Sample records for covariance ec method

  1. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests.

    PubMed

    Campioli, M; Malhi, Y; Vicca, S; Luyssaert, S; Papale, D; Peñuelas, J; Reichstein, M; Migliavacca, M; Arain, M A; Janssens, I A

    2016-12-14

    The eddy-covariance (EC) micro-meteorological technique and the ecology-based biometric methods (BM) are the primary methodologies to quantify CO 2 exchange between terrestrial ecosystems and the atmosphere (net ecosystem production, NEP) and its two components, ecosystem respiration and gross primary production. Here we show that EC and BM provide different estimates of NEP, but comparable ecosystem respiration and gross primary production for forest ecosystems globally. Discrepancies between methods are not related to environmental or stand variables, but are consistently more pronounced for boreal forests where carbon fluxes are smaller. BM estimates are prone to underestimation of net primary production and overestimation of leaf respiration. EC biases are not apparent across sites, suggesting the effectiveness of standard post-processing procedures. Our results increase confidence in EC, show in which conditions EC and BM estimates can be integrated, and which methodological aspects can improve the convergence between EC and BM.

  2. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests

    NASA Astrophysics Data System (ADS)

    Campioli, M.; Malhi, Y.; Vicca, S.; Luyssaert, S.; Papale, D.; Peñuelas, J.; Reichstein, M.; Migliavacca, M.; Arain, M. A.; Janssens, I. A.

    2016-12-01

    The eddy-covariance (EC) micro-meteorological technique and the ecology-based biometric methods (BM) are the primary methodologies to quantify CO2 exchange between terrestrial ecosystems and the atmosphere (net ecosystem production, NEP) and its two components, ecosystem respiration and gross primary production. Here we show that EC and BM provide different estimates of NEP, but comparable ecosystem respiration and gross primary production for forest ecosystems globally. Discrepancies between methods are not related to environmental or stand variables, but are consistently more pronounced for boreal forests where carbon fluxes are smaller. BM estimates are prone to underestimation of net primary production and overestimation of leaf respiration. EC biases are not apparent across sites, suggesting the effectiveness of standard post-processing procedures. Our results increase confidence in EC, show in which conditions EC and BM estimates can be integrated, and which methodological aspects can improve the convergence between EC and BM.

  3. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests

    PubMed Central

    Campioli, M.; Malhi, Y.; Vicca, S.; Luyssaert, S.; Papale, D.; Peñuelas, J.; Reichstein, M.; Migliavacca, M.; Arain, M. A.; Janssens, I. A.

    2016-01-01

    The eddy-covariance (EC) micro-meteorological technique and the ecology-based biometric methods (BM) are the primary methodologies to quantify CO2 exchange between terrestrial ecosystems and the atmosphere (net ecosystem production, NEP) and its two components, ecosystem respiration and gross primary production. Here we show that EC and BM provide different estimates of NEP, but comparable ecosystem respiration and gross primary production for forest ecosystems globally. Discrepancies between methods are not related to environmental or stand variables, but are consistently more pronounced for boreal forests where carbon fluxes are smaller. BM estimates are prone to underestimation of net primary production and overestimation of leaf respiration. EC biases are not apparent across sites, suggesting the effectiveness of standard post-processing procedures. Our results increase confidence in EC, show in which conditions EC and BM estimates can be integrated, and which methodological aspects can improve the convergence between EC and BM. PMID:27966534

  4. True eddy accumulation and eddy covariance methods and instruments intercomparison for fluxes of CO2, CH4 and H2O above the Hainich Forest

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas

    2017-04-01

    The eddy covariance (EC) method is state-of-the-art in directly measuring vegetation-atmosphere exchange of CO2 and H2O at ecosystem scale. However, the EC method is currently limited to a small number of atmospheric tracers by the lack of suitable fast-response analyzers or poor signal-to-noise ratios. High resource and power demands may further restrict the number of spatial sampling points. True eddy accumulation (TEA) is an alternative method for direct and continuous flux observations. Key advantages are the applicability to a wider range of air constituents such as greenhouse gases, isotopes, volatile organic compounds and aerosols using slow-response analyzers. In contrast to relaxed eddy accumulation (REA), true eddy accumulation (Desjardins, 1977) has the advantage of being a direct method which does not require proxies. True Eddy Accumulation has the potential to overcome above mentioned limitations of eddy covariance but has hardly ever been successfully demonstrated in practice in the past. This study presents flux measurements using an innovative approach to true eddy accumulation by directly, continuously and automatically measuring trace gas fluxes using a flow-through system. We merge high-frequency flux contributions from TEA with low-frequency covariances from the same sensors. We show flux measurements of CO2, CH4 and H2O by TEA and EC above an old-growth forest at the ICOS flux tower site "Hainich" (DE-Hai). We compare and evaluate the performance of the two direct turbulent flux measurement methods eddy covariance and true eddy accumulation using side-by-side trace gas flux observations. We further compare performance of seven instrument complexes, i.e. combinations of sonic anemometers and trace gas analyzers. We compare gas analyzers types of open-path, enclosed-path and closed-path design. We further differentiate data from two gas analysis technologies: infrared gas analysis (IRGA) and laser spectrometry (open path and CRDS closed-path laser spectrometers). We present results of CO2 and H2O fluxes from the following six instruments, i.e. combinations of sonic anemometers/gas analyzers (and methods): METEK-uSonic3/Picarro-G2301 (TEA), METEK-uSonic3/LI-7500 (EC), Gill-R3/LI-6262 (EC), Gill-R3/LI-7200 (EC), Gill-HS/LI-7200 (EC), Gill-R3/LGR-FGGA (EC). Further, we present results of much more difficult to measure CH4 fluxes from the following three instruments, i.e. combinations of sonic anemometers/gas analyzers (and methods): METEK-uSonic3/Picarro-G2301 (TEA), Gill-R3/LI-7700 (EC), Gill-R3/LGR-FGGA (EC). We observed that CO2, CH4 and H2O fluxes from the side-by-side measurements by true eddy accumulation and eddy covariance methods correlated well. Secondly, the difference between the TEA and EC methods using the same sonic anemometer but different gas analyzer was often smaller than the mismatch of the various side-by-side eddy covariance measurements using different sonic anemometers and gas analyzers. Signal-to-noise ratios of CH4 fluxes from the true eddy accumulation system system were superior to both eddy covariance sensors (open-path LI-7700 and closed-path CRDS LGR-FGGA sensors). We conclude that our novel implementation of the true eddy accumulation method demonstrated high signal-to-noise ratios, applicability to slow-response gas analyzers, small power consumption and direct proxy-free ecosystem-scale trace gas flux measurements of CO2, CH4 and H2O. The current results suggest that true eddy accumulation would be suitable and should be applied as the method-of-choice for direct flux measurements of a large number of atmospheric constituents beyond CO2 and H2O, including isotopes, aerosols, volatile organic compounds and other trace gases for which eddy covariance might not be a viable alternative. We will further develop true eddy accumulation as a novel approach using multiplexed systems for spatially distributed flux measurements.

  5. Integrating Eddy Covariance, Penman-Monteith and METRIC based Evapotranspiration estimates to generate high resolution space-time ET over the Brazos River Basin

    NASA Astrophysics Data System (ADS)

    Mbabazi, D.; Mohanty, B.; Gaur, N.

    2017-12-01

    Evapotranspiration (ET) is an important component of the water and energy balance and accounts for 60 -70% of precipitation losses. However, accurate estimates of ET are difficult to quantify at varying spatial and temporal scales. Eddy covariance methods estimate ET at high temporal resolutions but without capturing the spatial variation in ET within its footprint. On the other hand, remote sensing methods using Landsat imagery provide ET with high spatial resolution but low temporal resolution (16 days). In this study, we used both eddy covariance and remote sensing methods to generate high space-time resolution ET. Daily, monthly and seasonal ET estimates were obtained using the eddy covariance (EC) method, Penman-Monteith (PM) and Mapping Evapotranspiration with Internalized Calibration (METRIC) models to determine cotton and native prairie ET dynamics in the Brazos river basin characterized by varying hydro-climatic and geological gradients. Daily estimates of spatially distributed ET (30 m resolution) were generated using spatial autocorrelation and temporal interpolations between the EC flux variable footprints and METRIC ET for the 2016 and 2017 growing seasons. A comparison of the 2016 and 2017 preliminary daily ET estimates showed similar ET dynamics/trends among the EC, PM and METRIC methods, and 5-20% differences in seasonal ET estimates. This study will improve the spatial estimates of EC ET and temporal resolution of satellite derived ET thus providing better ET data for water use management.

  6. Soil Respiration in Eddy Covariance Footprints: A Critical Look at Researcher Needs

    NASA Astrophysics Data System (ADS)

    Gabriel, Carrie-Ellen; Nickerson, Nick; Creelman, Chance

    2017-04-01

    Eddy covariance (EC) systems have been widely used across the globe for more than 20 years, offering researchers invaluable measurements of parameters including Net Ecosystem Exchange and ecosystem respiration. However, recent research suggests that EC assumptions and technical obstacles may cause biased gas exchange estimates. Measurements of soil respiration (RS) at the ground level may help alleviate these biases; for example, by allowing researchers to reconcile nocturnal EC flux data with soil respiration or by providing a means to inform gap-filling models. RS measurements have been used sparingly alongside EC towers because of the large cost required to scale chamber systems to the EC footprint, as well as data integration and processing burdens. Here we present how the Forced Diffusion (FD) method is ideal for the measurement of RS at EC sites. The FD method allows for inexpensive and autonomous measurements, providing a scalable approach to matching the EC footprint compared to other RS systems. Here, we briefly present the methodology and results from a pilot study at the Howland Forest AmeriFlux site (Maine), carried out during the summer and fall of 2016, measuring soil respiration using the FD chamber technique. The emphasis of the remainder of the research is on gathering, interpreting and actualizing feedback from soil scientists and eddy covariance researchers and technicians on aspects of the FD methodology, deployment style, integration with existing infrastructure and data quality. Our goal is to eventually provide a framework for "ideal soil respiration measurements" that can be used by researchers, engineers and companies to develop functional and reliable soil respiration data sets that are easily coupled with data measured by EC users, and larger EC networks such as AmeriFlux and EuroFlux.

  7. Quantifying and reducing the differences in forest CO 2-fluxes estimated by eddy covariance, biometric and chamber methods: A global synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xingchang; Wang, Chuankuan; Bond-Lamberty, Benjamin

    Carbon dioxide (CO 2) fluxes between terrestrial ecosystems and the atmosphere are primarily measured with eddy covariance (EC), biometric, and chamber methods. However, it is unclear why the estimates of CO 2-fluxes, when measured using these different methods, converge at some sites but diverge at others. We synthesized a novel global dataset of forest CO 2-fluxes to evaluate the consistency between EC and biometric or chamber methods for quantifying CO 2 budget in forests. The EC approach, comparing with the other two methods, tended to produce 25% higher estimate of net ecosystem production (NEP, 0.52Mg C ha-1 yr-1), mainly resultingmore » from lower EC-estimated Re; 10% lower ecosystem respiration (Re, 1.39Mg C ha-1 yr-1); and 3% lower gross primary production (0.48 Mg C ha-1 yr-1) The discrepancies between EC and the other methods were higher at sites with complex topography and dense canopies versus those with flat topography and open canopies. Forest age also influenced the discrepancy through the change of leaf area index. The open-path EC system induced >50% of the discrepancy in NEP, presumably due to its surface heating effect. These results provided strong evidence that EC produces biased estimates of NEP and Re in forest ecosystems. A global extrapolation suggested that the discrepancies in CO 2 fluxes between methods were consistent with a global underestimation of Re, and overestimation of NEP, by the EC method. Accounting for these discrepancies would substantially improve the our estimates of the terrestrial carbon budget .« less

  8. Quantifying the Sources of Intermodel Spread in Equilibrium Climate Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, Peter M.; Zelinka, Mark D.; Taylor, Karl E.

    This paper clarifies the causes of intermodel differences in the global-average temperature response to doubled CO 2, commonly known as equilibrium climate sensitivity (ECS). The authors begin by noting several issues with the standard approach for decomposing ECS into a sum of forcing and feedback terms. This leads to a derivation of an alternative method based on linearizing the effect of the net feedback. Consistent with previous studies, the new method identifies shortwave cloud feedback as the dominant source of intermodel spread in ECS. This new approach also reveals that covariances between cloud feedback and forcing, between lapse rate andmore » longwave cloud feedbacks, and between albedo and shortwave cloud feedbacks play an important and previously underappreciated role in determining model differences in ECS. Finally, defining feedbacks based on fixed relative rather than specific humidity (as suggested by Held and Shell) reduces the covariances between processes and leads to more straightforward interpretations of results.« less

  9. Quantifying the Sources of Intermodel Spread in Equilibrium Climate Sensitivity

    DOE PAGES

    Caldwell, Peter M.; Zelinka, Mark D.; Taylor, Karl E.; ...

    2016-01-07

    This paper clarifies the causes of intermodel differences in the global-average temperature response to doubled CO 2, commonly known as equilibrium climate sensitivity (ECS). The authors begin by noting several issues with the standard approach for decomposing ECS into a sum of forcing and feedback terms. This leads to a derivation of an alternative method based on linearizing the effect of the net feedback. Consistent with previous studies, the new method identifies shortwave cloud feedback as the dominant source of intermodel spread in ECS. This new approach also reveals that covariances between cloud feedback and forcing, between lapse rate andmore » longwave cloud feedbacks, and between albedo and shortwave cloud feedbacks play an important and previously underappreciated role in determining model differences in ECS. Finally, defining feedbacks based on fixed relative rather than specific humidity (as suggested by Held and Shell) reduces the covariances between processes and leads to more straightforward interpretations of results.« less

  10. Challenges and benefits on long-term eddy covariance measurements over lakes

    NASA Astrophysics Data System (ADS)

    Vesala, Timo; Golub, Malgorzata; Desai, Ankur; Heiskanen, Jouni; Provenzale, Maria; Rantakari, Miitta; Ojala, Anne; Mammarella, Ivan

    2017-04-01

    Eddy Covariance (EC) data on carbon dioxide fluxes is presently available on about 30 lakes but the time series are mostly short, order of one year. Longer EC series together with chamber measurements and appropriate auxiliary data on water column allow for more accurate estimates of the aquatic component in terrestrial carbon balance and analysis of the environmental controls. We discuss on challenges for long-term EC measurements over freshwater ecosystems and demonstrate the benefits of EC data for carbon cycle studies via examples from long-term sites EC sites in Finland. We discuss on the auxiliary measurements needed and the general design of the whole measurement set-up to get representative information. We discuss on challenges related to the CO2 flux partitioning for freshwater ecosystems and introduce a new method to estimate the net primary productivity (NPP) on EC data, which is superior to more traditional methods (bottle incubations, 14C technique) with a poor temporal resolution. Finally, we collected and analyzed CO2 fluxes from 19 globally distributed lakes and reservoirs representing six climate zones. The mean flux was c. 0.3 micro mole / m2 s. We applied a simple upscaling to the direct observations and ended up to the estimate which is about half of the current emission estimate for lentic systems.

  11. The Covariance Adjustment Approaches for Combining Incomparable Cox Regressions Caused by Unbalanced Covariates Adjustment: A Multivariate Meta-Analysis Study.

    PubMed

    Dehesh, Tania; Zare, Najaf; Ayatollahi, Seyyed Mohammad Taghi

    2015-01-01

    Univariate meta-analysis (UM) procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS) method as a multivariate meta-analysis approach. We evaluated the efficiency of four new approaches including zero correlation (ZC), common correlation (CC), estimated correlation (EC), and multivariate multilevel correlation (MMC) on the estimation bias, mean square error (MSE), and 95% probability coverage of the confidence interval (CI) in the synthesis of Cox proportional hazard models coefficients in a simulation study. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.

  12. Evapotranspiration Measurement and Estimation: Weighing Lysimeter and Neutron Probe Based Methods Compared with Eddy Covariance

    NASA Astrophysics Data System (ADS)

    Evett, S. R.; Gowda, P. H.; Marek, G. W.; Alfieri, J. G.; Kustas, W. P.; Brauer, D. K.

    2014-12-01

    Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP) and soil core sampling techniques), and can be biased with respect to ET from the surrounding area. The area represented by flux sensing methods such as eddy covariance (EC) is typically estimated with a flux footprint/source area model. The dimension, position of, and relative contribution of upwind areas within the source area are mainly influenced by sensor height, wind speed, atmospheric stability and wind direction. Footprints for EC sensors positioned several meters above the canopy are often larger than can be economically covered by mass balance methods. Moreover, footprints move with atmospheric conditions and wind direction to cover different field areas over time while mass balance methods are static in space. Thus, EC systems typically sample a much greater field area over time compared with mass balance methods. Spatial variability of surface cover can thus complicate interpretation of flux estimates from EC systems. The most commonly used flux estimation method is EC; and EC estimates of latent heat energy (representing ET) and sensible heat fluxes combined are typically smaller than the available energy from net radiation and soil heat flux (commonly referred to as lack of energy balance closure). Reasons for this are the subject of ongoing research. We compare ET from LYS, NP and EC methods applied to field crops for three years at Bushland, Texas (35° 11' N, 102° 06' W, 1170 m elevation above MSL) to illustrate the potential problems with and comparative advantages of all three methods. In particular, we examine how networks of neutron probe access tubes can be representative of field areas large enough to be equivalent in size to EC footprints, and how the ET data from these methods can address bias and accuracy issues.

  13. Micrometeorological Technique for Monitoring of Geological Carbon Capture, Utilization and Storage: Methodology, Workflow and Resources

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Madsen, R.; Feese, K.

    2013-12-01

    The eddy covariance (EC) method is a micrometeorological technique for direct high-speed measurements of the transport of gases and energy between land or water surfaces and the atmosphere [1]. This method allows for observations of gas transport scales from 20-40 times per second to multiple years, represents gas exchange integrated over a large area, from hundreds of square meters to tens of square kilometres, and corresponds to gas exchange from the entire surface, including canopy, and soil or water layers. Gas fluxes, emission and exchange rates are characterized from single-point in situ measurements using permanent or mobile towers, or moving platforms such as automobiles, helicopters, airplanes, etc. Presently, over 600 eddy covariance stations are in operation in over 120 countries [1]. EC is now recognized as an effective method in regulatory and industrial applications, including CCUS [2-10]. Emerging projects utilize EC to continuously monitor large areas before and after the injections, to locate and quantify leakages where CO2 may escape from the subsurface, to improve storage efficiency, and for other CCUS characterizations [5-10]. Although EC is one of the most direct and defensible micrometeorological techniques measuring gas emission and transport, and complete automated stations and processing are readily available, the method is mathematically complex, and requires careful setup and execution specific to the site and project. With this in mind, step-by-step instructions were created in [1] to introduce a novice to the EC method, and to assist in further understanding of the method through more advanced references. In this presentation we provide brief highlights of the eddy covariance method, its application to geological carbon capture, utilization and storage, key requirements, instrumentation and software, and review educational resources particularly useful for carbon sequestration research. References: [1] Burba G. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications. LI-COR Biosciences; 2013. [2] International Energy Agency. Quantification techniques for CO2 leakage. IEA-GHG; 2012. [3] US Department of Energy. Best Practices for Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations. US DOE; 2012. [4] Liu G. (Ed.). Greenhouse Gases: Capturing, Utilization and Reduction. Intech; 2012. [5] Finley R. et al. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin - Phase III. DOE-MGSC; DE-FC26-05NT42588; 2012. [6] LI-COR Biosciences. Surface Monitoring for Geologic Carbon Sequestration. LI-COR, 980-11916, 2011. [7] Lewicki J., Hilley G. Eddy covariance mapping and quantification of surface CO2 leakage fluxes. GRL, 2009; 36: L21802. [8] Finley R. An Assessment of Geological Carbon Sequestration in the Illinois Basin. Overview of the Decatur-Illinois Basin Site. DOE-MGSC; 2009. [9] Eggleston H., et al. (Eds). IPCC Guidelines for National Greenhouse Gas Inventories, IPCC NGGI P, WMO/UNEP; 2006-2011. [10] Burba G., Madsen R., Feese K. Eddy Covariance Method for CO2 Emission Measurements in CCUS Applications: Principles, Instrumentation and Software. Energy Procedia; Submitted: 1-8.

  14. Eddy Covariance Measurements Over a Maize Field: The Contribution of Minor Flux Terms to the Energy Balance Gap

    NASA Astrophysics Data System (ADS)

    Smidt, J.; Ingwersen, J.; Streck, T.

    2015-12-01

    The lack of energy balance closure is a long-standing problem in eddy covariance (EC) measurements. The energy balance equation is defined as Rn - G = H + λE, where Rn is net radiation, G is the ground heat flux, H is the sensible heat flux and λE is the latent heat flux. In most cases of energy imbalance, either Rn is overestimated or the ground heat and turbulent fluxes are underestimated. Multiple studies have shown that calculations, incorrect instrument installation/calibration and measurement errors alone do not entirely account for this imbalance. Rather, research is now focused on previously neglected sources of heat storage in the soil, biomass and air beneath the EC station. This project examined the potential of five "minor flux terms" - soil heat storage, biomass heat storage, energy consumption by photosynthesis, air heat storage and atmospheric moisture change, to further close the energy balance gap. Eddy covariance measurements were conducted at a maize (Zea mays) field in southwest Germany during summer 2014. Soil heat storage was measured for six weeks at 11 sites around the field footprint. Biomass and air heat storage were measured for six subsequent weeks at seven sites around the field footprint. Energy consumption by photosynthesis was calculated using the CO2 flux data. Evapotranspiration was calculated using the water balance method and then compared to the flux data processed with three post-closure methods: the sensible heat flux, the latent heat flux and the Bowen ratio post-closure methods. An energy balance closure of 66% was achieved by the EC station measurements over the entire investigation period. During the soil heat flux campaign, EC station closure was 74.1%, and the field footprint soil heat storage contributed 3.3% additional closure. During the second minor flux term measurement period, closure with the EC station data was 91%. Biomass heat storage resulted in 1.1% additional closure, the photosynthesis flux closed the gap by an additional 7.8%, air heat storage closure was -0.3% and atmospheric moisture change was negligible with an additional closure of <0.01%. These four terms resulted in a total additional closure of 8.6% over the EC station measurements. The Bowen Ratio post-closure method yielded values most similar to the water balance method over the entire season.

