Microscopic particle-rotor model for the low-lying spectrum of Λ hypernuclei
NASA Astrophysics Data System (ADS)
Mei, H.; Hagino, K.; Yao, J. M.; Motoba, T.
2014-12-01
We propose a novel method for low-lying states of hypernuclei based on the particle-rotor model, in which hypernuclear states are constructed by coupling the hyperon to low-lying states of the core nucleus. In contrast to the conventional particle-rotor model, we employ a microscopic approach for the core states; that is, the generator coordinate method (GCM) with the particle number and angular momentum projections. We apply this microscopic particle-rotor model to Λ9Be as an example employing a point-coupling version of the relativistic mean-field Lagrangian. A reasonable agreement with the experimental data for the low-spin spectrum is achieved using the Λ N coupling strengths determined to reproduce the binding energy of the Λ particle.
Rolling dry-coupled transducers for ultrasonic inspections of aging aircraft structures
NASA Astrophysics Data System (ADS)
Komsky, Igor N.
2004-07-01
Some advanced aircraft materials or coatings are porous or otherwise sensitive to the application of water, gel, or some other ultrasonic couplants. To overcome the problems associated with the liquid coupling medium, dry-coupled rolling modules were developed at Northwestern University for the transmission of both longitudinal and transverse ultrasonic waves at frequencies up to 10 MHz. Dry-coupled ultrasonic modules contain solid core internal stators and solid or flexible external rotors with the flexible polymer substrates. Two types of the dry-coupled modules are under development. Cylindrical base transducer modules include solid core cylindrical rotors with flexible polymer substrates that rotate around the stators with ultrasonic elements. Dry-coupled modules with elongated bases contain solid core stators and flexible track-like polymer substrates that rotate around the stators as rotors of the modules. The elongated base modules have larger contact interfaces with the inspection surface in comparison with the cylindrical base modules. Some designs of the dry-coupled rolling modules contain several ultrasonic elements with different incident angles or a variable angle unit for rapid adjustments of incident angles. The prototype dry-coupled rolling modules were integrated with the portable ultrasonic inspection systems and tested on a number of Boeing aircraft structures.
Methods and apparatus for cooling wind turbine generators
Salamah, Samir A [Niskayuna, NY; Gadre, Aniruddha Dattatraya [Rexford, NY; Garg, Jivtesh [Schenectady, NY; Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Alplaus, NY; Carl, Jr., Ralph James
2008-10-28
A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.
Substantially parallel flux uncluttered rotor machines
Hsu, John S.
2012-12-11
A permanent magnet-less and brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by polyphase alternating currents. An uncluttered rotor is positioned within the magnetic rotating field and is spaced apart from the stator. An excitation core is spaced apart from the stator and the uncluttered rotor and magnetically couples the uncluttered rotor. The brushless excitation source generates a magnet torque by inducing magnetic poles near an outer peripheral surface of the uncluttered rotor, and the stator currents also generate a reluctance torque by a reaction of the difference between the direct and quadrature magnetic paths of the uncluttered rotor. The system can be used either as a motor or a generator
Permanent-magnet switched-flux machine
Trzynadlowski, Andrzej M.; Qin, Ling
2010-01-12
A permanent-magnet switched-flux (PMSF) device has a ferromagnetic outer stator mounted to a shaft about a central axis extending axially through the PMSF device. Pluralities of top and bottom stator poles are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the ferromagnetic outer stator. A ferromagnetic inner rotor is coupled to the shaft and has i) a rotor core having a core axis co-axial with the central axis; and ii) first and second discs having respective outer edges with first and second pluralities of permanent magnets (PMs) mounted in first and second circles, radially outwardly from the rotor core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.
Electric machine for hybrid motor vehicle
Hsu, John Sheungchun
2007-09-18
A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.
Synthesis of Structurally Diverse Emissive Molecular Rotors with Four-Component Ugi Stators.
García-González, Ma Carmen; Aguilar-Granda, Andrés; Zamudio-Medina, Angel; Miranda, Luis D; Rodríguez-Molina, Braulio
2018-03-02
The use of the multicomponent Ugi reaction to rapidly prepare a library of dumbbell-like molecular rotors is highlighted here. The synthetic strategy consisted of the atom-economic access to 15 bulky and structurally diverse iodinated stators, which were cross-coupled to the 1,4-diethynylphenylene rotator. From those experiments, up to six rotors 1a-c and 1l-n were obtained, with yields ranging from 35 to 69% per coupled C-C bond. In addition to the framework diversity, five of these compounds showed aggregate-enhanced emission properties thanks to their conjugated 1,4-bis(phenylethynyl)benzene cores, a property that rises by increasing the water fraction (f w ) in their THF solutions. The results highlight the significance of the diversity-oriented synthesis of rapid access to new molecular fluorescent rotors.
Permanent-magnet-less machine having an enclosed air gap
Hsu, John S [Oak Ridge, TN
2012-02-07
A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).
Permanent-magnet-less machine having an enclosed air gap
Hsu, John S.
2013-03-05
A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).
Method and apparatus for wind turbine air gap control
Grant, James Jonathan; Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; DiMascio, Paul Stephen; Gadre, Aniruddha Dattatraya; Qu, Ronghai
2007-02-20
Methods and apparatus for assembling a wind turbine generator are provided. The wind turbine generator includes a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis, a rotor rotatable about the generator longitudinal axis wherein the rotor includes a plurality of magnetic elements coupled to a radially outer periphery of the rotor such that an airgap is defined between the stator windings and the magnetic elements and the plurality of magnetic elements including a radially inner periphery having a first diameter. The wind turbine generator also includes a bearing including a first member in rotatable engagement with a radially inner second member, the first member including a radially outer periphery, a diameter of the radially outer periphery of the first member being substantially equal to the first diameter, the rotor coupled to the stator through the bearing such that a substantially uniform airgap is maintained.
Rotor damage detection by using piezoelectric impedance
NASA Astrophysics Data System (ADS)
Qin, Y.; Tao, Y.; Mao, Y. F.
2016-04-01
Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.
Permanent-magnet switched-flux machine
Trzynadlowski, Andrzej M.; Qin, Ling
2011-06-14
A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.
Permanent-magnet switched-flux machine
Trzynadlowski, Andrzej M.; Qin, Ling
2012-02-21
A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.
Steady-state, lumped-parameter model for capacitor-run, single-phase induction motors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umans, S.D.
1996-01-01
This paper documents a technique for deriving a steady-state, lumped-parameter model for capacitor-run, single-phase induction motors. The objective of this model is to predict motor performance parameters such as torque, loss distribution, and efficiency as a function of applied voltage and motor speed as well as the temperatures of the stator windings and of the rotor. The model includes representations of both the main and auxiliary windings (including arbitrary external impedances) and also the effects of core and rotational losses. The technique can be easily implemented and the resultant model can be used in a wide variety of analyses tomore » investigate motor performance as a function of load, speed, and winding and rotor temperatures. The technique is based upon a coupled-circuit representation of the induction motor. A notable feature of the model is the technique used for representing core loss. In equivalent-circuit representations of transformers and induction motors, core loss is typically represented by a core-loss resistance in shunt with the magnetizing inductance. In order to maintain the coupled-circuit viewpoint adopted in this paper, this technique was modified slightly; core loss is represented by a set of core-loss resistances connected to the ``secondaries`` of a set of windings which perfectly couple to the air-gap flux of the motor. An example of the technique is presented based upon a 3.5 kW, single-phase, capacitor-run motor and the validity of the technique is demonstrated by comparing predicted and measured motor performance.« less
Structure of 29F in the rotation-aligned coupling scheme of the particle-rotor model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macchiavelli, A. O.; Crawford, H. L.; Fallon, P.
Recent results from RIKEN/RIBF on the low-lying level structure of 29F are interpreted within the Particle-Rotor Model. We show that the experimental data can be understood in the Rotation-aligned Coupling Scheme, with the 5/2 + ground state as the bandhead of a decoupled band. In this picture, the energy of the observed 1/2more » $$+\\atop{1}$$ state correlates strongly with the rotational energy of the core and provides an estimate of the 2 + energy in 28O. Our analysis suggests a moderate deformation, ϵ 2 ~ 0.16, and places the 2 + in 28O at ~ 2.5 MeV.« less
Structure of 29F in the rotation-aligned coupling scheme of the particle-rotor model
Macchiavelli, A. O.; Crawford, H. L.; Fallon, P.; ...
2017-10-23
Recent results from RIKEN/RIBF on the low-lying level structure of 29F are interpreted within the Particle-Rotor Model. We show that the experimental data can be understood in the Rotation-aligned Coupling Scheme, with the 5/2 + ground state as the bandhead of a decoupled band. In this picture, the energy of the observed 1/2more » $$+\\atop{1}$$ state correlates strongly with the rotational energy of the core and provides an estimate of the 2 + energy in 28O. Our analysis suggests a moderate deformation, ϵ 2 ~ 0.16, and places the 2 + in 28O at ~ 2.5 MeV.« less
Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass
NASA Technical Reports Server (NTRS)
Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)
2016-01-01
A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.
System and method for smoothing a salient rotor in electrical machines
Raminosoa, Tsarafidy; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Torrey, David A.
2016-12-13
An electrical machine exhibiting reduced friction and windage losses is disclosed. The electrical machine includes a stator and a rotor assembly configured to rotate relative to the stator, wherein the rotor assembly comprises a rotor core including a plurality of salient rotor poles that are spaced apart from one another around an inner hub such that an interpolar gap is formed between each adjacent pair of salient rotor poles, with an opening being defined by the rotor core in each interpolar gap. Electrically non-conductive and non-magnetic inserts are positioned in the gaps formed between the salient rotor poles, with each of the inserts including a mating feature formed an axially inner edge thereof that is configured to mate with a respective opening being defined by the rotor core, so as to secure the insert to the rotor core against centrifugal force experienced during rotation of the rotor assembly.
Vortex Core Size in the Rotor Near-Wake
NASA Technical Reports Server (NTRS)
Young, Larry A.
2003-01-01
Using a kinetic energy conservation approach, a number of simple analytic expressions are derived for estimating the core size of tip vortices in the near-wake of rotors in hover and axial-flow flight. The influence of thrust, induced power losses, advance ratio, and vortex structure on rotor vortex core size is assessed. Experimental data from the literature is compared to the analytical results derived in this paper. In general, three conclusions can be drawn from the work in this paper. First, the greater the rotor thrust, t h e larger the vortex core size in the rotor near-wake. Second, the more efficient a rotor is with respect to induced power losses, the smaller the resulting vortex core size. Third, and lastly, vortex core size initially decreases for low axial-flow advance ratios, but for large advance ratios core size asymptotically increases to a nominal upper limit. Insights gained from this work should enable improved modeling of rotary-wing aerodynamics, as well as provide a framework for improved experimental investigations of rotor a n d advanced propeller wakes.
Formulation of the aeroelastic stability and response problem of coupled rotor/support systems
NASA Technical Reports Server (NTRS)
Warmbrodt, W.; Friedmann, P.
1979-01-01
The consistent formulation of the governing nonlinear equations of motion for a coupled rotor/support system is presented. Rotor/support coupling is clearly documented by enforcing dynamic equilibrium between the rotor and the moving flexible support. The nonlinear periodic coefficient equations of motion are applicable to both coupled rotor/fuselage aeroelastic problems of helicopters in hover or forward flight and coupled rotor/tower dynamics of a large horizontal axis wind turbine (HAWT). Finally, the equations of motion are used to study the influence of flexible supports and nonlinear terms on rotor aeroelastic stability and response of a large two-bladed HAWT.
NASA Technical Reports Server (NTRS)
Wilbur, Matthew L.
1998-01-01
At the Langley Research Center an active mount rotorcraft testbed is being developed for use in the Langley Transonic Dynamics Tunnel. This testbed, the second generation version of the Aeroelastic Rotor Experimental System (ARES-II), can impose rotor hub motions and measure the response so that rotor-body coupling phenomena may be investigated. An analytical method for coupling an aeroelastically scaled model rotor system to the ARES-II is developed in the current study. Models of the testbed and the rotor system are developed in independent analyses, and an impedance-matching approach is used to couple the rotor system to the testbed. The development of the analytical models and the coupling method is examined, and individual and coupled results are presented for the testbed and rotor system. Coupled results are presented with and without applied hub motion, and system loads and displacements are examined. The results show that a closed-loop control system is necessary to achieve desired hub motions, that proper modeling requires including the loads at the rotor hub and rotor control system, and that the strain-gauge balance placed in the rotating system of the ARES-II provided the best loads results.
Spectral Analysis of Two Coupled Diatomic Rotor Molecules
Crogman, Horace T.; Harter, William G.
2014-01-01
In a previous article the theory of frame transformation relation between Body Oriented Angular (BOA) states and Lab Weakly Coupled states (LWC) was developed to investigate simple rotor–rotor interactions. By analyzing the quantum spectrum for two coupled diatomic molecules and comparing it with spectrum and probability distribution of simple models, evidence was found that, as we move from a LWC state to a strongly coupled state, a single rotor emerges in the strong limit. In the low coupling, the spectrum was quadratic which indicates the degree of floppiness in the rotor–rotor system. However in the high coupling behavior it was found that the spectrum was linear which corresponds to a rotor deep in a well. PMID:25353181
Investigation of a less rare-earth permanent-magnet machine with the consequent pole rotor
NASA Astrophysics Data System (ADS)
Bai, Jingang; Liu, Jiaqi; Wang, Mingqiao; Zheng, Ping; Liu, Yong; Gao, Haibo; Xiao, Lijun
2018-05-01
Due to the rising price of rare-earth materials, permanent-magnet (PM) machines in different applications have a trend of reducing the use of rare-earth materials. Since iron-core poles replace half of PM poles in the consequent pole (CP) rotor, the PM machine with CP rotor can be a promising candidate for less rare-earth PM machine. Additionally, the investigation of CP rotor in special electrical machines, like hybrid excitation permanent-magnet PM machine, bearingless motor, etc., has verified the application feasibility of CP rotor. Therefore, this paper focuses on design and performance of PM machines when traditional PM machine uses the CP rotor. In the CP rotor, all the PMs are of the same polarity and they are inserted into the rotor core. Since the fundamental PM flux density depends on the ratio of PM pole to iron-core pole, the combination rule between them is investigated by analytical and finite-element methods. On this basis, to comprehensively analyze and evaluate PM machine with CP rotor, four typical schemes, i.e., integer-slot machines with CP rotor and surface-mounted PM (SPM) rotor, fractional-slot machines with CP rotor and SPM rotor, are designed to investigate the performance of PM machine with CP rotor, including electromagnetic performance, anti-demagnetization capacity and cost.
Coupled rotor and fuselage equations of motion
NASA Technical Reports Server (NTRS)
Warmbrodt, W.
1979-01-01
The governing equations of motion of a helicopter rotor coupled to a rigid body fuselage are derived. A consistent formulation is used to derive nonlinear periodic coefficient equations of motion which are used to study coupled rotor/fuselage dynamics in forward flight. Rotor/fuselage coupling is documented and the importance of an ordering scheme in deriving nonlinear equations of motion is reviewed. The nature of the final equations and the use of multiblade coordinates are discussed.
The vibration characteristics of a coupled helicopter rotor-fuselage by a finite element analysis
NASA Technical Reports Server (NTRS)
Rutkowski, M. J.
1983-01-01
The dynamic coupling between the rotor system and the fuselage of a simplified helicopter model in hover was analytically investigated. Mass, aerodynamic damping, and elastic and centrifugal stiffness matrices are presented for the analytical model; the model is based on a beam finite element, with polynomial mass and stiffness distributions for both the rotor and fuselage representations. For this analytical model, only symmetric fuselage and collective blade degrees of freedom are treated. Real and complex eigen-analyses are carried out to obtain coupled rotor-fuselage natural modes and frequencies as a function of rotor speed. Vibration response results are obtained for the coupled system subjected to a radially uniform, harmonic blade loading. The coupled response results are compared with response results from an uncoupled analysis in which hub loads for an isolated rotor system subjected to the same sinusoidal blade loading as the coupled system are applied to a free-free fuselage.
Aeromechanical stability of helicopters with composite rotor blades in forward flight
NASA Technical Reports Server (NTRS)
Smith, Edward C.; Chopra, Inderjit
1992-01-01
The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forward flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.
Air and ground resonance of helicopters with elastically tailored composite rotor blades
NASA Technical Reports Server (NTRS)
Smith, Edward C.; Chopra, Inderjit
1993-01-01
The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forwrad flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.
NASA Astrophysics Data System (ADS)
Khazaei, Somayeh; Sebastiani, Daniel
2017-11-01
We study the influence of rotational coupling between a pair of methyl rotators on the tunneling spectrum in condensed phase. Two interacting adjacent methyl groups are simulated within a coupled-pair model composed of static rotational potential created by the chemical environment and the interaction potential between two methyl groups. We solve the two-dimensional time-independent Schrödinger equation analytically by expanding the wave functions on the basis set of two independent free-rotor functions. We investigate three scenarios which differ with respect to the relative strength of single-rotor and coupling potential. For each scenario, we illustrate the dependence of the energy level scheme on the coupling strength. It is found that the main determinant of splitting energy levels tends to be a function of the ratio of strengths of coupling and single-rotor potential. The tunnel splitting caused by coupling is maximized for the coupled rotors in which their total hindering potential is relatively shallow. Such a weakly hindered methyl rotational potential is predicted for 4-methylpyridine at low temperature. The experimental observation of multiple tunneling peaks arising from a single type of methyl group in 4-methylpyridine in the inelastic neutron scattering spectrum is widely attributed to the rotor-rotor coupling. In this regard, using a set of first-principles calculations combined with the nudged elastic band method, we investigate the rotational potential energy surface (PES) of the coaxial pairs of rotors in 4-methylpyridine. A Numerov-type method is used to numerically solve the two-dimensional time-independent Schrödinger equation for the calculated 2D-density functional theory profile. Our computed energy levels reproduce the observed tunneling transitions well. Moreover, the calculated density distribution of the three methyl protons resembles the experimental nuclear densities obtained from the Fourier difference method. By mapping the calculated first-principles PES on the model, it is confirmed that the hindering potential in 4-methylpyridine consists of proportionally shallow single-rotor potential to coupling interaction.
Khazaei, Somayeh; Sebastiani, Daniel
2017-11-21
We study the influence of rotational coupling between a pair of methyl rotators on the tunneling spectrum in condensed phase. Two interacting adjacent methyl groups are simulated within a coupled-pair model composed of static rotational potential created by the chemical environment and the interaction potential between two methyl groups. We solve the two-dimensional time-independent Schrödinger equation analytically by expanding the wave functions on the basis set of two independent free-rotor functions. We investigate three scenarios which differ with respect to the relative strength of single-rotor and coupling potential. For each scenario, we illustrate the dependence of the energy level scheme on the coupling strength. It is found that the main determinant of splitting energy levels tends to be a function of the ratio of strengths of coupling and single-rotor potential. The tunnel splitting caused by coupling is maximized for the coupled rotors in which their total hindering potential is relatively shallow. Such a weakly hindered methyl rotational potential is predicted for 4-methylpyridine at low temperature. The experimental observation of multiple tunneling peaks arising from a single type of methyl group in 4-methylpyridine in the inelastic neutron scattering spectrum is widely attributed to the rotor-rotor coupling. In this regard, using a set of first-principles calculations combined with the nudged elastic band method, we investigate the rotational potential energy surface (PES) of the coaxial pairs of rotors in 4-methylpyridine. A Numerov-type method is used to numerically solve the two-dimensional time-independent Schrödinger equation for the calculated 2D-density functional theory profile. Our computed energy levels reproduce the observed tunneling transitions well. Moreover, the calculated density distribution of the three methyl protons resembles the experimental nuclear densities obtained from the Fourier difference method. By mapping the calculated first-principles PES on the model, it is confirmed that the hindering potential in 4-methylpyridine consists of proportionally shallow single-rotor potential to coupling interaction.
Dovetail spoke internal permanent magnet machine
Alexander, James Pellegrino [Ballston Lake, NY; EL-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Lokhandwalla, Murtuza [Clifton Park, NY; Shah, Manoj Ramprasad [Latham, NY; VanDam, Jeremy Daniel [West Coxsackie, NY
2011-08-23
An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple pair of permanent magnets for generating a magnetic field, which magnetic field interacts with the stator magnetic field to produce a torque. The multiple pair of permanent magnets are disposed between the stacks. The rotor assembly also includes multiple middle wedges mounted between each pair of the multiple permanent magnets.
Mechanical coupling for a rotor shaft assembly of dissimilar materials
Shi, Jun [Glastonbury, CT; Bombara, David [New Hartford, CT; Green, Kevin E [Broad Brook, CT; Bird, Connic [Rocky Hill, CT; Holowczak, John [South Windsor, CT
2009-05-05
A mechanical coupling for coupling a ceramic disc member to a metallic shaft includes a first wedge clamp and a second wedge clamp. A fastener engages a threaded end of a tie-bolt to sandwich the ceramic disc between the wedge clamps. An axial spring is positioned between the fastener and the second wedge clamp to apply an axial preload along the longitudinal axis. Another coupling utilizes a rotor shaft end of a metallic rotor shaft as one wedge clamp. Still another coupling includes a solid ceramic rotor disc with a multiple of tie-bolts radially displaced from the longitudinal axis to exert the preload on the solid ceramic rotor disc.
Vacuum coupling of rotating superconducting rotor
Shoykhet, Boris A.; Zhang, Burt Xudong; Driscoll, David Infante
2003-12-02
A rotating coupling allows a vacuum chamber in the rotor of a superconducting electric motor to be continually pumped out. The coupling consists of at least two concentric portions, one of which is allowed to rotate and the other of which is stationary. The coupling is located on the non-drive end of the rotor and is connected to a coolant supply and a vacuum pump. The coupling is smaller in diameter than the shaft of the rotor so that the shaft can be increased in diameter without having to increase the size of the vacuum seal.
Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H
2013-02-19
A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.
Rotor Wake Development During the First Revolution
NASA Technical Reports Server (NTRS)
McAlister, Kenneth W.
2003-01-01
The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the void region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44 and 12 percent of the rotor-tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10 percent of the rotor-blade chord, but more than doubled its size after one revolution of the rotor. According to vortex models that approximate the measured data, the core-radius circulation was about 79 percent of the large-radius circulation, and the large-radius circulation was about 67 percent of the maximum bound circulation on the rotor blade. On average, about 53 percent of the maximum bound circulation resides within the vortex core during the first revolution of the rotor.
Localized Optogenetic Targeting of Rotors in Atrial Cardiomyocyte Monolayers.
Feola, Iolanda; Volkers, Linda; Majumder, Rupamanjari; Teplenin, Alexander; Schalij, Martin J; Panfilov, Alexander V; de Vries, Antoine A F; Pijnappels, Daniël A
2017-11-01
Recently, a new ablation strategy for atrial fibrillation has emerged, which involves the identification of rotors (ie, local drivers) followed by the localized targeting of their core region by ablation. However, this concept has been subject to debate because the mode of arrhythmia termination remains poorly understood, as dedicated models and research tools are lacking. We took a unique optogenetic approach to induce and locally target a rotor in atrial monolayers. Neonatal rat atrial cardiomyocyte monolayers expressing a depolarizing light-gated ion channel (Ca 2+ -translocating channelrhodopsin) were subjected to patterned illumination to induce single, stable, and centralized rotors by optical S1-S2 cross-field stimulation. Next, the core region of these rotors was specifically and precisely targeted by light to induce local conduction blocks of circular or linear shapes. Conduction blocks crossing the core region, but not reaching any unexcitable boundary, did not lead to termination. Instead, electric waves started to propagate along the circumference of block, thereby maintaining reentrant activity, although of lower frequency. If, however, core-spanning lines of block reached at least 1 unexcitable boundary, reentrant activity was consistently terminated by wave collision. Lines of block away from the core region resulted merely in rotor destabilization (ie, drifting). Localized optogenetic targeting of rotors in atrial monolayers could lead to both stabilization and destabilization of reentrant activity. For termination, however, a line of block is required reaching from the core region to at least 1 unexcitable boundary. These findings may improve our understanding of the mechanisms involved in rotor-guided ablation. © 2017 American Heart Association, Inc.
Electrogram fractionation in murine HL-1 atrial monolayer model.
Umapathy, Karthikeyan; Masse, Stephane; Kolodziejska, Karolina; Veenhuyzen, George D; Chauhan, Vijay S; Husain, Mansoor; Farid, Talha; Downar, Eugene; Sevaptsidis, Elias; Nanthakumar, Kumaraswamy
2008-07-01
Complex fractionated atrial electrograms have been suggested as important targets for catheter ablation of atrial fibrillation. The etiology and the mechanism of these signals have not been completely elucidated because of limitations of interpretation of these signals in relation to simultaneously acquired signals in the neighboring atrial tissue. This study sought to study the origin of electrogram fractionation under the conditions of rotor formation and wave fragmentation, using atrial monolayer preparations. We performed optical mapping of 45 atrial monolayer preparations using a complementary metal oxide semiconductor (CMOS) Brainvision Ultima camera system (SciMedia-Brainvision, Tokyo, Japan). We observed stable rotors in 32 of the 45 recordings. The derived bipolar electrograms did not show complex fractionation at the core of the rotor in any of the 32 recordings. We were also able to show that 2 bipolar electrodes placed adjacent to the core of a stable rotor in a zone where there is no wave break will record electrical activity for the majority of the rotor's cycle length. In 13 of the 45 recordings, wave break or wave collision events were present. Of these, 8 of 13 recordings showed complex fractionation. In 19 of the 27, simulation of meandering rotors also showed complex fractionation. Complex fractionated electrograms can be recorded at sites of migrating rotors and wave break. No fractionation occurs at the core of a stable rotor. Electrograms that span the rotor cycle length and alternate between 2 bipoles that straddle the core can identify site of a stable rotor.
Gas centrifuge with driving motor
Dancy, Jr., William H.
1976-01-01
1. A centrifuge for separating gaseous constituents of different masses comprising a vertical tubular rotor, means for introducing a gas mixture of different masses into said rotor and means for removing at least one of the gas components from the rotor, a first bearing means supporting said rotor at one end for rotational movement, a support, a damping bearing mounted on said support, a shaft fixed to said rotor at the opposite end and mechanically connecting said rotor to said damping bearing, a cup-shaped tube of electrically conductive, non-magnetic material in coaxial relationship with said shaft, the open end of said tube extending away from said rotor and the closed end of said tube being directly secured to the adjacent end of the rotor, an annular core of magnetic material fixedly mounted on said support so as to be disposed within said tube and around said shaft, and a second annular magnetic core with coils arranged thereon to receive polyphase current to produce a rotating magnetic field traversing the circumference of said tube, fixedly mounted on said support so as to surround said tube, the size of said first annular core and said second annular core being such as to permit limited radial displacement of said shaft and said tube.
High speed internal permanent magnet machine and method of manufacturing the same
Alexander, James Pellegrino [Ballston Lake, NY; EL-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Lokhandwalla, Murtuza [Clifton Park, NY; Shah, Manoj Ramprasad [Latham, NY; VanDam, Jeremy Daniel [West Coxsackie, NY
2011-09-13
An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple permanent magnets for generating a magnetic field, which interacts with the stator magnetic field to produce torque. The permanent magnets are disposed between the stacks. The rotor assembly also includes multiple bottom wedges disposed on the bottom structures of the shaft and configured to hold the multiple stacks and the multiple permanent magnets.
Comparison of the fractional power motor with cores made of various magnetic materials
NASA Astrophysics Data System (ADS)
Gmyrek, Zbigniew; Lefik, Marcin; Cavagnino, Andrea; Ferraris, Luca
2017-12-01
The optimization of the motor cores, coupled with new core shapes as well as powering the motor at high frequency are the primary reasons for the use of new materials. The utilization of new materials, like SMC (soft magnetic composite), reduce the core loss and/or provide quasi-isotropic core's properties in any magnetization direction. Moreover, the use of SMC materials allows for avoiding degradation of the material portions, resulting from punching process, thereby preventing the deterioration of operating parameters of the motor. The authors examine the impact of technological parameters on the properties of a new type of SMC material and analyze the possibility of its use as the core of the fractional power motor. The result of the work is an indication of the shape of the rotor core made of a new SMC material to achieve operational parameters similar to those that have a motor with a core made of laminations.
Methods and apparatus for twist bend coupled (TCB) wind turbine blades
Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee
2006-10-10
A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.
Stiffness Characteristics of Composite Rotor Blades With Elastic Couplings
NASA Technical Reports Server (NTRS)
Piatak, David J.; Nixon, Mark W.; Kosmatka, John B.
1997-01-01
Recent studies on rotor aeroelastic response and stability have shown the beneficial effects of incorporating elastic couplings in composite rotor blades. However, none of these studies have clearly identified elastic coupling limits and the effects of elastic couplings on classical beam stiffnesses of representative rotor blades. Knowledge of these limits and effects would greatly enhance future aeroelastic studies involving composite rotor blades. The present study addresses these voids and provides a preliminary design database for investigators who may wish to study the effects of elastic couplings on representative blade designs. The results of the present study should provide a basis for estimating the potential benefits associated with incorporating elastic couplings without the need for first designing a blade cross section and then performing a cross-section analysis to obtain the required beam section properties as is customary in the usual one-dimensional beam-type approach.
Hybrid-secondary uncluttered permanent magnet machine and method
Hsu, John S.
2005-12-20
An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.
Field Telemetry of Blade-rotor Coupled Torsional Vibration at Matuura Power Station Number 1 Unit
NASA Technical Reports Server (NTRS)
Isii, Kuniyoshi; Murakami, Hideaki; Otawara, Yasuhiko; Okabe, Akira
1991-01-01
The quasi-modal reduction technique and finite element model (FEM) were used to construct an analytical model for the blade-rotor coupled torsional vibration of a steam turbine generator of the Matuura Power Station. A single rotor test was executed in order to evaluate umbrella vibration characteristics. Based on the single rotor test results and the quasi-modal procedure, the total rotor system was analyzed to predict coupled torsional frequencies. Finally, field measurement of the vibration of the last stage buckets was made, which confirmed that the double synchronous resonance was 124.2 Hz, meaning that the machine can be safely operated. The measured eigen values are very close to the predicted value. The single rotor test and this analytical procedure thus proved to be a valid technique to estimate coupled torsional vibration.
NASA Technical Reports Server (NTRS)
Talbot, P. D.; Dugan, D. D.; Chen, R. T. N.; Gerdes, R. M.
1980-01-01
A coordinated analysis and ground simulator experiment was performed to investigate the effects on single rotor helicopter handling qualities of systematic variations in the main rotor hinge restraint, hub hinge offset, pitch-flap coupling, and blade lock number. Teetering rotor, articulated rotor, and hingeless rotor helicopters were evaluated by research pilots in special low level flying tasks involving obstacle avoidance at 60 to 100 knots airspeed. The results of the experiment are in the form of pilot ratings, pilot commentary, and some objective performance measures. Criteria for damping and sensitivity are reexamined when combined with the additional factors of cross coupling due to pitch and roll rates, pitch coupling with collective pitch, and longitudinal static stability. Ratings obtained with and without motion are compared. Acceptable flying qualities were obtained within each rotor type by suitable adjustment of the hub parameters, however, pure teetering rotors were found to lack control power for the tasks. A limit for the coupling parameter L sub q/L sub p of 0.35 is suggested.
NASA Technical Reports Server (NTRS)
Nixon, Mark W.
1993-01-01
There is a potential for improving the performance and aeroelastic stability of tiltrotors through the use of elastically-coupled composite rotor blades. To study the characteristics of tiltrotors with these types of rotor blades it is necessary to formulate a new analysis which has the capabilities of modeling both a tiltrotor configuration and an anisotropic rotor blade. Background for these formulations is established in two preliminary investigations. In the first, the influence of several system design parameters on tiltrotor aeroelastic stability is examined for the high-speed axial flight mode using a newly-developed rigid-blade analysis with an elastic wing finite element model. The second preliminary investigation addresses the accuracy of using a one-dimensional beam analysis to predict frequencies of elastically-coupled highly-twisted rotor blades. Important aspects of the new aeroelastic formulations are the inclusion of a large steady pylon angle which controls tilt of the rotor system with respect to the airflow, the inclusion of elastic pitch-lag coupling terms related to rotor precone, the inclusion of hub-related degrees of freedom which enable modeling of a gimballed rotor system and engine drive-train dynamics, and additional elastic coupling terms which enable modeling of the anisotropic features for both the rotor blades and the tiltrotor wing. Accuracy of the new tiltrotor analysis is demonstrated by a comparison of the results produced for a baseline case with analytical and experimental results reported in the open literature. Two investigations of elastically tailored blades on a baseline tiltrotor are then conducted. One investigation shows that elastic bending-twist coupling of the rotor blade is a very effective means for increasing the flutter velocity of a tiltrotor, and the magnitude of coupling required does not have an adverse effect on performance or blade loads. The second investigation shows that passive blade twist control via elastic extension-twist coupling of the rotor blade has the capability of significantly improving tiltrotor aerodynamic performance. This concept, however, is shown to have, in general, a negative impact on stability characteristics.
NASA Technical Reports Server (NTRS)
Meyer, Harold D.
1999-01-01
This report provides a study of rotor and stator scattering using the SOURCE3D Rotor Wake/Stator Interaction Code. SOURCE3D is a quasi-three-dimensional computer program that uses three-dimensional acoustics and two-dimensional cascade load response theory to calculate rotor and stator modal reflection and transmission (scattering) coefficients. SOURCE3D is at the core of the TFaNS (Theoretical Fan Noise Design/Prediction System), developed for NASA, which provides complete fully coupled (inlet, rotor, stator, exit) noise solutions for turbofan engines. The reason for studying scattering is that we must first understand the behavior of the individual scattering coefficients provided by SOURCE3D, before eventually understanding the more complicated predictions from TFaNS. To study scattering, we have derived a large number of scattering curves for vane and blade rows. The curves are plots of output wave power divided by input wave power (in dB units) versus vane/blade ratio. Some of these plots are shown in this report. All of the plots are provided in a separate volume. To assist in understanding the plots, formulas have been derived for special vane/blade ratios for which wavefronts are either parallel or normal to rotor or stator chords. From the plots, we have found that, for the most part, there was strong transmission and weak reflection over most of the vane/blade ratio range for the stator. For the rotor, there was little transmission loss.
Method for providing slip energy control in permanent magnet electrical machines
Hsu, John S.
2006-11-14
An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.
Measurements of the Early Development of Trailing Vorticity from a Rotor
NASA Technical Reports Server (NTRS)
McAlister, Kenneth W.; Heineck, James T.
2002-01-01
The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the "void" region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44% and 12% of the rotor tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10% of the rotor-blade chord, but more than doubled its size after one revolution of the rotor.
NASA Technical Reports Server (NTRS)
Hodges, D. H., Roberta.
1976-01-01
The stability of elastic flap bending, lead-lag bending, and torsion of uniform, untwisted, cantilever rotor blades without chordwise offsets between the elastic, mass, tension, and areodynamic center axes is investigated for the hovering flight condition. The equations of motion are obtained by simplifying the general, nonlinear, partial differential equations of motion of an elastic rotating cantilever blade. The equations are adapted for a linearized stability analysis in the hovering flight condition by prescribing aerodynamic forces, applying Galerkin's method, and linearizing the resulting ordinary differential equations about the equilibrium operating condition. The aerodynamic forces are obtained from strip theory based on a quasi-steady approximation of two-dimensional unsteady airfoil theory. Six coupled mode shapes, calculated from free vibration about the equilibrium operating condition, are used in the linearized stability analysis. The study emphasizes the effects of two types of structural coupling that strongly influence the stability of hingeless rotor blades. The first structural coupling is the linear coupling between flap and lead-lag bending of the rotor blade. The second structural coupling is a nonlinear coupling between flap bending, lead-lag bending, and torsion deflections. Results are obtained for a wide variety of hingeless rotor configurations and operating conditions in order to provide a reasonably complete picture of hingeless rotor blade stability characteristics.
Coupled rotor-body vibrations with inplane degrees of freedom
NASA Technical Reports Server (NTRS)
Ming-Sheng, H.; Peters, D. A.
1985-01-01
In an effort to understand the vibration mechanisms of helicopters, the following basic studies are considered. A coupled rotor-fuselage vibration analysis including inplane degrees of freedom of both rotor and airframe is performed by matching of rotor and fuselage impedances at the hub. A rigid blade model including hub motion is used to set up the rotor flaplag equations. For the airframe, 9 degrees of freedom and hub offsets are used. The equations are solved by harmonic balance. For a 4-bladed rotor, the coupled responses and hub loads are calculated for various parameters in forward flight. The results show that the addition of inplane degrees of freedom does not significantly affect the vertical vibrations for the cases considered, and that inplane vibrations have similar resonance trends as do flapping vibrations.
Demonstration of an elastically coupled twist control concept for tilt rotor blade application
NASA Technical Reports Server (NTRS)
Lake, R. C.; Nixon, M. W.; Wilbur, M. L.; Singleton, J. D.; Mirick, P. H.
1994-01-01
The purpose of this Note is to present results from an analytic/experimental study that investigated the potential for passively changing blade twist through the use of extension-twist coupling. A set of composite model rotor blades was manufactured from existing blade molds for a low-twist metal helicopter rotor blade, with a view toward establishing a preliminary proof concept for extension-twist-coupled rotor blades. Data were obtained in hover for both a ballasted and unballasted blade configuration in sea-level atmospheric conditions. Test data were compared with results obtained from a geometrically nonlinear analysis of a detailed finite element model of the rotor blade developed in MSC/NASTRAN.
An integrated optimum design approach for high speed prop rotors
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Mccarthy, Thomas R.
1995-01-01
The objective is to develop an optimization procedure for high-speed and civil tilt-rotors by coupling all of the necessary disciplines within a closed-loop optimization procedure. Both simplified and comprehensive analysis codes are used for the aerodynamic analyses. The structural properties are calculated using in-house developed algorithms for both isotropic and composite box beam sections. There are four major objectives of this study. (1) Aerodynamic optimization: The effects of blade aerodynamic characteristics on cruise and hover performance of prop-rotor aircraft are investigated using the classical blade element momentum approach with corrections for the high lift capability of rotors/propellers. (2) Coupled aerodynamic/structures optimization: A multilevel hybrid optimization technique is developed for the design of prop-rotor aircraft. The design problem is decomposed into a level for improved aerodynamics with continuous design variables and a level with discrete variables to investigate composite tailoring. The aerodynamic analysis is based on that developed in objective 1 and the structural analysis is performed using an in-house code which models a composite box beam. The results are compared to both a reference rotor and the optimum rotor found in the purely aerodynamic formulation. (3) Multipoint optimization: The multilevel optimization procedure of objective 2 is extended to a multipoint design problem. Hover, cruise, and take-off are the three flight conditions simultaneously maximized. (4) Coupled rotor/wing optimization: Using the comprehensive rotary wing code CAMRAD, an optimization procedure is developed for the coupled rotor/wing performance in high speed tilt-rotor aircraft. The developed procedure contains design variables which define the rotor and wing planforms.
NASA Technical Reports Server (NTRS)
Sutton, L. R.
1975-01-01
A theoretical analysis is developed for a coupled helicopter rotor system to allow determination of the loads and dynamic response behavior of helicopter rotor systems in both steady-state forward flight and maneuvers. The effects of an anisotropically supported swashplate or gyroscope control system and a deformed free wake on the rotor system dynamic response behavior are included.
Demonstration of cardiac rotor and source mapping techniques in embryonic chick monolayers
NASA Astrophysics Data System (ADS)
You, Min Ju; Langfield, Peter; Campanari, Lucas; Dobbs, Matt; Shrier, Alvin; Glass, Leon
2017-09-01
Excitable media, such as the heart, display propagating waves with different geometries including target patterns and rotors (spiral waves). Collision of two waves leads to annihilation of both. We present algorithms for data processing and analysis to identify the core of rotors. In this work, we show that as the spatial sampling resolution decreases it becomes increasingly difficult to identify rotors—there are instances of false negatives and false positives. These observations are relevant to current controversies concerning the role of rotors in the initiation, maintenance, and treatment of cardiac arrhythmias, especially atrial fibrillation. Currently some practitioners target the core of rotors for ablation, but the effectiveness of this procedure has been questioned. In view of the difficulties inherent in the identification of rotors, we conclude that methods to identify rotors need to first be validated prior to assessing the efficacy of ablation.
In-plane inertial coupling in tuned and severely mistuned bladed disks
NASA Technical Reports Server (NTRS)
Crawley, E. F.
1982-01-01
A model has been developed and verified for blade-disk-shaft coupling in rotors due to the in-plane rigid body modes of the disk. An analytic model has been developed which couples the in-plane rigid body modes of the disk on an elastic shaft with the blade bending modes. Bench resonance test were carried out on the M.I.T. Compressor Rotor, typical of research rotors with flexible blades and a thick rigid disk. When the rotor was carefully tuned, the structural coupling of the blades by the disks was confined to zero and one nodal diameter modes, whose modal frequencies were greater than the blade cantilever frequency. In the case of the tuned rotor, and in two cases where severe mistuning was intentionally introduced, agreement between the predicted and observed natural frequencies is excellent. The analytic model was then extended to include the effects of constant angular rotation of the disk.
NASA Technical Reports Server (NTRS)
Hodges, Robert V.; Nixon, Mark W.; Rehfield, Lawrence W.
1987-01-01
A methodology was developed for the structural analysis of composite rotor blades. This coupled-beam analysis is relatively simple to use compared with alternative analysis techniques. The beam analysis was developed for thin-wall single-cell rotor structures and includes the effects of elastic coupling. This paper demonstrates the effectiveness of the new composite-beam analysis method through comparison of its results with those of an established baseline analysis technique. The baseline analysis is an MSC/NASTRAN finite-element model built up from anisotropic shell elements. Deformations are compared for three linear static load cases of centrifugal force at design rotor speed, applied torque, and lift for an ideal rotor in hover. A D-spar designed to twist under axial loading is the subject of the analysis. Results indicate the coupled-beam analysis is well within engineering accuracy.
NASA Technical Reports Server (NTRS)
Bennett, R. L.
1975-01-01
The analytical techniques and computer program developed in the fully-coupled rotor vibration study are described. The rotor blade natural frequency and mode shape analysis was implemented in a digital computer program designated DF1758. The program computes collective, cyclic, and scissor modes for a single blade within a specified range of frequency for specified values of rotor RPM and collective angle. The analysis includes effects of blade twist, cg offset from reference axis, and shear center offset from reference axis. Coupled inplane, out-of-plane, and torsional vibrations are considered. Normalized displacements, shear forces and moments may be printed out and Calcomp plots of natural frequencies as a function of rotor RPM may be produced.
Optimal control of orientation and entanglement for two dipole-dipole coupled quantum planar rotors.
Yu, Hongling; Ho, Tak-San; Rabitz, Herschel
2018-05-09
Optimal control simulations are performed for orientation and entanglement of two dipole-dipole coupled identical quantum rotors. The rotors at various fixed separations lie on a model non-interacting plane with an applied control field. It is shown that optimal control of orientation or entanglement represents two contrasting control scenarios. In particular, the maximally oriented state (MOS) of the two rotors has a zero entanglement entropy and is readily attainable at all rotor separations. Whereas, the contrasting maximally entangled state (MES) has a zero orientation expectation value and is most conveniently attainable at small separations where the dipole-dipole coupling is strong. It is demonstrated that the peak orientation expectation value attained by the MOS at large separations exhibits a long time revival pattern due to the small energy splittings arising form the extremely weak dipole-dipole coupling between the degenerate product states of the two free rotors. Moreover, it is found that the peak entanglement entropy value attained by the MES remains largely unchanged as the two rotors are transported to large separations after turning off the control field. Finally, optimal control simulations of transition dynamics between the MOS and the MES reveal the intricate interplay between orientation and entanglement.
Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System
NASA Technical Reports Server (NTRS)
Yeo, Hyeonsoo; Romander, Ethan A.; Norman, Thomas R.
2011-01-01
Wind tunnel measurements of performance, loads, and vibration of a full-scale UH-60A Black Hawk main rotor with an individual blade control (IBC) system are compared with calculations obtained using the comprehensive helicopter analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. Measured data show a 5.1% rotor power reduction (8.6% rotor lift to effective-drag ratio increase) using 2/rev IBC actuation with 2.0 amplitude at = 0.4. At the optimum IBC phase for rotor performance, IBC actuator force (pitch link force) decreased, and neither flap nor chord bending moments changed significantly. CAMRAD II predicts the rotor power variations with the IBC phase reasonably well at = 0.35. However, the correlation degrades at = 0.4. Coupled CAMRAD II/OVERFLOW 2 shows excellent correlation with the measured rotor power variations with the IBC phase at both = 0.35 and = 0.4. Maximum reduction of IBC actuator force is better predicted with CAMRAD II, but general trends are better captured with the coupled analysis. The correlation of vibratory hub loads is generally poor by both methods, although the coupled analysis somewhat captures general trends.
Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System
NASA Technical Reports Server (NTRS)
Yeo, Hyeonsoo; Romander, Ethan A.; Norman, Thomas R.
2011-01-01
Wind tunnel measurements of performance, loads, and vibration of a full-scale UH-60A Black Hawk main rotor with an individual blade control (IBC) system are compared with calculations obtained using the comprehensive helicopter analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. Measured data show a 5.1% rotor power reduction (8.6% rotor lift to effective-drag ratio increase) using 2/rev IBC actuation with 2.0. amplitude at u = 0.4. At the optimum IBC phase for rotor performance, IBC actuator force (pitch link force) decreased, and neither flap nor chord bending moments changed significantly. CAMRAD II predicts the rotor power variations with IBC phase reasonably well at u = 0.35. However, the correlation degrades at u = 0.4. Coupled CAMRAD II/OVERFLOW 2 shows excellent correlation with the measured rotor power variations with IBC phase at both u = 0.35 and u = 0.4. Maximum reduction of IBC actuator force is better predicted with CAMRAD II, but general trends are better captured with the coupled analysis. The correlation of vibratory hub loads is generally poor by both methods, although the coupled analysis somewhat captures general trends.
Development of a helicopter rotor/propulsion system dynamics analysis
NASA Technical Reports Server (NTRS)
Warmbrodt, W.; Hull, R.
1982-01-01
A time-domain analysis of coupled engine/drive train/rotor dynamics of a twin-engine, single main rotor helicopter model has been performed. The analysis incorporates an existing helicopter model with nonlinear simulations of a helicopter turboshaft engine and its fuel controller. System dynamic behavior is studied using the resulting simulation which included representations for the two engines and their fuel controllers, drive system, main rotor, tail rotor, and aircraft rigid body motions. Time histories of engine and rotor RPM response to pilot control inputs are studied for a baseline rotor and propulsion system model. Sensitivity of rotor RPM droop to fuel controller gain changes and collective input feed-forward gain changes are studied. Torque-load-sharing between the two engines is investigated by making changes in the fuel controller feedback paths. A linear engine model is derived from the nonlinear engine simulation and used in the coupled system analysis. This four-state linear engine model is then reduced to a three-state model. The effect of this simplification on coupled system behavior is shown.
A formulation of rotor-airframe coupling for design analysis of vibrations of helicopter airframes
NASA Technical Reports Server (NTRS)
Kvaternik, R. G.; Walton, W. C., Jr.
1982-01-01
A linear formulation of rotor airframe coupling intended for vibration analysis in airframe structural design is presented. The airframe is represented by a finite element analysis model; the rotor is represented by a general set of linear differential equations with periodic coefficients; and the connections between the rotor and airframe are specified through general linear equations of constraint. Coupling equations are applied to the rotor and airframe equations to produce one set of linear differential equations governing vibrations of the combined rotor airframe system. These equations are solved by the harmonic balance method for the system steady state vibrations. A feature of the solution process is the representation of the airframe in terms of forced responses calculated at the rotor harmonics of interest. A method based on matrix partitioning is worked out for quick recalculations of vibrations in design studies when only relatively few airframe members are varied. All relations are presented in forms suitable for direct computer implementation.
Study of High-Efficiency Motors Using Soft Magnetic Cores
NASA Astrophysics Data System (ADS)
Tokoi, Hirooki; Kawamata, Shoichi; Enomoto, Yuji
We have been developed a small and highly efficient axial gap motor whose stator core is made of a soft magnetic core. First, the loss sensitivities to various motor design parameters were evaluated using magnetic field analysis. It was found that the pole number and core dimensions had low sensitivity (≤ 2.2dB) in terms of the total loss, which is the sum of the copper loss and the iron losses in the stator core and the rotor yoke respectively. From this, we concluded that to improve the motor efficiency, it is essential to reduce the iron loss in the rotor yoke and minimize other losses. With this in mind, a prototype axial gap motor is manufactured and tested. The motor has four poles and six slots. The motor is 123mm in diameter and the axial length is 47mm. The rotor has parallel magnetized magnets and a rotor yoke with magnetic steel sheets. The maximum measured motor efficiency is 93%. This value roughly agrees with the maximum calculated efficiency of 95%.
Tracking Blade Tip Vortices for Numerical Flow Simulations of Hovering Rotorcraft
NASA Technical Reports Server (NTRS)
Kao, David L.
2016-01-01
Blade tip vortices generated by a helicopter rotor blade are a major source of rotor noise and airframe vibration. This occurs when a vortex passes closely by, and interacts with, a rotor blade. The accurate prediction of Blade Vortex Interaction (BVI) continues to be a challenge for Computational Fluid Dynamics (CFD). Though considerable research has been devoted to BVI noise reduction and experimental techniques for measuring the blade tip vortices in a wind tunnel, there are only a handful of post-processing tools available for extracting vortex core lines from CFD simulation data. In order to calculate the vortex core radius, most of these tools require the user to manually select a vortex core to perform the calculation. Furthermore, none of them provide the capability to track the growth of a vortex core, which is a measure of how quickly the vortex diffuses over time. This paper introduces an automated approach for tracking the core growth of a blade tip vortex from CFD simulations of rotorcraft in hover. The proposed approach offers an effective method for the quantification and visualization of blade tip vortices in helicopter rotor wakes. Keywords: vortex core, feature extraction, CFD, numerical flow visualization
Study for prediction of rotor/wake/fuselage interference, part 1
NASA Technical Reports Server (NTRS)
Clark, D. R.; Maskew, B.
1985-01-01
A method was developed which allows the fully coupled calculation of fuselage and rotor airloads for typical helicopter configurations in forward flight. To do this, an iterative solution is carried out based on a conventional panel representation of the fuselage and a blade element representation of the rotor where fuselage and rotor singularity strengths are determined simultaneously at each step and the rotor wake is allowed to relax (deform) in response to changes in rotor wake loading and fuselage presence. On completion of the iteration, rotor loading and inflow, fuselage singularity strength (and, hence, pressure and velocity distributions) and rotor wake are all consistent. The results of a fully coupled calculation of the flow around representative helicopter configurations are presented. The effect of fuselage components on the rotor flow field and the overall wake structure is detailed and the aerodynamic interference between the different parts of the aircraft is discussed.
Rotor Vortex Filaments: Living on the Slipstream's Edge
NASA Technical Reports Server (NTRS)
Young, Larry A.
1997-01-01
The purpose of this paper is to gain a better understanding of rotor wake evolution in hover and axial flow by deriving an analytical solution for the time dependent behavior of vortex filament circulation and core size. This solution is applicable only for vortex filaments in the rotor far-wake. A primarily inviscid vortex/shear layer interaction (where the slipstream boundary is modeled as a shear layer) has been identified in this analytical treatment. This vortex/shear layer interaction results in decreasing, vortex filament circulation and core size with time. The inviscid vortex/shear layer interaction is shown, in a first-order treatment, to be of greater magnitude than viscous diffusion effects. The rate of contraction, and ultimate collapse, of the vortex filament core is found to be directly proportional to the rotor inflow velocity. This new insight into vortex filament decay promises to help reconcile several disparate observations made in the literature and will, hopefully, promote new advances in theoretical modeling of rotor wakes.
NASA Technical Reports Server (NTRS)
Johnson, W.
1974-01-01
An analytical model is developed for proprotor aircraft dynamics. The rotor model includes coupled flap-lag bending modes, and blade torsion degrees of freedom. The rotor aerodynamic model is generally valid for high and low inflow, and for axial and nonaxial flight. For the rotor support, a cantilever wing is considered; incorporation of a more general support with this rotor model will be a straight-forward matter.
Utilization of rotor kinetic energy storage for hybrid vehicles
Hsu, John S [Oak Ridge, TN
2011-05-03
A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.
Wake coupling to full potential rotor analysis code
NASA Technical Reports Server (NTRS)
Torres, Francisco J.; Chang, I-Chung; Oh, Byung K.
1990-01-01
The wake information from a helicopter forward flight code is coupled with two transonic potential rotor codes. The induced velocities for the near-, mid-, and far-wake geometries are extracted from a nonlinear rigid wake of a standard performance and analysis code. These, together with the corresponding inflow angles, computation points, and azimuth angles, are then incorporated into the transonic potential codes. The coupled codes can then provide an improved prediction of rotor blade loading at transonic speeds.
Gascooke, Jason R; Virgo, Edwina A; Lawrance, Warren D
2015-01-14
We report a two dimensional, laser induced fluorescence study of the lowest 345 cm(-1) region of S0 toluene. Methyl rotor levels of 00 up to m = 6 and of 201 up to m = 4 are observed. The rotor levels of 00 and 201 have quite different energy spacings that are well fit by a model that includes strong torsion-vibration coupling between them. The model requires that the rotor barrier height be revised from -4.84 cm(-1) (methyl hydrogens in a staggered conformation) to +1.57 cm(-1) (eclipsed conformation). However, the 3a2″ state lies below the 3a1″ state as expected for a staggered conformation due to energy shifts associated with the torsion-vibration coupling. It is shown that the rotor wave-functions exhibit little localization at the torsional energy minima. The variation in the m = 0 wavefunction probability distribution with torsional angle is shown to be very similar for the previously accepted negative V6 value and the torsion-vibration coupling model as this coupling shifts the phase of the wavefunction by 30° compared with its phase for V6 alone. The presence of a strong Δυ = ± 1 torsion-vibration coupling involving the lowest frequency vibrational mode provides a potential pathway for rapid intramolecular vibrational energy redistribution at higher energies.
Coupling with concentric contact around motor shaft for line start synchronous motor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melfi, Michael J.; Burdeshaw, Galen E.
A method comprises providing a line-start synchronous motor. The motor has a stator, a rotor core disposed within the stator, and a motor shaft. In accordance with a step of the method, a coupling for coupling a load to the motor is provided. The coupling has a motor shaft attachment portion configured to provide substantially concentric contact around the shaft at the end of the motor shaft. The coupling has a load attachment portion configured to operatively connect to a load. In accordance with a step of the method, a load is coupled to the motor with the coupling, andmore » driven from start to at least near synchronous speed during steady state operation of the motor with a load coupled thereto. The motor shaft attachment portion may comprise a bushing assembly with matching and opposed tapered surfaces that cooperate to secure the motor shaft attachment portion around the motor shaft.« less
NASA Technical Reports Server (NTRS)
Bousman, William G.
1988-01-01
Three cases were selected for correlation from an experiment that examined the aeromechanical stability of a small-scale model of a hingeless rotor and fuselage in hover. The first case examined the stability of a configuration with 0 degree blade pitch so that coupling between dynamic modes was minimized. The second case was identical to the first except the blade pitch was set to 9 degrees which provides flap-lag coupling of the rotor modes. The third case had 9 degrees of blade pitch and also included negative pitch-lag coupling, and therefore was the most highly coupled configuration. Analytical calculations were made by Bell Helicopter Textron, Boeing Vertol, Hughes Helicopters, Sikorsky Aircraft, the U.S. Army Aeromechanics Laboratory, and NASA Ames Research Center and compared to some or all of the experimental cases. Overall, the correlation ranged from very poor-to-poor to good.
An Experimental Investigation of Steady and Unsteady Flow Field in an Axial Flow Turbine
NASA Technical Reports Server (NTRS)
Zaccaria, M.; Lakshminarayana, B.
1997-01-01
Measurements were made in a large scale single stage turbine facility. Within the nozzle passage measurements were made using a five hole probe, a two-component Laser Doppler Velocimeter (LDV), and a single sensor hot wire probe. These measurements showed weak secondary flows at midchord, and two secondary flow loss cores at the nozzle exit. The casing vortex loss core was the larger of the two. At the exit radial inward flow was found over the entire passage, and was more pronounced in the wake. Nozzle wake decay was found to be more rapid than for an isolated vane row due to the rotor's presence. The midspan rotor flow field was measured using a two-component LDV. Measurements were made from upstream of the rotor to a chord behind the rotor. The distortion of the nozzle wake as it passed through the rotor blade row was determined. The unsteadiness in the rotor flow field was determined. The decay of the rotor wake was also characterized.
Fluid powered linear piston motor with harmonic coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, David W.
2016-09-20
A motor is disclosed that includes a module assembly including a piston that is axially cycled. The piston axial motion is coupled to torque couplers that convert the axial motion into rotary motion. The torque couplers are coupled to a rotor to rotate the rotor.
NASA Technical Reports Server (NTRS)
Venkatesan, C.; Friedmann, P. P.
1987-01-01
This report is a sequel to the earlier report titled, Aeroelastic Effects in Multi-Rotor Vehicles with Application to Hybrid Heavy Lift System, Part 1: Formulation of Equations of Motion (NASA CR-3822). The trim and stability equations are presented for a twin rotor system with a buoyant envelope and an underslung load attached to a flexible supporting structure. These equations are specialized for the case of hovering flight. A stability analysis, for such a vehicle with 31 degrees of freedom, yields a total of 62 eigenvalues. A careful parametric study is performed to identify the various blade and vehicle modes, as well as the coupling between various modes. Finally, it is shown that the coupled rotor/vehicle stability analysis provides information on both the aeroelastic stability as well as complete vehicle dynamic stability. Also presented are the results of an analytical study aimed at predicting the aeromechanical stability of a single rotor helicopter in ground resonance. The theoretical results are found to be in good agreement with the experimental results, thereby validating the analytical model for the dynamics of the coupled rotor/support system.
