in a structure. A test bed incorporating two air-coupled transducers is used to generate and receive various guided modes. Two plates made of Perspex and carbon-epoxy composite are tested. The pressure measured by the receiver at various positions is compared to the results of the model to validate it.

  12. β-Cyclodextrin cross-linked polymer as solid-phase extraction material coupled with the spectrophotometric method for the analysis of serum albumin

    NASA Astrophysics Data System (ADS)

    Wu, Min; Zhu, Xiashi

    2010-12-01

    The β-cyclodextrin cross-linked polymer (β-CDCP) was synthesized and used as solid-phase extraction material to preconcentrate/analysis bovine serum albumin (BSA) coupled with UV-vis spectroscopy. The method based on the complex (BSA-phenylfluorone (PF)) adsorbed on β-CDCP. Adsorption kinetics and various factors of the formation procedure of BSA-PF and its retention on β-CDCP were investigated. The linear range and detection limit (DL) was 20.0-200.0 and 0.03 mg/L, respectively. Moreover, the β-CDCP could be used repeatedly. The proposed method has been applied to analysis serum albumin with satisfactory results.

  13. β-cyclodextrin cross-linked polymer as solid-phase extraction material coupled with the spectrophotometric method for the analysis of serum albumin.

    PubMed

    Wu, Min; Zhu, Xiashi

    2010-12-01

    The β-cyclodextrin cross-linked polymer (β-CDCP) was synthesized and used as solid-phase extraction material to preconcentrate/analysis bovine serum albumin (BSA) coupled with UV-vis spectroscopy. The method based on the complex (BSA-phenylfluorone (PF)) adsorbed on β-CDCP. Adsorption kinetics and various factors of the formation procedure of BSA-PF and its retention on β-CDCP were investigated. The linear range and detection limit (DL) was 20.0-200.0 and 0.03 mg/L, respectively. Moreover, the β-CDCP could be used repeatedly. The proposed method has been applied to analysis serum albumin with satisfactory results. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Use of absorbent materials in on-line coupled reversed-phase liquid chromatography-gas chromatography via the through oven transfer adsorption desorption interface.

    PubMed

    Flores, Gema; Díaz-Plaza, Eva María; Cortés, Jose Manuel; Villén, Jesús; Herraiz, Marta

    2008-11-21

    The use of absorbents as retaining materials in the through oven transfer adsorption desorption interface (TOTAD) of an on-line coupled reversed-phase liquid chromatography-gas chromatography system (RPLC-GC) is proposed for the first time. A comparative study of an adsorbent (Tenax TA) and two absorbents, namely polydimethylsiloxane and poly(50% phenyl/50% methylsiloxane) is performed to establish the best experimental conditions for the automated and simultaneous determination of 15 organophosphorus and organochlorine pesticide residues in olive oil. The proposed method provides satisfactory repeatability (RSDs lower, in general, than 8.5%) and sensitivity (limits of detection ranging from 0.6 to 81.9 microg/L) for the investigated compounds.

  15. Bracketing method with certified reference materials for high precision and accuracy determination of trace cadmium in drinking water by Inductively Coupled Plasma - Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ketrin, Rosi; Handayani, Eka Mardika; Komalasari, Isna

    2017-01-01

    Two significant parameters to evaluate the measurement results are known as precision and accuracy. Both are associated with indeterminate and determinate error, respectively, that normally happen in such spectrometric measurement method as Inductively Coupled Plasma - Mass Spectrometry (ICP-MS). These errors must be eliminated or suppressed to get high precision and accuracy of the method. Decreasing the errors thus increasing the precision and accuracy of the method. In this study, bracketing method using two-point standard calibration was proposed in order to suppress the indeterminate error caused by instrumental drift thus increasing the result precision, and applied for measuring cadmium in drinking water samples. Certified reference material of ERM CA011b-Hard drinking water UK-metals was used to know the determinate error or measurement bias. When bias is obtained, some corrections are needed to get the accurate measurement result. The result was compared to that by external calibration method.

  16. Implanted, inductively-coupled, radiofrequency coils fabricated on flexible polymeric material: Application to in vivo rat brain MRI at 7 T

    NASA Astrophysics Data System (ADS)

    Ginefri, J.-C.; Rubin, A.; Tatoulian, M.; Woytasik, M.; Boumezbeur, F.; Djemaï, B.; Poirier-Quinot, M.; Lethimonnier, F.; Darrasse, L.; Dufour-Gergam, E.

    2012-11-01

    Combined with high-field MRI scanners, small implanted coils allow for high resolution imaging with locally improved SNR, as compared to external coils. Small flexible implantable coils dedicated to in vivo MRI of the rat brain at 7 T were developed. Based on the Multi-turn Transmission Line Resonator design, they were fabricated with a Teflon substrate using copper micromolding process and a specific metal-polymer adhesion treatment. The implanted coils were made biocompatible by PolyDimethylSiloxane (PDMS) encapsulation. The use of low loss tangent material achieves low dielectric losses within the substrate and the use of the PDMS layer reduces the parasitic coupling with the surrounding media. An implanted coil was implemented in a 7 T MRI system using inductive coupling and a dedicated external pick-up coil for signal transmission. In vivo images of the rat brain acquired with in plane resolution of (150 μm)2 thanks to the implanted coil revealed high SNR near the coil, allowing for the visualization of fine cerebral structures.

  17. Carboxylic acid-grafted mesoporous material and its high catalytic activity in one-pot three-component coupling reaction

    SciTech Connect

    Gomes, Ruth; Bhaumik, Asim; Dutta, Saikat

    2014-11-01

    A new carboxylic acid functionalized mesoporous organic polymer has been synthesized via in situ radical polymerization of divinylbenzene and acrylic acid using a mesoporous silica as a seed during the polymerization process under solvothermal conditions. The mesoporous material MPDVAA-1 has been thoroughly characterized employing powder XRD, solid state {sup 13}C cross polarization magic angle spinning-nuclear magnetic resonance, FT-IR spectroscopy, N{sub 2} sorption, HR-TEM, and NH{sub 3} temperature programmed desorption-thermal conductivity detector (TPD-TCD) analysis to understand its porosity, chemical environment, bonding, and surface properties. The mesoporous polymer was used as a catalyst for a three comp onent Biginelli condensation between various aldehydes, β-keto esters, and urea/thioureas to give 3,4-dihydropyrimidine-2(1H)-ones. The reactions were carried out under conventional heating as well as solvent-free microwave irradiation of solid components, and in both the cases, the mesoporous polymer MPDVAA-1 proved to be a powerful, robust, and reusable catalyst with high catalytic efficiency.

  18. Detonation Initiation with Thermal Deposition due to Pore Collapse in Energetic Materials - Towards the Coupling between Micro- and Macroscale

    NASA Astrophysics Data System (ADS)

    Zhang, Ju; Jackson, Thomas

    2015-11-01

    Initiation of detonation through thermal power deposition due to pore collapse in energetic materials (such as HMX) is studied numerically by solving the reactive Euler equations. The thermal power deposition model is partially based on previous results of direct simulations of pore collapse. The thermal deposition time scales obtained from the pore collapse model are significantly longer than acoustic time scale. It is found here that a critical size of hot spots exists, and when hot spots exceed the critical size, direct initiation of detonation upon ignition seems independent of power input, and is achieved even with low power input. On the other hand, when hot spots are below the critical size, the ignition does not lead to detonation. However, if the thermal deposition time scale is decreased, a scenario different than pore collapse, such that it is on the acoustic time scale, detonation does arise, a scenario corresponding to the so-called ``explosion in explosion''. A time scale criterion for direct initiation of detonation is then proposed and demonstrated with numerical simulations. It is proposed that if the chemical reaction time scale is shorter than the acoustic time scale at ignition, the ignition will lead to a direct initiation of detonation.

  19. Coupled molecular dynamics-Monte Carlo model to study the role of chemical processes during laser ablation of polymeric materials.

    PubMed

    Prasad, Manish; Conforti, Patrick F; Garrison, Barbara J

    2007-08-28

    The coarse grained chemical reaction model is enhanced to build a molecular dynamics (MD) simulation framework with an embedded Monte Carlo (MC) based reaction scheme. The MC scheme utilizes predetermined reaction chemistry, energetics, and rate kinetics of materials to incorporate chemical reactions occurring in a substrate into the MD simulation. The kinetics information is utilized to set the probabilities for the types of reactions to perform based on radical survival times and reaction rates. Implementing a reaction involves changing the reactants species types which alters their interaction potentials and thus produces the required energy change. We discuss the application of this method to study the initiation of ultraviolet laser ablation in poly(methyl methacrylate). The use of this scheme enables the modeling of all possible photoexcitation pathways in the polymer. It also permits a direct study of the role of thermal, mechanical, and chemical processes that can set off ablation. We demonstrate that the role of laser induced heating, thermomechanical stresses, pressure wave formation and relaxation, and thermochemical decomposition of the polymer substrate can be investigated directly by suitably choosing the potential energy and chemical reaction energy landscape. The results highlight the usefulness of such a modeling approach by showing that various processes in polymer ablation are intricately linked leading to the transformation of the substrate and its ejection. The method, in principle, can be utilized to study systems where chemical reactions are expected to play a dominant role or interact strongly with other physical processes.

  20. Carboxylic acid-grafted mesoporous material and its high catalytic activity in one-pot three-component coupling reaction

    NASA Astrophysics Data System (ADS)

    Gomes, Ruth; Dutta, Saikat; Bhaumik, Asim

    2014-11-01

    A new carboxylic acid functionalized mesoporous organic polymer has been synthesized via in situ radical polymerization of divinylbenzene and acrylic acid using a mesoporous silica as a seed during the polymerization process under solvothermal conditions. The mesoporous material MPDVAA-1 has been thoroughly characterized employing powder XRD, solid state 13C cross polarization magic angle spinning-nuclear magnetic resonance, FT-IR spectroscopy, N2 sorption, HR-TEM, and NH3 temperature programmed desorption-thermal conductivity detector (TPD-TCD) analysis to understand its porosity, chemical environment, bonding, and surface properties. The mesoporous polymer was used as a catalyst for a three comp onent Biginelli condensation between various aldehydes, β-keto esters, and urea/thioureas to give 3,4-dihydropyrimidine-2(1H)-ones. The reactions were carried out under conventional heating as well as solvent-free microwave irradiation of solid components, and in both the cases, the mesoporous polymer MPDVAA-1 proved to be a powerful, robust, and reusable catalyst with high catalytic efficiency.

  1. Restricted-access material-based high-molecular-weight protein depletion coupled on-line with nano-liquid chromatography-mass spectrometry for proteomics applications.

    PubMed

    Rieux, Laurent; Bischoff, Rainer; Verpoorte, Elisabeth; Niederländer, Harm A G

    2007-05-18

    Proteomics samples often contain both abundant proteins and low-level proteins and peptides. Highly abundant proteins can mask and/or bind those of lower abundance and thereby hinder their analysis. In particular, we were concerned with samples containing large amounts of albumin (up to 4.0 microM). In this study, a novel set-up for multidimensional nano-liquid chromatography-mass spectrometry (nanoLC-MS) with three columns coupled on-line was developed and characterised. A 1-mm-I.D. restricted-access-material (RAM) cartridge and a 100-microm-I.D. reversed-phase trap column are coupled in forward-flush mode to remove albumin before on-line separation on a 50 microm I.D. reversed-phase capillary analytical column. Volumes up to 100 microL of a complex matrix (containing 0.4 or 4.0 microM albumin) could be injected onto this system, enabling a 5000-fold volume reduction. Up to 99.7% of the albumin present in samples could be efficiently removed over the RAM cartridge. The total analysis time was about 40 min. Using Substance P as a model peptide, separations were efficient, with a peak width of 10s at half height. Moreover, separations were highly reproducible (relative standard deviation (RSD) on retention time approximately 3% over 1 week). The set-up proved to be robust and was used for about 750 analyses without exchanging one of the columns. Flexibility with respect to the stationary phase material in the sample preparation cartridge allows for other separation modes to be applied as well.

  2. High-Resolution Inductively Coupled Plasma Optical Emission Spectrometry for (234)U/(238)Pu Age Dating of Plutonium Materials and Comparison to Sector Field Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Krachler, Michael; Alvarez-Sarandes, Rafael; Rasmussen, Gert

    2016-09-06

    Employing a commercial high-resolution inductively coupled plasma optical emission spectrometry (HR-ICP-OES) instrument, an innovative analytical procedure for the accurate determination of the production age of various Pu materials (Pu powder, cardiac pacemaker battery, (242)Cm heat source, etc.) was developed and validated. This undertaking was based on the fact that the α decay of (238)Pu present in the investigated samples produced (234)U and both mother and daughter could be identified unequivocally using HR-ICP-OES. Benefiting from the high spectral resolution of the instrument (<5 pm) and the isotope shift of the emission lines of both nuclides, (234)U and (238)Pu were selectively and directly determined in the dissolved samples, i.e., without a chemical separation of the two analytes from each other. Exact emission wavelengths as well as emission spectra of (234)U centered around λ = 411.590 nm and λ = 424.408 nm are reported here for the first time. Emission spectra of the isotopic standard reference material IRMM-199, comprising about one-third each of (233)U, (235)U, and (238)U, confirmed the presence of (234)U in the investigated samples. For the assessment of the (234)U/(238)Pu amount ratio, the emission signals of (234)U and (238)Pu were quantified at λ = 424.408 nm and λ = 402.148 nm, respectively. The age of the investigated samples (range: 26.7-44.4 years) was subsequently calculated using the (234)U/(238)Pu chronometer. HR-ICP-OES results were crossed-validated through sector field inductively coupled plasma mass spectrometry (SF-ICPMS) analysis of the (234)U/(238)Pu amount ratio of all samples applying isotope dilution combined with chromatographic separation of U and Pu. Available information on the assumed ages of the analyzed samples was consistent with the ages obtained via the HR-ICP-OES approach. Being based on a different physical detection principle, HR-ICP-OES provides an alternative strategy to the well-established mass

  3. Mechanically exfoliated MoS2 sheet coupled with conductive polyaniline as a superior supercapacitor electrode material.

    PubMed

    Ansari, Sajid Ali; Fouad, H; Ansari, S G; Sk, Md Palashuddin; Cho, Moo Hwan

    2017-10-15

    The development of electrically conductive metal sulfide-based polymer nanocomposites for energy storage materials has been a major focus by researchers to solve the energy crisis. In this study, a simple and facile method was used to construct a nanocomposite by combining a mechanically exfoliated MoS2 (M-MoS2) sheet with polyaniline (Pani) using a simple and scalable in-situ chemical oxidative polymerization method. The as-prepared nanocomposite (M-MoS2-Pani nanocomposite) was characterized further by usual basic spectroscopic techniques, such as X-ray powder diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller surface area analysis. The electrochemical supercapacitive characteristics of the M-MoS2-Pani nanocomposite was tested in a three-electrode assembly by obtaining cyclic voltammetric (CV) curves and galvanostatic charge-discharge (GCD) measurements. The results were compared with those of a C-MoS2-Pani nanocomposite that had been synthesized using bulk MoS2. The M-MoS2-Pani nanocomposite synthesized using exfoliated MoS2 exhibited a higher specific capacitance of 510.12Fg(-1) at a current of 1Ag(-1) than the C-MoS2-Pani nanocomposite (225.15Fg(-1)), which was synthesized using bulk C-MoS2 delivered. The enhanced electrochemical supercapacitive performance was correlated to the synergistic effect and chemical interactions between the Pani and MoS2, which provide high electrical conductivity and a sufficient empty state for electrode/electrolyte contact. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Economical and environmentally-friendly approaches for usage of onion (Allium cepa L.) waste.

    PubMed

    Sharma, Kavita; Mahato, Neelima; Nile, Shivraj Hariram; Lee, Eul Tal; Lee, Yong Rok

    2016-08-10

    Onion (Allium cepa L.) is one of the most commonly cultivated crops across the globe, and its production is increasing every year due to increasing consumer demand. Simultaneously, huge amounts of waste are produced from different parts of the onion, which ultimately affect the environment in various ways. Hence, proper usage as well as disposal of this waste is important from the environmental aspect. This review summarizes various usage methods of onion waste material, and processes involved to achieve maximum benefits. Processing industries produce the largest amount of onion waste. Other sources are storage systems, domestic usage and cultivation fields. Particular emphasis has been given to the methods used for better extraction and usage of onion waste under specific topics: viz. organic synthesis, production of biogas, absorbent for pollutants and value added products.

  5. Manganese concentrate usage in steelmaking

    NASA Astrophysics Data System (ADS)

    Nokhrina, O. I.; Rozhihina, I. D.