  15. A True Eddy Accumulation - Eddy Covariance hybrid for measurements of turbulent trace gas fluxes

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas

    2016-04-01

    Eddy covariance (EC) is state-of-the-art in directly and continuously measuring turbulent fluxes of carbon dioxide and water vapor. However, low signal-to-noise ratios, high flow rates and missing or complex gas analyzers limit it's application to few scalars. True eddy accumulation, based on conditional sampling ideas by Desjardins in 1972, requires no fast response analyzers and is therefore potentially applicable to a wider range of scalars. Recently we showed possibly the first successful implementation of True Eddy Accumulation (TEA) measuring net ecosystem exchange of carbon dioxide of a grassland. However, most accumulation systems share the complexity of having to store discrete air samples in physical containers representing entire flux averaging intervals. The current study investigates merging principles of eddy accumulation and eddy covariance, which we here refer to as "true eddy accumulation in transient mode" (TEA-TM). This direct flux method TEA-TM combines true eddy accumulation with continuous sampling. The TEA-TM setup is simpler than discrete accumulation methods while avoiding the need for fast response gas analyzers and high flow rates required for EC. We implemented the proposed TEA-TM method and measured fluxes of carbon dioxide (CO2), methane (CH4) and water vapor (H2O) above a mixed beech forest at the Hainich Fluxnet and ICOS site, Germany, using a G2301 laser spectrometer (Picarro Inc., USA). We further simulated a TEA-TM sampling system using measured high frequency CO2 time series from an open-path gas analyzer. We operated TEA-TM side-by-side with open-, enclosed- and closed-path EC flux systems for CO2, H2O and CH4 (LI-7500, LI-7200, LI-6262, LI-7700, Licor, USA, and FGGA LGR, USA). First results show that TEA-TM CO2 fluxes were similar to EC fluxes. Remaining differences were similar to those between the three eddy covariance setups (open-, enclosed- and closed-path gas analyzers). Measured TEA-TM CO2 fluxes from our physical sampling system closely reproduced dynamics of simulated TEA-TM fluxes. In conclusion this study introduces a new approach to trace gas flux measurements using transient-mode true eddy accumulation. First TEA-TM CO2 fluxes compared favorably with side-by-side EC fluxes, in agreement with our previous experiments comparing discrete TEA to EC. True eddy accumulation has thus potential for measuring turbulent fluxes of a range of atmospheric tracers using slow response analyzers.

  16. Determining the oxygen isotope composition of evapotranspiration with eddy covariance

    USDA-ARS?s Scientific Manuscript database

    The oxygen isotope componsition of evapotranspiration (dF) represents an important tracer in the study of biosphere-atmosphere interactions, hydrology, paleoclimate, and carbon cycling. Here we demonstrate direct measurement of dF based on eddy covariance (EC) and tunable diode laser (EC-TDL) techni...

  17. Analysis of fMRI data using noise-diffusion network models: a new covariance-coding perspective.

    PubMed

    Gilson, Matthieu

    2018-04-01

    Since the middle of the 1990s, studies of resting-state fMRI/BOLD data have explored the correlation patterns of activity across the whole brain, which is referred to as functional connectivity (FC). Among the many methods that have been developed to interpret FC, a recently proposed model-based approach describes the propagation of fluctuating BOLD activity within the recurrently connected brain network by inferring the effective connectivity (EC). In this model, EC quantifies the strengths of directional interactions between brain regions, viewed from the proxy of BOLD activity. In addition, the tuning procedure for the model provides estimates for the local variability (input variances) to explain how the observed FC is generated. Generalizing, the network dynamics can be studied in the context of an input-output mapping-determined by EC-for the second-order statistics of fluctuating nodal activities. The present paper focuses on the following detection paradigm: observing output covariances, how discriminative is the (estimated) network model with respect to various input covariance patterns? An application with the model fitted to experimental fMRI data-movie viewing versus resting state-illustrates that changes in local variability and changes in brain coordination go hand in hand.

  18. Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals.

    PubMed

    Engemann, Denis A; Gramfort, Alexandre

    2015-03-01

    Magnetoencephalography and electroencephalography (M/EEG) measure non-invasively the weak electromagnetic fields induced by post-synaptic neural currents. The estimation of the spatial covariance of the signals recorded on M/EEG sensors is a building block of modern data analysis pipelines. Such covariance estimates are used in brain-computer interfaces (BCI) systems, in nearly all source localization methods for spatial whitening as well as for data covariance estimation in beamformers. The rationale for such models is that the signals can be modeled by a zero mean Gaussian distribution. While maximizing the Gaussian likelihood seems natural, it leads to a covariance estimate known as empirical covariance (EC). It turns out that the EC is a poor estimate of the true covariance when the number of samples is small. To address this issue the estimation needs to be regularized. The most common approach downweights off-diagonal coefficients, while more advanced regularization methods are based on shrinkage techniques or generative models with low rank assumptions: probabilistic PCA (PPCA) and factor analysis (FA). Using cross-validation all of these models can be tuned and compared based on Gaussian likelihood computed on unseen data. We investigated these models on simulations, one electroencephalography (EEG) dataset as well as magnetoencephalography (MEG) datasets from the most common MEG systems. First, our results demonstrate that different models can be the best, depending on the number of samples, heterogeneity of sensor types and noise properties. Second, we show that the models tuned by cross-validation are superior to models with hand-selected regularization. Hence, we propose an automated solution to the often overlooked problem of covariance estimation of M/EEG signals. The relevance of the procedure is demonstrated here for spatial whitening and source localization of MEG signals. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Data Sharing and Scientific Impact in Eddy Covariance Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond-Lamberty, B.

    Do the benefits of data sharing outweigh its perceived costs? This is a critical question, and one with the potential to change culture and behavior. Dai et al. (2018) examine how data sharing is related to scientific impact in the field of eddy covariance (EC), and find that data sharers are disproportionately high-impact researchers, and vice versa; they also note strong regional differences in EC data sharing norms. The current policies and restrictions of EC journals and repositories are highly uneven. Incentivizing data sharing and enhancing computational reproducibility are critical next steps for EC, ecology, and science more broadly.

  20. Flux variance partitioning: a new approach to advance eddy covariance observations for greenhouse gas emissions

    USDA-ARS?s Scientific Manuscript database

    Eddy covariance (EC) is a well-established, non-intrusive observational technique that has long been used to measure the net carbon balance of numerous ecosystems including crop lands for perennial crops such as orchards and vineyards, and pasturelands. While EC measures net carbon fluxes well, it ...

  1. Eddy covariance measurements of methane fluxes over grazed native and improved prairies in Oklahoma

    USDA-ARS?s Scientific Manuscript database

    Although several studies have reported eddy covariance (EC) measurements at several tallgrass prairie sites to investigate the dynamics of carbon and water vapor fluxes, the EC measurements of methane (CH4) fluxes over grazed tallgrass prairie sites are lacking. CH4 fluxes were measured during the 2...

  2. Evaluation of new flux attribution methods for mapping N2O emissions at the landscape scale from EC measurements

    NASA Astrophysics Data System (ADS)

    Grossel, Agnes; Bureau, Jordan; Loubet, Benjamin; Laville, Patricia; Massad, Raia; Haas, Edwin; Butterbach-Bahl, Klaus; Guimbaud, Christophe; Hénault, Catherine

    2017-04-01

    The objective of this study was to develop and evaluate an attribution method based on a combination of Eddy Covariance (EC) and chamber measurements to map N2O emissions over a 3-km2 area of croplands and forests in France. During 2 months of spring 2015, N2O fluxes were measured (i) by EC at 15 m height and (ii) punctually with a mobile chamber at 16 places within 1-km of EC mast. The attribution method was based on coupling the EC measurements, information on footprints (Loubet et al., 20101) and emission ratios based on crops and fertilizations, calculated based on chamber measurements. The results were evaluated against an independent flux dataset measured by automatic chambers in a wheat field within the area. At the landscape scale, the method estimated a total emission of 114-271 kg N-N2O during the campaign. This new approach allowed estimating continuously N2O emission and better accounting for the spatial variability of N2O emission at the landscape scale.

  3. On the coupled use of eddy covariance, sap flow sensors and remote sensing information for Evapotranspiration estimates in a typical heterogeneous Mediterranean ecosystem.

    NASA Astrophysics Data System (ADS)

    Corona, R.; Montaldo, N.

    2017-12-01

    Mediterranean ecosystems are typically heterogeneous, with contrasting plant functional types (PFT, woody vegetation and grass) that compete for water use. Due to the complexity of these ecosystems there is still uncertainty on the estimate of the evapotranspiration (ET). Micrometerological measurements (e.g. eddy covariance method based, EC ) are widely used for ET estimate, but in heterogeneous systems one of the main assumption (surface homogeneity) is not preserved and the method may become less robust. In this sense, the coupled use of sap flow sensors for tree transpiration estimate, surface temperature sensors, remote sensing information for land surface characterization allow to estimate the ET components and the energy balances of the three main land surface components (woody vegetation, grass and bare soil), overtaking the EC method uncertainties. The experimental site of Orroli, in Sardinia (Italy), is a typical Mediterranean heterogeneous ecosystem, monitored from the University of Cagliari since 2003. With the intent to perform an intensive field campaign for the ET estimation, we verified the potentiality of coupling eddy covariance (EC) method, infrared sensors and thermal dissipation methods (i.e. sap flow technique) for tree transpiration estimate. As a first step 3 commercial sap flux sensors were installed in a wild olive clump where the skin temperature of one tree in the clump was monitored with an infrared transducer. Then, other 54 handmade sensors were installed in 14 clumps in the EC footprint. Measurements of diameter were recorded in all the clumps and the sapwood depth was derived from measurements in several trees. The field ET estimation from the 4 commercial sensors was obtained assuming 4 different relationship between the monitored sap flux and the diameter of the species in the footprint. Instead for the 54 handmade sensors a scaling procedure was applied based on the allometric relationships between sapwood area, diameter and canopy cover area within the EC footprint. Furthermore, the hydrologic relationships between soil moisture content and ET of woody vegetation has been computed from sap flux measurements. The ET components are well estimated, highlighting the strong water resistance of wild olive, which survive in drastic dry conditions, in contrast with grass species.

  4. Longitudinal relations among parents' reactions to children's negative emotions, effortful control, and math achievement in early elementary school.

    PubMed

    Swanson, Jodi; Valiente, Carlos; Lemery-Chalfant, Kathryn; Bradley, Robert H; Eggum-Wilkens, Natalie D

    2014-01-01

    Panel mediation models and fixed-effects models were used to explore longitudinal relations among parents' reactions to children's displays of negative emotions, children's effortful control (EC), and children's math achievement (N = 291; M age in fall of kindergarten = 5.66 years, SD = .39 year) across kindergarten through second grade. Parents reported their reactions and children's EC. Math achievement was assessed with a standardized achievement test. First-grade EC mediated the relation between parents' reactions at kindergarten and second-grade math achievement, beyond stability in constructs across study years. Panel mediation model results suggested that socialization of EC may be one method of promoting math achievement in early school; however, when all omitted time-invariant covariates of EC and math achievement were controlled, first-grade EC no longer predicted second-grade math achievement. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.

  5. N2O fluxes over a corn field from an open-path, laser-based eddy covariance system and static chambers

    NASA Astrophysics Data System (ADS)

    Tao, L.; Pan, D.; Gelfand, I.; Abraha, M.; Moyer, R.; Poe, A.; Sun, K.; Robertson, P.; Zondlo, M. A.

    2015-12-01

    Nitrous oxide (N2O) is important greenhouse and ozone-depleting gase. Although many efforts have been paid to N2O emissions, the spatial and temporal variability of N2O emissions still subject to large uncertainty. Application of the eddy covariance method for N2O emissions research would allow continuous ecosystem level flux measurements. The caveat, however, is need for high precision and high frequency measurements in field. In this study, an open-path, quantum cascade-laser-based eddy covariance N2O sensor has been deployed nearly continuously since May 2015 over a corn field at the W.K. Kellogg Biological Station site in SW Michigan. The field precision of the N2O sensor was assessed to be 0.1 ppbv at 10 Hz, and the total consumption was ~ 40 W, allowing the system to be powered solely by solar panels. The stability of the sensor under different temperature and humidity was tested within an environmental chamber. Spectroscopic experiments and cospectra analyses were carried out to study specific corrections associated with the sensor for eddy covariance techniques, including the line broadening effect due to water vapor and high frequency flux attenuation owning to sample path averaging. Ogive analyses indicated that the high-frequency N2O flux loss due to various damping effects was comparable to those of the CO2 flux. The detection limit of flux was estimated to be 0.3 ng N s-1 m-2 with a flux averaging interval of 30 minutes. The results from the EC system were also compared with ground measurements by standard static chambers (SC). Overall, more than 150 individual chamber measurements were taken within the footprint of the EC system. We found good correlation between the EC and SC methods given the spatiotemporal differences between the two techniques (R2 = 0.75). Both methods detected increased emissions during afternoon as compared to morning and night hours. Differences between EC and SC were also studied by investigating spatial variability with a footprint model. Our results indicate diurnality of ecosystem level N2O emissions may have important consequences for both field and global scale budgets and highlight the need of more continuous measurements for future investigation.

  6. Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy.

    PubMed

    Pierce, Ashley M; Moore, Christopher W; Wohlfahrt, Georg; Hörtnagl, Lukas; Kljun, Natascha; Obrist, Daniel

    2015-02-03

    A newly developed pulsed cavity ring-down spectroscopy (CRDS) system for measuring atmospheric gaseous elemental mercury (GEM) concentrations at high temporal resolution (25 Hz) was used to successfully conduct the first eddy covariance (EC) flux measurements of GEM. GEM is the main gaseous atmospheric form, and quantification of bidirectional exchange between the Earth's surface and the atmosphere is important because gas exchange is important on a global scale. For example, surface GEM emissions from natural sources, legacy emissions, and re-emission of previously deposited anthropogenic pollution may exceed direct primary anthropogenic emissions. Using the EC technique for flux measurements requires subsecond measurements, which so far has not been feasible because of the slow time response of available instrumentation. The CRDS system measured GEM fluxes, which were compared to fluxes measured with the modified Bowen ratio (MBR) and a dynamic flux chamber (DFC). Measurements took place near Reno, NV, in September and October 2012 encompassing natural, low-mercury (Hg) background soils and Hg-enriched soils. During nine days of measurements with deployment of Hg-enriched soil in boxes within 60 m upwind of the EC tower, the covariance of GEM concentration and vertical wind speed was measured, showing that EC fluxes over an Hg-enriched area were detectable. During three separate days of flux measurements over background soils (without Hg-enriched soils), no covariance was detected, indicating fluxes below the detection limit. When fluxes were measurable, they strongly correlated with wind direction; the highest fluxes occurred when winds originated from the Hg-enriched area. Comparisons among the three methods showed good agreement in direction (e.g., emission or deposition) and magnitude, especially when measured fluxes originated within the Hg-enriched soil area. EC fluxes averaged 849 ng m(-2) h(-1), compared to DFC fluxes of 1105 ng m(-2) h(-1) and MBR fluxes of 1309 ng m(-2) h(-1). This study demonstrated that a CRDS system can be used to measure GEM fluxes over Hg-enriched areas, with a conservative detection limit estimate of 32 ng m(-2) h(-1).

  7. Effects of different eddy covariance correction schemes on energy balance closure and comparisons with the modified Bowen ratio system

    Treesearch

    Adam Wolf; Nick Saliendra; Kanat Akshalov; Douglas A. Johnson; Emilio Laca

    2008-01-01

    Eddy covariance (EC) and modified Bowen ratio (MBR) systems have been shown to yield subtly different estimates of sensible heat (H), latent heat (LE), and CO2 fluxes (Fc). Our study analyzed the discrepancies between these two systems by first considering the role of the data processing algorithm used to estimate fluxes using EC and later...

  8. Surface renewal application and examination over different AmeriFlux landscapes

    USDA-ARS?s Scientific Manuscript database

    Some growing canopy or patchy forest sites may preclude optimal use of eddy covariance (EC) because their characteristics prevent consistent measurements in the inertial sublayer. Therefore, alternative flux measurement methods with the potential to measure in roughness sublayer are desirable. The s...

  9. Comparing methods for partitioning a decade of carbon dioxide and water vapor fluxes in a temperate forest

    Treesearch

    Benjamin N. Sulman; Daniel Tyler Roman; Todd M. Scanlon; Lixin Wang; Kimberly A. Novick

    2016-01-01

    The eddy covariance (EC) method is routinely used to measure net ecosystem fluxes of carbon dioxide (CO2) and evapotranspiration (ET) in terrestrial ecosystems. It is often desirable to partition CO2 flux into gross primary production (GPP) and ecosystem respiration (RE), and to partition ET into evaporation and...

  10. Comparison of methods for estimating evapotranspiration in a small rangeland catchment

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) was quantified for two rangeland vegetation types, aspen and sagebrush/grassland, over an eight year study period by comparing several approaches for estimating ET: eddy covariance systems (EC, available for only six years); soil water storage loss measured by time domain ref...

  11. Value of eddy-covariance data for individual-based, forest gap models

    NASA Astrophysics Data System (ADS)

    Roedig, Edna; Cuntz, Matthias; Huth, Andreas

    2014-05-01

    Individual-based forest gap models simulate tree growth and carbon fluxes on large time scales. They are a well established tool to predict forest dynamics and successions. However, the effect of climatic variables on processes of such individual-based models is uncertain (e.g. the effect of temperature or soil moisture on the gross primary production (GPP)). Commonly, functional relationships and parameter values that describe the effect of climate variables on the model processes are gathered from various vegetation models of different spatial scales. Though, their accuracies and parameter values have not been validated for the specific model scales of individual-based forest gap models. In this study, we address this uncertainty by linking Eddy-covariance (EC) data and a forest gap model. The forest gap model FORMIND is applied on the Norwegian spruce monoculture forest at Wetzstein in Thuringia, Germany for the years 2003-2008. The original parameterizations of climatic functions are adapted according to the EC-data. The time step of the model is reduced to one day in order to adapt to the high resolution EC-data. The FORMIND model uses functional relationships on an individual level, whereas the EC-method measures eco-physiological responses at the ecosystem level. However, we assume that in homogeneous stands as in our study, functional relationships for both methods are comparable. The model is then validated at the spruce forest Waldstein, Germany. Results show that the functional relationships used in the model, are similar to those observed with the EC-method. The temperature reduction curve is well reflected in the EC-data, though parameter values differ from the originally expected values. For example at the freezing point, the observed GPP is 30% higher than predicted by the forest gap model. The response of observed GPP to soil moisture shows that the permanent wilting point is 7 vol-% lower than the value derived from the literature. The light response curve, integrated over the canopy and the forest stand, is underestimated compared to the measured data. The EC-method measures a yearly carbon balance of 13 mol(CO2)m-2 for the Wetzstein site. The model with the original parameterization overestimates the yearly carbon balance by nearly 5 mol(CO2)m-2 while the model with an EC-based parameterization fits the measured data very well. The parameter values derived from EC-data are applied on the spruce forest Waldstein and clearly improve estimates of the carbon balance.

  12. Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method

    NASA Astrophysics Data System (ADS)

    Erkkilä, Kukka-Maaria; Ojala, Anne; Bastviken, David; Biermann, Tobias; Heiskanen, Jouni J.; Lindroth, Anders; Peltola, Olli; Rantakari, Miitta; Vesala, Timo; Mammarella, Ivan

    2018-01-01

    Freshwaters bring a notable contribution to the global carbon budget by emitting both carbon dioxide (CO2) and methane (CH4) to the atmosphere. Global estimates of freshwater emissions traditionally use a wind-speed-based gas transfer velocity, kCC (introduced by Cole and Caraco, 1998), for calculating diffusive flux with the boundary layer method (BLM). We compared CH4 and CO2 fluxes from BLM with kCC and two other gas transfer velocities (kTE and kHE), which include the effects of water-side cooling to the gas transfer besides shear-induced turbulence, with simultaneous eddy covariance (EC) and floating chamber (FC) fluxes during a 16-day measurement campaign in September 2014 at Lake Kuivajärvi in Finland. The measurements included both lake stratification and water column mixing periods. Results show that BLM fluxes were mainly lower than EC, with the more recent model kTE giving the best fit with EC fluxes, whereas FC measurements resulted in higher fluxes than simultaneous EC measurements. We highly recommend using up-to-date gas transfer models, instead of kCC, for better flux estimates. BLM CO2 flux measurements had clear differences between daytime and night-time fluxes with all gas transfer models during both stratified and mixing periods, whereas EC measurements did not show a diurnal behaviour in CO2 flux. CH4 flux had higher values in daytime than night-time during lake mixing period according to EC measurements, with highest fluxes detected just before sunset. In addition, we found clear differences in daytime and night-time concentration difference between the air and surface water for both CH4 and CO2. This might lead to biased flux estimates, if only daytime values are used in BLM upscaling and flux measurements in general. FC measurements did not detect spatial variation in either CH4 or CO2 flux over Lake Kuivajärvi. EC measurements, on the other hand, did not show any spatial variation in CH4 fluxes but did show a clear difference between CO2 fluxes from shallower and deeper areas. We highlight that while all flux measurement methods have their pros and cons, it is important to carefully think about the chosen method and measurement interval, as well as their effects on the resulting flux.

  13. Effect of chronic low level manganese exposure on postural balance: A pilot study of residents in southwest Ohio

    PubMed Central

    Standridge, J. S.; Bhattacharya, Amit; Succop, Paul; Cox, Cyndy; Haynes, Erin

    2009-01-01

    OBJECTIVE The objective of this study was to determine the effect of non-occupational exposure to manganese on postural balance. METHODS Residents living near a ferromanganese refinery provided hair and blood samples after postural balance testing. The relationship between hair manganese and postural balance was analyzed with logistic regression. Following covariate adjustment, postural balance was compared with control data by analysis of covariance. RESULTS Mean hair manganese was 4.4 µg/g. A significantly positive association was found between hair manganese and sway area (EO, p=0.05; EC, p=0.04) and sway length (EO, p=0.05; EC, p=0.04). Postural balance of residents was significantly larger than controls in 5 out of 8 postural balance outcomes. CONCLUSION Preliminary findings suggest subclinical impairment in postural balance among residents chronically exposed to ambient Mn. A prospective study with a larger sample size is warranted. PMID:19092498

  14. Eddy covariance methane flux measurements over a grazed pasture: effect of cows as moving point sources

    NASA Astrophysics Data System (ADS)

    Felber, R.; Münger, A.; Neftel, A.; Ammann, C.