Application of a High-Fidelity Icing Analysis Method to a Model-Scale Rotor in Forward Flight
NASA Technical Reports Server (NTRS)
Narducci, Robert; Orr, Stanley; Kreeger, Richard E.
2012-01-01
An icing analysis process involving the loose coupling of OVERFLOW-RCAS for rotor performance prediction and with LEWICE3D for thermal analysis and ice accretion is applied to a model-scale rotor for validation. The process offers high-fidelity rotor analysis for the noniced and iced rotor performance evaluation that accounts for the interaction of nonlinear aerodynamics with blade elastic deformations. Ice accumulation prediction also involves loosely coupled data exchanges between OVERFLOW and LEWICE3D to produce accurate ice shapes. Validation of the process uses data collected in the 1993 icing test involving Sikorsky's Powered Force Model. Non-iced and iced rotor performance predictions are compared to experimental measurements as are predicted ice shapes.
Study for prediction of rotor/wake/fuselage interference. Part 2: Program users guide
NASA Technical Reports Server (NTRS)
Clark, D. R.; Maskew, B.
1985-01-01
A method was developed which permits the fully coupled calculation of fuselage and rotor airloads for typical helicopter configurations in forward flight. To do this, an iterative solution is carried out based on a conventional panel representation of the fuselage and a blade element representation of the rotor where fuselage and rotor singularity strengths are determined simultaneously at each step and the rotor wake is allowed to relax (deform) in response to changes in rotor wake loading and fuselage presence. On completion of the iteration, rotor loading and inflow, fuselage singularity strength (and, hence, pressure and velocity distributions) and rotor wake are all consistent. The results of a fully coupled calculation of the flow around representative helicopter configurations are presented. The effect of fuselage components on the rotor flow field and the overall wake structure is discussed as well as the aerodynamic interference between the different parts of the aircraft. Details of the computer program are given.
Design of composite flywheel rotors with soft cores
NASA Astrophysics Data System (ADS)
Kim, Taehan
A flywheel is an inertial energy storage system in which the energy or momentum is stored in a rotating mass. Over the last twenty years, high-performance flywheels have been developed with significant improvements, showing potential as energy storage systems in a wide range of applications. Despite the great advances in fundamental knowledge and technology, the current successful rotors depend mainly on the recent developments of high-stiffness and high-strength carbon composites. These composites are expensive and the cost of flywheels made of them is high. The ultimate goal of the study presented here is the development of a cost-effective composite rotor made of a hybrid material. In this study, two-dimensional and three-dimensional analysis tools were developed and utilized in the design of the composite rim, and extensive spin tests were performed to validate the designed rotors and give a sound basis for large-scale rotor design. Hybrid rims made of several different composite materials can effectively reduce the radial stress in the composite rim, which is critical in the design of composite rims. Since the hybrid composite rims we studied employ low-cost glass fiber for the inside of the rim, and the result is large radial growth of the hybrid rim, conventional metallic hubs cannot be used in this design. A soft core developed in this study was successfully able to accommodate the large radial growth of the rim. High bonding strength at the shaft-to-core interface was achieved by the soft core being molded directly onto the steel shaft, and a tapered geometry was used to avoid stress concentrations at the shaft-to-core interface. Extensive spin tests were utilized for reverse engineering of the design of composite rotors, and there was good correlation between tests and analysis. A large-scale composite rotor for ground transportation is presented with the performance levels predicted for it.
NASA Technical Reports Server (NTRS)
Corrigan, J. C.; Cronkhite, J. D.; Dompka, R. V.; Perry, K. S.; Rogers, J. P.; Sadler, S. G.
1989-01-01
Under a research program designated Design Analysis Methods for VIBrationS (DAMVIBS), existing analytical methods are used for calculating coupled rotor-fuselage vibrations of the AH-1G helicopter for correlation with flight test data from an AH-1G Operational Load Survey (OLS) test program. The analytical representation of the fuselage structure is based on a NASTRAN finite element model (FEM), which has been developed, extensively documented, and correlated with ground vibration test. One procedure that was used for predicting coupled rotor-fuselage vibrations using the advanced Rotorcraft Flight Simulation Program C81 and NASTRAN is summarized. Detailed descriptions of the analytical formulation of rotor dynamics equations, fuselage dynamic equations, coupling between the rotor and fuselage, and solutions to the total system of equations in C81 are included. Analytical predictions of hub shears for main rotor harmonics 2p, 4p, and 6p generated by C81 are used in conjunction with 2p OLS measured control loads and a 2p lateral tail rotor gearbox force, representing downwash impingement on the vertical fin, to excite the NASTRAN model. NASTRAN is then used to correlate with measured OLS flight test vibrations. Blade load comparisons predicted by C81 showed good agreement. In general, the fuselage vibration correlations show good agreement between anslysis and test in vibration response through 15 to 20 Hz.
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Mccarthy, Thomas R.; Madden, John F., III
1992-01-01
An optimization procedure is developed for the design of high speed prop-rotors to be used in civil tiltrotor applications. The goal is to couple aerodynamic performance, aeroelastic stability, and structural design requirements inside a closed-loop optimization procedure. The objective is to minimize the gross weight and maximize the propulsive efficiency in high speed cruise. Constraints are imposed on the rotor aeroelastic stability in both hover and cruise and rotor figure of merit in hover. Both structural and aerodynamic design variables are used.
NASA Technical Reports Server (NTRS)
Perkins, Gerald S. (Inventor)
1980-01-01
A linear actuator which can apply high forces is described, which includes a reciprocating rod having a threaded portion engaged by a nut that is directly coupled to the rotor of an electric motor. The nut is connected to the rotor in a manner that minimizes loading on the rotor, by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded rod portion, with an oilcarrying groove in the nut being interrupted.
Extension-twist coupling of composite circular tubes with application to tilt rotor blade design
NASA Technical Reports Server (NTRS)
Nixon, Mark W.
1987-01-01
This investigation was conducted to determine if twist deformation required for the design of full-scale extension-twist-coupled tilt-rotor blades can be achieved within material design limit loads, and to demonstrate the accuracy of a coupled-beam analysis in predicting twist deformations. Two extension-twist-coupled tilt-rotor blade designs were developed based on theoretically optimum aerodynamic twist distributions. The designs indicated a twist rate requirement of between .216 and .333 deg/in. Agreement between axial tests and analytical predictions was within 10 percent at design limit loads. Agreement between the torsion tests and predictions was within 11 percent.
Rotor blade system with reduced blade-vortex interaction noise
NASA Technical Reports Server (NTRS)
Leishman, John G. (Inventor); Han, Yong Oun (Inventor)
2005-01-01
A rotor blade system with reduced blade-vortex interaction noise includes a plurality of tube members embedded in proximity to a tip of each rotor blade. The inlets of the tube members are arrayed at the leading edge of the blade slightly above the chord plane, while the outlets are arrayed at the blade tip face. Such a design rapidly diffuses the vorticity contained within the concentrated tip vortex because of enhanced flow mixing in the inner core, which prevents the development of a laminar core region.
Passive control of discrete-frequency tones generated by coupled detuned cascades
NASA Astrophysics Data System (ADS)
Sawyer, S.; Fleeter, S.
2003-07-01
Discrete-frequency tones generated by rotor-stator interactions are of particular concern in the design of fans and compressors. Classical theory considers an isolated flat-plate cascade of identical uniformly spaced airfoils. The current analysis extends this tuned isolated cascade theory to consider coupled aerodynamically detuned cascades where aerodynamic detuning is accomplished by changing the chord of alternate rotor blades and stator vanes. In a coupled cascade analysis, the configuration of the rotor influences the downstream acoustic response of the stator, and the stator configuration influences the upstream acoustic response of the rotor. This coupled detuned cascade unsteady aerodynamic model is first applied to a baseline tuned stage. This baseline stage is then aerodynamically detuned by replacing alternate rotor blades and stator vanes with decreased chord airfoils. The nominal aerodynamically detuned stage configuration is then optimized, with the stage acoustic response decreased 13 dB upstream and 1 dB downstream at the design operating condition. A reduction in the acoustic response of the optimized aerodynamically detuned stage is then demonstrated over a range of operating conditions.
Rotor Wake Vortex Definition: Initial Evaluation of 3-C PIV Results of the Hart-II Study
NASA Technical Reports Server (NTRS)
Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughes; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee
2002-01-01
An initial evaluation is made of extensive three-component (3C) particle image velocimetry (PIV) measurements within the wake across a rotor disk plane. The model is a 40 percent scale BO-105 helicopter main rotor in forward flight simulation. This study is part of the HART II test program conducted in the German-Dutch Wind Tunnel (DNW). Included are wake vortex field measurements over the advancing and retreating sides of the rotor operating at a typical descent landing condition important for impulsive blade-vortex interaction (BVI) noise. Also included are advancing side results for rotor angle variations from climb to steep descent. Using detailed PIV vector maps of the vortex fields, methods of extracting key vortex parameters are examined and a new method was developed and evaluated. An objective processing method, involving a center-of-vorticity criterion and a vorticity 'disk' integration, was used to determine vortex core size, strength, core velocity distribution characteristics, and unsteadiness. These parameters are mapped over the rotor disk and offer unique physical insight for these parameters of importance for rotor noise and vibration prediction.
NASA Technical Reports Server (NTRS)
Sopher, R.
1975-01-01
The equations of motion are derived for a multiblade rotor. A high twist capability and coupled flatwise-edgewise assumed normal modes are employed instead of uncoupled flatwise - edgewise assumed normal models. The torsion mode is uncoupled. Support system models, consisting of complete helicopters in free flight, or grounded flexible supports, arbitrary rotor-induced inflow, and arbitrary vertical gust models are also used.
Performance of twist-coupled blades on variable speed rotors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobitz, D.W.; Veers, P.S.; Laino, D.J.
1999-12-07
The load mitigation and energy capture characteristics of twist-coupled HAWT blades that are mounted on a variable speed rotor are investigated in this paper. These blades are designed to twist toward feather as they bend with pretwist set to achieve a desirable twist distribution at rated power. For this investigation, the ADAMS-WT software has been modified to include blade models with bending-twist coupling. Using twist-coupled and uncoupled models, the ADAMS software is exercised for steady wind environments to generate C{sub p} curves at a number of operating speeds to compare the efficiencies of the two models. The ADAMS software ismore » also used to generate the response of a twist-coupled variable speed rotor to a spectrum of stochastic wind time series. This spectrum contains time series with two mean wind speeds at two turbulence levels. Power control is achieved by imposing a reactive torque on the low speed shaft proportional to the RPM squared with the coefficient specified so that the rotor operates at peak efficiency in the linear aerodynamic range, and by limiting the maximum RPM to take advantage of the stall controlled nature of the rotor. Fatigue calculations are done for the generated load histories using a range of material exponents that represent materials from welded steel to aluminum to composites, and results are compared with the damage computed for the rotor without twist-coupling. Results indicate that significant reductions in damage are achieved across the spectrum of applied wind loading without any degradation in power production.« less
1983-05-01
DESIGN PROCEDURE M. S. IIAndal, University of Vermont, Burlington, VT Machinery Dynamics ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF ROTATING BLADE... methodology to accurately predict rotor vibratory loads and has recently been initiated for detail design and bench test- coupled rotor/airframe vibrations... design methodology , a trating on the basic disciplines of aerodynamics and struc. coupled rotor/airframe vibration analysis has been developed. tural
Visualization and Quantification of Rotor Tip Vortices in Helicopter Flows
NASA Technical Reports Server (NTRS)
Kao, David L.; Ahmad, Jasim U.; Holst, Terry L.
2015-01-01
This paper presents an automated approach for effective extraction, visualization, and quantification of vortex core radii from the Navier-Stokes simulations of a UH-60A rotor in forward flight. We adopt a scaled Q-criterion to determine vortex regions and then perform vortex core profiling in these regions to calculate vortex core radii. This method provides an efficient way of visualizing and quantifying the blade tip vortices. Moreover, the vortices radii are displayed graphically in a plane.
Stagger angle dependence of inertial and elastic coupling in bladed disks
NASA Technical Reports Server (NTRS)
Crawley, E. F.; Mokadam, D. R.
1984-01-01
Conditions which necessitate the inclusion of disk and shaft flexibility in the analysis of blade response in rotating blade-disk-shaft systems are derived in terms of nondimensional parameters. A simple semianalytical Rayleigh-Ritz model is derived in which the disk possesses all six rigid body degrees of freedom, which are elastically constrained by the shaft. Inertial coupling by the rigid body motion of the disk on a flexible shaft and out-of-plane elastic coupling due to disk flexure are included. Frequency ratios and mass ratios, which depend on the stagger angle, are determined for three typical rotors: a first stage high-pressure core compressor, a high bypass ratio fan, and an advanced turboprop. The stagger angle controls the degree of coupling in the blade-disk system. In the blade-disk-shaft system, the stagger angle determines whether blade-disk motion couples principally to the out-of-plane or in-plane motion of the disk on the shaft. The Ritz analysis shows excellent agreement with experimental results.
Coupled CFD/CSD Analysis of an Active-Twist Rotor in a Wind Tunnel with Experimental Validation
NASA Technical Reports Server (NTRS)
Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K.
2015-01-01
An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code is presented for a second-generation active-twist rotor. High fidelity Navier-Stokes results for three configurations: an isolated rotor, a rotor with fuselage, and a rotor with fuselage mounted in a wind tunnel, are compared to lifting-line theory based comprehensive rotorcraft code calculations and wind tunnel data. Results indicate that CFD/CSD predictions of flapwise bending moments are in good agreement with wind tunnel measurements for configurations with a fuselage, and that modeling the wind tunnel environment does not significantly enhance computed results. Actuated rotor results for the rotor with fuselage configuration are also validated for predictions of vibratory blade loads and fixed-system vibratory loads. Varying levels of agreement with wind tunnel measurements are observed for blade vibratory loads, depending on the load component (flap, lag, or torsion) and the harmonic being examined. Predicted trends in fixed-system vibratory loads are in good agreement with wind tunnel measurements.
NASA Astrophysics Data System (ADS)
Zhang, Xiayang; Zhu, Ming; Zhao, Meijuan; Wu, Zhe
2018-05-01
Based on a typical wing-rotor thrust model on the airship, the dynamic influence of the gyroscopic effects from the tip rotor acting on the overall coupled system has been analyzed. Meanwhile, the flexibility at the capsule boundary has been studied, as well. Hamilton's principle is employed to derive the general governing equations and the numerical Rayleigh-Ritz method is finally chosen in actual frequency computations. A new set of shape functions are put forward and verified which take most of the couplings among dimensions into account. The parameter studies are also conducted to make deep investigations. The results demonstrate that the inherent frequencies are significantly affected by the rotor speed and the flexible capsule condition. When rotor revolves, the modal shapes have reached into complex states and the components of each mode will change with the increment of rotor speed. The flexibility will also greatly reduce the entire frequencies compared with the rigid case. It is also demonstrated that the inherent property will be significantly affected by the mounting geometry, rotor inertia, the structural stiffness, and rotor speed.
Coupled rotor/airframe vibration analysis
NASA Technical Reports Server (NTRS)
Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.
1982-01-01
A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.
Javiya, Umesh; Chew, John; Hills, Nick; Dullenkopf, Klaus; Scanlon, Timothy
2013-05-01
The prediction of the preswirl cooling air delivery and disk metal temperature are important for the cooling system performance and the rotor disk thermal stresses and life assessment. In this paper, standalone 3D steady and unsteady computation fluid dynamics (CFD), and coupled FE-CFD calculations are presented for prediction of these temperatures. CFD results are compared with previous measurements from a direct transfer preswirl test rig. The predicted cooling air temperatures agree well with the measurement, but the nozzle discharge coefficients are under predicted. Results from the coupled FE-CFD analyses are compared directly with thermocouple temperature measurements and with heat transfer coefficients on the rotor disk previously obtained from a rotor disk heat conduction solution. Considering the modeling limitations, the coupled approach predicted the solid metal temperatures well. Heat transfer coefficients on the rotor disk from CFD show some effect of the temperature variations on the heat transfer coefficients. Reasonable agreement is obtained with values deduced from the previous heat conduction solution.
Gonzales, Matthew J.; Vincent, Kevin P.; Rappel, Wouter-Jan; Narayan, Sanjiv M.; McCulloch, Andrew D.
2014-01-01
Aims The aim of this study was to investigate structural contributions to the maintenance of rotors in human atrial fibrillation (AF) and possible mechanisms of termination. Methods and results A three-dimensional human biatrial finite element model based on patient-derived computed tomography and arrhythmia observed at electrophysiology study was used to study AF. With normal physiological electrical conductivity and effective refractory periods (ERPs), wave break failed to sustain reentrant activity or electrical rotors. With depressed excitability, decreased conduction anisotropy, and shorter ERP characteristic of AF, reentrant rotors were readily maintained. Rotors were transiently or permanently trapped by fibre discontinuities on the lateral wall of the right atrium near the tricuspid valve orifice and adjacent to the crista terminalis, both known sites of right atrial arrhythmias. Modelling inexcitable regions near the rotor tip to simulate fibrosis anchored the rotors, converting the arrhythmia to macro-reentry. Accordingly, increasing the spatial core of inexcitable tissue decreased the frequency of rotation, widened the excitable gap, and enabled an external wave to impinge on the rotor core and displace the source. Conclusion These model findings highlight the importance of structural features in rotor dynamics and suggest that regions of fibrosis may anchor fibrillatory rotors. Increasing extent of fibrosis and scar may eventually convert fibrillation to excitable gap reentry. Such macro-reentry can then be eliminated by extending the obstacle or by external stimuli that penetrate the excitable gap. PMID:25362167
Dynamical localization of coupled relativistic kicked rotors
NASA Astrophysics Data System (ADS)
Rozenbaum, Efim B.; Galitski, Victor
2017-02-01
A periodically driven rotor is a prototypical model that exhibits a transition to chaos in the classical regime and dynamical localization (related to Anderson localization) in the quantum regime. In a recent work [Phys. Rev. B 94, 085120 (2016), 10.1103/PhysRevB.94.085120], A. C. Keser et al. considered a many-body generalization of coupled quantum kicked rotors, and showed that in the special integrable linear case, dynamical localization survives interactions. By analogy with many-body localization, the phenomenon was dubbed dynamical many-body localization. In the present work, we study nonintegrable models of single and coupled quantum relativistic kicked rotors (QRKRs) that bridge the gap between the conventional quadratic rotors and the integrable linear models. For a single QRKR, we supplement the recent analysis of the angular-momentum-space dynamics with a study of the spin dynamics. Our analysis of two and three coupled QRKRs along with the proved localization in the many-body linear model indicate that dynamical localization exists in few-body systems. Moreover, the relation between QRKR and linear rotor models implies that dynamical many-body localization can exist in generic, nonintegrable many-body systems. And localization can generally result from a complicated interplay between Anderson mechanism and limiting integrability, since the many-body linear model is a high-angular-momentum limit of many-body QRKRs. We also analyze the dynamics of two coupled QRKRs in the highly unusual superballistic regime and find that the resonance conditions are relaxed due to interactions. Finally, we propose experimental realizations of the QRKR model in cold atoms in optical lattices.
Simplified Hybrid-Secondary Uncluttered Machine And Method
Hsu, John S [Oak Ridge, TN
2005-05-10
An electric machine (40, 40') has a stator (43) and a rotor (46) and a primary air gap (48) has secondary coils (47c, 47d) separated from the rotor (46) by a secondary air gap (49) so as to induce a slip current in the secondary coils (47c, 47d). The rotor (46, 76) has magnetic brushes (A, B, C, D) or wires (80) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments. A method of providing a slip energy controller is also disclosed.
Finite element simulation of core inspection in helicopter rotor blades using guided waves.
Chakrapani, Sunil Kishore; Barnard, Daniel; Dayal, Vinay
2015-09-01
This paper extends the work presented earlier on inspection of helicopter rotor blades using guided Lamb modes by focusing on inspecting the spar-core bond. In particular, this research focuses on structures which employ high stiffness, high density core materials. Wave propagation in such structures deviate from the generic Lamb wave propagation in sandwich panels. To understand the various mode conversions, finite element models of a generalized helicopter rotor blade were created and subjected to transient analysis using a commercial finite element code; ANSYS. Numerical simulations showed that a Lamb wave excited in the spar section of the blade gets converted into Rayleigh wave which travels across the spar-core section and mode converts back into Lamb wave. Dispersion of Rayleigh waves in multi-layered half-space was also explored. Damage was modeled in the form of a notch in the core section to simulate a cracked core, and delamination was modeled between the spar and core material to simulate spar-core disbond. Mode conversions under these damaged conditions were examined numerically. The numerical models help in assessing the difficulty of using nondestructive evaluation for complex structures and also highlight the physics behind the mode conversions which occur at various discontinuities. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pawar, Prashant M.; Jung, Sung Nam
2008-12-01
In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades.
Study on a New Combination Method and High Efficiency Outer Rotor Type Permanent Magnet Motors
NASA Astrophysics Data System (ADS)
Enomoto, Yuji; Kitamura, Masashi; Motegi, Yasuaki; Andoh, Takashi; Ochiai, Makoto; Abukawa, Toshimi
The segment stator core, high space factor coil, and high efficiency magnet are indispensable technologies in the development of compact and a high efficiency motors. But adoption of the segment stator core and high space factor coil has not progressed in the field of outer rotor type motors, for the reason that the inner components cannot be laser welded together. Therefore, we have examined a segment stator core combination technology for the purposes of getting a large increase in efficiency and realizing miniaturization. We have also developed a characteristic estimation method which provides the most suitable performance for segment stator core motors.
NASA Technical Reports Server (NTRS)
Friedmann, P. P.
1984-01-01
An aeroelastic model suitable for the study of aeroelastic and structural dynamic effects in multirotor vehicles simulating a hybrid heavy lift vehicle was developed and applied to the study of a number of diverse problems. The analytical model developed proved capable of modeling a number of aeroelastic problems, namely: (1) isolated blade aeroelastic stability in hover and forward flight, (2) coupled rotor/fuselage aeromechanical problem in air or ground resonance, (3) tandem rotor coupled rotor/fuselage problems, and (4) the aeromechanical stability of a multirotor vehicle model representing a hybrid heavy lift airship (HHLA). The model was used to simulate the ground resonance boundaries of a three bladed hingeless rotor model, including the effect of aerodynamic loads, and the theoretical predictions compared well with experimental results. Subsequently the model was used to study the aeromechanical stability of a vehicle representing a hybrid heavy lift airship, and potential instabilities which could occur for this type of vehicle were identified. The coupling between various blade, supporting structure and rigid body modes was identified.
Vibration modelling and verifications for whole aero-engine
NASA Astrophysics Data System (ADS)
Chen, G.
2015-08-01
In this study, a new rotor-ball-bearing-casing coupling dynamic model for a practical aero-engine is established. In the coupling system, the rotor and casing systems are modelled using the finite element method, support systems are modelled as lumped parameter models, nonlinear factors of ball bearings and faults are included, and four types of supports and connection models are defined to model the complex rotor-support-casing coupling system of the aero-engine. A new numerical integral method that combines the Newmark-β method and the improved Newmark-β method (Zhai method) is used to obtain the system responses. Finally, the new model is verified in three ways: (1) modal experiment based on rotor-ball bearing rig, (2) modal experiment based on rotor-ball-bearing-casing rig, and (3) fault simulations for a certain type of missile turbofan aero-engine vibration. The results show that the proposed model can not only simulate the natural vibration characteristics of the whole aero-engine but also effectively perform nonlinear dynamic simulations of a whole aero-engine with faults.
Gonzales, Matthew J; Vincent, Kevin P; Rappel, Wouter-Jan; Narayan, Sanjiv M; McCulloch, Andrew D
2014-11-01
The aim of this study was to investigate structural contributions to the maintenance of rotors in human atrial fibrillation (AF) and possible mechanisms of termination. A three-dimensional human biatrial finite element model based on patient-derived computed tomography and arrhythmia observed at electrophysiology study was used to study AF. With normal physiological electrical conductivity and effective refractory periods (ERPs), wave break failed to sustain reentrant activity or electrical rotors. With depressed excitability, decreased conduction anisotropy, and shorter ERP characteristic of AF, reentrant rotors were readily maintained. Rotors were transiently or permanently trapped by fibre discontinuities on the lateral wall of the right atrium near the tricuspid valve orifice and adjacent to the crista terminalis, both known sites of right atrial arrhythmias. Modelling inexcitable regions near the rotor tip to simulate fibrosis anchored the rotors, converting the arrhythmia to macro-reentry. Accordingly, increasing the spatial core of inexcitable tissue decreased the frequency of rotation, widened the excitable gap, and enabled an external wave to impinge on the rotor core and displace the source. These model findings highlight the importance of structural features in rotor dynamics and suggest that regions of fibrosis may anchor fibrillatory rotors. Increasing extent of fibrosis and scar may eventually convert fibrillation to excitable gap reentry. Such macro-reentry can then be eliminated by extending the obstacle or by external stimuli that penetrate the excitable gap. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
T700 power turbine rotor multiplane/multispeed balancing demonstration
NASA Technical Reports Server (NTRS)
Burgess, G.; Rio, R.
1979-01-01
Research was conducted to demonstrate the ability of influence coefficient based multispeed balancing to control rotor vibration through bending criticals. Rotor dynamic analyses were conducted of the General Electric T700 power turbine rotor. The information was used to generate expected rotor behavior for optimal considerations in designing a balance rig and a balance technique. The rotor was successfully balanced 9500 rpm. Uncontrollable coupling behavior prevented observations through the 16,000 rpm service speed. The balance technique is practical and with additional refinement it can meet production standards.
Proposed solution methodology for the dynamically coupled nonlinear geared rotor mechanics equations
NASA Technical Reports Server (NTRS)
Mitchell, L. D.; David, J. W.
1983-01-01
The equations which describe the three-dimensional motion of an unbalanced rigid disk in a shaft system are nonlinear and contain dynamic-coupling terms. Traditionally, investigators have used an order analysis to justify ignoring the nonlinear terms in the equations of motion, producing a set of linear equations. This paper will show that, when gears are included in such a rotor system, the nonlinear dynamic-coupling terms are potentially as large as the linear terms. Because of this, one must attempt to solve the nonlinear rotor mechanics equations. A solution methodology is investigated to obtain approximate steady-state solutions to these equations. As an example of the use of the technique, a simpler set of equations is solved and the results compared to numerical simulations. These equations represent the forced, steady-state response of a spring-supported pendulum. These equations were chosen because they contain the type of nonlinear terms found in the dynamically-coupled nonlinear rotor equations. The numerical simulations indicate this method is reasonably accurate even when the nonlinearities are large.
Collective orientational dynamics of pinned chemically-propelled nanorotors
NASA Astrophysics Data System (ADS)
Robertson, Bryan; Stark, Holger; Kapral, Raymond
2018-04-01
Collections of chemically propelled nanomotors free to move in solution can form dynamic clusters with diverse properties as a result of interactions through hydrodynamic flow and concentration fields, as well as direct intermolecular interactions between motors. Here, we study the collective rotational behavior of pinned sphere-dimer motors where direct motor-motor interactions play no role. Since the centers of mass of the motors are pinned, they cannot execute directed translational motion, but they can pump fluid and rotate; thus, the rotors remain coupled through hydrodynamic and chemical fields. Using a microscopic simulation method that accounts for coupling through both these fields, we show that different rotor configurations with a high degree of correlation exist and their forms depend on the nature of the fluid-rotor interactions. The correlations are greatly reduced or completely destroyed when the chemical interactions are removed, indicating that hydrodynamic coupling, while present, plays a lesser role in determining the collective rotor dynamics. These conclusions are supported by Langevin dynamics simulations that neglect hydrodynamics and include an approximate form of coupling through chemical fields.
Design of a Modular E-Core Flux Concentrating Axial Flux Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal
2015-09-02
In this paper a novel E-Core axial flux machine is proposed. The machine has a double stator-single rotor configuration with flux concentrating ferrite magnets, and pole windings across each leg of an E-Core stator. E-Core stators with the proposed flux-concentrating rotor arrangement result in better magnet utilization and higher torque density. The machine also has a modular structure facilitating simpler construction. This paper presents a single phase and a three-phase version of the E-Core machine. Case study for a 1.1 kW, 400 rpm machine for both the single phase and three-phase axial flux machine is presented. The results are verifiedmore » through 3D finite element analysis.« less
NASA Astrophysics Data System (ADS)
Bonkobara, Yasuhiro; Mori, Hiroki; Kondou, Takahiro; Ayabe, Takashi
Self-synchronized phenomena generated in rotor-type oscillators mounted on a straight-line spring-mass system are investigated experimentally and analytically. In the present study, we examine the occurrence region and pattern of self-synchronization in two types of coupled oscillators: rigidly coupled oscillators and elastically coupled oscillators. It is clarified that the existence regions of stable solutions are governed mainly by the linear natural frequency of each spring-mass system. The results of numerical analysis confirm that the self-synchronized solutions of the elastically coupled oscillators correspond to those of the rigidly coupled oscillators. In addition, the results obtained in the present study are compared with the previously reported results for a metronome system and a moving apparatus and the different properties of the phenomena generated in the rotor-type oscillators and the pendulum-type oscillators are shown in terms of the construction of branches of self-synchronized solution and the stability.
System and method for cooling a super-conducting device
Bray, James William [Niskayuna, NY; Steinbach, Albert Eugene [Schenectady, NY; Dawson, Richard Nils [Voorheesville, NY; Laskaris, Evangelos Trifon [Schenectady, NY; Huang, Xianrul [Clifton Park, NY
2008-01-08
A system and method for cooling a superconductive rotor coil. The system comprises a rotatable shaft coupled to the superconductive rotor coil. The rotatable shaft may comprise an axial passageway extending through the rotatable shaft and a first passageway extending through a wall of the rotatable shaft to the axial passageway. The axial passageway and the first passageway are operable to convey a cryogenic fluid to the superconductive rotor coil through the wall of the rotatable shaft. A cryogenic transfer coupling may be provided to supply cryogenic fluid to the first passageway.
Helicopter aeroelastic stability and response - Current topics and future trends
NASA Technical Reports Server (NTRS)
Friedmann, Peretz P.
1990-01-01
This paper presents several current topics in rotary wing aeroelasticity and concludes by attempting to anticipate future trends and developments. These topics are: (1) the role of geometric nonlinearities; (2) structural modeling, and aeroelastic analysis of composite rotor blades; (3) aeroelastic stability and response in forward flight; (4) modeling of coupled rotor/fuselage aeromechanical problems and their active control; and (5) the coupled rotor-fuselage vibration problem and its alleviation by higher harmonic control. Selected results illustrating the fundamental aspects of these topics are presented. Future developments are briefly discussed.
Marra, John Joseph; Wessell, Brian J.; Liang, George
2013-03-05
A sealing apparatus in a gas turbine. The sealing apparatus includes a seal housing apparatus coupled to a disc/rotor assembly so as to be rotatable therewith during operation of the gas turbine. The seal housing apparatus comprises a base member, a first leg portion, a second leg portion, and spanning structure. The base member extends generally axially between forward and aft rows of rotatable blades and is positioned adjacent to a row of stationary vanes. The first leg portion extends radially inwardly from the base member and is coupled to the disc/rotor assembly. The second leg portion is axially spaced from the first leg portion, extends radially inwardly from the base member, and is coupled to the disc/rotor assembly. The spanning structure extends between and is rigidly coupled to each of the base member, the first leg portion, and the second leg portion.
Servo Driven Corotation: Development of AN Inertial Clock.
NASA Astrophysics Data System (ADS)
Cheung, Wah-Kwan Stephen
An inertial clock to test non-metricity of gravity is proposed here. A first, room-temperature, servo corotation -protected, double magnetically suspended precision rotor system is developed for this purpose. The specific goal was to exhibit the properties of such a clock in its entirety at whatever level of precision was achievable. A monolithic system has been completed for these preliminary studies. It includes particular development of individual experimental sub-systems (a hybrid double magnetic suspension; a diffusion pumping system; a microcomputer -controlled eddy-current drive system; and the angular period measuring schemes for the doubly suspended rotors). Double magnetic suspension had been investigated by Beams for other purposes. The upper transducer is optical but parametrized and the lower transducer employs the frequency modulation characteristic of a LC tank circuit. The doubly suspended rotors corotate so that the upper rotor is servoed to rotate at the same angular velocity as that of the lower rotor. This creates a "drag free" environment for the lower rotor and effectively eliminates the gas drag on the lower rotor. Consequently, the decay time constant of the lower rotor increases. With other means of protection, the lower rotor will then, with perfect system operation, suffer no drag and therefore become the inertial time keeper. A commercial microcomputer is introduced to execute the servo-corotation. The tests thus far are, with one exception, run at atmospheric pressure. An idealized analysis for open and closed loop corotation is shown. Such analysis includes only the viscous drag acting on the corotating rotors. The analysis suggests that angular position control be added to the present feedback drive which is of derivative nature only. Open and closed corotation runs show that a strong torsional coupling besides that of the gas drag exists between the rotors. When misalignment of the support pole pieces is deliberately made significant, a stronger coupling between the rotors results. The coupling is suspected to be magnetic in nature. The complicated geometry of the double magnetic suspension scheme makes it difficult to evaluate the known mechanical cranking effect applied to this situation.
Torque ripple reduction in electric machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Patel Bhageerath; Huh, Kum-Kang; El-Refaie, Ayman Mohamed Fawzi
An electric machine, such as an Internal Permanent magnet or Synchronous Reluctance machine, having X phases, that includes a stator assembly, having M slots, with a stator core and stator teeth, that is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface that defines a cavity; and a rotor assembly, having N poles, disposed within the cavity which is configured to rotate about the longitudinal axis, wherein the rotor assembly includes a shaft, a rotor core located circumferentially around the shaft. The machinemore » is configured such that a value k=M/(X*N) wherein k is a non-integer greater than about 1.3. The electric machine may alternatively, or additionally, include a non-uniformed gap between the exterior surface of the rotor spokes and the interior stator surface of the stator.« less
Closed continuous-flow centrifuge rotor
Breillatt, Jr., Julian P.; Remenyik, Carl J.; Sartory, Walter K.; Thacker, Louis H.; Penland, William Z.
1976-01-01
A blood separation centrifuge rotor having a generally parabolic core disposed concentrically and spaced apart within a housing having a similarly shaped cavity. Blood is introduced through a central inlet and into a central passageway enlarged downwardly to decrease the velocity of the entrant blood. Septa are disposed inside the central passageway to induce rotation of the entrant blood. A separation chamber is defined between the core and the housing wherein the whole blood is separated into red cell, white cell, and plasma zones. The zones are separated by annular splitter blades disposed within the separation chamber. The separated components are continuously removed through conduits communicating through a face seal to the outside of the rotor.
Blade loss transient dynamics analysis with flexible bladed disk
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Black, G.; Bach, L.; Cline, S.; Storace, A.
1983-01-01
The transient dynamic response of a flexible bladed disk on a flexible rotor in a two rotor system is formulated by modal synthesis and a Lagrangian approach. Only the nonequilibrated one diameter flexible mode is considered for the flexible bladed disk, while the two flexible rotors are represented by their normal modes. The flexible bladed disk motion is modeled as a combination of two one diameter standing waves, and is coupled inertially and gyroscopically to the flexible rotors. Application to a two rotor model shows that a flexible bladed disk on one rotor can be driven into resonance by an unbalance in the other rotor, and at a frequency equal to the difference in the rotor speeds.
Detached Eddy Simulation of the UH-60 Rotor Wake Using Adaptive Mesh Refinement
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.; Ahmad, Jasim U.
2012-01-01
Time-dependent Navier-Stokes flow simulations have been carried out for a UH-60 rotor with simplified hub in forward flight and hover flight conditions. Flexible rotor blades and flight trim conditions are modeled and established by loosely coupling the OVERFLOW Computational Fluid Dynamics (CFD) code with the CAMRAD II helicopter comprehensive code. High order spatial differences, Adaptive Mesh Refinement (AMR), and Detached Eddy Simulation (DES) are used to obtain highly resolved vortex wakes, where the largest turbulent structures are captured. Special attention is directed towards ensuring the dual time accuracy is within the asymptotic range, and verifying the loose coupling convergence process using AMR. The AMR/DES simulation produced vortical worms for forward flight and hover conditions, similar to previous results obtained for the TRAM rotor in hover. AMR proved to be an efficient means to capture a rotor wake without a priori knowledge of the wake shape.
Urbahn, John Arthur; Laskaris, Evangelos Trifon
2009-06-16
A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.
Vibration analysis of rotor blades with pendulum absorbers
NASA Technical Reports Server (NTRS)
Murthy, V. R.; Hammond, C. E.
1979-01-01
A comprehensive vibration analysis of rotor blades with spherical pendulum absorbers is presented. Linearized equations of motion for small oscillations about the steady-state deflection of a spherical pendulum on elastic rotor blades undergoing coupled flapwise bending, chordwise bending, and torsional vibrations are obtained. A transmission matrix formulation is given to determine the natural vibrational characteristics of rotor blades with spherical or simple flapping pendulum absorbers. The natural frequencies and mode shapes of a hingeless rotor blade with a spherical pendulum are computed.
Summary of AH-1G flight vibration data for validation of coupled rotor-fuselage analyses
NASA Technical Reports Server (NTRS)
Dompka, R. V.; Cronkhite, J. D.
1986-01-01
Under a NASA research program designated DAMVIBS (Design Analysis Methods for VIBrationS), four U. S. helicopter industry participants (Bell Helicopter, Boeing Vertol, McDonnell Douglas Helicopter, and Sikorsky Aircraft) are to apply existing analytical methods for calculating coupled rotor-fuselage vibrations of the AH-1G helicopter for correlation with flight test data from an AH-1G Operational Load Survey (OLS) test program. Bell Helicopter, as the manufacturer of the AH-1G, was asked to provide pertinent rotor data and to collect the OLS flight vibration data needed to perform the correlations. The analytical representation of the fuselage structure is based on a NASTRAN finite element model (FEM) developed by Bell which has been extensively documented and correlated with ground vibration tests.The AH-1G FEM was provided to each of the participants for use in their coupled rotor-fuselage analyses. This report describes the AH-1G OLS flight test program and provides the flight conditions and measured vibration data to be used by each participant in their correlation effort. In addition, the mechanical, structural, inertial and aerodynamic data for the AH-1G two-bladed teetering main rotor system are presented. Furthermore, modifications to the NASTRAN FEM of the fuselage structure that are necessary to make it compatible with the OLS test article are described. The AH-1G OLS flight test data was found to be well documented and provide a sound basis for evaluating currently existing analysis methods used for calculation of coupled rotor-fuselage vibrations.
Coupled rotor/airframe vibration analysis program manual. Volume 2: Sample input and output listings
NASA Technical Reports Server (NTRS)
Cassarino, S.; Sopher, R.
1982-01-01
Sample input and output listings obtained with the base program (SIMVIB) of the coupled rotor/airframe vibration analysis and the external programs, G400/F389 and E927 are presented. Results for five of the base program test cases are shown. They represent different applications of the SIMVIB program to study the vibration characteristics of various dynamic configurations. Input and output listings obtained for one cycle of the G400/F389 coupled program are presented. Results from the rotor aeroelastic analysis E927 also appear. A brief description of the check cases is provided. A summary of the check cases for all the external programs interacting with the SIMVIB program is illustrated.
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.
1996-01-01
A detailed experimental investigation to understand and quantify the development of loss and blockage in the flow field of a transonic, axial flow compressor rotor has been undertaken. Detailed laser anemometer measurements were acquired upstream, within, and downstream of a transonic, axial compressor rotor operating at design and off-design conditions. The rotor was operated at 100%, 85%, 80%, and 60% of design speed which provided inlet relative Mach numbers at the blade tip of 1.48, 1.26, 1.18, and 0.89 respectively. At design speed the blockage is evaluated ahead of the rotor passage shock, downstream of the rotor passage shock, and near the trailing edge of the blade row. The blockage is evaluated in the core flow area as well as in the casing endwall region. Similarly at pm speed conditions for the cases of (1) where the rotor passage shock is much weaker than that at design speed and (2) where there is no rotor passage shock, the blockage and loss are evaluated and compared to the results at design speed. Specifically, the impact of the rotor passage shock on the blockage and loss development, pertaining to both the shock/boundary layer interactions and the shock/tip clearance flow interactions, is discussed. In addition, the blockage evaluated from the experimental data is compared to (1) an existing correlation of blockage development which was based on computational results, and (2) computational results on a limited basis. The results indicate that for this rotor the blockage in the endwall region is 2-3 times that of the core flow region and the blockage in the core flow region more than doubles when the shock strength is sufficient to separate the suction surface boundary layer. The distribution of losses in the care flow region indicate that the total loss is primarily comprised of the shock loss when the shock strength is not sufficient to separate the suction surface boundary layer. However, when the shock strength is sufficient to separate the suction surface boundary layer, the profile loss is comparable to the shock loss and can exceed the shock loss.
Two Rotor Stratified Charge Rotary Engine (SCRE) Engine System Technology Evaluation
NASA Technical Reports Server (NTRS)
Hoffman, T.; Mack, J.; Mount, R.
1994-01-01
This report summarizes results of an evaluation of technology enablement component technologies as integrated into a two rotor Stratified Charge Rotary Engine (SCRE). The work constitutes a demonstration of two rotor engine system technology, utilizing upgraded and refined component technologies derived from prior NASA Contracts NAS3-25945, NAS3-24628 and NAS-23056. Technical objectives included definition of, procurement and assembly of an advanced two rotor core aircraft engine, operation with Jet-A fuel at Take-Off rating of 340 BHP (254kW) and operation at a maximum cruise condition of 255 BHP (190kW), 75% cruise. A fuel consumption objective of 0.435 LBS/BHP-Hr (265 GRS/kW-Hr) was identified for the maximum cruise condition. A critical technology component item, a high speed, unit injector fuel injection system with electronic control was defined, procured and tested in conjunction with this effort. The two rotor engine configuration established herein defines an affordable, advanced, Jet-A fuel capability core engine (not including reduction gear, propeller shaft and some aircraft accessories) for General Aviation of the mid-1990's and beyond.
Motor control for a brushless DC motor
NASA Technical Reports Server (NTRS)
Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)
1985-01-01
This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.
Stability of large horizontal-axis axisymmetric wind turbines. Ph.D. Thesis - Delaware Univ.
NASA Technical Reports Server (NTRS)
Hirschbein, M. S.; Young, M. I.
1980-01-01
The stability of large horizontal axis, axi-symmetric, power producing wind turbines was examined. The analytical model used included the dynamic coupling of the rotor, tower and power generating system. The aerodynamic loading was derived from blade element theory. Each rotor blade was permitted tow principal elastic bending degrees of freedom, one degree of freedom in torsion and controlled pitch as a rigid body. The rotor hub was mounted in a rigid nacelle which may yaw freely or in a controlled manner. The tower can bend in two principal directions and may twist. Also, the rotor speed can vary and may induce perturbation reactions within the power generating equipment. Stability was determined by the eigenvalues of a set of linearized constant coefficient differential equations. All results presented are based on a 3 bladed, 300 ft. diameter, 2.5 megawatt wind turbine. Some of the parameters varied were; wind speed, rotor speed structural stiffness and damping, the effective stiffness and damping of the power generating system and the principal bending directions of the rotor blades. Unstable or weakly stable behavior can be caused by aerodynamic forces due to motion of the rotor blades and tower in the plane of rotation or by mechanical coupling between the rotor system and the tower.
Experiments on the magnetic coupling in a small scale counter rotating marine current turbine
NASA Astrophysics Data System (ADS)
Kim, I. C.; Lee, N. J.; Wata, J.; Hyun, B. S.; Lee, Y. H.
2016-05-01
Modern economies are dependent on energy consumption to ensure growth or sustainable development. Renewable energy sources provide a source of energy that can provide energy security and is renewable. Tidal energy is more predictable than other sources or renewable energy like the sun or wind. Horizontal axis marine current turbines are currently the most advanced and commercially feasible option for tidal current convertors. A dual rotor turbine is theoretically able to produce more power than a single rotor turbine at the same fluid velocity. Previous experiments for a counter rotating dual rotor horizontal axis marine current turbine used a mechanical oil seal coupling that caused mechanical losses when water entered through small gaps at the shaft. A new magnetic coupling assembly eliminates the need for a shaft to connect physically with the internal mechanisms and is water tight. This reduces mechanical losses in the system and the effect on the dual rotor performance is presented in this paper.
NASA Technical Reports Server (NTRS)
Wilcox, Brian H. (Inventor); Nasif, Annette K. (Inventor)
2001-01-01
A vehicle, for driving over a ground surface, has a body with a left side, a right side, a front and a back. The vehicle includes left and right drive mechanisms. Each mechanism includes first and second traction elements for engaging the ground surface and transmitting a driving force between the vehicle and ground surface. Each mechanism includes first and second arms coupled to the first and second traction elements for relative rotation about first and second axis respectively. Each mechanism includes a rotor having a third axis, the rotor coupled to the body for rotation about the third axis and coupled to the first and second arms for relative rotation about the third axis. The mechanism includes first and second drive motors for driving the first and second traction elements and first and second transmissions, driven by the first and second motors and engaging the rotor. Driving the first and second traction elements simultaneously rotates the rotor relative to the first and second arms, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Hasan, Iftekhar; Husain, Tausif
In this paper, a nonlinear analytical model based on the Magnetic Equivalent Circuit (MEC) method is developed for a double-sided E-Core Transverse Flux Machine (TFM). The proposed TFM has a cylindrical rotor, sandwiched between E-core stators on both sides. Ferrite magnets are used in the rotor with flux concentrating design to attain high airgap flux density, better magnet utilization, and higher torque density. The MEC model was developed using a series-parallel combination of flux tubes to estimate the reluctance network for different parts of the machine including air gaps, permanent magnets, and the stator and rotor ferromagnetic materials, in amore » two-dimensional (2-D) frame. An iterative Gauss-Siedel method is integrated with the MEC model to capture the effects of magnetic saturation. A single phase, 1 kW, 400 rpm E-Core TFM is analytically modeled and its results for flux linkage, no-load EMF, and generated torque, are verified with Finite Element Analysis (FEA). The analytical model significantly reduces the computation time while estimating results with less than 10 percent error.« less
Wind turbine/generator set and method of making same
Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.
2013-06-04
A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.
Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.
2012-11-13
A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.
Wind turbine having a direct-drive drivetrain
Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.
2011-02-22
A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umans, Stephen D; Nisley, Donald L; Melfi, Michael J
A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operationmore » and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling.« less
An unsteady rotor/fuselage interaction method
NASA Technical Reports Server (NTRS)
Egolf, T. Alan; Lorber, Peter F.
1987-01-01
An analytical method has been developed to treat unsteady helicopter rotor, wake, and fuselage interaction aerodynamics. An existing lifting line/prescribed wake rotor analysis and a source panel fuselage analysis were modified to predict vibratory fuselage airloads. The analyses were coupled through the induced flow velocities of the rotor and wake on the fuselage and the fuselage on the rotor. A prescribed displacement technique was used to distort the rotor wake about the fuselage. Sensitivity studies were performed to determine the influence of wake and body geometry on the computed airloads. Predicted and measured mean and unsteady pressures on a cylindrical body in the wake of a two-bladed rotor were compared. Initial results show good qualitative agreement.
NASA Technical Reports Server (NTRS)
Boyd, David D. Jr.
2009-01-01
Preliminary aerodynamic and performance predictions for an active twist rotor for a HART-II type of configuration are performed using a computational fluid dynamics (CFD) code, OVERFLOW2, and a computational structural dynamics (CSD) code, CAMRAD -II. These codes are loosely coupled to compute a consistent set of aerodynamics and elastic blade motions. Resultant aerodynamic and blade motion data are then used in the Ffowcs-Williams Hawkins solver, PSU-WOPWOP, to compute noise on an observer plane under the rotor. Active twist of the rotor blade is achieved in CAMRAD-II by application of a periodic torsional moment couple (of equal and opposite sign) at the blade root and tip at a specified frequency and amplitude. To provide confidence in these particular active twist predictions for which no measured data is available, the rotor system geometry and computational set up examined here are identical to that used in a previous successful Higher Harmonic Control (HHC) computational study. For a single frequency equal to three times the blade passage frequency (3P), active twist is applied across a range of control phase angles at two different amplitudes. Predicted results indicate that there are control phase angles where the maximum mid-frequency noise level and the 4P non -rotating hub vibrations can be reduced, potentially, both at the same time. However, these calculated reductions are predicted to come with a performance penalty in the form of a reduction in rotor lift-to-drag ratio due to an increase in rotor profile power.
Aeroelastic characteristics of composite bearingless rotor blades
NASA Technical Reports Server (NTRS)
Bielawa, R. L.
1976-01-01
Owing to the inherent unique structural features of composite bearingless rotors, various assumptions upon which conventional rotor aeroelastic analyses are formulated, are violated. Three such features identified are highly nonlinear and time-varying structural twist, structural redundancy in bending and torsion, and for certain configurations a strongly coupled low frequency bending-torsion mode. An examination of these aeroelastic considerations and appropriate formulations required for accurate analyses of such rotor systems is presented. Also presented are test results from a dynamically scaled model rotor and complementary analytic results obtained with the appropriately reformulated aeroelastic analysis.
Investigation of rotor blade tip-vortex aerodynamics
NASA Technical Reports Server (NTRS)
Lewellen, W. S.
1971-01-01
Several aspects of the aerodynamics of rotor blade tip vortices are examined. Two particular categories are dealt with; (1) dynamic loads on a blade passing close to or intersecting a trailing vortex, and (2) the response of the trailing vortex core to changes in the flow. Results for both categories are in reasonable agreement with existing data, although lower pressure gradients were obtained than anticipated for category one. A correlation between trailing edge sweep angle at the tip and vortex core size was noted for category two.
Evidence for a Quantum-to-Classical Transition in a Pair of Coupled Quantum Rotors
NASA Astrophysics Data System (ADS)
Gadway, Bryce; Reeves, Jeremy; Krinner, Ludwig; Schneble, Dominik
2013-05-01
The understanding of how classical dynamics can emerge in closed quantum systems is a problem of fundamental importance. Remarkably, while classical behavior usually arises from coupling to thermal fluctuations or random spectral noise, it may also be an innate property of certain isolated, periodically driven quantum systems. Here, we experimentally realize the simplest such system, consisting of two coupled, kicked quantum rotors, by subjecting a coherent atomic matter wave to two periodically pulsed, incommensurate optical lattices. Momentum transport in this system is found to be radically different from that in a single kicked rotor, with a breakdown of dynamical localization and the emergence of classical diffusion. Our observation, which confirms a long-standing prediction for many-dimensional quantum-chaotic systems, sheds new light on the quantum-classical correspondence.
Calculated performance, stability and maneuverability of high-speed tilting-prop-rotor aircraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Lau, Benton H.; Bowles, Jeffrey V.
1986-01-01
The feasibility of operating tilting-prop-rotor aircraft at high speeds is examined by calculating the performance, stability, and maneuverability of representative configurations. The rotor performance is examined in high-speed cruise and in hover. The whirl-flutter stability of the coupled-wing and rotor motion is calculated in the cruise mode. Maneuverability is examined in terms of the rotor-thrust limit during turns in helicopter configuration. Rotor airfoils, rotor-hub configuration, wing airfoil, and airframe structural weights representing demonstrated advance technology are discussed. Key rotor and airframe parameters are optimized for high-speed performance and stability. The basic aircraft-design parameters are optimized for minimum gross weight. To provide a focus for the calculations, two high-speed tilt-rotor aircraft are considered: a 46-passenger, civil transport and an air-combat/escort fighter, both with design speeds of about 400 knots. It is concluded that such high-speed tilt-rotor aircraft are quite practical.
Analysis of rotor vibratory loads using higher harmonic pitch control
NASA Technical Reports Server (NTRS)
Quackenbush, Todd R.; Bliss, Donald B.; Boschitsch, Alexander H.; Wachspress, Daniel A.
1992-01-01
Experimental studies of isolated rotors in forward flight have indicated that higher harmonic pitch control can reduce rotor noise. These tests also show that such pitch inputs can generate substantial vibratory loads. The modification is summarized of the RotorCRAFT (Computation of Rotor Aerodynamics in Forward flighT) analysis of isolated rotors to study the vibratory loading generated by high frequency pitch inputs. The original RotorCRAFT code was developed for use in the computation of such loading, and uses a highly refined rotor wake model to facilitate this task. The extended version of RotorCRAFT incorporates a variety of new features including: arbitrary periodic root pitch control; computation of blade stresses and hub loads; improved modeling of near wake unsteady effects; and preliminary implementation of a coupled prediction of rotor airloads and noise. Correlation studies are carried out with existing blade stress and vibratory hub load data to assess the performance of the extended code.
Research study for effects of case flexibility on bearing loads and rotor stability
NASA Technical Reports Server (NTRS)
Fenwick, J. R.; Tarn, R. B.
1984-01-01
Methods to evaluate the effect of casing flexibility on rotor stability and component loads were developed. Recent Rocketdyne turbomachinery was surveyed to determine typical properties and frequencies versus running speed. A small generic rotor was run with a flexible case with parametric variations in casing properties for comparison with a rotor attached to rigid supports. A program for the IBM personal computer for interactive evaluation of rotors and casings is developed. The Root locus method is extended for use in rotor dynamics for symmetrical systems by transforming all motion and coupling into a single plane and using a 90 degree criterion when plotting loci.
Development of a rotorcraft. Propulsion dynamics interface analysis, volume 2
NASA Technical Reports Server (NTRS)
Hull, R.
1982-01-01
A study was conducted to establish a coupled rotor/propulsion analysis that would be applicable to a wide range of rotorcraft systems. The effort included the following tasks: (1) development of a model structure suitable for simulating a wide range of rotorcraft configurations; (2) defined a methodology for parameterizing the model structure to represent a particular rotorcraft; (3) constructing a nonlinear coupled rotor/propulsion model as a test case to use in analyzing coupled system dynamics; and (4) an attempt to develop a mostly linear coupled model derived from the complete nonlinear simulations. Documentation of the computer models developed is presented.
Coupled dynamics analysis of wind energy systems
NASA Technical Reports Server (NTRS)
Hoffman, J. A.
1977-01-01
A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.
NASA Technical Reports Server (NTRS)
Venkatesan, C.; Friedman, P.
1984-01-01
This report presents a set of governing coupled differential equations for a model of a hybrid aircraft. The model consists of multiple rotor systems connected by an elastic interconnecting structure, with options to add any combination of or all of the following components; i.e., thrusters, a buoyant hull, and an underslung weight. The dynamic equations are written for the individual blade with hub motions, for the rigid body motions of the whole model, and also for the flexible modes of the interconnecting structure. One of the purposes of this study is to serve as the basis of a numerical study aimed at determining the aeroelastic stability and structural response characteristics of a Hybrid Heavy Lift Airship (HHLA). It is also expected that the formulation may be applicable to analyzing stability and responses of dual rotor helicopters such as a Heavy Lift Helicopter (HLH). Futhermore, the model is capable of representing coupled rotor/body aeromechanical problems of single rotor helicopters.
Efficient sensitivity analysis and optimization of a helicopter rotor
NASA Technical Reports Server (NTRS)
Lim, Joon W.; Chopra, Inderjit
1989-01-01
Aeroelastic optimization of a system essentially consists of the determination of the optimum values of design variables which minimize the objective function and satisfy certain aeroelastic and geometric constraints. The process of aeroelastic optimization analysis is illustrated. To carry out aeroelastic optimization effectively, one needs a reliable analysis procedure to determine steady response and stability of a rotor system in forward flight. The rotor dynamic analysis used in the present study developed inhouse at the University of Maryland is based on finite elements in space and time. The analysis consists of two major phases: vehicle trim and rotor steady response (coupled trim analysis), and aeroelastic stability of the blade. For a reduction of helicopter vibration, the optimization process requires the sensitivity derivatives of the objective function and aeroelastic stability constraints. For this, the derivatives of steady response, hub loads and blade stability roots are calculated using a direct analytical approach. An automated optimization procedure is developed by coupling the rotor dynamic analysis, design sensitivity analysis and constrained optimization code CONMIN.
Comparison of Computed and Measured Vortex Evolution for a UH-60A Rotor in Forward Flight
NASA Technical Reports Server (NTRS)
Ahmad, Jasim Uddin; Yamauchi, Gloria K.; Kao, David L.
2013-01-01
A Computational Fluid Dynamics (CFD) simulation using the Navier-Stokes equations was performed to determine the evolutionary and dynamical characteristics of the vortex flowfield for a highly flexible aeroelastic UH-60A rotor in forward flight. The experimental wake data were acquired using Particle Image Velocimetry (PIV) during a test of the fullscale UH-60A rotor in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The PIV measurements were made in a stationary cross-flow plane at 90 deg rotor azimuth. The CFD simulation was performed using the OVERFLOW CFD solver loosely coupled with the rotorcraft comprehensive code CAMRAD II. Characteristics of vortices captured in the PIV plane from different blades are compared with CFD calculations. The blade airloads were calculated using two different turbulence models. A limited spatial, temporal, and CFD/comprehensive-code coupling sensitivity analysis was performed in order to verify the unsteady helicopter simulations with a moving rotor grid system.
NASA Technical Reports Server (NTRS)
David, J. W.; Mitchell, L. D.
1982-01-01
Difficulties in solution methodology to be used to deal with the potentially higher nonlinear rotor equations when dynamic coupling is included. A solution methodology is selected to solve the nonlinear differential equations. The selected method was verified to give good results even at large nonlinearity levels. The transfer matrix methodology is extended to the solution of nonlinear problems.
Bifilar analysis users manual, volume 2
NASA Technical Reports Server (NTRS)
Cassarino, S. J.
1980-01-01
The digital computer program developed to study the vibration response of a coupled rotor/bifilar/airframe coupled system is described. The theoretical development of the rotor/airframe system equations of motion is provided. The fuselage and bifilar absorber equations of motion are discussed. The modular block approach used in the make-up of this computer program is described. The input data needed to run the rotor and bifilar absorber analyses is described. Sample output formats are presented and discussed. The results for four test cases, which use the major logic paths of the computer program, are presented. The overall program structure is discussed in detail. The FORTRAN subroutines are described in detail.