    2015-09-01

    The results of the research process of producing metalized products by solid-phase reduction of iron using solid carbonaceous reducing agents. Thermodynamic modeling was carried out on the model of the unit the Fe-C-O and system with iron ore and coal. As a result of modeling the thermodynamic boundary reducing, oxidizing, and transition areas and the value of the ratio of carbon and oxygen in the system. Simulation of real systems carried out with the gas phase obtained in the pyrolys of coal. The simulation results allow to determine the optimal cost of coal required for complete reduction of iron ore from a given composition. The kinetics of the processes of solid-phase reduction of iron using coal of various technological brands. The paper describes experiments on effects of metal deoxidizer composition, component proportion, pelletizing mixture, particle size distribution of basic materials and flux on manganese recovering from oxides under direct melting.

  6. Grizzly Usage and Theory Manual

    SciTech Connect

    Spencer, B. W.; Backman, M.; Chakraborty, P.; Schwen, D.; Zhang, Y.; Huang, H.; Bai, X.; Jiang, W.

    2016-03-01

    Grizzly is a multiphysics simulation code for characterizing the behavior of nuclear power plant (NPP) structures, systems and components (SSCs) subjected to a variety of age-related aging mechanisms. Grizzly simulates both the progression of aging processes, as well as the capacity of aged components to safely perform. This initial beta release of Grizzly includes capabilities for engineering-scale thermo-mechanical analysis of reactor pressure vessels (RPVs). Grizzly will ultimately include capabilities for a wide range of components and materials. Grizzly is in a state of constant development, and future releases will broaden the capabilities of this code for RPV analysis, as well as expand it to address degradation in other critical NPP components.

  7. Effects of magnetic flux density and substrate bias voltage on Ni films prepared on a flexible substrate material using unbalanced magnetron sputtering assisted by inductively coupled plasma

    SciTech Connect

    Koda, Tatsunori; Toyota, Hiroshi

    2014-03-15

    The authors fabricated Ni films on a flexible substrate material using unbalanced magnetron sputtering assisted by inductively coupled plasma. The effects of magnetic flux density B{sub C} and substrate DC bias voltage V{sub S} on the Ni film structures were investigated. For V{sub S} = −40 V, the average surface grain size D{sub G} measured by atomic force microscopy for B{sub C} = 0, 3, and 5 mT was 88.2, 95.4, and 104.4 nm, respectively. In addition, D{sub G} increased with V{sub S}. From x-ray diffraction measurements, the (111) and (200) peaks were clearly visible for the fabricated Ni films. The ratio of the integrated intensities of I(111)/I(200) increased with V{sub S}. For V{sub S} = −40 V and B{sub C} = 3 mT, a film resistivity ρ of 8.96 × 10{sup −6} Ω cm was observed, which is close to the Ni bulk value of 6.84 × 10{sup −6} Ω cm. From these results, the authors determined that the structure of the fabricated Ni films on the flexible substrate material was affected by the values of B{sub C} and V{sub S}.

  8. 3-D Modeling of Directional Solidification of a Non-Dilute Alloy with Temperature and Concentration Fields Coupling via Materials Properties Dependence and via Double Diffusive Convection

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1998-01-01

    Numerical simulation of the HgCdTe growth by the vertical Bridgman method was performed using FIDAP finite element code. Double-diffusive melt convection is analyzed, as the primary factor at controls inhomogeneity of the solidified material. Temperature and concentration fields in the model are also coupled via material properties, such as thermal and solutal expansion coefficients with the dependence on both temperature and concentration, and melting temperature evaluation from pseudobinary CdTe-HgTe phase diagram. Experimental measurements were used to obtain temperature boundary conditions. Parametric study of the melt convection dependence on the gravity conditions was undertaken. It was found, that the maximum convection velocity in the melt can be reduced under certain conditions. Optimal conditions to obtain a near flat solidified interface are discussed. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D calculations are compared with previous 2- D findings. A video film featuring 3-D melt convection will be presented.

  9. 3-D Modeling of Directional Solidification of a Non-Dilute Alloy with Temperature and Concentration Fields Coupling via Materials Properties Dependence and via Double Diffusive Convection

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1998-01-01

    Numerical simulation of the HgCdTe growth by the vertical Bridgman method was performed using FIDAP finite element code. Double-diffusive melt convection is analyzed, as the primary factor at controls inhomogeneity of the solidified material. Temperature and concentration fields in the model are also coupled via material properties, such as thermal and solutal expansion coefficients with the dependence on both temperature and concentration, and melting temperature evaluation from pseudobinary CdTe-HgTe phase diagram. Experimental measurements were used to obtain temperature boundary conditions. Parametric study of the melt convection dependence on the gravity conditions was undertaken. It was found, that the maximum convection velocity in the melt can be reduced under certain conditions. Optimal conditions to obtain a near flat solidified interface are discussed. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D calculations are compared with previous 2- D findings. A video film featuring 3-D melt convection will be presented.

  10. Carbon nanotubes as novel spacer materials on silver thin-films for generating superior fluorescence enhancements via surface plasmon coupled emission

    NASA Astrophysics Data System (ADS)

    Mulpur, Pradyumna; Podila, Ramakrishna; Rao, Apparao M.; Kamisetti, Venkataramaniah

    2016-06-01

    In this study, we report the first time implementation of single/multi-walled carbon nanotubes, as novel spacer materials, on a silver (Ag) thin-film based surface plasmon coupled emission (SPCE) platform. The engineered Ag-CNT SPCE substrates enabled the realization of up to ∼10-fold enhancement in fluorescence signal intensity, of the rhodamine b dye. This study addresses the issue that, while many of the biochemical sensing strategies are based on fluorescence, they are all fundamentally limited by the isotropic nature of the phenomenon that results in low signal collection efficiency (<1%). Pursuant to the aim of realizing superior levels of signal sensitivity, we previously reported graphene and C60 as novel spacer materials, and similarly project CNTs in this study as ‘active’ contributors for the amplification of fluorescence signals on the SPCE platform that generates highly directional emission, with very high signal to noise ratios and >50% signal collection efficiency. Considering the easy functionalization of these carbon nano-allotropes, and their high sensitivity; the economical Ag-CNT SPCE platforms can be effectively extended towards sensing applications.

  11. EBSCO's Usage Consolidation Attempts to Streamline Gathering, Storage, and Reporting of Usage Statistics

    ERIC Educational Resources Information Center

    Remy, Charlie

    2012-01-01

    This paper provides an overview of EBSCO's new Usage Consolidation product designed to streamline the harvesting, storage, and analysis of usage statistics from electronic resources. Strengths and weaknesses of the product are discussed as well as an early beta partner's experience. In the current atmosphere of flat or declining budgets, libraries…

  12. EBSCO's Usage Consolidation Attempts to Streamline Gathering, Storage, and Reporting of Usage Statistics

    ERIC Educational Resources Information Center

    Remy, Charlie

    2012-01-01

    This paper provides an overview of EBSCO's new Usage Consolidation product designed to streamline the harvesting, storage, and analysis of usage statistics from electronic resources. Strengths and weaknesses of the product are discussed as well as an early beta partner's experience. In the current atmosphere of flat or declining budgets, libraries…

  13. A MATURE ATTITUDE TOWARD USAGE. LANGUAGE CURRICULUM VI, STUDENT VERSION.

    ERIC Educational Resources Information Center

    KITZHABER, ALBERT R.

    THIS LANGUAGE UNIT ON USAGE FOR 12TH-GRADE STUDENTS IS DIVIDED INTO SIX SECTIONS--"INTRODUCTION TO THE STUDENTS,""USAGE IN THE HIGH SCHOOL ENGLISH CLASS,""VARIATIONS WITHIN STANDARD AMERICAN ENGLISH,""BASES FOR JUDGMENTS ABOUT USAGE," AND "CHARACTERISTICS OF A MATURE ATTITUDE TOWARD USAGE." FOUR…

  14. Fusion Bead Procedure for Nuclear Forensics Employing Synthetic Enstatite to Dissolve Uraniferous and Other Challenging Materials Prior to Laser Ablation Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Reading, David G; Croudace, Ian W; Warwick, Phillip E

    2017-06-06

    There is an increasing demand for rapid and effective analytical tools to support nuclear forensic investigations of seized or suspect materials. Some methods are simply adapted from other scientific disciplines and can effectively be used to rapidly prepare complex materials for subsequent analysis. A novel sample fusion method is developed, tested, and validated to produce homogeneous, flux-free glass beads of geochemical reference materials (GRMs), uranium ores, and uranium ore concentrates (UOC) prior to the analysis of 14 rare earth elements (REE) via laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The novelty of the procedure is the production of glass beads using 9 parts high purity synthetic enstatite (MgSiO3) as the glass former with 1 part of sample (sample mass ∼1.5 mg). The beads are rapidly prepared (∼10 min overall time) by fusing the blended mixture on an iridium strip resistance heater in an argon-purged chamber. Many elements can be measured in the glass bead, but the rare earth group in particular is a valuable series in nuclear forensic studies and is well-determined using LA-ICP-MS. The REE data obtained from the GRMs, presented as chondrite normalized patterns, are in very good agreement with consensus patterns. The UOCs have comparable patterns to solution ICP-MS methods and published data. The attractions of the current development are its conservation of sample, speed of preparation, and suitability for microbeam analysis, all of which are favorable for nuclear forensics practitioners and geochemists requiring REE patterns from scarce or valuable samples.

  15. Comparative Investigation between In Situ Laser Ablation Versus Bulk Sample (Solution Mode) Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Analysis of Trinitite Post-Detonation Materials.

    PubMed

    Dustin, Megan K; Koeman, Elizabeth C; Simonetti, Antonio; Torrano, Zachary; Burns, Peter C

    2016-09-01

    In the event of the interception of illicit nuclear materials or detonation of a nuclear device, timely and accurate deciphering of the chemical and isotopic composition of pertinent samples is pivotal in enhancing both nuclear security and source attribution. This study reports the results from a first time (to our knowledge), detailed comparative investigation conducted of Trinitite post-detonation materials using both solution mode (SM) and laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) techniques. Trace element abundances determined for bulk Trinitite samples subsequent to digestion and preparation for SM-ICP-MS analysis compare favorably to calculated median concentrations based on LA-ICP-MS analyses for the identical samples. The trace element concentrations obtained by individual LA-ICP-MS analyses indicate a large scatter compared to the corresponding bulk sample SM-ICP-MS results for the same sample; this feature can be attributed to the incorporation into the blast melt of specific, precursor accessory minerals (minerals in small quantities, such as carbonates, sulfates, chlorites, clay, and mafic minerals) present at ground zero. The favorable comparison reported here validates and confirms the use of the LA-ICP-MS technique in obtaining accurate forensic information at high spatial resolution in nuclear materials for source attribution purposes. This investigation also reports device-like (240)Pu/(239)Pu ratios (∼0.022) for Pu-rich regions of the blast melt that are also characterized by higher Ca and U contents, which is consistent with results from previous studies. © The Author(s) 2016.

  16. Media usage as health segmentation variables.

    PubMed

    Rodgers, Shelly; Chen, Qimei; Duffy, Margaret; Fleming, Kenneth

    2007-03-01

    The purpose of this research is to contrast a traditional audience segmentation model that uses demographics and health evaluations against a model that uses these same variables plus media usage variables. The goal was to determine whether media usage variables - typically not used in health segmentation studies - add predictive power in determining health behaviors and attitudes. The results of the analysis showed an increase in the ability to predict health behaviors such as aspirin use, vitamin use, diet, and exercise, and suggest that there is predictive value for including media variables as part of the segmentation process. Implications for public health education and campaign planning are discussed.

  17. A portal for visualizing grid usage.

    SciTech Connect

    von Laszewski, G.; DiCarlo, J.; Allcock, B.; Mathematics and Computer Science; Univ. of Chicago

    2007-08-25

    We introduce a framework for measuring the use of Grid services and exposing simple summary data to an authorized set of Grid users through a JSR168-enabled portal. The sensor framework has been integrated into the Globus Toolkit and allows Grid administrators to have access to a mechanism helping with report and usage statistics. Although the original focus was the reporting of actions in relationship to GridFTP services, the usage service has been expanded to report also on the use of other Grid services.

  18. NAT Usage in Residential Broadband Networks

    NASA Astrophysics Data System (ADS)

    Maier, Gregor; Schneider, Fabian; Feldmann, Anja

    Many Internet customers use network address translation (NAT) when connecting to the Internet. To understand the extend of NAT usage and its implications, we explore NAT usage in residential broadband networks based on observations from more than 20,000 DSL lines. We present a unique approach for detecting the presence of NAT and for estimating the number of hosts connected behind a NAT gateway using IP TTLs and HTTP user-agent strings. Furthermore, we study when each of the multiple hosts behind a single NAT gateway is active. This enables us to detect simultaneous use. In addition, we evaluate the accuracy of NAT analysis techniques when fewer information is available.

  19. Coupled-column liquid chromatographic analysis of epirubicin and metabolites in biological material and its application to optimization of liver cancer therapy.

    PubMed

    Rudolphi, A; Vielhauer, S; Boos, K S; Seidel, D; Bäthge, I M; Berger, H

    1995-04-01

    A specific, sensitive and fully automated coupled-column LC method for the determination of the anthracycline cytostatic epirubicin and four metabolites in the biological materials human plasma, liver homogenate and liver tumour homogenate has been developed. System-integrated sample processing was achieved using a new restricted access silica precolumn packing. This porous Alkyl-Diol Silica (ADS) was specially designed for the direct and repetitive injection of proteinaceous samples. It consists of a hydrophilic and electroneutral external particle surface (glyceryl-residues) and a hydrophobic reversed-phase internal surface (butyryl-, octanoyl- or octadecyl-residues). These bimodal chromatographic properties allow retention of low molecular analytes by classical RP-chromatography exclusively at the lipophilic pore surface. Macromolecular constituents of the sample matrix (e.g. proteins) are size-excluded by 5 nm pores and quantitatively eliminated in the interstitial void volume. On-line analysis was performed by coupling a C4-Alkyl-Diol precolumn (20 x 4 mm i.d., particle size 25 microns) and LiChrospher RP Select B analytical column (250 x 4 mm i.d., particle size 5 microns) via an electrically driven six-port valve. Separation of the parent compound and its metabolites was achieved with a mobile phase consisting of water (0.1% triethylamine, v/v, pH 2.0 adjusted with trichloroacetic acid)-acetonitrile (70:30, v/v) at a flow rate of 1 ml min-1. The analytes were detected using their natural fluorescence (excitation 445 nm, emission 560 nm). The method described is used for the determination of pharmacokinetics of epirubicin and its metabolites in order to evaluate and optimize treatment regimen of liver cancer chemoembolization therapy.

  20. Selective Factors Associated with the Evolution of Codon Usage in Natural Populations of Arboviruses

    PubMed Central

    Velazquez-Salinas, Lauro; Zarate, Selene; Eschbaumer, Michael; Pereira Lobo, Francisco; Gladue, Douglas P.; Arzt, Jonathan; Novella, Isabel S.; Rodriguez, Luis L.

    2016-01-01

    Arboviruses (arthropod borne viruses) have life cycles that include both vertebrate and invertebrate hosts with substantial differences in vector and host specificity between different viruses. Most arboviruses utilize RNA for their genetic material and are completely dependent on host tRNAs for their translation, suggesting that virus codon usage could be a target for selection. In the current study we analyzed the relative synonymous codon usage (RSCU) patterns of 26 arboviruses together with 25 vectors and hosts, including 8 vertebrates and 17 invertebrates. We used hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify trends in codon usage. HCA demonstrated that the RSCU of arboviruses reflects that of their natural hosts, but not that of dead-end hosts. Of the two major components identified by PCA, the first accounted for 62.1% of the total variance, and among the 59 codons analyzed in this study, the leucine codon CTG had the highest correlation with the first principal component, however isoleucine had the highest correlation during amino acid analysis. Nucleotide and dinucleotide composition were the variables that explained most of the total codon usage variance. The results suggest that the main factors driving the evolution of codon usage in arboviruses is based on the nucleotide and dinucleotide composition present in the host. Comparing codon usage of arboviruses and potential vector hosts can help identifying potential vectors for emerging arboviruses. PMID:27455096

  1. Examining student heuristic usage in a hydrogen bonding assessment.

    PubMed

    Miller, Kathryn; Kim, Thomas

    2017-09-01

    This study investigates the role of representational competence in student responses to an assessment of hydrogen bonding. The assessment couples the use of a multiple-select item ("Choose all that apply") with an open-ended item to allow for an examination of students' cognitive processes as they relate to the assignment of hydrogen bonding within a structural representation. Response patterns from the multiple-select item implicate heuristic usage as a contributing factor to students' incorrect responses. The use of heuristics is further supported by the students' corresponding responses to the open-ended assessment item. Taken together, these data suggest that poor representational competence may contribute to students' previously observed inability to correctly navigate the concept of hydrogen bonding. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):411-416, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  2. 40 CFR 35.6320 - Usage rate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ASSISTANCE Cooperative Agreements and Superfund State Contracts for Superfund Response Actions Personal... by site, activity, and operable unit, as applicable, the recipient must apply a usage rate. The... rate application. The recipient must record the use of the equipment by site, activity, and...