    2015-06-01

    Methane (CH4) from ruminants contributes one-third of global agricultural greenhouse gas emissions. Eddy covariance (EC) technique has been extensively used at various flux sites to investigate carbon dioxide exchange of ecosystems. Since the development of fast CH4 analyzers, the instrumentation at many flux sites has been amended for these gases. However, the application of EC over pastures is challenging due to the spatially and temporally uneven distribution of CH4 point sources induced by the grazing animals. We applied EC measurements during one grazing season over a pasture with 20 dairy cows (mean milk yield: 22.7 kg d-1) managed in a rotational grazing system. Individual cow positions were recorded by GPS trackers to attribute fluxes to animal emissions using a footprint model. Methane fluxes with cows in the footprint were up to 2 orders of magnitude higher than ecosystem fluxes without cows. Mean cow emissions of 423 ± 24 g CH4 head-1 d-1 (best estimate from this study) correspond well to animal respiration chamber measurements reported in the literature. However, a systematic effect of the distance between source and EC tower on cow emissions was found, which is attributed to the analytical footprint model used. We show that the EC method allows one to determine CH4 emissions of cows on a pasture if the data evaluation is adjusted for this purpose and if some cow distribution information is available.

  15. Eddy covariance methane flux measurements over a grazed pasture: effect of cows as moving point sources

    NASA Astrophysics Data System (ADS)

    Felber, R.; Münger, A.; Neftel, A.; Ammann, C.

    2015-02-01

    Methane (CH4) from ruminants contributes one third to global agricultural greenhouse gas emissions. Eddy covariance (EC) technique has been extensively used at various flux sites to investigate carbon dioxide exchange of ecosystems. Since the development of fast CH4 analysers the instrumentation at many flux sites have been amended for these gases. However the application of EC over pastures is challenging due to the spatial and temporal uneven distribution of CH4 point sources induced by the grazing animals. We applied EC measurements during one grazing season over a pasture with 20 dairy cows (mean milk yield: 22.7 kg d-1) managed in a rotational grazing system. Individual cow positions were recorded by GPS trackers to attribute fluxes to animal emissions using a footprint model. Methane fluxes with cows in the footprint were up to two orders of magnitude higher than ecosystem fluxes without cows. Mean cow emissions of 423 ± 24 g CH4 head-1 d-1 (best guess of this study) correspond well to animal respiration chamber measurements reported in the literature. However a systematic effect of the distance between source and EC tower on cow emissions was found which is attributed to the analytical footprint model used. We show that the EC method allows to determine CH4 emissions of grazing cows if the data evaluation is adjusted for this purpose and if some cow distribution information is available.

  16. Constraining Night Time Ecosystem Respiration by Inverse Approaches

    NASA Astrophysics Data System (ADS)

    Juang, J.; Stoy, P. C.; Siqueira, M. B.; Katul, G. G.

    2004-12-01

    Estimating nighttime ecosystem respiration remains a key challenge in quantifying ecosystem carbon budgets. Currently, nighttime eddy-covariance (EC) flux measurements are plagued by uncertainties often attributed to poor mixing within the canopy volume, non-turbulent transport of CO2 into and out of the canopy, and non-stationarity and intermittency. Here, we explore the use of second-order closure models to estimate nighttime ecosystem respiration by mathematically linking sources of CO2 to mean concentration profiles via the continuity and the CO2 flux budget equation modified to include thermal stratification. By forcing this model to match, in a root-mean squared sense, the nighttime measured mean CO2 concentration profiles within the canopy the above ground CO2 production and forest floor respiration can be estimated via multi-dimensional optimization techniques. We show that in a maturing pine and a mature hardwood forest, these optimized CO2 sources are (1) consistently larger than the eddy covariance flux measurements above the canopy, and (2) agree well with chamber-based measurements. We also show that by linking the optimized nighttime ecosystem respiration to temperature measurements, the estimated annual ecosystem respiration from this approach agrees well with biometric estimates, at least when compared to eddy-covariance methods conditioned on a friction velocity threshold. The difference between the annual ecosystem respiration obtained by this optimization method and the friction-velocity thresholded night-time EC fluxes can be as large as 700 g C m-2 (in 2003) for the maturing pine forest, which is about 40% of the ecosystem respiration. For 2001 and 2002, the annual ecosystem respiration differences between the EC-based and the proposed approach were on the order of 300 to 400 g C m-2.

  17. Components of ecosystem evaporation in a temperate coniferous rainforest, with canopy transpiration scaled using sapwood density.

    PubMed

    Barbour, M M; Hunt, J E; Walcroft, A S; Rogers, G N D; McSeveny, T M; Whitehead, D

    2005-02-01

    Here we develop and test a method to scale sap velocity measurements from individual trees to canopy transpiration (E(c)) in a low-productivity, old-growth rainforest dominated by the conifer Dacrydium cupressinum. Further, E(c) as a component of the ecosystem water balance is quantified in relation to forest floor evaporation rates and measurements of ecosystem evaporation using eddy covariance (E(eco)) in conditions when the canopy was dry and partly wet. Thermal dissipation probes were used to measure sap velocity of individual trees, and scaled to transpiration at the canopy level by dividing trees into classes based on sapwood density and canopy position (sheltered or exposed). When compared with ecosystem eddy covariance measurements, E(c) accounted for 51% of E(eco) on dry days, and 22% of E(eco) on wet days. Low transpiration rates, and significant contributions to E(eco) from wet canopy evaporation and understorey transpiration (35%) and forest floor evaporation (25%), were attributable to the unique characteristics of the forest: in particular, high rainfall, low leaf area index, low stomatal conductance and low productivity associated with severe nutrient limitation.

  18. Using the Surface Renewal Technique to Estimate CO2 Exchange from a Rice Field to the Atmosphere

    NASA Astrophysics Data System (ADS)

    Suvocarev, K.; Reba, M. L.; Runkle, B.

    2015-12-01

    Measuring CO2 emissions as surface fluxes is crucial for climate change predictions. One major set of techniques to measure surface fluxes is through continuous micrometeorological observations over different landscapes. Recent approaches of the surface renewal method (SR) are becoming important for their capacity to independently measure sensible (H) and latent heat (LE) fluxes while avoiding some of the shortcomings of the eddy covariance method (EC). Unlike EC, SR avoids orientation limitations, leveling requirements and instrumentation separation and shadowing issues. The main advantage of SR over EC method is in its applicability in both roughness and inertial sub-layers. Therefore, SR measurements can be planned in cases where fetch requirements are not adequate for EC application. We applied the recent approach as suggested by Castellvi et al. (2008) over two months (May to July, 2015) of high-frequency data collected by EC equipment from a rice field in Arkansas. The main goal was to extend this SR application to CO2 fluxes (Fc) over agricultural fields. The results show high correlation between EC and SR fluxes (H, LE and Fc) when they are compared for all atmospheric stability conditions (R2 > 0.75). Some overestimation is observed for SR with respect to EC fluxes, similar to the findings of Castellvi et al. (2008) for rangeland grass. For all the data, SR analysis results were about 11%, 18% and 17% higher than the EC results for H, LE and Fc, respectively. These higher flux estimates resulted in better energy balance closure. The root mean square error for Fc was 6.55 μmol m-2 s-1. The observed overestimation will be addressed in the future by using additional methods for the turbulent fluxes quantification.

  19. Storage flux uncertainty impact on eddy covariance net ecosystem exchange measurements

    NASA Astrophysics Data System (ADS)

    Nicolini, Giacomo; Aubinet, Marc; Feigenwinter, Christian; Heinesch, Bernard; Lindroth, Anders; Mamadou, Ossénatou; Moderow, Uta; Mölder, Meelis; Montagnani, Leonardo; Rebmann, Corinna; Papale, Dario

    2017-04-01

    Complying with several assumption and simplifications, most of the carbon budget studies based on eddy covariance (EC) measurements, quantify the net ecosystem exchange (NEE) by summing the flux obtained by EC (Fc) and the storage flux (Sc). Sc is the rate of change of CO2, within the so called control volume below the EC measurement level, given by the difference in the instantaneous profiles of concentration at the beginning and end of the EC averaging period, divided by the averaging period. While cumulating over time led to a nullification of Sc, it can be significant at short time periods. The approaches used to estimate Sc fluxes largely vary, from measurements based only on a single sampling point (usually located at the EC measurement height) to measurements based on several sampling profiles distributed within the control volume. Furthermore, the number of sampling points within each profile vary, according to their height and the ecosystem typology. It follows that measurement accuracy increases with the sampling intensity within the control volume. In this work we use the experimental dataset collected during the ADVEX campaign in which Sc flux has been measured in three similar forest sites by the use of 5 sampling profiles (towers). Our main objective is to quantify the impact of Sc measurement uncertainty on NEE estimates. Results show that different methods may produce substantially different Sc flux estimates, with problematic consequences in case high frequency (half-hourly) data are needed for the analysis. However, the uncertainty on long-term estimates may be tolerate.

  20. Eddy Covariance measurements of stable isotopes (δD and δ18O) in water vapor

    NASA Astrophysics Data System (ADS)

    Braden-Behrens, Jelka; Knohl, Alexander

    2017-04-01

    Stable isotopes are a promising tool to enhance our understanding of ecosystem gas exchanges. Studying 18O and 2H in water vapour (H2Ov) can e.g. help partitioning evapotranspiration into its components. With recent developments in laser spectroscopy direct Eddy Covariance (EC) measurements for investigating fluxes of stable isotopologues became feasible. So far very few case studies have applied the EC method to measure stable isotopes in water vapor. We continuously measure fluxes of water vapor isotopologues with the EC method in a managed beech forest in Thuringia, Germany, since autumn 2015 using the following setup: An off-axis integrated cavity output water vapor isotope analyzer (WVIA, Los Gatos Research. Inc, USA) measures the water vapour concentration and its isotopic composition (δD and δ18O). The instrument, that was optimized for high flow rates (app. 4slpm) to generate high frequency (2Hz) measurements, showed sufficient precision with Allan Deviations of app. 0.12 ‰ for δD and 0.06 ‰ for δ18O for averaging periods of 100s. The instrument was calibrated hourly using a high-flow optimized version of the water vapor isotope standard source (WVISS, Los Gatos Research. Inc, USA) that provides water vapor with known isotopic composition for a large range of different concentrations. Our calibration scheme includes a near continuous concentration range calibration instead of a simple 2 or 3-point calibration to face the analyzers strong concentration dependency within a range of app. 6 000 to 16 000 ppm in winter and app. 8 000 to 23 000 ppm in summer. In the used setup, the high-flow and high-frequency optimized water vapor isotope analyzer (WVIA) showed suitable characteristics (Allan deviation and spectral energy distribution) to perform Eddy covariance measurements of stable isotopes in H2Ov. Thus, this novel instrument for EC measurements of water vapor isotopologues provides a new opportunity for studying the hydrological cycle in long-term observation networks like Fluxnet and ICOS.

  1. Why we need to estimate the sampling uncertainty of eddy covariance flux measurement?

    NASA Astrophysics Data System (ADS)

    Kim, W.; Seo, H. H.

    2015-12-01

    Fruitful studies on exchanges of energy, water and carbon dioxide between the atmosphere and terrestrial ecosystem has been produced under a global network (http://fluxnet.ornl.gov). The exchange is defined by a flux, and in traditional the flux is estimated with eddy covariance (EC) method as a mean flux F for 30-min or 1-hr, because no techniques have been established for a direct measurement of a momentary flux itself. Therefore, the exchange analysis with F is to paid attention to estimations of spatial or temporal mean, because the exchange estimated by arithmetic mean Fa might be inappropriate in terms of the sample F used in this averaging having nonidentical inherent quality within one another in accordance with different micrometeorological and ecophysiological conditions while those are measured by the same instruments. To overcome this issue, we propose the weighted mean Fw using a relative sampling uncertainty ɛ estimated by a sampling F and its uncertainty, and introduce Fw performance tested with EC measurements for various sites.

  2. Comparison of methods for quantifying surface sublimation over seasonally snow-covered terrain

    USGS Publications Warehouse

    Sexstone, Graham A.; Clow, David W.; Stannard, David I.; Fassnacht, Steven R.

    2016-01-01

    Snow sublimation can be an important component of the snow-cover mass balance, and there is considerable interest in quantifying the role of this process within the water and energy balance of snow-covered regions. In recent years, robust eddy covariance (EC) instrumentation has been used to quantify snow sublimation over snow-covered surfaces in complex mountainous terrain. However, EC can be challenging for monitoring turbulent fluxes in snow-covered environments because of intensive data, power, and fetch requirements, and alternative methods of estimating snow sublimation are often relied upon. To evaluate the relative merits of methods for quantifying surface sublimation, fluxes calculated by the EC, Bowen ratio–energy balance (BR), bulk aerodynamic flux (BF), and aerodynamic profile (AP) methods and their associated uncertainty were compared at two forested openings in the Colorado Rocky Mountains. Biases between methods are evaluated over a range of environmental conditions, and limitations of each method are discussed. Mean surface sublimation rates from both sites ranged from 0.33 to 0.36 mm day−1, 0.14 to 0.37 mm day−1, 0.10 to 0.17 mm day−1, and 0.03 to 0.10 mm day−1 for the EC, BR, BF and AP methods, respectively. The EC and/or BF methods are concluded to be superior for estimating surface sublimation in snow-covered forested openings. The surface sublimation rates quantified in this study are generally smaller in magnitude compared with previously published studies in this region and help to refine sublimation estimates for forested openings in the Colorado Rocky Mountains.

  3. Intraindividual Covariation Between E-Cigarette and Combustible Cigarette Use in Korean American Emerging Adults

    PubMed Central

    Huh, Jimi; Leventhal, Adam M.

    2017-01-01

    Critical gaps exist in understanding the patterns and correlates of dual use of electronic cigarettes (ECs) and combustible cigarettes (CCs), particularly in ethnic minority populations. In this study, we assessed CC and EC use in the naturalistic environment using ecological momentary assessment (EMA). We hypothesized that within-subject variation in EC use (yes/no each day) would be inversely associated with within-subject variation in number of CCs consumed and craving during that same day. We also examined gender and nicotine dependence as moderators of the EC-CC and EC-craving covariations. Korean American emerging adult (KAEA; 18–25 years old) smokers (N = 78) completed 7 days of EMA. Participants completed EMA surveys throughout the day, which assessed CC craving, and end-of-day surveys, which assessed EC use and the number of CCs smoked that day. Generalized linear mixed models were used to predict day-level EC use, with number of CCs smoked and craving during that same day, gender, and nicotine dependence as predictors (n = 501). We found that within-subject variation in CC use was not associated with same-day EC use; neither was within-subject variation in craving (ps > .27). Gender moderated the relationship between craving and EC use on a given day (p = .03); only for females, on the days with higher craving, the likelihood of their EC use that day was significantly heightened. This study does not suggest that EC use is linked with lower CC smoking quantity, at least at the day level and among KAEA smokers. CC craving may play a role in dual EC-CC use for KAEA female smokers. PMID:26618795

  4. Intraindividual covariation between e-cigarette and combustible cigarette use in Korean American emerging adults.

    PubMed

    Huh, Jimi; Leventhal, Adam M

    2016-03-01

    Critical gaps exist in understanding the patterns and correlates of dual use of electronic cigarettes (ECs) and combustible cigarettes (CCs), particularly in ethnic minority populations. In this study, we assessed CC and EC use in the naturalistic environment using ecological momentary assessment (EMA). We hypothesized that within-subject variation in EC use (yes/no each day) would be inversely associated with within-subject variation in number of CCs consumed and craving during that same day. We also examined gender and nicotine dependence as moderators of the EC-CC and EC-craving covariations. Korean American emerging adult (KAEA; 18-25 years old) smokers (N = 78) completed 7 days of EMA. Participants completed EMA surveys throughout the day, which assessed CC craving, and end-of-day surveys, which assessed EC use and the number of CCs smoked that day. Generalized linear mixed models were used to predict day-level EC use, with number of CCs smoked and craving during that same day, gender, and nicotine dependence as predictors (n = 501). We found that within-subject variation in CC use was not associated with same-day EC use; neither was within-subject variation in craving (ps > .27). Gender moderated the relationship between craving and EC use on a given day (p = .03); only for females, on the days with higher craving, the likelihood of their EC use that day was significantly heightened. This study does not suggest that EC use is linked with lower CC smoking quantity, at least at the day level and among KAEA smokers. CC craving may play a role in dual EC-CC use for KAEA female smokers. (c) 2016 APA, all rights reserved).

  5. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes

    USGS Publications Warehouse

    Yuan, W.; Liu, S.; Zhou, G.; Tieszen, L.L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.; Goldstein, Allen H.; Goulden, M.L.; Hollinger, D.Y.; Hu, Y.; Law, B.E.; Stoy, Paul C.; Vesala, T.; Wofsy, S.C.

    2007-01-01

    The quantitative simulation of gross primary production (GPP) at various spatial and temporal scales has been a major challenge in quantifying the global carbon cycle. We developed a light use efficiency (LUE) daily GPP model from eddy covariance (EC) measurements. The model, called EC-LUE, is driven by only four variables: normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and the Bowen ratio of sensible to latent heat flux (used to calculate moisture stress). The EC-LUE model relies on two assumptions: First, that the fraction of absorbed PAR (fPAR) is a linear function of NDVI; Second, that the realized light use efficiency, calculated from a biome-independent invariant potential LUE, is controlled by air temperature or soil moisture, whichever is most limiting. The EC-LUE model was calibrated and validated using 24,349 daily GPP estimates derived from 28 eddy covariance flux towers from the AmeriFlux and EuroFlux networks, covering a variety of forests, grasslands and savannas. The model explained 85% and 77% of the observed variations of daily GPP for all the calibration and validation sites, respectively. A comparison with GPP calculated from the Moderate Resolution Imaging Spectroradiometer (MODIS) indicated that the EC-LUE model predicted GPP that better matched tower data across these sites. The realized LUE was predominantly controlled by moisture conditions throughout the growing season, and controlled by temperature only at the beginning and end of the growing season. The EC-LUE model is an alternative approach that makes it possible to map daily GPP over large areas because (1) the potential LUE is invariant across various land cover types and (2) all driving forces of the model can be derived from remote sensing data or existing climate observation networks.

  6. Evaluating four gap-filling methods for eddy covariance measurements of evapotranspiration over hilly crop fields

    NASA Astrophysics Data System (ADS)

    Boudhina, Nissaf; Zitouna-Chebbi, Rim; Mekki, Insaf; Jacob, Frédéric; Ben Mechlia, Nétij; Masmoudi, Moncef; Prévot, Laurent

    2018-06-01

    Estimating evapotranspiration in hilly watersheds is paramount for managing water resources, especially in semiarid/subhumid regions. The eddy covariance (EC) technique allows continuous measurements of latent heat flux (LE). However, time series of EC measurements often experience large portions of missing data because of instrumental malfunctions or quality filtering. Existing gap-filling methods are questionable over hilly crop fields because of changes in airflow inclination and subsequent aerodynamic properties. We evaluated the performances of different gap-filling methods before and after tailoring to conditions of hilly crop fields. The tailoring consisted of splitting the LE time series beforehand on the basis of upslope and downslope winds. The experiment was setup within an agricultural hilly watershed in northeastern Tunisia. EC measurements were collected throughout the growth cycle of three wheat crops, two of them located in adjacent fields on opposite hillslopes, and the third one located in a flat field. We considered four gap-filling methods: the REddyProc method, the linear regression between LE and net radiation (Rn), the multi-linear regression of LE against the other energy fluxes, and the use of evaporative fraction (EF). Regardless of the method, the splitting of the LE time series did not impact the gap-filling rate, and it might improve the accuracies on LE retrievals in some cases. Regardless of the method, the obtained accuracies on LE estimates after gap filling were close to instrumental accuracies, and they were comparable to those reported in previous studies over flat and mountainous terrains. Overall, REddyProc was the most appropriate method, for both gap-filling rate and retrieval accuracy. Thus, it seems possible to conduct gap filling for LE time series collected over hilly crop fields, provided the LE time series are split beforehand on the basis of upslope-downslope winds. Future works should address consecutive vegetation growth cycles for a larger panel of conditions in terms of climate, vegetation, and water status.

  7. Long term measurement of lake evaporation using a pontoon mounted Eddy Covariance system

    NASA Astrophysics Data System (ADS)

    McGowan, H. A.; McGloin, R.; McJannet, D.; Burn, S.

    2011-12-01

    Accurate quantification of evaporation from water storages is essential for design of water management and allocation policy that aims to balance demands for water without compromising the sustainability of future water resources, particularly during periods of prolonged and severe drought. Precise measurement of evaporation from lakes and dams however, presents significant research challenges. These include design and installation of measurement platforms that can withstand a range of wind and wave conditions; accurate determination of the evaporation measurement footprint and the influence of changing water levels. In this paper we present results from a two year long deployment of a pontoon mounted Eddy Covariance (EC) system on a 17.2ha irrigation reservoir in southeast Queensland, Australia. The EC unit included a CSAT-3 sonic anemometer (Campbell Scientific, Utah, United States) and a Li-Cor CS7500 open-path H2O/CO2 infrared gas analyzer (LiCor, Nebraska, United States) at a height of 2.2m, a net radiometer (CNR1, Kipp & Zonen, Netherlands) at a height of 1.2m and a humidity and temperature probe (HMP45C,Vaisala, Finland) at 2.3m. The EC unit was controlled by a Campbell Scientific CR3000 data logger with flux measurements made at 10 Hz and block averaged values logged every 15 minutes. Power to the EC system was from mounted solar panels that charged deep cycle lead-acid batteries while communication was via a cellphone data link. The pontoon was fitted with a weighted central beam and gimbal ring system that allowed self-levelling of the instrumentation and minimized dynamic influences on measurements (McGowan et al 2010; Wiebe et al 2011). EC measurements were corrected for tilt errors using the double rotation method for coordinate rotation described by Wilczak et al. (2001). High and low frequency attenuation of the measured co-spectrum was corrected using Massman's (2000) method for estimating frequency response corrections, while measurements were corrected for density fluctuations using the method of Webb-Pearman-Leuning (Webb et al. 1980). The evaporation measurement footprint over the reservoir was determined using the SCADIS one and a half order turbulence closure footprint model (Sogachev and Lloyd, 2004). Comparison of EC measured evaporation rates show excellent agreement with independent measurement of evaporation by scintillometer under a wide range of conditions (McJannet et al 2011). They confirm that pontoon mounted EC systems offer a robust, highly portable and reliable cost effective approach for accurate quantification of evaporation from reservoirs.