Fang, Pan; Hou, Yongjun; Nan, Yanghai
2015-01-01
A new mechanism is proposed to implement synchronization of the two unbalanced rotors in a vibration system, which consists of a double vibro-body, two induction motors and spring foundations. The coupling relationship between the vibro-bodies is ascertained with the Laplace transformation method for the dynamics equation of the system obtained with the Lagrange's equation. An analytical approach, the average method of modified small parameters, is employed to study the synchronization characteristics between the two unbalanced rotors, which is converted into that of existence and the stability of zero solutions for the non-dimensional differential equations of the angular velocity disturbance parameters. By assuming the disturbance parameters that infinitely approach to zero, the synchronization condition for the two rotors is obtained. It indicated that the absolute value of the residual torque between the two motors should be equal to or less than the maximum of their coupling torques. Meanwhile, the stability criterion of synchronization is derived with the Routh-Hurwitz method, and the region of the stable phase difference is confirmed. At last, computer simulations are preformed to verify the correctness of the approximate solution of the theoretical computation for the stable phase difference between the two unbalanced rotors, and the results of theoretical computation is in accordance with that of computer simulations. To sum up, only the parameters of the vibration system satisfy the synchronization condition and the stability criterion of the synchronization, the two unbalanced rotors can implement the synchronization operation.
Fang, Pan; Hou, Yongjun; Nan, Yanghai
2015-01-01
A new mechanism is proposed to implement synchronization of the two unbalanced rotors in a vibration system, which consists of a double vibro-body, two induction motors and spring foundations. The coupling relationship between the vibro-bodies is ascertained with the Laplace transformation method for the dynamics equation of the system obtained with the Lagrange’s equation. An analytical approach, the average method of modified small parameters, is employed to study the synchronization characteristics between the two unbalanced rotors, which is converted into that of existence and the stability of zero solutions for the non-dimensional differential equations of the angular velocity disturbance parameters. By assuming the disturbance parameters that infinitely approach to zero, the synchronization condition for the two rotors is obtained. It indicated that the absolute value of the residual torque between the two motors should be equal to or less than the maximum of their coupling torques. Meanwhile, the stability criterion of synchronization is derived with the Routh-Hurwitz method, and the region of the stable phase difference is confirmed. At last, computer simulations are preformed to verify the correctness of the approximate solution of the theoretical computation for the stable phase difference between the two unbalanced rotors, and the results of theoretical computation is in accordance with that of computer simulations. To sum up, only the parameters of the vibration system satisfy the synchronization condition and the stability criterion of the synchronization, the two unbalanced rotors can implement the synchronization operation. PMID:25993472
Helical vortices: viscous dynamics and instability
NASA Astrophysics Data System (ADS)
Rossi, Maurice; Selcuk, Can; Delbende, Ivan; Ijlra-Upmc Team; Limsi-Cnrs Team
2014-11-01
Understanding the dynamical properties of helical vortices is of great importance for numerous applications such as wind turbines, helicopter rotors, ship propellers. Locally these flows often display a helical symmetry: fields are invariant through combined axial translation of distance Δz and rotation of angle θ = Δz / L around the same z-axis, where 2 πL denotes the helix pitch. A DNS code with built-in helical symmetry has been developed in order to compute viscous quasi-steady basic states with one or multiple vortices. These states will be characterized (core structure, ellipticity, ...) as a function of the pitch, without or with an axial flow component. The instability modes growing in the above base flows and their growth rates are investigated by a linearized version of the DNS code coupled to an Arnoldi procedure. This analysis is complemented by a helical thin-cored vortex filaments model. ANR HELIX.
Electrofriction method of manufacturing squirrel cage rotors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, John S.
2005-04-12
A method of making a squirrel cage rotor of copper material for use in AC or DC motors, includes forming a core with longitudinal slots, inserting bars of conductive material in the slots, with ends extending out of opposite ends of the core, and joining the end rings to the bars, wherein the conductive material of either the end rings or the bars is copper. Various methods of joining the end rings to the bars are disclosed including electrofriction welding, current pulse welding and brazing, transient liquid phase joining and casting. Pressure is also applied to the end rings tomore » improve contact and reduce areas of small or uneven contact between the bar ends and the end rings. Rotors made with such methods are also disclosed.« less
Study of stator-vane fluctuating pressures in a turbofan engine for static and flight tests
NASA Technical Reports Server (NTRS)
Mueller, A. W.
1984-01-01
As part of a program to study the fan noise generated from turbofan engines, fluctuating surface pressures induced by fan-rotor wakes were measured on core- and bypass-stator outlet guide vanes of a modified JT15D-1 engine. Tests were conducted with the engine operating on an outdoor test stand and in flight. The amplitudes of pressures measured at fan-rotor blade-passage fundamental frequencies were generally higher and appeared less stable for the static tests than for the flight tests. Fluctuating pressures measured at the blade-passage frequency of the high-speed core compressor were interpreted to be acoustic; however, disturbance trace velocities for either the convected rotor wakes or acoustic pressures were difficult to interpret because of the complex environment.
NASA Technical Reports Server (NTRS)
Szanca, E. M.; Behning, F. P.; Schum, H. J.
1974-01-01
A 25.4-cm (10-in) tip diameter turbine was tested to determine the effect of rotor radial tip clearance on turbine overall performance. The test turbine was a half-scale model of a 50.8-cm-(20-in.-) diameter research turbine designed for high-temperature core engine application. The test turbine was fabricated with solid vanes and blades with no provision for cooling air and tested at much reduced inlet conditions. The tests were run at design speed over a range of pressure ratios for three different rotor clearances ranging from 2.3 to 6.7 percent of the annular blade passage height. The results obtained are compared to the results obtained with three other turbines of varying amounts of reaction.
Wind turbine having a direct-drive drivetrain
Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.
2008-10-07
A wind turbine (100) comprising an electrical generator (108) that includes a rotor assembly (112). A wind rotor (104) that includes a wind rotor hub (124) is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle (160) via a bearing assembly (180). The wind rotor hub includes an opening (244) having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity (380) inside the wind rotor hub. The spindle is attached to a turret (140) supported by a tower (136). Each of the spindle, turret and tower has an interior cavity (172, 176, 368) that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system (276) for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.
NASA Technical Reports Server (NTRS)
Schmied, J.; Pradetto, J. C.
1994-01-01
The combination of a high-speed motor, dry gas seals, and magnetic bearings realized in this unit facilitates the elimination of oil. The motor is coupled with a quill shaft to the compressor. This yields higher natural frequencies of the rotor than with the use of a diaphragm coupling and helps to maintain a sufficient margin of the maximum speed to the frequency of the second compressor bending mode. However, the controller of each bearing then has to take the combined modes of both machines into account. The requirements for the controller to ensure stability and sufficient damping of all critical speeds are designed and compared with the implemented controller. The calculated closed loop behavior was confirmed experimentally, except the stability of some higher modes due to slight frequency deviations of the rotor model to the actual rotor. The influence of a mechanical damper as a device to provide additional damping to high models is demonstrated theoretically. After all, it was not necessary to install the damper, since all modes cold be stabilized by the controller.
Homopolar motor with dual rotors
Hsu, J.S.
1998-12-01
A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.
Integration of Rotor Aerodynamic Optimization with the Conceptual Design of a Large Civil Tiltrotor
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.
2010-01-01
Coupling of aeromechanics analysis with vehicle sizing is demonstrated with the CAMRAD II aeromechanics code and NDARC sizing code. The example is optimization of cruise tip speed with rotor/wing interference for the Large Civil Tiltrotor (LCTR2) concept design. Free-wake models were used for both rotors and the wing. This report is part of a NASA effort to develop an integrated analytical capability combining rotorcraft aeromechanics, structures, propulsion, mission analysis, and vehicle sizing. The present paper extends previous efforts by including rotor/wing interference explicitly in the rotor performance optimization and implicitly in the sizing.
Isogeometric analysis and harmonic stator-rotor coupling for simulating electric machines
NASA Astrophysics Data System (ADS)
Bontinck, Zeger; Corno, Jacopo; Schöps, Sebastian; De Gersem, Herbert
2018-06-01
This work proposes Isogeometric Analysis as an alternative to classical finite elements for simulating electric machines. Through the spline-based Isogeometric discretization it is possible to parametrize the circular arcs exactly, thereby avoiding any geometrical error in the representation of the air gap where a high accuracy is mandatory. To increase the generality of the method, and to allow rotation, the rotor and the stator computational domains are constructed independently as multipatch entities. The two subdomains are then coupled using harmonic basis functions at the interface which gives rise to a saddle-point problem. The properties of Isogeometric Analysis combined with harmonic stator-rotor coupling are presented. The results and performance of the new approach are compared to the ones for a classical finite element method using a permanent magnet synchronous machine as an example.
NASA Technical Reports Server (NTRS)
Green, S.
1976-01-01
The formalism for describing rotational excitation in collisions between symmetric top rigid rotors and spherical atoms is presented both within the accurate quantum close coupling framework and also the coupled states approximation of McGuire and Kouri and the effective potential approximation of Rabitz. Calculations are reported for thermal energy NH3-He collisions, treating NH3 as a rigid rotor and employing a uniform electron gas (Gordon-Kim) approximation for the intermolecular potential. Coupled states are found to be in nearly quantitative agreement with close coupling results while the effective potential method is found to be at least qualitatively correct. Modifications necessary to treat the inversion motion in NH3 are discussed.
NASA Technical Reports Server (NTRS)
Flowers, George T.
1995-01-01
Progress made in the current year is listed, and the following papers are included in the appendix: Steady-State Dynamic Behavior of an Auxiliary Bearing Supported Rotor System; Dynamic Behavior of a Magnetic Bearing Supported Jet Engine Rotor with Auxiliary Bearings; Dynamic Modelling and Response Characteristics of a Magnetic Bearing Rotor System with Auxiliary Bearings; and Synchronous Dynamics of a Coupled Shaft/Bearing/Housing System with Auxiliary Support from a Clearance Bearing: Analysis and Experiment.
Hickam, Christopher Dale [Glasford, IL
2008-05-13
A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.
NASA Astrophysics Data System (ADS)
Liu, Qiang; Chattopadhyay, Aditi; Gu, Haozhong; Liu, Qiang; Chattopadhyay, Aditi; Zhou, Xu
2000-08-01
The use of a special type of smart material, known as segmented constrained layer (SCL) damping, is investigated for improved rotor aeromechanical stability. The rotor blade load-carrying member is modeled using a composite box beam with arbitrary wall thickness. The SCLs are bonded to the upper and lower surfaces of the box beam to provide passive damping. A finite-element model based on a hybrid displacement theory is used to accurately capture the transverse shear effects in the composite primary structure and the viscoelastic and the piezoelectric layers within the SCL. Detailed numerical studies are presented to assess the influence of the number of actuators and their locations for improved aeromechanical stability. Ground and air resonance analysis models are implemented in the rotor blade built around the composite box beam with segmented SCLs. A classic ground resonance model and an air resonance model are used in the rotor-body coupled stability analysis. The Pitt dynamic inflow model is used in the air resonance analysis under hover condition. Results indicate that the surface bonded SCLs significantly increase rotor lead-lag regressive modal damping in the coupled rotor-body system.
Linear dynamic coupling in geared rotor systems
NASA Technical Reports Server (NTRS)
David, J. W.; Mitchell, L. D.
1986-01-01
The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.
The dynamics of a flexible bladed disc on a flexible rotor in a two-rotor system
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Stallone, M. J.
1984-01-01
This paper describes the development of the analysis of the transient dynamic response of a bladed disk on a flexible rotor. The rotating flexible bladed disk is considered as a module in a complete turbine engine structure. The analysis of the flexible bladed disk (FBD) module is developed for the non-equilibrated one-diameter axial mode. The FBD motion is considered as a sum of two standing axial waves constrained to the rotor. The FBD is coupled inertially and gyroscopically to its rotor support, and indirectly through connecting elements, to the adjacent rotor and/or other supporting structures. Incorporated in the basic Turbine Engine Transient Response Analysis program (TETRA), the FBD module is demonstrated with a two-rotor model where the FBD can be excited into resonance by an unbalance in the adjacent rotor and at a frequency equal to the differential rotor speed. The FBD module also allows the analysis of two flexible bladed disks in the same rotor.
Method and apparatus for wind turbine braking
Barbu, Corneliu [Laguna Hills, CA; Teichmann, Ralph [Nishkayuna, NY; Avagliano, Aaron [Houston, TX; Kammer, Leonardo Cesar [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Pesetsky, David Samuel [Greenville, SC; Gauchel, Peter [Muenster, DE
2009-02-10
A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.
Ultrasonic Motors (USM) - an emerging actuation technology for planetary applications
NASA Technical Reports Server (NTRS)
Bao, X.; Das, H.
2000-01-01
A hybrid model that addressed a complete ultrasonic motor as a system was developed. The model allows using powerful commercial FE package to express dynamic characteristics of the stator and the rotor in engineering practice. An analog model couples the finite element models for the stator and rotor for the stator-interface layer-rotor syste. The model provides reasonably accurate results for CAD.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna
2017-08-01
Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.
Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion
NASA Technical Reports Server (NTRS)
Hodges, D. H.
1978-01-01
Equations of motion for a coupled rotor-body system were derived for the purpose of studying air and ground resonance characteristics of helicopters that have bearingless main rotors. For the fuselage, only four rigid body degrees of freedom are considered; longitudinal and lateral translations, pitch, and roll. The rotor is assumed to consist of three or more rigid blades. Each blade is joined to the hub by means of a flexible beam segment (flexbeam or strap). Pitch change is accomplished by twisting the flexbeam with the pitch-control system, the characteristics of which are variable. Thus, the analysis is capable of implicitly treating aeroelastic couplings generated by the flexbeam elastic deflections, the pitch-control system, and the angular offsets of the blade and flexbeam. The linearized equations are written in the nonrotating system retaining only the cyclic rotor modes; thus, they comprise a system of homogeneous ordinary differential equations with constant coefficients. All contributions to the linearized perturbation equations from inertia, gravity, quasi-steady aerodynamics, and the flexbeam equilibrium deflections are retained exactly.
Homopolar motor with dual rotors
Hsu, John S.
1998-01-01
A homopolar motor (10) has a field rotor (15) mounted on a frame (11) for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor (17) mounted for rotation on said frame (11) within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor (15). The two rotors (15, 17) are coupled through a 1:1 gearing mechanism (19), so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed.
Rotorcraft aeroelastic stability
NASA Technical Reports Server (NTRS)
Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.
1988-01-01
Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low-frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability in hover and forward flight, and analysis of tilt-rotor dynamic stability are considered. Results of parametric investigations of system behavior are presented, and correlation between theoretical results and experimental data from small and large scale wind tunnel and flight testing are discussed.
Tuning thermal mismatch between turbine rotor parts with a thermal medium
Schmidt, Mark Christopher
2001-01-01
In a turbine rotor, an aft shaft wheel and the final-stage wheel of the rotor are coupled together, including by a rabbeted joint. During shutdown and startup of the turbine, a thermal mismatch between the aft shaft wheel and final-stage wheel is avoided by respectively heating and cooling the aft shaft wheel to maintain the thermal mismatch within acceptable limits, thereby avoiding opening of the rabbeted joint and the potential for unbalancing the rotor and rotor vibration. The thermal medium may be supplied by piping in the aft bearing cavity into the cavity between the forward closure plate and the aft shaft wheel.
Helicopter rotor dynamics and aeroelasticity - Some key ideas and insights
NASA Technical Reports Server (NTRS)
Friedmann, Peretz P.
1990-01-01
Four important current topics in helicopter rotor dynamics and aeroelasticity are discussed: (1) the role of geometric nonlinearities in rotary-wing aeroelasticity; (2) structural modeling, free vibration, and aeroelastic analysis of composite rotor blades; (3) modeling of coupled rotor/fuselage areomechanical problems and their active control; and (4) use of higher-harmonic control for vibration reduction in helicopter rotors in forward flight. The discussion attempts to provide an improved fundamental understanding of the current state of the art. In this way, future research can be focused on problems which remain to be solved instead of producing marginal improvements on problems which are already understood.
Performance of Gas Turbine Engines Using Wave Rotors Modeled
NASA Technical Reports Server (NTRS)
1997-01-01
A wave rotor is a device that can boost the pressure and temperature of an airflow. When used as part of the core of a gas turbine engine, a wave rotor can significantly improve the thrust or shaft horsepower by boosting the flow pressure without raising the turbine inlet temperature. The NASA Lewis Research Center's Aeropropulsion Analysis Office, which is identifying technologies and research opportunities that will enhance the technical and economic competitiveness of the U.S. aeronautics industry, is evaluating the wave rotor to quantify the potential benefits of this device. Preliminary studies such as these are critical to identifying technologies that have high payoffs.
Formal optimization of hovering performance using free wake lifting surface theory
NASA Technical Reports Server (NTRS)
Chung, S. Y.
1986-01-01
Free wake techniques for performance prediction and optimization of hovering rotor are discussed. The influence functions due to vortex ring, vortex cylinder, and source or vortex sheets are presented. The vortex core sizes of rotor wake vortices are calculated and their importance is discussed. Lifting body theory for finite thickness body is developed for pressure calculation, and hence performance prediction of hovering rotors. Numerical optimization technique based on free wake lifting line theory is presented and discussed. It is demonstrated that formal optimization can be used with the implicit and nonlinear objective or cost function such as the performance of hovering rotors as used in this report.
Influence of torsional-lateral coupling on stability behavior of geared rotor systems
NASA Technical Reports Server (NTRS)
Schwibinger, P.; Nordmann, R.
1987-01-01
In high-performance turbomachinery trouble often arises because of unstable nonsynchronous lateral vibrations. The instabilities are mostly caused by oil-film bearings, clearance excitation, internal damping, annular pressure seals in pumps, or labyrinth seals in turbocompressors. In recent times the coupling between torsional and lateral vibrations has been considered as an additional influence. This coupling is of practical importance in geared rotor systems. The literature describes some field problems in geared drive trains where unstable lateral vibrations occurred together with torsional oscillations. This paper studies the influence of the torsional-lateral coupling on the stability behavior of a simple geared system supported by oil-film bearings. The coupling effect is investigated by parameter studies and a sensitivity analysis for the uncoupled and coupled systems.
Helicopter flight dynamics simulation with a time-accurate free-vortex wake model
NASA Astrophysics Data System (ADS)
Ribera, Maria
This dissertation describes the implementation and validation of a coupled rotor-fuselage simulation model with a time-accurate free-vortex wake model capable of capturing the response to maneuvers of arbitrary amplitude. The resulting model has been used to analyze different flight conditions, including both steady and transient maneuvers. The flight dynamics model is based on a system of coupled nonlinear rotor-fuselage differential equations in first-order, state-space form. The rotor model includes flexible blades, with coupled flap-lag-torsion dynamics and swept tips; the rigid body dynamics are modeled with the non-linear Euler equations. The free wake models the rotor flow field by tracking the vortices released at the blade tips. Their behavior is described by the equations of vorticity transport, which is approximated using finite differences, and solved using a time-accurate numerical scheme. The flight dynamics model can be solved as a system of non-linear algebraic trim equations to determine the steady state solution, or integrated in time in response to pilot-applied controls. This study also implements new approaches to reduce the prohibitive computational costs associated with such complex models without losing accuracy. The mathematical model was validated for trim conditions in level flight, turns, climbs and descents. The results obtained correlate well with flight test data, both in level flight as well as turning and climbing and descending flight. The swept tip model was also found to improve the trim predictions, particularly at high speed. The behavior of the rigid body and the rotor blade dynamics were also studied and related to the aerodynamic load distributions obtained with the free wake induced velocities. The model was also validated in a lateral maneuver from hover. The results show improvements in the on-axis prediction, and indicate a possible relation between the off-axis prediction and the lack of rotor-body interaction aerodynamics. The swept blade model improves both the on-axis and off-axis response. An axial descent though the vortex ring state was simulated. As theǒrtex ring" goes through the rotor, the unsteady loads produce large attitude changes, unsteady flapping, fluctuating thrust and an increase in power required. A roll reversal maneuver was found useful in understanding the cross-couplings effects found in rotorcraft, specifically the effect of the aerodynamic loading on the rotor orientation and the off-axis response.
Dynamic analysis of pretwisted elastically-coupled rotor blades
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Hinnant, Howard E.
1994-01-01
The accuracy of using a one-dimensional analysis to predict frequencies of elastically-coupled highly-twisted rotor blades is addressed. Degrees of freedom associated with shear deformation are statically condensed from the formulation, so the analysis uses only those degrees of freedom associated with classical beam theory. The effects of cross section deformation (warping) are considered, and are shown to become significant for some types of elastic coupling. Improved results are demonstrated for highly-coupled blade structures through account of warping in a local cross section analysis, without explicit inclusion of these effects in the beam analysis. A convergence study is also provided which investigates the potential for improving efficiency of elastically-coupled beam analysis through implementation of a p-version beam finite element.
NASA Astrophysics Data System (ADS)
Smith, Marilyn Jones
Some of the computational issues relating to the development of a three-dimensional fourth-order compact Euler/Navier-Stokes methodology for rotary wing flows and its coupling with an elastic rotor blade beam structural model have been explored. The compact Euler/NavierStokes method is used to predict the aerodynamic loads on an isolated rotor blade. Because the scheme is fourth-order, fewer grid nodes are necessary to predict loads with the same accuracy as traditional second order methodologies on finer grids. Grid and numerical parameter optimizations were performed to examine the changes in the predictive capabilities of the higher-order scheme. Comparisons were made with experimental data for a rotor using NACA 0012 airfoil sections and a rectangular planform with no twist. Simulations for both lifting and non-lifting configurations at various tip Mach numbers were performed. This Euler/Navier-Stokes methodology can be applied to rotor blades with either rigid-blade or elastic-beam-structural models to determine the steady-state response in hovering flight. The blade is represented by a geometrically nonlinear beam model which accounts for coupled flap bending, lead-lag bending and torsion. Moderately large displacements and rotations due to structural deformations can be simulated. The analysis has been performed for blade configurations having uniform mass and stiffness, no twist, and no chordwise offsets of the elastic and tension axes, as well as the center of mass. The results are compared with a panel method coupled with the same structural dynamics model. Computations have been made to predict the aerodynamic deflections for the rotor in hover. A starting solution using initial deflections predicted by aeroelastic analyses with a two-dimensional aerodynamic model was investigated. The present Euler/Navier-Stokes method using a momentum wake and a contracting vortex wake shows the impact on the aeroelastic deflections of a three-dimensional aerodynamic module which includes rotational and viscous effects, particularly at higher collective pitch angles. The differences in the aeroelastic predictions using fully coupled and loosely coupled aerodynamic analyses are examined. The induced wake plays a critical role in determining the final equilibrium tip deflections.
NASA Technical Reports Server (NTRS)
Giffin, R. G.; Mcfalls, R. A.; Beacher, B. F.
1977-01-01
The fan aerodynamic and aeromechanical performance tests of the quiet clean short haul experimental engine under the wing fan and inlet with a simulated core flow are described. Overall forward mode fan performance is presented at each rotor pitch angle setting with conventional flow pressure ratio efficiency fan maps, distinguishing the performance characteristics of the fan bypass and fan core regions. Effects of off design bypass ratio, hybrid inlet geometry, and tip radial inlet distortion on fan performance are determined. The nonaxisymmetric bypass OGV and pylon configuration is assessed relative to both total pressure loss and induced circumferential flow distortion. Reverse mode performance, obtained by resetting the rotor blades through both the stall pitch and flat pitch directions, is discussed in terms of the conventional flow pressure ratio relationship and its implications upon achievable reverse thrust. Core performance in reverse mode operation is presented in terms of overall recovery levels and radial profiles existing at the simulated core inlet plane. Observations of the starting phenomena associated with the initiation of stable rotor flow during acceleration in the reverse mode are briefly discussed. Aeromechanical response characteristics of the fan blades are presented as a separate appendix, along with a description of the vehicle instrumentation and method of data reduction.
The potential of genetic algorithms for conceptual design of rotor systems
NASA Technical Reports Server (NTRS)
Crossley, William A.; Wells, Valana L.; Laananen, David H.
1993-01-01
The capabilities of genetic algorithms as a non-calculus based, global search method make them potentially useful in the conceptual design of rotor systems. Coupling reasonably simple analysis tools to the genetic algorithm was accomplished, and the resulting program was used to generate designs for rotor systems to match requirements similar to those of both an existing helicopter and a proposed helicopter design. This provides a comparison with the existing design and also provides insight into the potential of genetic algorithms in design of new rotors.
A new dynamic model of rotor-blade systems
NASA Astrophysics Data System (ADS)
Ma, Hui; Lu, Yang; Wu, Zhiyuan; Tai, Xingyu; Li, Hui; Wen, Bangchun
2015-11-01
A new dynamic model of rotor-blade systems is developed in this paper considering the lateral and torsional deformations of the shaft, gyroscopic effects of the rotor which consists of shaft and disk, and the centrifugal stiffening, spin softening and Coriolis force of the blades. In this model, the rotating flexible blades are represented by Timoshenko beams. The shaft and rigid disk are described by multiple lumped mass points (LMPs), and these points are connected by massless springs which have both lateral and torsional stiffness. LMPs are represented by the corresponding masses and mass moments of inertia in lateral and rotational directions, where each point has five degrees of freedom (dofs) excluding axial dof. Equations of motion of the rotor-blade system are derived using Hamilton's principle in conjunction with the assumed modes method to describe blade deformation. The proposed model is compared with both finite element (FE) model and real experiments. The proposed model is first validated by comparing the model natural frequencies and vibration responses with those obtained from an FE model. A further verification of the model is then performed by comparing the model natural frequencies at zero rotational speed with those obtained from experimental studies. The results shown a good agreement between the model predicted system characteristics and those obtained from the FE model and experimental tests. Moreover, the following interesting phenomena have been revealed from the new model based analysis: The torsional natural frequency of the system decreases with the increase of rotational speed, and the frequency veering phenomenon has been observed at high rotational speed; The complicated coupling modes, such as the blade-blade coupling mode (BB), the coupling mode between the rotor lateral vibration and blade bending (RBL), and the coupling mode between the rotor torsional vibration and blade bending (RBT), have also been observed when the number of blades increases.
Rotor Wake Vortex Definition Using 3C-PIV Measurements: Corrected for Vortex Orientation
NASA Technical Reports Server (NTRS)
Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughues Richard; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee
2003-01-01
Three-component (3-C) particle image velocimetry (PIV) measurements, within the wake across a rotor disk plane, are used to determine wake vortex definitions important for BVI (Blade Vortex Interaction) and broadband noise prediction. This study is part of the HART II test program conducted using a 40 percent scale BO-105 helicopter main rotor in the German-Dutch Wind Tunnel (DNW). In this paper, measurements are presented of the wake vortex field over the advancing side of the rotor operating at a typical descent landing condition. The orientations of the vortex (tube) axes are found to have non-zero tilt angles with respect to the chosen PIV measurement cut planes, often on the order of 45 degrees. Methods for determining the orientation of the vortex axis and reorienting the measured PIV velocity maps (by rotation/projection) are presented. One method utilizes the vortex core axial velocity component, the other utilizes the swirl velocity components. Key vortex parameters such as vortex core size, strength, and core velocity distribution characteristics are determined from the reoriented PIV velocity maps. The results are compared with those determined from velocity maps that are not corrected for orientation. Knowledge of magnitudes and directions of the vortex axial and swirl velocity components as a function of streamwise location provide a basis for insight into the vortex evolution.
NASA Technical Reports Server (NTRS)
Hanson, Donald B.
1994-01-01
Typical analytical models for interaction between rotor and stator in a turbofan analyze the effect of wakes from the rotor impinging on the stator, producing unsteady loading, and thereby generating noise. Reflection/transmission characteristics of the rotor are sometimes added in a separate calculation. In those models, there is a one-to-one relationship between wake harmonics and noise harmonics; that is, the BPF (blade passing frequency) wake harmonic causes only the BPF noise harmonic, etc. This report presents a more complete model in which flow tangency boundary conditions are satisfied on two cascades in relative motion for several harmonics simultaneously. By an extension of S.N. Smith's code for two dimensional flat plate cascades, the noise generation/frequency scattering/blade row reflection problem is solved in a single matrix inversion. It is found that the BPF harmonic excitation of the stator scatters considerable energy in the higher BPF harmonics due to relative motion between the blade rows. Furthermore, when swirl between the rotor and stator is modeled, a 'mode trapping' effect occurs which explains observations on fans operating at rotational speeds below BFP cuton: the BPF mode amplifies between blade rows by multiple reflections but cannot escape to the inlet and exit ducts. However, energy scattered into higher harmonics does propagate and dominates the spectrum at two and three times BPF. This report presents the complete derivation of the theory, comparison with a previous (more limited) coupled rotor/stator interaction theory due to Kaji and Okazaki, exploration of the mode trapping phenomenon, and parametric studies showing the effects of vane/blade ratio and rotor/stator interaction. For generality, the analysis applies to stages where the rotor is either upstream or downstream of the stator and to counter rotation stages. The theory has been coded in a FORTRAN program called CUP2D, documented in Volume 2 of this report. It is concluded that the new features of this analysis - unsteady coupling, frequency scattering, and flow turning between rotor and stator - have a profound effect on noise generation caused by rotor/stator interaction. Treating rotors and stators as isolated cascades is not adequate for noise analysis and prediction.
A novel potential/viscous flow coupling technique for computing helicopter flow fields
NASA Technical Reports Server (NTRS)
Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul
1990-01-01
Because of the complexity of helicopter flow field, a zonal method of analysis of computational aerodynamics is required. Here, a new procedure for coupling potential and viscous flow is proposed. An overlapping, velocity coupling technique is to be developed with the unique feature that the potential flow surface singularity strengths are obtained directly from the Navier-Stokes at a smoother inner fluid boundary. The closed-loop iteration method proceeds until the velocity field is converged. This coupling should provide the means of more accurate viscous computations of the near-body and rotor flow fields with resultant improved analysis of such important performance parameters as helicopter fuselage drag and rotor airloads.
Development and Hover Testing of the Active Elevon Rotor
2012-05-01
typically aimed at reducing vibration, improving rotor performance, and/or reducing blade -vortex interaction (BVI) or in-plane noise . These efforts...will become unstable, either through a 1-DOF (degree of freedom) flutter or some kind of aeroservoelastic coupling with the rotor blade and/or wake ... blade CAEAs did exhibit electrical arcing (audible noise ), even at oscillatory voltages below ±200 V. This arcing/ noise suggests a latent deficiency
Extended cage adjustable speed electric motors and drive packages
Hsu, John S.
1999-01-01
The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced.
Noujaim, Sami F; Pandit, Sandeep V; Berenfeld, Omer; Vikstrom, Karen; Cerrone, Marina; Mironov, Sergey; Zugermayr, Michelle; Lopatin, Anatoli N; Jalife, José
2007-01-01
Previous studies have suggested an important role for the inward rectifier K+ current (IK1) in stabilizing rotors responsible for ventricular tachycardia (VT) and fibrillation (VF). To test this hypothesis, we used a line of transgenic mice (TG) overexpressing Kir 2.1–green fluorescent protein (GFP) fusion protein in a cardiac-specific manner. Optical mapping of the epicardial surface in ventricles showed that the Langendorff-perfused TG hearts were able to sustain stable VT/VF for 350 ± 1181 s at a very high dominant frequency (DF) of 44.6 ± 4.3 Hz. In contrast, tachyarrhythmias in wild-type hearts (WT) were short-lived (3 ± 9 s), and the DF was 26.3 ± 5.2 Hz. The stable, high frequency, reentrant activity in TG hearts slowed down, and eventually terminated in the presence of 10 μm Ba2+, suggesting an important role for IK1. Moreover, by increasing IK1 density in a two-dimensional computer model having realistic mouse ionic and action potential properties, a highly stable, fast rotor (≈45 Hz) could be induced. Simulations suggested that the TG hearts allowed such a fast and stable rotor because of both greater outward conductance at the core and shortened action potential duration in the core vicinity, as well as increased excitability, in part due to faster recovery of Na+ current. The latter resulted in a larger rate of increase in the local conduction velocity as a function of the distance from the core in TG compared to WT hearts, in both simulations and experiments. Finally, simulations showed that rotor frequencies were more sensitive to changes (doubling) in IK1, compared to other K+ currents. In combination, these results provide the first direct evidence that IK1 up-regulation in the mouse heart is a substrate for stable and very fast rotors. PMID:17095564
User's manual for the coupled rotor/airframe vibration analysis graphic package
NASA Technical Reports Server (NTRS)
Studwell, R. E.
1982-01-01
User instructions for a graphics package for coupled rotor/airframe vibration analysis are presented. Responses to plot package messages which the user must make to activate plot package operations and options are described. Installation instructions required to set up the program on the CDC system are included. The plot package overlay structure and subroutines which have to be modified for the CDC system are also described. Operating instructions for CDC applications are included.
Artificial Dipolar Molecular Rotors
NASA Astrophysics Data System (ADS)
Horansky, R. D.; Magnera, T. F.; Price, J. C.; Michl, J.
Rotors are present in almost every macroscopic machine, converting rotational motion into energy of other forms, or converting other forms of energy into rotation. Rotation may be transmitted via belts or gears, converted into linear motion by various linkages, or used to drive propellers to produce fluid motion. Examples of macroscopic rotors include engines which couple to combustible energy sources, windmills which couple to air flows, and most generators of electricity. A key feature of these objects is the presence of a part with rotational freedom relative to a stationary frame. In this chapter we discuss the miniaturization of rotary machines all the way to the molecular scale, where chemical groups form the rotary and stationary parts. For a recent review of molecules with rotary and stationary parts see [1].
Correlation of AH-1G airframe flight vibration data with a coupled rotor-fuselage analysis
NASA Technical Reports Server (NTRS)
Sangha, K.; Shamie, J.
1990-01-01
The formulation and features of the Rotor-Airframe Comprehensive Analysis Program (RACAP) is described. The analysis employs a frequency domain, transfer matrix approach for the blade structural model, a time domain wake or momentum theory aerodynamic model, and impedance matching for rotor-fuselage coupling. The analysis is applied to the AH-1G helicopter, and a correlation study is conducted on fuselage vibration predictions. The purpose of the study is to evaluate the state-of-the-art in helicopter fuselage vibration prediction technology. The fuselage vibration predicted using RACAP are fairly good in the vertical direction and somewhat deficient in the lateral/longitudinal directions. Some of these deficiencies are traced to the fuselage finite element model.
NASA Technical Reports Server (NTRS)
Bielawa, R. L.
1984-01-01
The mathematical development for the expanded capabilities of the G400 rotor aeroelastic analysis was examined. The G400PA expanded analysis simulates the dynamics of all conventional rotors, blade pendulum vibration absorbers, and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. The methodology for modeling the unsteady stalled airloads of two dimensional airfoils is discussed. Formulations for calculating the rotor impedance matrix appropriate to the higher harmonic blade excitations are outlined. This impedance matrix, and the associated vibratory hub loads, are the rotor dynamic characteristic elements for use in the simplified coupled rotor/fuselage vibration analysis (SIMVIB). Updates to the development of the original G400 theory, program documentation, user instructions and information are presented.
Analysis of a Hovering Rotor in Icing Conditions
NASA Technical Reports Server (NTRS)
Narducci, Robert; Kreeger, Richard E.
2012-01-01
A high fidelity analysis method is proposed to evaluate the ice accumulation and the ensuing rotor performance degradation for a helicopter flying through an icing cloud. The process uses computational fluid dynamics (CFD) coupled to a rotorcraft comprehensive code to establish the aerodynamic environment of a trimmed rotor prior to icing. Based on local aerodynamic conditions along the rotor span and accounting for the azimuthal variation, an ice accumulation analysis using NASA's Lewice3D code is made to establish the ice geometry. Degraded rotor performance is quantified by repeating the high fidelity rotor analysis with updates which account for ice shape and mass. The process is applied on a full-scale UH-1H helicopter in hover using data recorded during the Helicopter Icing Flight Test Program.
Core compressor exit stage study. Volume 1: Blading design. [turbofan engines
NASA Technical Reports Server (NTRS)
Wisler, D. C.
1977-01-01
A baseline compressor test stage was designed as well as a candidate rotor and two candidate stators that have the potential of reducing endwall losses relative to the baseline stage. These test stages are typical of those required in the rear stages of advanced, highly-loaded core compressors. The baseline Stage A is a low-speed model of Stage 7 of the 10 stage AMAC compressor. Candidate Rotor B uses a type of meanline in the tip region that unloads the leading edge and loads the trailing edge relative to the baseline Rotor A design. Candidate Stator B embodies twist gradients in the endwall region. Candidate Stator C embodies airfoil sections near the endwalls that have reduced trailing edge loading relative to Stator A. Tests will be conducted using four identical stages of blading so that the designs described will operate in a true multistage environment.
Bifilar analysis study, volume 1
NASA Technical Reports Server (NTRS)
Miao, W.; Mouzakis, T.
1980-01-01
A coupled rotor/bifilar/airframe analysis was developed and utilized to study the dynamic characteristics of the centrifugally tuned, rotor-hub-mounted, bifilar vibration absorber. The analysis contains the major components that impact the bifilar absorber performance, namely, an elastic rotor with hover aerodynamics, a flexible fuselage, and nonlinear individual degrees of freedom for each bifilar mass. Airspeed, rotor speed, bifilar mass and tuning variations are considered. The performance of the bifilar absorber is shown to be a function of its basic parameters: dynamic mass, damping and tuning, as well as the impedance of the rotor hub. The effect of the dissimilar responses of the individual bifilar masses which are caused by tolerance induced mass, damping and tuning variations is also examined.
Vibration analysis of rotor blades with an attached concentrated mass
NASA Technical Reports Server (NTRS)
Murthy, V. R.; Barna, P. S.
1977-01-01
The effect of an attached concentrated mass on the dynamics of helicopter rotor blades is determined. The point transmission matrix method was used to define, through three completely automated computer programs, the natural vibrational characteristics (natural frequencies and mode shapes) of rotor blades. The problems of coupled flapwise bending, chordwise bending, and torsional vibration of a twisted nonuniform blade and its special subcase pure torsional vibration are discussed. The orthogonality relations that exist between the natural modes of rotor blades with an attached concentrated mass are derived. The effect of pitch, rotation, and point mass parameters on the collective, cyclic, scissor, and pure torsional modes of a seesaw rotor blade is determined.
Turbofan gas turbine engine with variable fan outlet guide vanes
NASA Technical Reports Server (NTRS)
Wood, Peter John (Inventor); LaChapelle, Donald George (Inventor); Grant, Carl (Inventor); Zenon, Ruby Lasandra (Inventor); Mielke, Mark Joseph (Inventor)
2010-01-01
A turbofan gas turbine engine includes a forward fan section with a row of fan rotor blades, a core engine, and a fan bypass duct downstream of the forward fan section and radially outwardly of the core engine. The forward fan section has only a single stage of variable fan guide vanes which are variable fan outlet guide vanes downstream of the forward fan rotor blades. An exemplary embodiment of the engine includes an afterburner downstream of the fan bypass duct between the core engine and an exhaust nozzle. The variable fan outlet guide vanes are operable to pivot from a nominal OGV position at take-off to an open OGV position at a high flight Mach Number which may be in a range of between about 2.5-4+. Struts extend radially across a radially inwardly curved portion of a flowpath of the engine between the forward fan section and the core engine.
Disc-geometry homopolar synchronous machine
NASA Astrophysics Data System (ADS)
Evans, P. D.; Eastham, J. F.
1980-09-01
Results of an experimental and theoretical investigation of a disc-geometry homopolar synchronous machine with field excitation on the primary side are presented. The unlaminated mild-steel rotor contains no windings and is brushless. The prototype machine produces approximately 7.5 kW of mechanical output at 3000 rev/min, with a product of power factor and efficiency greater than 0.7. The construction of the stator core is unusual and incorporates both laminated and unlaminated portions. The magnetic circuit is also arranged to minimize the axial force between the stator and rotor. A novel rotor design which achieves a reduced quadrature-axis reactance is shown experimentally to be superior to the conventional homopolar rotor.
Pilot-in-the-Loop CFD Method Development
2015-02-01
expensive alternatives [1]. ALM represents the blades as a set of segments along with each blade axis and the ADM represents the entire rotor as...fine grid, Δx = 1.00 m Figure 4 – Time-averaged vertical velocity distributions on downwash and rotor disk plane for hybrid and loose coupling...cases with fine and coarse grid refinement levels. Figure 4 shows the time-averaged distributions of vertical velocities on both downwash and rotor disk
Extended cage adjustable speed electric motors and drive packages
Hsu, J.S.
1999-03-23
The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced. 12 figs.
NASA Astrophysics Data System (ADS)
Oruc, Ilker
This thesis presents the development of computationally efficient coupling of Navier-Stokes CFD with a helicopter flight dynamics model, with the ultimate goal of real-time simulation of fully coupled aerodynamic interactions between rotor flow and the surrounding terrain. A particular focus of the research is on coupled airwake effects in the helicopter / ship dynamic interface. A computationally efficient coupling interface was developed between the helicopter flight dynamics model, GENHEL-PSU and the Navier-Stokes solvers, CRUNCH/CRAFT-CFD using both FORTRAN and C/C++ programming languages. In order to achieve real-time execution speeds, the main rotor was modeled with a simplified actuator disk using unsteady momentum sources, instead of resolving the full blade geometry in the CFD. All the airframe components, including the fuselage are represented by single aerodynamic control points in the CFD calculations. The rotor downwash influence on the fuselage and empennage are calculated by using the CFD predicted local flow velocities at these aerodynamic control points defined on the helicopter airframe. In the coupled simulations, the flight dynamics model is free to move within a computational domain, where the main rotor forces are translated into source terms in the momentum equations of the Navier-Stokes equations. Simultaneously, the CFD calculates induced velocities those are fed back to the simulation and affect the aerodynamic loads in the flight dynamics. The CFD solver models the inflow, ground effect, and interactional aerodynamics in the flight dynamics simulation, and these calculations can be coupled with solution of the external flow (e.g. ship airwake effects). The developed framework was utilized for various investigations of hovering, forward flight and helicopter/terrain interaction simulations including standard ground effect, partial ground effect, sloped terrain, and acceleration in ground effect; and results compared with different flight and experimental data. In near ground cases, the fully-coupled flight dynamics and CFD simulations predicted roll oscillations due to interactions of the rotor downwash, ground plane, and the feedback controller, which are not predicted by the conventional simulation models. Fully coupled simulations of a helicopter accelerating near ground predicted flow formations similar to the recirculation and ground vortex flow regimes observed in experiments. The predictions of hover power reductions due to ground effect compared well to a recent experimental data and the results showed 22% power reduction for a hover flight z/R=0.55 above ground level. Fully coupled simulations performed for a helicopter hovering over and approaching to a ship flight deck and results compared with the standalone GENHEL-PSU simulations without ship airwake and one-way coupled simulations. The fully-coupled simulations showed higher pilot workload compared to the other two cases. In order to increase the execution speeds of the CFD calculations, several improvements were made on the CFD solver. First, the initial coupling approach File I/O was replaced with a more efficient method called Multiple Program Multiple Data MPI framework, where the two executables communicate with each other by MPI calls. Next, the unstructured solver (CRUNCH CFD), which is 2nd-order accurate in space, was replaced with the faster running structured solver (CRAFT CFD) that is 5th-order accurate in space. Other improvements including a more efficient k-d tree search algorithm and the bounding of the source term search space within a small region of the grid surrounding the rotor were made on the CFD solver. The final improvement was to parallelize the search task with the CFD solver tasks within the solver. To quantify the speed-up of the improvements to the coupling interface described above, a study was performed to demonstrate the speedup achieved from each of the interface improvements. The improvements made on the CFD solver showed more than 40 times speedup from the baseline file I/O and unstructured solver CRUNCH CFD. Using a structured CFD solver with 5th-order spacial accuracy provided the largest reductions in execution times. Disregarding the solver numeric, the total speedup of all of the interface improvements including the MPMD rotor point exchange, k-d tree search algorithm, bounded search space, and paralleled search task, was approximately 231%, more than a factor of 2. All these improvements provided the necessary speedup for approach real-time CFD. (Abstract shortened by ProQuest.).
NASA Technical Reports Server (NTRS)
Fuh, Jon-Shen; Panda, Brahmananda; Peters, David A.
1988-01-01
A finite element approach is presented for the modeling of rotorcraft undergoing elastic deformation in addition to large rigid body motion with respect to inertial space, with particular attention given to the coupling of the rotor and fuselage subsystems subject to large relative rotations. The component synthesis technique used here allows the coupling of rotors to the fuselage for different rotorcraft configurations. The formulation is general and applicable to any rotorcraft vibration, aeroelasticity, and dynamics problem.
Triaxiality in the odd-A nuclei 109-117I studied through a microscopic rotationparticle coupling
NASA Astrophysics Data System (ADS)
Modi, Swati
2018-05-01
A systematic study of ground state spectrum with the triaxial deformation γ for odd-A Iodine isotopes 109-117I is carried out with the nonadiabatic quasiparticle approach. The rotation-particle coupling is accomplished microscopically such that the matrix elements of a particle-plus-rotor system are written in terms of the rotor energies. The 5/2+ state is confirmed as ground state for odd-A 111-117I and also coming out as lowest in energy for 109I.
Voltage THD Improvement for an Outer Rotor Permanent Magnet Synchronous Machine
NASA Astrophysics Data System (ADS)
de la Cruz, Javier; Ramirez, Juan M.; Leyva, Luis
2013-08-01
This article deals with the design of an outer rotor Permanent Magnet Synchronous Machines (PMSM) driven by wind turbines. The Voltage Total Harmonic Distortion (VTHD) is especially addressed, under design parameters' handling, i.e., the geometry of the stator, the polar arc percentage, the air gap, the skew angle in rotor poles, the pole length and the core steel class. Seventy-six cases are simulated and the results provide information useful for designing this kind of machines. The study is conducted on a 5 kW PMSM.
Effect of coulomb spline on rotor dynamic response
NASA Technical Reports Server (NTRS)
Nataraj, C.; Nelson, H. D.; Arakere, N.
1985-01-01
A rigid rotor system coupled by a coulomb spline is modelled and analyzed by approximate analytical and numerical analytical methods. Expressions are derived for the variables of the resulting limit cycle and are shown to be quite accurate for a small departure from isotropy.
Survey of Army/NASA rotorcraft aeroelastic stability research
NASA Technical Reports Server (NTRS)
Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.
1988-01-01
Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability are considered. Results of parametric investigations of system behavior are presented, and correlations between theoretical results and experimental data from small- and large-scale wind tunnel and flight testing are discussed.
Integrated multidisciplinary design optimization of rotorcraft
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Mantay, Wayne R.
1989-01-01
The NASA/Army research plan for developing the logic elements for helicopter rotor design optimization by integrating appropriate disciplines and accounting for important interactions among the disciplines is discussed. The paper describes the optimization formulation in terms of the objective function, design variables, and constraints. The analysis aspects are discussed, and an initial effort at defining the interdisciplinary coupling is summarized. Results are presented on the achievements made in the rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, rotor structural optimization for minimum weight, and integrated aerodynamic load/dynamics optimization for minimum vibration and weight.
High-Resolution Structure and Mechanism of an F/V-Hybrid Rotor Ring in a Na+-coupled ATP Synthase
Matthies, Doreen; Zhou, Wenchang; Klyszejko, Adriana L.; Anselmi, Claudio; Yildiz, Özkan; Brandt, Karsten; Müller, Volker; Faraldo-Gómez, José D.; Meier, Thomas
2014-01-01
All rotary ATPases catalyze the interconversion of ATP and ADP-Pi through a mechanism that is coupled to the transmembrane flow of H+ or Na+. Physiologically, however, F/A-type enzymes specialize in ATP synthesis driven by downhill ion diffusion, while eukaryotic V-type ATPases function as ion pumps. To begin to rationalize the molecular basis for this functional differentiation, we solved the crystal structure of the Na+-driven membrane rotor of the Acetobacterium woodii ATP synthase, at 2.1 Å resolution. Unlike known structures, this rotor ring is a 9:1 heteromer of F- and V-type c-subunits, and therefore features a hybrid configuration of ion-binding sites along its circumference. Molecular and kinetic simulations are used to dissect the mechanisms of Na+ recognition and rotation of this c-ring, and to explain the functional implications of the V-type c-subunit. These structural and mechanistic insights indicate an evolutionary path between synthases and pumps involving adaptations in the rotor ring. PMID:25381992
Body frame close coupling wave packet approach to gas phase atom-rigid rotor inelastic collisions
NASA Technical Reports Server (NTRS)
Sun, Y.; Judson, R. S.; Kouri, D. J.
1989-01-01
The close coupling wave packet (CCWP) method is formulated in a body-fixed representation for atom-rigid rotor inelastic scattering. For J greater than j-max (where J is the total angular momentum and j is the rotational quantum number), the computational cost of propagating the coupled channel wave packets in the body frame is shown to scale approximately as N exp 3/2, where N is the total number of channels. For large numbers of channels, this will be much more efficient than the space frame CCWP method previously developed which scales approximately as N-squared under the same conditions.
An unsteady helicopter rotor: Fuselage interaction analysis
NASA Technical Reports Server (NTRS)
Lorber, Peter F.; Egolf, T. Alan
1988-01-01
A computational method was developed to treat unsteady aerodynamic interactions between a helicopter rotor, wake, and fuselage and between the main and tail rotors. An existing lifting line prescribed wake rotor analysis and a source panel fuselage analysis were coupled and modified to predict unsteady fuselage surface pressures and airloads. A prescribed displacement technique is used to position the rotor wake about the fuselage. Either a rigid blade or an aeroelastic blade analysis may be used to establish rotor operating conditions. Sensitivity studies were performed to determine the influence of the wake fuselage geometry on the computation. Results are presented that describe the induced velocities, pressures, and airloads on the fuselage and on the rotor. The ability to treat arbitrary geometries is demonstrated using a simulated helicopter fuselage. The computational results are compared with fuselage surface pressure measurements at several locations. No experimental data was available to validate the primary product of the analysis: the vibratory airloads on the entire fuselage. A main rotor-tail rotor interaction analysis is also described, along with some hover and forward flight.
Design of a Modular E-Core Flux Concentrating Axial Flux Machine: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal
2015-08-24
In this paper a novel E-Core axial flux machine is proposed. The machine has a double-stator, single-rotor configuration with flux-concentrating ferrite magnets and pole windings across each leg of an E-Core stator. E-Core stators with the proposed flux-concentrating rotor arrangement result in better magnet utilization and higher torque density. The machine also has a modular structure facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis. facilitatingmore » simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis.« less
Application of hybrid methodology to rotors in steady and maneuvering flight
NASA Astrophysics Data System (ADS)
Rajmohan, Nischint
Helicopters are versatile flying machines that have capabilities that are unparalleled by fixed wing aircraft, such as operating in hover, performing vertical takeoff and landing on unprepared sites. This makes their use especially desirable in military and search-and-rescue operations. However, modern helicopters still suffer from high levels of noise and vibration caused by the physical phenomena occurring in the vicinity of the rotor blades. Therefore, improvement in rotorcraft design to reduce the noise and vibration levels requires understanding of the underlying physical phenomena, and accurate prediction capabilities of the resulting rotorcraft aeromechanics. The goal of this research is to study the aeromechanics of rotors in steady and maneuvering flight using hybrid Computational Fluid Dynamics (CFD) methodology. The hybrid CFD methodology uses the Navier-Stokes equations to solve the flow near the blade surface but the effect of the far wake is computed through the wake model. The hybrid CFD methodology is computationally efficient and its wake modeling approach is nondissipative making it an attractive tool to study rotorcraft aeromechanics. Several enhancements were made to the CFD methodology and it was coupled to a Computational Structural Dynamics (CSD) methodology to perform a trimmed aeroelastic analysis of a rotor in forward flight. The coupling analyses, both loose and tight were used to identify the key physical phenomena that affect rotors in different steady flight regimes. The modeling enhancements improved the airloads predictions for a variety of flight conditions. It was found that the tightly coupled method did not impact the loads significantly for steady flight conditions compared to the loosely coupled method. The coupling methodology was extended to maneuvering flight analysis by enhancing the computational and structural models to handle non-periodic flight conditions and vehicle motions in time accurate mode. The flight test control angles were employed to enable the maneuvering flight analysis. The fully coupled model provided the presence of three dynamic stall cycles on the rotor in maneuver. It is important to mention that analysis of maneuvering flight requires knowledge of the pilot input control pitch settings, and the vehicle states. As the result, these computational tools cannot be used for analysis of loads in a maneuver that has not been duplicated in a real flight. This is a significant limitation if these tools are to be selected during the design phase of a helicopter where its handling qualities are evaluated in different trajectories. Therefore, a methodology was developed to couple the CFD/CSD simulation with an inverse flight mechanics simulation to perform the maneuver analysis without using the flight test control input. The methodology showed reasonable convergence in steady flight regime and control angles predictions compared fairly well with test data. In the maneuvering flight regions, the convergence was slower due to relaxation techniques used for the numerical stability. The subsequent computed control angles for the maneuvering flight regions compared well with test data. Further, the enhancement of the rotor inflow computations in the inverse simulation through implementation of a Lagrangian wake model improved the convergence of the coupling methodology.
Adaptor assembly for coupling turbine blades to rotor disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Crespo, Andres Jose; Delvaux, John McConnell
2014-09-23
An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor rootmore » of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.« less
An experimental investigation of hingeless helicopter rotor-body stability in hover
NASA Technical Reports Server (NTRS)
Bousman, W. G.
1978-01-01
Model tests of a 1.62 m diameter rotor were performed to investigate the aeromechanical stability of coupled rotor-body systems in hover. Experimental measurements were made of modal frequencies and damping over a wide range of rotor speeds. Good data were obtained for the frequencies of the rotor lead-lag regressing mode. The quality of the damping measurements of the body modes was poor due to nonlinear damping in the gimbal ball bearings. Simulated vacuum testing was performed using substitute blades of tantalum that reduced the effective lock number to 0.2% of the model scale value while keeping the blade inertia constant. The experimental data were compared with theoretical predictions, and the correlation was in general very good.
NASA Astrophysics Data System (ADS)
Matsumura, T.; Sakurai, Y.; Kataza, H.; Utsunomiya, S.; Yamamoto, R.
2016-11-01
We present the design and mechanical performances of a magnetically coupled gear mechanism to drive a levitating rotor magnet of a superconducting magnetic bearing (SMB). The SMB consists of a ring-shaped high-temperature superconducting array (YBCO) and a ring-shaped permanent magnet. This rotational system is designed to operate below 10 K, and thus the design philosophy is to minimize any potential source of heat dissipation. While an SMB provides only a functionality of namely a bearing, it requires a mechanism to drive a rotational motion. We introduce a simple implementation of a magnetically coupled gears between a stator and a rotor. This enables to achieve enough torque to drive a levitating rotor without slip at the rotation frequency of about 1 Hz below 10 K. The rotational variation between the rotor and the drive gear is synchronised within σ = 0.019 Hz. The development of this mechanism is a part of the program to develop a testbed in order to evaluate a prototype half-wave plate based polarization modulator for future space missions. The successful development allows this modulator to be a candidate for an instrument to probe the cosmic inflation by measuring the cosmic microwave background polarization.
Design of multi-energy Helds coupling testing system of vertical axis wind power system
NASA Astrophysics Data System (ADS)
Chen, Q.; Yang, Z. X.; Li, G. S.; Song, L.; Ma, C.
2016-08-01
The conversion efficiency of wind energy is the focus of researches and concerns as one of the renewable energy. The present methods of enhancing the conversion efficiency are mostly improving the wind rotor structure, optimizing the generator parameters and energy storage controller and so on. Because the conversion process involves in energy conversion of multi-energy fields such as wind energy, mechanical energy and electrical energy, the coupling effect between them will influence the overall conversion efficiency. In this paper, using system integration analysis technology, a testing system based on multi-energy field coupling (MEFC) of vertical axis wind power system is proposed. When the maximum efficiency of wind rotor is satisfied, it can match to the generator function parameters according to the output performance of wind rotor. The voltage controller can transform the unstable electric power to the battery on the basis of optimizing the parameters such as charging times, charging voltage. Through the communication connection and regulation of the upper computer system (UCS), it can make the coupling parameters configure to an optimal state, and it improves the overall conversion efficiency. This method can test the whole wind turbine (WT) performance systematically and evaluate the design parameters effectively. It not only provides a testing method for system structure design and parameter optimization of wind rotor, generator and voltage controller, but also provides a new testing method for the whole performance optimization of vertical axis wind energy conversion system (WECS).
HART-II Acoustic Predictions using a Coupled CFD/CSD Method
NASA Technical Reports Server (NTRS)
Boyd, D. Douglas, Jr.
2009-01-01
This paper documents results to date from the Rotorcraft Acoustic Characterization and Mitigation activity under the NASA Subsonic Rotary Wing Project. The primary goal of this activity is to develop a NASA rotorcraft impulsive noise prediction capability which uses first principles fluid dynamics and structural dynamics. During this effort, elastic blade motion and co-processing capabilities have been included in a recent version of the computational fluid dynamics code (CFD). The CFD code is loosely coupled to computational structural dynamics (CSD) code using new interface codes. The CFD/CSD coupled solution is then used to compute impulsive noise on a plane under the rotor using the Ffowcs Williams-Hawkings solver. This code system is then applied to a range of cases from the Higher Harmonic Aeroacoustic Rotor Test II (HART-II) experiment. For all cases presented, the full experimental configuration (i.e., rotor and wind tunnel sting mount) are used in the coupled CFD/CSD solutions. Results show good correlation between measured and predicted loading and loading time derivative at the only measured radial station. A contributing factor for a typically seen loading mean-value offset between measured data and predictions data is examined. Impulsive noise predictions on the measured microphone plane under the rotor compare favorably with measured mid-frequency noise for all cases. Flow visualization of the BL and MN cases shows that vortex structures generated in the prediction method are consist with measurements. Future application of the prediction method is discussed.