  3. 40 CFR 35.6320 - Usage rate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ASSISTANCE Cooperative Agreements and Superfund State Contracts for Superfund Response Actions Personal... by site, activity, and operable unit, as applicable, the recipient must apply a usage rate. The... rate application. The recipient must record the use of the equipment by site, activity, and...

  4. 40 CFR 35.6320 - Usage rate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ASSISTANCE Cooperative Agreements and Superfund State Contracts for Superfund Response Actions Personal... by site, activity, and operable unit, as applicable, the recipient must apply a usage rate. The... rate application. The recipient must record the use of the equipment by site, activity, and...

  5. Statistical Measures for Usage-Based Linguistics

    ERIC Educational Resources Information Center

    Gries, Stefan Th.; Ellis, Nick C.

    2015-01-01

    The advent of usage-/exemplar-based approaches has resulted in a major change in the theoretical landscape of linguistics, but also in the range of methodologies that are brought to bear on the study of language acquisition/learning, structure, and use. In particular, methods from corpus linguistics are now frequently used to study distributional…

  6. The Scope of Usage-Based Theory

    PubMed Central

    Ibbotson, Paul

    2013-01-01

    Usage-based approaches typically draw on a relatively small set of cognitive processes, such as categorization, analogy, and chunking to explain language structure and function. The goal of this paper is to first review the extent to which the “cognitive commitment” of usage-based theory has had success in explaining empirical findings across domains, including language acquisition, processing, and typology. We then look at the overall strengths and weaknesses of usage-based theory and highlight where there are significant debates. Finally, we draw special attention to a set of culturally generated structural patterns that seem to lie beyond the explanation of core usage-based cognitive processes. In this context we draw a distinction between cognition permitting language structure vs. cognition entailing language structure. As well as addressing the need for greater clarity on the mechanisms of generalizations and the fundamental units of grammar, we suggest that integrating culturally generated structures within existing cognitive models of use will generate tighter predictions about how language works. PMID:23658552

  7. Language Arts: Mechanics and Usage K-12.

    ERIC Educational Resources Information Center

    Instructional Objectives Exchange, Los Angeles, CA.

    This revised collection is presented in a new format. Each objective consists of stating the general objective, giving directions, sample items, and answers. Objectives covering a wide range of writing problems are included emphasizing the improvement of clarity in expression. The text is divided into two categories: Mechanics and Usage. There are…

  8. College Student Performance and Credit Card Usage.

    ERIC Educational Resources Information Center

    Pinto, Mary Beth; Parente, Diane H.; Palmer, Todd Starr

    2001-01-01

    Examines the relationship between credit card usage, employment, and academic performance among a group of college students with credit cards. Results reveal that the students differed significantly in the level of anxiety felt from carrying debt, perceived need to work, and perceived impact of employment on academic performance. (Contains 57…

  9. An Analysis of Electronic-Mail Usage.

    ERIC Educational Resources Information Center

    Fang, K.

    1998-01-01

    Describes a study that established a measure and model for use in predicting and explaining electronic mail systems as an example of computer-mediated communication technologies usage and choice. The results indicated that all of the eight hypotheses showed significant correlation between criterion and predictor variates, supported by different…

  10. Google Scholar Usage: An Academic Library's Experience

    ERIC Educational Resources Information Center

    Wang, Ya; Howard, Pamela

    2012-01-01

    Google Scholar is a free service that provides a simple way to broadly search for scholarly works and to connect patrons with the resources libraries provide. The researchers in this study analyzed Google Scholar usage data from 2006 for three library tools at San Francisco State University: SFX link resolver, Web Access Management proxy server,…

  11. White Paper on Electronic Journal Usage Statistics.

    ERIC Educational Resources Information Center

    Luther, Judy

    This paper provides a snapshot of developments in the electronic journal industry. The first section identifies issues affecting librarians and publishers, including: (1) issues of common concern to both publishers and librarians, e.g., lack of comparable data, lack of context, incomplete usage data, marketing, content provided, interface…

  12. Predicting Student Success via Online Homework Usage

    ERIC Educational Resources Information Center

    Bowman, Charles R.; Gulacar, Ozcan; King, Daniel B.

    2014-01-01

    With the amount of data available through an online homework system about students' study habits, it stands to reason that such systems can be used to identify likely student outcomes. A study was conducted to see how student usage of an online chemistry homework system (OWL) correlated with student success in a general chemistry course. Online…

  13. 40 CFR 35.6320 - Usage rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ASSISTANCE Cooperative Agreements and Superfund State Contracts for Superfund Response Actions Personal... by site, activity, and operable unit, as applicable, the recipient must apply a usage rate. The... rate application. The recipient must record the use of the equipment by site, activity, and operable...

  14. 40 CFR 35.6320 - Usage rate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ASSISTANCE Cooperative Agreements and Superfund State Contracts for Superfund Response Actions Personal... by site, activity, and operable unit, as applicable, the recipient must apply a usage rate. The... rate application. The recipient must record the use of the equipment by site, activity, and operable...

  15. College Student Performance and Credit Card Usage.

    ERIC Educational Resources Information Center

    Pinto, Mary Beth; Parente, Diane H.; Palmer, Todd Starr

    2001-01-01

    Examines the relationship between credit card usage, employment, and academic performance among a group of college students with credit cards. Results reveal that the students differed significantly in the level of anxiety felt from carrying debt, perceived need to work, and perceived impact of employment on academic performance. (Contains 57…

  16. Usage Patterns of Open Genomic Data

    ERIC Educational Resources Information Center

    Xia, Jingfeng; Liu, Ying

    2013-01-01

    This paper uses Genome Expression Omnibus (GEO), a data repository in biomedical sciences, to examine the usage patterns of open data repositories. It attempts to identify the degree of recognition of data reuse value and understand how e-science has impacted a large-scale scholarship. By analyzing a list of 1,211 publications that cite GEO data…

  17. Nutritional supplements usage by Portuguese athletes.

    PubMed

    Sousa, Mónica; Fernandes, Maria João; Moreira, Pedro; Teixeira, Vítor Hugo

    2013-01-01

    In this study, we determined the prevalence of nutritional supplements (NS) usage, the type of supplements used, the reasons for usage, and the source of nutritional advice among Portuguese athletes. Two hundred ninety-two athletes (68 % male, 12 - 37 years old) from 13 national sports federations completed a questionnaire that sought information on socio-demographics, sports data, and NS usage. Most athletes (66 %) consumed NS, with a median consumption of 4 supplements per athlete. The most popular supplements included multivitamins/minerals (67 %), sport drinks (62 %), and magnesium (53 %). Significant differences for the type of NS consumed were found between gender and age groups and the number of weekly training hours. Most athletes used NS to accelerate recovery (63 %), improve sports performance (62 %), and have more energy/reduce fatigue (60 %). Athletes sought advice on supplementation mainly from physicians (56 %) and coaches (46 %). Age and gender were found to influence reasons for use and the source of information. Reasons for NS usage were supported scientifically in some cases (e. g., muscle gain upon protein supplementation), but others did not have a scientific basis (e. g., use of glutamine and magnesium). Given the high percentage of NS users, there is an urgent need to provide athletes with education and access to scientific and unbiased information, so that athletes can make assertive and rational choices about the utilization of these products.

  18. Usage Patterns of Open Genomic Data

    ERIC Educational Resources Information Center

    Xia, Jingfeng; Liu, Ying

    2013-01-01

    This paper uses Genome Expression Omnibus (GEO), a data repository in biomedical sciences, to examine the usage patterns of open data repositories. It attempts to identify the degree of recognition of data reuse value and understand how e-science has impacted a large-scale scholarship. By analyzing a list of 1,211 publications that cite GEO data…

  19. Statistical Measures for Usage-Based Linguistics

    ERIC Educational Resources Information Center

    Gries, Stefan Th.; Ellis, Nick C.

    2015-01-01

    The advent of usage-/exemplar-based approaches has resulted in a major change in the theoretical landscape of linguistics, but also in the range of methodologies that are brought to bear on the study of language acquisition/learning, structure, and use. In particular, methods from corpus linguistics are now frequently used to study distributional…

  20. Production, Usage, and Comprehension in Animal Vocalizations

    ERIC Educational Resources Information Center

    Seyfarth, Robert M.; Cheney, Dorothy L.

    2010-01-01

    In this review, we place equal emphasis on production, usage, and comprehension because these components of communication may exhibit different developmental trajectories and be affected by different neural mechanisms. In the animal kingdom generally, learned, flexible vocal production is rare, appearing in only a few orders of birds and few…

  1. Survey of Computer Usage in Louisiana Schools.

    ERIC Educational Resources Information Center

    Kirby, Peggy C.; And Others

    A survey of computer usage in 179 randomly selected public elementary and secondary schools in Louisiana was conducted in the spring of 1988. School principals responded to questions about school size, the socioeconomic status of the student population, the number of teachers certified in computer literacy and computer science, and the number of…

  2. Google Scholar Usage: An Academic Library's Experience

    ERIC Educational Resources Information Center

    Wang, Ya; Howard, Pamela

    2012-01-01

    Google Scholar is a free service that provides a simple way to broadly search for scholarly works and to connect patrons with the resources libraries provide. The researchers in this study analyzed Google Scholar usage data from 2006 for three library tools at San Francisco State University: SFX link resolver, Web Access Management proxy server,…

  3. [Dental welding titanium and its clinical usage].

    PubMed

    Li, H; Xiao, M; Zhao, Y

    1998-09-01

    Due to its excellent biocompatibility, desirable chemical and mechanical properties, Titanium has been used for implant denture, RPD and FPD, where welding techniques were indispensable. This paper introduces 5 useful modern ways to weld Titanium and their clinical usage. They are: laser, plasma welding, TIG, infraned brazing and Hruska electrowelding.

  4. Collaborative Portfolio's Effect on Library Usage

    ERIC Educational Resources Information Center

    Bryan, Valerie

    2011-01-01

    Library resources are expensive and it is the library media specialist's responsibility to ensure that use of the library's resources is maximized to support the School Strategic Plan (SSP). This library usage study examined data on the scheduling of high school classes for research-based assignments, related to content area curriculum standards,…

  5. Twitter Usage of Universities in Turkey

    ERIC Educational Resources Information Center

    Yolcu, Ozgu

    2013-01-01

    Universities are among the users of the most popular social media networks. Usage of social media by especially students and many other people and institutions, which constitutes the target audience for universities, encourages the universities to effectively use this environment. Twitter is among these social media networks which facilitate the…

  6. Production, Usage, and Comprehension in Animal Vocalizations

    ERIC Educational Resources Information Center

    Seyfarth, Robert M.; Cheney, Dorothy L.

    2010-01-01

    In this review, we place equal emphasis on production, usage, and comprehension because these components of communication may exhibit different developmental trajectories and be affected by different neural mechanisms. In the animal kingdom generally, learned, flexible vocal production is rare, appearing in only a few orders of birds and few…

  7. Mobile Device Usage in Higher Education

    ERIC Educational Resources Information Center

    Delcker, Jan; Honal, Andrea; Ifenthaler, Dirk

    2016-01-01

    This paper focuses on mobile device usage of students in higher education. While more and more students embrace mobile devices in their daily life, institutions attempt to profit from those devices for educational purposes. It is therefore crucial for institutional development to identify students' needs and how mobile devices may facilitate these…

  8. Style and Usage Software: Mentor, not Judge.

    ERIC Educational Resources Information Center

    Smye, Randy

    Computer software style and usage checkers can encourage students' recursive revision strategies. For example, HOMER is based on the revision pedagogy presented in Richard Lanham's "Revising Prose," while Grammatik II focuses on readability, passive voice, and possibly misused words or phrases. Writer's Workbench "Style" (a UNIX program) provides…

  9. Estimating emollient usage in patients with eczema.

    PubMed

    Hon, K L E; Ching, G K; Leung, T F; Choi, C Y; Lee, K K C; Ng, P C

    2010-01-01

    Atopic eczema (AE) is characterized by reduced skin hydration (SH) and impaired integrity of the skin. Proper emollient usage is an important facet of AE management and patients are encouraged to use emollients liberally. To evaluate whether the amount of emollient and skin cleanser used correlates with eczema severity, SH or transepidermal water loss (TEWL), and whether liberal usage alters disease severity, SH and TEWL. We studied SH and TEWL at three common measurement sites on the forearm (antecubital flexure, 20 mm below the antecubital flexure, mid-forearm) and determined the SCORing Atopic Dermatitis (SCORAD) score, Nottingham Eczema Severity Score (NESS), Children's Dermatology Life Quality Index (CDLQI) and the amount of emollient and cleanser usage over a 2-week period in consecutive new patients seen at the paediatric skin clinic of a teaching hospital. In total, 48 subjects and 19 controls were recruited. Patients with AE had significantly higher TEWL and lower SH in the studied sites. Emollient and cleanser usage was significantly higher (P = 0.001 and P = 0.041, respectively) in patients with AE than in controls. The amount of emollient usage was correlated with NESS, SCORAD, CDLQI, TEWL and mid-forearm SH. No such correlation was found with cleanser usage. Regardless of SCORAD, prescribing 130 g/m(2)/week of emollient met the requirement of 95.8% of patients, and 73 g/m(2)/week met that of 85.4%; for the cleanser, prescribing 136 g/m(2)/week met the requirement of 91.7% of patients. Although skin dryness and SH were improved, there was no significant improvement in SCORAD or TEWL after 2 weeks. In terms of global acceptability of treatment, three-quarters of patients with AE and controls rated the combination of cream and cleanser as 'good' or 'very good'. Adequate amounts of emollient and bathing cleanser should be prescribed to patients with AE. These amounts can be conveniently estimated based on body surface area instead of the less readily

  10. Quantitative analysis of trace elements in environmental powders with laser ablation inductively coupled mass spectrometry using non-sample-corresponding reference materials for signal evaluation

    NASA Astrophysics Data System (ADS)

    Bauer, Gerald; Limbeck, Andreas

    2015-11-01

    Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an attractive alternative to traditional procedures for the analysis of environmental samples (i.e., conventional liquid measurement after sample digestion). However, for accurate quantification, certified reference materials (CRM) are necessary which match the composition of the sample and include all elements of interest at the required concentration levels. The limited availability of appropriate CRMs hampers therefore substantial application. In this work, an LA-ICP-MS procedure allowing for accurate determination of trace element contents in powdered environmental samples is presented. For LA-ICP-MS analysis, the samples are mixed with an internal standard (silver oxide) and a binder (sodium tetra borate) and subsequently pressed to pellets. Quantification is accomplished using a calibration function determined using CRMs with varying matrix composition and analyte content, pre-treated and measured in the same way as the samples. With this approach, matrix-induced ablation differences resulting from varying physical/chemical properties of the individual CRMs could be compensated. Furthermore, ICP-related matrix-effects could be minimized using collision/reaction cell technology. Applicability of the procedure has been demonstrated by assessment of Cd, Cu, Ni, and Zn in four different environmental CRMs (NIST SRM1648a (urban particulate matter), NIST SRM2709 (San Joaquin Soil), BCR144 (sewage sludge), and BCR723 (road dust)). Signal evaluation was performed by alternative use of three CRMs for calculation of the calibration function whereas the remaining fourth CRM acted as unknown sample, resulting in a good agreement between measured and certified values for all elements and reference materials.

  11. Quantum incommensurate skyrmion crystals and commensurate to in-commensurate transitions in cold atoms and materials with spin-orbit couplings in a Zeeman field

    NASA Astrophysics Data System (ADS)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2017-08-01

    In this work, we study strongly interacting spinor atoms in a lattice subject to a two dimensional (2d) anisotropic Rashba type of spin orbital coupling (SOC) and an Zeeman field. We find the interplay between the Zeeman field and the SOC provides a new platform to host rich and novel classes of quantum commensurate and in-commensurate phases, excitations and phase transitions. These commensurate phases include two collinear states at low and high Zeeman field, two co-planar canted states at mirror reflected SOC parameters respectively. Most importantly, there are non-coplanar incommensurate Skyrmion (IC-SkX) crystal phases surrounded by the four commensurate phases. New excitation spectra above all the five phases, especially on the IC-SKX phase are computed. Three different classes of quantum commensurate to in-commensurate transitions from the IC-SKX to its four neighboring commensurate phases are identified. Finite temperature behaviors and transitions are discussed. The critical temperatures of all the phases can be raised above that reachable by current cold atom cooling techniques simply by tuning the number of atoms N per site. In view of recent impressive experimental advances in generating 2d SOC for cold atoms in optical lattices, these new many-body phenomena can be explored in the current and near future cold atom experiments. Applications to various materials such as MnSi, {{Fe}}0.5 {{Co}}0.5Si, especially the complex incommensurate magnetic ordering in Li2IrO3 are given.