  8. Methane fluxes above the Hainich forest by True Eddy Accumulation and Eddy Covariance

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas; Gentsch, Lydia; Knohl, Alexander

    2016-04-01

    Understanding the role of forests for the global methane cycle requires quantifying vegetation-atmosphere exchange of methane, however observations of turbulent methane fluxes remain scarce. Here we measured turbulent fluxes of methane (CH4) above a beech-dominated old-growth forest in the Hainich National Park, Germany, and validated three different measurement approaches: True Eddy Accumulation (TEA, closed-path laser spectroscopy), and eddy covariance (EC, open-path and closed-path laser spectroscopy, respectively). The Hainich flux tower is a long-term Fluxnet and ICOS site with turbulent fluxes and ecosystem observations spanning more than 15 years. The current study is likely the first application of True Eddy Accumulation (TEA) for the measurement of turbulent exchange of methane and one of the very few studies comparing open-path and closed-path eddy covariance (EC) setups side-by-side. We observed uptake of methane by the forest during the day (a methane sink with a maximum rate of 0.03 μmol m-2 s-1 at noon) and no or small fluxes of methane from the forest to the atmosphere at night (a methane source of typically less than 0.01 μmol m-2 s-1) based on continuous True Eddy Accumulation measurements in September 2015. First results comparing TEA to EC CO2 fluxes suggest that True Eddy Accumulation is a valid option for turbulent flux quantifications using slow response gas analysers (here CRDS laser spectroscopy, other potential techniques include mass spectroscopy). The TEA system was one order of magnitude more energy efficient compared to closed-path eddy covariance. The open-path eddy covariance setup required the least amount of user interaction but is often constrained by low signal-to-noise ratios obtained when measuring methane fluxes over forests. Closed-path eddy covariance showed good signal-to-noise ratios in the lab, however in the field it required significant amounts of user intervention in addition to a high power consumption. We conclude, based on preliminary evidence, that the Hainich forest acted as a moderate net sink for methane during the investigation. This supports earlier findings from chamber measurements at the Hainich forest site and is similar to findings from other forest sites. Our observations will be continued through 2016 and beyond to provide longer-term methane flux time series spanning entire seasons. However, the current data set already provides a basis for further consolidating methods of measurements and analysis of turbulent methane fluxes using eddy covariance and true eddy accumulation.

  9. Assessing and correcting spatial representativeness of tower eddy-covariance flux measurements

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Xu, K.; Desai, A. R.; Taylor, J. R.; Kljun, N.; Blanken, P.; Burns, S. P.; Scott, R. L.

    2014-12-01

    Estimating the landscape-scale exchange of ecologically relevant trace gas and energy fluxes from tower eddy-covariance (EC) measurements is often complicated by surface heterogeneity. For example, a tower EC measurement may represent less than 1% of a grid cell resolved by mechanistic models (order 100-1000 km2). In particular for data assimilation or comparison with large-scale observations, it is hence critical to assess and correct the spatial representativeness of tower EC measurements. We present a procedure that determines from a single EC tower the spatio-temporally explicit flux field of its surrounding. The underlying principle is to extract the relationship between biophysical drivers and ecological responses from measurements under varying environmental conditions. For this purpose, high-frequency EC flux processing and source area calculations (≈60 h-1) are combined with remote sensing retrievals of land surface properties and subsequent machine learning. Methodological details are provided in our companion presentation "Towards the spatial rectification of tower-based eddy-covariance flux observations". We apply the procedure to one year of data from each of four AmeriFlux sites under different climate and ecological environments: Lost Creek shrub fen wetland, Niwot Ridge subalpine conifer, Park Falls mixed forest, and Santa Rita mesquite savanna. We find that heat fluxes from the Park Falls 122-m-high EC measurement and from a surrounding 100 km2 target area differ up to 100 W m-2, or 65%. Moreover, 85% and 24% of the EC flux observations are adequate surrogates of the mean surface-atmosphere exchange and its spatial variability across a 900 km2 target area, respectively, at 5% significance and 80% representativeness levels. Alternatively, the resulting flux grids can be summarized as probability density functions, and used to inform mechanistic models directly with the mean flux value and its spatial variability across a model grid cell. Lastly, for each site we evaluate the applicability of the procedure based on a full bottom-up uncertainty budget.

  10. Characterization of potential EC flux underestimation of "sticky" trace gas species

    NASA Astrophysics Data System (ADS)

    Neftel, Albrecht; Hensen, Arjan; Ibrom, Andreas; Ammann, Christof; Voglmeier, Karl; Brümmer, Christian

    2017-04-01

    Eddy covariance (EC) flux measurements of "sticky" trace gas species are affected of damping of high frequency variations of the gas concentration. Several approaches have been developed to correct for this effect (see e.g. Ibrom et al., 2007, Ammann et al., 2006). These approaches have in common that the spectral properties of the scalar are compared with the sonic temperature deduced from the Sonic anemometer data that is only marginally damped. A main difference between the two method is that one uses power spectra, while the other is based on co-spectra of the gas concentration with the vertical wind speed. NH3 fluxes used in the analysis stem from two field experiments: a) Posieux intercomparison October 2015: NH3 emissions of a grazed pasture measured with Eddy Covariance using an Aerodyne quantum cascade laser and with a horizontal gradient measurement using MiniDOAS systems (Sintermann et al., 2016) in conjunction with a dispersion model. b) Dronten experiment June 2016 in the Netherlands: NH3 emissions from two manured circles within 40m diameters have been determined with four different approaches (Eddy Covariance, Integrated Horizontal Flux approach, horizontal gradients and plume measurements). Despite correction with standard methods, turbulent NH3 flux measurements with the eddy covariance method seem still be underestimated when, e.g., compared to flux estimated using gradient methods. We discuss possible correction algorithms and how such underestimations can be recognized in the usual case, where no alternative flux estimation methods are available. References: Ammann, C., Brunner, A., Spirig, C., and Neftel, A. 2006: Technical note: Water vapour concentration and flux measurements with PTR-MS, Atmos. Chem. Phys., 6, 4643-4651 Ibrom, A., Dellwik, E., Jensen, N.O., Flyvbjerg, H. and Pilegaard, K., 2007. Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agricultural and Forest Meteorology, 147: 140 -156. Sintermann, J., Dietrich, K., Hani, C., Bell, M., Jocher, M., and Neftel, A. 2016 A miniDOAS instrument optimised for ammonia field measurements, Atmos Meas Tech, 9, 2721-2734

  11. FLUXPART: An FOSS solution for Eddy covariance flux partitioning

    USDA-ARS?s Scientific Manuscript database

    We report on efforts to develop a FOSS solution for a particular geoscience application. Eddy covariance (EC) instruments are routinely used to measure field-scale evapotranspiration and CO2 fluxes. For many applications, it is desirable to partition the measured evapotranspiration flux into its c...

  12. Mobile mapping and eddy covariance flux measurements of NH3 emissions from cattle feedlots with a portable laser-based open-path sensor

    NASA Astrophysics Data System (ADS)

    Tao, L.; Sun, K.; Pan, D.; Golston, L.; Stanton, L. G.; Ham, J. M.; Shonkwiler, K. B.; Nash, C.; Zondlo, M. A.

    2014-12-01

    Ammonia (NH3) is the dominant alkaline species in the atmosphere and an important compound in the global nitrogen cycle. There is a large uncertainty in NH3 emission inventory from agriculture, which is the largest source of NH3, including livestock farming and fertilizer applications. In recent years, a quantum cascade laser (QCL)-based open-path sensor has been developed to provide high-resolution, fast-response and high-sensitivity NH3 measurements. It has a detection limit of 150 pptv with a sample rate up to 20 Hz. This sensor has been integrated into a mobile platform mounted on the roof of a car to perform measurement of multiple trace gases. We have also used the sensor for eddy covariance (EC) flux measurements. The mobile sensing method provides high spatial resolution and fast mapping of measured gases. Meanwhile, the EC flux method offers accurate flux measurements and resolves the diurnal variability of NH3emissions. During the DISCOVER-AQ and FRAPPÉ field campaigns in 2014, this mobile platform was used to study NH3 emissions from cattle feedlot near Fort Morgan, Colorado. This specific feedlot was mapped multiple times in different days to study the variability of its plume characteristics. At the same time, we set up another open-path NH3 sensor with LICOR open-path sensors to perform EC flux measurements of NH3, CH4 and CO2 simultaneously in the same cattle feedlot as shown in Fig. 1. NH3/CH4 emission flux ratio show a strong temperature dependence from EC flux measurements. The median value of measured NH3 and CH4 emission flux ratio is 0.60 ppmv/ppmv. In contrast, the median value of ΔNH3/ΔCH4 ratios measured from mobile platform is 0.53 ppmv/ppmv for the same farm. The combination of mobile mapping and EC flux measurements with the same open-path sensors greatly improves understanding of NH3 emissions both spatially and temporally.

  13. Eddy covariance captures four-phase crassulacean acid metabolism (CAM) gas exchange signature in Agave.

    PubMed

    Owen, Nick A; Choncubhair, Órlaith Ní; Males, Jamie; Del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary

    2016-02-01

    Mass and energy fluxes were measured over a field of Agave tequilana in Mexico using eddy covariance (EC) methodology. Data were gathered over 252 d, including the transition from wet to dry periods. Net ecosystem exchanges (FN,EC ) displayed a crassulacean acid metabolism (CAM) rhythm that alternated from CO2 sink at night to CO2 source during the day, and partitioned canopy fluxes (FA,EC ) showed a characteristic four-phase CO2 exchange pattern. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Projected carbon balance (g C m(-2)  year(-1) , mean ± 95% confidence interval) indicated the site was a net sink of -333 ± 24, of which contributions from soil respiration were +692 ± 7, and FA,EC was -1025 ± 25. EC estimated biomass yield was 20.1 Mg (dry) ha(-1)  year(-1) . Average integrated daily FA,EC was -234 ± 5 mmol CO2  m(-2)  d(-1) and persisted almost unchanged after 70 d of drought conditions. Regression analyses were performed on the EC data to identify the best environmental predictors of FA . Results suggest that the carbon acquisition strategy of Agave offers productivity and drought resilience advantages over conventional semi-arid C3 and C4 bioenergy candidates. © 2015 John Wiley & Sons Ltd.

  14. Energy budget closure and field scale estimation of canopy energy storage with increased and sustained turbulence

    USDA-ARS?s Scientific Manuscript database

    Eddy Covariance (EC) is widely used for direct, non-invasive observations of land-atmosphere energy and mass fluxes. However, EC observations of available energy fluxes are usually less than fluxes inferred from radiometer and soil heat flux observations; thus introducing additional uncertainty in u...

  15. Conditional CO2 flux analysis of a managed grassland with the aid of stable isotopes

    NASA Astrophysics Data System (ADS)

    Zeeman, M. J.; Tuzson, B.; Emmenegger, L.; Knohl, A.; Buchmann, N.; Eugster, W.

    2009-04-01

    Short statured managed ecosystems, such as agricultural grasslands, exhibit high temporal changes in carbon dioxide assimilation and respiration fluxes for which measurements of the net CO2 flux, e.g. by using the eddy covariance (EC) method, give only limited insight. We have therefore adopted a recently proposed concept for conditional EC flux analysis of forest to grasslands, in order to identify and quantify daytime sub-canopy respiration fluxes. To validate the concept, high frequency (≈5 Hz) stable carbon isotope analyis of CO2 was used. We made eddy covariance measurements of CO2 and its isotopologues during four days in August 2007, using a novel quantum cascade laser absorption spectrometer, capable of high time resolution stable isotope analysis. The effects of a grass cut during the measurement period could be detected and resulted in a sub-canopy source conditional flux classification, for which the isotope composition of the CO2 could be confirmed to be of a respiration source. However, the conditional flux method did not work for an undisturbed grassland canopy. We attribute this to the flux measurement height that was chosen well above the roughness sublayer, where the natural isotopic tracer (δ13C) of respiration was too well mixed with background air.

  16. Scaling from instantaneous remote-sensing-based latent heat flux to daytime integrated value with the help of SiB2

    NASA Astrophysics Data System (ADS)

    Song, Yi; Ma, Mingguo; Li, Xin; Wang, Xufeng

    2011-11-01

    This research dealt with a daytime integration method with the help of Simple Biosphere Model, Version 2 (SiB2). The field observations employed in this study were obtained at the Yingke (YK) oasis super-station, which includes an Automatic Meteorological Station (AMS), an eddy covariance (EC) system and a Soil Moisture and Temperature Measuring System (SMTMS). This station is located in the Heihe River Basin, the second largest inland river basin in China. The remotely sensed data and field observations employed in this study were derived from Watershed Allied Telemetry Experimental Research (WATER). Daily variations of EF in temporal and spatial scale would be detected by using SiB2. An instantaneous midday EF was calculated based on a remote-sensing-based estimation of surface energy budget. The invariance of daytime EF was examined using the instantaneous midday EF calculated from a remote-sensing-based estimation. The integration was carried out using the constant EF method in the intervals with a steady EF. Intervals with an inconsistent EF were picked up and ET in these intervals was integrated separately. The truth validation of land Surface ET at satellite pixel scale was carried out using the measurement of eddy covariance (EC) system.

  17. Comparing Multiple Scales of CH4 Fluxes in a Boreal Transition Forest - from Soil-Chambers to Eddy Covariance

    NASA Astrophysics Data System (ADS)

    Savage, K. E.; Shoemaker, J.; Hollinger, D. Y.

    2017-12-01

    Boreal-transition forests contain a range of soil moisture conditions, from drier "uplands" to embedded wetlands, with transitional soils in between. This creates a complex topography of methane (CH4) producing and consuming patches. Seasonally, CH4 production in wet environments can be orders of magnitude greater than methane uptake rates in drier soils, as well as being much more episodic. The spatial and temporal variability in flux magnitudes from these drainage conditions creates a challenge for constraining the contribution of these forests to the global CH4 cycle. Ground based chambers capture small-scale fluxes, and are often distributed to capture specific soil conditions. Soil chambers have been the primary tool for assessing CH4 fluxes from natural soils, with observations being scaled up to represent broader regions. The study of CH4 biogeochemistry lacked meso-scale measurements to provide checks between the global atmospheric data and the soil chambers. Recent advances in the technology of fast response CH4 analyzers have led to increased use of the eddy-flux covariance (EC) method to capture CH4 fluxes over a larger landscape-scale. The EC method captures net exchange at the top of the vegetation canopy, across a footprint of varying size, dependent on wind-speed, direction, surface roughness, turbulence, sensor height and atmospheric stability. Simultaneous deployment of EC and soil chambers provide a critical means to reconcile bottom up with top down approaches to quantify CH4 fluxes. Two years of CH4 flux data from an EC tower in Howland forest, a boreal-transition forest in north-central Maine, USA, are compared with concurrent automated soil chamber data collected within the tower footprint and distributed among soil drainage classes. An EC footprint model was used to determine a daily and sub-daily tower footprint. Using a published soil analysis of the Howland tower area, and Lidar imagery of tree canopy, we explore various strategies for upscaling chamber fluxes: footprint estimates, aerial weighting by drainage class, and canopy density; and compare to measurements from the EC tower. Analyzing simultaneous flux data from both scales over multiple years, will enable us to evaluate these methodologies and enhance our understanding of CH4 biogeochemistry at all scales.

  18. Using eddy covariance to measure the dependence of air-sea CO2 exchange rate on friction velocity

    NASA Astrophysics Data System (ADS)

    Landwehr, Sebastian; Miller, Scott D.; Smith, Murray J.; Bell, Thomas G.; Saltzman, Eric S.; Ward, Brian

    2018-03-01

    Parameterisation of the air-sea gas transfer velocity of CO2 and other trace gases under open-ocean conditions has been a focus of air-sea interaction research and is required for accurately determining ocean carbon uptake. Ships are the most widely used platform for air-sea flux measurements but the quality of the data can be compromised by airflow distortion and sensor cross-sensitivity effects. Recent improvements in the understanding of these effects have led to enhanced corrections to the shipboard eddy covariance (EC) measurements.Here, we present a revised analysis of eddy covariance measurements of air-sea CO2 and momentum fluxes from the Southern Ocean Surface Ocean Aerosol Production (SOAP) study. We show that it is possible to significantly reduce the scatter in the EC data and achieve consistency between measurements taken on station and with the ship underway. The gas transfer velocities from the EC measurements correlate better with the EC friction velocity (u*) than with mean wind speeds derived from shipboard measurements corrected with an airflow distortion model. For the observed range of wind speeds (u10 N = 3-23 m s-1), the transfer velocities can be parameterised with a linear fit to u*. The SOAP data are compared to previous gas transfer parameterisations using u10 N computed from the EC friction velocity with the drag coefficient from the Coupled Ocean-Atmosphere Response Experiment (COARE) model version 3.5. The SOAP results are consistent with previous gas transfer studies, but at high wind speeds they do not support the sharp increase in gas transfer associated with bubble-mediated transfer predicted by physically based models.

  19. Observation of methane fluxes using eddy covariance technique and relaxed eddy accumulation techniques simultaneously over rice paddies in Taiwan

    NASA Astrophysics Data System (ADS)

    Tang, M.; Tsai, J.; Tsuang, B.; Feng, P.; Kuo, P.

    2012-12-01

    In the past decades, more and more attention was given to the increase of atmospheric methane concentration from the scientific community. Methane is one of greenhouse gases with a global warming potential 21 times greater than carbon dioxide on a 100-year horizon. Rice paddy fields were considered as a major source for methane and so far there are few studies where the eddy covariance (EC) technique has been used to measure methane fluxes from rice paddy fields, especially in Asia. Therefore, in this study we used EC technique and relaxed eddy accumulation (REA) method simultaneously to observe the methane fluxes over rice paddy, fertilized with pig manure, in Taiwan from 22th February to 5th June in 2012. A suit of Micrometeorologial variables and water table depth were measured in conjunction with the fluxes. The results showed that the rice paddy field was source of methane during most of the study period and the observed methane fluxes ranged between - 0.5 and 13 μg m-2 s-1. and the maximum values usually occurred in the afternoon. A significant methane emission was observed in the first one and a half month after transplanting. Comparison of daily methane fluxes measured by EC and REA showed generally good agreement between both methods with a coefficient of determination of 0.81, although the magnitude of methane fluxes measured by REA were slightly lower than those by EC. During the continuous flooded period, the methane fluxes can be depicted well by a function of soil temperature with an exponential form. Sudden pulses of methane fluxes were observed when drained for the removal of obstruction which hindered the methane diffuse from the soil to the atmosphere. During fallow period between growth periods, the paddy fields was a sink of methane where the methane uptake was about 0.5μg m-2 s-1 around noon.

  20. Static Vented Chamber and Eddy Covariance Methane Flux Comparisons in Mid-South US Rice

    NASA Astrophysics Data System (ADS)

    Reba, M. L.; Fong, B.; Adviento-Borbe, A.; Runkle, B.; Suvocarev, K.; Rival, I.

    2017-12-01

    Rice cultivation contributes higher amounts of GHG emissions (CO2 and CH4) due to flooded field conditions. A comparison between eddy covariance and static vented flux chamber measurement techniques is presented. Rice GHG emissions originating from plot level chambers may not accurately describe the aggregate effects of all the soil and micrometeorological variations across a production field. Eddy covariance (EC) is a direct, integrated field measurement of field scale trace gases. Flux measurements were collected in NE Arkansas production size rice fields (16 ha, 40 ac) during the 2015 and 2016 production seasons (June-August) in continuous flood (CF) irrigation. The study objectives included quantifying the difference between chamber and EC measurements, and categorizing flux behavior to growth stage and field history. EC daily average emissions correlated with chamber measurements (R2=0.27-0.54) more than average from 09:00-12:00 which encompassed chamber measurement times (R2=0.23-0.32). Maximum methane emissions occurred in the late afternoon from 14:00-18:00 which corresponded with maximum soil heat flux and air temperature. The total emissions from the study fields ranged from 27-117 kg CH4-C ha-1 season-1. The emission profile was lower in 2015, most likely due to higher rainfall and cooler temperatures during the growing season compared to 2016. These findings improve our understanding of GHG emissions at the field scale under typical production practices and validity of chamber and EC flux measurement techniques.

  1. Energy budget closure observed in paired Eddy Covariance towers with increased and continuous daily turbulence

    USDA-ARS?s Scientific Manuscript database

    The lack of energy closure has been a longstanding issue with Eddy Covariance (EC). Multiple mechanisms have been proposed to explain the discrepancies in energy balance including diurnal energy storage changes, advection of energy, and larger scale turbulent processes that cannot be resolved by fi...

  2. Carbon fluxes in tropical forest ecosystems: the value of Eddy-covariance data for individual-based dynamic forest gap models

    NASA Astrophysics Data System (ADS)

    Roedig, Edna; Cuntz, Matthias; Huth, Andreas

    2015-04-01

    The effects of climatic inter-annual fluctuations and human activities on the global carbon cycle are uncertain and currently a major issue in global vegetation models. Individual-based forest gap models, on the other hand, model vegetation structure and dynamics on a small spatial (<100 ha) and large temporal scale (>1000 years). They are well-established tools to reproduce successions of highly-diverse forest ecosystems and investigate disturbances as logging or fire events. However, the parameterizations of the relationships between short-term climate variability and forest model processes are often uncertain in these models (e.g. daily variable temperature and gross primary production (GPP)) and cannot be constrained from forest inventories. We addressed this uncertainty and linked high-resolution Eddy-covariance (EC) data with an individual-based forest gap model. The forest model FORMIND was applied to three diverse tropical forest sites in the Amazonian rainforest. Species diversity was categorized into three plant functional types. The parametrizations for the steady-state of biomass and forest structure were calibrated and validated with different forest inventories. The parameterizations of relationships between short-term climate variability and forest model processes were evaluated with EC-data on a daily time step. The validations of the steady-state showed that the forest model could reproduce biomass and forest structures from forest inventories. The daily estimations of carbon fluxes showed that the forest model reproduces GPP as observed by the EC-method. Daily fluctuations of GPP were clearly reflected as a response to daily climate variability. Ecosystem respiration remains a challenge on a daily time step due to a simplified soil respiration approach. In the long-term, however, the dynamic forest model is expected to estimate carbon budgets for highly-diverse tropical forests where EC-measurements are rare.