16,000-rpm Interior Permanent Magnet Reluctance Machine with Brushless Field Excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, John S; Burress, Timothy A; Lee, Seong T
2008-01-01
This paper introduces a high speed brushless field excitation (BFE) machine that offers high torque per ampere (A) per core length at low speed and weakened flux at high speed. Lower core losses at high speeds, are attained by reducing the field excitation. Safety and reliability are increased by weakening the field when a winding short-circuit fault occurs. For a high-speed motor the bridges that link the rotor punching segments together must be thickened for mechanical integrity; BFE can ensure sufficient rotor flux when needed. Projected efficiency map including losses of the excitation coils confirms the advantage of this technology.
NASA Technical Reports Server (NTRS)
Hah, Chunill
2016-01-01
Effects of a large rotor tip gap on the performance of a one and half stage axial compressor are investigated in detail with a numerical simulation based on LES and available PIV data. The current paper studies the main flow physics, including why and how the loss generation is increased with the large rotor tip gap. The present study reveals that when the tip gap becomes large, tip clearance fluid goes over the tip clearance core vortex and enters into the next blade's tip gap, which is called double-leakage tip clearance flow. As the tip clearance flow enters into the adjacent blade's tip gap, a vortex rope with a lower pressure core is generated. This vortex rope breaks up the tip clearance core vortex of the adjacent blade, resulting in a large additional mixing. This double-leakage tip clearance flow occurs at all operating conditions, from design flow to near stall condition, with the large tip gap for the current compressor stage. The double-leakage tip clearance flow, its interaction with the tip clearance core vortex of the adjacent blade, and the resulting large mixing loss are the main flow mechanism of the large rotor tip gap in the compressor. When the tip clearance is smaller, flow near the end wall follows more closely with the main passage flow and this double-leakage tip clearance flow does not happen near the design flow condition for the current compressor stage. When the compressor with a large tip gap operates at near stall operation, a strong vortex rope is generated near the leading edge due to the double-leakage flow. Part of this vortex separates from the path of the tip clearance core vortex and travels from the suction side of the blade toward the pressure side of the blade. This vortex is generated periodically at near stall operation with a large tip gap. As the vortex travels from the suction side to the pressure side of the blade, a large fluctuation of local pressure forces blade vibration. Nonsynchronous blade vibration occurs due to this vortex as the frequency of this vortex generation is not the same as the rotor. The present investigation confirms that this vortex is a part of separated tip clearance vortex, which is caused by the double-leakage tip clearance flow.
Computational analysis of high resolution unsteady airloads for rotor aeroacoustics
NASA Technical Reports Server (NTRS)
Quackenbush, Todd R.; Lam, C.-M. Gordon; Wachspress, Daniel A.; Bliss, Donald B.
1994-01-01
The study of helicopter aerodynamic loading for acoustics applications requires the application of efficient yet accurate simulations of the velocity field induced by the rotor's vortex wake. This report summarizes work to date on the development of such an analysis, which builds on the Constant Vorticity Contour (CVC) free wake model, previously implemented for the study of vibratory loading in the RotorCRAFT computer code. The present effort has focused on implementation of an airload reconstruction approach that computes high resolution airload solutions of rotor/rotor-wake interactions required for acoustics computations. Supplementary efforts on the development of improved vortex core modeling, unsteady aerodynamic effects, higher spatial resolution of rotor loading, and fast vortex wake implementations have substantially enhanced the capabilities of the resulting software, denoted RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently acquired model rotor data show that by employing airload reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to that required by direct calculations. Promising correlation with this body of airload and noise data has been obtained for a variety of rotor configurations and operating conditions.
NASA Technical Reports Server (NTRS)
Woodward, Richard P.; Hughes, Christopher E.
2012-01-01
A model advanced turbofan was acoustically tested in the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel in 1994. The Universal Propulsion Simulator fan was designed and manufactured by General Electric Aircraft Engines, and included an active core, as well as bypass, flow paths. The fan was tested with several rotors featuring unswept, forward-swept and aft-swept designs of both metal and composite construction. Sideline acoustic data were taken with both hard and acoustically treated walls in the flow passages. The fan was tested within an airflow at a Mach number of 0.20, which is representative of aircraft takeoff/approach conditions. All rotors showed similar aerodynamic performance. However, the composite rotors typically showed higher noise levels than did corresponding metal rotors. Aft and forward rotor sweep showed at most modest reductions of transonic multiple pure tone levels. However, rotor sweep often introduced increased rotor-stator interaction tone levels. Broadband noise was typically higher for the composite rotors and also for the aft-swept metal rotor. Transonic MPT generation was reduced with increasing fan axis angle of attack (AOA); however, higher downstream noise levels did increase with AOA resulting in higher overall Effective Perceived Noise Level.
Magic angle spinning NMR with metallized rotors as cylindrical microwave resonators.
Scott, Faith J; Sesti, Erika L; Choi, Eric J; Laut, Alexander J; Sirigiri, Jagadishwar R; Barnes, Alexander B
2018-04-19
We introduce a novel design for millimeter wave electromagnetic structures within magic angle spinning (MAS) rotors. In this demonstration, a copper coating is vacuum deposited onto the outside surface of a sapphire rotor at a thickness of 50 nm. This thickness is sufficient to reflect 197-GHz microwaves, yet not too thick as to interfere with radiofrequency fields at 300 MHz or prevent sample spinning due to eddy currents. Electromagnetic simulations of an idealized rotor geometry show a microwave quality factor of 148. MAS experiments with sample rotation frequencies of ω r /2π = 5.4 kHz demonstrate that the drag force due to eddy currents within the copper does not prevent sample spinning. Spectra of sodium acetate show resolved 13 C J-couplings of 60 Hz and no appreciable broadening between coated and uncoated sapphire rotors, demonstrating that the copper coating does not prevent shimming and high-resolution nuclear magnetic resonance spectroscopy. Additionally, 13 C Rabi nutation curves of ω 1 /2π = 103 kHz for both coated and uncoated rotors indicate no detrimental impact of the copper coating on radio frequency coupling of the nuclear spins to the sample coil. We present this metal coated rotor as a first step towards an MAS resonator. MAS resonators are expected to have a significant impact on developments in electron decoupling, pulsed dynamic nuclear polarization (DNP), room temperature DNP, DNP with low-power microwave sources, and electron paramagnetic resonance detection. Copyright © 2018 John Wiley & Sons, Ltd.
Flutter and forced response of mistuned rotors using standing wave analysis
NASA Technical Reports Server (NTRS)
Dugundji, J.; Bundas, D. J.
1983-01-01
A standing wave approach is applied to the analysis of the flutter and forced response of tuned and mistuned rotors. The traditional traveling wave cascade airforces are recast into standing wave arbitrary motion form using Pade approximants, and the resulting equations of motion are written in the matrix form. Applications for vibration modes, flutter, and forced response are discussed. It is noted that the standing wave methods may prove to be more versatile for dealing with certain applications, such as coupling flutter with forced response and dynamic shaft problems, transient impulses on the rotor, low-order engine excitation, bearing motions, and mistuning effects in rotors.
Flutter and forced response of mistuned rotors using standing wave analysis
NASA Technical Reports Server (NTRS)
Bundas, D. J.; Dungundji, J.
1983-01-01
A standing wave approach is applied to the analysis of the flutter and forced response of tuned and mistuned rotors. The traditional traveling wave cascade airforces are recast into standing wave arbitrary motion form using Pade approximants, and the resulting equations of motion are written in the matrix form. Applications for vibration modes, flutter, and forced response are discussed. It is noted that the standing wave methods may prove to be more versatile for dealing with certain applications, such as coupling flutter with forced response and dynamic shaft problems, transient impulses on the rotor, low-order engine excitation, bearing motion, and mistuning effects in rotors.
Unsteady adjoint for large eddy simulation of a coupled turbine stator-rotor system
NASA Astrophysics Data System (ADS)
Talnikar, Chaitanya; Wang, Qiqi; Laskowski, Gregory
2016-11-01
Unsteady fluid flow simulations like large eddy simulation are crucial in capturing key physics in turbomachinery applications like separation and wake formation in flow over a turbine vane with a downstream blade. To determine how sensitive the design objectives of the coupled system are to control parameters, an unsteady adjoint is needed. It enables the computation of the gradient of an objective with respect to a large number of inputs in a computationally efficient manner. In this paper we present unsteady adjoint solutions for a coupled turbine stator-rotor system. As the transonic fluid flows over the stator vane, the boundary layer transitions to turbulence. The turbulent wake then impinges on the rotor blades, causing early separation. This coupled system exhibits chaotic dynamics which causes conventional adjoint solutions to diverge exponentially, resulting in the corruption of the sensitivities obtained from the adjoint solutions for long-time simulations. In this presentation, adjoint solutions for aerothermal objectives are obtained through a localized adjoint viscosity injection method which aims to stabilize the adjoint solution and maintain accurate sensitivities. Preliminary results obtained from the supercomputer Mira will be shown in the presentation.
Comprehensive analysis of helicopters with bearingless rotors
NASA Technical Reports Server (NTRS)
Murthy, V. R.
1988-01-01
A modified Galerkin method is developed to analyze the dynamic problems of multiple-load-path bearingless rotor blades. The development and selection of functions are quite parallel to CAMRAD procedures, greatly facilitating the implementation of the method into the CAMRAD program. A software is developed implementing the modified Galerkin method to determine free vibration characteristics of multiple-load-path rotor blades undergoing coupled flapwise bending, chordwise bending, twisting, and extensional motions. Results are in the process of being obtained by debugging the software.
Miniature high speed compressor having embedded permanent magnet motor
NASA Technical Reports Server (NTRS)
Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)
2011-01-01
A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.
COAXIAL CONTROL ROD DRIVE MECHANISM FOR NEUTRONIC REACTORS
Fox, R.J.; Oakes, L.C.
1959-04-14
A drive mechanism is presented for the control rod or a nuclear reactor. In this device the control rod is coupled to a drive shaft which extends coaxially through the rotor of an electric motor for relative rotation with respect thereto. A gear reduction mehanism is coupled between the rotor and the drive shaft to convert the rotary motion of the motor into linear motion of the shaft with a comparatively great reduction in speed, thereby providing relatively glow linear movement of the shaft and control rod for control purposes.
NASA Technical Reports Server (NTRS)
Sekula, Martin K; Wilbur, Matthew L.
2014-01-01
A study was conducted to identify the optimum blade tip planform for a model-scale active twist rotor. The analysis identified blade tip design traits which simultaneously reduce rotor power of an unactuated rotor while leveraging aeromechanical couplings to tailor the active response of the blade. Optimizing the blade tip planform for minimum rotor power in forward flight provided a 5 percent improvement in performance compared to a rectangular blade tip, but reduced the vibration control authority of active twist actuation by 75 percent. Optimizing for maximum blade twist response increased the vibration control authority by 50 percent compared to the rectangular blade tip, with little effect on performance. Combined response and power optimization resulted in a blade tip design which provided similar vibration control authority to the rectangular blade tip, but with a 3.4 percent improvement in rotor performance in forward flight.
Aeroelastic Stability of Modern Bearingless Rotors: A Parametric Investigation
NASA Technical Reports Server (NTRS)
Nguyen, Khanh Q.
1994-01-01
The University of Maryland Advanced Rotorcraft Code (UMARC) is utilized to study the effects of blade design parameters on the aeroelastic stability of an isolated modern bearingless rotor blade in hover. The McDonnell Douglas Advanced Rotor Technology (MDART) Rotor is the baseline rotor investigated. Results indicate that kinematic pitch-lag coupling introduced through the control system geometry and the damping levels of the shear lag dampers strongly affect the hover inplane damping of the baseline rotor blade. Hub precone, pitchcase chordwise stiffness, and blade fundamental torsion frequency have small to moderate influence on the inplane damping, while blade pre-twist and placements of blade fundamental flapwise and chord-wise frequencies have negligible effects. A damperless configuration with a leading edge pitch-link, 15 deg of pitch-link cant angle, and reduced pitch-link stiffness is shown to be stable with an inplane damping level in excess of 2.7 percent critical at the full hover tip speed.
Aeroelastic Analysis for Rotorcraft in Flight or in a Wind Tunnel
NASA Technical Reports Server (NTRS)
Johnson, W.
1977-01-01
An analytical model is developed for the aeroelastic behavior of a rotorcraft in flight or in a wind tunnel. A unified development is presented for a wide class of rotors, helicopters, and operating conditions. The equations of motion for the rotor are derived using an integral Newtonian method, which gives considerable physical insight into the blade inertial and aerodynamic forces. The rotor model includes coupled flap-lag bending and blade torsion degrees of freedom, and is applicable to articulated, hingeless, gimballed, and teetering rotors with an arbitrary number of blades. The aerodynamic model is valid for both high and low inflow, and for axial and nonaxial flight. The rotor rotational speed dynamics, including engine inertia and damping, and the perturbation inflow dynamics are included. For a rotor on a wind-tunnel support, a normal mode representation of the test module, strut, and balance system is used. The aeroelastic analysis for the rotorcraft in flight is applicable to a general two-rotor aircraft, including single main-rotor and tandem helicopter configurations, and side-by-side or tilting proprotor aircraft configurations.
NASA Technical Reports Server (NTRS)
Mirick, Paul H.
1988-01-01
Seven cases were selected for correlation from a 1/5.86 Froude-scale experiment that examined several rotor designs which were being considered for full-scale flight testing as part of the Bearingless Main Rotor (BMR) program. The model rotor hub used in these tests consisted of back-to-back C-beams as flexbeam elements with a torque tube for pitch control. The first four cases selected from the experiment were hover tests which examined the effects on rotor stability of variations in hub-to-flexbeam coning, hub-to-flexbeam pitch, flexbeam-to-blade coning, and flexbeam-to-blade pitch. The final three cases were selected from the forward flight tests of optimum rotor configuration as defined during the hover test. The selected cases examined the effects of variations in forward speed, rotor speed, and shaft angle. Analytical results from Bell Helicopter Textron, Boeing Vertol, Sikorsky Aircraft, and the U.S. Army Aeromechanics Laboratory were compared with the data and the correlations ranged from poor-to-fair to fair-to-good.
Aeroelastic characteristics of the AH-64 bearingless tail rotor
NASA Technical Reports Server (NTRS)
Banerjee, D.
1988-01-01
The results of a wind tunnel test program to determine the performance loads and dynamic characteristics of the Composite Flexbeam Tail Rotor (CFTR) for the AH-64 Advanced Attack Helicopter are reported. The CFTR uses an elastomeric shear attachment of the flexbeam to the hub to provide soft-inplane S-mode and stiff-inplane C-mode configuration. The properties of the elastomer were selected for proper frequency placement and scale damping of the inplane S-mode. Kinematic pitch-lag coupling was introduced to provide the first cyclic inplane C-mode damping at high collective pitch. The CFTR was tested in a wind tunnel over the full slideslip envelop of the AH-64. It is found that the rotor was aeroelastically stable throughout the complete collective pitch range and up to rotor speeds of 1403 rpm. The dynamic characteristics of the rotor were found to be satisfactory at all pitch angles and rotor speeds of the tunnel tests. The design characteristics of the rotor which permit the high performance characteristics are discussed. Several schematic drawings and photographs of the rotor are provided.
Composite structure of helicopter rotor blades studied by neutron- and X-ray radiography
NASA Astrophysics Data System (ADS)
Balaskó, M.; Veres, I.; Molnár, Gy.; Balaskó, Zs.; Sváb, E.
2004-07-01
In order to inspect the possible defects in the composite structure of helicopter rotor blades combined neutron- and X-ray radiography investigations were performed at the Budapest Research Reactor. Imperfections in the honeycomb structure, resin rich or starved areas at the core-honeycomb surfaces, inhomogeneities at the adhesive filling and water percolation at the sealing interfaces of the honeycomb sections were discovered.
Effects of blade-to-blade dissimilarities on rotor-body lead-lag dynamics
NASA Technical Reports Server (NTRS)
Mcnulty, M. J.
1986-01-01
Small blade-to-blade property differences are investigated to determine their effects on the behavior of a simple rotor-body system. An analytical approach is used which emphasizes the significance of these effects from the experimental point of view. It is found that the primary effect of blade-to-blade dissimilarities is the appearance of additional peaks in the frequency spectrum which are separated from the convention response modes by multiples of the rotor speed. These additional responses are potential experimental problems because when they occur near a mode of interest they act as contaminant frequencies which can make damping measurements difficult. The effects of increased rotor-body coupling and a rotor shaft degree of freedom act to improve the situation by altering the frequency separation of the modes.
Dynamic Behavior of Wind Turbine by a Mixed Flexible-Rigid Multi-Body Model
NASA Astrophysics Data System (ADS)
Wang, Jianhong; Qin, Datong; Ding, Yi
A mixed flexible-rigid multi-body model is presented to study the dynamic behavior of a horizontal axis wind turbine. The special attention is given to flexible body: flexible rotor is modeled by a newly developed blade finite element, support bearing elasticities, variations in the number of teeth in contact as well as contact tooth's elasticities are mainly flexible components in the power train. The couple conditions between different subsystems are established by constraint equations. The wind turbine model is generated by coupling models of rotor, power train and generator with constraint equations together. Based on this model, an eigenproblem analysis is carried out to show the mode shape of rotor and power train at a few natural frequencies. The dynamic responses and contact forces among gears under constant wind speed and fixed pitch angle are analyzed.
An analytic modeling and system identification study of rotor/fuselage dynamics at hover
NASA Technical Reports Server (NTRS)
Hong, Steven W.; Curtiss, H. C., Jr.
1993-01-01
A combination of analytic modeling and system identification methods have been used to develop an improved dynamic model describing the response of articulated rotor helicopters to control inputs. A high-order linearized model of coupled rotor/body dynamics including flap and lag degrees of freedom and inflow dynamics with literal coefficients is compared to flight test data from single rotor helicopters in the near hover trim condition. The identification problem was formulated using the maximum likelihood function in the time domain. The dynamic model with literal coefficients was used to generate the model states, and the model was parametrized in terms of physical constants of the aircraft rather than the stability derivatives resulting in a significant reduction in the number of quantities to be identified. The likelihood function was optimized using the genetic algorithm approach. This method proved highly effective in producing an estimated model from flight test data which included coupled fuselage/rotor dynamics. Using this approach it has been shown that blade flexibility is a significant contributing factor to the discrepancies between theory and experiment shown in previous studies. Addition of flexible modes, properly incorporating the constraint due to the lag dampers, results in excellent agreement between flight test and theory, especially in the high frequency range.
An analytic modeling and system identification study of rotor/fuselage dynamics at hover
NASA Technical Reports Server (NTRS)
Hong, Steven W.; Curtiss, H. C., Jr.
1993-01-01
A combination of analytic modeling and system identification methods have been used to develop an improved dynamic model describing the response of articulated rotor helicopters to control inputs. A high-order linearized model of coupled rotor/body dynamics including flap and lag degrees of freedom and inflow dynamics with literal coefficients is compared to flight test data from single rotor helicopters in the near hover trim condition. The identification problem was formulated using the maximum likelihood function in the time domain. The dynamic model with literal coefficients was used to generate the model states, and the model was parametrized in terms of physical constants of the aircraft rather than the stability derivatives, resulting in a significant reduction in the number of quantities to be identified. The likelihood function was optimized using the genetic algorithm approach. This method proved highly effective in producing an estimated model from flight test data which included coupled fuselage/rotor dynamics. Using this approach it has been shown that blade flexibility is a significant contributing factor to the discrepancies between theory and experiment shown in previous studies. Addition of flexible modes, properly incorporating the constraint due to the lag dampers, results in excellent agreement between flight test and theory, especially in the high frequency range.
Analytical and experimental study of vibrations in a gear transmission
NASA Technical Reports Server (NTRS)
Choy, F. K.; Ruan, Y. F.; Zakrajsek, J. J.; Oswald, Fred B.; Coy, J. J.
1991-01-01
An analytical simulation of the dynamics of a gear transmission system is presented and compared to experimental results from a gear noise test rig at the NASA Lewis Research Center. The analytical procedure developed couples the dynamic behaviors of the rotor-bearing-gear system with the response of the gearbox structure. The modal synthesis method is used in solving the overall dynamics of the system. Locally each rotor-gear stage is modeled as an individual rotor-bearing system using the matrix transfer technique. The dynamics of each individual rotor are coupled with other rotor stages through the nonlinear gear mesh forces and with the gearbox structure through bearing support systems. The modal characteristics of the gearbox structure are evaluated using the finite element procedure. A variable time steping integration routine is used to calculate the overall time transient behavior of the system in modal coordinates. The global dynamic behavior of the system is expressed in a generalized coordinate system. Transient and steady state vibrations of the gearbox system are presented in the time and frequency domains. The vibration characteristics of a simple single mesh gear noise test rig is modeled. The numerical simulations are compared to experimental data measured under typical operating conditions. The comparison of system natural frequencies, peak vibration amplitudes, and gear mesh frequencies are generally in good agreement.
Aerodynamic optimization of wind turbine rotor using CFD/AD method
NASA Astrophysics Data System (ADS)
Cao, Jiufa; Zhu, Weijun; Wang, Tongguang; Ke, Shitang
2018-05-01
The current work describes a novel technique for wind turbine rotor optimization. The aerodynamic design and optimization of wind turbine rotor can be achieved with different methods, such as the semi-empirical engineering methods and more accurate computational fluid dynamic (CFD) method. The CFD method often provides more detailed aerodynamics features during the design process. However, high computational cost limits the application, especially for rotor optimization purpose. In this paper, a CFD-based actuator disc (AD) model is used to represent turbulent flow over a wind turbine rotor. The rotor is modeled as a permeable disc of equivalent area where the forces from the blades are distributed on the circular disc. The AD model is coupled with a Reynolds Averaged Navier-Stokes (RANS) solver such that the thrust and power are simulated. The design variables are the shape parameters comprising the chord, the twist and the relative thickness of the wind turbine rotor blade. The comparative aerodynamic performance is analyzed between the original and optimized reference wind turbine rotor. The results showed that the optimization framework can be effectively and accurately utilized in enhancing the aerodynamic performance of the wind turbine rotor.
Permanent magnet design for high-speed superconducting bearings
Hull, John R.; Uherka, Kenneth L.; Abdoud, Robert G.
1996-01-01
A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing.
Analytic investigation of helicopter rotor blade appended aeroelastic devices
NASA Technical Reports Server (NTRS)
Bielawa, Richard L.
1984-01-01
Analytic evaluations of four different passive aeroelastic devices appended to helicopter rotor blades are presented. The devices consist of a passive tuned tab, a control coupled tab, an all-flying tip and a harmonic dilational airfoil tip. Each device was conceived for improving either aerodynamic performance or reducing vibratory control loads or hub shears. The evaluation was performed using a comprehensive rotor aeroelastic analysis (the G400PA code with appropriate modifications), together with data for a realistic helicopter rotor blade (the UH-60A Blackhawk), in high speed flight (90 m/s, 175 kts). The results of this study show that significant performance (L/(D sub e)) gains can be achieved with the all-flying free tip. Results from the harmonic dilational airfoil tip show the potential for moderate improvements in L/(D sub e). Finally, the results for the passive tuned tab and the control coupled tab, as configured for this study, show these devices to be impractical. Sections are included which describe the operation of each device, the required G400PA modifications, and the detailed results obtained for each device.
NASA Astrophysics Data System (ADS)
Wallace, Brian D.
A series of field tests and theoretical analyses were performed on various wind turbine rotor designs at two Penn State residential-scale wind-electric facilities. This work involved the prediction and experimental measurement of the electrical and aerodynamic performance of three wind turbines; a 3 kW rated Whisper 175, 2.4 kW rated Skystream 3.7, and the Penn State designed Carolus wind turbine. Both the Skystream and Whisper 175 wind turbines are OEM blades which were originally installed at the facilities. The Carolus rotor is a carbon-fiber composite 2-bladed machine, designed and assembled at Penn State, with the intent of replacing the Whisper 175 rotor at the off-grid system. Rotor aerodynamic performance is modeled using WT_Perf, a National Renewable Energy Laboratory developed Blade Element Momentum theory based performance prediction code. Steady-state power curves are predicted by coupling experimentally determined electrical characteristics with the aerodynamic performance of the rotor simulated with WT_Perf. A dynamometer test stand is used to establish the electromechanical efficiencies of the wind-electric system generator. Through the coupling of WT_Perf and dynamometer test results, an aero-electro-mechanical analysis procedure is developed and provides accurate predictions of wind system performance. The analysis of three different wind turbines gives a comprehensive assessment of the capability of the field test facilities and the accuracy of aero-electro-mechanical analysis procedures. Results from this study show that the Carolus and Whisper 175 rotors are running at higher tip-speed ratios than are optimum for power production. The aero-electro-mechanical analysis predicted the high operating tip-speed ratios of the rotors and was accurate at predicting output power for the systems. It is shown that the wind turbines operate at high tip-speeds because of a miss-match between the aerodynamic drive torque and the operating torque of the wind-system generator. Through the change of load impedance on the wind generator, the research facility has the ability to modify the rotational speed of the wind turbines, allowing the rotors to perform closer to their optimum tip-speed. Comparisons between field test data and performance predictions show that the aero-electro-mechanical analysis was able to predict differences in power production and rotational speed which result from changes in the system load impedance.
Computation of rotor aerodynamic loads in forward flight using a full-span free wake analysis
NASA Technical Reports Server (NTRS)
Quackenbush, Todd R.; Bliss, Donald B.; Wachspress, Daniel A.; Boschitsch, Alexander H.; Chua, Kiat
1990-01-01
The development of an advanced computational analysis of unsteady aerodynamic loads on isolated helicopter rotors in forward flight is described. The primary technical focus of the development was the implementation of a freely distorting filamentary wake model composed of curved vortex elements laid out along contours of constant vortex sheet strength in the wake. This model captures the wake generated by the full span of each rotor blade and makes possible a unified treatment of the shed and trailed vorticity in the wake. This wake model was coupled to a modal analysis of the rotor blade dynamics and a vortex lattice treatment of the aerodynamic loads to produce a comprehensive model for rotor performance and air loads in forward flight dubbed RotorCRAFT (Computation of Rotor Aerodynamics in Forward Flight). The technical background on the major components of this analysis are discussed and the correlation of predictions of performance, trim, and unsteady air loads with experimental data from several representative rotor configurations is examined. The primary conclusions of this study are that the RotorCRAFT analysis correlates well with measured loads on a variety of configurations and that application of the full span free wake model is required to capture several important features of the vibratory loading on rotor blades in forward flight.
Preliminary assessment of combustion modes for internal combustion wave rotors
NASA Technical Reports Server (NTRS)
Nalim, M. Razi
1995-01-01
Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.
The Anatomy of AP1000 Mono-Block Low Pressure Rotor Forging
NASA Astrophysics Data System (ADS)
Jin, Jia-yu; Rui, Shou-tai; Wang, Qun
AP1000 mono-block low pressure (LP) rotor forgings for nuclear power station have maximum ingot weight, maximum diameter and the highest technical requirements. It confronts many technical problems during manufacturing process such as composition segregation and control of inclusion in the large ingot, core compaction during forging, control of grain size and mechanical performance. The rotor forging were anatomized to evaluate the manufacturing level of CFHI. This article introduces the anatomical results of this forging. The contents include chemical composition, mechanical properties, inclusions and grain size and other aspects from the full-length and full cross-section of this forging. The fluctuation of mechanical properties, uniformity of microstructure and purity of chemical composition were emphasized. The results show that the overall performance of this rotor forging is particularly satisfying.
Optimization of rotor shaft shrink fit method for motor using "Robust design"
NASA Astrophysics Data System (ADS)
Toma, Eiji
2018-01-01
This research is collaborative investigation with the general-purpose motor manufacturer. To review construction method in production process, we applied the parameter design method of quality engineering and tried to approach the optimization of construction method. Conventionally, press-fitting method has been adopted in process of fitting rotor core and shaft which is main component of motor, but quality defects such as core shaft deflection occurred at the time of press fitting. In this research, as a result of optimization design of "shrink fitting method by high-frequency induction heating" devised as a new construction method, its construction method was feasible, and it was possible to extract the optimum processing condition.
NASA Technical Reports Server (NTRS)
Wisler, D. C.
1981-01-01
The core compressor exit stage study program develops rear stage blading designs that have lower losses in their endwall boundary layer regions. The test data and performance results for the best stage configuration consisting of Rotor-B running with Stator-B are described. The technical approach in this efficiency improvement program utilizes a low speed research compressor. Tests were conducted in two ways: (1) to use four identical stages of blading to obtain test data in a true multistage environment and (2) to use a single stage of blading to compare with the multistage test results. The effects of increased rotor tip clearances and circumferential groove casing treatment are evaluated.
New concepts and new design of permanent maglev rotary artificial heart blood pumps.
Qian, K X; Zeng, P; Ru, W M; Yuan, H Y
2006-05-01
According to tradition, permanent maglev cannot achieve stable equilibrium. The authors have developed, to the contrary, two stable permanent maglev impeller blood pumps. The first pump is an axially driven uni-ventricular assist pump, in which the rotor with impeller is radially supported by two passive magnetic bearings, but has one point contact with the stator axially at standstill. As the pump raises its rotating speed, the increasing hydrodynamic force of fluid acting on the impeller will make the rotor taking off from contacting point and disaffiliate from the stator. Then the rotor becomes fully suspended. The second pump is a radially driven bi-ventricular assist pump, i.e., an impeller total artificial heart. Its rotor with two impellers on both ends is supported by two passive magnetic bearings, which counteract the attractive force between rotor magnets and stator coil iron core. The rotor is affiliated to the stator radially at standstill and becomes levitated during rotation. Therefore, the rotor keeps concentric with stator during rotation but eccentric at standstill, as is confirmed by rotor position detection with Honeywell sensors. It concludes that the permanent maglev needs action of a non-magnetic force to achieve stability but a rotating magnetic levitator with high speed and large inertia can maintain its stability merely with passive magnetic bearings.
Loads Correlation of a Full-Scale UH-60A Airloads Rotor in a Wind Tunnel
NASA Technical Reports Server (NTRS)
Yeo, Hyeonsoo; Romander, Ethan A.
2012-01-01
Wind tunnel measurements of the rotor trim, blade airloads, and structural loads of a full-scale UH-60A Black Hawk main rotor are compared with calculations obtained using the comprehensive rotorcraft analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. A speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed into deep stall are investigated. The coupled analysis shows significant improvement over comprehensive analysis. Normal force phase is better captured and pitching moment magnitudes are better predicted including the magnitude and phase of the two stall events in the fourth quadrant at the deeply stalled condition. Structural loads are, in general, improved with the coupled analysis, but the magnitude of chord bending moment is still significantly underpredicted. As there are three modes around 4 and 5/rev frequencies, the structural responses to the 5/rev airloads due to dynamic stall are magnified and thus care must be taken in the analysis of the deeply stalled condition.
NASA Technical Reports Server (NTRS)
1985-01-01
In the conference proceedings are 24 presented papers, their discussions, and material given in two panels. The presented papers address the general areas of the dynamics of rotorcraft or helicopters. Specific topics include the stability of rotors in hover and forward flight, the stability of coupled rotor-fuselage systems in hover, the loads on a rotor in forward flight including new developments in rotor loads calculations, and the calculation of rotorcraft vibration and means for its control or suppression. Material in the first panel deals with the successful application of dynamics technology to engineering development of flight vehicles. Material in the second panel is concerned with large data bases in the area of rotorocraft dynamics and how they are developed, managed, and used.
Finite element analysis of two disk rotor system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixit, Harsh Kumar
A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding amore » relationship between natural whirl frequencies and rotation of the rotor.« less
Self energized air core superconducting (SEAC) motor
NASA Astrophysics Data System (ADS)
Hilal, M. A.; Huang, X.; Lloyd, J. D.; Crapo, A. D.
1991-03-01
The SEAC motor described utilizes superconductive windings both for the stator and the rotor and operates the same way as a conventional motor by supplying power to the stator. The rotor of a simple SEAC motor has a small and a large winding and two switches. The axes of the two rotor windings are normal to each other. The rotor is initially stationary, and the windings are exposed to the rotating stator field. Flux pumping is employed to charge the rotor windings. As the field rotates by 180 deg from being parallel to the axis of the small winding of the rotor, a switch connected in series with the windings automatically opens, allowing the magnetic flux to penetrate the winding. The switch is closed during most of the other half of the cycle. The flux trapped in the small winding is partially transferred to the larger rotor winding by opening another switch, which results in series connection of the two windings. This results in charging the large winding and in accelerating the rotor to reach the rotating field angular velocity. Current decay will not take place, since it will automatically trigger flux pumping and recharging of the windings. The use of superconductive windings will also make it feasible to operate at high magnetic field, thus eliminating the need for using iron laminations to magnetically link the rotor and the stator windings.
Design of a 100 kVA high temperature superconducting demonstration synchronous generator
NASA Astrophysics Data System (ADS)
Al-Mosawi, M. K.; Beduz, C.; Goddard, K.; Sykulski, J. K.; Yang, Y.; Xu, B.; Ship, K. S.; Stoll, R.; Stephen, N. G.
2002-08-01
The paper presents the main features of a 100 kVA high temperature superconducting (HTS) demonstrator generator, which is designed and being built at the University of Southampton. The generator is a 2-pole synchronous machine with a conventional 3-phase stator and a HTS rotor operating in the temperature range 57-77 K using either liquid nitrogen down to 65 K or liquid air down to 57 K. Liquid air has not been used before in the refrigeration of HTS devices but has recently been commercialised by BOC as a safe alternative to nitrogen for use in freezing of food. The generator will use an existing stator with a bore of 330 mm. The rotor is designed with a magnetic core (invar) to reduce the magnetising current and the field in the coils. For ease of manufacture, a hybrid salient pole construction is used, and the superconducting winding consists of twelve 50-turn identical flat coils. Magnetic invar rings will be used between adjacent HTS coils of the winding to divert the normal component of the magnetic field away from the Bi2223 superconducting tapes. To avoid excessive eddy-current losses in the rotor pole faces, a cold copper screen will be placed around the rotor core to exclude ac magnetic fields.
NASA Technical Reports Server (NTRS)
Davino, R.; Lakshminarayana, B.
1982-01-01
The experiment was performed using the rotating hot-wire technique within the rotor blade passage and the stationary hot-wire technique for the exitflow of the rotor blade passage. The measurements reveal the effect of rotation and subsequent flow interactions upon the rotor blade flowfield and wake development in the annulus-wall region. The flow near the rotor blade tips is found to be highly complex due to the interaction of the annulus-wall boundary layer, the blade boundary layers, the tip leakage flow, and the secondary flow. Within the blade passage, this interaction results in an appreciable radial inward flow as well as a defect in the mainstream velocity near the mid-passage. Turbulence levels within this region are very high. This indicates a considerable extent of flow mixing due to the viscous flow interactions. The size and strength of this loss core is found to grow with axial distance from the blade trailing edge. The nature of the rotor blade exit-flow was dominated by the wake development.
Advances in Rotor Performance and Turbulent Wake Simulation Using DES and Adaptive Mesh Refinement
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.
2012-01-01
Time-dependent Navier-Stokes simulations have been carried out for a rigid V22 rotor in hover, and a flexible UH-60A rotor in forward flight. Emphasis is placed on understanding and characterizing the effects of high-order spatial differencing, grid resolution, and Spalart-Allmaras (SA) detached eddy simulation (DES) in predicting the rotor figure of merit (FM) and resolving the turbulent rotor wake. The FM was accurately predicted within experimental error using SA-DES. Moreover, a new adaptive mesh refinement (AMR) procedure revealed a complex and more realistic turbulent rotor wake, including the formation of turbulent structures resembling vortical worms. Time-dependent flow visualization played a crucial role in understanding the physical mechanisms involved in these complex viscous flows. The predicted vortex core growth with wake age was in good agreement with experiment. High-resolution wakes for the UH-60A in forward flight exhibited complex turbulent interactions and turbulent worms, similar to the V22. The normal force and pitching moment coefficients were in good agreement with flight-test data.
Core compressor exit stage study, volume 6
NASA Technical Reports Server (NTRS)
Wisler, D. C.
1981-01-01
Rear stage blading designs that have lower losses in their endwall boundary layer regions were studied. A baseline Stage A was designed as a low-speed model of stage 7 of a 10-stage compressor. Candidate rotors and stators were designed which have the potential of reducing endwall losses relative to the baseline. Rotor B uses a type of meanline in the tip region that unloads the leading edge and loads the trailing edge relative to the baseline rotor A designs. Rotor C incorporates a more skewed (hub strong) radial distribution of total pressure and smoother distribution of static pressure on the rotor tip than those of rotor B. Candidate stator B embodies twist gradients in the endwall region. Stator C embodies airfoil sections near the endwalls that have reduced trailing edge loading relative to stator A. The baseline and candidate bladings were tested using four identical stages to produce a true multistage environment. Single-stage tests were also conducted. The test data were analyzed and performances were compared. Several of the candidate configurations showed a performance improvement relative to the baseline.
Smart helicopter rotor with active blade tips
NASA Astrophysics Data System (ADS)
Bernhard, Andreas Paul Friedrich
2000-10-01
The smart active blade tip (SABT) rotor is an on-blade rotor vibration reduction system, incorporating active blade tips that can be independently pitched with respect to the main blade. The active blade tip rotor development included an experimental test program culminating in a Mach scale hover test, and a parallel development of a coupled, elastic actuator and rotor blade analysis for preliminary design studies and hover performance prediction. The experimental testing focussed on a small scale rotor on a bearingless Bell-412 hub. The fabricated Mach-scale active-tip rotor has a diameter of 1.524 m, a blade chord of 76.2 mm and incorporated a 10% span active tip. The nominal operating speed is 2000 rpm, giving a tip Mach number of 0.47. The blade tips are driven by a novel piezo-induced bending-torsion coupled actuator beam, located spanwise in the hollow mid-cell of the main rotor blade. In hover at 2000 rpm, at 2 deg collective, and for an actuation of 125 Vrms, the measured blade tip deflection at the first four rotor harmonics is between +/-1.7 and +/-2.8 deg, increasing to +/-5.3 deg at 5/rev with resonant amplification. The corresponding oscillatory amplitude of the rotor thrust coefficient is between 0.7 · 10-3 and 1.3 · 10-1 at the first four rotor harmonics, increasing to 2.1 · 10-3 at 5/rev. In general, the experimental blade tip frequency response and corresponding rotor thrust response are well captured by the analysis. The flexbeam root flap bending moment is predicted in trend, but is significantly over-estimated. The blade tips did not deflect as expected at high collective settings, because of the blade tip shaft locking up in the bearing. This is caused by the high flap bending moment on the blade tip shaft. Redesign of the blade tip shaft assembly and bearing support is identified as the primary design improvement for future research. The active blade tip rotor was also used as a testbed for the evaluation of an adaptive neural-network based control algorithm. Effective background vibration reduction of an intentional 1/rev hover imbalance was demonstrated. The control algorithm also showed the capability to generate desired multi-frequency control loads on the hub, based on artificial signal injection into the vibration measurement. The research program demonstrates the technical feasibility of the active blade tip concept for vibration reduction and warrants further investigation in terms of closed loop forward flight tests in the windtunnel and full scale design studies.
Wind turbine rotor hub and teeter joint
Coleman, Clint; Kurth, William T.; Jankowski, Joseph
1994-10-11
A rotor hub is provided for coupling a wind turbine rotor blade and a shaft. The hub has a yoke with a body which is connected to the shaft, and extension portions which are connected to teeter bearing blocks, each of which has an aperture. The blocks are connected to a saddle which envelops the rotor blade by one or two shafts which pass through the apertures in the bearing blocks. The saddle and blade are separated by a rubber interface which provides for distribution of stress over a larger portion of the blade. Two teeter control mechanisms, which may include hydraulic pistons and springs, are connected to the rotor blade and to the yoke at extension portions. These control mechanisms provide end-of-stroke damping, braking, and stiffness based on the teeter angle and speed of the blade.
NASA Technical Reports Server (NTRS)
Nakamura, S.; Scott, J. N.
1993-01-01
A two-dimensional model to solve compressible Navier-Stokes equations for the flow through stator and rotor blades of a turbine is developed. The flow domains for the stator and rotor blades are coupled by the Chimera method that makes grid generation easy and enhances accuracy because the area of the grid that have high turning of grid lines or high skewness can be eliminated from the computational domain after the grids are generated. The results of flow computations show various important features of unsteady flows including the acoustic waves interacting with boundary layers, Karman vortex shedding from the trailing edge of the stator blades, pulsating incoming flow to a rotor blade from passing stator blades, and flow separation from both suction and pressure sides of the rotor blades.
Characteristics pertaining to a stiffness cross-coupled Jeffcott model
NASA Technical Reports Server (NTRS)
Spanyer, K. L.
1985-01-01
Rotordynamic studies of complex systems utilizing multiple degree-of-freedom analysis have been performed to understand response, loads, and stability. In order to understand the fundamental nature of rotordynamic response, the Jeffcott rotor model has received wide attention. The purpose of this paper is to provide a generic rotordynamic analysis of a stiffness cross-coupled Jeffcott rotor model to illustrate characteristics of a second order stiffness-coupled linear system. The particular characteristics investigated were forced response, force vector diagrams, response orbits, and stability. Numerical results were achieved through a fourth order Runge-Kutta method for solving differential equations and the Routh Hurwitz stability criterion. The numerical results were verified to an exact mathematical solution for the steady state response.
Devices that Alter the Tip Vortex of a Rotor
NASA Technical Reports Server (NTRS)
McAlister, Kenneth W.; Tung, Chee; Heineck, James T.
2001-01-01
Small devices were attached near the tip of a hovering rotor blade 'in order to alter the structure and trajectory of the trailing vortex. Stereo particle image velocimetry (PIV) images were used to quantify the wake behind the rotor blade during the first revolution. A procedure for analyzing the 3D-velocity field is presented that includes a method for accounting for vortex wander. The results show that a vortex generator can alter the trajectory of the trailing vortex and that a major change in the size and intensity of the trailing vortex can be achieved by introducing a high level of turbulence into the core of the vortex.
Damping in high-temperature superconducting levitation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hull, John R.
2009-12-15
Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The dampingmore » of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.« less
Damping in high-temperature superconducting levitation systems
Hull, John R [Sammamish, WA
2009-12-15
Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.
Permanent magnet design for high-speed superconducting bearings
Hull, J.R.; Uherka, K.L.; Abdoud, R.G.
1996-09-10
A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure is disclosed. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing. 9 figs.
Some observations on the behavior of the Langley model rotor blade
NASA Technical Reports Server (NTRS)
Rehfield, L. W.; Atilgan, A. R.
1986-01-01
The design of the model rotor and the comparative study of coupled beam theory and the finite element analysis performed earlier at the Aerostructures Directorate by Robert Hodges and Mark Nixon is examined. Attention is focused upon two matters: (1) an examination of the small discrepancies between twist angle predictions under pure torque and radial loading, and (2) an assessment of nonclassical effects in bending behavior. The primary objective is understanding, particularly with regard to cause and effect relationships. Understanding, together with the simple, affordable nature of the coupled beam analysis, provides a sound basis for design.
Improved Helicopter Rotor Performance Prediction through Loose and Tight CFD/CSD Coupling
NASA Astrophysics Data System (ADS)
Ickes, Jacob C.
Helicopters and other Vertical Take-Off or Landing (VTOL) vehicles exhibit an interesting combination of structural dynamic and aerodynamic phenomena which together drive the rotor performance. The combination of factors involved make simulating the rotor a challenging and multidisciplinary effort, and one which is still an active area of interest in the industry because of the money and time it could save during design. Modern tools allow the prediction of rotorcraft physics from first principles. Analysis of the rotor system with this level of accuracy provides the understanding necessary to improve its performance. There has historically been a divide between the comprehensive codes which perform aeroelastic rotor simulations using simplified aerodynamic models, and the very computationally intensive Navier-Stokes Computational Fluid Dynamics (CFD) solvers. As computer resources become more available, efforts have been made to replace the simplified aerodynamics of the comprehensive codes with the more accurate results from a CFD code. The objective of this work is to perform aeroelastic rotorcraft analysis using first-principles simulations for both fluids and structural predictions using tools available at the University of Toledo. Two separate codes are coupled together in both loose coupling (data exchange on a periodic interval) and tight coupling (data exchange each time step) schemes. To allow the coupling to be carried out in a reliable and efficient way, a Fluid-Structure Interaction code was developed which automatically performs primary functions of loose and tight coupling procedures. Flow phenomena such as transonics, dynamic stall, locally reversed flow on a blade, and Blade-Vortex Interaction (BVI) were simulated in this work. Results of the analysis show aerodynamic load improvement due to the inclusion of the CFD-based airloads in the structural dynamics analysis of the Computational Structural Dynamics (CSD) code. Improvements came in the form of improved peak/trough magnitude prediction, better phase prediction of these locations, and a predicted signal with a frequency content more like the flight test data than the CSD code acting alone. Additionally, a tight coupling analysis was performed as a demonstration of the capability and unique aspects of such an analysis. This work shows that away from the center of the flight envelope, the aerodynamic modeling of the CSD code can be replaced with a more accurate set of predictions from a CFD code with an improvement in the aerodynamic results. The better predictions come at substantially increased computational costs between 1,000 and 10,000 processor-hours.
Hall, Matthew; Goupee, Andrew; Jonkman, Jason
2017-08-24
Hybrid modeling—combining physical testing and numerical simulation in real time$-$opens new opportunities in floating wind turbine research. Wave basin testing is an important validation step for floating support structure design, but the conventional approaches that use physical wind above the basin are limited by scaling problems in the aerodynamics. Applying wind turbine loads with an actuation system that is controlled by a simulation responding to the basin test in real time offers a way to avoid scaling problems and reduce cost barriers for floating wind turbine design validation in realistic coupled wind and wave conditions. This paper demonstrates the developmentmore » of performance specifications for a system that couples a wave basin experiment with a wind turbine simulation. Two different points for the hybrid coupling are considered: the tower-base interface and the aero-rotor interface (the boundary between aerodynamics and the rotor structure). Analyzing simulations of three floating wind turbine designs across seven load cases reveals the motion and force requirements of the coupling system. By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified. The sensitivity results can then be used to determine tolerances for motion tracking errors, force actuation errors, bandwidth limitations, and latency in the hybrid coupling system. These tolerances can guide the design of hybrid coupling systems to achieve desired levels of accuracy. An example demonstrates how the developed methods can be used to generate performance specifications for a system at 1:50 scale. Results show that sensitivities vary significantly between support structure designs and that coupling at the aero-rotor interface has less stringent requirements than those for coupling at the tower base. As a result, the methods and results presented here can inform design of future hybrid coupling systems and enhance understanding of how test results are affected by hybrid coupling quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Matthew; Goupee, Andrew; Jonkman, Jason
Hybrid modeling—combining physical testing and numerical simulation in real time$-$opens new opportunities in floating wind turbine research. Wave basin testing is an important validation step for floating support structure design, but the conventional approaches that use physical wind above the basin are limited by scaling problems in the aerodynamics. Applying wind turbine loads with an actuation system that is controlled by a simulation responding to the basin test in real time offers a way to avoid scaling problems and reduce cost barriers for floating wind turbine design validation in realistic coupled wind and wave conditions. This paper demonstrates the developmentmore » of performance specifications for a system that couples a wave basin experiment with a wind turbine simulation. Two different points for the hybrid coupling are considered: the tower-base interface and the aero-rotor interface (the boundary between aerodynamics and the rotor structure). Analyzing simulations of three floating wind turbine designs across seven load cases reveals the motion and force requirements of the coupling system. By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified. The sensitivity results can then be used to determine tolerances for motion tracking errors, force actuation errors, bandwidth limitations, and latency in the hybrid coupling system. These tolerances can guide the design of hybrid coupling systems to achieve desired levels of accuracy. An example demonstrates how the developed methods can be used to generate performance specifications for a system at 1:50 scale. Results show that sensitivities vary significantly between support structure designs and that coupling at the aero-rotor interface has less stringent requirements than those for coupling at the tower base. As a result, the methods and results presented here can inform design of future hybrid coupling systems and enhance understanding of how test results are affected by hybrid coupling quality.« less
NASA Technical Reports Server (NTRS)
Free, April M.; Flowers, George T.; Trent, Victor S.
1993-01-01
Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotor-dynamic model and assess the dynamic behavior of a magnetic bearing rotor system which includes the effects of auxiliary bearings. Of particular interest is the effects of introducing sideloading into such a system during failure of the magnetic bearing. A model is developed from an experimental test facility and a number of simulation studies are performed. These results are presented and discussed.
A simplified rotor system mathematical model for piloted flight dynamics simulation
NASA Technical Reports Server (NTRS)
Chen, R. T. N.
1979-01-01
The model was developed for real-time pilot-in-the-loop investigation of helicopter flying qualities. The mathematical model included the tip-path plane dynamics and several primary rotor design parameters, such as flapping hinge restraint, flapping hinge offset, blade Lock number, and pitch-flap coupling. The model was used in several exploratory studies of the flying qualities of helicopters with a variety of rotor systems. The basic assumptions used and the major steps involved in the development of the set of equations listed are described. The equations consisted of the tip-path plane dynamic equation, the equations for the main rotor forces and moments, and the equation for control phasing required to achieve decoupling in pitch and roll due to cyclic inputs.
Mechanical Rectification of Oscillatory Motion for High Torque Microactuators
NASA Astrophysics Data System (ADS)
You, Liang; Tabib-Azar, Massood
2004-03-01
High-torque and scalable rotational micromotors were designed, microfabricated using a 3 mask LPCVD polysilicon process, and characterized. Oscillatory motions generated by comb-drive actuators were rectified by a rotor with fins. The actuator periodically deforms the fins generating forces with tangential and normal components in the rotor. Tangential forces generate rotation. In comparison to the electrostatic side-drive micromotor (torque pN-m), the measured torques for these micromotors were much larger and reached 4.5 µN-m at 200Vpp applied to the comb-drive at 1 KHz. Both the comb-drive and the finned rotor are second-order resonant structures that, when coupled, result in interesting dynamic that manifests itself as different excitation (forward, reverse, stepping, and chaotic) modes of the rotor.
Integrated multidisciplinary optimization of rotorcraft: A plan for development
NASA Technical Reports Server (NTRS)
Adelman, Howard M. (Editor); Mantay, Wayne R. (Editor)
1989-01-01
This paper describes a joint NASA/Army initiative at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The paper describes the optimization formulation in terms of the objective function, design variables, and constraints. Additionally, some of the analysis aspects are discussed, validation strategies are described, and an initial attempt at defining the interdisciplinary couplings is summarized. At this writing, significant progress has been made, principally in the areas of single discipline optimization. Accomplishments are described in areas of rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, and rotor structural optimization for minimum weight.
Optimum Design of High Speed Prop-Rotors
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi
1992-01-01
The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop optimization process. The procedures involve the consideration of blade aeroelastic, aerodynamic performance, structural and dynamic design requirements. Further, since the design involves consideration of several different objectives, multiobjective function formulation techniques are developed.
Dynamics of Multistage Gear Transmission with Effects of Gearbox Vibrations
NASA Technical Reports Server (NTRS)
Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, Dennis P.
1990-01-01
A comprehensive approach is presented in analyzing the dynamic behavior of multistage gear transmission systems with the effects of gearbox induced vibrations and mass imbalances of the rotor. The modal method, with undamped frequencies and planar mode shapes, is used to reduce the degrees of freedom of the gear system for time-transient dynamic analysis. Both the lateral and torsional vibration modes of each rotor-bearing-gear stage as well as the interstage vibrational characteristics are coupled together through localized gear mesh tooth interactions. In addition, gearbox vibrations are also coupled to the rotor-bearing-gear system dynamics through bearing support forces between the rotor and the gearbox. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domains to develop interpretations of the overall modal dynamic characteristics under various operating conditions. A typical three-stage geared system is used as an example. Effects of mass imbalance and gearbox vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.
Integrated Aeromechanics with Three-Dimensional Solid-Multibody Structures
NASA Technical Reports Server (NTRS)
Datta, Anubhav; Johnson, Wayne
2014-01-01
A full three-dimensional finite element-multibody structural dynamic solver is coupled to a three-dimensional Reynolds-averaged Navier-Stokes solver for the prediction of integrated aeromechanical stresses and strains on a rotor blade in forward flight. The objective is to lay the foundations of all major pieces of an integrated three-dimensional rotor dynamic analysis - from model construction to aeromechanical solution to stress/strain calculation. The primary focus is on the aeromechanical solution. Two types of three-dimensional CFD/CSD interfaces are constructed for this purpose with an emphasis on resolving errors from geometry mis-match so that initial-stage approximate structural geometries can also be effectively analyzed. A three-dimensional structural model is constructed as an approximation to a UH-60A-like fully articulated rotor. The aerodynamic model is identical to the UH-60A rotor. For preliminary validation measurements from a UH-60A high speed flight is used where CFD coupling is essential to capture the advancing side tip transonic effects. The key conclusion is that an integrated aeromechanical analysis is indeed possible with three-dimensional structural dynamics but requires a careful description of its geometry and discretization of its parts.
Performance optimization for rotors in hover and axial flight
NASA Technical Reports Server (NTRS)
Quackenbush, T. R.; Wachspress, D. A.; Kaufman, A. E.; Bliss, D. B.
1989-01-01
Performance optimization for rotors in hover and axial flight is a topic of continuing importance to rotorcraft designers. The aim of this Phase 1 effort has been to demonstrate that a linear optimization algorithm could be coupled to an existing influence coefficient hover performance code. This code, dubbed EHPIC (Evaluation of Hover Performance using Influence Coefficients), uses a quasi-linear wake relaxation to solve for the rotor performance. The coupling was accomplished by expanding of the matrix of linearized influence coefficients in EHPIC to accommodate design variables and deriving new coefficients for linearized equations governing perturbations in power and thrust. These coefficients formed the input to a linear optimization analysis, which used the flow tangency conditions on the blade and in the wake to impose equality constraints on the expanded system of equations; user-specified inequality contraints were also employed to bound the changes in the design. It was found that this locally linearized analysis could be invoked to predict a design change that would produce a reduction in the power required by the rotor at constant thrust. Thus, an efficient search for improved versions of the baseline design can be carried out while retaining the accuracy inherent in a free wake/lifting surface performance analysis.
Rotor meandering contributes to irregularity in electrograms during atrial fibrillation.
Zlochiver, Sharon; Yamazaki, Masatoshi; Kalifa, Jérôme; Berenfeld, Omer
2008-06-01
Radiofrequency ablation therapy of atrial fibrillation (AF) recently incorporated the analysis of dominant frequency (DF) and/or electrogram fractionation for guidance. However, the relationships between DF, fractionation, and spatiotemporal characteristics of the AF source remain unclear. We hypothesize that a meandering reentrant AF source contributes to the wave fractionation and is reflected in the power spectrum of local electrograms elsewhere in the rotor's surroundings. Meandering rotors as AF sources were simulated in 2-dimensional models of human atrial tissue and recorded in isolated sheep hearts. Nondominant elements of the signals were differentiated from the dominant elements using singular value decomposition, whereby the purely periodic constituent (PC) relating to the rotor's DF was eliminated rendering a residual constituent (RC) that consisted of all other activity. Spectral analysis of the decomposed constituents revealed peaks corresponding to the meandering frequency of the rotor tip, the magnitudes of which were proportional to the size of and the distance to the rotor core. Similar analyses on epicardial optical signals and electrograms from isolated sheep hearts, as well as human complex fractionated atrial electrograms, showed applicability of the approach. Increased meandering of the rotor driving AF reduces activation periodicity and increases fractionation. The spectral manifestation of the rotor activity beyond the meandering region makes it possible to characterize AF source stability, as well as DF in humans using electrode mapping.
Gyro-effect stabilizes unstable permanent maglev centrifugal pump.
Qian, Kun-Xi
2007-03-01
According to Earnshaw's Theorem (1839), the passive maglev cannot achieve stable equilibrium and thus an extra coil is needed to make the rotor electrically levitated in a heart pump. The author had developed a permanent maglev centrifugal pump utilizing only passive magnetic bearings, to keep the advantages but to avoid the disadvantages of the electric maglev pumps. The equilibrium stability was achieved by use of so-called "gyro-effect": a rotating body with certain high speed can maintain its rotation stably. This pump consisted of a rotor (driven magnets and an impeller), and a stator with motor coil and pump housing. Two passive magnetic bearings between rotor and stator were devised to counteract the attractive force between the motor coil iron core and the rotor driven magnets. Bench testing with saline demonstrated a levitated rotor under preconditions of higher than 3,250 rpm rotation and more than 1 l/min pumping flow. Rotor levitation was demonstrated by 4 Hall sensors on the stator, with evidence of reduced maximal eccentric distance from 0.15 mm to 0.07 mm. The maximal rotor vibration amplitude was 0.06 mm in a gap of 0.15 mm between rotor and stator. It concluded that Gyro-effect can help passive maglev bearings to achieve stabilization of permanent maglev pump; and that high flow rate indicates good hydraulic property of the pump, which helps also the stability of passive maglev pump.
Adding In-Plane Flexibility to the Equations of Motion of a Single Rotor Helicopter
NASA Technical Reports Server (NTRS)
Curtiss, H. C., Jr.
2000-01-01
This report describes a way to add the effects of main rotor blade flexibility in the in- plane or lead-lag direction to a large set of non-linear equations of motion for a single rotor helicopter with rigid blades(l). Differences between the frequency of the regressing lag mode predicted by the equations of (1) and that measured in flight (2) for a UH-60 helicopter indicate that some element is missing from the analytical model of (1) which assumes rigid blades. A previous study (3) noted a similar discrepancy for the CH-53 helicopter. Using a relatively simple analytical model in (3), compared to (1), it was shown that a mechanical lag damper increases significantly the coupling between the rigid lag mode and the first flexible mode. This increased coupling due to a powerful lag damper produces an increase in the lowest lag frequency when viewed in a frame rotating with the blade. Flight test measurements normally indicate the frequency of this mode in a non-rotating or fixed frame. This report presents the additions necessary to the full equations of motion, to include main rotor blade lag flexibility. Since these additions are made to a very complex nonlinear dynamic model, in order to provide physical insight, a discussion of the results obtained from a simplified set of equations of motion is included. The reduced model illustrates the physics involved in the coupling and should indicate trends in the full model.