  12. Determination of trace sulfur in biodiesel and diesel standard reference materials by isotope dilution sector field inductively coupled plasma mass spectrometry.

    PubMed

    Amais, Renata S; Long, Stephen E; Nóbrega, Joaquim A; Christopher, Steven J

    2014-01-02

    A method is described for quantification of sulfur at low concentrations on the order of mgkg(-1) in biodiesel and diesel fuels using isotope dilution and sector field inductively coupled plasma mass spectrometry (ID-SF-ICP-MS). Closed vessel microwave-assisted digestion was employed using a diluted nitric acid and hydrogen peroxide decomposition medium to reduce sample dilution volumes. Medium resolution mode was employed to eliminate isobaric interferences at (32)S and (34)S related to polyatomic phosphorus and oxygen species, and sulfur hydride species. The method outlined yielded respective limits of detection (LOD) and limits of quantification (LOQ) of 0.7 mg kg(-1) S and 2.5 mg kg(-1) S (in the sample). The LOD was constrained by instrument background counts at (32)S but was sufficient to facilitate value assignment of total S mass fraction in NIST SRM 2723b Sulfur in Diesel Fuel Oil at 9.06±0.13 mg kg(-1). No statistically significant difference at a 95% confidence level was observed between the measured and certified values for certified reference materials NIST SRM 2773 B100 Biodiesel (Animal-Based), CENAM DRM 272b and NIST SRM 2723a Sulfur in Diesel Fuel Oil, validating method accuracy.

  13. Development of isotope dilution cold vapor inductively coupled plasma mass spectrometry and its application to the certification of mercury in NIST standard reference materials.

    PubMed

    Christopher, S J; Long, S E; Rearick, M S; Fassett, J D

    2001-05-15

    An isotope dilution cold vapor inductively coupled plasma mass spectrometry (ID-CV-ICPMS) method featuring gaseous introduction of mercury via tin chloride reduction has been developed and applied to the quantification and certification of mercury in various NIST standard reference materials: SRM 966 Toxic Metals in Bovine Blood (30 ng x mL(-1)); SRM 1641d Mercury in Water (1.6 microg x mL(-1)); and SRM 1946 Lake Superior Fish Tissue (436 ng x g(-1)). Complementary mercury data were generated for SRMs and NIST quality control standards using cold vapor atomic absorption spectroscopy (CVAAS). Certification results for the determination of mercury in SRM 1641d using two independent methods (ID-CV-ICPMS and CVAAS) showed a degree of agreement of 0.3% between the methods. Gaseous introduction of mercury into the ICPMS resulted in a single isotope sensitivity of 2 x 10(6) counts x s(-1)/ng x g(-1) for 201Hg and significantly reduced the memory and washout effects traditionally encountered in solution nebulization ICPMS. Figures of merit for isotope ratio accuracy and precision were evaluated at dwell times of 10, 20, 40, 80, and 160 ms using SRM 3133 Mercury Spectrometric Solution. The optimum dwell time of 80 ms yielded a measured 201Hg/202Hg isotope ratio within 0.13% of the theoretical natural value and a measurement precision of 0.34%, on the basis of three replicate injections of SRM 3133.

  14. The Use of Elasto-Visco-Plastic Material Model Coupled with Pressure-Volume Thermodynamic Relationship to Simulate the Stretch Blow Molding of Polyethylene Terephthalate

    NASA Astrophysics Data System (ADS)

    Mir, H.; Benrabah, Z.; Thibault, F.

    2007-05-01

    The use of polyethylene terephthalate (PET) in the stretch blow molding process presents several challenging issues due to various processing parameters and complex behavior of the material, which is both temperature and strain-rate dependent. In this paper, we generalize the G'Sell-Jonas law in 3D to model and simulate the elasto-visco-plastic (EVP) behavior of PET, taking into account strain-hardening and strain-softening. It is observed that the internal pressure (inside the preform) is significantly different from the nominal pressure (imposed in the blowing device upstream) since the internal pressure and the enclosed volume of the preform are fully coupled. In order to accurately simulate this phenomenon, a thermodynamic model was used to characterize the pressure-volume relationship (PVR). The predicted pressure evolution is thus more realistic when imposing only the machine power of the blowing device (air compressor or vacuum pump). Mechanical and temperature equilibrium equations are fully nonlinear and solved separately with implicit schemes on the current deformed configuration, which is updated at each time step. Biaxial characterization tests were used to determine the model parameters in order to simulate the stretch blow molding process using the pressure-volume thermodynamic relationship. To validate this model, thickness predictions for three industrial cases will be presented and compared to experimental measurements.

  15. [Determination of poppy ingredients in chafing dish materials by isotopic internal standard coupled with multiple reaction monitoring and online full scan mass spectrometry].

    PubMed

    Zhu, Weixia; Sun, Zhuanlian; Yuan, Ping; Yang, Jizhou; Liu, Yafeng; Sun, Wuyong

    2014-12-01

    A confirmative method was developed for determining five poppy alkaloids including morphine, codeine, papaverine, tibane, noscapine in chafing dish ingredients by high performance liquid chromatography coupled with triple quadrupole linear ion trap mass spectrometry (HPLC-Q Trap MS). The sample was extracted with dilute HCl solution under heating condition. The removal of lipid procedure was performed with hexane. The purification was carried out on a mixed-cation solid-phase extraction column (MCX) and ethyl acetate-methanol containing 5% aqueous ammonia was used for elution. A PAK ST column was used to separate the analytes, and 5 mmol/L ammonium acetate methanol and 10 mmol/L ammonium acetate (pH 3. 6) were used as mobile phases. The five alkaloids was detected in the positive mode simultaneously by multiple reaction monitoring (MRM) and online enhanced product ion full scan (EPI). The LODs were 0.05-0.5 µg/kg and the LOQs were 0. 2-2 µg/kg for the five poppy alkaloids. The overall recoveries of the method varied from 64. 2% to 110. 6%, and the RSD were between 4. 2% and 12. 5%. The EPI mass spectra of positive samples were searched through standard library for qualitative confirmation. The detection of real hot pot material samples showed this method can be used for the simple and accurate determination of the five poppy alkaloid residues in chafing dish.

  16. Survey of inorganic arsenic in marine animals and marine certified reference materials by anion exchange high-performance liquid chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Sloth, Jens J; Larsen, Erik H; Julshamn, Kåre

    2005-07-27

    A method for the determination of inorganic arsenic in seafood samples using high-performance liquid chromatography-inductively coupled plasma mass spectrometry is described. The principle of the method relied on microwave-assisted alkaline dissolution of the sample, which at the same time oxidized arsenite [As(III)] to arsenate [As(V)], whereby inorganic arsenic could be determined as the single species As(V). Anion exchange chromatography using isocratic elution with aqueous ammonium carbonate as the mobile phase was used for the separation of As(V) from other coextracted organoarsenic compounds, including arsenobetaine. The stability of organoarsenic compounds during the sample pretreatment was investigated, and no degradation/conversion to inorganic arsenic was detected. The method was employed for the determination of inorganic arsenic in a variety of seafood samples including fish, crustaceans, bivalves, and marine mammals as well as a range of marine certified reference materials, and the results were compared to values published in the literature. For fish and marine mammals, the results were in most cases below the limit of detection. For other sample types, inorganic arsenic concentrations up to 0.060 mg kg(-)(1) were found. In all samples, the inorganic arsenic content constituted less than 1% of the total arsenic content.

  17. Accurate determination of ultra-trace impurities, including europium, in ultra-pure barium carbonate materials through inductively coupled plasma-tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wu, Shuchao; Zeng, Xiangcheng; Dai, Xuefeng; Hu, Yongping; Li, Gang; Zheng, Cunjiang

    2016-09-01

    Impurities, especially ultra-trace europium (Eu), in ultra-pure barium carbonate materials were accurately determined through inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). Two reaction modes, namely, mass shift (with O2 as reaction gas) and on-mass modes(with NH3/He and He as reaction gases), were extensively investigated using Eu+ as target analyte. The use of Eu+ → EuO2+, instead of Eu+ → EuO+, as ion pairs in mass shift mode eliminated polyatomic interferences based on Ba matrix ions (135Ba16O2+ on 151Eu16O+ and 137Ba16O2+ on 153Eu16O+). This procedure exhibited enhanced sensitivity and selectivity. When the ICP-MS/MS was operated in NH3 on-mass mode, Eu+ can be determined in its original mass in interference-free conditions because NH3 did not react with Eu+ but with BaO+ to form a neutral product (BaO). The two reaction modes, especially NH3 on mass mode, were validated to be accurate because their resultant isotope ratios of 153Eu/151Eu matched well with that of the natural abundance ratio. The proposed ICP-MS/MS method is a sensitive technique with a limit of detection as low as 2.0 ng L- 1 for 153Eu+. Compared with conventional single-quadrupole (SQ) ICP-MS, both NH3 on-mass mode and O2 mass shift mode in ICP-MS/MS can be used to accurately determine Eu+ in ultra-pure BaCO3 materials. The detected concentration of Eu+ was 4.0 ng L- 1 to 15 ng L- 1, with spiked recoveries ranging from 100%-110%. ICP-MS/MS was also used to eliminate polyatomic interferences, particularly Ba-based interferences, prior to measurement of Gd and Sm. Impurities, including Na, Mg, Al, K, Mn, Fe, Cr, Sr, and Cs, in ultra-pure BaCO3 materials were also determined using ICP-MS/MS in conventional SQ mode.

  18. Determination of trace elements by inductively coupled plasma mass spectrometry of biomass and fuel oil reference materials using milligram sample sizes.

    PubMed

    Lachas, H; Richaud, R; Herod, A A; Dugwell, D R; Kandiyoti, R

    2000-01-01

    Most of the analytical techniques used to quantify elements associated with solid samples suffer from high detection limits and cannot be used for trace elements in biomass samples, particularly when only 20 mg are available for analysis. Inductively coupled plasma mass spectrometry (ICP-MS) can achieve detection limits of parts-per-trillion with liquid sample introduction by solution nebulisation. This technique was therefore tested with two standard biomass reference materials: oriental tobacco leaves and cabbage leaves. Two preparations successfully used on coal standards were used to digest the solid samples: a total digestion method (wet ashing digestion) and a partial leaching (microwave extraction). The concentrations of up to seventeen elements (As, Ba, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn) were measured after the two preparations. The accuracy and sensitivity of the measurements improved when the dilution factor decreased from 5000 to 1000 and to 500. Since the proportion of mineral matter in biomass samples is small (5%), the microwave digestion extracted elements that are generally not completely extracted from coal samples (e.g. Sb). However, some trace element concentrations were below the limit of quantification after microwave extraction, even with a reduced dilution factor (As, Se and Mo) and could not be quantified. A fuel oil was also digested. The trace element concentrations were very low (between 28 and 0.1 microgram g(-1)) but acceptable results were obtained by applying a dilution factor of 100. Only six elements in the fuel oil (As, Ba, Co, Ni, Se and V) had certified or indicated values. Factors affecting the accuracy and sensitivity of the analyses are discussed. The reproducibility of analysis of the tobacco leaf standard was checked over a period of nine months by both digestion methods. The wet ashing method gave acceptable reproducibility for Ba, Cd, Co, Cu, Ga, Mn, Mo, Ni, Pb, V and Zn but poor precision for Cr

  19. Direct determination of methylmercury and inorganic mercury in biological materials by solid sampling-electrothermal vaporization-inductively coupled plasma-isotope dilution-mass spectrometry.

    PubMed

    Gelaude, I; Dams, R; Resano, M; Vanhaecke, F; Moens, L

    2002-08-01

    This paper reports on the use of solid sampling-electrothermal vaporization-inductively coupled plasma mass spectrometry (SS-EIV-ICPMS) for the direct and simultaneous determination of methylmercury and inorganic mercury in biological materials. The main advantage of this fast and sensitive method is that no sample preparation is required. In this way, the sample throughput can be considerably increased, problems of contamination and analyte losses are kept to a minimum and, even more important, the original chemical form of the different analyte species in the solid samples is preserved. To achieve this goal, a solid sample is inserted into a graphite furnace of the boat-in-tube type and is subsequently submitted to an appropriate temperature program, leading to the separate vaporization of methylmercury and inorganic mercury, which are transported into the ICP by means of an argon carrier gas. The separation was accomplished within 75 s. For the quantification of the two peaks, species-unspecific isotope dilution was used. For this purpose, a stable flow of argon loaded with gaseous Hg isotopically enriched in 200Hg was generated using a permeation tube that was constructed in-house. Its emission rate was determined by collecting the mercury released during a given time interval on a gold-coated silica absorber, after which the amount collected was released by heating of the absorber and determined by cold vapor atomic absorption spectrometry (CVAAS) and cold vapor atomic fluorescence spectrometry (CVAFS). A reference material from the Canadian National Research Council (NRC) (TORT-2) was used to assess the accuracy of the method. For the application of the method to samples with diverse mercury contents, the spike/sample ratio can be optimized by varying the emission rate of the permeation tube simply by adapting its temperature. To prove the feasibility of this approach, two reference materials (BCR 463 and DORM-2) with a methylmercury content more than 10

  20. Generation of warm dense matter and strongly coupled plasmas using the High Radiation on Materials facility at the CERN Super Proton Synchrotron

    NASA Astrophysics Data System (ADS)

    Tahir, Naeem A.; Schmidt, Ruediger; Brugger, Markus; Assmann, Ralph; Shutov, Alexander; Lomonosov, Igor V.; Gryaznov, Viktor; Piriz, Antonio Roberto; Udrea, Serban; Hoffmann, Dieter H. H.; Fortov, Vladimir E.; Deutsch, Claude

    2009-08-01

    A dedicated facility named High Radiation on Materials (HiRadMat) is being constructed at CERN to study the interaction of the 450 GeV protons generated by the Super Proton Synchrotron (SPS) with fixed solid targets of different materials. The main purpose of these future experiments is to study the generation and propagation of thermal shock waves in the target in order to assess the damage caused to the equipment, including collimators and absorbers, in case of an accident involving an uncontrolled release of the entire beam at a given point. Detailed numerical simulations of the beam-target interaction of several cases of interest have been carried out. In this paper we present simulations of the thermodynamic and the hydrodynamic response of a solid tungsten cylindrical target that is facially irradiated with the SPS beam with nominal parameters. These calculations have been carried out in two steps. First, the energy loss of the protons is calculated in the solid target using the FLUKA code [Fasso et al., "FLUKA: A multi-particle transport code," Report Nos. CERN-2005-10, INFN/TC-05/11, and SLAC-R-773, 2005; Fasso et al., Conference on Computing in High Energy and Nuclear Physics, La Jolla, CA, 24-28 March 2003] and this energy loss data is used as input to a sophisticated two-dimensional hydrodynamic code, BIG2 [Fortov et al., Nucl. Sci. Eng. 123, 169 (1996)], which is based on a Godunov-type numerical scheme. The transverse intensity distribution in the beam focal spot is Gaussian. We consider three different sizes of the focal spot that are characterized by standard deviations, σ =0.088, 0.28, and 0.88 mm, respectively. This study has shown that the target is severely damaged in all the three cases and the material in the beam-heated region is transformed into warm dense matter including a strongly coupled plasma state. This new experimental facility can therefore also be used for dedicated experiments to study high energy density matter.

  1. Historical review of medicinal plants’ usage

    PubMed Central

    Petrovska, Biljana Bauer

    2012-01-01

    Healing with medicinal plants is as old as mankind itself. The connection between man and his search for drugs in nature dates from the far past, of which there is ample evidence from various sources: written documents, preserved monuments, and even original plant medicines. Awareness of medicinal plants usage is a result of the many years of struggles against illnesses due to which man learned to pursue drugs in barks, seeds, fruit bodies, and other parts of the plants. Contemporary science has acknowledged their active action, and it has included in modern pharmacotherapy a range of drugs of plant origin, known by ancient civilizations and used throughout the millennia. The knowledge of the development of ideas related to the usage of medicinal plants as well as the evolution of awareness has increased the ability of pharmacists and physicians to respond to the challenges that have emerged with the spreading of professional services in facilitation of man's life. PMID:22654398

  2. Historical review of medicinal plants' usage.

    PubMed

    Petrovska, Biljana Bauer

    2012-01-01

    Healing with medicinal plants is as old as mankind itself. The connection between man and his search for drugs in nature dates from the far past, of which there is ample evidence from various sources: written documents, preserved monuments, and even original plant medicines. Awareness of medicinal plants usage is a result of the many years of struggles against illnesses due to which man learned to pursue drugs in barks, seeds, fruit bodies, and other parts of the plants. Contemporary science has acknowledged their active action, and it has included in modern pharmacotherapy a range of drugs of plant origin, known by ancient civilizations and used throughout the millennia. The knowledge of the development of ideas related to the usage of medicinal plants as well as the evolution of awareness has increased the ability of pharmacists and physicians to respond to the challenges that have emerged with the spreading of professional services in facilitation of man's life.