  3. The case for increasing the statistical power of eddy covariance ecosystem studies: why, where and how?

    PubMed

    Hill, Timothy; Chocholek, Melanie; Clement, Robert

    2017-06-01

    Eddy covariance (EC) continues to provide invaluable insights into the dynamics of Earth's surface processes. However, despite its many strengths, spatial replication of EC at the ecosystem scale is rare. High equipment costs are likely to be partially responsible. This contributes to the low sampling, and even lower replication, of ecoregions in Africa, Oceania (excluding Australia) and South America. The level of replication matters as it directly affects statistical power. While the ergodicity of turbulence and temporal replication allow an EC tower to provide statistically robust flux estimates for its footprint, these principles do not extend to larger ecosystem scales. Despite the challenge of spatially replicating EC, it is clearly of interest to be able to use EC to provide statistically robust flux estimates for larger areas. We ask: How much spatial replication of EC is required for statistical confidence in our flux estimates of an ecosystem? We provide the reader with tools to estimate the number of EC towers needed to achieve a given statistical power. We show that for a typical ecosystem, around four EC towers are needed to have 95% statistical confidence that the annual flux of an ecosystem is nonzero. Furthermore, if the true flux is small relative to instrument noise and spatial variability, the number of towers needed can rise dramatically. We discuss approaches for improving statistical power and describe one solution: an inexpensive EC system that could help by making spatial replication more affordable. However, we note that diverting limited resources from other key measurements in order to allow spatial replication may not be optimal, and a balance needs to be struck. While individual EC towers are well suited to providing fluxes from the flux footprint, we emphasize that spatial replication is essential for statistically robust fluxes if a wider ecosystem is being studied. © 2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  4. Global validation of a process-based model on vegetation gross primary production using eddy covariance observations.

    PubMed

    Liu, Dan; Cai, Wenwen; Xia, Jiangzhou; Dong, Wenjie; Zhou, Guangsheng; Chen, Yang; Zhang, Haicheng; Yuan, Wenping

    2014-01-01

    Gross Primary Production (GPP) is the largest flux in the global carbon cycle. However, large uncertainties in current global estimations persist. In this study, we examined the performance of a process-based model (Integrated BIosphere Simulator, IBIS) at 62 eddy covariance sites around the world. Our results indicated that the IBIS model explained 60% of the observed variation in daily GPP at all validation sites. Comparison with a satellite-based vegetation model (Eddy Covariance-Light Use Efficiency, EC-LUE) revealed that the IBIS simulations yielded comparable GPP results as the EC-LUE model. Global mean GPP estimated by the IBIS model was 107.50±1.37 Pg C year(-1) (mean value ± standard deviation) across the vegetated area for the period 2000-2006, consistent with the results of the EC-LUE model (109.39±1.48 Pg C year(-1)). To evaluate the uncertainty introduced by the parameter Vcmax, which represents the maximum photosynthetic capacity, we inversed Vcmax using Markov Chain-Monte Carlo (MCMC) procedures. Using the inversed Vcmax values, the simulated global GPP increased by 16.5 Pg C year(-1), indicating that IBIS model is sensitive to Vcmax, and large uncertainty exists in model parameterization.

  5. Measuring Evapotranspiration in Urban Irrigated Lawns in Two Kansas Cities

    NASA Astrophysics Data System (ADS)

    Shonkwiler, K. B.; Bremer, D.; Ham, J. M.

    2011-12-01

    Conservation of water is becoming increasingly critical in many metropolitan areas. The use of automated irrigation systems for the maintenance of lawns and landscapes is rising and these systems are typically maladjusted to apply more water than necessary, resulting in water wastage. Provision of accurate estimates of actual lawn water use may assist urbanites in conserving water through better adjustment of automatic irrigation systems. Micrometeorological methods may help determine actual lawn water use by measuring evapotranspiration (ET) from urban lawns. From April - August of 2011, four small tripod-mounted weather stations (tripods, five total) were deployed in twelve residential landscapes in the Kansas cities of Manhattan (MHK) and Wichita (ICT) in the USA (six properties in each city). Each tripod was instrumented to estimate reference crop evapotranspiration (ETo) via the FAO-56 method. During tripod deployment in residential lawns, actual evapotranspiration (ETactual) was measured nearby using a stationary, trailer-mounted eddy covariance (EC) station. The EC station sampled well-watered turf at the K-State Rocky Ford Turfgrass Center within 5 km of the study properties in MHK, and was also deployed at a commercial sod farm 15 - 40 km from the study residences in the greater ICT metro area. The fifth tripod was deployed in the source area of the EC station to estimate ETo in conjunction with tripods in the lawns (i.e., to serve as a reference). Data from EC allowed for computation of a so-called lawn coefficient (Kc) by determining the ratio of ETo from the tripods in residential lawns to ETo from the EC station (ETo,EC); hence, Kc = ETo,tripod / ETo,EC. Using this method, ETactual can be estimated for individual tripods within a lawn. Data suggests that it may be more accurate to quantify ET within individual lawns by microclimate (i.e., determine coefficients for "shaded" and "open/unshaded" portions of a lawn). By finding microclimate coefficients, estimates of ETactual for individual lawns can be tailored to the specific characteristics of each property.

  6. Attenuation of concentration fluctuations of water vapor and other trace gases in turbulent tube flow

    Treesearch

    W. J. Massman; A. Ibrom

    2008-01-01

    Recent studies with closed-path eddy covariance (EC) systems have indicated that the attenuation of fluctuations of water vapor concentration is dependent upon ambient relative humidity, presumably due to sorption/desorption of water molecules at the interior surface of the tube. Previous studies of EC-related tube attenuation effects have either not considered this...

  7. Measuring evapotranspiration using an eddy covariance system over the Albany Thicket of the Eastern Cape, South Africa

    NASA Astrophysics Data System (ADS)

    Gwate, O.; Mantel, Sukhmani K.; Palmer, Anthony R.; Gibson, Lesley A.

    2016-10-01

    Determining water and carbon fluxes over a vegetated surface is important in a context of global environmental changes and the fluxes help in understanding ecosystem functioning. Pursuant to this, the study measured evapotranspiration (ET) using an eddy covariance (EC) system installed over an intact example of the Albany Thicket (AT) vegetation in the Eastern Cape, South Africa. Environmental constraints to ET were also assessed by examining the response of ET to biotic and abiotic factors. The EC system comprised of an open path Infrared Gas Analyser and Sonic anemometer and an attendant weather station to measure bi-meteorological variables. Post processing of eddy covariance data was conducted using EddyPro software. Quality assessment of fluxes was also performed and rejected and missing data were filled using the method of mean diurnal variations (MDV). Much of the variation in ET was accounted for by the leaf area index (LAI, p < 0.001, 41%) and soil moisture content (SWC, p < 0.001, 32%). Total measured ET during the experiment was greater than total rainfall received owing to the high water storage capacity of the vegetation and the possibility of vegetation accessing ground water. Most of the net radiation was consumed by sensible heat flux and this means that ET in the area is essentially water limited since abundant energy was available to drive turbulent transfers of energy. Understanding the environmental constraints to ET is crucial in predicting the ecosystem response to environmental forces such as climate change.

  8. Widespread inhibition of day-time ecosystem respiration and implications for eddy-covariance flux partitioning

    NASA Astrophysics Data System (ADS)

    Keenan, T. F.

    2017-12-01

    Global terrestrial ecosystems absorb about a third of anthropogenic emissions each year, due to the difference between two key processes: photosynthesis and respiration. Despite the importance of these two processes at the global scale, no direct measurement exists of either. Eddy-covariance (EC) measurements have been widely used as the closest `quasi-direct' observation, and the resulting estimates have been used to produce global budgets of photosynthesis and respiration. Recent research, however, suggests that current estimates may be biased by up to 25%, as the methods used to partition observed net carbon fluxes to photosynthesis and respiration do not take into account any inhibition of leaf respiration in light. Yet the prevalence of light-inhibition of leaf respiration remains debated, and impacts on global estimates of photosynthesis and respiration unquantified. Here, we use novel approaches to estimate the extent of light-inhibition across the global FLUXNET EC network, and find strong evidence for an inhibition effect on ecosystem respiration, which varies by season and plant functional type. We develop partitioning methods that allow for inhibition, and find that that diurnal patterns of ecosystem respiration might be markedly different than previously thought. The results call for the reevaluation of global terrestrial carbon cycle models, and also suggest that current global budgets of photosynthesis and respiration may be biased on the order of magnitude of anthropogenic fossil fuel emissions.

  9. Eddy covariance carbonyl sulfide flux measurements with a quantum cascade laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gerdel, Katharina; Spielmann, Felix M.; Hammerle, Albin; Wohlfahrt, Georg

    2016-04-01

    Carbonyl sulfide (COS) is the most abundant sulfur containing trace gas present in the troposphere at concentrations of around 500 ppt. Recent interest in COS by the ecosystem-physiological community has been sparked by the fact that COS co-diffuses into plant leaves pretty much the same way as carbon dioxide (CO2) does, but in contrast to CO2, COS is not known to be emitted by plants. Thus uptake of COS by vegetation has the potential to be used as a tracer for canopy gross photosynthesis, which cannot be measured directly, however represents a key term in the global carbon cycle. Since a few years, quantum cascade laser absorption spectrometers (QCLAS) are commercially available with the precision, sensitivity and time response suitable for eddy covariance (EC) flux measurements. While there exist a handful of published reports on EC flux measurements in the recent literature, no rigorous investigation of the applicability of QCLAS for EC COS flux measurements has been carried out so far, nor have been EC processing and QA/QC steps developed for carbon dioxide and water vapor flux measurements within FLUXNET been assessed for COS. The aim of this study is to close this knowledge gap, to discuss critical steps in the post-processing chain of COS EC flux measurements and to devise best-practice guidelines for COS EC flux data processing. To this end we collected EC COS (and CO2, H2O and CO) flux measurements above a temperate mountain grassland in Austria over the vegetation period 2015 with a commercially available QCLAS. We discuss various aspects of EC data post-processing, in particular issues with the time-lag estimation between sonic anemometer and QCLAS signals and QCLAS time series detrending, as well as QA/QC, in particular flux detection limits, random flux uncertainty, the interaction of various processing steps with common EC QA/QC filters (e.g. detrending and stationarity tests), u*-filtering, etc.

  10. Eddy covariance measurements of carbon dioxide and water fluxes in Mid-South US cotton

    USDA-ARS?s Scientific Manuscript database

    An eddy covariance (EC) system was used to quantify carbon dioxide (CO2) and water (H2O) fluxes as net ecosystem exchange (NEE) and crop evapotranspiration (ET), respectively, in a production-sized cotton field in Northeastern Arkansas in 2016 and 2017 growing seasons. Average ET was 0.13±0.01 in d-...

  11. Eddy covariance carbonyl sulphide flux measurements with a quantum cascade laser absorption spectrometer

    PubMed Central

    Gerdel, Katharina; Spielmann, Felix Maximilian; Hammerle, Albin; Wohlfahrt, Georg

    2017-01-01

    The trace gas carbonyl sulphide (COS) has lately received growing interest in the eddy covariance (EC) community due to its potential to serve as an independent approach for constraining gross primary production and canopy stomatal conductance. Thanks to recent developments of fast-response high-precision trace gas analysers (e.g. quantum cascade laser absorption spectrometers (QCLAS)), a handful of EC COS flux measurements have been published since 2013. To date, however, a thorough methodological characterisation of QCLAS with regard to the requirements of the EC technique and the necessary processing steps has not been conducted. The objective of this study is to present a detailed characterization of the COS measurement with the Aerodyne QCLAS in the context of the EC technique, and to recommend best EC processing practices for those measurements. Data were collected from May to October 2015 at a temperate mountain grassland in Tyrol, Austria. Analysis of the Allan variance of high-frequency concentration measurements revealed sensor drift to occur under field conditions after an averaging time of around 50 s. We thus explored the use of two high-pass filtering approaches (linear detrending and recursive filtering) as opposed to block averaging and linear interpolation of regular background measurements for covariance computation. Experimental low-pass filtering correction factors were derived from a detailed cospectral analysis. The CO2 and H2O flux measurements obtained with the QCLAS were compared against those obtained with a closed-path infrared gas analyser. Overall, our results suggest small, but systematic differences between the various high-pass filtering scenarios with regard to the fraction of data retained in the quality control and flux magnitudes. When COS and CO2 fluxes are combined in the so-called ecosystem relative uptake rate, systematic differences between the high-pass filtering scenarios largely cancel out, suggesting that this relative metric represents a robust key parameter comparable between studies relying on different post-processing schemes. PMID:29093762

  12. Eddy covariance carbonyl sulphide flux measurements with a quantum cascade laser absorption spectrometer.

    PubMed

    Gerdel, Katharina; Spielmann, Felix Maximilian; Hammerle, Albin; Wohlfahrt, Georg

    2017-09-26

    The trace gas carbonyl sulphide (COS) has lately received growing interest in the eddy covariance (EC) community due to its potential to serve as an independent approach for constraining gross primary production and canopy stomatal conductance. Thanks to recent developments of fast-response high-precision trace gas analysers (e.g. quantum cascade laser absorption spectrometers (QCLAS)), a handful of EC COS flux measurements have been published since 2013. To date, however, a thorough methodological characterisation of QCLAS with regard to the requirements of the EC technique and the necessary processing steps has not been conducted. The objective of this study is to present a detailed characterization of the COS measurement with the Aerodyne QCLAS in the context of the EC technique, and to recommend best EC processing practices for those measurements. Data were collected from May to October 2015 at a temperate mountain grassland in Tyrol, Austria. Analysis of the Allan variance of high-frequency concentration measurements revealed sensor drift to occur under field conditions after an averaging time of around 50 s. We thus explored the use of two high-pass filtering approaches (linear detrending and recursive filtering) as opposed to block averaging and linear interpolation of regular background measurements for covariance computation. Experimental low-pass filtering correction factors were derived from a detailed cospectral analysis. The CO 2 and H 2 O flux measurements obtained with the QCLAS were compared against those obtained with a closed-path infrared gas analyser. Overall, our results suggest small, but systematic differences between the various high-pass filtering scenarios with regard to the fraction of data retained in the quality control and flux magnitudes. When COS and CO 2 fluxes are combined in the so-called ecosystem relative uptake rate, systematic differences between the high-pass filtering scenarios largely cancel out, suggesting that this relative metric represents a robust key parameter comparable between studies relying on different post-processing schemes.

  13. Eddy covariance carbonyl sulfide flux measurements with a quantum cascade laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gerdel, Katharina; Spielmann, Felix Maximilian; Hammerle, Albin; Wohlfahrt, Georg

    2017-09-01

    The trace gas carbonyl sulfide (COS) has lately received growing interest from the eddy covariance (EC) community due to its potential to serve as an independent approach for constraining gross primary production and canopy stomatal conductance. Thanks to recent developments of fast-response high-precision trace gas analysers (e.g. quantum cascade laser absorption spectrometers, QCLAS), a handful of EC COS flux measurements have been published since 2013. To date, however, a thorough methodological characterisation of QCLAS with regard to the requirements of the EC technique and the necessary processing steps has not been conducted. The objective of this study is to present a detailed characterisation of the COS measurement with the Aerodyne QCLAS in the context of the EC technique and to recommend best EC processing practices for those measurements. Data were collected from May to October 2015 at a temperate mountain grassland in Tyrol, Austria. Analysis of the Allan variance of high-frequency concentration measurements revealed the occurrence of sensor drift under field conditions after an averaging time of around 50 s. We thus explored the use of two high-pass filtering approaches (linear detrending and recursive filtering) as opposed to block averaging and linear interpolation of regular background measurements for covariance computation. Experimental low-pass filtering correction factors were derived from a detailed cospectral analysis. The CO2 and H2O flux measurements obtained with the QCLAS were compared with those obtained with a closed-path infrared gas analyser. Overall, our results suggest small, but systematic differences between the various high-pass filtering scenarios with regard to the fraction of data retained in the quality control and flux magnitudes. When COS and CO2 fluxes are combined in the ecosystem relative uptake rate, systematic differences between the high-pass filtering scenarios largely cancel out, suggesting that this relative metric represents a robust key parameter comparable between studies relying on different post-processing schemes.

  14. Modeling gross primary production in semi-arid Inner Mongolia using MODIS imagery and eddy covariance data

    Treesearch

    Ranjeet John; Jiquan Chen; Asko Noormets; Xiangming Xiao; Jianye Xu; Nan Lu; Shiping Chen

    2013-01-01

    We evaluate the modelling of carbon fluxes from eddy covariance (EC) tower observations in different water-limited land-cover/land-use (LCLU) and biome types in semi-arid Inner Mongolia, China. The vegetation photosynthesis model (VPM) and modified VPM (MVPM), driven by the enhanced vegetation index (EVI) and land-surface water index (LSWI), which were derived from the...

  15. A modified micrometeorological gradient method for estimating O3 dry depositions over a forest canopy

    NASA Astrophysics Data System (ADS)

    Wu, Z. Y.; Zhang, L.; Wang, X. M.; Munger, J. W.

    2015-07-01

    Small pollutant concentration gradients between levels above a plant canopy result in large uncertainties in estimated air-surface exchange fluxes when using existing micrometeorological gradient methods, including the aerodynamic gradient method (AGM) and the modified Bowen ratio method (MBR). A modified micrometeorological gradient method (MGM) is proposed in this study for estimating O3 dry deposition fluxes over a forest canopy using concentration gradients between a level above and a level below the canopy top, taking advantage of relatively large gradients between these levels due to significant pollutant uptake in the top layers of the canopy. The new method is compared with the AGM and MBR methods and is also evaluated using eddy-covariance (EC) flux measurements collected at the Harvard Forest Environmental Measurement Site, Massachusetts, during 1993-2000. All three gradient methods (AGM, MBR, and MGM) produced similar diurnal cycles of O3 dry deposition velocity (Vd(O3)) to the EC measurements, with the MGM method being the closest in magnitude to the EC measurements. The multi-year average Vd(O3) differed significantly between these methods, with the AGM, MBR, and MGM method being 2.28, 1.45, and 1.18 times that of the EC, respectively. Sensitivity experiments identified several input parameters for the MGM method as first-order parameters that affect the estimated Vd(O3). A 10% uncertainty in the wind speed attenuation coefficient or canopy displacement height can cause about 10% uncertainty in the estimated Vd(O3). An unrealistic leaf area density vertical profile can cause an uncertainty of a factor of 2.0 in the estimated Vd(O3). Other input parameters or formulas for stability functions only caused an uncertainly of a few percent. The new method provides an alternative approach to monitoring/estimating long-term deposition fluxes of similar pollutants over tall canopies.

  16. Eddy Covariance measurements of stable isotopes (δD and δ18O) in water vapor

    NASA Astrophysics Data System (ADS)

    Braden-Behrens, J.; Knohl, A.

    2016-12-01

    Stable isotopes are a promising tool to enhance our understanding of ecosystem gas exchanges. Studying 18O and 2H (D) in water vapour (H2Ov) can e.g. help partitioning evapotranspiration into its components. With recent developments in laser spectroscopy direct Eddy Covariance (EC) measurements to investigate fluxes of stable isotopologues became feasible. But so far only very few case studies applying the EC method to stable isotopes in water vapor have been carried out worldwide At our micrometeorological EC tower in a managed beech forest in Thuringia, Germany, we continuously measure fluxes of water vapor isotopologues using EC since autumn 2015. The set-up is based on an off-axis cavity output water vapor isotope analyzer (WVIA, Los Gatos Research. Inc, USA) that measures the water vapour concentration and its isotopic composition (δD and δ18O). The instrument is optimized for high flow rates (app. 4slpm) to generate high frequent (2Hz) measurements. The HF-optimized WVIA showed sufficient precision with a minimal Allan Deviation of 0.023 ‰ for δD and 0.02 ‰ for δ18O for averaging periods of app. 700 s and 400 s resp. The instrument is calibrated hourly using a high-flow optimized version of the water vapor isotope standard source (WVISS, Los Gatos Research. Inc, USA) that provides water vapor with known isotopic composition for a large range of different concentrations. Our calibration scheme includes a near continuous concentration range calibration instead of a simple 2 or 3-point calibration to face the analyzers large concentration dependency within a range of app. 6 000 to 16 000 ppm in winter and app. 8 000 to 23 000 ppm in summer. We evaluate the calibration approach, present specific aspects of the set-up such as the HF optimization and compare the measured and averaged spectra and cospectra of the isotopologue analyzer with those of the longterm EC installation (using a LI-6262 as well as a LI-7200 infrared gas analyzer at 10 Hz). Furthermore, we show results for the isotopologue fluxes before and after leaf unfolding in spring/summer 2016. This novel instrument for EC measurements of water vapor isotopologues provides a new exciting opportunity for studying the hydrological cycle in long-term observation networks like Ameriflux and ICOS.

  17. Eddy covariance and biometric measurements show that a savanna ecosystem in Southwest China is a carbon sink

    NASA Astrophysics Data System (ADS)

    Fei, Xuehai; Jin, Yanqiang; Zhang, Yiping; Sha, Liqing; Liu, Yuntong; Song, Qinghai; Zhou, Wenjun; Liang, Naishen; Yu, Guirui; Zhang, Leiming; Zhou, Ruiwu; Li, Jing; Zhang, Shubin; Li, Peiguang

    2017-02-01

    Savanna ecosystems play a crucial role in the global carbon cycle. However, there is a gap in our understanding of carbon fluxes in the savanna ecosystems of Southeast Asia. In this study, the eddy covariance technique (EC) and the biometric-based method (BM) were used to determine carbon exchange in a savanna ecosystem in Southwest China. The BM-based net ecosystem production (NEP) was 0.96 tC ha-1 yr-1. The EC-based estimates of the average annual gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem carbon exchange (NEE) were 6.84, 5.54, and -1.30 tC ha-1 yr-1, respectively, from May 2013 to December 2015, indicating that this savanna ecosystem acted as an appreciable carbon sink. The ecosystem was more efficient during the wet season than the dry season, so that it represented a small carbon sink of 0.16 tC ha-1 yr-1 in the dry season and a considerable carbon sink of 1.14 tC ha-1 yr-1 in the wet season. However, it is noteworthy that the carbon sink capacity may decline in the future under rising temperatures and decreasing rainfall. Consequently, further studies should assess how environmental factors and climate change will influence carbon-water fluxes.