Development of an aeroelastic methodology for surface morphing rotors
NASA Astrophysics Data System (ADS)
Cook, James R.
Helicopter performance capabilities are limited by maximum lift characteristics and vibratory loading. In high speed forward flight, dynamic stall and transonic flow greatly increase the amplitude of vibratory loads. Experiments and computational simulations alike have indicated that a variety of active rotor control devices are capable of reducing vibratory loads. For example, periodic blade twist and flap excitation have been optimized to reduce vibratory loads in various rotors. Airfoil geometry can also be modified in order to increase lift coefficient, delay stall, or weaken transonic effects. To explore the potential benefits of active controls, computational methods are being developed for aeroelastic rotor evaluation, including coupling between computational fluid dynamics (CFD) and computational structural dynamics (CSD) solvers. In many contemporary CFD/CSD coupling methods it is assumed that the airfoil is rigid to reduce the interface by single dimension. Some methods retain the conventional one-dimensional beam model while prescribing an airfoil shape to simulate active chord deformation. However, to simulate the actual response of a compliant airfoil it is necessary to include deformations that originate not only from control devices (such as piezoelectric actuators), but also inertial forces, elastic stresses, and aerodynamic pressures. An accurate representation of the physics requires an interaction with a more complete representation of loads and geometry. A CFD/CSD coupling methodology capable of communicating three-dimensional structural deformations and a distribution of aerodynamic forces over the wetted blade surface has not yet been developed. In this research an interface is created within the Fully Unstructured Navier-Stokes (FUN3D) solver that communicates aerodynamic forces on the blade surface to University of Michigan's Nonlinear Active Beam Solver (UM/NLABS -- referred to as NLABS in this thesis). Interface routines are developed for transmission of force and deflection information to achieve an aeroelastic coupling updated at each time step. The method is validated first by comparing the integrated aerodynamic work at CFD and CSD nodes to verify work conservation across the interface. Second, the method is verified by comparing the sectional blade loads and deflections of a rotor in hover and in forward flight with experimental data. Finally, stability analyses for pitch/plunge flutter and camber flutter are performed with comprehensive CSD/low-order-aerodynamics and tightly coupled CFD/CSD simulations and compared to analytical solutions of Peters' thin airfoil theory to verify proper aeroelastic behavior. The effects of simple harmonic camber actuation are examined and compared to the response predicted by Peters' finite-state (F-S) theory. In anticipation of active rotor experiments inside enclosed facilities, computational simulations are performed to evaluate the capability of CFD for accurately simulating flow inside enclosed volumes. A computational methodology for accurately simulating a rotor inside a test chamber is developed to determine the influence of test facility components and turbulence modeling and performance predictions. A number of factors that influence the physical accuracy of the simulation, such as temporal resolution, grid resolution, and aeroelasticity are also evaluated.
NASA Technical Reports Server (NTRS)
Lawen, James L., Jr.; Flowers, George T.
1995-01-01
This study examines the response of a flexible rotor supported by load sharing between linear bearings and an auxiliary clearance bearing. The objective is to develop a better understanding of the dynamical behavior of a magnetic bearing supported rotor system interacting with auxiliary bearings during a critical operating condition. Of particular interest is the effect of coupling between the bearing/housing and shaft vibration on the rotordynamical responses. A simulation model is developed and a number of studies are performed for various parametric configurations. An experimental investigation is also conducted to compare and verify the rotordynamic behavior predicted by the simulation studies. A strategy for reducing synchronous shaft vibration through appropriate design of coupled shaft/bearing/housing vibration modes is identified.
Wind Tunnel Measurements of the Wake of a Full-Scale UH-60A Rotor in Forward Flight
NASA Technical Reports Server (NTRS)
Wadcock, Alan J.; Yamauchi, Gloria K.; Schairer, Edward T.
2013-01-01
A full-scale UH-60A rotor was tested in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel in May 2010. The test was designed to acquire a suite of measurements to validate state-of-the-art modeling tools. Measurements include blade airloads (from a single pressure-instrumented blade), blade structural loads (strain gages), rotor performance (rotor balance and torque measurements), blade deformation (stereo-photogrammetry), and rotor wake measurements (Particle Image Velocimetry (PIV) and Retro-reflective Backward Oriented Schlieren (RBOS)). During the test, PIV measurements of flow field velocities were acquired in a stationary cross-flow plane located on the advancing side of the rotor disk at approximately 90 deg rotor azimuth. At each test condition, blade position relative to the measurement plane was varied. The region of interest (ROI) was 4-ft high by 14-ft wide and covered the outer half of the blade radius. Although PIV measurements were acquired in only one plane, much information can be gleaned by studying the rotor wake trajectory in this plane, especially when such measurements are augmented by blade airloads and RBOS data. This paper will provide a comparison between PIV and RBOS measurements of tip vortex position and vortex filament orientation for multiple rotor test conditions. Blade displacement measurements over the complete rotor disk will also be presented documenting blade-to-blade differences in tip-path-plane and providing additional information for correlation with PIV and RBOS measurements of tip vortex location. In addition, PIV measurements of tip vortex core diameter and strength will be presented. Vortex strength will be compared with measurements of maximum bound circulation on the rotor blade determined from pressure distributions obtained from 235 pressure sensors distributed over 9 radial stations.
77 FR 4650 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-31
... blade borescope inspection (BSI) or a failed engine core vibration survey, establishes a new lower life... LPT rotor stage 3 disk removal after a failed HPT blade BSI or a failed engine core vibration survey... engine test cell as part of an engine manual performance run fulfill the vibration survey requirements of...
Surface acoustic wave solid-state rotational micromotor
NASA Astrophysics Data System (ADS)
Shilton, Richie J.; Langelier, Sean M.; Friend, James R.; Yeo, Leslie Y.
2012-01-01
Surface acoustic waves (SAWs) are used to drive a 1 mm diameter rotor at speeds exceeding 9000 rpm and torque of nearly 5 nNm. Unlike recent high-speed SAW rotary motors, however, the present design does not require a fluid coupling layer but interestingly exploits adhesive stiction as an internal preload, a force usually undesirable at these scales; with additional preloads, smaller rotors can be propelled to 15 000 rpm. This solid-state motor has no moving parts except for the rotor and is sufficiently simple to allow integration into miniaturized drive systems for potential use in microfluidic diagnostics, optical switching and microrobotics.
Design Characteristics of the 224 kW Magdalen Islands VAWT
NASA Technical Reports Server (NTRS)
Templin, R. J.
1979-01-01
The evolution of the main design features of the Magdalen Islands vertical axis wind turbine (VAWT) is described. The turbine has a rotor height of 120 ft (36.58 m) and diameter 80 ft (24.38 m). It was operated as a joint project between NRC and Hydro-Quebec in grid-coupled mode from July 1977 to July 1978 when the rotor was destroyed in an accident. The accident, although unfortunate, tested the basic integrity of the design in a gross overspeed condition, and the rotor is being rebuilt with minor modifications. Some directions for future VAWT research are suggested.
Fabrication Materials for a Closed Cycle Brayton Turbine Wheel
NASA Technical Reports Server (NTRS)
Khandelwal, Suresh; Hah, Chunill; Powers, Lynn M.; Stewart, Mark E.; Suresh, Ambady; Owen, Albert K.
2006-01-01
A multidisciplinary analysis of a radial inflow turbine rotor is presented. This work couples high-fidelity fluid, structural, and thermal simulations in a seamless multidisciplinary analysis to investigate the consequences of material selection. This analysis extends multidisciplinary techniques previously demonstrated on rocket turbopumps and hypersonic engines. Since no design information is available for the anticipated Brayton rotating machinery, an existing rotor design (the Brayton Rotating Unit (BRU)) was used in the analysis. Steady state analysis results of a notional turbine rotor indicate that stress levels are easily manageable at the turbine inlet temperature, and stress levels anticipated using either superalloys or ceramics.
Permanent magnetic-levitation of rotating impeller: a decisive breakthrough in the centrifugal pump.
Qian, K X; Zeng, P; Ru, W M; Yuan, H Y; Feng, Z G; Li, L
2002-01-01
Magnetic bearings have no mechanical contact between the rotor and stator, and a rotary pump with magnetic bearings therefore has no mechanical wear and thrombosis. The magnetic bearings available, however, contain electromagnets, are complicated to control and have high energy consumption. Therefore, it is difficult to apply an electromagnetic bearing to a rotary pump without disturbing its simplicity, reliability and ability to be implanted. The authors have developed a levitated impeller pump using only permanent magnets. The rotor is supported by permanent radial magnetic forces. The impeller is fixed on one side of the rotor; on the other side the rotor magnets are mounted. Opposite these rotor magents, a driving magnet is fastened to the motor axis. Thereafter, the motor drives the rotor via magnetic coupling. In laboratory tests with saline, where the rotor is still or rotates at under 4,000 rpm, the rotor magnets have one point in contact axially with a spacer between the rotor magnets and the driving magnets. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4000 rpm, the rotor will disaffiliate from the stator axially, and become fully levitated. Since the axial levitation is produced by hydraulic force and the rotor magnets have a giro-effect, the rotor rotates very stably during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, and the levitation of the impeller is assured by use of the pump. The permanent maglev impeller pump retains the advantages of the rotary pump but overcomes the disadvantages of the leviated pump with electromagnetic-bearing, and has met with most requirements of artificial heart blood pumps, thus promising to have more applications than previously.
NASA Technical Reports Server (NTRS)
Cassarino, S.; Sopher, R.
1982-01-01
user instruction and software descriptions for the base program of the coupled rotor/airframe vibration analysis are provided. The functional capabilities and procedures for running the program are provided. Interfaces with external programs are discussed. The procedure of synthesizing a dynamic system and the various solution methods are described. Input data and output results are presented. Detailed information is provided on the program structure. Sample test case results for five representative dynamic configurations are provided and discussed. System response are plotted to demonstrate the plots capabilities available. Instructions to install and execute SIMVIB on the CDC computer system are provided.
Paulsamy, Sivachandran
2014-01-01
In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions. PMID:25202746
Paulsamy, Sivachandran
2014-01-01
In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.
NASA Astrophysics Data System (ADS)
Berdanier, Reid Adam
The effect of rotor tip clearances in turbomachinery applications has been a primary research interest for nearly 80 years. Over that time, studies have shown increased tip clearance in axial flow compressors typically has a detrimental effect on overall pressure rise capability, isentropic efficiency, and stall margin. With modern engine designs trending toward decreased core sizes to increase propulsive efficiency (by increasing bypass ratio) or additional compression stages to increase thermal efficiency by increasing the overall pressure ratio, blade heights in the rear stages of the high pressure compressor are expected to decrease. These rear stages typically feature smaller blade aspect ratios, for which endwall flows are more important, and the rotor tip clearance height represents a larger fraction of blade span. As a result, data sets collected with large relative rotor tip clearance heights are necessary to facilitate these future small core design goals. This research seeks to characterize rotor tip leakage flows for three tip clearance heights in the Purdue three-stage axial compressor facility (1.5%, 3.0%, and 4.0% as a percentage of overall annulus height). The multistage environment of this compressor provides the unique opportunity to examine tip leakage flow effects due to stage matching, stator-rotor interactions, and rotor-rotor interactions. The important tip leakage flow effects which develop as a result of these interactions are absent for previous studies which have been conducted using single-stage machines or isolated rotors. A series of compressor performance maps comprise points at four corrected speeds for each of the three rotor tip clearance heights. Steady total pressure and total temperature measurements highlight the effects of tip leakage flows on radial profiles and wake shapes throughout the compressor. These data also evaluate tip clearance effects on efficiency, stall margin, and peak pressure rise capability. An emphasis of measurements collected at these part-speed and off-design conditions provides a unique data set for calibrating computational models and predictive algorithms. Further investigations with detailed steady total pressure traverses provide additional insight to tip leakage flow effects on stator performance. A series of data on the 100% corrected speedline further characterize the tip leakage flow using time-resolved measurements from a combination of instrumentation techniques. An array of high-frequency-response piezoresistive pressure transducers installed over the rotors allows quantification of tip leakage flow trajectories. These data, along with measurements from a fast-response total pressure probe downstream of the rotors, evaluate the development of tip leakage flows and assess the corresponding effects of upstream stator wakes. Finally, thermal anemometry measurements collected using the single slanted hot-wire technique evaluate three-dimensional velocity components throughout the compressor. These data facilitate calculations of several flow metrics, including a blockage parameter and phase-locked streamwise vorticity.
Transient Wave Rotor Performance Investigated
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA Lewis Research Center is investigating the wave rotor for use as a core gas generator in future gas turbine engines. The device, which uses gas-dynamic waves to transfer energy directly to and from the working fluid through which the waves travel, consists of a series of constant-area passages that rotate about an axis. Through rotation, the ends of the passages are periodically exposed to various circumferentially arranged ports that initiate the traveling waves within the passages.
da Silva, Isaias; Horikawa, Oswaldo; Cardoso, Jose R; Camargo, Fernando A; Andrade, Aron J P; Bock, Eduardo G P
2011-05-01
In previous studies, we presented main strategies for suspending the rotor of a mixed-flow type (centrifugal and axial) ventricular assist device (VAD), originally presented by the Institute Dante Pazzanese of Cardiology (IDPC), Brazil. Magnetic suspension is achieved by the use of a magnetic bearing architecture in which the active control is executed in only one degree of freedom, in the axial direction of the rotor. Remaining degrees of freedom, excepting the rotation, are restricted only by the attraction force between pairs of permanent magnets. This study is part of a joint project in development by IDPC and Escola Politecnica of São Paulo University, Brazil. This article shows advances in that project, presenting two promising solutions for magnetic bearings. One solution uses hybrid cores as electromagnetic actuators, that is, cores that combine iron and permanent magnets. The other solution uses actuators, also of hybrid type, but with the magnetic circuit closed by an iron core. After preliminary analysis, a pump prototype has been developed for each solution and has been tested. For each prototype, a brushless DC motor has been developed as the rotor driver. Each solution was evaluated by in vitro experiments and guidelines are extracted for future improvements. Tests have shown good results and demonstrated that one solution is not isolated from the other. One complements the other for the development of a single-axis-controlled, hybrid-type magnetic bearing for a mixed-flow type VAD. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
On the three-dimensional interaction of a rotor-tip vortex with a cylindrical surface
NASA Astrophysics Data System (ADS)
Radcliff, Thomas D.; Burggraf, Odus R.; Conlisk, A. T.
2000-12-01
The collision of a strong vortex with a surface is an important problem because significant impulsive loads may be generated. Prediction of helicopter fatigue lifetime may be limited by an inability to predict these loads accurately. Experimental results for the impingement of a helicopter rotor-tip vortex on a cylindrical airframe show a suction peak on the top of the airframe that strengthens and then weakens within milliseconds. A simple line-vortex model can predict the experimental results if the vortex is at least two vortex-core radii away from the airframe. After this, the model predicts continually deepening rather than lessening suction as the vortex stretches. Experimental results suggest that axial flow within the core of a tip vortex has an impact on the airframe pressure distribution upon close approach. The mechanism for this is hypothesized to be the inviscid redistribution of the vorticity field within the vortex as the axial velocity stagnates. Two models of a tip vortex with axial flow are considered. First, a classical axisymmetric line vortex with a cutoff parameter is superimposed with vortex ringlets suitably placed to represent the helically wound vortex shed by the rotor tip. Thus, inclusion of axial flow is found to advect vortex core thinning away from the point of closest interaction as the vortex stretches around the cylindrical surface during the collision process. With less local thinning, vorticity in the cutoff parameter model significantly overlaps the solid cylinder in an unphysical manner, highlighting the fact that the vortex core must deform from its original cylindrical shape. A second model is then developed in which axial and azimuthal vorticity are confined within a rectangular-section vortex. Area and aspect ratio of this vortex can be varied independently to simulate deformation of the vortex core. Both axial velocity and core deformation are shown to be important to calculate the local induced pressure loads properly. The computational results are compared with experiments conducted at the Georgia Institute of Technology.
Analytic methods for design of wave cycles for wave rotor core engines
NASA Technical Reports Server (NTRS)
Resler, Edwin L., Jr.; Mocsari, Jeffrey C.; Nalim, M. R.
1993-01-01
A procedure to design a preliminary wave rotor cycle for any application is presented. To complete a cycle with heat addition there are two separate but related design steps that must be followed. The 'wave' boundary conditions determine the allowable amount of heat added in any case and the ensuing wave pattern requires certain pressure discharge conditions to allow the process to be made cyclic. This procedure, when applied, gives a first estimate of the cycle performance and the necessary information for the next step in the design process, namely the application of a characteristic based or other appropriate detailed one dimensional wave calculation that locates the proper porting around the periphery of the wave rotor. Four examples of the design procedure are given to demonstrate its utility and generality. These examples also illustrate the large gains in performance that could be realized with the use of wave rotor enhanced propulsion cycles.
The nonlinear instability in flap-lag of rotor blades in forward flight
NASA Technical Reports Server (NTRS)
Tong, P.
1971-01-01
The nonlinear flap-lag coupled oscillation of torsionally rigid rotor blades in forward flight is examined using a set of consistently derived equations by the asymptotic expansion procedure of multiple time scales. The regions of stability and limit cycle oscillation are presented. The roles of parametric excitation, nonlinear oscillation, and forced excitation played in the response of the blade are determined.
Design and application of squeeze film dampers for turbomachinery stabilization
NASA Technical Reports Server (NTRS)
Gunter, E. J.; Barrett, L. E.; Allaire, P. E.
1975-01-01
The steady-state transient response of the squeeze film damper bearing was investigated. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived; the steady-state equations were used to determine the damper equivalent stiffness and damping coefficients. These coefficients are used to find the damper configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The effects of end seals and cavitated fluid film are included. The transient analysis of rotor-bearing systems was conducted by coupling the damping and rotor equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed.
Incidence loss for a core turbine rotor blade in a two-dimensional cascade
NASA Technical Reports Server (NTRS)
Stabe, R. G.; Kline, J. F.
1974-01-01
The effect of incidence angle on the aerodynamic performance of an uncooled core turbine rotor blade was investigated experimentally in a two-dimensional cascade. The cascade test covered a range of incidence angles from minus 15 deg to 15 deg in 5-degree increments and a range of pressure ratios corresponding to ideal exit critical velocity ratios of 0.6 to 0.95. The principal measurements were blade-surface static pressures and cross-channel surveys of exit total pressure, static pressure, and flow angle. The results of the investigation include blade-surface velocity distribution and overall performance in terms of weight flow and loss for the range of incidence angles and exit velocity ratios investigated. The measured losses are also compared with two common methods of predicting incidence loss.
NASA Technical Reports Server (NTRS)
Bielawa, R. L.
1982-01-01
Mathematical development is presented for the expanded capabilities of the United Technologies Research Center (UTRC) G400 Rotor Aeroelastic Analysis. This expanded analysis, G400PA, simulates the dynamics of teetered rotors, blade pendulum vibration absorbers and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. Formulations are also presented for calculating the rotor impedance matrix appropriate to these higher harmonic blade excitations. This impedance matrix and the associated vibratory hub loads are intended as the rotor blade characteristics elements for use in the Simplified Coupled Rotor/Fuselage Vibration Analysis (SIMVIB). Sections are included presenting updates to the development of the original G400 theory, and material appropriate to the user of the G400PA computer program. This material includes: (1) a general descriptionof the tructuring of the G400PA FORTRAN coding, (2) a detaild description of the required input data and other useful information for successfully running the program, and (3) a detailed description of the output results.
NASA Technical Reports Server (NTRS)
Yamauchi, G.; Johnson, W.
1984-01-01
A computationally efficient body analysis designed to couple with a comprehensive helicopter analysis is developed in order to calculate the body-induced aerodynamic effects on rotor performance and loads. A modified slender body theory is used as the body model. With the objective of demonstrating the accuracy, efficiency, and application of the method, the analysis at this stage is restricted to axisymmetric bodies at zero angle of attack. By comparing with results from an exact analysis for simple body shapes, it is found that the modified slender body theory provides an accurate potential flow solution for moderately thick bodies, with only a 10%-20% increase in computational effort over that of an isolated rotor analysis. The computational ease of this method provides a means for routine assessment of body-induced effects on a rotor. Results are given for several configurations that typify those being used in the Ames 40- by 80-Foot Wind Tunnel and in the rotor-body aerodynamic interference tests being conducted at Ames. A rotor-hybrid airship configuration is also analyzed.
Aperiodicity Correction for Rotor Tip Vortex Measurements
NASA Technical Reports Server (NTRS)
Ramasamy, Manikandan; Paetzel, Ryan; Bhagwat, Mahendra J.
2011-01-01
The initial roll-up of a tip vortex trailing from a model-scale, hovering rotor was measured using particle image velocimetry. The unique feature of the measurements was that a microscope was attached to the camera to allow much higher spatial resolution than hitherto possible. This also posed some unique challenges. In particular, the existing methodologies to correct for aperiodicity in the tip vortex locations could not be easily extended to the present measurements. The difficulty stemmed from the inability to accurately determine the vortex center, which is a prerequisite for the correction procedure. A new method is proposed for determining the vortex center, as well as the vortex core properties, using a least-squares fit approach. This approach has the obvious advantage that the properties are derived from not just a few points near the vortex core, but from a much larger area of flow measurements. Results clearly demonstrate the advantage in the form of reduced variation in the estimated core properties, and also the self-consistent results obtained using three different aperiodicity correction methods.
NASA Astrophysics Data System (ADS)
Paimushin, V. N.; Shishkin, V. M.
2016-01-01
A rod-shape finite element with twelve degrees of freedom is proposed for modeling the elastic and damping properties of rotor blades with regard to their geometric stiffness caused by rotation of the rotor. A model of coupling of the torsion bar with blades is developed based on the hypothesis of linear deplanation of the connecting section of the torsion bar and a special transition element to ensure the compatibility of displacements of the torsion bar and blades upon their vibrations in the flapping and rotation planes. Numerical experiments were carried out to test and assess the validity of the model developed. Suggestions are made for ensuring unconditional stability of the iteration method in a subspace in determining the specified number of modes and frequencies of free vibrations of the torsion bar-blade structure.
Extended core for motor/generator
Shoykhet, Boris A.
2005-05-10
An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.
Extended core for motor/generator
Shoykhet, Boris A.
2006-08-22
An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.
A 10-MJ compact homopolar generator
NASA Astrophysics Data System (ADS)
McKee, B. D.; McNab, I. R.
1986-11-01
The design and initial testing of a lightweight (5 kJ/kg) iron-cored homopolar generator is described. The machine employs an external power supply to motor up to operating speed (12,500 rpm) at which point 10 MJ of energy is stored in the steel rotor. Copper-graphite brushes in the stator, actuated by pneumatic actuators, make contact with the rotor surface and permit the inertial energy to be transferred to a load circuit at current levels up to 1.5 MA and voltages up to 60 V.
Rapid fabrication of flight worthy composite parts
NASA Astrophysics Data System (ADS)
Jouin, Pierre H.; Heigl, John C.; Youtsey, Timothy L.
A 3D surfaced-model representation of aircraft composite structural components can be used to generate machining paths in a system which reduces paperwork and errors, and enhances accuracy and speed. Illustrative cases are presented for the use of such a system in the design and production of the Longbow radar housing, the fabrication of the flight test hardware for the 'no tail-rotor' helicopter control system, and the machining of a honeycomb core structure for a composite helicopter rotor blade.
Rotor Wake/Stator Interaction Noise Prediction Code Technical Documentation and User's Manual
NASA Technical Reports Server (NTRS)
Topol, David A.; Mathews, Douglas C.
2010-01-01
This report documents the improvements and enhancements made by Pratt & Whitney to two NASA programs which together will calculate noise from a rotor wake/stator interaction. The code is a combination of subroutines from two NASA programs with many new features added by Pratt & Whitney. To do a calculation V072 first uses a semi-empirical wake prediction to calculate the rotor wake characteristics at the stator leading edge. Results from the wake model are then automatically input into a rotor wake/stator interaction analytical noise prediction routine which calculates inlet aft sound power levels for the blade-passage-frequency tones and their harmonics, along with the complex radial mode amplitudes. The code allows for a noise calculation to be performed for a compressor rotor wake/stator interaction, a fan wake/FEGV interaction, or a fan wake/core stator interaction. This report is split into two parts, the first part discusses the technical documentation of the program as improved by Pratt & Whitney. The second part is a user's manual which describes how input files are created and how the code is run.
Aeroacoustic Codes For Rotor Harmonic and BVI Noise--CAMRAD.Mod1/HIRES
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.; Boyd, D. Douglas, Jr.; Burley, Casey L.; Jolly, J. Ralph, Jr.
1996-01-01
This paper presents a status of non-CFD aeroacoustic codes at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. The prediction approach incorporates three primary components: CAMRAD.Mod1 - a substantially modified version of the performance/trim/wake code CAMRAD; HIRES - a high resolution blade loads post-processor; and WOPWOP - an acoustic code. The functional capabilities and physical modeling in CAMRAD.Mod1/HIRES will be summarized and illustrated. A new multi-core roll-up wake modeling approach is introduced and validated. Predictions of rotor wake and radiated noise are compared with to the results of the HART program, a model BO-105 windtunnel test at the DNW in Europe. Additional comparisons are made to results from a DNW test of a contemporary design four-bladed rotor, as well as from a Langley test of a single proprotor (tiltrotor) three-bladed model configuration. Because the method is shown to help eliminate the necessity of guesswork in setting code parameters between different rotor configurations, it should prove useful as a rotor noise design tool.
NASA Technical Reports Server (NTRS)
Lawen, James, Jr.; Flowers, George T.
1992-01-01
This study examines the response of a flexible rotor supported by load sharing between linear bearings and an auxiliary clearance bearing. The objective of the work is to develop a better understanding of the dynamical behavior of a magnetic bearing supported rotor system interacting with auxiliary bearings during a critical operating condition. Of particular interest is the effect of coupling between the bearing/housing and shaft vibration on the rotordynamical responses. A simulation model is developed and a number of studies are performed for various parametric configurations. An experimental investigation is also conducted to compare and verify the rotordynamic behavior predicted by the simulation studies. A strategy for reducing synchronous shaft vibration through appropriate design of coupled shaft/bearing/housing vibration modes is identified. The results are presented and discussed.
Analysis of a Stretched Derivative Aircraft with Open Rotor Propulsion
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.; Hendricks, Eric S.; Haller, William J.; Guynn, Mark D.
2015-01-01
Research into advanced, high-speed civil turboprops received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of U.S. aeronautical research. But when fuel prices declined sharply there was no longer sufficient motivation to continue maturing the technology. Recent volatility in fuel prices and increasing concern for aviation's environmental impact, however, have renewed interest in unducted, open rotor propulsion and revived research by NASA and a number of engine manufacturers. Recently, NASA and General Electric have teamed to conduct several investigations into the performance and noise of an advanced, single-aisle transport with open rotor propulsion. The results of these initial studies indicate open rotor engines have the potential to provide significant reduction in fuel consumption compared to aircraft using turbofan engines with equivalent core technology. In addition, noise analysis of the concept indicates that an open rotor aircraft in the single-aisle transport class would be able to meet current noise regulations with margin. The behavior of derivative open rotor transports is of interest. Heavier, "stretched" derivative aircraft tend to be noisier than their lighter relatives. Of particular importance to the business case for the concept is how the noise margin changes relative to regulatory limits within a family of similar open rotor aircraft. The subject of this report is a performance and noise assessment of a notional, heavier, stretched derivative airplane equipped with throttle-push variants of NASA's initial open rotor engine design.
CAD-Based Modeling of Advanced Rotary Wing Structures for Integrated 3-D Aeromechanics Analysis
NASA Astrophysics Data System (ADS)
Staruk, William
This dissertation describes the first comprehensive use of integrated 3-D aeromechanics modeling, defined as the coupling of 3-D solid finite element method (FEM) structural dynamics with 3-D computational fluid dynamics (CFD), for the analysis of a real helicopter rotor. The development of this new methodology (a departure from how rotor aeroelastic analysis has been performed for 40 years), its execution on a real rotor, and the fundamental understanding of aeromechanics gained from it, are the key contributions of this dissertation. This work also presents the first CFD/CSD analysis of a tiltrotor in edgewise flight, revealing many of its unique loading mechanisms. The use of 3-D FEM, integrated with a trim solver and aerodynamics modeling, has the potential to enhance the design of advanced rotors by overcoming fundamental limitations of current generation beam-based analysis tools and offering integrated internal dynamic stress and strain predictions for design. Two primary goals drove this research effort: 1) developing a methodology to create 3-D CAD-based brick finite element models of rotors including multibody joints, controls, and aerodynamic interfaces, and 2) refining X3D, the US Army's next generation rotor structural dynamics solver featuring 3-D FEM within a multibody formulation with integrated aerodynamics, to model a tiltrotor in the edgewise conversion flight regime, which drives critical proprotor structural loads. Prior tiltrotor analysis has primarily focused on hover aerodynamics with rigid blades or forward flight whirl-flutter stability with simplified aerodynamics. The first goal was met with the development of a detailed methodology for generating multibody 3-D structural models, starting from CAD geometry, continuing to higher-order hexahedral finite element meshing, to final assembly of the multibody model by creating joints, assigning material properties, and defining the aerodynamic interface. Several levels of verification and validation were carried out systematically, covering formulation, model accuracy, and accuracy of the physics of the problem and the many complex coupled aeromechanical phenomena that characterize the behavior of a tiltrotor in the conversion corridor. Compatibility of the new structural analysis models with X3D is demonstrated using analytical test cases, including 90° twisted beams and thick composite plates, and a notional bearingless rotor. Prediction of deformations and stresses in composite beams and plates is validated and verified against experimental measurements, theory, and state-of-the-art beam models. The second goal was met through integrated analysis of the Tilt Rotor Aeroacoustic Model (TRAM) proprotor using X3D coupled to Helios--the US Army's next generation CFD framework featuring a high fidelity Reynolds-average Navier-Stokes (RANS) structured/unstructured overset solver--as well as low order aerodynamic models. Although development of CFD was not part of this work, coupling X3D with Helios was, including establishing consistent interface definitions for blade deformations (for CFD mesh motion), aerodynamic interfaces (for loads transfer), and rotor control angles (for trim). It is expected that this method and solver will henceforth be an integral part of the Helios framework, providing an equal fidelity of representation for fluids and structures in the development of future advanced rotor systems. Structural dynamics analysis of the TRAM model show accurate prediction of the lower natural frequencies, demonstrating the ability to model advanced rotors from first principles using 3-D structural dynamics, and a study of how joint properties affect these frequencies reveals how X3D can be used as a detailed design tool. The CFD/CSD analysis reveals accurate prediction of rotor performance and airloads in edgewise flight when compared to wind tunnel test data. Structural blade loads trends are well predicted at low thrust, but a 3/rev component of flap and lag bending moment appearing in test data at high thrust remains a mystery. Efficiently simulating a gimbaled rotor is not trivial; a time-domain method with only a single blade model is proposed and tested. The internal stress in the blade, particularly at its root where the gimbal action has major influence, is carefully examined, revealing complex localized loading patterns.
NASA Technical Reports Server (NTRS)
DeSmidt, Hans A.; Smith, Edward C.; Bill, Robert C.; Wang, Kon-Well
2013-01-01
This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean-line compressor and turbine approximations is developed. Finally an analysis of high frequency gear dynamics including the effect of tooth mesh stiffness variation under variable speed operation is conducted including experimental validation. Through exploring the interactions between the various subsystems, this investigation provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.
Axial forces in centrifugal compressor couplings
NASA Astrophysics Data System (ADS)
Ivanov, A. N.; Ivanov, N. M.; Yun, V. K.
2017-08-01
The article presents the results of the theoretical and experimental investigation of axial forces arising in the toothed and plate couplings of centrifugal compressor shaft lines. Additional loads on the thrust bearing are considered that can develop in the toothed couplings as a result of coupled rotors misalignment. Design relationships to evaluate the level of axial forces and recommendations for their reduction in the operating conditions are given.
The effect of cyclic feathering motions on dynamic rotor loads. [for helicopters
NASA Technical Reports Server (NTRS)
Harvey, K. W.
1974-01-01
The dynamic loads of a helicopter rotor in forward flight are influenced significantly by the geometric pitch angles between the structural axes of the hub and blade sections and the plane of rotation. The analytical study presented includes elastic coupling between inplane and out-of-plane deflections as a function of geometric pitch between the plane of rotation and the principal axes of inertia of each blade. The numerical evaluation is based on a transient analysis using lumped masses and elastic substructure techniques. A comparison of cases with and without cyclic feathering motion shows the effect on computed dynamic rotor loads.
Prediction of SA 349/2 GV blade loads in high speed flight using several rotor analyses
NASA Technical Reports Server (NTRS)
Gaubert, Michel; Yamauchi, Gloria K.
1987-01-01
The influence of blade dynamics, dynamic stall, and transonic aerodynamics on the predictions of rotor loads in high-speed flight are presented. Data were obtained from an Aerospatiale Gazelle SA 349/2 helicopter with three Grande Vitesse blades. Several analyses are used for this investigation. First, blade dynamics effects on the correlation are studied using three rotor analyses which differ mainly in the method of calculating the blade elastic response. Next, an ONERA dynamic stall model is used to predict retreating blade stall. Finally, advancing blade aerodynamic loads are calculated using a NASA-developed rotorcraft analysis coupled with two transonic finite-difference analyses.
Disk/Shaft Vibration Induced by Bearing Clearance Effects: Analysis and Experiment
NASA Technical Reports Server (NTRS)
Flowers, George T.; Wu, Fangsheng
1996-01-01
This study presents an investigation of the dynamics of a rotor system with bearing clearance. Of particular interest is the influence of such effects on coupled disk/shaft vibration. Experimental results for a rotor system with a flexible disk are presented and compared to predictions from a simulation model. Some insights and conclusions are obtained with regard to the conditions under which such vibration may be significant.
Pilot-in-the Loop CFD Method Development
2016-10-20
State University. All software supporting piloted simulations must run at real time speeds or faster. This requirement drives the number of...objects in the environment. In turn, this flowfield affects the local aerodynamics of the main rotor blade sections, affecting blade air loads, and...model, empirical models of ground effect and rotor / airframe interactions) are disabled when running in fully coupled mode, so as to not “double count
Fluid power network for centralized electricity generation in offshore wind farms
NASA Astrophysics Data System (ADS)
Jarquin-Laguna, A.
2014-06-01
An innovative and completely different wind-energy conversion system is studied where a centralized electricity generation within a wind farm is proposed by means of a hydraulic network. This paper presents the dynamic interaction of two turbines when they are coupled to the same hydraulic network. Due to the stochastic nature of the wind and wake interaction effects between turbines, the operating parameters (i.e. pitch angle, rotor speed) of each turbine are different. Time domain simulations, including the main turbine dynamics and laminar transient flow in pipelines, are used to evaluate the efficiency and rotor speed stability of the hydraulic system. It is shown that a passive control of the rotor speed, as proposed in previous work for a single hydraulic turbine, has strong limitations in terms of performance for more than one turbine coupled to the same hydraulic network. It is concluded that in order to connect several turbines, a passive control strategy of the rotor speed is not sufficient and a hydraulic network with constant pressure is suggested. However, a constant pressure network requires the addition of active control at the hydraulic motors and spear valves, increasing the complexity of the initial concept. Further work needs to be done to incorporate an active control strategy and evaluate the feasibility of the constant pressure hydraulic network.
NASA Technical Reports Server (NTRS)
Mclyman, W. T.
1981-01-01
Transformer transmits power and digital data across rotating interface. Array has many parallel data channels, each with potential l megabaud data rate. Ferrite-cored transformers are spaced along rotor; airgap between them reduces crosstalk.
Theoretical study of hull-rotor aerodynamic interference on semibuoyant vehicles
NASA Technical Reports Server (NTRS)
Spangler, S. B.; Smith, C. A.
1978-01-01
Analytical methods are developed to predict the pressure distribution and overall loads on the hulls of airships which have close coupled, relatively large and/or high disk loading propulsors for attitude control, station keeping, and partial support of total weight as well as provision of thrust in cruise. The methods comprise a surface-singularity, potential-flow model for the hull and lifting surfaces (such as tails) and a rotor model which calculates the velocity induced by the rotor and its wake at points adjacent to the wake. Use of these two models provides an inviscid pressure distribution on the hull with rotor interference. A boundary layer separation prediction method is used to locate separation on the hull, and a wake pressure is imposed on the separated region for purposes of calculating hull loads. Results of calculations are shown to illustrate various cases of rotor-hull interference and comparisons with small scale data are made to evaluate the method.
Mechanical model development of rolling bearing-rotor systems: A review
NASA Astrophysics Data System (ADS)
Cao, Hongrui; Niu, Linkai; Xi, Songtao; Chen, Xuefeng
2018-03-01
The rolling bearing rotor (RBR) system is the kernel of many rotating machines, which affects the performance of the whole machine. Over the past decades, extensive research work has been carried out to investigate the dynamic behavior of RBR systems. However, to the best of the authors' knowledge, no comprehensive review on RBR modelling has been reported yet. To address this gap in the literature, this paper reviews and critically discusses the current progress of mechanical model development of RBR systems, and identifies future trends for research. Firstly, five kinds of rolling bearing models, i.e., the lumped-parameter model, the quasi-static model, the quasi-dynamic model, the dynamic model, and the finite element (FE) model are summarized. Then, the coupled modelling between bearing models and various rotor models including De Laval/Jeffcott rotor, rigid rotor, transfer matrix method (TMM) models and FE models are presented. Finally, the paper discusses the key challenges of previous works and provides new insights into understanding of RBR systems for their advanced future engineering applications.
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.; Gunter, Edgar J.
2005-01-01
Synchronous and nonsynchronous whirl response analysis of a double overhung, high-speed seal test rotor with ball bearings supported in 5.84- and 12.7-mm-long, un-centered squeeze-film oil dampers is presented. Test performance with the original damper of length 5.84 mm was marginal, with nonsynchronous whirling at the overhung seal test disk and high amplitude synchronous response above 32,000 rpm near the drive spline section occurring. A system critical speed analysis of the drive system and the high-speed seal test rotor indicated that the first two critical speeds are associated with the seal test rotor. Nonlinear synchronous unbalance and time transient whirl studies were conducted on the seal test rotor with the original and extended damper lengths. With the original damper design, the nonlinear synchronous response showed that unbalance could cause damper lockup at 33,000 rpm. Alford cross-coupling forces were also included at the overhung seal test disk for the whirl analysis. Sub-synchronous whirling at the seal test disk was observed in the nonlinear time transient analysis. With the extended damper length of 12.7 mm, the sub-synchronous motion was eliminated and the rotor unbalance response was acceptable to 45,000 rpm with moderate rotor unbalance. However, with high rotor unbalance, damper lockup could still occur at 33,000 rpm, even with the extended squeeze-film dampers. Therefore, the test rotor must be reasonably balanced in order for the un-centered dampers to be effective.
NASA Astrophysics Data System (ADS)
Fakkaew, Wichaphon; Cole, Matthew O. T.
2018-06-01
This paper investigates the vibration arising in a thin-walled cylindrical rotor subject to small non-circularity and coupled to discrete space-fixed radial bearing supports. A Fourier series description of rotor non-circularity is incorporated within a mathematical model for vibration of a rotating annulus. This model predicts the multi-harmonic excitation of the rotor wall due to bearing interactions. For each non-circularity harmonic there is a set of distinct critical speeds at which resonance can potentially arise due to flexural mode excitation within the rotor wall. It is shown that whether each potential resonance occurs depends on the multiplicity and symmetry of the bearing supports. Also, a sufficient number of evenly spaced identical supports will eliminate low order resonances. The considered problem is pertinent to the design and operation of thin-walled rotors with active magnetic bearing (AMB) supports, for which small clearances exist between the rotor and bearing and so vibration excitation must be limited to avoid contacts. With this motivation, the mathematical model is further developed for the case of a distributed array of electromagnetic actuators controlled by feedback of measured rotor wall displacements. A case study involving an experimental system with short cylindrical rotor and a single radial AMB support is presented. The results show that flexural mode resonance is largely avoided for the considered design topology. Moreover, numerical predictions based on measured non-circularity show good agreement with measurements of rotor wall vibration, thereby confirming the validity and utility of the theoretical model.
An entropy and viscosity corrected potential method for rotor performance prediction
NASA Technical Reports Server (NTRS)
Bridgeman, John O.; Strawn, Roger C.; Caradonna, Francis X.
1988-01-01
An unsteady Full-Potential Rotor code (FPR) has been enhanced with modifications directed at improving its drag prediction capability. The shock generated entropy has been included to provide solutions comparable to the Euler equations. A weakly interacted integral boundary layer has also been coupled to FPR in order to estimate skin-friction drag. Pressure distributions, shock positions, and drag comparisons are made with various data sets derived from two-dimensional airfoil, hovering, and advancing high speed rotor tests. In all these comparisons, the effect of the nonisentropic modification improves (i.e., weakens) the shock strength and wave drag. In addition, the boundary layer method yields reasonable estimates of skin-friction drag. Airfoil drag and hover torque data comparisons are excellent, as are predicted shock strength and positions for a high speed advancing rotor.
NASA Technical Reports Server (NTRS)
Yeager, W. T., Jr.; Hamouda, M. N. H.; Mantay, W. R.
1983-01-01
A research effort of analysis and testing was conducted to investigate the ground resonance phenomenon of a soft in-plane hingeless rotor. Experimental data were obtained using a 9 ft. (2.74 m) diameter model rotor in hover and forward flight. Eight model rotor configurations were investigated. Configuration parameters included pitch flap coupling, blade sweep and droop, and precone of the blade feathering axis. An analysis based on a comprehensive analytical model of rotorcraft aerodynamics and dynamics was used. The moving block was used to experimentally determine the regressing lead lag mode damping. Good agreement was obtained between the analysis and test. Both analysis and experiment indicated ground resonance instability in hover. An outline of the analysis, a description of the experimental model and procedures, and comparison of the analytical and experimental data are presented.
System and method for improved rotor tip performance
NASA Technical Reports Server (NTRS)
Zientek, Thomas A. (Inventor); Bussom, Richard (Inventor); McVeigh, Michael A. (Inventor); Narducci, Robert P. (Inventor)
2007-01-01
The present invention discloses systems and methods for the performance enhancement of rotary wing aircraft through reduced torque, noise and vibration. In one embodiment, a system includes a sail having an aerodynamic shape positioned proximate to a tip of the rotor blade. An actuator may be configured to rotate the sail relative to the blade tip. a A control system receives information from a rotorcraft system and commands the actuator to rotate the sail to a predetermined favorable rotor blade operating condition. In another embodiment, a method includes configuring the rotorcraft in a selected flight condition, communicating input signals to a control system operable to position sails coupled to tips of blades of a rotor assembly, processing the input signals according to a constraint condition to generate sail positional information, and transferring the sail positional information to the sail.
NASA Technical Reports Server (NTRS)
Singleton, Jeffrey D.; Yeager, William T., Jr.; Wilbur, Matthew L.
1990-01-01
An investigation was conducted in the NASA Langley Transonic Dynamics Tunnel to evaluate an advanced main rotor designed for use on a utility class helicopter, specifically the U.S. Army UH-60A Blackhawk. This rotor design incorporated advanced twist, airfoil cross sections, and geometric planform. For evaluation purposes, the current UH-60A main rotor was also tested and is referred to as the baseline blade set. A total of four blade sets were tested. One set of both the baseline and the advanced rotors were dynamically scaled to represent a full scale helicopter rotor blade design. The remaining advanced and baseline blade sets were not dynamically scaled so as to isolate the effects of structural elasticity. The investigation was conducted in hover and at rotor advance ratios ranging from 0.15 to 0.4 at a range of nominal test medium densities from 0.00238 to 0.009 slugs/cu ft. This range of densities, coupled with varying rotor lift and propulsive force, allowed for the simulation of several vehicle gross weight and density altitude combinations. Performance data are presented for all blade sets without analysis; however, cross referencing of data with flight condition may be useful to the analyst for validating aeroelastic theories and design methodologies as well as for evaluating advanced design parameters.
The validation and application of a rotor acoustic prediction computer program
NASA Technical Reports Server (NTRS)
Gallman, Judith M.
1990-01-01
An essential prerequisite to reducing the acoustic detectability of military rotorcraft is a better understanding of main rotor noise which is the major contributor to the overall noise. A simple, yet accurate, Rotor Acoustic Prediction Program (RAPP) was developed to advance the understanding of main rotor noise. This prediction program uses the Ffowcs Williams and Hawkings (FW-H) equation. The particular form of the FW-H equation used is well suited for the coupling of the measured blade surface pressure to the prediction of acoustic pressure. The FW-H equation is an inhomogeneous wave equation that is valid in all space and governs acoustic pressure generated by thin moving bodies. The nonhomogeneous terms describe mass displacement due to surface motion and forces due to local surface stresses, such as viscous stress and pressure distribution on the surface. This paper examines two of the four types of main rotor noise: BVI noise and low-frequency noise. Blade-vortex interaction noise occurs when a tip vortex, previously shed by a rotor blade, passes close enough to a rotor blade to cause large variations in the blade surface pressures. This event is most disturbing when it happens on the advancing side of the rotor disk. Low-frequency noise includes hover and low to moderate speed forward flight. For these flight conditions, the low frequency components of the acoustic signal dominate.
NASA Technical Reports Server (NTRS)
Fleming, Gary A.; Soto, Hector L.; South, Bruce W.
2002-01-01
Projection Moire Interferometry (PMI) has been used during wind tunnel tests to obtain azimuthally dependent blade bending and twist measurements for a 4-bladed Active Twist Rotor (ATR) system in simulated forward flight. The ATR concept offers a means to reduce rotor vibratory loads and noise by using piezoelectric active fiber composite actuators embedded in the blade structure to twist each blade as they rotate throughout the rotor azimuth. The twist imparted on the blades for blade control causes significant changes in blade loading, resulting in complex blade deformation consisting of coupled bending and twist. Measurement of this blade deformation is critical in understanding the overall behavior of the ATR system and the physical mechanisms causing the reduction in rotor loads and noise. PMI is a non-contacting, video-based optical measurement technique capable of obtaining spatially continuous structural deformation measurements over the entire object surface within the PMI system field-of-view. When applied to rotorcraft testing, PMI can be used to measure the azimuth-dependent blade bending and twist along the full span of the rotor blade. This paper presents the PMI technique as applied to rotorcraft testing, and provides results obtained during the ATR tests demonstrating the PMI system performance. PMI measurements acquired at select blade actuation conditions generating minimum and maximum rotor loads are provided to explore the interrelationship between rotor loads, blade bending, and twist.
Determination of Scaled Wind Turbine Rotor Characteristics from Three Dimensional RANS Calculations
NASA Astrophysics Data System (ADS)
Burmester, S.; Gueydon, S.; Make, M.
2016-09-01
Previous studies have shown the importance of 3D effects when calculating the performance characteristics of a scaled down turbine rotor [1-4]. In this paper the results of 3D RANS (Reynolds-Averaged Navier-Stokes) computations by Make and Vaz [1] are taken to calculate 2D lift and drag coefficients. These coefficients are assigned to FAST (Blade Element Momentum Theory (BEMT) tool from NREL) as input parameters. Then, the rotor characteristics (power and thrust coefficients) are calculated using BEMT. This coupling of RANS and BEMT was previously applied by other parties and is termed here the RANS-BEMT coupled approach. Here the approach is compared to measurements carried out in a wave basin at MARIN applying Froude scaled wind, and the direct 3D RANS computation. The data of both a model and full scale wind turbine are used for the validation and verification. The flow around a turbine blade at full scale has a more 2D character than the flow properties around a turbine blade at model scale (Make and Vaz [1]). Since BEMT assumes 2D flow behaviour, the results of the RANS-BEMT coupled approach agree better with the results of the CFD (Computational Fluid Dynamics) simulation at full- than at model-scale.
Investigation of a bearingless helicopter rotor concept having a composite primary structure
NASA Technical Reports Server (NTRS)
Bielawa, R. L.; Cheney, M. C., Jr.; Novak, R. C.
1976-01-01
Experimental and analytical investigations were conducted to evaluate a bearingless helicopter rotor concept (CBR) made possible through the use of the specialized nonisotropic properties of composite materials. The investigation was focused on four principal areas which were expected to answer important questions regarding the feasibility of this concept. First, an examination of material properties was made to establish moduli, ultimate strength, and fatigue characteristics of unidirectional graphite/epoxy, the composite material selected for this application. The results confirmed the high bending modulus and strengths and low shear modulus expected of this material, and demonstrated fatigue properties in torsion which make this material ideally suited for the CBR application. Second, a dynamically scaled model was fabricated and tested in the low speed wind tunnel to explore the aeroelastic characteristics of the CBR and to explore various concepts relative to the method of blade pitch control. Two basic control configurations were tested, one in which pitch flap coupling could occur and another which eliminated all coupling. It was found that both systems could be operated successfully at simulated speeds of 180 knots; however, the configuration with coupling present revealed a potential for undesirable aeroelastic response. The uncoupled configuration behaved generally as a conventional hingeless rotor and was stable for all conditions tested.
Transient Performance of a Vertical Axis Wind Turbine
NASA Astrophysics Data System (ADS)
Onol, Aykut; Yesilyurt, Serhat
2016-11-01
A coupled CFD/rotor dynamics modeling approach is presented for the analysis of realistic transient behavior of a height-normalized, three-straight-bladed VAWT subject to inertial effects of the rotor and generator load which is manipulated by a feedback control under standardized wind gusts. The model employs the k- ɛ turbulence model to approximate unsteady Reynolds-averaged Navier-Stokes equations and is validated with data from field measurements. As distinct from related studies, here, the angular velocity is calculated from the rotor's equation of motion; thus, the dynamic response of the rotor is taken into account. Results include the following: First, the rotor's inertia filters large amplitude oscillations in the wind torque owing to the first-order dynamics. Second, the generator and wind torques differ especially during wind transients subject to the conservation of angular momentum of the rotor. Third, oscillations of the power coefficient exceed the Betz limit temporarily due to the energy storage in the rotor, which acts as a temporary buffer that stores the kinetic energy like a flywheel in short durations. Last, average of transient power coefficients peaks at a smaller tip-speed ratio for wind gusts than steady winds. This work was supported by the Sabanci University Internal Research Grant Program (SU-IRG-985).
Far-Field Acoustic Characteristics of Multiple Blade-Vane Configurations for a High Tip Speed Fan
NASA Technical Reports Server (NTRS)
Woodward, Richard P.; Gazzaniga, John A.; Hughes, Christopher
2004-01-01
The acoustic characteristics of a model high-speed fan stage were measured in the NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel at takeoff and approach flight conditions. The fan was designed for a corrected rotor tip speed of 442 m/s (1450 ft/s), and had a powered core, or booster stage, giving the model a nominal bypass ratio of 5. A simulated engine pylon and nozzle bifurcation was contained within the bypass duct. The fan stage consisted of all combinations of 3 possible rotors, and 3 stator vane sets. The 3 rotors were (1) wide chord, (2) forward swept, and (3) shrouded. The 3 stator sets were (1) baseline, moderately swept, (2) swept and leaned, and (3) swept integral vane/frame which incorporated some of the swept and leaned features as well as eliminated the downstream support structure. The baseline configuration is considered to be the wide chord rotor with the radial vane stator. A flyover Effective Perceived Noise Level (EPNL) code was used to generate relative EPNL values for the various configurations. The swept and leaned stator showed a 3 EPNdB reduction at lower fan speeds relative to the baseline stator; while the swept integral vane/frame stator showed lowest noise levels at high fan speeds. The baseline, wide chord rotor was typically the quietest of the three rotors. A tone removal study was performed to assess the acoustic benefits of removing the fundamental rotor interaction tone and its harmonics. Reprocessing the acoustic results with the bypass tone removed had the most impact on reducing fan noise at transonic rotor speeds. Removal of the bypass rotor interaction tones (BPF and nBPF) showed up to a 6 EPNdB noise reduction at transonic rotor speeds relative to noise levels for the baseline (wide chord rotor and radial stator; all tones present) configuration.
FUN3D Airload Predictions for the Full-Scale UH-60A Airloads Rotor in a Wind Tunnel
NASA Technical Reports Server (NTRS)
Lee-Rausch, Elizabeth M.; Biedron, Robert T.
2013-01-01
An unsteady Reynolds-Averaged Navier-Stokes solver for unstructured grids, FUN3D, is used to compute the rotor performance and airloads of the UH-60A Airloads Rotor in the National Full-Scale Aerodynamic Complex (NFAC) 40- by 80-foot Wind Tunnel. The flow solver is loosely coupled to a rotorcraft comprehensive code, CAMRAD-II, to account for trim and aeroelastic deflections. Computations are made for the 1-g level flight speed-sweep test conditions with the airloads rotor installed on the NFAC Large Rotor Test Apparatus (LRTA) and in the 40- by 80-ft wind tunnel to determine the influence of the test stand and wind-tunnel walls on the rotor performance and airloads. Detailed comparisons are made between the results of the CFD/CSD simulations and the wind tunnel measurements. The computed trends in solidity-weighted propulsive force and power coefficient match the experimental trends over the range of advance ratios and are comparable to previously published results. Rotor performance and sectional airloads show little sensitivity to the modeling of the wind-tunnel walls, which indicates that the rotor shaft-angle correction adequately compensates for the wall influence up to an advance ratio of 0.37. Sensitivity of the rotor performance and sectional airloads to the modeling of the rotor with the LRTA body/hub increases with advance ratio. The inclusion of the LRTA in the simulation slightly improves the comparison of rotor propulsive force between the computation and wind tunnel data but does not resolve the difference in the rotor power predictions at mu = 0.37. Despite a more precise knowledge of the rotor trim loads and flight condition, the level of comparison between the computed and measured sectional airloads/pressures at an advance ratio of 0.37 is comparable to the results previously published for the high-speed flight test condition.
NASA Astrophysics Data System (ADS)
Mei, H.; Hagino, K.; Yao, J. M.; Motoba, T.
2015-06-01
We present a detailed formalism of the microscopic particle-rotor model for hypernuclear low-lying states based on a covariant density functional theory. In this method, the hypernuclear states are constructed by coupling a hyperon to low-lying states of the core nucleus, which are described by the generator coordinate method (GCM) with the particle number and angular momentum projections. We apply this method to study in detail the low-lying spectrum of C13
Study of a Wake Recovery Mechanism in a High-Speed Axial Compressor Stage
NASA Technical Reports Server (NTRS)
VanZante, Dale E.
1998-01-01
This work addresses the significant differences in compressor rotor wake mixing loss which exist in a stage environment relative to a rotor in isolation. The wake decay for a rotor in isolation is due solely to viscous dissipation which is an irreversible process and thus leads to a loss in both total pressure and efficiency. Rotor wake decay in the stage environment is due to both viscous mixing and the inviscid strain imposed on the wake fluid particles by the stator velocity field. This straining process, referred to by Smith (1993) as recovery, is reversible and for a 2D rotor wake leads to an inviscid reduction of the velocity deficit of the wake. A model for the rotor wake decay process is developed and used to quantify the viscous dissipation effects relative to those of inviscid wake stretching. The model is verified using laser anemometer measurements acquired in the wake of a transonic rotor operated in isolation and in a stage configuration at near peak efficiency and near stall operating conditions. Additional insight is provided by a time-accurate 3D Navier-Stokes simulation of the compressor stator flow field at the corresponding stage loading levels. Results from the wake decay model exhibit good agreement with the experimental data. Data from the model, laser anemometer measurements, and numerical simulations indicate that for the rotor/stator spacing used in this work, which is typical of core compressors, rotor wake straining (stretching) is the primary decay process in the stator passage with viscous mixing playing only a minor role. The implications of these results on compressor stage design are discussed.
NASA Astrophysics Data System (ADS)
Li, Hongguang; Li, Ming; Li, Cheng; Li, Fucai; Meng, Guang
2017-09-01
This paper dedicates on the multi-faults decoupling of turbo-expander rotor system using Differential-based Ensemble Empirical Mode Decomposition (DEEMD). DEEMD is an improved version of DEMD to resolve the imperfection of mode mixing. The nonlinear behaviors of the turbo-expander considering temperature gradient with crack, rub-impact and pedestal looseness faults are investigated respectively, so that the baseline for the multi-faults decoupling can be established. DEEMD is then utilized on the vibration signals of the rotor system with coupling faults acquired by numerical simulation, and the results indicate that DEEMD can successfully decouple the coupling faults, which is more efficient than EEMD. DEEMD is also applied on the vibration signal of the misalignment coupling with rub-impact fault obtained during the adjustment of the experimental system. The conclusion shows that DEEMD can decompose the practical multi-faults signal and the industrial prospect of DEEMD is verified as well.
A novel form of damper for turbo-machinery
NASA Technical Reports Server (NTRS)
Brown, R. D.; Hart, J. A.
1987-01-01
Anti-swirl vanes are used by some manufacturers to delay the full development of half speed circulation in annular clearance spaces. The objective is to reduce the aerodynamic cross-coupling in the forward direction. The novel feature of a jet damper is a number of tangential nozzles discharging against the rotor surface speed. Some preliminary results on a 33.9 Kg rotor demonstrate that significant reductions in amplitude are obtained at the synchronous critical speeds.
Loads Correlation of a Full-Scale UH-60A Airloads Rotor in a Wind Tunnel
2012-05-01
modeling in lifting line theory is unsteady, compressible, viscous flow about an infinite wing in a uniform flow consisting of a yawed freestream and...wake-induced velocity. This problem is modeled within CAMRAD II as two-dimensional, steady, compressible, viscous flow (airfoil tables), plus...and 21 aerodynamic panels. Detailed rotor control system geometry, stiffness, and lag damper were also incorporated. When not coupling to OVERFLOW, a
An integrated optimum design approach for high speed prop-rotors including acoustic constraints
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Wells, Valana; Mccarthy, Thomas; Han, Arris
1993-01-01
The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop multilevel decomposition optimization process. The procedures involve the consideration of blade-aeroelastic aerodynamic performance, structural-dynamic design requirements, and acoustics. Further, since the design involves consideration of several different objective functions, multiobjective function formulation techniques are developed.