  3. Balanced Codon Usage Optimizes Eukaryotic Translational Efficiency

    PubMed Central

    Qian, Wenfeng; Yang, Jian-Rong; Pearson, Nathaniel M.; Maclean, Calum; Zhang, Jianzhi

    2012-01-01

    Cellular efficiency in protein translation is an important fitness determinant in rapidly growing organisms. It is widely believed that synonymous codons are translated with unequal speeds and that translational efficiency is maximized by the exclusive use of rapidly translated codons. Here we estimate the in vivo translational speeds of all sense codons from the budding yeast Saccharomyces cerevisiae. Surprisingly, preferentially used codons are not translated faster than unpreferred ones. We hypothesize that this phenomenon is a result of codon usage in proportion to cognate tRNA concentrations, the optimal strategy in enhancing translational efficiency under tRNA shortage. Our predicted codon–tRNA balance is indeed observed from all model eukaryotes examined, and its impact on translational efficiency is further validated experimentally. Our study reveals a previously unsuspected mechanism by which unequal codon usage increases translational efficiency, demonstrates widespread natural selection for translational efficiency, and offers new strategies to improve synthetic biology. PMID:22479199

  4. Monitoring Object Library Usage and Changes

    NASA Technical Reports Server (NTRS)

    Owen, R. K.; Craw, James M. (Technical Monitor)

    1995-01-01

    The NASA Ames Numerical Aerodynamic Simulation program Aeronautics Consolidated Supercomputing Facility (NAS/ACSF) supercomputing center services over 1600 users, and has numerous analysts with root access. Several tools have been developed to monitor object library usage and changes. Some of the tools do "noninvasive" monitoring and other tools implement run-time logging even for object-only libraries. The run-time logging identifies who, when, and what is being used. The benefits are that real usage can be measured, unused libraries can be discontinued, training and optimization efforts can be focused at those numerical methods that are actually used. An overview of the tools will be given and the results will be discussed.

  5. Space Shuttle Usage of z/OS

    NASA Technical Reports Server (NTRS)

    Green, Jan

    2009-01-01

    This viewgraph presentation gives a detailed description of the avionics associated with the Space Shuttle's data processing system and its usage of z/OS. The contents include: 1) Mission, Products, and Customers; 2) Facility Overview; 3) Shuttle Data Processing System; 4) Languages and Compilers; 5) Application Tools; 6) Shuttle Flight Software Simulator; 7) Software Development and Build Tools; and 8) Fun Facts and Acronyms.

  6. Stachytarpheta jamaicensis (L.) Vahl: From Traditional Usage to Pharmacological Evidence

    PubMed Central

    Liew, Pearl Majorie; Yong, Yoke Keong

    2016-01-01

    Introduction. Stachytarpheta jamaicensis (L.) Vahl belongs to the family of Verbenaceae and is commonly known as Gervao, Brazilian tea, verbena cimarrona, rooter comb, or blue porter weed. It is one of the important plants with high medicinal and nutraceutical benefits. S. jamaicensis contains various medicinal properties in traditional and folk medicinal systems, with cures for several diseases. Objective. The objective of this review paper is to collect information concerning the morphology, distribution, traditional usage, phytochemical compositions, biological activities, and safety data of S. jamaicensis. Materials and Methods. The information was obtained from literature search through electronic databases such as PubMed and Google Scholar on S. jamaicensis. Results and Conclusion. The high medicinal properties of this plant, for instance, antimicrobial and antifungal effect as the main activities, but verbascoside as the main active chemical component, make it a valuable source of the medicinal compound. This review paper summarizes all information concerning the morphology, distribution, traditional usage, phytochemical compositions, pharmacological activities, and toxicological studies of S. jamaicensis. PMID:26925152

  7. Stachytarpheta jamaicensis (L.) Vahl: From Traditional Usage to Pharmacological Evidence.

    PubMed

    Liew, Pearl Majorie; Yong, Yoke Keong

    2016-01-01

    Introduction. Stachytarpheta jamaicensis (L.) Vahl belongs to the family of Verbenaceae and is commonly known as Gervao, Brazilian tea, verbena cimarrona, rooter comb, or blue porter weed. It is one of the important plants with high medicinal and nutraceutical benefits. S. jamaicensis contains various medicinal properties in traditional and folk medicinal systems, with cures for several diseases. Objective. The objective of this review paper is to collect information concerning the morphology, distribution, traditional usage, phytochemical compositions, biological activities, and safety data of S. jamaicensis. Materials and Methods. The information was obtained from literature search through electronic databases such as PubMed and Google Scholar on S. jamaicensis. Results and Conclusion. The high medicinal properties of this plant, for instance, antimicrobial and antifungal effect as the main activities, but verbascoside as the main active chemical component, make it a valuable source of the medicinal compound. This review paper summarizes all information concerning the morphology, distribution, traditional usage, phytochemical compositions, pharmacological activities, and toxicological studies of S. jamaicensis.

  8. Urologists' usage and perceptions of urological apps.

    PubMed

    Dempster, Niall J; Risk, Rachel; Clark, Ross; Meddings, Robert N

    2014-12-01

    We conducted a survey of urologists to document their patterns of app usage and perceptions of app quality, and to assess their interest in future app usage. The survey was sent to all urologists on the mailing list of the British Association of Urological Surgeons (BAUS) (n=1613). A total of 115 responses were received (a response rate of 7%). Most respondents (89%) owned mobile devices capable of downloading apps. Most respondents (79%) used apps and about half (49%) used urological apps; the latter accessed a mean of 2.4 urological apps per month. Significantly more younger (defined as <45 years old) than older urologists used urological apps (P<0.001). Respondents' perception of the overall quality of apps produced for both urologists and patients was relatively low. The respondents' interest in future app usage was strong. There was greatest interest in apps such as logbooks or revalidation ones (87%), reference apps (86%) and ones which aided decision-making (85%). There was considerable support for the implementation of measures to provide urological app quality assurance; most respondents believed app peer review (78%) and validation (78%) would be beneficial and 48% supported regulatory oversight. There appears to be a need for high quality urological apps and opportunities therefore exist for national urological associations and academic units to lead developments.

  9. Availability, usage, and factors affecting usage of electrophysical agents by physical therapists: a regional cross-sectional survey

    PubMed Central

    Abe, Yuichi; Goh, Ah-Cheng; Miyoshi, Kei

    2016-01-01

    [Purpose] The aim of this study was to investigate the availability, usage, and factors affecting usage of electrophysical agents by physical therapists in Nagano Prefecture, Japan. [Subjects and Methods] Questionnaires were sent to all 1,571 physical therapists working in 245 institutions within Nagano Prefecture. A total of 1,110 questionnaires were returned, out of which 1,099 (70%) questionnaires containing valid responses were analyzed. Frequencies and percentages were calculated for 22 modalities with regards to availability, usage, rate of usage, and confidence level in usage. Factors affecting usage and the relationship between rate of usage and confidence level (Spearman’s rho) were also determined. [Results] The top three responses for the various outcome measures were as follows: (1) hot packs (88%), low frequency stimulators (76%), and ultrasound (68%) for availability; (2) hot packs (72%), ultrasound (61%), and cold packs (59%) for usage; (3) hot packs (75%), cold spray (49%), and ultrasound (44%) for confidence in usage; and (4) equipment availability (80%), past experience (79%), and research evidence (78%) for factors affecting usage. There was a significant positive relationship between confidence and usage for all modalities, except for ultraviolet radiation, iontophoresis, and magnetic field. [Conclusion] Usage was strongly correlated with confidence, with the top three used modalities also being the ones with the highest confidence in usage. PMID:27942126

  10. Certification of Total Arsenic in Blood and Urine Standard Reference Materials by Radiochemical Neutron Activation Analysis and Inductively Coupled Plasma - Mass Spectrometry

    PubMed Central

    Paul, Rick L.; Davis, W. Clay; Yu, Lee; Murphy, Karen E.; Guthrie, William F.; Leber, Dennis D.; Bryan, Colleen E.; Vetter, Thomas W.; Shakirova, Gulchekhra; Mitchell, Graylin; Kyle, David J.; Jarrett, Jeffery M.; Caldwell, Kathleen L.; Jones, Robert L.; Eckdahl, Steven; Wermers, Michelle; Maras, Melissa; Palmer, C. D.; Verostek, M.F.; Geraghty, C. M.; Steuerwald, Amy J.; Parsons, Patrick J.

    2015-01-01

    A newly developed procedure for determination of arsenic by radiochemical neutron activation analysis (RNAA) was used to measure arsenic at four levels in SRM 955c Toxic Elements in Caprine Blood and at two levels in SRM 2668 Toxic Elements in Frozen Human Urine for the purpose of providing mass concentration values for certification. Samples were freeze-dried prior to analysis followed by neutron irradiation for 3 h at a fluence rate of 1×1014cm−2s−1. After sample dissolution in perchloric and nitric acids, arsenic was separated from the matrix by extraction into zinc diethyldithiocarbamate in chloroform, and 76As quantified by gamma-ray spectroscopy. Differences in chemical yield and counting geometry between samples and standards were monitored by measuring the count rate of a 77As tracer added before sample dissolution. RNAA results were combined with inductively coupled plasma – mass spectrometry (ICP-MS) values from NIST and collaborating laboratories to provide certified values of (10.81 ± 0.54) μg/kg and (213.1 ± 0.73) μg/kg for SRM 2668 Levels I and II, and certified values of (21.66 ± 0.73) μg/kg, (52.7 ± 1.1) μg/kg, and (78.8 ± 4.9) μg/kg for SRM 955c Levels 2, 3, and 4 respectively. Because of discrepancies between values obtained by different methods for SRM 955c Level 1, an information value of < 5 μg/kg was assigned for this material. PMID:26300575

  11. Certification of Total Arsenic in Blood and Urine Standard Reference Materials by Radiochemical Neutron Activation Analysis and Inductively Coupled Plasma - Mass Spectrometry.

    PubMed

    Paul, Rick L; Davis, W Clay; Yu, Lee; Murphy, Karen E; Guthrie, William F; Leber, Dennis D; Bryan, Colleen E; Vetter, Thomas W; Shakirova, Gulchekhra; Mitchell, Graylin; Kyle, David J; Jarrett, Jeffery M; Caldwell, Kathleen L; Jones, Robert L; Eckdahl, Steven; Wermers, Michelle; Maras, Melissa; Palmer, C D; Verostek, M F; Geraghty, C M; Steuerwald, Amy J; Parsons, Patrick J

    2014-03-01

    A newly developed procedure for determination of arsenic by radiochemical neutron activation analysis (RNAA) was used to measure arsenic at four levels in SRM 955c Toxic Elements in Caprine Blood and at two levels in SRM 2668 Toxic Elements in Frozen Human Urine for the purpose of providing mass concentration values for certification. Samples were freeze-dried prior to analysis followed by neutron irradiation for 3 h at a fluence rate of 1×10(14)cm(-2)s(-1). After sample dissolution in perchloric and nitric acids, arsenic was separated from the matrix by extraction into zinc diethyldithiocarbamate in chloroform, and (76)As quantified by gamma-ray spectroscopy. Differences in chemical yield and counting geometry between samples and standards were monitored by measuring the count rate of a (77)As tracer added before sample dissolution. RNAA results were combined with inductively coupled plasma - mass spectrometry (ICP-MS) values from NIST and collaborating laboratories to provide certified values of (10.81 ± 0.54) μg/kg and (213.1 ± 0.73) μg/kg for SRM 2668 Levels I and II, and certified values of (21.66 ± 0.73) μg/kg, (52.7 ± 1.1) μg/kg, and (78.8 ± 4.9) μg/kg for SRM 955c Levels 2, 3, and 4 respectively. Because of discrepancies between values obtained by different methods for SRM 955c Level 1, an information value of < 5 μg/kg was assigned for this material.

  12. Optimized microwave-assisted decomposition method for multi-element analysis of glass standard reference material and ancient glass specimens by inductively coupled plasma atomic emission spectrometry.

    PubMed

    Zachariadis, G; Dimitrakoudi, E; Anthemidis, A; Stratis, J

    2006-02-28

    A novel microwave-assisted wet-acid decomposition method for the multi-element analysis of glass samples using inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed and optimized. The SRM 621 standard reference glass material was used for this purpose, because it has similar composition with either archaeological glass specimens or common modern glasses. For the main constituents of SRM 621 (Ca, Na, Al, Fe, Mg, Ba and Ti), quality control data are given for all the examined procedures. The chemical and instrumental parameters of the method were thoroughly optimized. Thirteen acid mixtures of hydrochloric, nitric, and hydrofluoric acids in relation to two different microwave programs were examined in order to establish the most efficient protocol for the determination of metals in glass matrix. For both microwave programs, an intermediate step was employed with addition of H(3)BO(3) in order to compensate the effect of HF, which was used in all protocols. The suitability of the investigated protocols was evaluated for major (Ca, Na, Al), and minor (Fe, Mg, Ba, Ti, Mn, Cu, Sb, Co, Pb) glass constituents. The analytes were determined using multi-element matrix matched standard solutions. The analytical data matrix was processed chemometrically in order to evaluate the examined protocols in terms of their accuracy, precision and sensitivity, and eventually select the most efficient method for ancient glass. ICP-AES parameters such as spectral line, RF power and sample flow rate were optimized using the proposed protocol. Finally, the optimum method was successfully applied to the analysis of a number of ancient glass fragments.

  13. A Structural Equation Model for ICT Usage in Higher Education

    ERIC Educational Resources Information Center

    Usluel, Yasemin Kocak; Askar, Petek; Bas, Turgay

    2008-01-01

    This study focuses on Information and Communication Technologies (ICT) usage, which is the indicator of diffusion. A model composed of the variables which can explain ICT usage in Turkish higher education is established and tested within the study. The two dimensions of ICT usage are considered: instructional and managerial. The data collected…

  14. 47 CFR 22.907 - Coordination of channel usage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Coordination of channel usage. 22.907 Section... MOBILE SERVICES Cellular Radiotelephone Service § 22.907 Coordination of channel usage. Licensees in the Cellular Radiotelephone Service must coordinate, with the appropriate parties, channel usage at...

  15. 47 CFR 22.907 - Coordination of channel usage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Coordination of channel usage. 22.907 Section... MOBILE SERVICES Cellular Radiotelephone Service § 22.907 Coordination of channel usage. Licensees in the Cellular Radiotelephone Service must coordinate, with the appropriate parties, channel usage at...

  16. Burnout and Humor Usage among Community College Nursing Faculty Members.

    ERIC Educational Resources Information Center

    Talbot, Laura A.

    2000-01-01

    Assesses the correlation of burnout among community college nursing faculty members and their use of humor to mediate academic stress related to burnout. Differences in burnout between high versus low humor usage respondents showed a higher sense of personal accomplishment with high humor usage. Of those with low humor usage, workload was related…

  17. A Structural Equation Model for ICT Usage in Higher Education

    ERIC Educational Resources Information Center

    Usluel, Yasemin Kocak; Askar, Petek; Bas, Turgay

    2008-01-01

    This study focuses on Information and Communication Technologies (ICT) usage, which is the indicator of diffusion. A model composed of the variables which can explain ICT usage in Turkish higher education is established and tested within the study. The two dimensions of ICT usage are considered: instructional and managerial. The data collected…

  18. 50 CFR 600.910 - Definitions and word usage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Definitions and word usage. 600.910..., Consultation, and Recommendations § 600.910 Definitions and word usage. (a) Definitions. In addition to the... undertaken by a state agency. (b) Word usage. The terms “must”, “shall”, “should”, “may”, “may not”,...

  19. 50 CFR 600.910 - Definitions and word usage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Definitions and word usage. 600.910..., Consultation, and Recommendations § 600.910 Definitions and word usage. (a) Definitions. In addition to the... undertaken by a state agency. (b) Word usage. The terms “must”, “shall”, “should”, “may”, “may not”,...

  20. Habitat usage by prairie grouse on the Sheyenne National Grasslands

    Treesearch

    Llewellyn L. Manske; William T. Barker

    1988-01-01

    Prairie grouse habitat usage was observed for six years. Spring and summer habitat usage was primarily in the upland and midland grassland habitat types. Habitat usage shifted during the fall and winter to cropland and associated tree shelterbelts. The switchgrass plant community was the primary concealment cover for nesting and roosting. Cropland and associated tree...