  18. Towards physiologically meaningful water-use efficiency estimates from eddy covariance data.

    PubMed

    Knauer, Jürgen; Zaehle, Sönke; Medlyn, Belinda E; Reichstein, Markus; Williams, Christopher A; Migliavacca, Mirco; De Kauwe, Martin G; Werner, Christiane; Keitel, Claudia; Kolari, Pasi; Limousin, Jean-Marc; Linderson, Maj-Lena

    2018-02-01

    Intrinsic water-use efficiency (iWUE) characterizes the physiological control on the simultaneous exchange of water and carbon dioxide in terrestrial ecosystems. Knowledge of iWUE is commonly gained from leaf-level gas exchange measurements, which are inevitably restricted in their spatial and temporal coverage. Flux measurements based on the eddy covariance (EC) technique can overcome these limitations, as they provide continuous and long-term records of carbon and water fluxes at the ecosystem scale. However, vegetation gas exchange parameters derived from EC data are subject to scale-dependent and method-specific uncertainties that compromise their ecophysiological interpretation as well as their comparability among ecosystems and across spatial scales. Here, we use estimates of canopy conductance and gross primary productivity (GPP) derived from EC data to calculate a measure of iWUE (G 1 , "stomatal slope") at the ecosystem level at six sites comprising tropical, Mediterranean, temperate, and boreal forests. We assess the following six mechanisms potentially causing discrepancies between leaf and ecosystem-level estimates of G 1 : (i) non-transpirational water fluxes; (ii) aerodynamic conductance; (iii) meteorological deviations between measurement height and canopy surface; (iv) energy balance non-closure; (v) uncertainties in net ecosystem exchange partitioning; and (vi) physiological within-canopy gradients. Our results demonstrate that an unclosed energy balance caused the largest uncertainties, in particular if it was associated with erroneous latent heat flux estimates. The effect of aerodynamic conductance on G 1 was sufficiently captured with a simple representation. G 1 was found to be less sensitive to meteorological deviations between canopy surface and measurement height and, given that data are appropriately filtered, to non-transpirational water fluxes. Uncertainties in the derived GPP and physiological within-canopy gradients and their implications for parameter estimates at leaf and ecosystem level are discussed. Our results highlight the importance of adequately considering the sources of uncertainty outlined here when EC-derived water-use efficiency is interpreted in an ecophysiological context. © 2017 John Wiley & Sons Ltd.

  19. Relations among maternal socialization, effortful control, and maladjustment in early childhood.

    PubMed

    Eisenberg, Nancy; Spinrad, Tracy L; Eggum, Natalie M; Silva, Kassondra M; Reiser, Mark; Hofer, Claire; Smith, Cynthia L; Gaertner, Bridget M; Kupfer, Anne; Popp, Tierney; Michalik, Nicole

    2010-08-01

    In a sample of 18-, 30-, and 42-month-olds, the relations among parenting, effortful control (EC), and maladjustment were examined. Parenting was assessed with mothers' reports and observations; EC was measured with mothers' and caregivers' reports, as well as a behavioral task; and externalizing and internalizing symptoms were assessed with parents' and caregivers' reports. Although 18-month unsupportive (vs. supportive) parenting negatively predicted EC at 30 months, when the stability of these variables was taken into account, there was no evidence of additional potentially causal relations between these two constructs. Although EC was negatively related to both internalizing and externalizing problems within all three ages as well as across 1 year, EC did not predict maladjustment once the stability of the constructs and within time covariation between the constructs were taken into account. In addition, externalizing problems at 30 months negatively predicted EC at 42 months, and internalizing problems at 30 months positively predicted EC at 42 months, but only when the effects of externalizing on EC were controlled. The findings are discussed in terms of the reasons for the lack of causal relations over time.

  20. The surface renewal method for better spatial resolution of evapotranspiration measurements

    NASA Astrophysics Data System (ADS)

    Suvocarev, K.; Fischer, M.; Massey, J. H.; Reba, M. L.; Runkle, B.

    2017-12-01

    Evaluating feasible irrigation strategies when water is scarce requires measurements or estimations of evapotranspiration (ET). Direct observations of ET from agricultural fields are preferred, and micrometeorological methods such as eddy covariance (EC) provide a high quality, continuous time series of ET. However, when replicates of the measurements are needed to compare irrigation strategies, the cost of such experiments is often prohibitive and limits experimental scope. An alternative micrometeorological approach to ET, the surface renewal (SR) method, may be reduced to a thermocouple and a propeller anemometer (Castellvi and Snyder, 2009). In this case, net radiation, soil and sensible heat flux (H) are measured and latent heat flux (an energy equivalent for ET) is estimated as the residual of the surface energy-balance equation. In our experiment, thermocouples (Type E Fine-Wire Thermocouple, FW3) were deployed next to the EC system and combined with mean horizontal wind speed measurements to obtain H using SR method for three weeks. After compensating the temperature signal for non-ideal frequency response in the wavelet half-plane and correcting the sonic anemometer for the flow distortion (Horst et al., 2015), the SR H fluxes compared well to those measured by EC (r2 = 0.9, slope = 0.92). This result encouraged us to install thermocouples over 16 rice fields under different irrigation treatments (continuous cascade flood, continuous multiple inlet rice irrigation, alternate wetting and drying, and furrow irrigation). The EC measurements with net radiometer and soil heat flux plates are deployed at three of these fields to provide a direct comparison. The measurement campaign will finish soon and the data will be processed to evaluate the SR approach for ET estimation. The results will be used to show better spatial resolution of ET measurements to support irrigation decisions in agricultural crops.

  1. eddy4R 0.2.0: a DevOps model for community-extensible processing and analysis of eddy-covariance data based on R, Git, Docker, and HDF5

    NASA Astrophysics Data System (ADS)

    Metzger, Stefan; Durden, David; Sturtevant, Cove; Luo, Hongyan; Pingintha-Durden, Natchaya; Sachs, Torsten; Serafimovich, Andrei; Hartmann, Jörg; Li, Jiahong; Xu, Ke; Desai, Ankur R.

    2017-08-01

    Large differences in instrumentation, site setup, data format, and operating system stymie the adoption of a universal computational environment for processing and analyzing eddy-covariance (EC) data. This results in limited software applicability and extensibility in addition to often substantial inconsistencies in flux estimates. Addressing these concerns, this paper presents the systematic development of portable, reproducible, and extensible EC software achieved by adopting a development and systems operation (DevOps) approach. This software development model is used for the creation of the eddy4R family of EC code packages in the open-source R language for statistical computing. These packages are community developed, iterated via the Git distributed version control system, and wrapped into a portable and reproducible Docker filesystem that is independent of the underlying host operating system. The HDF5 hierarchical data format then provides a streamlined mechanism for highly compressed and fully self-documented data ingest and output. The usefulness of the DevOps approach was evaluated for three test applications. First, the resultant EC processing software was used to analyze standard flux tower data from the first EC instruments installed at a National Ecological Observatory (NEON) field site. Second, through an aircraft test application, we demonstrate the modular extensibility of eddy4R to analyze EC data from other platforms. Third, an intercomparison with commercial-grade software showed excellent agreement (R2 = 1.0 for CO2 flux). In conjunction with this study, a Docker image containing the first two eddy4R packages and an executable example workflow, as well as first NEON EC data products are released publicly. We conclude by describing the work remaining to arrive at the automated generation of science-grade EC fluxes and benefits to the science community at large. This software development model is applicable beyond EC and more generally builds the capacity to deploy complex algorithms developed by scientists in an efficient and scalable manner. In addition, modularity permits meeting project milestones while retaining extensibility with time.

  2. Closure of the energy balance equation over bare soil during the formation and evaporation of non-rainfall water inputs

    NASA Astrophysics Data System (ADS)

    Florentin, Anat; Agam, Nurit

    2015-04-01

    The Negev desert is characterized by an arid climate (annual mean precipitation is 90 mm) with sea breeze carrying moisture from the Mediterranean Sea during the afternoon regularly. Non-rainfall water inputs (NRWIs) are thus of great importance to the hydrometeorology and the ecological functioning of the region. The small magnitude of NRWIs challenges attempts to quantify these processes. The aim of this research was to test commonly used micrometeorological methods to quantify the energy balance components during the deposition and evaporation of NRWIs. A fully equipped micrometeorological station was set up near the Blaustein Institutes for Desert Research of the Ben-Gurion University of the Negev (30o 51' 35.6" N; 34o 46' 24.8" E) during September-October 2014. Net-radiation was measured with a 4-way net radiometer, and soil heat flux was quantified by the calorimetric method in three replicates. Latent heat was measured using an eddy-covariance (EC) and compared to a micro-lysimeter (ML); sensible heat flux was measured with an EC and a surface layer scintillometer (SLS). Sensible heat fluxes measured by the EC and the SLS showed good agreement. EC latent heat fluxes were in good agreement with those derived by the ML. Nevertheless, derivation of latent heat flux from the SLS measurements through the energy balance equation showed a relatively large deviation from the directly measured latent heat flux. This deviation is likely attributed to measurement errors of the soil heat flux.

  3. New gap-filling and partitioning technique for H2O eddy fluxes measured over forests

    NASA Astrophysics Data System (ADS)

    Kang, Minseok; Kim, Joon; Malla Thakuri, Bindu; Chun, Junghwa; Cho, Chunho

    2018-01-01

    The continuous measurement of H2O fluxes using the eddy covariance (EC) technique is still challenging for forests because of large amounts of wet canopy evaporation (EWC), which occur during and following rain events when the EC systems rarely work correctly. We propose a new gap-filling and partitioning technique for the H2O fluxes: a model-statistics hybrid (MSH) method. It enables the recovery of the missing EWC in the traditional gap-filling method and the partitioning of the evapotranspiration (ET) into transpiration and (wet canopy) evaporation. We tested and validated the new method using the data sets from two flux towers, which are located at forests in hilly and complex terrains. The MSH reasonably recovered the missing EWC of 16-41 mm yr-1 and separated it from the ET (14-23 % of the annual ET). Additionally, we illustrated certain advantages of the proposed technique which enable us to understand better how ET responds to environmental changes and how the water cycle is connected to the carbon cycle in a forest ecosystem.

  4. Comparing simulated and measured sensible and latent heat fluxes over snow under a pine canopy to improve an energy balance snowmelt model

    Treesearch

    D. Marks; M. Reba; J. Pomeroy; T. Link; A. Winstral; G. Flerchinger; K. Elder

    2008-01-01

    During the second year of the NASA Cold Land Processes Experiment (CLPX), an eddy covariance (EC) system was deployed at the Local Scale Observation Site (LSOS) from mid-February to June 2003. The EC system was located beneath a uniform pine canopy, where the trees are regularly spaced and are of similar age and height. In an effort to evaluate the turbulent flux...

  5. Estimating sensible heat flux in agricultural screenhouses by the flux-variance and half-order time derivative methods

    NASA Astrophysics Data System (ADS)

    Achiman, Ori; Mekhmandarov, Yonatan; Pirkner, Moran; Tanny, Josef

    2016-04-01

    Previous studies have established that the eddy covariance (EC) technique is reliable for whole canopy flux measurements in agricultural crops covered by porous screens, i.e., screenhouses. Nevertheless, the eddy covariance technique remains difficult to apply in the farm due to costs, operational complexity, and post-processing of data - thereby inviting alternative techniques to be developed. The subject of this research was estimating the sensible heat flux by two turbulent transport techniques, namely, Flux-Variance (FV) and Half-order Time Derivative (HTD) whose instrumentation needs and operational demands are not as elaborate as the EC. The FV is based on the standard deviation of high frequency temperature measurements and a similarity constant CT. The HTD method requires mean air temperature and air velocity data. Measurements were carried out in two types of screenhouses: (i) a banana plantation in a light shading (8%) screenhouse; (ii) a pepper crop in a dense insect-proof (50-mesh) screenhouse. In each screenhouse an EC system was deployed for reference and high frequency air temperature measurements were conducted using miniature thermocouples installed at several levels to identify the optimal measurement height. Quality control analysis showed that turbulence development and flow stationarity conditions in the two structures were suitable for flux measurements by the EC technique. Energy balance closure slopes in the two screenhouses were larger than 0.71, in agreement with results for open fields. Regressions between sensible heat flux measured by EC and estimated by FV resulted with CT values that were usually larger than 1, the typical value for open field. In both shading and insect-proof screenhouses the CT value generally increased with height. The optimal measurement height, defined as the height with maximum R2 of the regression between EC and FV sensible heat fluxes, was just above the screen. CT value at optimal height was 2.64 and 1.52 for the shading and insect-proof screenhouses, respectively, with R2 = 0.73 in both types of structures. FV data analysis of the temperature signal at frequencies lower than 10 Hz showed that R2 of these regressions was insensitive to the data analysis frequency up to 0.5 Hz. This suggests that turbulent transport in the screenhouses was governed by large scale vortices. Regressions between EC and HTD sensible heat fluxes resulted with R2 which slightly decreased with height and had values between 0.3 and 0.4 for both screenhouses. The regression slopes also decreased with height and had values between 0.4 and 0.6. We conclude that in screenhouses the FV technique provides a more reliable estimate of the sensible heat flux than the HTD; however, the latter is simpler and more robust in terms of equipment, operation and data analysis and hence may be more attainable for day-to-day use by the growers.

  6. Evapotranspiration Measurements over Different Surfaces in the Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Xu, Z. W.; Liu, S. M.; Bai, J.

    2009-09-01

    Based on observations of eddy covariance systems (EC) and large aperture scintillometer (LAS) conducted over the Heihe River Basin in 2008, China, diurnal /seasonal variations of energy and water fluxes, especially characteristics of evapotranspiration (ET) over different surfaces are analyzed, namely, oasis cropland (Yingke site, for short YK site), alpine meadow (A'Rou site, for short AR site), and spruce forest (Guantan site, for short GT site). Besides, the source areas of EC and LAS are calculated for different sites and reasons of the difference between sensible heat fluxes measured by EC and LAS are discussed. The results show that the source areas of EC are different among the sites, while the main contributing areas concentrate on a scope of 500m around the EC point. The main contributing area for LAS distributes perpendicular to the path length and about 250m apart from it. The underlying surfaces in the source area change obviously in the plant growing season and non-growing season at all sites. There are clear diurnal and seasonal variations of energy and water fluxes at all sites. Sensible heat flux is the main energy consumption during plant non-growing seasons. During plant growing seasons, latent heat flux dominates the energy budget at YK and AR sites, and obvious "oasis effect” is observed at YK site. In the GT site, sensible heat flux is the dominant component of energy budget all the time. ET at YK site is larger than those at the other two sites (the maximum daily ET is larger than 6mm), while ET at GT site is relatively small (daily ET is less than 4mm). The monthly ET reaches the peak value in July, August and June for YK, AR, and GT site, respectively. Sensible heat flux measured by LAS at AR site is generally larger than that of EC measurement at the same site. The reason, besides the differences of the overlapped source areas of EC and LAS systems and heterogeneity of the underlying surfaces, is the contribution of larger eddies to the energy transport, which can't be measured by EC system. KEY WORDS: evapotranspiration; eddy covariance system; large aperture scintillometer; different scales

  7. Relations among maternal socialization, effortful control, and maladjustment in early childhood

    PubMed Central

    Eisenberg, Nancy; Spinrad, Tracy L.; Eggum, Natalie D.; Silva, Kassondra M.; Reiser, Mark; Hofer, Claire; Smith, Cynthia L.; Gaertner, Bridget M.; Kupfer, Anne; Popp, Tierney; Michalik, Nicole

    2010-01-01

    In a sample of 18-, 30-, and 42-month-olds, the relations among parenting, effortful control (EC), and maladjustment were examined. Parenting was assessed with mothers’ reports and observations; EC was measured with mothers’ and caregivers’ reports, as well as a behavioral task; and externalizing and internalizing symptoms were assessed with parents’ and caregivers’ reports. Although 18-month unsupportive (vs. supportive) parenting negatively predicted EC at 30 months, when the stability of these variables was taken into account, there was no evidence of additional potentially causal relations between these two constructs. Although EC was negatively related to both internalizing and externalizing problems within all three ages as well as across 1 year, EC did not predict maladjustment once the stability of the constructs and within time covariation between the constructs were taken into account. In addition, externalizing problems at 30 months negatively predicted EC at 42 months, and internalizing problems at 30 months positively predicted EC at 42 months, but only when the effects of externalizing on EC were controlled. The findings are discussed in terms of the reasons for the lack of causal relations over time. PMID:20576175

  8. On the discrepancy between eddy covariance and lysimetry-based surface flux measurements under strongly advective conditions

    NASA Astrophysics Data System (ADS)

    Alfieri, Joseph G.; Kustas, William P.; Prueger, John H.; Hipps, Lawrence E.; Evett, Steven R.; Basara, Jeffrey B.; Neale, Christopher M. U.; French, Andrew N.; Colaizzi, Paul; Agam, Nurit; Cosh, Michael H.; Chavez, José L.; Howell, Terry A.

    2012-12-01

    Discrepancies can arise among surface flux measurements collected using disparate techniques due to differences in both the instrumentation and theoretical underpinnings of the different measurement methods. Using data collected primarily within a pair of irrigated cotton fields as a part of the 2008 Bushland Evapotranspiration and Remote Sensing Experiment (BEAREX08), flux measurements collected with two commonly-used methods, eddy covariance (EC) and lysimetry (LY), were compared and substantial differences were found. Daytime mean differences in the flux measurements from the two techniques could be in excess of 200 W m-2 under strongly advective conditions. Three causes for this disparity were found: (i) the failure of the eddy covariance systems to fully balance the surface energy budget, (ii) flux divergence due to the local advection of warm, dry air over the irrigated cotton fields, and (iii) the failure of lysimeters to accurately represent the surface properties of the cotton fields as a whole. Regardless of the underlying cause, the discrepancy among the flux measurements underscores the difficulty in collecting these measurements under strongly advective conditions. It also raises awareness of the uncertainty associated with in situ micrometeorological measurements and the need for caution when using such data for model validation or as observational evidence to definitively support or refute scientific hypotheses.

  9. Eddy covariance and biometric measurements show that a savanna ecosystem in Southwest China is a carbon sink

    PubMed Central

    Fei, Xuehai; Jin, Yanqiang; Zhang, Yiping; Sha, Liqing; Liu, Yuntong; Song, Qinghai; Zhou, Wenjun; Liang, Naishen; Yu, Guirui; Zhang, Leiming; Zhou, Ruiwu; Li, Jing; Zhang, Shubin; Li, Peiguang

    2017-01-01

    Savanna ecosystems play a crucial role in the global carbon cycle. However, there is a gap in our understanding of carbon fluxes in the savanna ecosystems of Southeast Asia. In this study, the eddy covariance technique (EC) and the biometric-based method (BM) were used to determine carbon exchange in a savanna ecosystem in Southwest China. The BM-based net ecosystem production (NEP) was 0.96 tC ha−1 yr−1. The EC-based estimates of the average annual gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem carbon exchange (NEE) were 6.84, 5.54, and −1.30 tC ha−1 yr−1, respectively, from May 2013 to December 2015, indicating that this savanna ecosystem acted as an appreciable carbon sink. The ecosystem was more efficient during the wet season than the dry season, so that it represented a small carbon sink of 0.16 tC ha−1 yr−1 in the dry season and a considerable carbon sink of 1.14 tC ha−1 yr−1 in the wet season. However, it is noteworthy that the carbon sink capacity may decline in the future under rising temperatures and decreasing rainfall. Consequently, further studies should assess how environmental factors and climate change will influence carbon-water fluxes. PMID:28145459

  10. Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF

    NASA Astrophysics Data System (ADS)

    Ruuskanen, T. M.; Müller, M.; Schnitzhofer, R.; Karl, T.; Graus, M.; Bamberger, I.; Hörtnagl, L.; Brilli, F.; Wohlfahrt, G.; Hansel, A.

    2011-01-01

    Eddy covariance (EC) is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5-20 Hz). For volatile organic compounds (VOC) soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF) for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+ - water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes. The smallest reliable fluxes we determined were less than 0.1 nmol m-2 s-1, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmolC m-2 s-1 were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting.

  11. VOC Emission and Deposition Eddy Covariance Fluxes above Grassland using PTR-TOF

    NASA Astrophysics Data System (ADS)

    Ruuskanen, T. M.; Müller, M.; Schnitzhofer, R.; Karl, T.; Graus, M.; Bamberger, I.; Hörtnagl, L.; Brilli, F.; Wohlfahrt, G.; Hansel, A.

    2010-12-01

    Eddy covariance (EC) is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5-20 Hz). For volatile organic compounds (VOC) soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF) for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+ - water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes. The smallest reliable fluxes we determined were less than 0.1 nmol m-2 s-1, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmolC m-2 s-1 were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting.

  12. Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF

    NASA Astrophysics Data System (ADS)

    Ruuskanen, T. M.; Müller, M.; Schnitzhofer, R.; Karl, T.; Graus, M.; Bamberger, I.; Hörtnagl, L.; Brilli, F.; Wohlfahrt, G.; Hansel, A.

    2010-09-01

    Eddy covariance (EC) is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5-20 Hz). For volatile organic compounds (VOC) soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF) for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+-water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes. The smallest reliable fluxes we determined were less than 0.1 nmol m-2 s-1, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmol C m-2 s-1 were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting.

  13. Flux Measurements of Trace Gases, Aerosols and Energy from the Urban Core of Mexico City

    NASA Astrophysics Data System (ADS)

    Velasco, E.; Molina, L.; Lamb, B.; Pressley, S.; Grivicke, R.; Westberg, H.; Jobson, T.; Allwine, E.; Coons, T.; Jimenez, J.; Nemitz, E.; Alexander, L. M.; Worsnop, D.; Ramos, R.

    2007-05-01

    As part of the MILAGRO field campaign in March 2006 we deployed a flux system in a busy district of Mexico City surrounded by congested avenues. The flux system consisted of a tall tower instrumented with fast-response sensors coupled with eddy covariance (EC) techniques to measure fluxes of volatile organic compounds (VOCs), CO2, CO, aerosols and energy. The measured fluxes represent direct measurements of emissions that include all major and minor emission sources from a typical residential and commercial district. In a previous study we demonstrated that the EC techniques are valuable tools to evaluate emissions inventories in urban areas, and understand better the atmospheric chemistry and the role that megacities play in global change. We measured fluxes of olefins using a Fast Olefin Sensor (FOS) and the EC technique, fluxes of aromatic and oxygenated VOCs by Proton Transfer Reaction-Mass Spectroscopy (PTR-MS) and the disjunct eddy covariance (DEC) technique, fluxes of CO2 and H2O with an open path Infrared Gas Analyzer (IRGA) and the EC technique, fluxes of CO using a modified gradient method and a commercial CO instrument, and fluxes of aerosols (organics, nitrates and sulfates) using an Aerodyne Aerosol Mass Spectrometer (AMS) and the EC technique. In addition we used a disjunct eddy accumulation (DEA) system to extend the number of VOCs. This system collected whole air samples as function of the direction of the vertical wind component, and the samples were analyzed on site using gas chromatography / flame ionization detection (GC-FID). We also measured fluxes of sensible and latent heat by EC and the radiation components with a net radiometer. Overall, these flux measurements confirm the results of our previous flux measurements in Mexico City in terms of the magnitude, composition, and distribution. We found that the urban surface is a net source of CO2 and VOCs. The diurnal patterns show clear anthropogenic signatures, with important contributions from vehicular traffic. The DEA results for individual hydrocarbons show that the alkane fluxes are considerably higher than alkene fluxes, which is consistent with ambient concentration measurements and with the emission inventory for Mexico City. CO fluxes, estimated from a modified gradient technique, were more than 10% of the measured CO2 fluxes (on a molar basis) which is much higher than is generally expected for combustion efficiencies in mobile and other sources. Investigation of this result is underway. The energy balance distribution and radiative parameters observed are similar to distributions and parameters reported for other urban sites.