Time Periodic Control of a Multi-Blade Helicopter.
1988-05-01
part of an element of p X rotor inflow ratio; Langrangian multiplier; Poincare exponent H rotor inflow ratio with respect to the hub *P plane A...and a $ complex conjugate pair in the right- half plane resulting from ( the longitudinal velocity and pitch coupling. Without a horizontal tail, the ... Poincare Exponents . . .. 182 VI. Controller Gains ...... ................ 184 viii I ’Q List of Symbols Listed below are the principal symbols used in this
In-flight simulation investigation of rotorcraft pitch-roll cross coupling
NASA Technical Reports Server (NTRS)
Watson, Douglas C.; Hindson, William S.
1988-01-01
An in-flight simulation experiment investigating the handling qualities effects of the pitch-roll cross-coupling characteristic of single-main-rotor helicopters is described. The experiment was conducted using the NASA/Army CH-47B variable stability helicopter with an explicit-model-following control system. The research is an extension of an earlier ground-based investigation conducted on the NASA Ames Research Center's Vertical Motion Simulator. The model developed for the experiment is for an unaugmented helicopter with cross-coupling implemented using physical rotor parameters. The details of converting the model from the simulation to use in flight are described. A frequency-domain comparison of the model and actual aircraft responses showing the fidelity of the in-flight simulation is described. The evaluation task was representative of nap-of-the-Earth maneuvering flight. The results indicate that task demands are important in determining allowable levels of coupling. In addition, on-axis damping characteristics influence the frequency-dependent characteristics of coupling and affect the handling qualities. Pilot technique, in terms of learned control crossfeeds, can improve performance and lower workload for particular types of coupling. The results obtained in flight corroborated the simulation results.
A four-axis hand controller for helicopter flight control
NASA Technical Reports Server (NTRS)
Demaio, Joe
1993-01-01
A proof-of-concept hand controller for controlling lateral and longitudinal cyclic pitch, collective pitch and tail rotor thrust was developed. The purpose of the work was to address problems of operator fatigue, poor proprioceptive feedback and cross-coupling of axes associated with many four-axis controller designs. The present design is an attempt to reduce cross-coupling to a level that can be controlled with breakout force, rather than to eliminate it entirely. The cascaded design placed lateral and longitudinal cyclic in their normal configuration. Tail rotor thrust was placed atop the cyclic controller. A left/right twisting motion with the wrist made the control input. The axis of rotation was canted outboard (clockwise) to minimize cross-coupling with the cyclic pitch axis. The collective control was a twist grip, like a motorcycle throttle. Measurement of the amount of cross-coupling involved in pure, single-axis inputs showed cross coupling under 10 percent of full deflection for all axes. This small amount of cross-coupling could be further reduced with better damping and force gradient control. Fatigue was not found to be a problem, and proprioceptive feedback was adequate for all flight tasks executed.
A Wind-Tunnel Parametric Investigation of Tiltrotor Whirl-Flutter Stability Boundaries
NASA Technical Reports Server (NTRS)
Piatak, David J.; Kvaternik, Raymond G.; Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Bennett, Richard L.; Brown, Ross K.
2001-01-01
A wind-tunnel investigation of tiltrotor whirl-flutter stability boundaries has been conducted on a 1/5-size semispan tiltrotor model known as the Wing and Rotor Aeroelastic Test System (WRATS) in the NASA-Langley Transonic Dynamics Tunnel as part of a joint NASA/Army/Bell Helicopter Textron, Inc. (BHTI) research program. The model was first developed by BHTI as part of the JVX (V-22) research and development program in the 1980's and was recently modified to incorporate a hydraulically-actuated swashplate control system for use in active controls research. The modifications have changed the model's pylon mass properties sufficiently to warrant testing to re-establish its baseline stability boundaries. A parametric investigation of the effect of rotor design variables on stability was also conducted. The model was tested in both the on-downstop and off-downstop configurations, at cruise flight and hover rotor rotational speeds, and in both air and heavy gas (R-134a) test mediums. Heavy gas testing was conducted to quantify Mach number compressibility effects on tiltrotor stability. Experimental baseline stability boundaries in air are presented with comparisons to results from parametric variations of rotor pitch-flap coupling and control system stiffness. Increasing the rotor pitch-flap coupling (delta(sub 3) more negative) was found to have a destabilizing effect on stability, while a reduction in control system stiffness was found to have little effect on whirl-flutter stability. Results indicate that testing in R-134a, and thus matching full-scale tip Mach number, has a destabilizing effect, which demonstrates that whirl-flutter stability boundaries in air are unconservative.
Spatial Resolution Requirements for Accurate Identification of Drivers of Atrial Fibrillation
Roney, Caroline H.; Cantwell, Chris D.; Bayer, Jason D.; Qureshi, Norman A.; Lim, Phang Boon; Tweedy, Jennifer H.; Kanagaratnam, Prapa; Vigmond, Edward J.; Ng, Fu Siong
2017-01-01
Background— Recent studies have demonstrated conflicting mechanisms underlying atrial fibrillation (AF), with the spatial resolution of data often cited as a potential reason for the disagreement. The purpose of this study was to investigate whether the variation in spatial resolution of mapping may lead to misinterpretation of the underlying mechanism in persistent AF. Methods and Results— Simulations of rotors and focal sources were performed to estimate the minimum number of recording points required to correctly identify the underlying AF mechanism. The effects of different data types (action potentials and unipolar or bipolar electrograms) and rotor stability on resolution requirements were investigated. We also determined the ability of clinically used endocardial catheters to identify AF mechanisms using clinically recorded and simulated data. The spatial resolution required for correct identification of rotors and focal sources is a linear function of spatial wavelength (the distance between wavefronts) of the arrhythmia. Rotor localization errors are larger for electrogram data than for action potential data. Stationary rotors are more reliably identified compared with meandering trajectories, for any given spatial resolution. All clinical high-resolution multipolar catheters are of sufficient resolution to accurately detect and track rotors when placed over the rotor core although the low-resolution basket catheter is prone to false detections and may incorrectly identify rotors that are not present. Conclusions— The spatial resolution of AF data can significantly affect the interpretation of the underlying AF mechanism. Therefore, the interpretation of human AF data must be taken in the context of the spatial resolution of the recordings. PMID:28500175
Free-wake computation of helicopter rotor flowfields in forward flight
NASA Technical Reports Server (NTRS)
Ramachandran, K.; Schlechtriem, S.; Caradonna, F. X.; Steinhoff, John
1993-01-01
A new method has been developed for computing advancing rotor flows. This method uses the Vorticity Embedding technique, which has been developed and validated over the last several years for hovering rotor problems. In this work, the unsteady full potential equation is solved on an Eulerian grid with an embedded vortical velocity field. This vortical velocity accounts for the influence of the wake. Dynamic grid changes that are required to accommodate prescribed blade motion and deformation are included using a novel grid blending method. Free wake computations have been performed on a two-bladed AH-1G rotor at low advance ratios including blade motion. Computed results are compared with experimental data. The sudden variations in airloads due to blade-vortex interactions on the advancing and retreating sides are well captured. The sensitivity of the computed solution to various factors like core size, time step and grids has been investigated. Computed wake geometries and their influence on the aerodynamic loads at these advance ratios are also discussed.
A general numerical model for wave rotor analysis
NASA Technical Reports Server (NTRS)
Paxson, Daniel W.
1992-01-01
Wave rotors represent one of the promising technologies for achieving very high core temperatures and pressures in future gas turbine engines. Their operation depends upon unsteady gas dynamics and as such, their analysis is quite difficult. This report describes a numerical model which has been developed to perform such an analysis. Following a brief introduction, a summary of the wave rotor concept is given. The governing equations are then presented, along with a summary of the assumptions used to obtain them. Next, the numerical integration technique is described. This is an explicit finite volume technique based on the method of Roe. The discussion then focuses on the implementation of appropriate boundary conditions. Following this, some results are presented which first compare the numerical approximation to the governing differential equations and then compare the overall model to an actual wave rotor experiment. Finally, some concluding remarks are presented concerning the limitations of the simplifying assumptions and areas where the model may be improved.
Hsu, John S.
2010-05-18
A method and apparatus in which a stator (11) and a rotor (12) define a primary air gap (20) for receiving AC flux and at least one source (23, 40), and preferably two sources (23, 24, 40) of DC excitation are positioned for inducing DC flux at opposite ends of the rotor (12). Portions of PM material (17, 17a) are provided as boundaries separating PM rotor pole portions from each other and from reluctance poles. The PM poles (18) and the reluctance poles (19) can be formed with poles of one polarity having enlarged flux paths in relation to flux paths for pole portions of an opposite polarity, the enlarged flux paths communicating with a core of the rotor (12) so as to increase reluctance torque produced by the electric machine. Reluctance torque is increased by providing asymmetrical pole faces. The DC excitation can also use asymmetric poles and asymmetric excitation sources. Several embodiments are disclosed with additional variations.
General approach and scope. [rotor blade design optimization
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Mantay, Wayne R.
1989-01-01
This paper describes a joint activity involving NASA and Army researchers at the NASA Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for all of the important interactions among the disciplines. The disciplines involved include rotor aerodynamics, rotor dynamics, rotor structures, airframe dynamics, and acoustics. The work is focused on combining these five key disciplines in an optimization procedure capable of designing a rotor system to satisfy multidisciplinary design requirements. Fundamental to the plan is a three-phased approach. In phase 1, the disciplines of blade dynamics, blade aerodynamics, and blade structure will be closely coupled, while acoustics and airframe dynamics will be decoupled and be accounted for as effective constraints on the design for the first three disciplines. In phase 2, acoustics is to be integrated with the first three disciplines. Finally, in phase 3, airframe dynamics will be fully integrated with the other four disciplines. This paper deals with details of the phase 1 approach and includes details of the optimization formulation, design variables, constraints, and objective function, as well as details of discipline interactions, analysis methods, and methods for validating the procedure.
NASA Technical Reports Server (NTRS)
Gaonkar, G.
1986-01-01
For flap-lag stability of isolated rotors, experimental and analytical investigations are conducted in hover and forward flight on the adequacy of a linear quasisteady aerodynamics theory with dynamic inflow. Forward flight effects on lag regressing mode are emphasized. Accordingly, a soft inplane hingeless rotor with three blades is tested at advance ratios as high as 0.55 and at shaft angles as high as 20 degrees. The 1.62 m model rotor is untrimmed with an essentially unrestricted tilt of the tip path plane. In combination with lag natural frequencies, collective pitch settings and flap-lag coupling parameters, the data base comprises nearly 1200 test points (damping and frequency) in forward flight and 200 test points in hover. By computerized symbolic manipulation, a linear analytical model is developed in substall to predict stability margins with mode identificaton. To help explain the correlation between theory and data it also predicts substall and stall regions of the rotor disk from equilibrium values. The correlation shows both the strengthts and weaknesses of the theory in substall.
A novel type of rim thrust motor with Halbach array permanent magnet rotor
NASA Astrophysics Data System (ADS)
Cao, Haichuan; Chen, Weihu
2018-05-01
The Rim-driven Thruster (RDT) is a new type of marine electric thruster proposed in recent years. In this paper, the author proposed a new type of permanent magnet synchronous rim thrust motor (RTM). The motor uses a Halbach array permanent magnet rotor, which can improve the torque density of the propulsion motor by utilizing the unilateral magnetic field of the Halbach array. In this paper, the electromagnetic properties of the motor were measured and compared with that of the ordinary magnetic pole motor through numerical analysis. The results show that at the same power, the new motor can significantly reduce the thickness of the rotor's permanent magnet and yoke core, and has obvious advantages in power density, moment of inertia, dynamic performance, and cost.
NASA Technical Reports Server (NTRS)
Free, April M.; Flowers, George T.; Trent, Victor S.
1995-01-01
Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied.
Rotordynamic Modelling and Response Characteristics of an Active Magnetic Bearing Rotor System
NASA Technical Reports Server (NTRS)
Free, April M.; Flowers, George T.; Trent, Victor S.
1996-01-01
Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied. These results are presented and discussed.
Incidence loss for fan turbine rotor blade in two-dimensional cascade
NASA Technical Reports Server (NTRS)
Kline, J. F.; Moffitt, T. P.; Stabe, R. G.
1983-01-01
The effect of incidence angle on the aerodynamic performance of a fan turbine rotor blade was investigated experimentally in a two dimensional cascade. The test covered a range of incidence angles from -15 deg to 10 deg and exit ideal critical velocity ratios from 0.75 to 0.95. The principal measurements were blade-surface static pressures and cross-channel survey of exit total pressure, static pressure, and flow angle. Flow adjacent to surfaces was examined using a visualization technique. The results of the investigation include blade-surface velocity distribution and overall kinetic energy loss coefficients for the incidence angles and exit velocity ratios tested. The measured losses are compared with those from a reference core turbine rotor blade and also with two common analytical methods of predicting incidence loss.
Hybrid-secondary uncluttered induction machine
Hsu, John S.
2001-01-01
An uncluttered secondary induction machine (100) includes an uncluttered rotating transformer (66) which is mounted on the same shaft as the rotor (73) of the induction machine. Current in the rotor (73) is electrically connected to current in the rotor winding (67) of the transformer, which is not electrically connected to, but is magnetically coupled to, a stator secondary winding (40). The stator secondary winding (40) is alternately connected to an effective resistance (41), an AC source inverter (42) or a magnetic switch (43) to provide a cost effective slip-energy-controlled, adjustable speed, induction motor that operates over a wide speed range from below synchronous speed to above synchronous speed based on the AC line frequency fed to the stator.
The modeling of the dynamic behavior of an unsymmetrical rotor
NASA Astrophysics Data System (ADS)
Pǎrǎuşanu, Ioan; Gheorghiu, Horia; Petre, Cristian; Jiga, Gabriel; Crişan, Nicoleta
2018-02-01
The purpose of this article is to present the modeling of the dynamic behaviour of unsymmetrical rotors in relatively simple quantitative terms. Numerical simulations show that the shaft orthotropy produces a peak of resonant vibration about half the regular critical speed and, for small damping, a range of possible unstable behavior between the two critical speeds. Rotors having the shaft and/or the disks with unequal diametral moments of inertia (e.g., two-bladed small airplane propellers, wind turbines and fans) are dynamically unstable above a certain speed and some of these may return to a stable condition at a sufficiently high speed, depending on the particular magnitudes of the gyroscopic coupling and the inertia inequality.
2005-01-24
Phase Resistance 6 3.5 Required Turns Per Coil 6 3.6 Flux Per Pole Calculation 7 3.7 Slot Area 7 3.8 Stator Core Volume 8...PM) B - Conventional wound radial field C – Conventional surface PM rotor (developed by Gene Aha) D - PM flux squeezing radial field (developed...permanent magnet pole arc and the soft iron poles between the magnets are critical in the design to achieve the balance between the Reluctance and the
An Eulerian/Lagrangian method for computing blade/vortex impingement
NASA Technical Reports Server (NTRS)
Steinhoff, John; Senge, Heinrich; Yonghu, Wenren
1991-01-01
A combined Eulerian/Lagrangian approach to calculating helicopter rotor flows with concentrated vortices is described. The method computes a general evolving vorticity distribution without any significant numerical diffusion. Concentrated vortices can be accurately propagated over long distances on relatively coarse grids with cores only several grid cells wide. The method is demonstrated for a blade/vortex impingement case in 2D and 3D where a vortex is cut by a rotor blade, and the results are compared to previous 2D calculations involving a fifth-order Navier-Stokes solver on a finer grid.
Computer-Aided Engineering | Wind | NREL
Computes coupled section properties of composite blades for beam-type models Inputs are the airfoil shape approach BModes Computes coupled mode shapes and frequencies of blades and towers Inputs are the boundary -Coordinate transformation Transforms the cumulative dynamics of spinning rotor blades into the non-rotating
Method and apparatus for assembling a permanent magnet pole assembly
Carl, Jr., Ralph James; Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Scotia, NY; Dawson, Richard Nils [Voorheesville, NY; Qu, Ronghai [Clifton Park, NY; Avanesov, Mikhail Avramovich [Moscow, RU
2009-08-11
A pole assembly for a rotor, the pole assembly includes a permanent magnet pole including at least one permanent magnet block, a plurality of laminations including a pole cap mechanically coupled to the pole, and a plurality of laminations including a base plate mechanically coupled to the pole.
NASA Technical Reports Server (NTRS)
Hawkins, Lawrence Allen
1988-01-01
Experimental results for the rotordynamic stiffness and damping coefficients of a labyrinth -rotor honeycomb-stator seal are presented. The coefficients are compared to the coefficients of a labyrinth-rotor smooth-stator seal having the same geometry. The coefficients are compared to analytical results from a two-control-volume compressible flow model. The experimental results show that the honeycomb stator configuration is more stable than the smooth stator configuration at low rotor speeds. At high rotor speeds and low clearance, the smooth stator seal is more stable. The theoretical model predicts the cross-coupled stiffness of the honeycomb stator seal correctly within 25 percent of measured values. The model provides accurate predictions of direct damping for large clearance seals. Overall, the model does not perform as well for low clearance seals as for high clearance seals.
NASA Technical Reports Server (NTRS)
Hall, G. F.
1975-01-01
A numerical analysis was developed to determine the airloads on helicopter rotors operating under near-hovering flight conditions capable of producing impulsive noise. A computer program was written in which the solutions for the rotor tip vortex geometry, inflow, aeroelastic response, and airloads are solved in a coupled manner at sequential time steps, with or without the influence of an imposed steady ambient wind or transient gust. The program was developed for future applications in which predicted airloads would be incorporated in an acoustics analysis to attempt to predict and analyze impulsive noise (blade slap). The analysis was applied to a hovering full-scale rotor for which impulsive noise was recorded in the presence of ambient wind. The predicted tip vortex coordinates are in reasonable agreement with the test data, and the blade airload solutions converged to a periodic behavior for an imposed steady ambient wind conditions.
Nonlinear dynamics and health monitoring of 6-DOF breathing cracked Jeffcott rotor
NASA Astrophysics Data System (ADS)
Zhao, Jie; DeSmidt, Hans; Yao, Wei
2015-04-01
Jeffcott rotor is employed to study the nonlinear vibration characteristics of breathing cracked rotor system and explore the possibility of further damage identification. This paper is an extension work of prior study based on 4 degree-of-freedom Jeffcott rotor system. With consideration of disk tilting and gyroscopic effect, 6-dof EOM is derived and the crack model is established using SERR (strain energy release rate) in facture mechanics. Same as the prior work, the damaged stiffness matrix is updated by computing the instant crack closure line through Zero Stress Intensity Factor method. The breathing crack area is taken as a variable to analyze the breathing behavior in terms of eccentricity phase and shaft speed. Furthermore, the coupled vibration among lateral, torsional and longitudinal d.o.f is studied under torsional/axial excitation. The final part demonstrates the possibility of using vibration signal of damaged system for the crack diagnosis and health monitoring.
Submerged electricity generation plane with marine current-driven motors
Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander
2014-07-01
An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.
NASA Technical Reports Server (NTRS)
Flowers, George T.
1994-01-01
Substantial progress has been made toward the goals of this research effort in the past six months. A simplified rotor model with a flexible shaft and backup bearings has been developed. The model is based upon the work of Ishii and Kirk. Parameter studies of the behavior of this model are currently being conducted. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. The study consists of simulation work coupled with experimental verification. The work is documented in the attached paper. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. The dynamics of this model are currently being studied with the objective of verifying the conclusions obtained from the simpler models. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501.
Dynamic analysis of flexible rotor-bearing systems using a modal approach
NASA Technical Reports Server (NTRS)
Choy, K. C.; Gunter, E. J.; Barrett, L. E.
1978-01-01
The generalized dynamic equations of motion were obtained by the direct stiffness method for multimass flexible rotor-bearing systems. The direct solution of the equations of motion is illustrated on a simple 3-mass system. For complex rotor-bearing systems, the direct solution of the equations becomes very difficult. The transformation of the equations of motion into modal coordinates can greatly simplify the computation for the solution. The use of undamped and damped system mode shapes in the transformation are discussed. A set of undamped critical speed modes is used to transform the equations of motion into a set of coupled modal equations of motion. A rapid procedure for computing stability, steady state unbalance response, and transient response of the rotor-bearing system is presented. Examples of the application of this modal approach are presented. The dynamics of the system is further investigated with frequency spectrum analysis of the transient response.
The application of LQR synthesis techniques to the turboshaft engine control problem
NASA Technical Reports Server (NTRS)
Pfeil, W. H.; De Los Reyes, G.; Bobula, G. A.
1984-01-01
A power turbine governor was designed for a recent-technology turboshaft engine coupled to a modern, articulated rotor system using Linear Quadratic Regulator (LQR) and Kalman Filter (KF) techniques. A linear, state-space model of the engine and rotor system was derived for six engine power settings from flight idle to maximum continuous. An integrator was appended to the fuel flow input to reduce the steady-state governor error to zero. Feedback gains were calculated for the system states at each power setting using the LQR technique. The main rotor tip speed state is not measurable, so a Kalman Filter of the rotor was used to estimate this state. The crossover of the system was increased to 10 rad/s compared to 2 rad/sec for a current governor. Initial computer simulations with a nonlinear engine model indicate a significant decrease in power turbine speed variation with the LQR governor compared to a conventional governor.
NASA Astrophysics Data System (ADS)
Mokhtar, Md Asjad; Kamalakar Darpe, Ashish; Gupta, Kshitij
2017-08-01
The ever-increasing need of highly efficient rotating machinery causes reduction in the clearance between rotating and non-rotating parts and increase in the chances of interaction between these parts. The rotor-stator contact, known as rub, has always been recognized as one of the potential causes of rotor system malfunctions and a source of secondary failures. It is one of few causes that influence both lateral and torsional vibrations. In this paper, the rotor stator interaction phenomenon is investigated in the finite element framework using Lagrange multiplier based contact mechanics approach. The stator is modelled as a beam that can respond to axial penetration and lateral friction force during the contact with the rotor. It ensures dynamic stator contact boundary and more realistic contact conditions in contrast to most of the earlier approaches. The rotor bending-torsional mode coupling during contact is considered and the vibration response in bending and torsion are analysed. The effect of parameters such as clearance, friction coefficient and stator stiffness are studied at various operating speeds and it has been found that certain parameter values generate peculiar rub related features. Presence of sub-harmonics in the lateral vibration frequency spectra are prominently observed when the rotor operates near the integer multiple of its lateral critical speed. The spectrum cascade of torsional vibration shows the presence of bending critical speed along with the larger amplitudes of frequencies close to torsional natural frequency of the rotor. When m × 1/n X frequency component of rotational frequency comes closer to the torsional natural frequency, stronger torsional vibration amplitude is noticed in the spectrum cascade. The combined information from the stator vibration and rotor lateral-torsional vibration spectral features is proposed for robust rub identification.
A coupled CFD and wake model simulation of helicopter rotor in hover
NASA Astrophysics Data System (ADS)
Zhao, Qinghe; Li, Xiaodong
2018-03-01
The helicopter rotor wake plays a dominant role since it affects the flow field structure. It is very difficult to predict accurately of the flow-field. The numerical dissipation is so excessive that it eliminates the vortex structure. A hybrid method of CFD and prescribed wake model was constructed by applying the prescribed wake model as much as possible. The wake vortices were described as a single blade tip vortex in this study. The coupling model is used to simulate the flow field. Both non-lifting and lifting cases have been calculated with subcritical and supercritical tip Mach numbers. Surface pressure distributions are presented and compared with experimental data. The calculated results agree well with the experimental data.
Adaptor assembly for coupling turbine blades to rotor disks
Delvaux, John McConnel; Garcia-Crespo, Andres Jose; Joyce, Kilmer Joseph; Tindell, Allan Randall
2014-06-03
An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is disclosed. The adaptor assembly may generally include an adaptor body having a root configured to be received within the root slot. The adaptor body may also define a slot having an open end configured to receive the blade root. The adaptor body may further define a channel. The adaptor assembly may also include a plate having an outwardly extending foot. The foot may be configured to be received within the channel. Additionally, the plate may be configured to cover at least a portion of the open end of the slot when the foot is received within the channel.
NASA Technical Reports Server (NTRS)
Zawodny, Nikolas S.; Haskin, Henry H.
2017-01-01
The Low Speed Aeroacoustic Wind Tunnel (LSAWT) at NASA Langley Research Center has recently undergone a configuration change. This change incorporates an inlet nozzle extension meant to serve the dual purposes of achieving lower free-stream velocities as well as a larger core flow region. The LSAWT, part of the NASA Langley Jet Noise Laboratory, had historically been utilized to simulate realistic forward flight conditions of commercial and military aircraft engines in an anechoic environment. The facility was modified starting in 2016 in order to expand its capabilities for the aerodynamic and acoustic testing of small propeller and unmanned aircraft system (UAS) rotor configurations. This paper describes the modifications made to the facility, its current aerodynamic and acoustic capabilities, the propeller and UAS rotor-vehicle configurations to be tested, and some preliminary predictions and experimental data for isolated propeller and UAS rotor con figurations, respectively. Isolated propeller simulations have been performed spanning a range of advance ratios to identify the theoretical propeller operational limits of the LSAWT. Performance and acoustic measurements of an isolated UAS rotor in hover conditions are found to compare favorably with previously measured data in an anechoic chamber and blade element-based acoustic predictions.
Method for cancelling expansion waves in a wave rotor
NASA Astrophysics Data System (ADS)
Paxson, Daniel E.
1994-03-01
A wave rotor system includes a wave rotor coupled to first and second end plates. Special ports are provided, one in each of the first and second end plates, to cancel expansion waves generated by the release of working fluid from the wave rotor. One of the expansion waves is reflected in the wave rotor from a reflecting portion, and provided to the special port in the second end plate. Fluid present at the special port in the second end plate has a stagnation pressure and mass flow which is substantially the same as that of the cells of the wave rotor communicating with such special port. This allows for cancellation of the expansion wave generated by the release of working fluid from the wave rotor. The special port in the second end plate has a first end corresponding substantially to the head of the expansion wave, and a second end corresponding substantially to the tail of the expansion wave. Also, the special port is configured to continually change along the circumference of the second end plate to affect expansion wave cancellation. An expansion wave generated by a second release of working fluid from the wave rotor is cancelled in a similar manner to that described above using a special port in the first end plate. Preferably the cycle of operation of the wave rotor system is designed so that the stagnation pressure and mass flow of the fluid present at the special ports is the same so that the special ports may be connected by a common duct.
System and method for cancelling expansion waves in a wave rotor
NASA Astrophysics Data System (ADS)
Paxson, Daniel E.
1993-12-01
A wave rotor system that is comprised of a wave rotor coupled to first and second plates is described. Special ports are provided, one in each of the first and second end plates, to cancel expansion waves generated by the release of working fluid from the wave rotor. One of the expansion waves is reflected in the wave rotor from a reflecting portion and provided to the special port in the second end plate. Fluid present at the special port in the second end plate has a stagnation pressure and mass flow which is the same as that of the cells of the wave rotor communicating with such special port. This allows for cancellation of the expansion wave generated by the release of working fluid from the wave rotor. The special port in the second end plate has a first end corresponding to the head of the expansion wave and a second end corresponding to the tail of the expansion wave. Also, the special port is configured to continually change along the circumference of the second end plate to affect expansion wave cancellation. An expansion wave generated by a second release of working fluid from the wave rotor is cancelled in a similar manner to that described above using a special port in the first end plate. The cycle of operation of the wave rotor system is designed so that the stagnation pressure and mass flow of the fluid present at the special ports is the same so that the special ports may be connected by a common duct.
Radial magnetic bearings: An overview
NASA Astrophysics Data System (ADS)
Zhang, Weiyu; Zhu, Huangqiu
Radial magnetic bearings (RMBs) are one of the most commonly used magnetic bearings. They are used widely in the field of ultra-high speed and ultra-precise numerical control machine tools, bearingless motors, high speed flywheels, artificial heart pumps, and molecular pumps, and they are being strengthened and extended in various important areas. In this paper, a comprehensive overview is given of different bearing topologies of RMBs with different stator poles that differ in their construction, the driving mode of electromagnets, power consumption, cost, magnetic circuits, and symmetry. RMBs with different poles and couplings between the two bearing axes in the radial direction responsible for cross-coupling generation are compared. In addition, different shaped rotors are compared, as the performances of magnetic bearing-rotor systems are of great concern to rotor constructions. Furthermore, the parameter design methods, the mathematical models and control strategies of the RMBs are described in detail. From the comparison of topologies, models and control methods for RMBs, the advantages, disadvantages and utilizable perspectives are also analyzed. Moreover, several possible development trends of the RMBs are discussed.
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.; Gunter, Edgar J.
2007-01-01
A case study of a high-speed seal test rotor shows how rotor dynamic analysis can be used to diagnose the source of high vibrations and evaluate a proposed remedy. Experimental results are compared with the synchronous and non-synchronous whirl response analysis of a double overhung, high-speed seal test rotor with ball bearings supported in 5.84- and 12.7-mm-long, un-centered squeeze-film oil dampers. Test performance with the original damper of length 5.84 mm was marginal. Non-synchronous whirling occurred at the overhung seal test disk and there was a high amplitude synchronous response near the drive spline above 32,000 rpm. Nonlinear synchronous unbalance and time transient whirl studies were conducted on the seal test rotor with the original and extended damper lengths. With the original damper design, the nonlinear synchronous response showed that unbalance could cause damper lockup at 33,000 rpm. Alford cross-coupling forces were also included at the overhung seal test disk for the whirl analysis. Sub-synchronous whirling at the seal test disk was observed in the nonlinear time transient analysis. With the extended damper length of 12.7 mm, the sub-synchronous motion was eliminated and the rotor unbalance response was acceptable to 45,000 rpm with moderate rotor unbalance. Seal test rotor orbits and vibration levels with the extended squeeze film dampers showed smooth operation to 40,444 rpm.
The History of the XV-15 Tilt Rotor Research Aircraft: From Concept to Flight
NASA Technical Reports Server (NTRS)
Maisel, Martin D.; Giulianetti, Demo J.; Dugan, Daniel C.
2000-01-01
This monograph is a testament to the efforts of many people overcoming multiple technical challenges encountered while developing the XV-15 tilt rotor research aircraft. The Ames involvement with the tilt rotor aircraft began in 1957 with investigations of the performance and dynamic behavior of the Bell XV-3 tilt rotor aircraft. At that time, Ames Research Center was known as the Ames Aeronautical Laboratory of the National Advisory Committee for Aeronautics (NACA). As we approach the new millennium, and after more than 40 years of effort and the successful completion of our initial goals, it is appropriate to reflect on the technical accomplishments and consider the future applications of this unique aircraft class, the tilt rotor. The talented engineers, technicians, managers, and leaders at Ames have worked hard with their counterparts in the U.S. rotorcraft industry to overcome technology barriers and to make the military and civil tilt rotor aircraft safer, environmentally acceptable, and more efficient. The tilt rotor aircraft combines the advantages of vertical takeoff and landing capabilities, inherent to the helicopter, with the forward speed and range of a fixed wing turboprop airplane. Our studies have shown that this new vehicle type can provide the aviation transportation industry with the flexibility for highspeed, long-range flight, coupled with runway-independent operations, thus having a significant potential to relieve airport congestion. We see the tilt rotor aircraft as an element of the solution to this growing air transport problem.
A Novel Method for Reducing Rotor Blade-Vortex Interaction
NASA Technical Reports Server (NTRS)
Glinka, A. T.
2000-01-01
One of the major hindrances to expansion of the rotorcraft market is the high-amplitude noise they produce, especially during low-speed descent, where blade-vortex interactions frequently occur. In an attempt to reduce the noise levels caused by blade-vortex interactions, the flip-tip rotor blade concept was devised. The flip-tip rotor increases the miss distance between the shed vortices and the rotor blades, reducing BVI noise. The distance is increased by rotating an outboard portion of the rotor tip either up or down depending on the flight condition. The proposed plan for the grant consisted of a computational simulation of the rotor aerodynamics and its wake geometry to determine the effectiveness of the concept, coupled with a series of wind tunnel experiments exploring the value of the device and validating the computer model. The computational model did in fact show that the miss distance could be increased, giving a measure of the effectiveness of the flip-tip rotor. However, the wind experiments were not able to be conducted. Increased outside demand for the 7'x lO' wind tunnel at NASA Ames and low priority at Ames for this project forced numerous postponements of the tests, eventually pushing the tests beyond the life of the grant. A design for the rotor blades to be tested in the wind tunnel was completed and an analysis of the strength of the model blades based on predicted loads, including dynamic forces, was done.
Evaluation of feasibility of prestressed concrete for use in wind turbine blades
NASA Technical Reports Server (NTRS)
Leiblein, S.; Londahl, D. S.; Furlong, D. B.; Dreier, M. E.
1979-01-01
A preliminary evaluation of the feasibility of the use of prestressed concrete as a material for low cost blades for wind turbines was conducted. A baseline blade design was achieved for an experimental wind turbine that met aerodynamic and structural requirements. Significant cost reductions were indicated for volume production. Casting of a model blade section showed no fabrication problems. Coupled dynamic analysis revealed that adverse rotor tower interactions can be significant with heavy rotor blades.
The Shock and Vibration Digest. Volume 12, Number 5.
1980-05-01
response 80-957 This paper presents a way of analyzing the vibration of a The Dynamics of Rotor- Bearing Systems with Axial t rotor shaft system coupled with...Research on the Flutter of Axial Turbomachine To use this stability criteria the loading must be conservative. The numerical results are compared...Stiffness on the Statically radial bearing forces and the load cal-icity are found approxi- Optimum Distance Between the Double Row Rolling mately valid for
NASA Astrophysics Data System (ADS)
Kumenko, A. I.; Kostyukov, V. N.; Kuz'minykh, N. Yu.; Boichenko, S. N.; Timin, A. V.
2017-08-01
The rationale is given for the improvement of the regulatory framework for the use of shaft sensors for the in-service condition monitoring of turbo generators and the development of control systems of shaft surfacing and misalignments of supports. A modern concept and a set of methods are proposed for the condition monitoring of the "shaft line-thrust bearing oil film-turbo generator supports" system elements based on the domestic COMPACS® technology. The system raw data are design, technology, installation, and operating parameters of the turbo generator as well as measured parameters of the absolute vibration of supports and mechanical quantities, relative displacements and relative vibration of the rotor teeth in accordance with GOST R 55263-2012. The precalculated shaft line assembly line in the cold state, the nominal parameters of rotor teeth positions on the dynamic equilibrium curve, the static and dynamic characteristics of the oil film of thrust bearings, and the shaft line stiffness matrix of unit support displacements have been introduced into the system. Using the COMPACS-T system, it is planned to measure positions and oscillations of rotor teeth, to count corresponding static and dynamic characteristics of the oil film, and the static and dynamic loads in the supports in real time. Using the obtained data, the system must determine the misalignments of supports and corrective alignments of rotors of coupling halves, voltages in rotor teeth, welds, and bolts of the coupling halves, and provide automatic conclusion if condition monitoring parameters correspond to standard values. A part of the methodological support for the proposed system is presented, including methods for determining static reactions of supports under load, the method for determining shaft line stiffness matrices, and the method for solving the inverse problem, i.e., the determination of the misalignments of the supports by measurements of rotor teeth relative positions in bearing housings. The procedure for calculating misalignments of turbo generator shaft line supports is set out.
NASA Astrophysics Data System (ADS)
Oller Aramayo, S. A.; Nallim, L. G.; Oller, S.
2013-12-01
This paper shows an integrated structural design optimization of a composite rotor-hydrofoil of a water current turbine by means the finite elements method (FEM), using a Serial/Parallel mixing theory (Rastellini et al. Comput. Struct. 86:879-896, 2008, Martinez et al., 2007, Martinez and Oller Arch. Comput. Methods. 16(4):357-397, 2009, Martinez et al. Compos. Part B Eng. 42(2011):134-144, 2010) coupled with a fluid-dynamic formulation and multi-objective optimization algorithm (Gen and Cheng 1997, Lee et al. Compos. Struct. 99:181-192, 2013, Lee et al. Compos. Struct. 94(3):1087-1096, 2012). The composite hydrofoil of the turbine rotor has been design using a reinforced laminate composites, taking into account the optimization of the carbon fiber orientation to obtain the maximum strength and lower rotational-inertia. Also, these results have been compared with a steel hydrofoil remarking the different performance on both structures. The mechanical and geometrical parameters involved in the design of this fiber-reinforced composite material are the fiber orientation, number of layers, stacking sequence and laminate thickness. Water pressure in the rotor of the turbine is obtained from a coupled fluid-dynamic simulation (CFD), whose detail can be found in the reference Oller et al. (2012). The main purpose of this paper is to achieve a very low inertia rotor minimizing the start-stop effect, because it is applied in axial water flow turbine currently in design by the authors, in which is important to take the maximum advantage of the kinetic energy. The FEM simulation codes are engineered by CIMNE (International Center for Numerical Method in Engineering, Barcelona, Spain), COMPack for the solids problem application, KRATOS for fluid dynamic application and RMOP for the structural optimization. To validate the procedure here presented, many turbine rotors made of composite materials are analyzed and three of them are compared with the steel one.
An initiative in multidisciplinary optimization of rotorcraft
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Mantay, Wayne R.
1989-01-01
Described is a joint NASA/Army initiative at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The activity is being guided by a Steering Committee made up of key NASA and Army researchers and managers. The committee, which has been named IRASC (Integrated Rotorcraft Analysis Steering Committee), has defined two principal foci for the activity: a white paper which sets forth the goals and plans of the effort; and a rotor design project which will validate the basic constituents, as well as the overall design methodology for multidisciplinary optimization. The optimization formulation is described in terms of the objective function, design variables, and constraints. Additionally, some of the analysis aspects are discussed and an initial attempt at defining the interdisciplinary couplings is summarized. At this writing, some significant progress has been made, principally in the areas of single discipline optimization. Results are given which represent accomplishments in rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, and rotor structural optimization for minimum weight.
An initiative in multidisciplinary optimization of rotorcraft
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Mantay, Wayne R.
1988-01-01
Described is a joint NASA/Army initiative at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The activity is being guided by a Steering Committee made up of key NASA and Army researchers and managers. The committee, which has been named IRASC (Integrated Rotorcraft Analysis Steering Committee), has defined two principal foci for the activity: a white paper which sets forth the goals and plans of the effort; and a rotor design project which will validate the basic constituents, as well as the overall design methodology for multidisciplinary optimization. The paper describes the optimization formulation in terms of the objective function, design variables, and constraints. Additionally, some of the analysis aspects are discussed and an initial attempt at defining the interdisciplinary couplings is summarized. At this writing, some significant progress has been made, principally in the areas of single discipline optimization. Results are given which represent accomplishments in rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, and rotor structural optimization for minimum weight.
Renteria-Marquez, I A; Renteria-Marquez, A; Tseng, B T L
2018-06-06
The operating principle of the piezoelectric traveling wave rotary ultrasonic motor is based on two energy conversion processes: the generation of the stator traveling wave and the rectification of the stator movement through the stator-rotor contact mechanism. This paper presents a methodology to model in detail the stator-rotor contact interface of these motors. A contact algorithm that couples a model of the stator which is discretized with the finite volume method and an analytical model of the rotor is presented. The outputs of the proposed model are the normal and tangential force distribution produced at the stator-rotor contact interface, contact length, height and shape of the stator traveling wave and rotor speed. The torque-speed characteristic of the USR60 is calculated with the proposed model, and the results of the model are compared versus the real torque-speed of the motor. A good agreement between the proposed model results and the torque-speed characteristic of the USR60 was observed. Copyright © 2018 Elsevier B.V. All rights reserved.
Recent advances in integrated multidisciplinary optimization of rotorcraft
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Walsh, Joanne L.; Pritchard, Jocelyn I.
1992-01-01
A joint activity involving NASA and Army researchers at NASA LaRC to develop optimization procedures to improve the rotor blade design process by integrating appropriate disciplines and accounting for all of the important interactions among the disciplines is described. The disciplines involved include rotor aerodynamics, rotor dynamics, rotor structures, airframe dynamics, and acoustics. The work is focused on combining these five key disciplines in an optimization procedure capable of designing a rotor system to satisfy multidisciplinary design requirements. Fundamental to the plan is a three-phased approach. In phase 1, the disciplines of blade dynamics, blade aerodynamics, and blade structure are closely coupled while acoustics and airframe dynamics are decoupled and are accounted for as effective constraints on the design for the first three disciplines. In phase 2, acoustics is integrated with the first three disciplines. Finally, in phase 3, airframe dynamics is integrated with the other four disciplines. Representative results from work performed to date are described. These include optimal placement of tuning masses for reduction of blade vibratory shear forces, integrated aerodynamic/dynamic optimization, and integrated aerodynamic/dynamic/structural optimization. Examples of validating procedures are described.
NASA Technical Reports Server (NTRS)
Gaonkar, G.
1987-01-01
For flap lag stability of isolated rotors, experimental and analytical investigations were conducted in hover and forward flight on the adequacy of a linear quasisteady aerodynamics theory with dynamic flow. Forward flight effects on lag regressing mode were emphasized. A soft inplane hingeless rotor with three blades was tested at advance ratios as high as 0.55 and at shaft angles as high as 20 deg. The 1.62 m model rotor was untrimmed with an essentially unrestricted tilt of the tip path plane. In combination with lag natural frequencies, collective pitch settings and flap lag coupling parameters, the data base comprises nearly 1200 test points (damping and frequency) in forward flight and 200 test points in hover. By computerized symbolic manipulation, a linear model was developed in substall to predict stability margins with mode identification. To help explain the correlation between theory and data it also predicted substall and stall regions of the rotor disk from equilibrium values. The correlation showed both the strengths and weaknesses of the theory in substall ((angle of attack) equal to or less than 12 deg).
Recent advances in multidisciplinary optimization of rotorcraft
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Walsh, Joanne L.; Pritchard, Jocelyn I.
1992-01-01
A joint activity involving NASA and Army researchers at NASA LaRC to develop optimization procedures to improve the rotor blade design process by integrating appropriate disciplines and accounting for all of the important interactions among the disciplines is described. The disciplines involved include rotor aerodynamics, rotor dynamics, rotor structures, airframe dynamics, and acoustics. The work is focused on combining these five key disciplines in an optimization procedure capable of designing a rotor system to satisfy multidisciplinary design requirements. Fundamental to the plan is a three-phased approach. In phase 1, the disciplines of blade dynamics, blade aerodynamics, and blade structure are closely coupled while acoustics and airframe dynamics are decoupled and are accounted for as effective constraints on the design for the first three disciplines. In phase 2, acoustics is integrated with the first three disciplines. Finally, in phase 3, airframe dynamics is integrated with the other four disciplines. Representative results from work performed to date are described. These include optimal placement of tuning masses for reduction of blade vibratory shear forces, integrated aerodynamic/dynamic optimization, and integrated aerodynamic/dynamic/structural optimization. Examples of validating procedures are described.
Combined passive bearing element/generator motor
Post, Richard F.
2000-01-01
An electric machine includes a cylindrical rotor made up of an array of permanent magnets that provide a N-pole magnetic field of even order (where N=4, 6, 8, etc.). This array of permanent magnets has bars of identical permanent magnets made of dipole elements where the bars are assembled in a circle. A stator inserted down the axis of the dipole field is made of two sets of windings that are electrically orthogonal to each other, where one set of windings provides stabilization of the stator and the other set of windings couples to the array of permanent magnets and acts as the windings of a generator/motor. The rotor and the stator are horizontally disposed, and the rotor is on the outside of said stator. The electric machine may also include two rings of ferromagnetic material. One of these rings would be located at each end of the rotor. Two levitator pole assemblies are attached to a support member that is external to the electric machine. These levitator pole assemblies interact attractively with the rings of ferromagnetic material to produce a levitating force upon the rotor.
Loss measurement and analysis for the prototype generator with HTS stator and permanent magnet rotor
NASA Astrophysics Data System (ADS)
Song, Peng; Qu, Timing; Yu, Xiaoyu; Li, Longnian; Gu, Chen; Li, Xiaohang; Wang, Dewen; Hu, Boping; Chen, Duxing; Han, Zhenghe
2013-11-01
A prototype HTS synchronous generator with a permanent magnet rotor and HTS armature windings was developed. The rated armature frequency is 10 Hz. The cryogenic Dewar is tightly surrounded outside the iron core. Both HTS coils and the iron core were cooled by using conduction cooling method. During the process of no-load running, the no-load loss power data were obtained through the torque measurement. The temperature evolution characteristics of the stator was measured by PT-100 temperature sensors. These results show that the no-load loss power at around 77 K are much larger than that at room temperature. The possible reason for the no-load loss increment is discussed. The ac loss power of one individual HTS coil used in this generator was also tested. Compared with the iron loss power, the ac loss power is rather small and could be neglected.
Rotor Meandering Contributes to Irregularity in Electrograms during Atrial Fibrillation
Zlochiver, Sharon; Yamazaki, Masatoshi; Kalifa, Jerome; Berenfeld, Omer
2010-01-01
Radiofrequency ablation therapy of atrial fibrillation (AF) recently incorporated the analysis of dominant frequency (DF) and/or electrogram fractionation for guidance. However, the relationships between DF, fractionation and spatio-temporal characteristics of the AF source remain unclear. We hypothesize that meandering reentrant AF source contributes to the wave fractionation and is reflected in the power spectrum of local electrograms elsewhere in the rotor’s surroundings. Methods Meandering rotors as AF sources were simulated in 2D models of human atrial tissue and recorded in isolated sheep hearts. Non-dominant elements of the signals were differentiated from the dominant elements using singular value decomposition, whereby the purely periodic constituent (PC) relating to the rotor’s DF was eliminated rendering a residual constituent (RC) that consisted of all other activity. Results Spectral analysis of the decomposed constituents revealed peaks corresponding to the meandering frequency of the rotor tip, the magnitudes of which were proportional to the size of, and the distance to the rotor core. Similar analyses on epicardial optical signals and electrograms from isolated sheep hearts, as well as human complex fractionated atrial electrograms demonstrated applicability of the approach. Conclusion Increased meandering of the rotor driving AF reduces activation periodicity and increases fractionation. The spectral manifestation of the rotor activity beyond the meandering region makes it possible to characterize AF source stability, as well as DF in humans using electrode mapping. PMID:18534369
NASA Astrophysics Data System (ADS)
Denis, Nicolas; Kato, Yoshiyuki; Ieki, Masaharu; Fujisaki, Keisuke
2016-05-01
In this paper, an interior permanent magnet synchronous motor (IPMSM) with a stator core made of amorphous magnetic material (AMM) is presented. The IPMSM is driven by a voltage source three-phase inverter with classical pulse width modulation (PWM) control. The core losses under no-load condition are measured by experiment and compared to an equivalent IPMSM with a stator core made of NO steel. Under these conditions, the core losses are influenced by the stator, rotor and magnet shapes but also by the PWM carrier signal that implies a high frequency harmonic in the magnetic flux density. It is demonstrated that the AMM can reduce the core losses by about 56 %.
A novel permanent maglev rotary LVAD with passive magnetic bearings.
Qian, K X; Yuan, H Y; Zeng, P; Ru, W M
2005-01-01
It has been widely acknowledged that permanent maglev cannot achieve stability; however, the authors have discovered that stable permanent maglev is possible under the effect of a combination of passive magnetic and nonmagnetic forces. In addition, a rotary left ventricular assist device (LVAD) with passive magnetic bearings has been developed. It is a radially driven impeller pump, having a rotor and a stator. The rotor consists of driven magnets and impeller; the motor coil and pump housing form the stator. Two passive magnetic bearings counteract the attractive force between motor coil iron core and rotor magnets; the rotor thereafter can be disaffiliated from the stator and become levitated under the action of passive magnetic and haemodynamic forces. Because of the pressure difference between the outlet and the inlet of the pump, there is a small flow passing through the gap of rotor and stator, and then entering the lower pressure area along the central hole of the rotor. This small flow comes to a full washout of all blood contacting surfaces in the motor. Moreover, a decreased Bernoulli force in the larger gap with faster flow produces a centring force that leads to stable levitation of the rotor. Resultantly, neither mechanical wear nor thrombosis will occur in the pump. The rotor position detection reveals that the precondition of levitation is a high rotating speed (over 3250 rpm) and a high flow rate (over 1 l min(-1)). Haemodynamic tests with porcine blood indicate that the device as a LVAD requires a rotating speed between 3500 and 4000 rpm for producing a blood flow of 4 - 6 l min(-1) against 100 mmHg mean pressure head. The egg-sized device has a weight of 200 g and an O.D. of 40 mm at its largest point.
Multidisciplinary Optimization of Tilt Rotor Blades Using Comprehensive Composite Modeling Technique
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; McCarthy, Thomas R.; Rajadas, John N.
1997-01-01
An optimization procedure is developed for addressing the design of composite tilt rotor blades. A comprehensive technique, based on a higher-order laminate theory, is developed for the analysis of the thick composite load-carrying sections, modeled as box beams, in the blade. The theory, which is based on a refined displacement field, is a three-dimensional model which approximates the elasticity solution so that the beam cross-sectional properties are not reduced to one-dimensional beam parameters. Both inplane and out-of-plane warping are included automatically in the formulation. The model can accurately capture the transverse shear stresses through the thickness of each wall while satisfying stress free boundary conditions on the inner and outer surfaces of the beam. The aerodynamic loads on the blade are calculated using the classical blade element momentum theory. Analytical expressions for the lift and drag are obtained based on the blade planform with corrections for the high lift capability of rotor blades. The aerodynamic analysis is coupled with the structural model to formulate the complete coupled equations of motion for aeroelastic analyses. Finally, a multidisciplinary optimization procedure is developed to improve the aerodynamic, structural and aeroelastic performance of the tilt rotor aircraft. The objective functions include the figure of merit in hover and the high speed cruise propulsive efficiency. Structural, aerodynamic and aeroelastic stability criteria are imposed as constraints on the problem. The Kreisselmeier-Steinhauser function is used to formulate the multiobjective function problem. The search direction is determined by the Broyden-Fletcher-Goldfarb-Shanno algorithm. The optimum results are compared with the baseline values and show significant improvements in the overall performance of the tilt rotor blade.
NASA Technical Reports Server (NTRS)
Guseynov, F. G.; Abbasova, E. M.
1977-01-01
The equivalent representation of brakes and coupling by lumped circuits is investigated. Analytical equations are derived for relating the indices of the transients to the parameters of the equivalent circuits for arbitrary rotor speed. A computer algorithm is given for the calculations.
A preliminary investigation of finite-element modeling for composite rotor blades
NASA Technical Reports Server (NTRS)
Lake, Renee C.; Nixon, Mark W.
1988-01-01
The results from an initial phase of an in-house study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of elastic couplings are presented. Large degree of freedom shell finite element models of an extension twist coupled composite tube were developed and analyzed using MSC/NASTRAN. An analysis employing a simplified beam finite element representation of the specimen with the equivalent engineering stiffness was additionally performed. Results from the shell finite element normal modes and frequency analysis were compared to those obtained experimentally, showing an agreement within 13 percent. There was appreciable degradation in the frequency prediction for the torsional mode, which is elastically coupled. This was due to the absence of off-diagonal coupling terms in the formulation of the equivalent engineering stiffness. Parametric studies of frequency variation due to small changes in ply orientation angle and ply thickness were also performed. Results showed linear frequency variations less than 2 percent per 1 degree variation in the ply orientation angle, and 1 percent per 0.0001 inch variation in the ply thickness.
NASA Technical Reports Server (NTRS)
Liu, Yi; Anusonti-Inthra, Phuriwat; Diskin, Boris
2011-01-01
A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft noise was developed and validated with a wide range of flight configurations and conditions. MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently model the physics of the source of rotorcraft noise, and predict the noise at far-field observer locations. It uses systematic coupling approaches among multiple disciplines including Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive noise. Predictions of the blade-vortex interaction noise in low speed flight are also improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details required for blade/wake and fuselage/wake interactions. The accuracy of the source noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so that the effects of key structural dynamics, elastic blade deformations, and trim solutions are correctly represented in the analysis. The blade loading information and/or the flow field parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to predict the acoustic signatures at far-field observer locations with a high-fidelity noise propagation code (WOPWOP3). The predicted results from the MUTE tool for rotor blade aerodynamic loading and far-field acoustic signatures are compared and validated with a variation of experimental data sets, such as UH60-A data, DNW test data and HART II test data.
Global dynamic modeling of a transmission system
NASA Technical Reports Server (NTRS)
Choy, F. K.; Qian, W.
1993-01-01
The work performed on global dynamic simulation and noise correlation of gear transmission systems at the University of Akron is outlined. The objective is to develop a comprehensive procedure to simulate the dynamics of the gear transmission system coupled with the effects of gear box vibrations. The developed numerical model is benchmarked with results from experimental tests at NASA Lewis Research Center. The modal synthesis approach is used to develop the global transient vibration analysis procedure used in the model. Modal dynamic characteristics of the rotor-gear-bearing system are calculated by the matrix transfer method while those of the gear box are evaluated by the finite element method (NASTRAN). A three-dimensional, axial-lateral coupled bearing model is used to couple the rotor vibrations with the gear box motion. The vibrations between the individual rotor systems are coupled through the nonlinear gear mesh interactions. The global equations of motion are solved in modal coordinates and the transient vibration of the system is evaluated by a variable time-stepping integration scheme. The relationship between housing vibration and resulting noise of the gear transmission system is generated by linear transfer functions using experimental data. A nonlinear relationship of the noise components to the fundamental mesh frequency is developed using the hypercoherence function. The numerically simulated vibrations and predicted noise of the gear transmission system are compared with the experimental results from the gear noise test rig at NASA Lewis Research Center. Results of the comparison indicate that the global dynamic model developed can accurately simulate the dynamics of a gear transmission system.
The nuclear quadrupole coupling constants and the structure of the para-para ammonia dimer
NASA Astrophysics Data System (ADS)
Heineking, N.; Stahl, W.; Olthof, E. H. T.; Wormer, P. E. S.; van der Avoird, A.; Havenith, M.
1995-06-01
Expressions are derived for the nuclear quadrupole splittings in the E3 and E4 (para-para) states of (NH3)2 and it is shown that these can be matched with the standard expressions for rigid rotors with two identical quadrupolar nuclei. The matching is exact only when the off-diagonal Coriolis coupling is neglected. However, the selection rules for rotational transitions are just opposite to those for the rigid rotor. Hyperfine splittings are measured for the J=2←1 transitions in the E3 and E4 states with ‖K‖=1; the quadrupole coupling constants χaa=0.1509(83) MHz and χbb-χcc=2.8365(83) MHz are extracted from these measurements by the use of the above mentioned correspondence with the rigid rotor expressions. The corresponding results are also calculated, with and without the Coriolis coupling, from the six-dimensional vibration-rotation-tunneling (VRT) wave functions of (NH3)2, which were previously obtained by Olthof et al. [E.H.T. Olthof, A. van der Avoird, and P.E.S. Wormer, J. Chem. Phys. 101, 8430 (1994)]. From the comparison of χaa with the measured value it follows that the semiempirical potential and the resulting VRT states of Olthof et al. are very accurate along the interchange (ϑA,ϑB) coordinate. From χbb-χcc it follows that this potential is probably too soft in the dihedral angle γ¯=γA-γB, which causes the torsional amplitude to be larger than derived from the experiment.
Attraction of Rotors to the Pulmonary Veins in Paroxysmal Atrial Fibrillation: A Modeling Study
Calvo, Conrado J.; Deo, Makarand; Zlochiver, Sharon; Millet, José; Berenfeld, Omer
2014-01-01
Maintenance of paroxysmal atrial fibrillation (AF) by fast rotors in the left atrium (LA) or at the pulmonary veins (PVs) is not fully understood. To gain insight into this dynamic and complex process, we studied the role of the heterogeneous distribution of transmembrane currents in the PVs and LA junction (PV-LAJ) in the localization of rotors in the PVs. We also investigated whether simple pacing protocols could be used to predict rotor drift in the PV-LAJ. Experimentally observed heterogeneities in IK1, IKs, IKr, Ito, and ICaL in the PV-LAJ were incorporated into two- and pseudo three-dimensional models of Courtemanche-Ramirez-Nattel-Kneller human atrial kinetics to simulate various conditions and investigate rotor drifting mechanisms. Spatial gradients in the currents resulted in shorter action potential duration, minimum diastolic potential that was less negative, and slower upstroke and conduction velocity for rotors in the PV region than in the LA. Rotors under such conditions drifted toward the PV and stabilized at the shortest action potential duration and less-excitable region, consistent with drift direction under intercellular coupling heterogeneities and regardless of the geometrical constraint in the PVs. Simulations with various IK1 gradient conditions and current-voltage relationships substantiated its major role in the rotor drift. In our 1:1 pacing protocol, we found that among various action potential properties, only the minimum diastolic potential gradient was a rate-independent predictor of rotor drift direction. Consistent with experimental and clinical AF studies, simulations in an electrophysiologically heterogeneous model of the PV-LAJ showed rotor attraction toward the PV. Our simulations suggest that IK1 heterogeneity is dominant compared to other currents in determining the drift direction through its impact on the excitability gradient. These results provide a believed novel framework for understanding the complex dynamics of rotors in AF. PMID:24739180
Attraction of rotors to the pulmonary veins in paroxysmal atrial fibrillation: a modeling study.