  1. Adolescents' attitudes toward antimarijuana ads, usage intentions, and actual marijuana usage.

    PubMed

    Alvaro, Eusebio M; Crano, William D; Siegel, Jason T; Hohman, Zachary; Johnson, Ian; Nakawaki, Brandon

    2013-12-01

    The association of adolescents' appraisals of the antimarijuana TV ads used in the National Youth Antidrug Media Campaign with future marijuana use was investigated. The 12- to 18-year-old respondents (N = 2,993) were first classified as users, resolute nonusers, or vulnerable nonusers (Crano, Siegel, Alvaro, Lac, & Hemovich, 2008). Usage status and the covariates of gender, age, and attitudes toward marijuana were used to predict attitudes toward the ads (Aad) in the first phase of a multilevel linear analysis. All covariates were significantly associated with Aad, as was usage status: Resolute nonusers evaluated the ads significantly more positively than vulnerable nonusers and users (all ps < .001), who did not differ. In the second phase, the covariates along with Aad and respondents' usage status predicted intentions and actual usage 1 year after initial measurement. The lagged analysis disclosed negative associations between Aad and usage intentions and between Aad and actual marijuana use (both ps < .05); however, this association held only for users (p < .01), not vulnerable or resolute nonusers. Users who reported more positive attitudes toward the ads were less likely to report intention to use marijuana and to continue marijuana use at 1-year follow-up. These findings may inform designers of persuasion-based prevention campaigns, guiding preimplementation efforts in the design of ads that targeted groups find appealing and thus, influential. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  2. Adolescents’ Attitudes toward Anti-marijuana Ads, Usage Intentions, and Actual Marijuana Usage

    PubMed Central

    Alvaro, Eusebio M.; Crano, William D.; Siegel, Jason T.; Hohman, Zachary; Johnson, Ian; Nakawaki, Brandon

    2015-01-01

    The association of adolescents’ appraisals of the anti-marijuana television ads used in the National Youth Anti-drug Media Campaign with future marijuana use was investigated. The 12 to 18 year old respondents (N = 2993) were first classified as users, resolute nonusers, or vulnerable nonusers (Crano, Siegel, Alvaro, Lac, & Hemovich, 2008). Usage status and the covariates of gender, age, and attitudes toward marijuana were used to predict attitudes toward the ads (Aad) in the first phase of a multi-level linear analysis. All covariates were significantly associated with Aad, as was usage status: resolute nonusers evaluated the ads significantly more positively than vulnerable nonusers and users (all p < .001), who did not differ. In the second phase, the covariates along with Aad and respondents’ usage status predicted intentions and actual usage one year after initial measurement. The lagged analysis disclosed negative associations between Aad and usage intentions, and between Aad and actual marijuana use (both p < .05); however, this association held only for users (p < .01), not vulnerable or resolute nonusers. Users reporting more positive attitudes towards the ads were less likely to report intention to use marijuana and to continue marijuana use at 1-year follow-up. These findings may inform designers of persuasion-based prevention campaigns, guiding pre-implementation efforts in the design of ads that targeted groups find appealing and thus, influential. PMID:23528197

  3. Tubular Coupling

    NASA Technical Reports Server (NTRS)

    Rosenbaum, Bernard J. (Inventor)

    2000-01-01

    A system for coupling a vascular overflow graft or cannula to a heart pump. A pump pipe outlet is provided with an external tapered surface which receives the end of a compressible connula. An annular compression ring with a tapered internal bore surface is arranged about the cannula with the tapered internal surface in a facing relationship to the external tapered surface. The angle of inclination of the tapered surfaces is converging such that the spacing between the tapered surfaces decreases from one end of the external tapered surface to the other end thereby providing a clamping action of the tapered surface on a cannula which increases as a function of the length of cannula segment between the tapered surfaces. The annular compression ring is disposed within a tubular locking nut which threadedly couples to the pump and provides a compression force for urging the annular ring onto the cannula between the tapered surfaces. The nut has a threaded connection to the pump body. The threaded coupling to the pump body provides a compression force for the annular ring. The annular ring has an annular enclosure space in which excess cannula material from the compression between the tapered surfaces to "bunch up" in the space and serve as an enlarged annular ring segment to assist holding the cannula in place. The clamped cannula provides a seamless joint connection to the pump pipe outlet where the clamping force is uniformly applied to the cannula because of self alignment of the tapered surfaces. The nut can be easily disconnected to replace the pump if necessary.

  4. Nomophobia: A Cross-sectional Study to Assess Mobile Phone Usage Among Dental Students

    PubMed Central

    Patthi, Basavaraj; Singla, Ashish; Gupta, Ritu; Saha, Sabyasachi; Kumar, Jishnu Krishna; Malhi, Ravneet; Pandita, Venisha

    2017-01-01

    Introduction Mobile phones were originally seen as a gadget for communication but currently, the internet enabled mobile phones have become an integral part of our daily life. Their benefits are incomparable but at the same time, they have some negative effects too. Aim To assess the pattern of usage of mobile phones and its effects on the academic performance of students. Materials and Methods A descriptive cross-sectional study was conducted amongst 554 students of D. J. College of Dental Sciences and Research through a self-administered questionnaire to collect the data regarding the usage and associated anxiety with mobile phone. Results About 39.5% students agreed that they score low marks in professional exams if they spend more time on phone. The number of students who frequently checked their cell phone during their classes or while doing clinical work were 24.7% . A total of 24.12% of the students were found to be nomophobic and at risk of being nomophobes were 40.97%. A statistically significant difference was found among preclinical, clinical, interns and postgraduates regarding the usage and effect of mobile phone on them. Conclusion The pattern of usage of mobile phone among dental students showed alarming indication that students have been addicted to mobile phone which in turn affect their academic performance in a negative way. It would be useful to advise the students about the controlled as well as proper usage of mobile phone. PMID:28384977

  5. Quantum Dots — Characterization, Preparation and Usage in Biological Systems

    PubMed Central

    Drbohlavova, Jana; Adam, Vojtech; Kizek, Rene; Hubalek, Jaromir

    2009-01-01

    The use of fluorescent nanoparticles as probes for bioanalytical applications is a highly promising technique because fluorescence-based techniques are very sensitive. Quantum dots (QDs) seem to show the greatest promise as labels for tagging and imaging in biological systems owing to their impressive photostability, which allow long-term observations of biomolecules. The usage of QDs in practical applications has started only recently, therefore, the research on QDs is extremely important in order to provide safe and effective biosensing materials for medicine. This review reports on the recent methods for the preparation of quantum dots, their physical and chemical properties, surface modification as well as on some interesting examples of their experimental use. PMID:19333427

  6. Maternal control strategies, maternal language usage and children's language usage at two years.

    PubMed

    Taylor, Nicole; Donovan, Wilberta; Miles, Sally; Leavitt, Lewis

    2009-03-01

    The present study determined whether parenting style, defined by control strategies varying in power-assertion mediated the established relation between maternal language usage (grammar and semantics) and child language (grammar, semantics and pragmatics) during toddlerhood (n=60). Based upon their use of control strategies mothers were categorized into continuum-of-control groups (i.e., high guidance (HG), high control (HC) or high negative control (HNC)). Mothers in the high negative control group, who characteristically used high levels of prohibitions and commands, had children who performed relatively poorly overall on the language measures (i.e., MLU, number of bound morphemes, number of different words and use of language functions). In contrast, children of mothers in the HG and HC groups exhibited more advanced language usage overall. The relation between maternal and child language usage was mediated by parenting style for child pragmatics and partially for child grammar.

  7. Profiles of the Users and Usages of Afro-American Literature: A Unification of Communications and Library Research Strategies

    ERIC Educational Resources Information Center

    Cassata, Mary B.

    1978-01-01

    This article describes the various levels of users of Afro-American materials, the usage they make of these materials, some of the effects and gratifications derived from the study of Afro-American literature, and the physical and psychological barriers that interfere with the utilization of these resources. (Author/AM)

  8. An assessment of worldwide supercomputer usage

    SciTech Connect

    Wasserman, H.J.; Simmons, M.L.; Hayes, A.H.

    1995-01-01

    This report provides a comparative study of advanced supercomputing usage in Japan and the United States as of Spring 1994. It is based on the findings of a group of US scientists whose careers have centered on programming, evaluating, and designing high-performance supercomputers for over ten years. The report is a follow-on to an assessment of supercomputing technology in Europe and Japan that was published in 1993. Whereas the previous study focused on supercomputer manufacturing capabilities, the primary focus of the current work was to compare where and how supercomputers are used. Research for this report was conducted through both literature studies and field research in Japan.

  9. Tattoo inks in general usage contain nanoparticles.

    PubMed

    Høgsberg, T; Loeschner, K; Löf, D; Serup, J

    2011-12-01

    To our knowledge tattooing has never been thought of as a method of introducing nanoparticles (NPs) into the human body by the intradermal route, and as such it has never been a topic of research in nanotoxicology. The content of NPs in tattoo inks is unknown. To classify the particle sizes in tattoo inks in general usage. The particle size was measured by laser diffraction, electron microscopy and X-ray diffraction. The size of the pigments could be divided into three main classes. The black pigments were the smallest, the white pigments the largest and the coloured pigments had a size in between the two. The vast majority of the tested tattoo inks contained significant amounts of NPs except for the white pigments. The black pigments were almost pure NPs, i.e. particles with at least one dimension <100 nm. The finding of NPs in tattoo inks in general usage is new and may contribute to the understanding of tattoo ink kinetics. How the body responds to NP tattoo pigments should be examined further. © 2011 The Authors. BJD © 2011 British Association of Dermatologists.

  10. Deriving Framework Usages Based on Behavioral Models

    NASA Astrophysics Data System (ADS)

    Zenmyo, Teruyoshi; Kobayashi, Takashi; Saeki, Motoshi

    One of the critical issue in framework-based software development is a huge introduction cost caused by technical gap between developers and users of frameworks. This paper proposes a technique for deriving framework usages to implement a given requirements specification. By using the derived usages, the users can use the frameworks without understanding the framework in detail. Requirements specifications which describe definite behavioral requirements cannot be related to frameworks in as-is since the frameworks do not have definite control structure so that the users can customize them to suit given requirements specifications. To cope with this issue, a new technique based on satisfiability problems (SAT) is employed to derive the control structures of the framework model. In the proposed technique, requirements specifications and frameworks are modeled based on Labeled Transition Systems (LTSs) with branch conditions represented by predicates. Truth assignments of the branch conditions in the framework models are not given initially for representing the customizable control structure. The derivation of truth assignments of the branch conditions is regarded as the SAT by assuming relations between termination states of the requirements specification model and ones of the framework model. This derivation technique is incorporated into a technique we have proposed previously for relating actions of requirements specifications to ones of frameworks. Furthermore, this paper discuss a case study of typical use cases in e-commerce systems.

  11. Usage analysis of user files in UNIX

    NASA Technical Reports Server (NTRS)

    Devarakonda, Murthy V.; Iyer, Ravishankar K.

    1987-01-01

    Presented is a user-oriented analysis of short term file usage in a 4.2 BSD UNIX environment. The key aspect of this analysis is a characterization of users and files, which is a departure from the traditional approach of analyzing file references. Two characterization measures are employed: accesses-per-byte (combining fraction of a file referenced and number of references) and file size. This new approach is shown to distinguish differences in files as well as users, which cam be used in efficient file system design, and in creating realistic test workloads for simulations. A multi-stage gamma distribution is shown to closely model the file usage measures. Even though overall file sharing is small, some files belonging to a bulletin board system are accessed by many users, simultaneously and otherwise. Over 50% of users referenced files owned by other users, and over 80% of all files were involved in such references. Based on the differences in files and users, suggestions to improve the system performance were also made.

  12. Problematic Internet Usage and Immune Function

    PubMed Central

    Reed, Phil; Vile, Rebecca; Osborne, Lisa A.; Romano, Michela; Truzoli, Roberto

    2015-01-01

    Problematic internet use has been associated with a variety of psychological comorbidities, but it relationship with physical illness has not received the same degree of investigation. The current study surveyed 505 participants online, and asked about their levels of problematic internet usage (Internet Addiction Test), depression and anxiety (Hospital Anxiety and Depression Scales), social isolation (UCLA Loneliness Questionnaire), sleep problems (Pittsburgh Sleep Quality Index), and their current health – General Health Questionnaire (GHQ-28), and the Immune Function Questionnaire. The results demonstrated that around 30% of the sample displayed mild or worse levels of internet addiction, as measured by the IAT. Although there were differences in the purposes for which males and females used the internet, there were no differences in terms of levels of problematic usage between genders. The internet problems were strongly related to all of the other psychological variables such as depression, anxiety, social-isolation, and sleep problems. Internet addiction was also associated with reduced self-reported immune function, but not with the measure of general health (GHQ-28). This relationship between problematic internet use and reduced immune function was found to be independent of the impact of the co-morbidities. It is suggested that the negative relationship between level of problematic internet use and immune function may be mediated by levels of stress produced by such internet use, and subsequent sympathetic nervous activity, which related to immune-supressants, such as cortisol. PMID:26244339

  13. Better Living Through Metadata: Examining Archive Usage

    NASA Astrophysics Data System (ADS)

    Becker, G.; Winkelman, S.; Rots, A.

    2013-10-01

    The primary purpose of an observatory's archive is to provide access to the data through various interfaces. User interactions with the archive are recorded in server logs, which can be used to answer basic questions like: Who has downloaded dataset X? When did she do this? Which tools did she use? The answers to questions like these fill in patterns of data access (e.g., how many times dataset X has been downloaded in the past three years). Analysis of server logs provides metrics of archive usage and provides feedback on interface use which can be used to guide future interface development. The Chandra X-ray Observatory is fortunate in that a database to track data access and downloads has been continuously recording such transactions for years; however, it is overdue for an update. We will detail changes we hope to effect and the differences the changes may make to our usage metadata picture. We plan to gather more information about the geographic location of users without compromising privacy; create improved archive statistics; and track and assess the impact of web “crawlers” and other scripted access methods on the archive. With the improvements to our download tracking we hope to gain a better understanding of the dissemination of Chandra's data; how effectively it is being done; and perhaps discover ideas for new services.

  14. Patterns and costs of printed and online journal usage.

    PubMed

    Obst, Oliver

    2003-03-01

    This study in an academic medical sciences library setting examines the correlation of usage of a matched set of print and online titles, the validity of e-journals usage statistics and the impact of online journals on print journal usage. The print and online usage was determined for 270 journals, both versions of which were available. Print usage was determined annually since 1997 using the reshelving and the error-copies method. Online usage statistics were delivered by five publishers and corrected for redundant multiple accesses. Print journal usage decreased by 22.3 and 30.2% respectively over each of 2 years after the introduction of online journals. Journals published both in print and online lost 30.4% of their print usage within 2 years. The total loss of usage of print-only titles in the same period was somewhat higher, at 45.8%. The average correlation between online and print usage is 0.60 and 0.67 respectively. For the examined titles, users accessed the online versions ten times as often as the print version. Two clearly distinguishable groupings emerged: while with Academic Press and Elsevier, e-journal usage exceeded print usage by a factor of 3 or 4, the e-journals of Blackwell, HighWire and Springer were used on average 14.6 times as frequently as the corresponding print journals. Each usage of a print article cost 2.79-50.82 Euro, each usage of an online article 0.31-15.10 Euro, depending on the publisher. On average, the usage of an online article was 5.4 times cheaper. Within 2-3 years the usage of online journals has outstripped that of print titles by a factor of ten, but the specific spectrum of usage remains much the same as when only print journals alone existed. Print titles not available online suffer a greater decline in usage compared with print/online journals. This confirms that what is read or purchased is determined primarily by ease of access and that there is a steady tendency to reduce the multiplicity of access modes to a

  15. Maternal Control Strategies, Maternal Language Usage and Children's Language Usage at Two Years

    ERIC Educational Resources Information Center

    Taylor, Nicole; Donovan, Wilberta; Miles, Sally; Leavitt, Lewis

    2009-01-01

    The present study determined whether parenting style, defined by control strategies varying in power-assertion mediated the established relation between maternal language usage (grammar and semantics) and child language (grammar, semantics and pragmatics) during toddlerhood (n = 60). Based upon their use of control strategies mothers were…

  16. Maternal Control Strategies, Maternal Language Usage and Children's Language Usage at Two Years

    ERIC Educational Resources Information Center

    Taylor, Nicole; Donovan, Wilberta; Miles, Sally; Leavitt, Lewis

    2009-01-01

    The present study determined whether parenting style, defined by control strategies varying in power-assertion mediated the established relation between maternal language usage (grammar and semantics) and child language (grammar, semantics and pragmatics) during toddlerhood (n = 60). Based upon their use of control strategies mothers were…

  17. A Comparison of English Teachers' Own Usage with Their Attitudes Toward Usage.

    ERIC Educational Resources Information Center

    Johnson, Robert Spencer

    In spoken and written situations which focused the teachers' attentions on information rather than on their language, samples of 100 English teachers' actual language were obtained with respect to five debatable usages: "everybody...their,""reason...is because,""who" as an object pronoun, "will/would" with the first person subject to express…

  18. Analysis of synonymous codon usage patterns in the genus Rhizobium.

    PubMed

    Wang, Xinxin; Wu, Liang; Zhou, Ping; Zhu, Shengfeng; An, Wei; Chen, Yu; Zhao, Lin

    2013-11-01

    The codon usage patterns of rhizobia have received increasing attention. However, little information is available regarding the conserved features of the codon usage patterns in a typical rhizobial genus. The codon usage patterns of six completely sequenced strains belonging to the genus Rhizobium were analysed as model rhizobia in the present study. The relative neutrality plot showed that selection pressure played a role in codon usage in the genus Rhizobium. Spearman's rank correlation analysis combined with correspondence analysis (COA) showed that the codon adaptation index and the effective number of codons (ENC) had strong correlation with the first axis of the COA, which indicated the important role of gene expression level and the ENC in the codon usage patterns in this genus. The relative synonymous codon usage of Cys codons had the strongest correlation with the second axis of the COA. Accordingly, the usage of Cys codons was another important factor that shaped the codon usage patterns in Rhizobium genomes and was a conserved feature of the genus. Moreover, the comparison of codon usage between highly and lowly expressed genes showed that 20 unique preferred codons were shared among Rhizobium genomes, revealing another conserved feature of the genus. This is the first report of the codon usage patterns in the genus Rhizobium.