  14. Methane and CO2 fluxes of moving point sources - Beyond or within the limits of eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Felber, Raphael; Neftel, Albrecht; Münger, Andreas; Ammann, Christof

    2014-05-01

    The eddy covariance (EC) technique has been extensively used for CO2 and energy exchange measurements over different ecosystems. For some years, it has been also becoming widely used to investigate CH4 and N2O exchange over ecosystems including grazing systems. EC measurements represent a spatially integrated flux over an upwind area (footprint). Whereas for extended homogenous areas EC measurements work well, the animals in a grazing system are a challenge as they represent moving point sources that create inhomogeneous conditions in space and time. The main issues which have to be taken into account when applying EC flux measurements over a grazed system are: i) In the presence of animals the high time resolution concentration measurements show large spikes in the signal. These spikes may be filtered/reduced by standard quality control software in order to avoid wrong measurements. ii) Data on the position of the animals relative to the flux footprint is needed to quantify the contribution of the grazing animals to the measured flux. For one grazing season we investigated the ability of EC flux measurements to reliably quantify the contribution of the grazing animals to the CH4 and CO2 exchange over pasture systems. For this purpose, a field experiment with a herd of twenty dairy cows in a full-day rotational grazing system was carried out on the Swiss central plateau. Net CH4 and CO2 exchange of the pasture system was measured continuously by the eddy covariance technique (Sonic Anemometer HS-50, Gill Instruments Ltd; FGGA, Los Gatos Research Inc.). To quantify the contribution of the animals to the net flux, the position of the individual cows was recorded using GPS (5 s time resolution) on each animal. An existing footprint calculation tool (ART footprint tool) was adapted and CH4 emissions of the cows were calculated. CH4 emissions from cows could be used as a tracer to investigate the quality of the evaluation of the EC data, since the background exchange of CH4 was very small. Daily mean CH4 emissions compared well to emission values calculated based on animal weights and milk yields. Based on a corresponding quality analysis we investigated to which extent the presence of cows can be detected or missed in the CO2 exchange measurements. For CO2 a partitioning of the net flux was performed to separate the animal respiration flux from contributions of vegetation and soil (assimilation and respiration). The resulting animal related CO2 emissions showed a considerable scatter but scaled with the animal density in the EC footprint.

  15. H2O and CO2 fluxes at the floor of a boreal pine forest

    NASA Astrophysics Data System (ADS)

    Kulmala, Liisa; Launiainen, Samuli; Pumpanen, Jukka; Lankreijer, Harry; Lindroth, Anders; Hari, Pertti; Vesala, Timo

    2008-04-01

    We measured H2O and CO2 fluxes at a boreal forest floor using eddy covariance (EC) and chamber methods. Maximum evapotranspiration measured with EC ranged from 1.5 to 2.0mmol m-2 s-1 while chamber estimates depended substantially on the location and the vegetation inside the chamber. The daytime net CO2 exchange measured with EC (0-2μmol m-2 s-1) was of the same order as measured with the chambers. The nocturnal net CO2 exchange measured with the chambers ranged from 4 to 7μmol m-2 s-1 and with EC from ~4 to ~5μmol m-2 s-1 when turbulent mixing below the canopy was sufficient and the measurements were reliable. We studied gross photosynthesis by measuring the light response curves of the most common forest floor species and found the saturated rates of photosynthesis (Pmax) to range from 0.008 (mosses) to 0.184μmol g-1 s-1 (blueberry). The estimated gross photosynthesis at the study site based on average leaf masses and the light response curves of individual plant species was 2-3μmol m-2 s-1. At the same time, we measured a whole community with another chamber and found maximum gross photosynthesis rates from 4 to 7μmol m-2 s-1.

  16. The effect of agricultural structures on the quality of eddy covariance flux data

    NASA Astrophysics Data System (ADS)

    Tanny, Josef; Achiman, Ori; Mekhmandarov, Yonatan; Pirkner, Moran

    2015-04-01

    The Eddy Covariance (EC) is a common method to directly measure whole canopy turbulent fluxes of scalars like water vapor, air temperature and CO2. The method was originally developed to measure fluxes from canopies in the open; however, in recent years it was also shown to be valid for flux measurements of agricultural crops cultivated inside structures covered by porous screens, i.e., screenhouses. To reliably measure turbulent fluxes by the EC technique, several air flow conditions should prevail. The purpose of this study was to examine two criteria, commonly used to assess the suitability of turbulent flow conditions for EC measurements in open fields, for flux measurements in different types of agricultural screenhouses and greenhouses. The two tests are the "Integral Turbulence Characteristics" (ITC), which indicates on the development of the turbulent flow, and the "Steady State" (SS), which examines the variation in time of flow statistics during the averaging period. For both tests data was classified according to their suitability for flux measurements. The research was conducted in 3 types of agricultural structures with 3 different plants: (S1) A banana screenhouse, 5.5 m in height, covered by an 8% shade net; (S2) A pepper screenhouse, 3.7 m in height, covered by an insect-proof, 50 mesh net; (S3) A 12-span naturally ventilated tomato greenhouse with a 6 m height arched gable, equipped with an insect-proof 50 mesh net on the sidewalls, and impermeable plastic cover on the roof. In each structure an EC system was installed between the top of the canopy and the roof, in a position that provided sufficient fetch for the prevailing wind, for a measurement period of at least 20 days. Mean fluxes were calculated over half-hourly time intervals. In the present study the ITC test was applied in two different approaches: (i) according to the commonly used literature model which prevails for turbulent flow in open fields (ITC1), and (ii) according to a new model that was developed specifically for each structure by regressions of the actually measured data (ITC2). Results show that according to the ITC1 test, in S1, 80% of all the half-hourly time periods were suitable for EC flux measurements, whereas in S2 and S3 only 63% and 64% were suitable, respectively. On the other hand, using the ITC2 test the percentages of the suitable half-hourly time periods in S1, S2 and S3 increased to 91%, 83%, 82%, respectively. Analysis of the SS test showed that in S1, 88% of all the time periods were suitable for EC flux measurements. On the other hand in S2 and S3 only 77% and 79% were suitable, respectively. We conclude that the quality of flux data measured by the EC technique was high in the banana shading screenhouse, whereas in the pepper insect-proof screenhouse and the tomato greenhouse the quality was lower.

  17. Eddy covariance N2O flux measurements at low flux rates: results from the InGOS campaign in a Danish willow field.

    NASA Astrophysics Data System (ADS)

    Ibrom, Andreas; Brümmer, Christian; Hensen, Arjan; van Asperen, Hella; Carter, Mette S.; Gasche, Rainer; Famulari, Daniela; Kutsch, Werner; Pilegaard, Kim; Ambus, Per

    2014-05-01

    Nitrous oxide (N2O) fluxes from soils are characterised by their high spatial and temporal variability. The fluxes depend on the availability of the substrates for nitrification and denitrification and soil physical and chemical conditions that control the metabolic microbial activity. The sporadic nature of the fluxes and their high sensitivity to alterations of the soil climate put very high demands on measurement approaches. Laser spectroscopy enables accurate and fast response detection of atmospheric N2O concentrations and is used for eddy covariance (EC) flux measurements. Alternatively N2O fluxes can be measured with chambers together with high precision analysers. Differences in the measurement approaches and system designs are expected to have a considerable influence on the accuracy of the flux estimation. This study investigates how three different eddy covariance systems perform in a situation of low N2O fluxes from a flat surface. Chamber flux measurements with differing chamber and analyser designs are used for comparison. In April 2013, the EU research infrastructure project InGOS (http://www.ingos-infrastructure.eu/) organised a campaign of N2O flux measurements in a willow plantation close to the Risø Campus of the Technical University of Denmark. The willow field was harvested in February 2013 and received mineral fertiliser equivalent to 120 kg N ha-1 before the campaign started. Three different eddy covariance systems took part in the campaign: two Aerodyne quantum cascade laser (QCL) based systems and one Los Gatos Research off-axis integrated-cavity-output spectroscopy (ICOS) system for N2O and CO. The sonic anemometers were all installed at 2 m height above the bare ground. Gill R3 type sonic anemometers were used with QCL systems and a Gil HS-50 with the ICOS system. The 10 Hz raw data were analysed with group specific softwares and procedures. The local conditions in the exceptionally cold and dry spring 2013 did not lead to large N2O flux rates. All three EC systems showed 30 min. flux values varying around zero nmol m-2 s-1. This noise was considerably lower in the EC systems that used QCL analysers. The maximum daily averages of the uncorrected fluxes from two of the EC systems reached 0.26 (ICOS/HS50) and 0.28 (QCL/R3) nmol m-2 s-1.Spectral correction increased the flux estimates up to, e.g., 180% equivalent to 0.54 nmol m-2 s-1. The flux estimates from the soil chambers were with one exception higher than the flux estimates obtained from the EC systems with highest daily averages ranging from 0.1 up to 2 nmol m-2 s-1. These large differences were unexpected, because at least two of the EC systems were shown to accurately measure fluxes at such higher levels at another InGOS campaign in a fertilised Scottish grazed meadow. We use spectral analysis to examine the raw data for the effects of sensor noise on the flux estimates and discuss strategies on how to correct or account for it. Furthermore possible causes for the observed differences between the observed EC and chamber flux estimates will be discussed.

  18. An Empirical Orthogonal Function-Based Algorithm for Estimating Terrestrial Latent Heat Flux from Eddy Covariance, Meteorological and Satellite Observations

    PubMed Central

    Feng, Fei; Li, Xianglan; Yao, Yunjun; Liang, Shunlin; Chen, Jiquan; Zhao, Xiang; Jia, Kun; Pintér, Krisztina; McCaughey, J. Harry

    2016-01-01

    Accurate estimation of latent heat flux (LE) based on remote sensing data is critical in characterizing terrestrial ecosystems and modeling land surface processes. Many LE products were released during the past few decades, but their quality might not meet the requirements in terms of data consistency and estimation accuracy. Merging multiple algorithms could be an effective way to improve the quality of existing LE products. In this paper, we present a data integration method based on modified empirical orthogonal function (EOF) analysis to integrate the Moderate Resolution Imaging Spectroradiometer (MODIS) LE product (MOD16) and the Priestley-Taylor LE algorithm of Jet Propulsion Laboratory (PT-JPL) estimate. Twenty-two eddy covariance (EC) sites with LE observation were chosen to evaluate our algorithm, showing that the proposed EOF fusion method was capable of integrating the two satellite data sets with improved consistency and reduced uncertainties. Further efforts were needed to evaluate and improve the proposed algorithm at larger spatial scales and time periods, and over different land cover types. PMID:27472383

  19. An Empirical Orthogonal Function-Based Algorithm for Estimating Terrestrial Latent Heat Flux from Eddy Covariance, Meteorological and Satellite Observations.

    PubMed

    Feng, Fei; Li, Xianglan; Yao, Yunjun; Liang, Shunlin; Chen, Jiquan; Zhao, Xiang; Jia, Kun; Pintér, Krisztina; McCaughey, J Harry

    2016-01-01

    Accurate estimation of latent heat flux (LE) based on remote sensing data is critical in characterizing terrestrial ecosystems and modeling land surface processes. Many LE products were released during the past few decades, but their quality might not meet the requirements in terms of data consistency and estimation accuracy. Merging multiple algorithms could be an effective way to improve the quality of existing LE products. In this paper, we present a data integration method based on modified empirical orthogonal function (EOF) analysis to integrate the Moderate Resolution Imaging Spectroradiometer (MODIS) LE product (MOD16) and the Priestley-Taylor LE algorithm of Jet Propulsion Laboratory (PT-JPL) estimate. Twenty-two eddy covariance (EC) sites with LE observation were chosen to evaluate our algorithm, showing that the proposed EOF fusion method was capable of integrating the two satellite data sets with improved consistency and reduced uncertainties. Further efforts were needed to evaluate and improve the proposed algorithm at larger spatial scales and time periods, and over different land cover types.

  20. Measurements of Forest-Atmosphere Isotopic CO2 Exchange by Eddy Covariance

    NASA Astrophysics Data System (ADS)

    Wehr, R. A.; Munger, J. W.; Nelson, D. D.; McManus, J. B.; Zahniser, M. S.; Saleska, S. R.

    2010-12-01

    Isotopic CO2 flux measurements are a promising means for partitioning the net ecosystem exchange of CO2 into photosynthetic and respiratory components. This approach to partitioning is possible in principle because of the distinct isotopic signatures of respired and photosynthesized CO2, but has been infeasible in practice—especially in forests—because of the difficulty of measuring isotopic ratios with sufficient precision and time response for use in eddy covariance (EC) flux calculations. Recent advances in laser spectroscopic instrumentation have changed that. We report measurements of isotopic (13C and 18O) CO2 exchange made by eddy covariance at Harvard Forest between April and December, 2010. The measurements were made using a continuous-wave quantum cascade laser spectrometer (Aerodyne Research Inc.) sampling at 4 Hz and are, to our knowledge, the first EC isotopic flux measurements at a forest site. The spectrometer can measure δ13C and δ18O with internal precisions (standard deviation of 1-minute averages) of 0.03 ‰, and [CO2] with an internal precision of 15 ppb; the instrumental accuracy, calibration, and long-term stability are discussed in detail. The isotopic data are considered in relation to environmental variables (PAR, temperature, humidity, soil temperature and moisture), and a first attempt at flux partitioning using the isotopic fluxes is presented.

  1. Ground-Based Optical Measurements at European Flux Sites: A Review of Methods, Instruments and Current Controversies

    PubMed Central

    Balzarolo, Manuela; Anderson, Karen; Nichol, Caroline; Rossini, Micol; Vescovo, Loris; Arriga, Nicola; Wohlfahrt, Georg; Calvet, Jean-Christophe; Carrara, Arnaud; Cerasoli, Sofia; Cogliati, Sergio; Daumard, Fabrice; Eklundh, Lars; Elbers, Jan A.; Evrendilek, Fatih; Handcock, Rebecca N.; Kaduk, Joerg; Klumpp, Katja; Longdoz, Bernard; Matteucci, Giorgio; Meroni, Michele; Montagnani, Lenoardo; Ourcival, Jean-Marc; Sánchez-Cañete, Enrique P.; Pontailler, Jean-Yves; Juszczak, Radoslaw; Scholes, Bob; Martín, M. Pilar

    2011-01-01

    This paper reviews the currently available optical sensors, their limitations and opportunities for deployment at Eddy Covariance (EC) sites in Europe. This review is based on the results obtained from an online survey designed and disseminated by the Co-cooperation in Science and Technology (COST) Action ESO903—“Spectral Sampling Tools for Vegetation Biophysical Parameters and Flux Measurements in Europe” that provided a complete view on spectral sampling activities carried out within the different research teams in European countries. The results have highlighted that a wide variety of optical sensors are in use at flux sites across Europe, and responses further demonstrated that users were not always fully aware of the key issues underpinning repeatability and the reproducibility of their spectral measurements. The key findings of this survey point towards the need for greater awareness of the need for standardisation and development of a common protocol of optical sampling at the European EC sites. PMID:22164055

  2. Estimations of evapotranspiration and water balance with uncertainty over the Yukon River Basin

    USGS Publications Warehouse

    Yuan, Wenping; Liu, Shuguang; Liang, Shunlin; Tan, Zhengxi; Liu, Heping; Young, Claudia

    2012-01-01

    In this study, the revised Remote Sensing-Penman Monteith model (RS-PM) was used to scale up evapotranspiration (ET) over the entire Yukon River Basin (YRB) from three eddy covariance (EC) towers covering major vegetation types. We determined model parameters and uncertainty using a Bayesian-based method in the three EC sites. The 95 % confidence interval for the aggregate ecosystem ET ranged from 233 to 396 mm yr−1 with an average of 319 mm yr−1. The mean difference between precipitation and evapotranspiration (W) was 171 mm yr−1 with a 95 % confidence interval of 94–257 mm yr−1. The YRB region showed a slight increasing trend in annual precipitation for the 1982–2009 time period, while ET showed a significant increasing trend of 6.6 mm decade−1. As a whole, annual W showed a drying trend over YRB region.

  3. Gradient flux measurements of sea-air DMS transfer during the Surface Ocean Aerosol Production (SOAP) experiment

    NASA Astrophysics Data System (ADS)

    Smith, Murray J.; Walker, Carolyn F.; Bell, Thomas G.; Harvey, Mike J.; Saltzman, Eric S.; Law, Cliff S.

    2018-04-01

    Direct measurements of marine dimethylsulfide (DMS) fluxes are sparse, particularly in the Southern Ocean. The Surface Ocean Aerosol Production (SOAP) voyage in February-March 2012 examined the distribution and flux of DMS in a biologically active frontal system in the southwest Pacific Ocean. Three distinct phytoplankton blooms were studied with oceanic DMS concentrations as high as 25 nmol L-1. Measurements of DMS fluxes were made using two independent methods: the eddy covariance (EC) technique using atmospheric pressure chemical ionization-mass spectrometry (API-CIMS) and the gradient flux (GF) technique from an autonomous catamaran platform. Catamaran flux measurements are relatively unaffected by airflow distortion and are made close to the water surface, where gas gradients are largest. Flux measurements were complemented by near-surface hydrographic measurements to elucidate physical factors influencing DMS emission. Individual DMS fluxes derived by EC showed significant scatter and, at times, consistent departures from the Coupled Ocean-Atmosphere Response Experiment gas transfer algorithm (COAREG). A direct comparison between the two flux methods was carried out to separate instrumental effects from environmental effects and showed good agreement with a regression slope of 0.96 (r2 = 0.89). A period of abnormal downward atmospheric heat flux enhanced near-surface ocean stratification and reduced turbulent exchange, during which GF and EC transfer velocities showed good agreement but modelled COAREG values were significantly higher. The transfer velocity derived from near-surface ocean turbulence measurements on a spar buoy compared well with the COAREG model in general but showed less variation. This first direct comparison between EC and GF fluxes of DMS provides confidence in compilation of flux estimates from both techniques, as well as in the stable periods when the observations are not well predicted by the COAREG model.

  4. Field evaluation of open and closed-path CO2 flux systems over asphalt surface

    NASA Astrophysics Data System (ADS)

    Bogoev, I.; Santos, E.

    2016-12-01

    Eddy covariance (EC) is a widely used method for quantifying surface fluxes of heat, water vapor and carbon dioxide between ecosystems and the atmosphere. A typical EC system consists of an ultrasonic anemometer measuring the 3D wind vector and a fast-response infrared gas analyzer for sensing the water vapor and CO2 density in the air. When using an open-path analyzer that detects the constituent's density in situ a correction for concurrent air temperature and humidity fluctuations must be applied, Webb et al. (1980). In environments with small magnitudes of CO2 flux (<5µmol m-2 s-1) and in the presence of high sensible heat flux, like wintertime over boreal forest, open-path flux measurements have been challenging since the magnitude of the density corrections are as large as the uncorrected CO2 flux itself. A new technology merging the sensing paths of the gas analyzer and the sonic anemometer has been recently developed. This new integrated instrument allows a direct measurement of CO2 mixing ratio in the open air and has the potential to improve the quality of the temperature related density corrections by synchronously measuring the sensible heat flux in the optical path of the gas analyzer. We evaluate the performance and the accuracy of this new sensor over a large parking lot with an asphalt surface where the CO2 fluxes are considered low and the interfering sensible heat fluxes are above 200 Wm-2. A co-located closed-path EC system is used as a reference measurement to examine any systematic biases and apparent CO2 uptake observed with open-path sensors under high sensible heat flux regimes. Half-hour mean and variance of CO2 and water vapor concentrations are evaluated. The relative spectral responses, covariances and corrected turbulent fluxes using a common sonic anemometer are analyzed. The influence of sensor separation and frequency response attenuation on the density corrections is discussed.

  5. Small spatial variability in methane emission measured from a wet patterned boreal bog

    NASA Astrophysics Data System (ADS)

    Korrensalo, Aino; Männistö, Elisa; Alekseychik, Pavel; Mammarella, Ivan; Rinne, Janne; Vesala, Timo; Tuittila, Eeva-Stiina

    2018-03-01

    We measured methane fluxes of a patterned bog situated in Siikaneva in southern Finland from six different plant community types in three growing seasons (2012-2014) using the static chamber method with chamber exposure of 35 min. A mixed-effects model was applied to quantify the effect of the controlling factors on the methane flux. The plant community types differed from each other in their water level, species composition, total leaf area (LAITOT) and leaf area of aerenchymatous plant species (LAIAER). Methane emissions ranged from -309 to 1254 mg m-2 d-1. Although methane fluxes increased with increasing peat temperature, LAITOT and LAIAER, they had no correlation with water table or with plant community type. The only exception was higher fluxes from hummocks and high lawns than from high hummocks and bare peat surfaces in 2013 and from bare peat surfaces than from high hummocks in 2014. Chamber fluxes upscaled to ecosystem level for the peak season were of the same magnitude as the fluxes measured with the eddy covariance (EC) technique. In 2012 and in August 2014 there was a good agreement between the two methods; in 2013 and in July 2014, the chamber fluxes were higher than the EC fluxes. Net fluxes to soil, indicating higher methane oxidation than production, were detected every year and in all community types. Our results underline the importance of both LAIAER and LAITOT in controlling methane fluxes and indicate the need for automatized chambers to reliably capture localized events to support the more robust EC method.

  6. Gap-filling methods to impute eddy covariance flux data by preserving variance.

    NASA Astrophysics Data System (ADS)

    Kunwor, S.; Staudhammer, C. L.; Starr, G.; Loescher, H. W.