Calvo, Conrado J; Deo, Makarand; Zlochiver, Sharon; Millet, José; Berenfeld, Omer
2014-04-15
Maintenance of paroxysmal atrial fibrillation (AF) by fast rotors in the left atrium (LA) or at the pulmonary veins (PVs) is not fully understood. To gain insight into this dynamic and complex process, we studied the role of the heterogeneous distribution of transmembrane currents in the PVs and LA junction (PV-LAJ) in the localization of rotors in the PVs. We also investigated whether simple pacing protocols could be used to predict rotor drift in the PV-LAJ. Experimentally observed heterogeneities in IK1, IKs, IKr, Ito, and ICaL in the PV-LAJ were incorporated into two- and pseudo three-dimensional models of Courtemanche-Ramirez-Nattel-Kneller human atrial kinetics to simulate various conditions and investigate rotor drifting mechanisms. Spatial gradients in the currents resulted in shorter action potential duration, minimum diastolic potential that was less negative, and slower upstroke and conduction velocity for rotors in the PV region than in the LA. Rotors under such conditions drifted toward the PV and stabilized at the shortest action potential duration and less-excitable region, consistent with drift direction under intercellular coupling heterogeneities and regardless of the geometrical constraint in the PVs. Simulations with various IK1 gradient conditions and current-voltage relationships substantiated its major role in the rotor drift. In our 1:1 pacing protocol, we found that among various action potential properties, only the minimum diastolic potential gradient was a rate-independent predictor of rotor drift direction. Consistent with experimental and clinical AF studies, simulations in an electrophysiologically heterogeneous model of the PV-LAJ showed rotor attraction toward the PV. Our simulations suggest that IK1 heterogeneity is dominant compared to other currents in determining the drift direction through its impact on the excitability gradient. These results provide a believed novel framework for understanding the complex dynamics of rotors in AF. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Development of an active twist rotor blade with distributed actuation and orthotropic material
NASA Astrophysics Data System (ADS)
Wierach, Peter; Riemenschneider, Johannes; Keye, Stefan
2005-05-01
Individual blade control (IBC) as well as higher harmonic control (HHC) for helicopter rotors promises to be a method to increase flight performance and to reduce vibration and noise. For those controls, an additional twist actuation of the rotor blade is needed. The developed concept comprises the implementation of distributed piezoelectric actuation into the rotor blade skin. In order to maximize the twist within given constraints, as torsional rigidity and given actuator design, the concept takes advantage of an orthotropic rotor blade skin. That way, a combination of shear actuation with orthotropic coupling generates more twist than each one of these effects alone. Previous approaches with distributed actuation used actuators operating in +/-45° direction with quasi-isotropic composites. A FE-Model of the blade was developed and validated using a simplified demonstrator. The objective of this study was to identify the effects of various geometric and material parameters to optimize the active twist performance of the blades. The whole development was embedded in an iterative process followed by an objective assessment. For this purpose a detailed structural model on the basis of the BO105 model rotor blade was developed, to predict the performance with respect to rotor dynamics, stability, aerodynamics and acoustics. Rotor dynamic simulations provided an initial overview of the active twist rotor performance. In comparison to the BO105 baseline rotor a noise reduction of 3 dB was predicted for an active twist of 0.8° at the blade tip. Additionally, a power reduction of 2.3% at 87m/s based on a 2.5 to BO105 was computed. A demonstrator blade with a rotor radius of 2m has been designed and manufactured. This blade will be tested to prove, that the calculated maximum twist can also be achieved under centrifugal loads.
Interaction Dynamics Between a Flexible Rotor and an Auxiliary Clearance Bearing
NASA Technical Reports Server (NTRS)
Lawen, James L., Jr.; Flowers, George T.
1996-01-01
This study investigates the application of synchronous interaction dynamics methodology to the design of auxiliary bearing systems. The technique is applied to a flexible rotor system and comparisons are made between the behavior predicted by this analysis method and the observed simulation response characteristics. Of particular interest is the influence of coupled shaft/bearing vibration modes on rotordynamical behavior. Experimental studies are also perFormed to validate the simulation results and provide insight into the expected behavior of such a system.
2010-05-01
connections near the hub end, and containing up to 0.48 million degrees of freedom. The models are analyzed for scala - bility and timing for hover and...Parallel and Scalable Rotor Dynamic Analysis 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...will enable the modeling of critical couplings that occur in hingeless and bearingless hubs with advanced flex structures. Second , it will enable the
A rotor optimization using regression analysis
NASA Technical Reports Server (NTRS)
Giansante, N.
1984-01-01
The design and development of helicopter rotors is subject to the many design variables and their interactions that effect rotor operation. Until recently, selection of rotor design variables to achieve specified rotor operational qualities has been a costly, time consuming, repetitive task. For the past several years, Kaman Aerospace Corporation has successfully applied multiple linear regression analysis, coupled with optimization and sensitivity procedures, in the analytical design of rotor systems. It is concluded that approximating equations can be developed rapidly for a multiplicity of objective and constraint functions and optimizations can be performed in a rapid and cost effective manner; the number and/or range of design variables can be increased by expanding the data base and developing approximating functions to reflect the expanded design space; the order of the approximating equations can be expanded easily to improve correlation between analyzer results and the approximating equations; gradients of the approximating equations can be calculated easily and these gradients are smooth functions reducing the risk of numerical problems in the optimization; the use of approximating functions allows the problem to be started easily and rapidly from various initial designs to enhance the probability of finding a global optimum; and the approximating equations are independent of the analysis or optimization codes used.
NASA Astrophysics Data System (ADS)
Charpentier, J. F.; Lemarquand, G.
1998-06-01
Radial instability of synchronous motors is important data to design magnetic bearings. Moreover, original motor structures must be proposed to decrease the instability. In this article, four structures with a permanent magnet rotor, six poles, and the same main mechanical dimensions are analyzed and compared. The first concerns a rotor with six tiles of permanent magnets radially magnetized and adhered to an iron core. The second is a rotor with six axial permanent magnets tangentially magnetized and separated by iron pole pieces, where the shaft is amagnetic. The third design proposes a rotor with six contiguous tiles of permanent magnets tangentially magnetized and an amagnetic shaft. In the fourth structure each north pole is made up of two contiguous tiles of permanent magnets tangentially magnetized in opposite direction and each south pole is made up of an iron pole piece. The shaft of this structure is amagnetic. The stator structure and the currents in stator windings produce a six poles flux distribution. A finite element method program is employed to study the forces and the torques. The four structures are designed to provide the same motor performance (torque). The radial instability is modeled by outcentering the rotor. The relationships between the radial force and the type of structure are analyzed. The result is that the third structure is the best solution for fully magnetically levitated rotors. It has a small instability and does not generate any disturbing force whose frequency is the double of the rotation frequency. This structure also has good properties to be used as a radial magnetic bearing.
Platts, David A.
2002-01-01
There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.
Unsteady flow simulations around complex geometries using stationary or rotating unstructured grids
NASA Astrophysics Data System (ADS)
Sezer-Uzol, Nilay
In this research, the computational analysis of three-dimensional, unsteady, separated, vortical flows around complex geometries is studied by using stationary or moving unstructured grids. Two main engineering problems are investigated. The first problem is the unsteady simulation of a ship airwake, where helicopter operations become even more challenging, by using stationary unstructured grids. The second problem is the unsteady simulation of wind turbine rotor flow fields by using moving unstructured grids which are rotating with the whole three-dimensional rigid rotor geometry. The three dimensional, unsteady, parallel, unstructured, finite volume flow solver, PUMA2, is used for the computational fluid dynamics (CFD) simulations considered in this research. The code is modified to have a moving grid capability to perform three-dimensional, time-dependent rotor simulations. An instantaneous log-law wall model for Large Eddy Simulations is also implemented in PUMA2 to investigate the very large Reynolds number flow fields of rotating blades. To verify the code modifications, several sample test cases are also considered. In addition, interdisciplinary studies, which are aiming to provide new tools and insights to the aerospace and wind energy scientific communities, are done during this research by focusing on the coupling of ship airwake CFD simulations with the helicopter flight dynamics and control analysis, the coupling of wind turbine rotor CFD simulations with the aeroacoustic analysis, and the analysis of these time-dependent and large-scale CFD simulations with the help of a computational monitoring, steering and visualization tool, POSSE.
General phase spaces: from discrete variables to rotor and continuum limits
NASA Astrophysics Data System (ADS)
Albert, Victor V.; Pascazio, Saverio; Devoret, Michel H.
2017-12-01
We provide a basic introduction to discrete-variable, rotor, and continuous-variable quantum phase spaces, explaining how the latter two can be understood as limiting cases of the first. We extend the limit-taking procedures used to travel between phase spaces to a general class of Hamiltonians (including many local stabilizer codes) and provide six examples: the Harper equation, the Baxter parafermionic spin chain, the Rabi model, the Kitaev toric code, the Haah cubic code (which we generalize to qudits), and the Kitaev honeycomb model. We obtain continuous-variable generalizations of all models, some of which are novel. The Baxter model is mapped to a chain of coupled oscillators and the Rabi model to the optomechanical radiation pressure Hamiltonian. The procedures also yield rotor versions of all models, five of which are novel many-body extensions of the almost Mathieu equation. The toric and cubic codes are mapped to lattice models of rotors, with the toric code case related to U(1) lattice gauge theory.
Analysis and Design of Rotors at Ultra-Low Reynolds Numbers
NASA Technical Reports Server (NTRS)
Kunz, Peter J.; Strawn, Roger C.
2003-01-01
Design tools have been developed for ultra-low Reynolds number rotors, combining enhanced actuator-ring / blade-element theory with airfoil section data based on two-dimensional Navier-Stokes calculations. This performance prediction method is coupled with an optimizer for both design and analysis applications. Performance predictions from these tools have been compared with three-dimensional Navier Stokes analyses and experimental data for a 2.5 cm diameter rotor with chord Reynolds numbers below 10,000. Comparisons among the analyses and experimental data show reasonable agreement both in the global thrust and power required, but the spanwise distributions of these quantities exhibit significant deviations. The study also reveals that three-dimensional and rotational effects significantly change local airfoil section performance. The magnitude of this issue, unique to this operating regime, may limit the applicability of blade-element type methods for detailed rotor design at ultra-low Reynolds numbers, but these methods are still useful for evaluating concept feasibility and rapidly generating initial designs for further analysis and optimization using more advanced tools.
Steady-state and transient analysis of a squeeze film damper bearing for rotor stability
NASA Technical Reports Server (NTRS)
Barrett, L. E.; Gunter, E. J.
1975-01-01
A study of the steady-state and transient response of the squeeze film damper bearing is presented. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived. The bearing equivalent stiffness and damping coefficients are determined by steady-state equations. These coefficients are used to find the bearing configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The transient analysis of rotor-bearing systems is performed by coupling the bearing and journal equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included in the analysis. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed with emphasis on solving the system characteristic frequency equation and on producing stability maps. It is shown that for optimum stability and low force transmissability the squeeze bearing should operate at an eccentricity ratio epsilon 0.4.
NASA Technical Reports Server (NTRS)
Pfeil, W. H.; De Los Reyes, G.; Bobula, G. A.
1985-01-01
A power turbine governor was designed for a recent-technology turboshaft engine coupled to a modern, articulated rotor system using Linear Quadratic Regulator (LQR) and Kalman Filter (KF) techniques. A linear, state-space model of the engine and rotor system was derived for six engine power settings from flight idle to maximum continuous. An integrator was appended to the fuel flow input to reduce the steady-state governor error to zero. Feedback gains were calculated for the system states at each power setting using the LQR technique. The main rotor tip speed state is not measurable, so a Kalman Filter of the rotor was used to estimate this state. The crossover of the system was increased to 10 rad/s compared to 2 rad/sec for a current governor. Initial computer simulations with a nonlinear engine model indicate a significant decrease in power turbine speed variation with the LQR governor compared to a conventional governor.
Power turbine ventilation system
NASA Technical Reports Server (NTRS)
Wakeman, Thomas G. (Inventor); Brown, Richard W. (Inventor)
1991-01-01
Air control mechanism within a power turbine section of a gas turbine engine. The power turbine section includes a rotor and at least one variable pitch propulsor blade. The propulsor blade is coupled to and extends radially outwardly of the rotor. A first annular fairing is rotatable with the propulsor blade and interposed between the propulsor blade and the rotor. A second fairing is located longitudinally adjacent to the first fairing. The first fairing and the second fairing are differentially rotatable. The air control mechanism includes a platform fixedly coupled to a radially inner end of the propulsor blade. The platform is generally positioned in a first opening and a first fairing. The platform and the first fairing define an outer space. In a first position corresponding with a first propulsor blade pitch, the platform is substantially conformal with the first fairing. In a second position corresponding with the second propulsor blade pitch, an edge portion of the platform is displaced radially outwardly from the first fairing. When the blades are in the second position and rotating about the engine axis, the displacement of the edge portion with respect to the first fairing allows air to flow from the outer space to the annular cavity.
Optimum Design of High-Speed Prop-Rotors
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; McCarthy, Thomas Robert
1993-01-01
An integrated multidisciplinary optimization procedure is developed for application to rotary wing aircraft design. The necessary disciplines such as dynamics, aerodynamics, aeroelasticity, and structures are coupled within a closed-loop optimization process. The procedure developed is applied to address two different problems. The first problem considers the optimization of a helicopter rotor blade and the second problem addresses the optimum design of a high-speed tilting proprotor. In the helicopter blade problem, the objective is to reduce the critical vibratory shear forces and moments at the blade root, without degrading rotor aerodynamic performance and aeroelastic stability. In the case of the high-speed proprotor, the goal is to maximize the propulsive efficiency in high-speed cruise without deteriorating the aeroelastic stability in cruise and the aerodynamic performance in hover. The problems studied involve multiple design objectives; therefore, the optimization problems are formulated using multiobjective design procedures. A comprehensive helicopter analysis code is used for the rotary wing aerodynamic, dynamic and aeroelastic stability analyses and an algorithm developed specifically for these purposes is used for the structural analysis. A nonlinear programming technique coupled with an approximate analysis procedure is used to perform the optimization. The optimum blade designs obtained in each case are compared to corresponding reference designs.
Resolution enhancement using a new multiple-pulse decoupling sequence for quadrupolar nuclei.
Delevoye, L; Trébosc, J; Gan, Z; Montagne, L; Amoureux, J-P
2007-05-01
A new decoupling composite pulse sequence is proposed to remove the broadening on spin S=1/2 magic-angle spinning (MAS) spectra arising from the scalar coupling with a quadrupolar nucleus I. It is illustrated on the (31)P spectrum of an aluminophosphate, AlPO(4)-14, which is broadened by the presence of (27)Al/(31)P scalar couplings. The multiple-pulse (MP) sequence has the advantage over the continuous wave (CW) irradiation to efficiently annul the scalar dephasing without reintroducing the dipolar interaction. The MP decoupling sequence is first described in a rotor-synchronised version (RS-MP) where one parameter only needs to be adjusted. It clearly avoids the dipolar recoupling in order to achieve a better resolution than using the CW sequence. In a second improved version, the MP sequence is experimentally studied in the vicinity of the perfect rotor-synchronised conditions. The linewidth at half maximum (FWHM) of 65 Hz using (27)Al CW decoupling decreases to 48 Hz with RS-MP decoupling and to 30 Hz with rotor-asynchronised MP (RA-MP) decoupling. The main phenomena are explained using both experimental results and numerical simulations.
COMETBOARDS Can Optimize the Performance of a Wave-Rotor-Topped Gas Turbine Engine
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.
1997-01-01
A wave rotor, which acts as a high-technology topping spool in gas turbine engines, can increase the effective pressure ratio as well as the turbine inlet temperature in such engines. The wave rotor topping, in other words, may significantly enhance engine performance by increasing shaft horse power while reducing specific fuel consumption. This performance enhancement requires optimum selection of the wave rotor's adjustable parameters for speed, surge margin, and temperature constraints specified on different engine components. To examine the benefit of the wave rotor concept in engine design, researchers soft coupled NASA Lewis Research Center's multidisciplinary optimization tool COMETBOARDS and the NASA Engine Performance Program (NEPP) analyzer. The COMETBOARDS-NEPP combined design tool has been successfully used to optimize wave-rotor-topped engines. For illustration, the design of a subsonic gas turbine wave-rotor-enhanced engine with four ports for 47 mission points (which are specified by Mach number, altitude, and power-setting combinations) is considered. The engine performance analysis, constraints, and objective formulations were carried out through NEPP, and COMETBOARDS was used for the design optimization. So that the benefits that accrue from wave rotor enhancement could be examined, most baseline variables and constraints were declared to be passive, whereas important parameters directly associated with the wave rotor were considered to be active for the design optimization. The engine thrust was considered as the merit function. The wave rotor engine design, which became a sequence of 47 optimization subproblems, was solved successfully by using a cascade strategy available in COMETBOARDS. The graph depicts the optimum COMETBOARDS solutions for the 47 mission points, which were normalized with respect to standard results. As shown, the combined tool produced higher thrust for all mission points than did the other solution, with maximum benefits around mission points 11, 25, and 31. Such improvements can become critical, especially when engines are sized for these specific mission points.
Interaction of a Vortex with Axial Flow and a Cylindrical Surface
NASA Astrophysics Data System (ADS)
Radcliff, T. D.; Burgraff, O. R.; Conlisk, A. T.
1998-11-01
The direct collision of a vortex with a surface is an important problem because significant impulsive loads may be generated leading to premature fatigue. Experimental results for the impingement of a tip-vortex on a cylindrical airframe indicate that a suction peak forms on the top of the airframe which is subsequently reduced within milliseconds of vortex-surface contact. A simple line-vortex model can predict the experimental results until the vortex is within a vortex-core radius of the airframe. After this the model predicts continually deepening rather than lessening suction. Study of the experimental results suggests that axial flow within the core of a tip-vortex has an impact on the airframe pressure distribution upon close approach. The mechanism for this is hypothesized to be the inviscid redistribution of the vorticity field within the vortex coupled with deformation of the vortex core. Two models of a tip-vortex with axial flow are considered. First a classical line vortex with a cut-off parameter is superimposed with suitably placed vortex rings. This model simulates the helically wound vortex shed by the rotor tip. Inclusion of axial flow is found to prevent thinning of the vortex core as the vortex stretches around the cylindrical surface during the collision process. With less thinning, vorticity is observed to overlap the solid cylinder, highlighting the fact that the vortex core must deform from its original cylindrical shape. A second model is developed in which axial and azimuthal vorticity are uniformly distributed throughout a rectangular-section vortex. Area and aspect ratio of this vortex can be varied independently to simulate deformation of the vortex core. Both vorticity redistribution and core deformation are shown to be important to properly calculate the local induced pressure loads. The computational results are compared with the results of experiments conducted at the Georgia Institute of Technology.
The effect of solidity on the performance of H-rotor Darrieus turbine
NASA Astrophysics Data System (ADS)
Hassan, S. M. Rakibul; Ali, Mohammad; Islam, Md. Quamrul
2016-07-01
Utilization of wind energy has been investigated for a long period of time by different researchers in different ways. Out of which, the Horizontal Axis Wind Turbine and the Vertical Axis Wind Turbine have now advanced design, but still there is scope to improve their efficiency. The Vertical Axis Wind Turbine (VAWT) has the advantage over Horizontal Axis Wind Turbine (HAWT) for working on omnidirectional air flow without any extra control system. A modified H-rotor Darrieus type VAWT is analysed in this paper, which is a lift based wind turbine. The effect of solidity (i.e. chord length, no. of blades) on power coefficient (CP) of H-rotor for different tip speed ratios is numerically investigated. The study is conducted using time dependent RANS equations using SST k-ω model. SIMPLE scheme is used as pressure-velocity coupling and in all cases, the second order upwind discretization scheme is chosen for getting more accurate solution. In results, different parameters are compared, which depict the performance of the modified H-rotor Darrieus type VAWT. Double layered H-rotor having inner layer blades with longer chord gives higher power coefficient than those have inner layer blades with smaller chord.
Integrated aerodynamic/dynamic optimization of helicopter rotor blades
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Walsh, Joanne L.; Riley, Michael F.
1989-01-01
An integrated aerodynamic/dynamic optimization procedure is used to minimize blade weight and 4 per rev vertical hub shear for a rotor blade in forward flight. The coupling of aerodynamics and dynamics is accomplished through the inclusion of airloads which vary with the design variables during the optimization process. Both single and multiple objective functions are used in the optimization formulation. The Global Criteria Approach is used to formulate the multiple objective optimization and results are compared with those obtained by using single objective function formulations. Constraints are imposed on natural frequencies, autorotational inertia, and centrifugal stress. The program CAMRAD is used for the blade aerodynamic and dynamic analyses, and the program CONMIN is used for the optimization. Since the spanwise and the azimuthal variations of loading are responsible for most rotor vibration and noise, the vertical airload distributions on the blade, before and after optimization, are compared. The total power required by the rotor to produce the same amount of thrust for a given area is also calculated before and after optimization. Results indicate that integrated optimization can significantly reduce the blade weight, the hub shear and the amplitude of the vertical airload distributions on the blade and the total power required by the rotor.
Characterization of Aeromechanics Response and Instability in Fans, Compressors, and Turbine Blades
NASA Technical Reports Server (NTRS)
Tan, Choon S.
2003-01-01
This study investigated the effect of interaction between tip clearance flow, steady and unsteady upstream wakes in rotor and stator blade rows in terms of blade forced response. In a stator blade row, the interaction of steady wakes in the upstream rotor frame with the stator imply a blade forced response whose spectrum contains the Blade passing frequency (BPF) and its harmonics, with a decaying amplitude as the frequency increases. When the incoming wakes are unsteady, however, the spectrum of blade excitation exhibits unexpectedly amplified high frequencies due to the modulation of BPF with the fluctuation frequency. In a rotor blade row, a tip flow instability has been demonstrated with a frequency (TVF) equal to 0.45 times the Blade Passing frequency corresponding to a reduced frequency (F(sub c) (sup +)) of 0.7. Under uniform inlet flow conditions, the frequency and spatial content of the tip flow region have been characterized. The disturbance TVF was the dominant disturbance in the flow field and was found to imply variations of the pressure coefficient of more than 30% on the blade tip (between 35% to 90% chord) and in the rotor-generated wake (from 75% to 100% hub-to-tip position). In an attempt to better understand the origin of the instability, the structure of the tip flow has also been analyzed. The interface between the tip flow region and the core flow has been found to have periodical wave-like flow patterns which proceed downstream at a speed of approximately 0.42 times the core flow speed at a frequency corresponding to TVF. A list of conclusions derived from these interactions is presented.
Measurements on the Magdalen Islands VAWT and future projects
NASA Astrophysics Data System (ADS)
Gallagher, N. C.; Rangi, R. S.
The rotor of a 224 kW vertical axis wind turbine (VAWT) is discussed. The rebuilt rotor of the 224 kW Magdalen Islands VAWT was installed in Sept. 1979 and is operating at its design speed (36.6 rpm). Agreement between measured and theoretical performance is generally good except that maximum power may exceed theoretical predictions. Measurements of drive train losses, torque and power ripple, and rotor stresses are discussed. Although peak-to-peak cyclic stress levels are low in relation to fatigue life limits, spectral analysis of stress data indicates that the 3-per-rev component is amplified by near-resonance with the first butterfly blade mode. This resonance was subsequently de-coupled by a damped connection between the blade struts and the central column.
CFD simulation of a 2 bladed multi megawatt wind turbine with flexible rotor connection
NASA Astrophysics Data System (ADS)
Klein, L.; Luhmann, B.; Rösch, K.-N.; Lutz, T.; Cheng, P.-W.; Krämer, E.
2016-09-01
An innovative passive load reduction concept for a two bladed 3.4 MW wind turbine is investigated by a conjoint CFD and MBS - BEM methodology. The concept consists of a flexible hub mount which allows a tumbling motion of the rotor. First, the system is simulated with a MBS tool coupled to a BEM code. Then, the resulting motion of the rotor is extracted from the simulation and applied on the CFD simulation as prescribed motion. The aerodynamic results show a significant load reduction on the support structure. Hub pitching and yawing moment amplitudes are reduced by more than 50% in a vertically sheared inflow. Furthermore, the suitability of the MBS - BEM approach for the simulation of the load reduction system is shown.
Aeromechanics and Aeroacoustics Predictions of the Boeing-SMART Rotor Using Coupled-CFD/CSD Analyses
NASA Technical Reports Server (NTRS)
Bain, Jeremy; Sim, Ben W.; Sankar, Lakshmi; Brentner, Ken
2010-01-01
This paper will highlight helicopter aeromechanics and aeroacoustics prediction capabilities developed by Georgia Institute of Technology, the Pennsylvania State University, and Northern Arizona University under the Helicopter Quieting Program (HQP) sponsored by the Tactical Technology Office of the Defense Advanced Research Projects Agency (DARPA). First initiated in 2004, the goal of the HQP was to develop high fidelity, state-of-the-art computational tools for designing advanced helicopter rotors with reduced acoustic perceptibility and enhanced performance. A critical step towards achieving this objective is the development of rotorcraft prediction codes capable of assessing a wide range of helicopter configurations and operations for future rotorcraft designs. This includes novel next-generation rotor systems that incorporate innovative passive and/or active elements to meet future challenging military performance and survivability goals.
Fundamental study of flow field generated by rotorcraft blades using wide-field shadowgraph
NASA Technical Reports Server (NTRS)
Parthasarathy, S. P.; Cho, Y. I.; Back, L. H.
1985-01-01
The vortex trajectory and vortex wake generated by helicopter rotors are visualized using a wide-field shadowgraph technique. Use of a retro-reflective Scotchlite screen makes it possible to investigate the flow field generated by full-scale rotors. Tip vortex trajectories are visible in shadowgraphs for a range of tip Mach number of 0.38 to 0.60. The effect of the angle of attack is substantial. At an angle of attack greater than 8 degrees, the visibility of the vortex core is significant even at relatively low tip Mach numbers. The theoretical analysis of the sensitivity is carried out for a rotating blade. This analysis demonstrates that the sensitivity decreases with increasing dimensionless core radius and increases with increasing tip Mach number. The threshold value of the sensitivity is found to be 0.0015, below which the vortex core is not visible and above which it is visible. The effect of the optical path length is also discussed. Based on this investigation, it is concluded that the application of this wide-field shadowgraph technique to a large wind tunnel test should be feasible. In addition, two simultaneous shadowgraph views would allow three-dimensional reconstruction of vortex trajectories.
Aeromechanics of a High Speed Coaxial Helicopter Rotor
NASA Astrophysics Data System (ADS)
Schmaus, Joseph Henry
The current work seeks to understand the aeromechanics of lift offset coaxial rotors in high speeds. Future rotorcraft will need to travel significantly faster that modern rotorcraft do while maintaining hovering efficiency and low speed maneuverability. The lift offset coaxial rotor has been shown to have those capabilities. A majority of existing coaxial research is focused on hovering performance, and few studies examine the forward flight performance of a coaxial rotor with lift offset. There are even fewer studies of a single rotor with lift offset. The current study used comprehensive analysis and a new set of wind tunnel experiments to explore the aeromechanics of a lift offset coaxial rotor in high speed forward flight. The simulation was expanded from UMARC to simultaneously solve multiple rotors with coupled aerodynamics. It also had several modifications to improve the aerodynamics of the near-wake model in reverse flow and improve the modeling of blade passages. Existing coaxial hovering tests and flight test data from the XH-59A were used to validate the steady performance and blade loads of the comprehensive analysis. It was used to design the structural layout of the blades used in the wind tunnel experiment as well as the test envelope and testing procedure. The wind tunnel test of a model rotor developed by the University of Texas at Austin and the University of Maryland was performed in the Glenn L Martin Wind Tunnel. The test envelope included advance ratios 0.21-0.53, collectives 4°- 8°, and lift offsets 0%-20% for both rotors tested in isolation and as a coaxial system operating at 900 RPM. Rotating frame hub loads, pushrod loads, and pitch angle were recorded independently for each rotor. Additional studies were performed at 1200 RPM to isolate Reynold effects and with varying rotor-to-rotor phase to help quantify aerodynamic interactions. Lift offset fundamentally changes the lift distribution around the rotor disk, doing so increases the maximum thrust of the rotor at a given speed while at the same time increasing the rotor efficiency. The cost of lift offset is increased blade loads. While this can be seen in the experimental data, it was taken at constant collective and as lift offset increased so did the thrust. The simulation is used to provide performance and loads sweeps at constant thrust to help provide a more basic understanding of how the rotor performance is changing. Additionally, rotor thrust and drag distributions provide a physical insight on how the distribution of lift changes cause the resulting trends that have been observed. Coaxial rotors have been shown to have significant rotor-to-rotor interactions in hover, but the magnitude of those interactions at high speed are studied here in detail. Generally, the aerodynamic interactions decrease significantly with increasing speed, and finally the lower rotor wake convects off the upper rotor. A comparison between the single rotor and coaxial rotor performance shows a newly observed trend of thrust inversion, where the more efficient rotor changes from the top in hover to the bottom in forward flight. The vibratory loads show limited evident of direct coaxial interference, although it is shown that the relative phase of the two rotors significantly alters the resultant total loads.
A novel potential/viscous flow coupling technique for computing helicopter flow fields
NASA Technical Reports Server (NTRS)
Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul
1993-01-01
The primary objective of this work was to demonstrate the feasibility of a new potential/viscous flow coupling procedure for reducing computational effort while maintaining solution accuracy. This closed-loop, overlapped velocity-coupling concept has been developed in a new two-dimensional code, ZAP2D (Zonal Aerodynamics Program - 2D), a three-dimensional code for wing analysis, ZAP3D (Zonal Aerodynamics Program - 3D), and a three-dimensional code for isolated helicopter rotors in hover, ZAPR3D (Zonal Aerodynamics Program for Rotors - 3D). Comparisons with large domain ARC3D solutions and with experimental data for a NACA 0012 airfoil have shown that the required domain size can be reduced to a few tenths of a percent chord for the low Mach and low angle of attack cases and to less than 2-5 chords for the high Mach and high angle of attack cases while maintaining solution accuracies to within a few percent. This represents CPU time reductions by a factor of 2-4 compared with ARC2D. The current ZAP3D calculation for a rectangular plan-form wing of aspect ratio 5 with an outer domain radius of about 1.2 chords represents a speed-up in CPU time over the ARC3D large domain calculation by about a factor of 2.5 while maintaining solution accuracies to within a few percent. A ZAPR3D simulation for a two-bladed rotor in hover with a reduced grid domain of about two chord lengths was able to capture the wake effects and compared accurately with the experimental pressure data. Further development is required in order to substantiate the promise of computational improvements due to the ZAPR3D coupling concept.
An approximate closed-form solution for lead lag damping of rotor blades in hover
NASA Technical Reports Server (NTRS)
Peters, D. A.
1975-01-01
Simple stability methods are used to derive an approximate, closed-form expression for the lead-lag damping of rotor blades in hover. Destabilizing terms are shown to be a result of two dynamic mechanisms. First, the destabilizing aerodynamic forces that can occur when blade lift is higher than a critical value are maximized when the blade motion is in a straight line equidistant from the blade chord and the average direction of the air flow velocity. This condition occurs when the Coriolis terms vanish and when the elastic coupling terms align the blade motion with this least stable direction. Second, the nonconservative stiffness terms that result from pitch-flap or pitch-lag coupling can add or subtract energy from the system depending upon whether the motion of the blade tip is clockwise or counterclockwise.
NASA Astrophysics Data System (ADS)
Bridel-Bertomeu, Thibault; Gicquel, L. Y. M.; Staffelbach, G.
2017-06-01
Rotating cavity flows are essential components of industrial applications but their dynamics are still not fully understood when it comes to the relation between the fluid organization and monitored pressure fluctuations. From computer hard-drives to turbo-pumps of space launchers, designed devices often produce flow oscillations that can either destroy the component prematurely or produce too much noise. In such a context, large scale dynamics of high Reynolds number rotor/stator cavities need better understanding especially at the flow limit-cycle or associated statistically stationary state. In particular, the influence of curvature as well as cavity aspect ratio on the large scale organization and flow stability at a fixed rotating disc Reynolds number is fundamental. To probe such flows, wall-resolved large eddy simulation is applied to two different rotor/stator cylindrical cavities and one annular cavity. Validation of the predictions proves the method to be suited and to capture the disc boundary layer patterns reported in the literature. It is then shown that in complement to these disc boundary layer analyses, at the limit-cycle the rotating flows exhibit characteristic patterns at mid-height in the homogeneous core pointing the importance of large scale features. Indeed, dynamic modal decomposition reveals that the entire flow dynamics are driven by only a handful of atomic modes whose combination links the oscillatory patterns observed in the boundary layers as well as in the core of the cavity. These fluctuations form macro-structures, born in the unstable stator boundary layer and extending through the homogeneous inviscid core to the rotating disc boundary layer, causing its instability under some conditions. More importantly, the macro-structures significantly differ depending on the configuration pointing the need for deeper understanding of the influence of geometrical parameters as well as operating conditions.
NASA Astrophysics Data System (ADS)
Wilkie, William Keats
1997-12-01
An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications. The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority. Determining the optimum tradeoff between blade torsional stiffness and piezoelectric twist actuation authority is the subject of the third study. For this investigation, a linearized hovering-flight eigenvalue analysis is developed. Linear optimal control theory is then utilized to develop an optimum active twist blade design in terms of reducing structural energy and control effort cost. The forward flight vibratory loads characteristics of the torsional stiffness optimized active twist blade are then examined using the nonlinear, forward flight aeroelastic analysis. The optimized active twist rotor blade is shown to have improved passive and active vibratory loads characteristics relative to the baseline active twist blades.
PIV and LDA measurements of the wake behind a wind turbine model
NASA Astrophysics Data System (ADS)
Naumov, I. V.; Mikkelsen, R. F.; Okulov, V. L.; Sørensen, J. N.
2014-06-01
In the present work we review the results of a series of measurements of the flow behind a model scale of a horizontal axis wind turbine rotor carried out at the water flume at Technical University of Denmark (DTU). The rotor is three-bladed and designed using Glauert theory for tip speed ratio λ =5 with a constant design lift coefficient along the span, CLdesign= 0.8. The measurements include dye visualization, Particle Image Velocimetry and Laser Doppler Anemometry. The wake instability has been studied in the range λ =3 - 9 at different cross-sections from the very near wake up to 10 rotor diameters downstream from the rotor. The initial flume flow was subject to a very low turbulence level with a uniform velocity profile, limiting the influence of external disturbances on the development of the inherent vortex instability. Using PIV measurements and visualizations, special attention was paid to detect and categorize different types of wake instabilities and the development of the flow in the near and the far wake. In parallel to PIV, LDA measurements provided data for various rotor regimes, revealing the existence of three main regular frequencies governing the development of different processes and instabilities in the rotor wake. In the far wake a constant frequency corresponding to the Strouhal number was found for the long-scale instabilities. This Strouhal number is in good agreement with the well-known constant that usually characterizes the oscillation in wakes behind bluff bodies. From associated visualizations and reconstructions of the flow field, it was found that the dynamics of the far wake is associated with the precession (rotation) of a helical vortex core. The data indicate that Strouhal number of this precession is independent of the rotor angular speed.
Use of blade pitch control to provide power train damping for the Mod-2, 2.5-mW wind turbine
NASA Technical Reports Server (NTRS)
Blissell, W. A., Jr.
1995-01-01
The Control System for the Mod-2 wind turbine system is required to provide not only for startup, RPM regulation, maximizing or regulating power, and stopping the rotor, but also for load limiting, especially in the power train. Early operations with above-rated winds revealed an instability which was caused primarily by coupling between the quill shaft and the rotor air loads. This instability caused the first of several major Mod-2 Control System changes which are reviewed in the paper.
A finite element-based algorithm for rubbing induced vibration prediction in rotors
NASA Astrophysics Data System (ADS)
Behzad, Mehdi; Alvandi, Mehdi; Mba, David; Jamali, Jalil
2013-10-01
In this paper, an algorithm is developed for more realistic investigation of rotor-to-stator rubbing vibration, based on finite element theory with unilateral contact and friction conditions. To model the rotor, cross sections are assumed to be radially rigid. A finite element discretization based on traditional beam theories which sufficiently accounts for axial and transversal flexibility of the rotor is used. A general finite element discretization model considering inertial and viscoelastic characteristics of the stator is used for modeling the stator. Therefore, for contact analysis, only the boundary of the stator is discretized. The contact problem is defined as the contact between the circular rigid cross section of the rotor and “nodes” of the stator only. Next, Gap function and contact conditions are described for the contact problem. Two finite element models of the rotor and the stator are coupled via the Lagrange multipliers method in order to obtain the constrained equation of motion. A case study of the partial rubbing is simulated using the algorithm. The synchronous and subsynchronous responses of the partial rubbing are obtained for different rotational speeds. In addition, a sensitivity analysis is carried out with respect to the initial clearance, the stator stiffness, the damping parameter, and the coefficient of friction. There is a good agreement between the result of this research and the experimental result in the literature.
Experimental Uncertainty Associated with Traveling Wave Excitation
2014-09-15
20 2.9 Schematic of the Lumped Model [6] . . . . . . . . . . . . . . . . . . . . . . . 21 2.10 Multiple Coupled Pendulum [7...model to describe the physical system, the authors chose to employ a coupled pendulum model to represent a rotor. This system is shown in Figure 2.10...System mistuning is introduced by altering pendulum lengths. All other system parameters are equal. A linear viscous proportional damping force is
NASA Technical Reports Server (NTRS)
Anusonti-Inthra, Phuriwat
2010-01-01
This paper presents validations of a novel rotorcraft analysis that coupled Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and Particle Vortex Transport Method (PVTM) methodologies. The CSD with associated vehicle trim analysis is used to calculate blade deformations and trim parameters. The near body CFD analysis is employed to provide detailed near body flow field information which is used to obtain high-fidelity blade aerodynamic loadings. The far field wake dominated region is simulated using the PVTM analysis which provides accurate prediction of the evolution of the rotor wake released from the near body CFD domains. A loose coupling methodology between the CSD and CFD/PVTM modules are used with appropriate information exchange amongst the CSD/CFD/PVTM modules. The coupled CSD/CFD/PVTM methodology is used to simulate various rotorcraft flight conditions (i.e. hover, transition, and high speed flights), and the results are compared with several sets of experimental data. For the hover condition, the results are compared with hover data for the HART II rotor tested at DLR Institute of Flight Systems, Germany. For the forward flight conditions, the results are validated with the UH-60A flight test data.
NASA Technical Reports Server (NTRS)
Hanson, Donald B.
2001-01-01
This report examines the effects on broadband noise generation of unsteady coupling between a rotor and stator in the fan stage of a turbofan engine. Whereas previous acoustic analyses treated the blade rows as isolated cascades, the present work accounts for reflection and transmission effects at both blade rows by tracking the mode and frequency scattering of pressure and vortical waves. The fan stage is modeled in rectilinear geometry to take advantage of a previously existing unsteady cascade theory for 3D perturbation waves and thereby use a realistic 3D turbulence spectrum. In the analysis, it was found that the set of participating modes divides itself naturally into "independent mode subsets" that couple only among themselves and not to the other such subsets. This principle is the basis for the analysis and considerably reduces computational effort. It also provides a simple, accurate scheme for modal averaging for further efficiency. Computed results for a coupled fan stage are compared with calculations for isolated blade rows. It is found that coupling increases downstream noise by 2 to 4 dB. Upstream noise is lower for isolated cascades and is further reduced by including coupling effects. In comparison with test data, the increase in the upstream/downstream differential indicates that broadband noise from turbulent inflow at the stator dominates downstream noise but is not a significant contributor to upstream noise.
NASA Astrophysics Data System (ADS)
Yamazaki, Katsumi
In this paper, we propose a method to calculate the equivalent circuit parameters of interior permanent magnet motors including iron loss resistance using the finite element method. First, the finite element analysis considering harmonics and magnetic saturation is carried out to obtain time variations of magnetic fields in the stator and the rotor core. Second, the iron losses of the stator and the rotor are calculated from the results of the finite element analysis with the considerations of harmonic eddy current losses and the minor hysteresis losses of the core. As a result, we obtain the equivalent circuit parameters i.e. the d-q axis inductance and the iron loss resistance as functions of operating condition of the motor. The proposed method is applied to an interior permanent magnet motor to calculate the characteristics based on the equivalent circuit obtained by the proposed method. The calculated results are compared with the experimental results to verify the accuracy.
NASA Technical Reports Server (NTRS)
Howard, Anna K. T.
1999-01-01
The tiltrotor offers the best mix of hovering and cruise flight of any of the current V/STOL configurations. One possible improvement on the tiltrotors of today designs would be using a soft-inplane hingeless hub. The advantages to a soft-inplane hingeless hub range from reduced weight and maintenance to reduced vibration and loads. However, soft-inplane rotor systems are inherently in danger of the aeromechanical instabilities of ground and air resonance. Furthermore tiltrotors can be subject to whirl flutter. At least in part because of the potential for air and ground resonance in a soft-inplane rotor, the Bell XV-15, the Bell-Boeing V-22 Osprey, and the new Bell Augusta 609 have stiff-inplane, gimballed rotors which do not experience these instabilities. In order to design soft-inplane V/STOL aircraft that do not experience ground or air resonance, it is important to be able to predict these instabilities accurately. Much of the research studying the stability of tiltrotors has been focused on the understanding and prediction of whirl flutter. As this instability is increasingly well understood, air and ground resonance for a tiltrotor need to be investigated. Once we understand the problems of air and ground resonance in a tiltrotor, we must look for solutions to these instabilities. Other researchers have found composite or kinematic couplings in the blades of a helicopter helpful for ground and air resonance stability. Tiltrotor research has shown composite couplings in the wing to be helpful for whirl flutter. Therefore, this project will undertake to model ground and air resonance of a soft-inplane hingeless tiltrotor to understand the mechanisms involved and to evaluate whether aeroelastic couplings in the wing or kinematic couplings in the blades would aid in stabilizing these instabilities in a tiltrotor.
Hysteresis Bearingless Slice Motors with Homopolar Flux-biasing.
Noh, Minkyun; Gruber, Wolfgang; Trumper, David L
2017-10-01
We present a new concept of bearingless slice motor that levitates and rotates a ring-shaped solid rotor. The rotor is made of a semi-hard magnetic material exhibiting magnetic hysteresis, such as D2 steel. The rotor is radially biased with a homopolar permanent-magnetic flux, on which the stator can superimpose 2-pole flux to generate suspension forces. By regulating the suspension forces based on position feedback, the two radial rotor degrees of freedom are actively stabilized. The two tilting degrees of freedom and the axial translation are passively stable due to the reluctance forces from the bias flux. In addition, the stator can generate a torque by superimposing 6- pole rotating flux, which drags the rotor via hysteresis coupling. This 6-pole flux does not generate radial forces in conjunction with the homopolar flux or 2-pole flux, and therefore the suspension force generation is in principle decoupled from the driving torque generation. We have developed a prototype system as a proof of concept. The stator has twelve teeth, each of which has a single phase winding that is individually driven by a linear transconductance power amplifier. The system has four reflective-type optical sensors to differentially measure the two radial degrees of freedom of the rotor. The suspension control loop is implemented such that the phase margin is 25 degrees at the cross-over frequency of 110 Hz. The prototype system can levitate the rotor and drive it up to about 1730 rpm. The maximum driving torque is about 2.7 mNm.
Dynamics of fluidic devices with applications to rotor pitch links
NASA Astrophysics Data System (ADS)
Scarborough, Lloyd H., III
Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port produces a fundamentally new class of tunable vibration isolator. This fluidlastic device provides significant vibration reduction at an isolation frequency that can be tuned over a broad frequency range. The material properties and geometry of the F2MC element, as well as the port inertance, determine the isolation frequency. A unique feature of this device is that the port inertance depends on pressure so the isolation frequency can be adjusted by changing the air pressure. For constant port inertance, the isolation frequency is largely independent of the isolated mass so the device is robust to changes in load. A nonlinear model is developed to predict isolator length and port inertance. The model is linearized and the frequency response calculated. Experiments agree with theory, demonstrating a tunable isolation range from 9 Hz to 36 Hz and transmitted force reductions of up to 60 dB at the isolation frequency. Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies. Replacing rigid pitch links on rotorcraft with fluidic pitch links changes the blade torsional impedance. At low frequency, the pitch link must have high impedance to pass through the pilot's collective and cyclic commands to control the aircraft. At higher frequencies, however, the pitch-link impedance can be tuned to change the blade pitching response to higher harmonic loads. Active blade control to produce higher harmonic pitch motions has been shown to reduce hub loads and increase rotor efficiency. This work investigates whether fluidic pitch links can passively provide these benefits. An analytical model of a fluidic pitch link is derived and incorporated into a rotor aeroelastic simulation for a rotor similar to that of the UH-60. Eighty-one simulations with varied fluidic pitch link parameters demonstrate that their impedance can be tailored to reduce rotor power and all six hub forces and moments. While no impedance was found that simultaneously reduced all components, the results include cases with reductions in the lateral 4/rev hub force of up to 91% and 4/rev hub pitching moment of up to 67%, and main rotor power of up to 5%.
A new methodology for sizing and performance predictions of a rotary wing ejector
NASA Astrophysics Data System (ADS)
Moodie, Alex Montfort
The application of an ejector nozzle integrated with a reaction drive rotor configuration for a vertical takeoff and landing rotorcraft is considered in this research. The ejector nozzle is a device that imparts energy from a high speed airflow source to a lower speed secondary airflow inside a duct. The overall nozzle exhaust mass flow rate is increased through fluid entrainment, while the exhaust gas velocity is simultaneously decreased. The exhaust gas velocity is strongly correlated to the jet noise produced by the nozzle, making the ejector a good candidate for propulsion system noise reduction. Ejector nozzles are mechanically simple in that there are no moving parts. However, coupled fluid dynamic processes are involved, complicating analysis and design. Geometric definitions of the ejector nozzle are determined through a reduced fidelity, multi-disciplinary, representation of the rotary wing ejector. The resulting rotary wing ejector geometric sizing procedure relates standard vehicle and rotor design parameters to the ejector. Additionally, a rotary wing ejector performance procedure is developed to compare this rotor configuration to a conventional rotor. Performance characteristics and aerodynamic effects of the rotor and ejector nozzle are analytically studied. Ejector nozzle performance, in terms of exit velocities, is compared to the primary reaction drive nozzle; giving an indication of the potential for noise reduction. Computational fluid dynamics are paramount in predicting the aerodynamic effects of the ejector nozzle located at the rotor blade tip. Two-dimensional, steady-state, Reynolds-averaged Navier-Stokes (RANS) models are implemented for sectional lift and drag predictions required for the rotor aerodynamic model associated with both the rotary wing ejector sizing and performance procedures. A three-dimensional, unsteady, RANS simulation of the rotary wing ejector is performed to study the aerodynamic interactions between the ejector nozzle and rotor. Overall performance comparisons are made between the two- and three-dimensional models of the rotary wing ejector, and a similar conventional rotor.
Unstable force analysis for induction motor eccentricity
NASA Astrophysics Data System (ADS)
Han, Xu; Palazzolo, Alan
2016-05-01
The increasing popularity of motors in machinery trains has led to an intensified interest in the forces they produce that may influence machinery vibration. Motor design typically assumes a uniform air gap, however in practice all motors operate with the rotor slightly displaced from the motor centerline in what is referred to as an eccentric position. Rotor center eccentricity can cause a radially unbalanced magnetic field when the motor is operating. This will results in both a radial force pulling the motor further away from the center, and a tangential force which can induce a vibration stability problem. In this paper, a magnetic equivalent circuit MEC modeling method is proposed to calculate both the radial and tangential motor eccentric force. The treatment of tangential force determination is rarely addressed, but it is very important for rotordynamic vibration stability evaluation. The proposed model is also coupled with the motor electric circuit model to provide capability for transient vibration simulations. FEM is used to verify the MEC model. A parametric study is performed on the motor radial and tangential eccentric forces. Also a Jeffcott rotor model is used to study the influence of the motor eccentric force on mechanical vibration stability and nonlinear behavior. Furthermore, a stability criteria for the bearing damping is provided. The motor radial and tangential eccentric forces are both curved fitted to include their nonlinearity in time domain transient simulation for both a Jeffcott rotor model and a geared machinery train with coupled torsional-lateral motion. Nonlinear motions are observed, including limit cycles and bifurcation induced vibration amplitude jumps.
NASA Technical Reports Server (NTRS)
Johnson, W.
1980-01-01
A comprehensive presentation is made of the engineering analysis methods used in the design, development and evaluation of helicopters. After an introduction covering the fundamentals of helicopter rotors, configuration and operation, rotary wing history, and the analytical notation used in the text, the following topics are discussed: (1) vertical flight, including momentum, blade element and vortex theories, induced power, vertical drag and ground effect; (2) forward flight, including in addition to momentum and vortex theory for this mode such phenomena as rotor flapping and its higher harmonics, tip loss and root cutout, compressibility and pitch-flap coupling; (3) hover and forward flight performance assessment; (4) helicopter rotor design; (5) rotary wing aerodynamics; (6) rotary wing structural dynamics, including flutter, flap-lag dynamics ground resonance and vibration and loads; (7) helicopter aeroelasticity; (8) stability and control (flying qualities); (9) stall; and (10) noise.
NASA Technical Reports Server (NTRS)
Flowers, George T.; Ryan, Stephen G.
1991-01-01
Rotordynamical equations that account for disk flexibility are developed. These equations employ free-free rotor modes to model the rotor system. Only transverse vibrations of the disks are considered, with the shaft/disk system considered to be torsionally rigid. Second order elastic foreshortening effects that couple with the rotor speed to produce first order terms in the equations of motion are included. The approach developed in this study is readily adaptable for usage in many of the codes that are current used in rotordynamical simulations. The equations are similar to those used in standard rigid disk analyses but with additional terms that include the effects of disk flexibility. An example case is presented to demonstrate the use of the equations and to show the influence of disk flexibility on the rotordynamical behavior of a sample system.
System and method for improved rotor tip performance
NASA Technical Reports Server (NTRS)
Bussom, Richard (Inventor); McVeigh, Michael A. (Inventor); Narducci, Robert P. (Inventor); Zientek, Thomas A. (Inventor)
2010-01-01
Embodiments of systems and methods for enhancing the performance of rotary wing aircraft through reduced torque, noise and vibration are disclosed. In one embodiment, a method includes configuring the rotorcraft in a selected flight condition, communicating input signals to a control system operable to position sails coupled to tips of blades of a rotor assembly, processing the input signals according to a constraint condition to generate sail positional information, and transferring the sail positional information to the sail. Alternately, input signals may be communicated to a control system operable to position a plurality of sails, each sail having an aerodynamic shape and positioned proximate to a tip portion of the rotor blade. The input signals may be configured to rotate each sail about a longitudinal axis into a corresponding pitch angle independently of the other sails.
Application of Sequential Quadratic Programming to Minimize Smart Active Flap Rotor Hub Loads
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi; Leyland, Jane
2014-01-01
In an analytical study, SMART active flap rotor hub loads have been minimized using nonlinear programming constrained optimization methodology. The recently developed NLPQLP system (Schittkowski, 2010) that employs Sequential Quadratic Programming (SQP) as its core algorithm was embedded into a driver code (NLP10x10) specifically designed to minimize active flap rotor hub loads (Leyland, 2014). Three types of practical constraints on the flap deflections have been considered. To validate the current application, two other optimization methods have been used: i) the standard, linear unconstrained method, and ii) the nonlinear Generalized Reduced Gradient (GRG) method with constraints. The new software code NLP10x10 has been systematically checked out. It has been verified that NLP10x10 is functioning as desired. The following are briefly covered in this paper: relevant optimization theory; implementation of the capability of minimizing a metric of all, or a subset, of the hub loads as well as the capability of using all, or a subset, of the flap harmonics; and finally, solutions for the SMART rotor. The eventual goal is to implement NLP10x10 in a real-time wind tunnel environment.
From localization to anomalous diffusion in the dynamics of coupled kicked rotors
NASA Astrophysics Data System (ADS)
Notarnicola, Simone; Iemini, Fernando; Rossini, Davide; Fazio, Rosario; Silva, Alessandro; Russomanno, Angelo
2018-02-01
We study the effect of many-body quantum interference on the dynamics of coupled periodically kicked systems whose classical dynamics is chaotic and shows an unbounded energy increase. We specifically focus on an N -coupled kicked rotors model: We find that the interplay of quantumness and interactions dramatically modifies the system dynamics, inducing a transition between energy saturation and unbounded energy increase. We discuss this phenomenon both numerically and analytically through a mapping onto an N -dimensional Anderson model. The thermodynamic limit N →∞ , in particular, always shows unbounded energy growth. This dynamical delocalization is genuinely quantum and very different from the classical one: Using a mean-field approximation, we see that the system self-organizes so that the energy per site increases in time as a power law with exponent smaller than 1. This wealth of phenomena is a genuine effect of quantum interference: The classical system for N ≥2 always behaves ergodically with an energy per site linearly increasing in time. Our results show that quantum mechanics can deeply alter the regularity or ergodicity properties of a many-body-driven system.
Effects of gear box vibration and mass imbalance on the dynamics of multi-stage gear transmissions
NASA Technical Reports Server (NTRS)
Choy, Fred K.; Tu, Yu K.; Zakrajsek, James J.; Townsend, Dennis P.
1991-01-01
The dynamic behavior of multistage gear transmission system, with the effects of gear-box-induced vibrations and rotor mass-imbalances is analyzed. The model method, using undamped frequencies and planar mode shapes, is used to reduce the degree-of-freedom of the system. The various rotor-bearing stages as well as lateral and torsional vibrations of each individual stage are coupled through localized gear-mesh-tooth interactions. Gear-box vibrations are coupled to the gear stage dynamics through bearing support forces. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domain. A typical three-staged geared system is used as an example. Effects of mass-imbalance and gear box vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.
Effects of gear box vibration and mass imbalance on the dynamics of multistage gear transmission
NASA Technical Reports Server (NTRS)
Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, D. P.
1991-01-01
The dynamic behavior of multistage gear transmission system, with the effects of gear-box-induced vibrations and rotor mass-imbalances is analyzed. The model method, using undamped frequencies and planar mode shapes, is used to reduce the degree-of-freedom of the system. The various rotor-bearing stages as well as lateral and torsional vibrations of each individual stage are coupled through localized gear-mesh-tooth interactions. Gear-box vibrations are coupled to the gear stage dynamics through bearing support forces. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domain. A typical three-staged geared system is used as an example. Effects of mass-imbalance and gear box vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.
A new aeroelastic model for composite rotor blades with straight and swept tips
NASA Technical Reports Server (NTRS)
Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur
1992-01-01
An analytical model for predicting the aeroelastic behavior of composite rotor blades with straight and swept tips is presented. The blade is modeled by beam type finite elements along the elastic axis. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. Tip sweep can induce aeroelastic instability by flap-twist coupling. Tip anhedral causes lag-torsion and flap-axial couplings, however, its effects on blade stability is less pronounced than the effect due to sweep. Composite ply orientation has a substantial effect on blade stability.
The effect of solidity on the performance of H-rotor Darrieus turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, S. M. Rakibul, E-mail: rakibulhassan21@gmail.com; Ali, Mohammad, E-mail: mali@me.buet.ac.bd; Islam, Md. Quamrul, E-mail: quamrul@me.buet.ac.bd
Utilization of wind energy has been investigated for a long period of time by different researchers in different ways. Out of which, the Horizontal Axis Wind Turbine and the Vertical Axis Wind Turbine have now advanced design, but still there is scope to improve their efficiency. The Vertical Axis Wind Turbine (VAWT) has the advantage over Horizontal Axis Wind Turbine (HAWT) for working on omnidirectional air flow without any extra control system. A modified H-rotor Darrieus type VAWT is analysed in this paper, which is a lift based wind turbine. The effect of solidity (i.e. chord length, no. of blades)more » on power coefficient (C{sub P}) of H-rotor for different tip speed ratios is numerically investigated. The study is conducted using time dependent RANS equations using SST k-ω model. SIMPLE scheme is used as pressure-velocity coupling and in all cases, the second order upwind discretization scheme is chosen for getting more accurate solution. In results, different parameters are compared, which depict the performance of the modified H-rotor Darrieus type VAWT. Double layered H-rotor having inner layer blades with longer chord gives higher power coefficient than those have inner layer blades with smaller chord.« less
NASA Astrophysics Data System (ADS)
Wang, Ziwei; Jiang, Xiong; Chen, Ti; Hao, Yan; Qiu, Min
2018-05-01
Simulating the unsteady flow of compressor under circumferential inlet distortion and rotor/stator interference would need full-annulus grid with a dual time method. This process is time consuming and needs a large amount of computational resources. Harmonic balance method simulates the unsteady flow in compressor on single passage grid with a series of steady simulations. This will largely increase the computational efficiency in comparison with the dual time method. However, most simulations with harmonic balance method are conducted on the flow under either circumferential inlet distortion or rotor/stator interference. Based on an in-house CFD code, the harmonic balance method is applied in the simulation of flow in the NASA Stage 35 under both circumferential inlet distortion and rotor/stator interference. As the unsteady flow is influenced by two different unsteady disturbances, it leads to the computational instability. The instability can be avoided by coupling the harmonic balance method with an optimizing algorithm. The computational result of harmonic balance method is compared with the result of full-annulus simulation. It denotes that, the harmonic balance method simulates the flow under circumferential inlet distortion and rotor/stator interference as precise as the full-annulus simulation with a speed-up of about 8 times.
NASA Technical Reports Server (NTRS)
Wood, Jerry R.; Schmidt, James F.; Steinke, Ronald J.; Chima, Rodrick V.; Kunik, William G.
1987-01-01
Increased emphasis on sustained supersonic or hypersonic cruise has revived interest in the supersonic throughflow fan as a possible component in advanced propulsion systems. Use of a fan that can operate with a supersonic inlet axial Mach number is attractive from the standpoint of reducing the inlet losses incurred in diffusing the flow from a supersonic flight Mach number to a subsonic one at the fan face. The design of the experiment using advanced computational codes to calculate the components required is described. The rotor was designed using existing turbomachinery design and analysis codes modified to handle fully supersonic axial flow through the rotor. A two-dimensional axisymmetric throughflow design code plus a blade element code were used to generate fan rotor velocity diagrams and blade shapes. A quasi-three-dimensional, thin shear layer Navier-Stokes code was used to assess the performance of the fan rotor blade shapes. The final design was stacked and checked for three-dimensional effects using a three-dimensional Euler code interactively coupled with a two-dimensional boundary layer code. The nozzle design in the expansion region was analyzed with a three-dimensional parabolized viscous code which corroborated the results from the Euler code. A translating supersonic diffuser was designed using these same codes.
NASA Technical Reports Server (NTRS)
Pierzga, M. J.; Wood, J. R.