  19. Nucleotide composition and codon usage bias of SRY gene.

    PubMed

    Choudhury, M N; Uddin, A; Chakraborty, S

    2017-01-26

    The SRY gene is present within the sex-determining region of the Y chromosome which is responsible for maleness in mammals. The nonuniform usage of synonymous codons in the mRNA transcript for encoding a particular amino acid is the codon usage bias (CUB). Analysis of codon usage pattern is important to understand the genetic and molecular organisation of a gene. It also helps in heterologous gene expression, design of primer and synthetic gene. However, the analysis of codon usage bias of SRY gene was not yet studied. We have used bioinformatic tools to analyse codon usage bias of SRY gene across mammals. Codon bias index (CBI) indicated that the overall extent of codon usage bias was weak. The relative synonymous codon usage (RSCU) analysis suggested that most frequently used codons had an A or C at the third codon position. Compositional constraint played an important role in codon usage pattern as evident from correspondence analysis (CA). Significant correlation among nucleotides constraints indicated that both mutation pressure and natural selection affect the codon usage pattern. Neutrality plot suggested that natural selection might play a major role, while mutation pressure might play a minor role in codon usage pattern in SRY gene in different species of mammals.

  20. Comprehensive Nuclear Materials

    SciTech Connect

    Konings, Dr. Rudy J. M.; Allen, Todd R.; Stoller, Roger E; Yamanaka, Prof. Shinsuke

    2012-01-01

    This book encompasses a rich seam of current information on the vast and multidisciplinary field of nuclear materials employed in fission and prototype fusion systems. Discussion includes both historical and contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds leading scientists and engineers. Synthesizes pertinent current science to support the selection, assessment, validation and engineering of materials in extreme nuclear environments. The work discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials.

  1. The exploration & forensic analysis of computer usage data in the elderly.

    PubMed

    Hatt, William J; Vanbaak, Edward A; Jimison, Holly B; Hagler, Stuart; Hayes, Tamara L; Pavel, Misha; Kaye, Jeffery

    2009-01-01

    Unobtrusive in-home computer monitoring could one day be used to deliver cost-effective diagnostic information about the cognitive abilities of the elderly. This could allow for early detection of cognitive impairment and would additionally be coupled with the cost advantages that are associated with a semi-automated system. Before using the computer usage data to draw conclusions about the participants, we first needed to investigate the nature of the data that was collected. This paper represents a forensics style analysis of the computer usage data that is being collected as part of a larger study of cognitive decline, and focuses on the isolation and removal of non user-generated activities that were recorded by our computer monitoring software (CMS).

  2. Usage Of Polyacetal Powders As Laser Ablation Propulsion Propellants

    SciTech Connect

    Sasoh, Akihiro; Ogita, Naoya; Sinko, John E.

    2010-05-06

    We examined impulse characteristics of polyoxymeythylene (POM) powders under irradiation by a TEA (Transversely-Excited at Atmospheric pressure)CO{sub 2} laser pulse. The impulse performance exhibited large scatter due to splashing particles. When the powder was hydraulically compacted to form a disk, the momentum coupling coefficient became comparable with that for bulk material, but the mass consumption was increased by several times.

  3. Usage-Oriented Topic Maps Building Approach

    NASA Astrophysics Data System (ADS)

    Ellouze, Nebrasse; Lammari, Nadira; Métais, Elisabeth; Ben Ahmed, Mohamed

    In this paper, we present a collaborative and incremental construction approach of multilingual Topic Maps based on enrichment and merging techniques. In recent years, several Topic Map building approaches have been proposed endowed with different characteristics. Generally, they are dedicated to particular data types like text, semi-structured data, relational data, etc. We note also that most of these approaches take as input monolingual documents to build the Topic Map. The problem is that the large majority of resources available today are written in various languages, and these resources could be relevant even to non-native speakers. Thus, our work is driven towards a collaborative and incremental method for Topic Map construction from textual documents available in different languages. To enrich the Topic Map, we take as input a domain thesaurus and we propose also to explore the Topic Map usage which means available potential questions related to the source documents.

  4. EMR continuance usage intention of healthcare professionals.

    PubMed

    Sayyah Gilani, Mina; Iranmanesh, Mohammad; Nikbin, Davoud; Zailani, Suhaiza

    2017-03-01

    Electronic medical records (EMRs) have been proven to be effective tools for improving the safety and quality of healthcare despite their relatively low usage rate in hospitals. The long-term development by EMRs depends on the continued use of healthcare professionals. In this study, technology continuance theory (TCT) was used to evaluate the short-term and long-term continuance acceptance of EMRs among healthcare professionals. Data were gathered by surveying 195 medical professionals in Iran. The data were analyzed using the partial least squares (PLS) technique. The analysis showed that the TCT provided a deep understanding of user continuance intention toward EMRs. In addition, the findings illustrated that the determinants of continuance intention vary between short-term and long-term users. The theoretical and practical implications of the study are discussed.

  5. Optimal Repellent Usage to Combat Dengue Fever.

    PubMed

    Dorsett, Chasity; Oh, Hyunju; Paulemond, Marie Laura; Rychtář, Jan

    2016-05-01

    Dengue fever is one of the most important vector-borne diseases. It is transmitted by Aedes Stegomyia aegypti, and one of the most effective strategies to combat the disease is the reduction of exposure to bites of these mosquitoes. In this paper, we present a game-theoretical model in which individuals choose their own level of protection against mosquito bites in order to maximize their own benefits, effectively balancing the cost of protection and the risk of contracting the dengue fever. We find that even when the usage of protection is strictly voluntary, as soon as the cost of protection is about 10,000 times less than the cost of contracting dengue fever, the optimal level of protection will be within 5 % of the level needed for herd immunity.

  6. Eye cosmetic usage and associated ocular comfort.

    PubMed

    Ng, Alison; Evans, Katharine; North, Rachel; Purslow, Christine

    2012-11-01

    Eye cosmetics usage is commonplace and whilst some products such as eyeliner are applied with close proximity to the ocular surface, there is little knowledge of the short- and long-term ocular effects of eye cosmetic formulations. This study aimed to investigate the use of eye cosmetics and identify any relationships between ocular comfort and cosmetic usage. Results were collated from an online survey comprising 23 questions that recorded demographics, Ocular Surface Disease Index (OSDI) score, extent and range of eye cosmetic use and perceived comfort differences with and without eye cosmetics. The 1360 female respondents (median age 25, interquartile range 20-34 years) completed the survey; 83% reported using eye cosmetics regularly (≥ 3 times per week) with mascara being most commonly used. Fifty three per cent used at least three different eye cosmetics products regularly. OSDI scores of cosmetics users were similar to non-users (p = 0.083), but perceived comfort was greater when cosmetics were not used (p < 0.001). In occasional cosmetics users (use of products < 3 times per week), 65% reported a reduction in comfort when cosmetics were used. Median OSDI scores suggested a trend towards reduced comfort amongst eyeliner users (p = 0.07) although frequency and type of cosmetic products used did not appear to influence OSDI scores. This study shows the use of multiple eye cosmetics is extensive and associated with the perception of ocular discomfort. With such widespread use of these products, more research is required to assess the effect on the ocular surface and tear film, which may be underestimated. Ophthalmic & Physiological Optics © 2012 The College of Optometrists.

  7. Health-related behaviors and technology usage among college students.

    PubMed

    Melton, Bridget F; Bigham, Lauren E; Bland, Helen W; Bird, Matthew; Fairman, Ciaran

    2014-07-01

    To examine associations between technology usage and specific health factors among college students. The research employed was a quantitative, descriptive, cross-sectional design; undergraduate students enrolled in spring 2012 general health education courses were recruited to participate. To explore college students' specific technology usage and health-related behaviors, a 28-item questionnaire was utilized. Statistical significant differences of technology usage were found between 3 of the 4 health-related behaviors under study (BMI, sleep, and nutrition) (p < .05). As technology usage continues to evolve within the college student population, health professionals need to understand its implications on health behaviors.

  8. Effects of smell loss (hyposmia) on salt usage.

    PubMed

    Henkin, Robert I

    2014-06-01

    Smell loss (hyposmia) inhibits flavor perception and influences food intake. To compensate for flavor loss, some patients with hyposmia appear to increase salt usage. The purpose of this study was to compare self-reported salt usage in patients with hyposmia with that in normal volunteers. Salt usage was compared in 56 patients with hyposmia but with normal taste function with that in 27 normal volunteers. Salt usage was formulated with respect to 1) a standard quantitative salt intake scale, 2) salt addition related to food intake, 3) intake of foods and beverages with high salt content, and 4) salt intake related to presence or absence of hypertension. Eighteen (32%) of the 56 patients self-reported increased salt usage; they were labeled "increased users." The other 38 hyposmic patients (68%) did not report increased salt usage; they were labeled "non-changers." Increased users estimated their salt usage rose an average 2.8 times that experienced before their hyposmia onset. They also reported adding salt to their food before tasting it and ate more highly salted foods than did the non-changers. Salt usage was not increased further among increased users with hypertension but was increased further among non-changers with hypertension. Salt usage is increased among some patients with hyposmia presumably to enhance flavor perception to compensate for diminished flavor perception related to loss of smell. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Effect of service usage on tensile, fatigue, and fracture properties of 7075-T6 and 7178-T6 aluminum alloys

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.

    1975-01-01

    A study has been made to determine the effects of extensive service usage on some basic material properties of 7075-T6 and 7178-T6 aluminum alloy materials. The effects of service usage were determined by comparing material properties for new material (generally obtained from the literature) with those for material cut from the center wing box of a C-130B transport airplane with 6385 flight-hours of service. The properties investigated were notched and unnotched fatigue strengths, fatigue-crack-growth rate, fracture toughness, and tensile properties. For the properties investigated and the parameter ranges considered (crack length, stress ratio, etc.), the results obtained showed no significant difference between service and new materials.

  10. Stable optical oxygen sensing materials based on click-coupling of fluorinated platinum(II) and palladium(II) porphyrins—A convenient way to eliminate dye migration and leaching

    PubMed Central

    Koren, Klaus; Borisov, Sergey M.; Klimant, Ingo

    2012-01-01

    Nucleophilic substitution of the labile para-fluorine atoms of 2,3,4,5,6-pentafluorophenyl groups enables a click-based covalent linkage of an oxygen indicator (platinum(II) or palladium(II) 5,10,15,20-meso-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin) to the sensor matrix. Copolymers of styrene and pentafluorostyrene are chosen as polymeric materials. Depending on the reaction conditions either soluble sensor materials or cross-linked microparticles are obtained. Additionally, we prepared Ormosil-based sensors with linked indicator, which showed very high sensitivity toward oxygen. The effect of covalent coupling on sensor characteristics, stability and photophysical properties is studied. It is demonstrated that leaching and migration of the dye are eliminated in the new materials but excellent photophysical properties of the indicators are preserved. PMID:23576845

  11. File Usage Analysis and Resource Usage Prediction: a Measurement-Based Study. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Devarakonda, Murthy V.-S.

    1987-01-01

    A probabilistic scheme was developed to predict process resource usage in UNIX. Given the identity of the program being run, the scheme predicts CPU time, file I/O, and memory requirements of a process at the beginning of its life. The scheme uses a state-transition model of the program's resource usage in its past executions for prediction. The states of the model are the resource regions obtained from an off-line cluster analysis of processes run on the system. The proposed method is shown to work on data collected from a VAX 11/780 running 4.3 BSD UNIX. The results show that the predicted values correlate well with the actual. The coefficient of correlation between the predicted and actual values of CPU time is 0.84. Errors in prediction are mostly small. Some 82% of errors in CPU time prediction are less than 0.5 standard deviations of process CPU time.

  12. Stone-tool usage by Thai long-tailed macaques (Macaca fascicularis).

    PubMed

    Malaivijitnond, Suchinda; Lekprayoon, Chariya; Tandavanittj, Nontivich; Panha, Somsak; Cheewatham, Cheewapap; Hamada, Yuzuru

    2007-02-01

    In January and March of 2005, we conducted surveys of long-tailed macaques at Piak Nam Yai Island, Laem Son National Park (9 degrees N 34-35', 98 degrees E 28'), Ranong Province, situated in southern Thailand. Two of the three troops of long-tailed macaques found on the island were observed using axe-shaped stones to crack rock oysters, detached gastropods (Thais tissoti, Petit, 1852), bivalves (Gafrarium divaricatum, Gmelin, 1791), and swimming crabs (Thalamita danae, Stimpson, 1858). They smashed the shells with stones that were held in either the left or right hand, while using the opposite hand to gather the oyster meat. Some monkeys used both hands to handle the stones. According to Matsuzawa's 1996 hierarchical classification of tool usage (levels 0-3), the tool usage by Thai long-tailed macaques could be characterized as either level 1 (cracking rock oysters with stones) or level 2 (cracking drifting mollusks and crabs with stones by placing them on a rock). Our discovery of stone-tool usage by Thai long-tailed macaques provides a new point of reference for discussions regarding the evolution of tool usage and the material culture of primates.

  13. Describing Speech Usage in Daily Activities in Typical Adults.

    PubMed

    Anderson, Laine; Baylor, Carolyn R; Eadie, Tanya L; Yorkston, Kathryn M

    2016-01-01

    "Speech usage" refers to what people want or need to do with their speech to meet communication demands in life roles. The purpose of this study was to contribute to validation of the Levels of Speech Usage scale by providing descriptive data from a sample of adults without communication disorders, comparing this scale to a published Occupational Voice Demands scale and examining predictors of speech usage levels. This is a survey design. Adults aged ≥25 years without reported communication disorders were recruited nationally to complete an online questionnaire. The questionnaire included the Levels of Speech Usage scale, questions about relevant occupational and nonoccupational activities (eg, socializing, hobbies, childcare, and so forth), and demographic information. Participants were also categorized according to Koufman and Isaacson occupational voice demands scale. A total of 276 participants completed the questionnaires. People who worked for pay tended to report higher levels of speech usage than those who do not work for pay. Regression analyses showed employment to be the major contributor to speech usage; however, considerable variance left unaccounted for suggests that determinants of speech usage and the relationship between speech usage, employment, and other life activities are not yet fully defined. The Levels of Speech Usage may be a viable instrument to systematically rate speech usage because it captures both occupational and nonoccupational speech demands. These data from a sample of typical adults may provide a reference to help in interpreting the impact of communication disorders on speech usage patterns. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. Determination of tungsten in geochemical reference material basalt Columbia River 2 by radiochemical neutron activation analysis and inductively coupled plasma mass spectrometry

    SciTech Connect

    Morrison, Samuel S.; Beck, Chelsie L.; Bowen, James M.; Eggemeyer, Tere A.; Hines, C. Corey; Leizers, Martin; Metz, Lori A.; Morley, Shannon M.; Restis, Kaitlyn R.; Snow, Mathew S.; Wall, Donald E.; Clark, Sue B.; Seiner, Brienne N.