1984-01-01
An experimental investigation of the three dimensional flow field through a low aspect ratio, transonic, axial flow fan rotor has been conducted using an advanced laser anemometer (LA) system. Laser velocimeter measurements of the rotor flow field at the design operating speed and over a range of through flow conditions are compared to analytical solutions. The numerical technique used herein yields the solution to the full, three dimensional, unsteady Euler equations using an explicit time marching, finite volume approach. The numerical analysis, when coupled with a simplified boundary layer calculation, generally yields good agreement with the experimental data. The test rotor has an aspect ratio of 1.56, a design total pressure ratio of 1.629 and a tip relative Mach number of 1.38. The high spatial resolution of the LA data matrix (9 radial by 30 axial by 50 blade to blade) permits details of the transonic flow field such as shock location, turning distribution and blade loading levels to be investigated and compared to analytical results.
Airloads Correlation of the UH-60A Rotor Inside the 40- by 80-Foot Wind Tunnel
NASA Technical Reports Server (NTRS)
Chang, I-Chung; Norman, Thomas R.; Romander, Ethan A.
2013-01-01
The presented research validates the capability of a loosely-coupled computational fluid dynamics (CFD) and comprehensive rotorcraft analysis (CRA) code to calculate the flowfield around a rotor and test stand mounted inside a wind tunnel. The CFD/CRA predictions for the full-scale UH-60A Airloads Rotor inside the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center are compared with the latest measured airloads and performance data. The studied conditions include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed up to and including stall. For the speed sweep, wind tunnel modeling becomes important at advance ratios greater than 0.37 and test stand modeling becomes increasingly important as the advance ratio increases. For the thrust sweep, both the wind tunnel and test stand modeling become important as the rotor approaches stall. Despite the beneficial effects of modeling the wind tunnel and test stand, the new models do not completely resolve the current airload discrepancies between prediction and experiment.
Rotor Design Options for Improving XV-15 Whirl-Flutter Stability Margins
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.; Peyran, R. J.; Johnson, Wayne
2004-01-01
Rotor design changes intended to improve tiltrotor whirl-flutter stability margins were analyzed. A baseline analytical model of the XV-15 was established, and then a thinner, composite wing was designed to be representative of a high-speed tiltrotor. The rotor blade design was modified to increase the stability speed margin for the thin-wing design. Small rearward offsets of the aerodynamic-center locus with respect to the blade elastic axis created large increases in the stability boundary. The effect was strongest for offsets at the outboard part of the blade, where an offset of the aerodynamic center by 10% of tip chord improved the stability margin by over 100 knots. Forward offsets of the blade center of gravity had similar but less pronounced effects. Equivalent results were seen for swept-tip blades. Appropriate combinations of sweep and pitch stiffness completely eliminated whirl flutter within the speed range examined; alternatively, they allowed large increases in pitch-flap coupling (delta-three) for a given stability margin. A limited investigation of the rotor loads in helicopter and airplane configuration showed only minor increases in loads.
Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips
NASA Technical Reports Server (NTRS)
Yuan, K. A.; Friedmann, P. P.
1995-01-01
This report describes the development of an aeroelastic analysis capability for composite helicopter rotor blades with straight and swept tips, and its application to the simulation of helicopter vibration reduction through structural optimization. A new aeroelastic model is developed in this study which is suitable for composite rotor blades with swept tips in hover and in forward flight. The hingeless blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. Arbitrary cross-sectional shape, generally anisotropic material behavior, transverse shears and out-of-plane warping are included in the blade model. The nonlinear equations of motion, derived using Hamilton's principle, are based on a moderate deflection theory. Composite blade cross-sectbnal properties are calculated by a separate linear, two-dimensional cross section analysis. The aerodynamic loads are obtained from quasi-steady, incompressible aerodynamics, based on an implicit formulation. The trim and steady state blade aeroelastic response are solved in a fully coupled manner. In forward flight, where the blade equations of motion are periodic, the coupled trim-aeroelastic response solution is obtained from the harmonic balance method. Subsequently, the periodic system is linearized about the steady state response, and its stability is determined from Floquet theory.
Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System
NASA Technical Reports Server (NTRS)
Yeo, Hyeonsoo; Romander, Ethan A.; Norman, Thomas R.
2010-01-01
A full-scale wind tunnel test was recently conducted (March 2009) in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-FootWind Tunnel to evaluate the potential of an individual blade control (IBC) system to improve rotor performance and reduce vibrations, loads, and noise for a UH-60A rotor system [1]. This test was the culmination of a long-termcollaborative effort between NASA, U.S. Army, Sikorsky Aircraft Corporation, and ZF Luftfahrttechnik GmbH (ZFL) to demonstrate the benefits of IBC for a UH-60Arotor. Figure 1 shows the UH-60Arotor and IBC system mounted on the NFAC Large Rotor Test Apparatus (LRTA). The IBC concept used in the current study utilizes actuators placed in the rotating frame, one per blade. In particular, the pitch link of the rotor blade was replacedwith an actuator, so that the blade root pitch can be changed independently. This concept, designed for a full-scale UH-60A rotor, was previously tested in the NFAC 80- by 120-FootWind Tunnel in September 2001 at speeds up to 85 knots [2]. For the current test, the same UH-60A rotor and IBC system were tested in the 40- by 80-FootWind Tunnel at speeds up to 170 knots. Figure 2 shows the servo-hydraulic IBC actuator installed between the swashplate and the blade pitch horn. Although previous wind tunnel experiments [3, 4] and analytical studies on IBC [5, 6] have shown the promise to improve the rotor s performance, in-depth correlation studies have not been performed. Thus, the current test provides a unique resource that can be used to assess the accuracy and reliability of prediction methods and refine theoretical models, with the ultimate goal of providing the technology for timely and cost-effective design and development of new rotors. In this paper, rotor performance and loads calculations are carried out using the analyses CAMRAD II and coupled OVERFLOW-2/CAMRAD II and the results are compared with these UH-60A/IBC wind tunnel test data.
NASA Technical Reports Server (NTRS)
Hanson, Donald B.
1999-01-01
A reduced order modeling scheme has been developed for the unsteady acoustic and vortical coupling between blade rows of a turbomachine. The essential behavior of the system is governed by modal scattering coefficients (i.e., reflection and transmission coefficients) of the rotor, stator, inlet and nozzle, which are calculated as if they were connected to non-reflecting ducts. The objective of this report is to identify fundamental behavior of these scattering coefficients for a better understanding of the role of blade row reflection and transmission in noise generation. A 2D flat plate unsteady cascade model is used for the analysis with the expectation that the general behavior presented herein will carry over to models that include more realistic flow and geometry. It is shown that stators scatter input waves into many modes at the same frequency whereas rotors scatter on frequency, or harmonic order. Important cases are shown here the rotor reflection coefficient is greater than unity; a mode at blade passing frequency (BPF) traveling from the stator with unit sound power is reflected by the rotor with more than unit power at 2xBPF and 3xBPE Analysis is presented to explain this unexpected phenomenon. Scattering curves are presented in a format chosen for design use and for physical interpretation. To aid in interpretation of the curves, formulas are derived for special condition where waveforms are parallel to perpendicular to the rotor.
NASA Technical Reports Server (NTRS)
Fletcher, Jay W.; Chen, Robert T. N.; Strasilla, Eric; Aiken, Edwin W. (Technical Monitor)
1995-01-01
Modern rotorcraft flight control system designs which promise to yield high vehicle response bandwidth and good gust rejection can benefit from the use of rotor-state feedbacks. The measurement of main rotor blade motions is also desirable to validate and improve rotorcraft simulation models, to identify high-order linear flight dynamics models, to provide rotor system health monitoring; during flight test, and to provide for correlation with acoustic measurements from wind tunnel and flight tests. However, few attempts have been made to instrument a flight vehicle in this manner, and no previous system has had the robustness and accuracy required for these diverse applications. A rotor blade motion measurement and estimation system has been developed by NASA and the U.S. Army for use on the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) helicopter. RASCAL is a UH-60 Blackhawk which is being modified at Ames Research Center in a phased development program for use in flight dynamics and controls, navigation, airspace management, and rotorcraft human factors research. The aircraft will feature a full-authority, digital, fly-by-wire research flight control system; a coupled ring laser gyro, differential GPS based navigation system; a stereoscopic color wide field of view helmet, mounted display; programmable panel mounted displays; and advanced navigation sensors. The rotor blade motion system is currently installed for data acquisition only, but will be integrated with the research flight control system when it is installed later this year.
Evaluation of lightning accommodation systems for wind-driven turbine rotors
NASA Technical Reports Server (NTRS)
Bankaitis, H.
1982-01-01
Wind-driven turbine generators are being evaluated as an alternative source of electric energy. Areas of favorable location for the wind-driven turbines (high wind density) coincide with areas of high incidence of thunderstorm activity. These locations, coupled with the 30-m or larger diameter rotor blades, make the wind-driven turbine blades probable terminations for lightning strikes. Several candidate systems of lightning accommodation for composite-structural-material blades were designed and their effectiveness evaluated by submitting the systems to simulated lightning strikes. The test data were analyzed and system design were reviewed on the basis of the analysis.
Classification of defects in honeycomb composite structure of helicopter rotor blades
NASA Astrophysics Data System (ADS)
Balaskó, M.; Sváb, E.; Molnár, Gy.; Veres, I.
2005-04-01
The use of non-destructive testing methods to qualify the state of rotor blades with respect to their expected flight hours, with the aim to extend their lifetime without any risk of breakdown, is an important financial demand. In order to detect the possible defects in the composite structure of Mi-8 and Mi-24 type helicopter rotor blades used by the Hungarian Army, we have performed combined neutron- and X-ray radiography measurements at the Budapest Research Reactor. Several types of defects were detected, analysed and typified. Among the most frequent and important defects observed were cavities, holes and/or cracks in the sealing elements on the interface of the honeycomb structure and the section boarders. Inhomogeneities of the resin materials (resin-rich or starved areas) at the core-honeycomb surfaces proved to be an other important point. Defects were detected at the adhesive filling, and water percolation was visualized at the sealing interfaces of the honeycomb sections. Corrosion effects, and metal inclusions have also been detected.
Experiences with the use of axisymmetric elements in cosmic NASTRAN for static analysis
NASA Technical Reports Server (NTRS)
Cooper, Michael J.; Walton, William C.
1991-01-01
Discussed here are some recent finite element modeling experiences using the axisymmetric elements CONEAX, TRAPAX, and TRIAAX, from the COSMIC NASTRAN element library. These experiences were gained in the practical application of these elements to the static analysis of helicopter rotor force measuring systems for two design projects for the NASA Ames Research Center. These design projects were the Rotor Test Apparatus and the Large Rotor Test Apparatus, which are dedicated to basic helicopter research. Here, a genetic axisymmetric model is generated for illustrative purposes. Modeling considerations are discussed, and the advantages and disadvantages of using axisymmetric elements are presented. Asymmetric mechanical and thermal loads are applied to the structure, and single and multi-point constraints are addressed. An example that couples the axisymmetric model to a non-axisymmtric model is demonstrated, complete with DMAP alters. Recommendations for improving the elements and making them easier to use are offered.
Concepts for Multi-Speed Rotorcraft Drive System - Status of Design and Testing at NASA GRC
NASA Technical Reports Server (NTRS)
Stevens, Mark A.; Lewicki, David G.; Handschuh, Robert F.
2015-01-01
In several studies and on-going developments for advanced rotorcraft, the need for variable multi-speed capable rotors has been raised. Speed changes of up to 50 have been proposed for future rotorcraft to improve vehicle performance. A rotor speed change during operation not only requires a rotor that can perform effectively over the operating speedload range, but also requires a propulsion system possessing these same capabilities. A study was completed investigating possible drive system arrangements that can accommodate up to a 50 speed change. Key drivers were identified from which simplicity and weight were judged as central. This paper presents the current status of two gear train concepts coupled with the first of two clutch types developed and tested thus far with focus on design lessons learned and areas requiring development. Also, a third concept is presented, a dual input planetary differential as leveraged from a simple planetary with fixed carrier.
Modeling methods for high-fidelity rotorcraft flight mechanics simulation
NASA Technical Reports Server (NTRS)
Mansur, M. Hossein; Tischler, Mark B.; Chaimovich, Menahem; Rosen, Aviv; Rand, Omri
1992-01-01
The cooperative effort being carried out under the agreements of the United States-Israel Memorandum of Understanding is discussed. Two different models of the AH-64 Apache Helicopter, which may differ in their approach to modeling the main rotor, are presented. The first model, the Blade Element Model for the Apache (BEMAP), was developed at Ames Research Center, and is the only model of the Apache to employ a direct blade element approach to calculating the coupled flap-lag motion of the blades and the rotor force and moment. The second model was developed at the Technion-Israel Institute of Technology and uses an harmonic approach to analyze the rotor. The approach allows two different levels of approximation, ranging from the 'first harmonic' (similar to a tip-path-plane model) to 'complete high harmonics' (comparable to a blade element approach). The development of the two models is outlined and the two are compared using available flight test data.
NASA Astrophysics Data System (ADS)
Wang, Hao; Zhang, Fengge; Guan, Tao; Yu, Siyang
2017-09-01
A brushless electrically excited synchronous generator (BEESG) with a hybrid rotor is a novel electrically excited synchronous generator. The BEESG proposed in this paper is composed of a conventional stator with two different sets of windings with different pole numbers, and a hybrid rotor with powerful coupling capacity. The pole number of the rotor is different from those of the stator windings. Thus, an analysis method different from that applied to conventional generators should be applied to the BEESG. In view of this problem, the equivalent circuit and electromagnetic torque expression of the BEESG are derived on the basis of electromagnetic relation of the proposed generator. The generator is simulated and tested experimentally using the established equivalent circuit model. The experimental and simulation data are then analyzed and compared. Results show the validity of the equivalent circuit model.
Application of active magnetic bearings in flexible rotordynamic systems - A state-of-the-art review
NASA Astrophysics Data System (ADS)
Siva Srinivas, R.; Tiwari, R.; Kannababu, Ch.
2018-06-01
In this paper a critical review of literature on applications of Active Magnetic Bearings (AMBs) systems in flexible rotordynamic systems have been presented. AMBs find various applications in rotating machinery; however, this paper mainly focuses on works in vibration suppression and associated with the condition monitoring using AMBs. It briefly introduces reader to the AMB working principle, provides details of various hardware components of a typical rotor-AMB test rig, and presents a background of traditional methods of vibration suppression in flexible rotors and the condition monitoring. It then moves on to summarize the basic features of AMB integrated flexible rotor test rigs available in literature with necessary instrumentation and its main objectives. A couple of lookup tables provide summary of important information of test rigs in papers within the scope of this article. Finally, future directions in AMB research within the paper's scope have been suggested.
Dynamic Analysis of Geared Rotors by Finite Elements
NASA Technical Reports Server (NTRS)
Kahraman, A.; Ozguven, H. Nevzat; Houser, D. R.; Zakrajsek, J. J.
1992-01-01
A finite element model of a geared rotor system on flexible bearings has been developed. The model includes the rotary inertia of on shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis geared rotors by calculating the critical speeds and determining the response of any point on the shafts to mass unbalances, geometric eccentricities of gears, and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.
Sweep-twist adaptive rotor blade : final project report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashwill, Thomas D.
2010-02-01
Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercialmore » development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.« less
Trailing Vortex Measurements in the Wake of a Hovering Rotor Blade with Various Tip Shapes
NASA Technical Reports Server (NTRS)
Martin, Preston B.; Leishman, J. Gordon
2003-01-01
This work examined the wake aerodynamics of a single helicopter rotor blade with several tip shapes operating on a hover test stand. Velocity field measurements were conducted using three-component laser Doppler velocimetry (LDV). The objective of these measurements was to document the vortex velocity profiles and then extract the core properties, such as the core radius, peak swirl velocity, and axial velocity. The measured test cases covered a wide range of wake-ages and several tip shapes, including rectangular, tapered, swept, and a subwing tip. One of the primary differences shown by the change in tip shape was the wake geometry. The effect of blade taper reduced the initial peak swirl velocity by a significant fraction. It appears that this is accomplished by decreasing the vortex strength for a given blade loading. The subwing measurements showed that the interaction and merging of the subwing and primary vortices created a less coherent vortical structure. A source of vortex core instability is shown to be the ratio of the peak swirl velocity to the axial velocity deficit. The results show that if there is a turbulence producing region of the vortex structure, it will be outside of the core boundary. The LDV measurements were supported by laser light-sheet flow visualization. The results provide several benchmark test cases for future validation of theoretical vortex models, numerical free-wake models, and computational fluid dynamics results.
Higher harmonic control analysis for vibration reduction of helicopter rotor systems
NASA Technical Reports Server (NTRS)
Nguyen, Khanh Q.
1994-01-01
An advanced higher harmonic control (HHC) analysis has been developed and applied to investigate its effect on vibration reduction levels, blade and control system fatigue loads, rotor performance, and power requirements of servo-actuators. The analysis is based on a finite element method in space and time. A nonlinear time domain unsteady aerodynamic model, based on the indicial response formulation, is used to calculate the airloads. The rotor induced inflow is computed using a free wake model. The vehicle trim controls and blade steady responses are solved as one coupled solution using a modified Newton method. A linear frequency-domain quasi-steady transfer matrix is used to relate the harmonics of the vibratory hub loads to the harmonics of the HHC inputs. Optimal HHC is calculated from the minimization of the vibratory hub loads expressed in term of a quadratic performance index. Predicted vibratory hub shears are correlated with wind tunnel data. The fixed-gain HHC controller suppresses completely the vibratory hub shears for most of steady or quasi-steady flight conditions. HHC actuator amplitudes and power increase significantly at high forward speeds (above 100 knots). Due to the applied HHC, the blade torsional stresses and control loads are increased substantially. For flight conditions where the blades are stalled considerably, the HHC input-output model is quite nonlinear. For such cases, the adaptive-gain controller is effective in suppressing vibratory hub loads, even though HHC may actually increase stall areas on the rotor disk. The fixed-gain controller performs poorly for such flight conditions. Comparison study of different rotor systems indicates that a soft-inplane hingeless rotor requires less actuator power at high speeds (above 130 knots) than an articulated rotor, and a stiff-inplane hingeless rotor generally requires more actuator power than an articulated or a soft-inplane hingeless rotor. Parametric studies for a hingeless rotor operating in a transition flight regime and for an articulated rotor operating at the level-flight boundary (high speed and high thrust conditions) indicate that blade parameters including flap, lag, torsion stiffness distributions, linear pretwist, chordwise offset of center-of-mass from elastic axis and chordwise offset of elastic axis from aerodynamic center can be selected to minimize the actuator power requirements for HHC.
Radial Flow Effects On A Retreating Rotor Blade
2014-05-01
blades which are subject to the coupled effects of reactive centrifugal and Coriolis forces unique to the rotating environment. These forces are...coupled effects of centrifugal and Coriolis forces in the rotating environment add more complexity to the flow characteristics [96]. McCroskey’s [74...disk will definitely cause some non-linear effects on the radial velocity profile. These effects are not investigated in this study. The next of
Aspects of Coulomb damping in rotors supported on hydrodynamic bearings
NASA Technical Reports Server (NTRS)
Morton, P. G.
1982-01-01
The paper is concerned with the effect of friction in drive couplings on the non-sychronous whirling of a shaft. A simplified model is used to demonstrate the effect of large coupling misalignments on the stability of the system. It is concluded that provided these misalignments are large enough, the system becomes totally stable provided the shaft is supported on bearings exhibiting a viscous damping capacity.
Concept of turbines for ultrasupercritical, supercritical, and subcritical steam conditions
NASA Astrophysics Data System (ADS)
Mikhailov, V. E.; Khomenok, L. A.; Pichugin, I. I.; Kovalev, I. A.; Bozhko, V. V.; Vladimirskii, O. A.; Zaitsev, I. V.; Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G.
2017-11-01
The article describes the design features of condensing turbines for ultrasupercritical initial steam conditions (USSC) and large-capacity cogeneration turbines for super- and subcritical steam conditions having increased steam extractions for district heating purposes. For improving the efficiency and reliability indicators of USSC turbines, it is proposed to use forced cooling of the head high-temperature thermally stressed parts of the high- and intermediate-pressure rotors, reaction-type blades of the high-pressure cylinder (HPC) and at least the first stages of the intermediate-pressure cylinder (IPC), the double-wall HPC casing with narrow flanges of its horizontal joints, a rigid HPC rotor, an extended system of regenerative steam extractions without using extractions from the HPC flow path, and the low-pressure cylinder's inner casing moving in accordance with the IPC thermal expansions. For cogeneration turbines, it is proposed to shift the upper district heating extraction (or its significant part) to the feedwater pump turbine, which will make it possible to improve the turbine plant efficiency and arrange both district heating extractions in the IPC. In addition, in the case of using a disengaging coupling or precision conical bolts in the coupling, this solution will make it possible to disconnect the LPC in shifting the turbine to operate in the cogeneration mode. The article points out the need to intensify turbine development efforts with the use of modern methods for improving their efficiency and reliability involving, in particular, the use of relatively short 3D blades, last stages fitted with longer rotor blades, evaporation techniques for removing moisture in the last-stage diaphragm, and LPC rotor blades with radial grooves on their leading edges.
Fluid-structure interaction modeling of wind turbines: simulating the full machine
NASA Astrophysics Data System (ADS)
Hsu, Ming-Chen; Bazilevs, Yuri
2012-12-01
In this paper we present our aerodynamics and fluid-structure interaction (FSI) computational techniques that enable dynamic, fully coupled, 3D FSI simulation of wind turbines at full scale, and in the presence of the nacelle and tower (i.e., simulation of the "full machine"). For the interaction of wind and flexible blades we employ a nonmatching interface discretization approach, where the aerodynamics is computed using a low-order finite-element-based ALE-VMS technique, while the rotor blades are modeled as thin composite shells discretized using NURBS-based isogeometric analysis (IGA). We find that coupling FEM and IGA in this manner gives a good combination of efficiency, accuracy, and flexibility of the computational procedures for wind turbine FSI. The interaction between the rotor and tower is handled using a non-overlapping sliding-interface approach, where both moving- and stationary-domain formulations of aerodynamics are employed. At the fluid-structure and sliding interfaces, the kinematic and traction continuity is enforced weakly, which is a key ingredient of the proposed numerical methodology. We present several simulations of a three-blade 5~MW wind turbine, with and without the tower. We find that, in the case of no tower, the presence of the sliding interface has no effect on the prediction of aerodynamic loads on the rotor. From this we conclude that weak enforcement of the kinematics gives just as accurate results as the strong enforcement, and thus enables the simulation of rotor-tower interaction (as well as other applications involving mechanical components in relative motion). We also find that the blade passing the tower produces a 10-12 % drop (per blade) in the aerodynamic torque. We feel this finding may be important when it comes to the fatigue-life analysis and prediction for wind turbine blades.
380 kW synchronous machine with HTS rotor windings--development at Siemens and first test results
NASA Astrophysics Data System (ADS)
Nick, W.; Nerowski, G.; Neumüller, H.-W.; Frank, M.; van Hasselt, P.; Frauenhofer, J.; Steinmeyer, F.
2002-08-01
Applying HTS conductors in the rotor of synchronous machines allows the design of future motors or generators that are lighter, more compact and feature an improved coefficient of performance. To address these goals a project collaboration was installed within Siemens, including Automation & Drives, Large Drives as a leading supplier of electrical machines, Corporate Technology as a competence center for superconducting technology, and other partners. The main task of the project was to demonstrate the feasibility of basic concepts. The rotor was built from racetrack coils of Bi-2223 HTS tape conductor, these were assembled on a core and fixed by a bandage of glass-fibre composite. Rotor coil cooling is performed by thermal conduction, one end of the motor shaft is hollow to give access for the cooling system. Two cooling systems were designed and operated successfully: firstly an open circuit using cold gaseous helium from a storage vessel, but also a closed circuit system based on a cryogenerator. To take advantage of the increased rotor induction levels the stator winding was designed as an air gap winding. This was manufactured and fitted in a standard motor housing. After assembling of the whole system in a test facility with a DC machine load experiments have been started to prove the validity of our design, including operation with both cooling systems and driving the stator from the grid as well as by a power inverter.
NASA Astrophysics Data System (ADS)
Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal
2015-05-01
In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.
Fabrication of cooled radial turbine rotor
NASA Technical Reports Server (NTRS)
Hammer, A. N.; Aigret, G. G.; Psichogios, T. P.; Rodgers, C.
1986-01-01
A design and fabrication program was conducted to evaluate a unique concept for constructing a cooled, high temperature radial turbine rotor. This concept, called split blade fabrication was developed as an alternative to internal ceramic coring. In this technique, the internal cooling cavity is created without flow dividers or any other detail by a solid (and therefore stronger) ceramic plate which can be more firmly anchored within the casting shell mold than can conventional detailed ceramic cores. Casting is conducted in the conventional manner, except that the finished product, instead of having finished internal cooling passages, is now a split blade. The internal details of the blade are created separately together with a carrier sheet. The inserts are superalloy. Both are produced by essentially the same software such that they are a net fit. The carrier assemblies are loaded into the split blade and the edges sealed by welding. The entire wheel is Hot Isostatic Pressed (HIPed), braze bonding the internal details to the inside of the blades. During this program, two wheels were successfully produced by the split blade fabrication technique.
Design of 9.271-pressure-ratio 5-stage core compressor and overall performance for first 3 stages
NASA Technical Reports Server (NTRS)
Steinke, Ronald J.
1986-01-01
Overall aerodynamic design information is given for all five stages of an axial flow core compressor (74A) having a 9.271 pressure ratio and 29.710 kg/sec flow. For the inlet stage group (first three stages), detailed blade element design information and experimental overall performance are given. At rotor 1 inlet tip speed was 430.291 m/sec, and hub to tip radius ratio was 0.488. A low number of blades per row was achieved by the use of low-aspect-ratio blading of moderate solidity. The high reaction stages have about equal energy addition. Radial energy varied to give constant total pressure at the rotor exit. The blade element profile and shock losses and the incidence and deviation angles were based on relevant experimental data. Blade shapes are mostly double circular arc. Analysis by a three-dimensional Euler code verified the experimentally measured high flow at design speed and IGV-stator setting angles. An optimization code gave an optimal IGV-stator reset schedule for higher measured efficiency at all speeds.
Experimental High Temperature Characterization of a Magnetic Bearing for Turbomachinery
NASA Technical Reports Server (NTRS)
Montague, Gerald; Jansen, Mark; Provenza, Andrew; Palazzolo, Alan; Jansen, Ralph; Ebihara, Ben
2003-01-01
Open loop, experimental force and power measurements of a radial, redundant-axis, magnetic bearing at temperatures to 1000 F (538 C) and rotor speeds to 15,000 RPM along with theoretical temperature and force models are presented in this paper. The experimentally measured force produced by a single C-core using 22A was 600 lb. (2.67 kN) at room temperature and 380 lb. (1.69 kN) at 1000 F (538 C). These values were compared with force predictions based on a 1D magnetic circuit analysis and a thermal analysis of gap growth as a function of temperature. Tests under rotating conditions showed that rotor speed has a negligible effect on the bearing s load capacity. One C-core required approximately 340 W of power to generate 190 lb. (8.45 kN) of magnetic force at 1000 F (538 C); however the magnetic air gap was much larger than at room temperature. The data presented is after the bearing had already operated six thermal cycles and eleven total (not consecutive) hours at 1000 F (538 C).
Investigating Dynamics of Eccentricity in Turbomachines
NASA Technical Reports Server (NTRS)
Baun, Daniel
2010-01-01
A methodology (and hardware and software to implement the methodology) has been developed as a means of investigating coupling between certain rotordynamic and hydrodynamic phenomena in turbomachines. Originally, the methodology was intended for application in an investigation of coupled rotordynamic and hydrodynamic effects postulated to have caused high synchronous vibration in the space shuttle s high-pressure oxygen turbopump (HPOTP). The methodology can also be applied in investigating (for the purpose of developing means of suppressing) undesired hydrodynamic rotor/stator interactions in turbomachines in general. The methodology and the types of phenomena that can be investigated by use of the methodology are best summarized by citing the original application as an example. In that application, in consideration of the high synchronous vibration in the space-shuttle main engine (SSME) HPOTP, it was determined to be necessary to perform tests to investigate the influence of inducer eccentricity and/or synchronous whirl motion on inducer hydrodynamic forces under prescribed flow and cavitation conditions. It was believed that manufacturing tolerances of the turbopump resulted in some induced runout of the pump rotor. Such runout, if oriented with an inducer blade, would cause that blade to run with tip clearance smaller than the tip clearances of the other inducer blades. It was hypothesized that the resulting hydraulic asymmetry, coupled with alternating blade cavitation, could give rise to the observed high synchronous vibration. In tests performed to investigate this hypothesis, prescribed rotor whirl motions have been imposed on a 1/3-scale water-rig version of the SSME LPOTP inducer (which is also a 4-biased inducer having similar cavitation dynamics as the HPOTP) in a magnetic-bearing test facility. The particular magnetic-bearing test facility, through active vibration control, affords a capability to impose, on the rotor, whirl orbits having shapes and whirl rates prescribed by the user, and to simultaneously measure the resulting hydrodynamic forces generated by the impeller. Active control also made it possible to modulate the inducer-blade running tip clearance and consequently effect alternating blade cavitation. The measured hydraulic forces have been compared and correlated with shroud dynamic-pressure measurements.
Ducted-Fan Engine Acoustic Predictions using a Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Rumsey, C. L.; Biedron, R. T.; Farassat, F.; Spence, P. L.
1998-01-01
A Navier-Stokes computer code is used to predict one of the ducted-fan engine acoustic modes that results from rotor-wake/stator-blade interaction. A patched sliding-zone interface is employed to pass information between the moving rotor row and the stationary stator row. The code produces averaged aerodynamic results downstream of the rotor that agree well with a widely used average-passage code. The acoustic mode of interest is generated successfully by the code and is propagated well upstream of the rotor; temporal and spatial numerical resolution are fine enough such that attenuation of the signal is small. Two acoustic codes are used to find the far-field noise. Near-field propagation is computed by using Eversman's wave envelope code, which is based on a finite-element model. Propagation to the far field is accomplished by using the Kirchhoff formula for moving surfaces with the results of the wave envelope code as input data. Comparison of measured and computed far-field noise levels show fair agreement in the range of directivity angles where the peak radiation lobes from the inlet are observed. Although only a single acoustic mode is targeted in this study, the main conclusion is a proof-of-concept: Navier-Stokes codes can be used both to generate and propagate rotor/stator acoustic modes forward through an engine, where the results can be coupled to other far-field noise prediction codes.
Simplified aeroelastic modeling of horizontal axis wind turbines
NASA Technical Reports Server (NTRS)
Wendell, J. H.
1982-01-01
Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.
NASA Astrophysics Data System (ADS)
Li, Leihong
A modular structural design methodology for composite blades is developed. This design method can be used to design composite rotor blades with sophisticate geometric cross-sections. This design method hierarchically decomposed the highly-coupled interdisciplinary rotor analysis into global and local levels. In the global level, aeroelastic response analysis and rotor trim are conduced based on multi-body dynamic models. In the local level, variational asymptotic beam sectional analysis methods are used for the equivalent one-dimensional beam properties. Compared with traditional design methodology, the proposed method is more efficient and accurate. Then, the proposed method is used to study three different design problems that have not been investigated before. The first is to add manufacturing constraints into design optimization. The introduction of manufacturing constraints complicates the optimization process. However, the design with manufacturing constraints benefits the manufacturing process and reduces the risk of violating major performance constraints. Next, a new design procedure for structural design against fatigue failure is proposed. This procedure combines the fatigue analysis with the optimization process. The durability or fatigue analysis employs a strength-based model. The design is subject to stiffness, frequency, and durability constraints. Finally, the manufacturing uncertainty impacts on rotor blade aeroelastic behavior are investigated, and a probabilistic design method is proposed to control the impacts of uncertainty on blade structural performance. The uncertainty factors include dimensions, shapes, material properties, and service loads.
Influence of hydrodynamic thrust bearings on the nonlinear oscillations of high-speed rotors
NASA Astrophysics Data System (ADS)
Chatzisavvas, Ioannis; Boyaci, Aydin; Koutsovasilis, Panagiotis; Schweizer, Bernhard
2016-10-01
This paper investigates the effect of hydrodynamic thrust bearings on the nonlinear vibrations and the bifurcations occurring in rotor/bearing systems. In order to examine the influence of thrust bearings, run-up simulations may be carried out. To be able to perform such run-up calculations, a computationally efficient thrust bearing model is mandatory. Direct discretization of the Reynolds equation for thrust bearings by means of a Finite Element or Finite Difference approach entails rather large simulation times, since in every time-integration step a discretized model of the Reynolds equation has to be solved simultaneously with the rotor model. Implementation of such a coupled rotor/bearing model may be accomplished by a co-simulation approach. Such an approach prevents, however, a thorough analysis of the rotor/bearing system based on extensive parameter studies. A major point of this work is the derivation of a very time-efficient but rather precise model for transient simulations of rotors with hydrodynamic thrust bearings. The presented model makes use of a global Galerkin approach, where the pressure field is approximated by global trial functions. For the considered problem, an analytical evaluation of the relevant integrals is possible. As a consequence, the system of equations of the discretized bearing model is obtained symbolically. In combination with a proper decomposition of the governing system matrix, a numerically efficient implementation can be achieved. Using run-up simulations with the proposed model, the effect of thrust bearings on the bifurcations points as well as on the amplitudes and frequencies of the subsynchronous rotor oscillations is investigated. Especially, the influence of the magnitude of the axial force, the geometry of the thrust bearing and the oil parameters is examined. It is shown that the thrust bearing exerts a large influence on the nonlinear rotor oscillations, especially to those related with the conical mode of the rotor. A comparison between a full co-simulation approach and a reduced Galerkin implementation is carried out. It is shown that a speed-up of 10-15 times may be obtained with the Galerkin model compared to the co-simulation model under the same accuracy.
Exchange of rotor components in functioning bacterial flagellar motor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuoka, Hajime; Inoue, Yuichi; Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577
2010-03-26
The bacterial flagellar motor is a rotary motor driven by the electrochemical potential of a coupling ion. The interaction between a rotor and stator units is thought to generate torque. The overall structure of flagellar motor has been thought to be static, however, it was recently proved that stators are exchanged in a rotating motor. Understanding the dynamics of rotor components in functioning motor is important for the clarifying of working mechanism of bacterial flagellar motor. In this study, we focused on the dynamics and the turnover of rotor components in a functioning flagellar motor. Expression systems for GFP-FliN, FliM-GFP,more » and GFP-FliG were constructed, and each GFP-fusion was functionally incorporated into the flagellar motor. To investigate whether the rotor components are exchanged in a rotating motor, we performed fluorescence recovery after photobleaching experiments using total internal reflection fluorescence microscopy. After photobleaching, in a tethered cell producing GFP-FliN or FliM-GFP, the recovery of fluorescence at the rotational center was observed. However, in a cell producing GFP-FliG, no recovery of fluorescence was observed. The transition phase of fluorescence intensity after full or partially photobleaching allowed the turnover of FliN subunits to be calculated as 0.0007 s{sup -1}, meaning that FliN would be exchanged in tens of minutes. These novel findings indicate that a bacterial flagellar motor is not a static structure even in functioning state. This is the first report for the exchange of rotor components in a functioning bacterial flagellar motor.« less
NASA Technical Reports Server (NTRS)
Prahst, Patricia S.; Kulkarni, Sameer; Sohn, Ki H.
2015-01-01
NASA's Environmentally Responsible Aviation (ERA) Program calls for investigation of the technology barriers associated with improved fuel efficiency for large gas turbine engines. Under ERA, the highly loaded core compressor technology program attempts to realize the fuel burn reduction goal by increasing overall pressure ratio of the compressor to increase thermal efficiency of the engine. Study engines with overall pressure ratio of 60 to 70 are now being investigated. This means that the high pressure compressor would have to almost double in pressure ratio while keeping a high level of efficiency. NASA and GE teamed to address this challenge by testing the first two stages of an advanced GE compressor designed to meet the requirements of a very high pressure ratio core compressor. Previous test experience of a compressor which included these front two stages indicated a performance deficit relative to design intent. Therefore, the current rig was designed to run in 1-stage and 2-stage configurations in two separate tests to assess whether the bow shock of the second rotor interacting with the upstream stage contributed to the unpredicted performance deficit, or if the culprit was due to interaction of rotor 1 and stator 1. Thus, the goal was to fully understand the stage 1 performance under isolated and multi-stage conditions, and additionally to provide a detailed aerodynamic data set for CFD validation. Full use was made of steady and unsteady measurement methods to understand fluid dynamics loss source mechanisms due to rotor shock interaction and endwall losses. This paper will present the description of the compressor test article and its measured performance and operability, for both the single stage and two stage configurations. We focus the paper on measurements at 97% corrected speed with design intent vane setting angles.
Effects of static equilibrium and higher-order nonlinearities on rotor blade stability in hover
NASA Technical Reports Server (NTRS)
Crespodasilva, Marcelo R. M.; Hodges, Dewey H.
1988-01-01
The equilibrium and stability of the coupled elastic lead/lag, flap, and torsion motion of a cantilever rotor blade in hover are addressed, and the influence of several higher-order terms in the equations of motion of the blade is determined for a range of values of collective pitch. The blade is assumed to be untwisted and to have uniform properties along its span. In addition, chordwise offsets between its elastic, tension, mass, and aerodynamic centers are assumed to be negligible for simplicity. The aerodynamic forces acting on the blade are modeled using a quasi-steady, strip-theory approximation.
Aeromechanics Analysis of a Compound Helicopter
NASA Technical Reports Server (NTRS)
Yeo, Hyeonsoo; Johnson, Wayne
2006-01-01
A design and aeromechanics investigation was conducted for a 100,000-lb compound helicopter with a single main rotor, which is to cruise at 250 knots at 4000 ft/95 deg F condition. Performance, stability, and control analyses were conducted with the comprehensive rotorcraft analysis CAMRAD II. Wind tunnel test measurements of the performance of the H-34 and UH-1D rotors at high advance ratio were compared with calculations to assess the accuracy of the analysis for the design of a high speed helicopter. In general, good correlation was obtained with the increase of drag coefficients in the reverse flow region. An assessment of various design parameters (disk loading, blade loading, wing loading) on the performance of the compound helicopter was made. Performance optimization was conducted to find the optimum twist, collective, tip speed, and taper using the comprehensive analysis. Blade twist was an important parameter on the aircraft performance and most of the benefit of slowing the rotor occurred at the initial 20 to 30% reduction of rotor tip speed. No stability issues were observed with the current design and the control derivatives did not change much with speed, but did exhibit significant coupling.
Large-scale Synchronization in Carpets of Micro-rotors
NASA Astrophysics Data System (ADS)
Kanale, Anup; Guo, Hanliang; Yan, Wen; Kanso, Eva
2017-11-01
Motile cilia are ubiquitous in nature, and have a critical role in biological locomotion and fluid transport. They often beat in an orchestrated wavelike fashion, and theoretical evidence suggests that this coordinated motion could arise from hydrodynamic interactions. Models based on bead-spring oscillators were used to examine the interaction between pairs of cilia, focusing on in-phase or anti-phase synchrony, while models of hydrodynamically-coupled elastic filaments looked at metachronal coordination in large but finite numbers of interacting cilia. The latter models reproduce metachronal wave coordination, but they are not readily amenable to analysis and parametric studies that highlight the origin of the instabilities that lead to wave propagations and wavelength selection. Here, we use a known model in which each cilium is represented by a rigid sphere moving along a circular trajectory close to a wall, hence the term rotor. The rotor is driven by a cilia-inspired force profile. We generalize this model to a doubly-periodic array of rotors, assuming small distance to the bounding wall, and employ Ewald summation techniques to solve for the flow field. Our goal is to examine the conditions that give rise to stable metachronal waves and their associated wavelength.
Transonic airfoil design for helicopter rotor applications
NASA Technical Reports Server (NTRS)
Hassan, Ahmed A.; Jackson, B.
1989-01-01
Despite the fact that the flow over a rotor blade is strongly influenced by locally three-dimensional and unsteady effects, practical experience has always demonstrated that substantial improvements in the aerodynamic performance can be gained by improving the steady two-dimensional charateristics of the airfoil(s) employed. The two phenomena known to have great impact on the overall rotor performance are: (1) retreating blade stall with the associated large pressure drag, and (2) compressibility effects on the advancing blade leading to shock formation and the associated wave drag and boundary-layer separation losses. It was concluded that: optimization routines are a powerful tool for finding solutions to multiple design point problems; the optimization process must be guided by the judicious choice of geometric and aerodynamic constraints; optimization routines should be appropriately coupled to viscous, not inviscid, transonic flow solvers; hybrid design procedures in conjunction with optimization routines represent the most efficient approach for rotor airfroil design; unsteady effects resulting in the delay of lift and moment stall should be modeled using simple empirical relations; and inflight optimization of aerodynamic loads (e.g., use of variable rate blowing, flaps, etc.) can satisfy any number of requirements at design and off-design conditions.
A New Higher-Order Composite Theory for Analysis and Design of High Speed Tilt-Rotor Blades
NASA Technical Reports Server (NTRS)
McCarthy, Thomas Robert
1996-01-01
A higher-order theory is developed to model composite box beams with arbitrary wall thicknesses. The theory, based on a refined displacement field, represents a three-dimensional model which approximates the elasticity solution. Therefore, the cross-sectional properties are not reduced to one-dimensional beam parameters. Both inplane and out-of-plane warping are automatically included in the formulation. The model accurately captures the transverse shear stresses through the thickness of each wall while satisfying all stress-free boundary conditions. Several numerical results are presented to validate the present theory. The developed theory is then used to model the load carrying member of a tilt-rotor blade which has thick-walled sections. The composite structural analysis is coupled with an aerodynamic analysis to compute the aeroelastic stability of the blade. Finally, a multidisciplinary optimization procedure is developed to improve the aerodynamic, structural and aeroelastic performance of the tilt-rotor aircraft. The Kreisselmeier-Steinhauser function is used to formulate the multiobjective function problem and a hybrid approximate analysis is used to reduce the computational effort. The optimum results are compared with the baseline values and show significant improvements in the overall performance of the tilt-rotor blade.
Dynamic testing and analysis of extension-twist-coupled composite tubular spars
NASA Astrophysics Data System (ADS)
Lake, Renee C.; Izapanah, Amir P.; Baucon, Robert M.
The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist elastic coupling are presented. A set of extension-twist-coupled composite tubular spars, representative of the primary load carrying structure within a helicopter rotor blade, was manufactured using four plies of woven graphite/epoxy cloth 'prepreg.' These spars were non-circular in cross section design and were therefore subject to warping deformations. Three cross-sectional geometries were developed: square, D-shape, and flattened ellipse. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models developed in MSC/NASTRAN. Five global or 'non-shell' modes were identified within the 0-2000 Hz range for each spar. The frequencies and associated mode shapes for the D-shape spar were correlated with analytical results, showing agreement within 13.8 percent. Frequencies corresponding to the five global mode shapes for the square spar agreed within 9.5 percent of the analytical results. Five global modes were similarly identified for the elliptical spar and agreed within 4.9 percent of the respective analytical results.
Dynamic testing and analysis of extension-twist-coupled composite tubular spars
NASA Technical Reports Server (NTRS)
Lake, Renee C.; Izapanah, Amir P.; Baucon, Robert M.
1992-01-01
The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist elastic coupling are presented. A set of extension-twist-coupled composite tubular spars, representative of the primary load carrying structure within a helicopter rotor blade, was manufactured using four plies of woven graphite/epoxy cloth 'prepreg.' These spars were non-circular in cross section design and were therefore subject to warping deformations. Three cross-sectional geometries were developed: square, D-shape, and flattened ellipse. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models developed in MSC/NASTRAN. Five global or 'non-shell' modes were identified within the 0-2000 Hz range for each spar. The frequencies and associated mode shapes for the D-shape spar were correlated with analytical results, showing agreement within 13.8 percent. Frequencies corresponding to the five global mode shapes for the square spar agreed within 9.5 percent of the analytical results. Five global modes were similarly identified for the elliptical spar and agreed within 4.9 percent of the respective analytical results.
An investigation of rotor tip leakage flows in the rear-block of a multistage compressor
NASA Astrophysics Data System (ADS)
Brossman, John Richard
An effective method to improve gas turbine propulsive efficiency is to increase the bypass ratio. With fan diameter reaching a practical limit, increases in bypass ratio can be obtained from reduced core engine size. Decreasing the engine core, results in small, high pressure compressor blading, and large relative tip clearances. At general rule of 1% reduction in compressor efficiency with a 1% increase in tip clearance, a 0.66% change in SFC indicates the entire engine is sensitive to high pressure compressor tip leakage flows. Therefore, further investigations and understanding of the rotor tip leakage flows can help to improve gas turbine engine efficiency. The objectives of this research were to investigate tip leakage flows through computational modeling, examine the baseline experimental steady-stage performance, and acquire unsteady static pressure, over-the rotor to observe the tip leakage flow structure. While tip leakage flows have been investigated in the past, there have been no facilities capable of matching engine representative Reynolds number and Mach number while maintaining blade row interactions, presenting a unique and original flow field to investigate at the Purdue 3-stage axial compressor facility. To aid the design of experimental hardware and determine the influence of clearance geometry on compressor performance, a computational model of the Purdue 3-stage compressor was investigated using a steady RANS CFD analysis. A cropped rotor and casing recess design was investigated to increase the rotor tip clearance. While there were small performance differences between the geometries, the tip leakage flow field was found independent of the design therefore designing future experimental hardware around a casing recess is valid. The largest clearance with flow margin past the design point was 4% tip clearance based on the computational model. The Purdue 3-stage axial compressor facility was rebuilt and setup for high quality, detailed flow measurements during this investigation. A detailed investigation and sensitivity analysis of the inlet flow field found the influence by the inlet total temperature profile was important to performance calculations. This finding was significant and original as previous investigations have been conducted on low-speed machines where there is minimal temperature rise. The steady state performance of the baseline 1.5% tip clearance case was outlined at design speed and three off-design speeds. The leakage flow from the rear seal, the inlet flow field and a thermal boundary condition over the casing was recorded at each operating point. Stage 1 was found to be the limiting stage independent of speed. Few datasets exist on multistage compressor performance with full boundary condition definitions, especially with off-design operating points presenting this as a unique dataset for CFD comparison. The detailed unsteady pressure measurements were conducted over Rotor 1 at design and a near-stall operating condition to characterize the leakage trajectory and position. The leakage flow initial point closer to the leading edge and trajectory angle increased at the higher loading condition. The over-the-rotor static pressure field on Rotor 1 indicated similar trends between the computational model and the leakage trajectory.
Research In Nonlinear Flight Control for Tiltrotor Aircraft Operating in the Terminal Area
NASA Technical Reports Server (NTRS)
Calise, A. J.; Rysdyk, R.
1996-01-01
The research during the first year of the effort focused on the implementation of the recently developed combination of neural net work adaptive control and feedback linearization. At the core of this research is the comprehensive simulation code Generic Tiltrotor Simulator (GTRS) of the XV-15 tilt rotor aircraft. For this research the GTRS code has been ported to a Fortran environment for use on PC. The emphasis of the research is on terminal area approach procedures, including conversion from aircraft to helicopter configuration. This report focuses on the longitudinal control which is the more challenging case for augmentation. Therefore, an attitude command attitude hold (ACAH) control augmentation is considered which is typically used for the pitch channel during approach procedures. To evaluate the performance of the neural network adaptive control architecture it was necessary to develop a set of low order pilot models capable of performing such tasks as, follow desired altitude profiles, follow desired speed profiles, operate on both sides of powercurve, convert, including flaps as well as mastangle changes, operate with different stability and control augmentation system (SCAS) modes. The pilot models are divided in two sets, one for the backside of the powercurve and one for the frontside. These two sets are linearly blended with speed. The mastangle is also scheduled with speed. Different aspects of the proposed architecture for the neural network (NNW) augmented model inversion were also demonstrated. The demonstration involved implementation of a NNW architecture using linearized models from GTRS, including rotor states, to represent the XV-15 at various operating points. The dynamics used for the model inversion were based on the XV-15 operating at 30 Kts, with residualized rotor dynamics, and not including cross coupling between translational and rotational states. The neural network demonstrated ACAH control under various circumstances. Future efforts will include the implementation into the Fortran environment of GTRS, including pilot modeling and NNW augmentation for the lateral channels. These efforts should lead to the development of architectures that will provide for fully automated approach, using similar strategies.
NASA Astrophysics Data System (ADS)
Espinal, Daniel
The objective of this research is to investigate and confirm the periodicity of the Non-Synchronous Vibration (NSV) mechanism of a GE axial compressor with a full-annulus simulation. A second objective is to develop a high fidelity single-passage tool with time-accurate unsteady capabilities able to capture rotor-stator interactions and NSV excitation response. A high fidelity methodology for axial turbomachinery simulation is developed using the low diffusion shock-capturing Riemann solver with high order schemes, the Spalart-Allmaras turbulence closure model, the fully conservative unsteady sliding BC for rotor-stator interaction with extension to full-annulus and single-passage configurations, and the phase lag boundary conditions applied to rotor-stator interface and circumferential BC. A URANS solver is used and captures the NSV flow excitation frequency of 2439 Hz, which agrees reasonably well with the measured NSV frequency of 2600 Hz from strain gage test data. It is observed that the circumferentially traveling vortex formed in the vicinity of the rotor tip propagates at the speed of a non-engine order frequency and causes the NSV. The vortex travels along the suction surface of the blade and crosses the passage outlet near blade trailing edge. Such a vortex motion trajectory repeats in each blade passage and generates two low pressure regions due to the vortex core positions, one at the leading edge and one at the trailing edge, both are oscillating due to the vortex coming and leaving. These two low pressure regions create a pair of coupling forces that generates a torsion moment causing NSV. The full-annulus simulation shows that the circumferentially traveling vortex has fairly periodical behavior and is a full annulus structure. Also, frequencies below the NSV excitation frequency of 2439 Hz with large amplitudes in response to flow-separation related phenomena are present. This behavior is consistent with experimental measurements. For circumferentially averaged parameters like total pressure ratio, NSV is observed to have an effect, particularly at radial locations above 70% span. Therefore, to achieve similar or better total pressure ratio a design with a smaller loading of the upper blade span and a higher loading of the mid blade spans should be considered. A fully-conservative sliding interface boundary condition (BC) is implemented with phase-lag capabilities using the Direct Store method for single-passage simulations. Also Direct Store phase-lag was applied to the circumferential BCs to enforce longer disturbance wavelengths. The unsteady simulation using single-blade-passage with periodic BC for an inlet guide vane (IGV)-rotor configuration captures a 2291 Hz NSV excitation frequency and an IGV-rotor-stator configuration predicts a 2365 Hz NSV excitation frequency with a significantly higher amplitude above 90% span. This correlates closely to the predicted NSV excitation frequency of 2439 Hz for the full-annulus configuration. The two-blade-row configuration exhibits the same vortex structures captured in the full-annulus study. The three-blade-row configuration only captures a tip vortex shedding at the leading edge, which can be attributed to the reflective nature of the BCs causing IGV-rotor-stator interactions to be augmented, becoming dominant and shifting NSV excitation response to engine order regime. Phase-lag simulations with a Nodal Diameter (ND) of 5 is enforced for the circumferential BCs for the three-blade-row configuration, and the results exactly matched the frequency response and flow structures of the periodic simulation, illustrating the small effect that phase-lag has on strongly periodic flow disturbances. A ND of 7 is enforced at the sliding interface, however the NSV excitation completely disappears and only the wake propagation from IGV-Rotor-Stator interactions are captured. Rotor blade passage exhibits a circumferentially travelling vortex similar to those observed in the full-annulus and two-blade-row simulations. This can occur when the rotating instability responsible for the NSV no longer maintains a pressure variation with a characteristic frequency signature as it rotates relative to the rotor rotation, and now has become the beginning of a spike-type stall cell. In this scenario the travelling vortex has become evidence of part-stall of the upper spans of the rotor blade, but stalling is contained maintaining stable operation. In conclusion, an efficient method of capturing NSV excitation has been proposed in a high-fidelity manner, where only 2% of the computational resources used in a full-annulus simulation are required for an accurate single-blade-passage multi-stage simulation.
NASA Astrophysics Data System (ADS)
Liu, Chengcheng; Zhu, Jianguo; Wang, Youhua; Guo, Youguang; Lei, Gang; Liu, Xiaojing
2015-05-01
This paper proposes a low-cost double rotor axial flux motor (DRAFM) with low cost soft magnetic composite (SMC) core and ferrite permanent magnets (PMs). The topology and operating principle of DRAFM and design considerations for best use of magnetic materials are presented. A 905 W 4800 rpm DRAFM is designed for replacing the high cost NdFeB permanent magnet synchronous motor (PMSM) in a refrigerator compressor. By using the finite element method, the electromagnetic parameters and performance of the DRAFM operated under the field oriented control scheme are calculated. Through the analysis, it is shown that that the SMC and ferrite PM materials can be good candidates for low-cost electric motor applications.
Traveling wave ultrasonic motor: coupling effects in free stator.
Frayssignes, H; Briot, R
2003-03-01
Generally a stator of traveling wave ultrasonic motor (TWUM) consists of piezoelectric transducers (annular plate or rods) coupled by the way of a metallic ring. These transducers divided into halves are excited independently by two electrical signals with different phases of about 90 degrees. So an elastic traveling wave propagates along the circumference of the ring and a rotor pressed on this vibrating surface is then driven by the stator via contact forces. Many difficulties appear in developing TWUM because the contact between the stator and the rotor via a frictional material is very important. However that may be, the first stage consists in obtaining a vibrating stator with optimum characteristics with two symmetrical phases. The aim of this paper is to discuss some coupling effects in a free stator through an enhanced equivalent circuit model. A simple experimental method based on impedance measurements is performed to estimate the coupling characteristics at a low driving voltage. This paper reports results obtained with the free stator of the well known piezoelectric ultrasonic motor "USR60" by Shinsei Co. Ltd. Since the stator behaves as an elastic body, interactions between the two electrical inputs might be described by the introduction of a coupling oscillator. The comparison of experimental and theoretical results leads to validate the new equivalent circuit of the free stator. The presence of coupling impedance could imply a change of electrical supply condition to optimize the TWUM efficiency. The effects of unbalanced features for each electrical input and the applicability of the proposed model to actual operating condition are discussed in the paper. Copyright 2002 Elsevier Science B.V.
Balagam, Rajesh; Litwin, Douglas B.; Czerwinski, Fabian; Sun, Mingzhai; Kaplan, Heidi B.; Shaevitz, Joshua W.; Igoshin, Oleg A.
2014-01-01
Myxococcus xanthus is a model organism for studying bacterial social behaviors due to its ability to form complex multi-cellular structures. Knowledge of M. xanthus surface gliding motility and the mechanisms that coordinated it are critically important to our understanding of collective cell behaviors. Although the mechanism of gliding motility is still under investigation, recent experiments suggest that there are two possible mechanisms underlying force production for cell motility: the focal adhesion mechanism and the helical rotor mechanism, which differ in the biophysics of the cell–substrate interactions. Whereas the focal adhesion model predicts an elastic coupling, the helical rotor model predicts a viscous coupling. Using a combination of computational modeling, imaging, and force microscopy, we find evidence for elastic coupling in support of the focal adhesion model. Using a biophysical model of the M. xanthus cell, we investigated how the mechanical interactions between cells are affected by interactions with the substrate. Comparison of modeling results with experimental data for cell-cell collision events pointed to a strong, elastic attachment between the cell and substrate. These results are robust to variations in the mechanical and geometrical parameters of the model. We then directly measured the motor-substrate coupling by monitoring the motion of optically trapped beads and find that motor velocity decreases exponentially with opposing load. At high loads, motor velocity approaches zero velocity asymptotically and motors remain bound to beads indicating a strong, elastic attachment. PMID:24810164
Magnetic particle clutch controls servo system
NASA Technical Reports Server (NTRS)
Fow, P. B.
1973-01-01
Magnetic clutches provide alternative means of driving low-power rate or positioning servo systems. They may be used over wide variety of input speed ranges and weigh comparatively little. Power drain is good with overall motor/clutch efficiency greater than 50 percent, and gain of clutch is close to linear, following hysteresis curve of core and rotor material.
10 CFR 431.15 - Materials incorporated by reference.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Method With Indirect Measurement of the Stray-Load Loss and Direct Measurement of the Stator Winding (I2R), Rotor Winding (I2 R), Core and Windage-Friction Losses, IBR approved for §§ 431.12; 431.19; 431.20... with Loss Segregation, and the correction to the calculation at item (28) in Section 10.2 Form B-Test...
Active control of counter-rotating open rotor interior noise in a Dornier 728 experimental aircraft
NASA Astrophysics Data System (ADS)
Haase, Thomas; Unruh, Oliver; Algermissen, Stephan; Pohl, Martin
2016-08-01
The fuel consumption of future civil aircraft needs to be reduced because of the CO2 restrictions declared by the European Union. A consequent lightweight design and a new engine concept called counter-rotating open rotor are seen as key technologies in the attempt to reach this ambitious goals. Bearing in mind that counter-rotating open rotor engines emit very high sound pressures at low frequencies and that lightweight structures have a poor transmission loss in the lower frequency range, these key technologies raise new questions in regard to acoustic passenger comfort. One of the promising solutions for the reduction of sound pressure levels inside the aircraft cabin are active sound and vibration systems. So far, active concepts have rarely been investigated for a counter-rotating open rotor pressure excitation on complex airframe structures. Hence, the state of the art is augmented by the preliminary study presented in this paper. The study shows how an active vibration control system can influence the sound transmission of counter-rotating open rotor noise through a complex airframe structure into the cabin. Furthermore, open questions on the way towards the realisation of an active control system are addressed. In this phase, an active feedforward control system is investigated in a fully equipped Dornier 728 experimental prototype aircraft. In particular, the sound transmission through the airframe, the coupling of classical actuators (inertial and piezoelectric patch actuators) into the structure and the performance of the active vibration control system with different error sensors are investigated. It can be shown that the active control system achieves a reduction up to 5 dB at several counter-rotating open rotor frequencies but also that a better performance could be achieved through further optimisations.