    2016-10-06

    Environmental tungsten (W) analyses are inhibited by a lack of reference materials and practical methods to remove isobaric and radiometric interferences. We present a method that evaluates the potential use of commercially available sediment, Basalt Columbia River-2 (BCR-2), as a reference material using neutron activation analysis (NAA) and mass spectrometry. Tungsten concentrations using both methods are in statistical agreement at the 95% confidence interval (92 ± 4 ng/g for NAA and 100 ±7 ng/g for mass spectrometry) with recoveries greater than 95%. These results indicate that BCR-2 may be suitable as a reference material for future studies.

  15. Usage of Alternative, Environmentally Acceptable Materials—Experience from Eastern Croatia

    NASA Astrophysics Data System (ADS)

    Barišić, I.; Zagvozda, M.; Dimter, S.

    2015-11-01

    The concept of sustainability should be the main guiding principle in the construction industry today. It mandates conservation of natural resources and thus lower impact on the environment. In road construction, part of construction industry that consumes largest quantities of natural materials, sustainable building and maintenance of roads is possible trough application of secondary materials. Usage of industrial and construction waste presents energy, ecologically and financially effective alternative. Republic of Croatia, even as a new member of the European Union, still lags behind the well-established practices of the application of alternative materials in different European countries. The reasons for this can be found in the current legal and technical regulations for alternative materials. In this paper, the existing regulations for alternative materials and the impact they have on the application of these materials in practice in the region of eastern Croatia will be shown.

  16. Web-based pathology practice examination usage

    PubMed Central

    Klatt, Edward C.

    2014-01-01

    Context: General and subject specific practice examinations for students in health sciences studying pathology were placed onto a free public internet web site entitled web path and were accessed four clicks from the home web site menu. Subjects and Methods: Multiple choice questions were coded into. html files with JavaScript functions for web browser viewing in a timed format. A Perl programming language script with common gateway interface for web page forms scored examinations and placed results into a log file on an internet computer server. The four general review examinations of 30 questions each could be completed in up to 30 min. The 17 subject specific examinations of 10 questions each with accompanying images could be completed in up to 15 min each. The results of scores and user educational field of study from log files were compiled from June 2006 to January 2014. Results: The four general review examinations had 31,639 accesses with completion of all questions, for a completion rate of 54% and average score of 75%. A score of 100% was achieved by 7% of users, ≥90% by 21%, and ≥50% score by 95% of users. In top to bottom web page menu order, review examination usage was 44%, 24%, 17%, and 15% of all accessions. The 17 subject specific examinations had 103,028 completions, with completion rate 73% and average score 74%. Scoring at 100% was 20% overall, ≥90% by 37%, and ≥50% score by 90% of users. The first three menu items on the web page accounted for 12.6%, 10.0%, and 8.2% of all completions, and the bottom three accounted for no more than 2.2% each. Conclusions: Completion rates were higher for shorter 10 questions subject examinations. Users identifying themselves as MD/DO scored higher than other users, averaging 75%. Usage was higher for examinations at the top of the web page menu. Scores achieved suggest that a cohort of serious users fully completing the examinations had sufficient preparation to use them to support their pathology

  17. Modeling Preservice Teachers' TPACK Competencies Based on ICT Usage

    ERIC Educational Resources Information Center

    Yurdakul, I. Kabakci; Coklar, A. N.

    2014-01-01

    The purpose of this study was to build a model that predicts the relationships between the Technological Pedagogical Content Knowledge (TPACK) competencies and information and communication technology (ICT) usages. Research data were collected from 3105 Turkish preservice teachers. The TPACK-Deep Scale, ICT usage phase survey and the ICT usage…

  18. Benchmarking Usage Statistics in Collection Management Decisions for Serials

    ERIC Educational Resources Information Center

    Tucker, Cory

    2009-01-01

    Usage statistics are an important metric for making decisions on serials. Although the University of Nevada, Las Vegas (UNLV) Libraries have been collecting usage statistics, the statistics had not frequently been used to make decisions and had not been included in collection development policy. After undergoing a collection assessment, the…

  19. Effects of Different Metaphor Usage on Hypertext Learning

    ERIC Educational Resources Information Center

    Merdivan, Ece; Ozdener, Nesrin

    2011-01-01

    There are many studies that offer different opinions on the effects of hypertext usage as an educational tool. Given the differences of opinion, it is useful to research the effects of metaphor usage in hypertext education and the use of hypertext as an educational tool. In this study, the effects of metaphors' uses in constructing the…

  20. Benchmarking Usage Statistics in Collection Management Decisions for Serials

    ERIC Educational Resources Information Center

    Tucker, Cory

    2009-01-01

    Usage statistics are an important metric for making decisions on serials. Although the University of Nevada, Las Vegas (UNLV) Libraries have been collecting usage statistics, the statistics had not frequently been used to make decisions and had not been included in collection development policy. After undergoing a collection assessment, the…

  1. Journal Usage at Department and Research Group Level

    ERIC Educational Resources Information Center

    McCullough, Ian

    2016-01-01

    Journal usage in the Department of Polymer Science at the University of Akron from 2006 to 2011 was determined by counting citations within faculty-supervised dissertations and faculty publications. Ranked title lists were created and correlations between journal usage in faculty publications and faculty-supervised dissertations were measured…

  2. A Factor Analytic Study of the Internet Usage Scale

    ERIC Educational Resources Information Center

    Monetti, David M.; Whatley, Mark A.; Hinkle, Kerry T.; Cunningham, Kerry T.; Breneiser, Jennifer E.; Kisling, Rhea

    2011-01-01

    This study developed an Internet Usage Scale (IUS) for use with adolescent populations. The IUS is a 26-item scale that measures participants' beliefs about how their Internet usage impacts their behavior. The sample for this study consisted of 947 middle school students. An exploratory factor analysis with varimax rotation was conducted on the…

  3. Dual Accelerometer Usage Strategy for Onboard Space Navigation

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; D'Souza, Chris

    2012-01-01

    This work introduces a dual accelerometer usage strategy for onboard space navigation. In the proposed algorithm the accelerometer is used to propagate the state when its value exceeds a threshold and it is used to estimate its errors otherwise. Numerical examples and comparison to other accelerometer usage schemes are presented to validate the proposed approach.

  4. Effects of Different Metaphor Usage on Hypertext Learning

    ERIC Educational Resources Information Center

    Merdivan, Ece; Ozdener, Nesrin

    2011-01-01

    There are many studies that offer different opinions on the effects of hypertext usage as an educational tool. Given the differences of opinion, it is useful to research the effects of metaphor usage in hypertext education and the use of hypertext as an educational tool. In this study, the effects of metaphors' uses in constructing the…

  5. Faculty Usage of Library Tools in a Learning Management System

    ERIC Educational Resources Information Center

    Leeder, Chris; Lonn, Steven

    2014-01-01

    To better understand faculty attitudes and practices regarding usage of library-specific tools and roles in a university learning management system, log data for a period of three semesters was analyzed. Academic departments with highest rates of usage were identified, and faculty users and nonusers within those departments were surveyed regarding…

  6. Usage: Or Back to Basics: An Old Saw Resharpened.

    ERIC Educational Resources Information Center

    Stalker, James C.

    As an emotional topic, concern with acceptable usage of language has never been far from the public consciousness, but the public's willingness to abide by educators' views on the necessity of teaching usage rules has varied over the years. The situation we face is not a new one--the eighteenth century saw the initial widespread concern with…

  7. Journal Usage at Department and Research Group Level

    ERIC Educational Resources Information Center

    McCullough, Ian

    2016-01-01

    Journal usage in the Department of Polymer Science at the University of Akron from 2006 to 2011 was determined by counting citations within faculty-supervised dissertations and faculty publications. Ranked title lists were created and correlations between journal usage in faculty publications and faculty-supervised dissertations were measured…

  8. What Is the next Trend in Usage Statistics in Libraries?

    ERIC Educational Resources Information Center

    King, Douglas

    2009-01-01

    In answering the question "What is the next trend in usage statistics in libraries?" an eclectic group of respondents has presented an assortment of possibilities, suggestions, complaints and, of course, questions of their own. Undoubtedly, usage statistics collection, interpretation, and application are areas of growth and increasing complexity…

  9. An Exploratory Study of Internet Addiction, Usage and Communication Pleasure.

    ERIC Educational Resources Information Center

    Chou, Chien; Chou, Jung; Tyan, Nay-Ching Nancy

    This study examined the correlation between Internet addiction, usage, and communication pleasure. Research questions were: (1) What is computer network addiction? (2) How can one measure the degree of computer network addiction? (3) What is the correlation between the degree of users' network addiction and their network usage? (4) What is the…

  10. The Relationship between Teacher's Technology Integration Ability and Usage

    ERIC Educational Resources Information Center

    Hsu, Shihkuan

    2010-01-01

    Despite a steady supply of equipment and continuous training, teachers' use of computers for instruction seems to be limited. Whether the problem is due to teachers' ability or usage of computers for instruction is not well understood. In order to better understand the role of ability and usage in technology integration, teachers' proficiency of…

  11. Reviewing and Critiquing Computer Learning and Usage among Older Adults

    ERIC Educational Resources Information Center

    Kim, Young Sek

    2008-01-01

    By searching the keywords of "older adult" and "computer" in ERIC, Academic Search Premier, and PsycINFO, this study reviewed 70 studies published after 1990 that address older adults' computer learning and usage. This study revealed 5 prominent themes among reviewed literature: (a) motivations and barriers of older adults' usage of computers, (b)…

  12. What should we measure? Conceptualizing usage in health information exchange

    PubMed Central

    Jasperson, Jon

    2010-01-01

    Under the provisions of the Health Information Technology for Economic & Clinical Health act providers need to demonstrate their ‘meaningful use’ of electronic health record systems' health information exchange (HIE) capability. HIE usage is not a simple construct, but the choice of its measurement must attend to the users, context, and objectives of the system being examined. This review examined how usage is reported in the existing literature and also what conceptualizations of usage might best reflect the nature and objectives of HIE. While existing literature on HIE usage included a diverse set of measures, most were theoretically weak, did not attend to the interplay of measure, level of analysis and architectural strategy, and did not reflect how HIE usage affected the actual process of care. Attention to these issues will provide greater insight into the effects of previously inaccessible information on medical decision-making and the process of care. PMID:20442148

  13. What should we measure? Conceptualizing usage in health information exchange.

    PubMed

    Vest, Joshua R; Jasperson, Jon

    2010-01-01

    Under the provisions of the Health Information Technology for Economic & Clinical Health act providers need to demonstrate their 'meaningful use' of electronic health record systems' health information exchange (HIE) capability. HIE usage is not a simple construct, but the choice of its measurement must attend to the users, context, and objectives of the system being examined. This review examined how usage is reported in the existing literature and also what conceptualizations of usage might best reflect the nature and objectives of HIE. While existing literature on HIE usage included a diverse set of measures, most were theoretically weak, did not attend to the interplay of measure, level of analysis and architectural strategy, and did not reflect how HIE usage affected the actual process of care. Attention to these issues will provide greater insight into the effects of previously inaccessible information on medical decision-making and the process of care.

  14. Oxidation of frying oils during intermittent usage.

    PubMed

    Totani, Nagao; Tateishi, Sayuri; Mori, Terutoshi; Hammond, Earl G

    2012-01-01

    We reported previously that in oils used for frying by commercial establishments, a high correlation was observed among their Gardner colors, polar compound contents (PC), carbonyl values (CV) and acid values (AV). However, this was not true for frying oils used in hospitals. In the present study, oils that had been used for deep-frying in hospital kitchens were collected and assayed for PC, CV, AV, and Gardner color value to determine the reason for the differences from oil used in commercial establishments. Hospitals were selected so that variation in the number of inpatients, frying oil fatty acid composition, and frying frequency was obtained. As previously observed, we did not find good correlations between the color of the frying oil and the PC, CV or AV, respectively. The extent of oxidation in batches of oil repeatedly used for deep-frying was in the following order: soybean oil > blended oil > canola oil. After use in deep-frying, where the oxygen content goes effectively to zero, allowing the oil to stand at room temperature resulted in the quick and steady absorption of oxygen until it returned to its initial content. In addition to the effect of thermal treatment of oil, standing time between usages is a significantt cause of oxidation.

  15. Codon catalog usage and the genome hypothesis.

    PubMed Central

    Grantham, R; Gautier, C; Gouy, M; Mercier, R; Pavé, A

    1980-01-01

    Frequencies for each of the 61 amino acid codons have been determined in every published mRNA sequence of 50 or more codons. The frequencies are shown for each kind of genome and for each individual gene. A surprising consistency of choices exists among genes of the same or similar genomes. Thus each genome, or kind of genome, appears to possess a "system" for choosing between codons. Frameshift genes, however, have widely different choice strategies from normal genes. Our work indicates that the main factors distinguishing between mRNA sequences relate to choices among degenerate bases. These systematic third base choices can therefore be used to establish a new kind of genetic distance, which reflects differences in coding strategy. The choice patterns we find seem compatible with the idea that the genome and not the individual gene is the unit of selection. Each gene in a genome tends to conform to its species' usage of the codon catalog; this is our genome hypothesis. PMID:6986610

  16. Reviewing prescription spending and accessory usage.

    PubMed

    Oxenham, Julie

    This article aims to explore the role of the stoma nurse specialist in the community and how recent initiatives within the NHS have impacted on the roles in stoma care to react to the rising prescription costs in the specialty. The article will explore how the stoma care nurse conducted her prescription reviews within her own clinical commissioning group (CCG). The findings of the reviews will be highlighted by a small case history and a mini audit that reveals that some stoma patients may be using their stoma care accessories inappropriately, which may contribute to the rise in stoma prescription spending. To prevent the incorrect use of stoma appliances it may necessitate an annual review of ostomates (individuals who have a stoma), as the author's reviews revealed that inappropriate usage was particularly commonplace when a patient may have not been reviewed by a stoma care specialist for some considerable amount of time. Initial education of the ostomate and ongoing education of how stoma products work is essential to prevent the misuse of stoma appliances, particularly accessories, as the reviews revealed that often patients were not always aware of how their products worked in practice.

  17. Pharmacoepidemiological characterisation of zolpidem and zopiclone usage.

    PubMed

    Victorri-Vigneau, Caroline; Feuillet, F; Wainstein, L; Grall-Bronnec, M; Pivette, J; Chaslerie, A; Sébille, V; Jolliet, P

    2013-11-01

    Zolpidem and zopiclone are two widely used non-benzodiazepine hypnotics whose usage seems to be associated to pharmacodependence. However, to our knowledge, there has as yet been no published epidemiological study which has compared their abuse or dependence potential. We used a pharmacoepidemiological approach to identify and characterise zolpidem and zopiclone users in real life situations. Regular users of zolpidem or zopiclone were identified in the database of a French regional health insurance organisation. A latent class analysis (LCA) was used to identify different subgroups of users of these two hypnotics. The study cohort comprised 25,168 patients who regularly used zolpidem and 21,860 who regularly used zopiclone. The results of the latent class analysis, which enables subgroups with similar patterns of response to be identified, revealed four clinical subtypes of users of zolpidem: non-problematic users, users with associations with hypnotics/anxiolytics or with associated mental disorders, and problematic users. Only three subgroups were identified for zopiclone, and LCA did not discriminate a special class of problematic users for this drug. Our analysis indicates that there is a subclass of zolpidem user suggestive of abuse; this was not the case for zopiclone. This methodology is very interesting because it allows analysis of databases and determination of a specific signature of drugs potentially leading to abuse or dependence.

  18. [Journal usage at the Andrija Stampar library].

    PubMed

    Teuber, Marina; Kuri, Zdenka; Bozikov, Jadranka

    2002-09-01

    Development of journal collection in the Andrija Stampar library is presented. Research of loaned and photocopied journals was performed in order to evaluate circulation of journals in 2001. There were 1057 titles of journals in the Library, 77 were secondary journals and they were excluded from the study. 346 different titles were used 5204 times, out of which 236 were current titles. There were 11 titles used more than 100 times. Journal of Clinical Microbiology was the highest ranking journal. The greatest number of users were from the School of Public Health Andrija Stampar. Most important users of the Library were hospitals, universities, institutions, institutes of public health from Zagreb and all parts of Croatia. More recent journals were used more frequently than the old ones. Decrease of journal usage in the Library has been noticed in recent years. The reason for that are the possibilities of using full text electronic journals either through free access, or through combined subscriptions. The access to electronic journals is possible through more and more affordable subscriptions from the big publishers.

  19. Helix coupling

    DOEpatents

    Ginell, W.S.

    1982-03-17

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the U sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  20. Helix coupling

    DOEpatents

    Ginell, W.S.

    1989-04-25

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.