    2015-12-01

    To represent carbon dynamics, in terms of exchange of CO2 between the terrestrial ecosystem and the atmosphere, eddy covariance (EC) data has been collected using eddy flux towers from various sites across globe for more than two decades. However, measurements from EC data are missing for various reasons: precipitation, routine maintenance, or lack of vertical turbulence. In order to have estimates of net ecosystem exchange of carbon dioxide (NEE) with high precision and accuracy, robust gap-filling methods to impute missing data are required. While the methods used so far have provided robust estimates of the mean value of NEE, little attention has been paid to preserving the variance structures embodied by the flux data. Preserving the variance of these data will provide unbiased and precise estimates of NEE over time, which mimic natural fluctuations. We used a non-linear regression approach with moving windows of different lengths (15, 30, and 60-days) to estimate non-linear regression parameters for one year of flux data from a long-leaf pine site at the Joseph Jones Ecological Research Center. We used as our base the Michaelis-Menten and Van't Hoff functions. We assessed the potential physiological drivers of these parameters with linear models using micrometeorological predictors. We then used a parameter prediction approach to refine the non-linear gap-filling equations based on micrometeorological conditions. This provides us an opportunity to incorporate additional variables, such as vapor pressure deficit (VPD) and volumetric water content (VWC) into the equations. Our preliminary results indicate that improvements in gap-filling can be gained with a 30-day moving window with additional micrometeorological predictors (as indicated by lower root mean square error (RMSE) of the predicted values of NEE). Our next steps are to use these parameter predictions from moving windows to gap-fill the data with and without incorporation of potential driver variables of the parameters traditionally used. Then, comparisons of the predicted values from these methods and 'traditional' gap-filling methods (using 12 fixed monthly windows) will be assessed to show the scale of preserving variance. Further, this method will be applied to impute artificially created gaps for analyzing if variance is preserved.

  7. Coherence between woody carbon uptake and net ecosystem productivity at five eddy-covariance sites

    NASA Astrophysics Data System (ADS)

    Babst, F.; Bouriaud, O.; Papale, D.; Gielen, B.; Janssens, I.; Nikinmaa, E.; Ibrom, A.; Wu, J.; Bernhofer, C.; Koestner, B.; Gruenwald, T.; Seufert, G.; Ciais, P.; Frank, D. C.

    2013-12-01

    Forest growth ranks amongst the most important processes that determine the carbon balance of terrestrial ecosystems. Quantifications of forest carbon cycling can be made e.g. using biometric and eddy-covariance (EC) techniques. Both offer different perspectives on carbon uptake and attempts to combine them have been inconsistent and variably successful in the past. This contributes to persistent uncertainties regarding carbon allocation in forest ecosystems and complicates precise vegetation model parameterization. Aiming to reconcile assessments of carbon cycling from biometric and EC techniques, we measured radial tree growth and wood density at five long-term EC stations across Europe. The resulting records were used to calculate annual carbon uptake during above-ground wood formation and compared to monthly and seasonal CO2-flux measurements. Efforts were made to identify i) the time periods when EC and tree-ring data correspond best in different parts of Europe and ii) the fraction of eddy-fluxes which is associated with changes in above-ground woody carbon stocks. Biometric measurements and net ecosystem productivity (NEP) proved largely compatible at seasonal time scales while relationships with gross primary productivity (GPP) were often weaker. Results suggest a partitioning of sequestered carbon mainly used for volume increase (January-June) and a combination of cell-wall thickening and storage (July-September). The inter-annual variability in above-ground woody carbon uptake was significantly linked with absolute productivity ranging between 69-366 g C m-2 y-1 at boreal and temperate sites, thereby accounting for 10-25% of GPP, 15-32% of TER, and 25-80% of NEP. These findings from sites representing the major European climate zones and tree species contribute to improved quantification of above-ground carbon allocation in forests. Furthermore, they refine knowledge on processes driving ecosystem productivity important for e.g. vegetation models and provide an enhanced framework for integrative studies linking tree-ring parameters with EC measurements.

  8. Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy

    NASA Astrophysics Data System (ADS)

    Meijide, A.; Manca, G.; Goded, I.; Magliulo, V.; di Tommasi, P.; Seufert, G.; Cescatti, A.

    2011-09-01

    Rice paddy fields are one of the greatest anthropogenic sources of methane (CH4), the third most important greenhouse gas after water vapour and carbon dioxide. In agricultural fields, CH4 is usually measured with the closed chamber technique, resulting in discontinuous series of measurements performed over a limited area, that generally do not provide sufficient information on the short-term variation of the fluxes. On the contrary, aerodynamic techniques have been rarely applied for the measurement of CH4 fluxes in rice paddy fields. The eddy covariance (EC) technique provides integrated continuous measurements over a large area and may increase our understanding of the underlying processes and diurnal and seasonal pattern of CH4 emissions in this ecosystem. For this purpose a Fast Methane Analyzer (Los Gatos Research Ltd.) was installed in an eddy-covariance field set-up in a rice paddy field in the Po Valley (Northern Italy). Methane fluxes were measured during the rice growing season, both with EC and with manually operated closed chambers. Methane fluxes were strongly influenced by the presence of the water table, with emissions peaking when it was above 10-12 cm. Further studies are required to evaluate if water table management could decrease CH4 emissions. The development of rice plants and soil temperature were also responsible of the seasonal variation on the fluxes. The EC measured showed a diurnal cycle in the emissions, which was more relevant during the vegetative period, and with CH4 emissions being higher in the late evening, possibly associated with higher water temperature. The comparison between both measurement techniques shows that greater fluxes are measured with the chambers, especially when higher fluxes are being produced, resulting in 30 % higher seasonal estimations with the chambers than with the EC (41.1 and 31.8 g CH4 m-2 measured with chambers and EC respectively). The differences may be a result of the combined effect of overestimation with the chambers, the possible underestimation by the EC technique and of not having considered the daily course of the fluxes for the calculation of seasonal emissions from chambers.

  9. A gap-filling model for eddy covariance CO2 flux: Estimating carbon assimilated by a subtropical evergreen broad-leaved forest at the Lien-Hua-Chih flux observation site

    NASA Astrophysics Data System (ADS)

    Lan, C. Y.; Li, M. H.; Chen, Y. Y.

    2016-12-01

    Appropriate estimations of gaps appeared in eddy covariance (EC) flux observations are critical to the reliability of long-term EC applications. In this study we present a semi-parametric multivariate gap-filling model for tower-based measurement of CO2 flux. The raw EC data passing QC/QA was separated into two groups, clear sky, having net radiation greater than 50 W/m2, and nighttime/cloudy. For the clear sky conditions, the principle component analysis (PCA) was used to resolve the multicollinearity relationships among various environmental variables, including net radiation, wind speed, vapor pressure deficit, soil moisture deficit, leaf area index, and soil temperature, in association with CO2 assimilated by forest. After the principal domains were determined by the PCA, the relationships between CO2 fluxes and selected PCs (key factors) were built up by nonlinear interpolations to estimate the gap-filled CO2 flux. In view of limited photosynthesis at nighttime/cloudy conditions, respiration rate of the forest ecosystem was estimated by the Lloyd-Tylor equation. Artificial gaps were randomly selected to exam the applicability of our PCA approach. Based on tower-based measurement of CO2 flux at the Lien-Hua-Chih site, a total of 5.8 ton-C/ha/yr was assimilated in 2012.

  10. Net ecosystem exchange of CO2 and H2O fluxes from irrigated grain sorghum and maize in the Texas High Plains.

    PubMed

    Wagle, Pradeep; Gowda, Prasanna H; Moorhead, Jerry E; Marek, Gary W; Brauer, David K

    2018-05-08

    Net ecosystem exchange (NEE) of carbon dioxide (CO 2 ) and water vapor (H 2 O) fluxes from irrigated grain sorghum (Sorghum bicolor L. Moench) and maize (Zea mays L.) fields in the Texas High Plains were quantified using the eddy covariance (EC) technique during 2014-2016 growing seasons and examined in terms of relevant controlling climatic variables. Eddy covariance measured evapotranspiration (ET EC ) was also compared against lysimeter measured ET (ET Lys ). Daily peak (7-day averages) NEE reached approximately -12 g C m -2 for sorghum and -14.78 g C m -2 for maize. Daily peak (7-day averages) ET EC reached approximately 6.5 mm for sorghum and 7.3 mm for maize. Higher leaf area index (5.7 vs 4-4.5 m 2  m -2 ) and grain yield (14 vs 8-9 t ha -1 ) of maize compared to sorghum caused larger magnitudes of NEE and ET EC in maize. Comparisons of ET EC and ET Lys showed a strong agreement (R 2  = 0.93-0.96), while the EC system underestimated ET by 15-24% as compared to lysimeter without any corrections or energy balance adjustments. Both NEE and ET EC were not inhibited by climatic variables during peak photosynthetic period even though diurnal peak values (~2-weeks average) of photosynthetic photon flux density (PPFD), air temperature (T a ), and vapor pressure deficit (VPD) had reached over 2000 μmol m -2  s -1 , 30 °C, and 2.5 kPa, respectively, indicating well adaptation of both C 4 crops in the Texas High Plains under irrigation. However, more sensitivity of NEE and H 2 O fluxes beyond threshold T a and VPD for maize than for sorghum indicated higher adaptability of sorghum for the region. These findings provide baseline information on CO 2 fluxes and ET for a minimally studied grain sorghum and offer a robust geographic comparison for maize outside the United States Corn Belt. However, longer-term measurements are required for assessing carbon and water dynamics of these globally important agro-ecosystems. Copyright © 2018. Published by Elsevier B.V.

  11. ChinaSpec: a network of SIF observations to bridge flux measurements and remote sensing data

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wang, S.; Liu, L.; Ju, W.; Zhu, X.

    2017-12-01

    Accurately quantifying atmosphere-biosphere interactions across multiple scale still remains a challenge. Remote sensing, especially satellite data, has been widely used as a solution to resolve the broad scale estimation of carbon flux by upscaling the point measurements of eddy covariance (EC) technique. However, critical gaps remain between the EC observations and coarse satellite data due to the scale mismatch. In this regard, it is necessary to build a network of in situ optical observations to bridge the scale-mismatch between EC measurements and satellite remote sensing data. Internationally, a few networks have already been established (e.g., SpecNet and EuroSpec), but still at its early stage. ChinaSpec is a network of linking in situ spectral measurements, especially sun-induce chlorophyll fluorescence (SIF), with point EC observations for better understanding the interactions of atmosphere-biosphere. One main focus of ChinsSpec is to conduct continuous field SIF measurements at multiple EC sites across the mainland of China. This will help us better understand the mechanics of SIF and photosynthesis, and resolve the missing gaps between recent SIF retrievals from coarse satellite data and EC observations. In this presentation, we introduce the background, current stage, and the development of ChinaSpec network.

  12. Formal volunteering as a protector of health in the context of social losses.

    PubMed

    Jang, Heejung; Tang, Fengyan; Gonzales, Ernest; Lee, Yung Soo; Morrow-Howell, Nancy

    2018-05-29

    This study aims to examine the effect of the death of a family member or friend on psychological well-being, specifically the moderating effects of first-time volunteering and social network. With the sample of 354 volunteers from the Experience Corps® (EC) programs, Analysis of covariance (ANCOVA) estimated the differences in psychological well-being. Among volunteers who had experienced the death of a family member or friend, new volunteers showed significant improvement in positive affect compared to experienced volunteers. EC members gained additional social contacts through volunteering. Formal volunteering has a salutatory effect on older adults' health after the loss of family members.

  13. Temporal upscaling of instantaneous evapotranspiration on clear-sky days using the constant reference evaporative fraction method with fixed or variable surface resistances at two cropland sites

    NASA Astrophysics Data System (ADS)

    Tang, Ronglin; Li, Zhao-Liang; Sun, Xiaomin; Bi, Yuyun

    2017-01-01

    Surface evapotranspiration (ET) is an important component of water and energy in land and atmospheric systems. This paper investigated whether using variable surface resistances in the reference ET estimates from the full-form Penman-Monteith (PM) equation could improve the upscaled daily ET estimates in the constant reference evaporative fraction (EFr, the ratio of actual to reference grass/alfalfa ET) method on clear-sky days using ground-based measurements. Half-hourly near-surface meteorological variables and eddy covariance (EC) system-measured latent heat flux data on clear-sky days were collected at two sites with different climatic conditions, namely, the subhumid Yucheng station in northern China and the arid Yingke site in northwestern China and were used as the model input and ground-truth, respectively. The results showed that using the Food and Agriculture Organization (FAO)-PM equation, the American Society of Civil Engineers-PM equation, and the full-form PM equation to estimate the reference ET in the constant EFr method produced progressively smaller upscaled daily ET at a given time from midmorning to midafternoon. Using all three PM equations produced the best results at noon at both sites regardless of whether the energy imbalance of the EC measurements was closed. When the EC measurements were not corrected for energy imbalance, using variable surface resistance in the full-form PM equation could improve the ET upscaling in the midafternoon, but worse results may occur in the midmorning to noon. Site-to-site and time-to-time variations were found in the performances of a given PM equation (with fixed or variable surface resistances) before and after the energy imbalance was closed.

  14. Large-scale estimates of gross primary production on the Qinghai-Tibet plateau based on remote sensing data

    NASA Astrophysics Data System (ADS)

    Ma, M., II; Yuan, W.; Dong, J.; Zhang, F.; Cai, W.; Li, H.

    2017-12-01

    Vegetation gross primary production (GPP) is an important variable for the carbon cycle on the Qinghai-Tibetan Plateau (QTP). Based on the measurements from twelve eddy covariance (EC) sites, we validated a light use efficiency model (i.e. EC-LUE) to evaluate the spatial-temporal patterns of GPP and the effect of environmental variables on QTP. The EC-LUE model explained 85.4% of the daily observed GPP variations through all of the twelve EC sites, and characterized very well the seasonal changes of GPP. Annual GPP over the entire QTP ranged from 575 to 703 Tg C, and showed a significantly increasing trend from 1982 to 2013. However, there were large spatial heterogeneities in long-term trends of GPP. Throughout the entire QTP, air temperature TA increase had a greater influence than solar radiation and PREC changes on productivity. Moreover, our results highlight the large uncertainties of previous GPP estimates due to insufficient parameterization and validations. When compared with GPP estimates of the EC-LUE model, most Coupled Model Intercomparison Project (CMIP5) GPP products overestimate the magnitude and increasing trends of regional GPP, which potentially impact the feedback of ecosystems to regional climate changes.

  15. Gaining control: changing relations between executive control and processing speed and their relevance for mathematics achievement over course of the preschool period

    PubMed Central

    Clark, Caron A. C.; Nelson, Jennifer Mize; Garza, John; Sheffield, Tiffany D.; Wiebe, Sandra A.; Espy, Kimberly Andrews

    2014-01-01

    Early executive control (EC) predicts a range of academic outcomes and shows particularly strong associations with children's mathematics achievement. Nonetheless, a major challenge for EC research lies in distinguishing EC from related cognitive constructs that also are linked to achievement outcomes. Developmental cascade models suggest that children's information processing speed is a driving mechanism in cognitive development that supports gains in working memory, inhibitory control and associated cognitive abilities. Accordingly, individual differences in early executive task performance and their relation to mathematics may reflect, at least in part, underlying variation in children's processing speed. The aims of this study were to: (1) examine the degree of overlap between EC and processing speed at different preschool age points; and (2) determine whether EC uniquely predicts children's mathematics achievement after accounting for individual differences in processing speed. As part of a longitudinal, cohort-sequential study, 388 children (50% boys; 44% from low income households) completed the same battery of EC tasks at ages 3, 3.75, 4.5, and 5.25 years. Several of the tasks incorporated baseline speeded naming conditions with minimal EC demands. Multidimensional latent models were used to isolate the variance in executive task performance that did not overlap with baseline processing speed, covarying for child language proficiency. Models for separate age points showed that, while EC did not form a coherent latent factor independent of processing speed at age 3 years, it did emerge as a distinct factor by age 5.25. Although EC at age 3 showed no distinct relation with mathematics achievement independent of processing speed, EC at ages 3.75, 4.5, and 5.25 showed independent, prospective links with mathematics achievement. Findings suggest that EC and processing speed are tightly intertwined in early childhood. As EC becomes progressively decoupled from processing speed with age, it begins to take on unique, discriminative importance for children's mathematics achievement. PMID:24596563

  16. Methane Emissions Estimation from a Dairy Farm using Eddy Covariance Measurements

    NASA Astrophysics Data System (ADS)

    Guo, Q.; Richardson, S.; Sokol, A. B.; Lauvaux, T.; Hristov, A. N.; Hong, B.; Davis, K. J.

    2017-12-01

    Dairy farms are a significant source of methane emissions. Accurate quantification of these emissions is important for evaluating and ultimately minimizing the impact of agricultural activity on climate change. We have employed the eddy covariance (EC) technique to attempt to quantify total CH4 emissions from a dairy farm, and compare these emissions to inventory estimates. An eddy covariance (EC) sensor was deployed to monitor CH4 emissions at one dairy manure storage facility from July 2016 through the winter of 2017, at a second manure storage facility from April to mid-July 2017, and at dairy barns during July and August of 2017. A flux footprint model was used to convert the observed methane fluxes into estimates of emissions per unit area from these sources. During April and May, CH4 fluxes from the second lagoon were relatively small and slowly increased with daily mean values growing from 0.45 to 10.75 μmol m-2 s-1. June to mid-July fluxes increased rapidly with a peak daily mean emission of 77.97 μmol m-2 s-1. The fluxes were positively correlated with air temperature. Comparison of emissions from the two lagoons, comparison to an inventory estimate of emissions from these lagoons, and evaluation of methane emissions from the barns are underway. These results will be combined to evaluate total farm emissions, and to test our understanding of the factors that govern emissions from dairy operations.

  17. Area-averaged evapotranspiration over a heterogeneous land surface: aggregation of multi-point EC flux measurements with a high-resolution land-cover map and footprint analysis

    NASA Astrophysics Data System (ADS)

    Xu, Feinan; Wang, Weizhen; Wang, Jiemin; Xu, Ziwei; Qi, Yuan; Wu, Yueru

    2017-08-01

    The determination of area-averaged evapotranspiration (ET) at the satellite pixel scale/model grid scale over a heterogeneous land surface plays a significant role in developing and improving the parameterization schemes of the remote sensing based ET estimation models and general hydro-meteorological models. The Heihe Watershed Allied Telemetry Experimental Research (HiWATER) flux matrix provided a unique opportunity to build an aggregation scheme for area-averaged fluxes. On the basis of the HiWATER flux matrix dataset and high-resolution land-cover map, this study focused on estimating the area-averaged ET over a heterogeneous landscape with footprint analysis and multivariate regression. The procedure is as follows. Firstly, quality control and uncertainty estimation for the data of the flux matrix, including 17 eddy-covariance (EC) sites and four groups of large-aperture scintillometers (LASs), were carefully done. Secondly, the representativeness of each EC site was quantitatively evaluated; footprint analysis was also performed for each LAS path. Thirdly, based on the high-resolution land-cover map derived from aircraft remote sensing, a flux aggregation method was established combining footprint analysis and multiple-linear regression. Then, the area-averaged sensible heat fluxes obtained from the EC flux matrix were validated by the LAS measurements. Finally, the area-averaged ET of the kernel experimental area of HiWATER was estimated. Compared with the formerly used and rather simple approaches, such as the arithmetic average and area-weighted methods, the present scheme is not only with a much better database, but also has a solid grounding in physics and mathematics in the integration of area-averaged fluxes over a heterogeneous surface. Results from this study, both instantaneous and daily ET at the satellite pixel scale, can be used for the validation of relevant remote sensing models and land surface process models. Furthermore, this work will be extended to the water balance study of the whole Heihe River basin.

  18. Impact of water use efficiency on eddy covariance flux partitioning using correlation structure analysis

    NASA Astrophysics Data System (ADS)

    Anderson, Ray; Skaggs, Todd; Alfieri, Joseph; Kustas, William; Wang, Dong; Ayars, James

    2016-04-01

    Partitioned land surfaces fluxes (e.g. evaporation, transpiration, photosynthesis, and ecosystem respiration) are needed as input, calibration, and validation data for numerous hydrological and land surface models. However, one of the most commonly used techniques for measuring land surface fluxes, Eddy Covariance (EC), can directly measure net, combined water and carbon fluxes (evapotranspiration and net ecosystem exchange/productivity). Analysis of the correlation structure of high frequency EC time series (hereafter flux partitioning or FP) has been proposed to directly partition net EC fluxes into their constituent components using leaf-level water use efficiency (WUE) data to separate stomatal and non-stomatal transport processes. FP has significant logistical and spatial representativeness advantages over other partitioning approaches (e.g. isotopic fluxes, sap flow, microlysimeters), but the performance of the FP algorithm is reliant on the accuracy of the intercellular CO2 (ci) concentration used to parameterize WUE for each flux averaging interval. In this study, we tested several parameterizations for ci as a function of atmospheric CO2 (ca), including (1) a constant ci/ca ratio for C3 and C4 photosynthetic pathway plants, (2) species-specific ci/ca-Vapor Pressure Deficit (VPD) relationships (quadratic and linear), and (3) generalized C3 and C4 photosynthetic pathway ci/ca-VPD relationships. We tested these ci parameterizations at three agricultural EC towers from 2011-present in C4 and C3 crops (sugarcane - Saccharum officinarum L. and peach - Prunus persica), and validated again sap-flow sensors installed at the peach site. The peach results show that the species-specific parameterizations driven FP algorithm came to convergence significantly more frequently (~20% more frequently) than the constant ci/ca ratio or generic C3-VPD relationship. The FP algorithm parameterizations with a generic VPD relationship also had slightly higher transpiration (5 Wm-2 difference) than the constant ci/ca ratio. However, photosynthesis and respiration fluxes over sugarcane were ~15% lower with a VPD-ci/ca relationship than a constant ci/ca ratio. The results illustrate the importance of combining leaf-level physiological observations with EC to improve the performance of the FP algorithm.

  19. Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland

    Treesearch

    D.M. Olson; T.J. Griffis; A. Noormets; R. Kolka; J. Chen

    2013-01-01

    Three years (2009-2011) of near-continuous methane (CH4) and carbon dioxide (CO2) fluxes were measured with the eddy covariance (EC) technique at a temperate peatland located within the Marcell Experimental Forest, in northern Minnesota, USA. The peatland was a net source of CH4 and a net sink of CO...

  20. Time series analysis of forest carbon dynamics: recovery of Pinus palustris physiology following a prescribed fire

    Treesearch

    G. Starr; C. L. Staudhammer; H. W. Loescher; R. Mitchell; A. Whelan; J. K. Hiers; J. J. O’Brien

    2015-01-01

    Frequency and intensity of fire determines the structure and regulates the function of savanna ecosystems worldwide, yet our understanding of prescribed fire impacts on carbon in these systems is rudimentary. We combined eddy covariance (EC) techniques and fuel consumption plots to examine the short-term response of longleaf pine forest carbon dynamics to one...

  1. Evaluation of Sensible Heat Flux and Evapotranspiration Estimates Using a Surface Layer Scintillometer and a Large Weighing Lysimeter

    PubMed Central

    Moorhead, Jerry E.; Marek, Gary W.; Colaizzi, Paul D.; Gowda, Prasanna H.; Evett, Steven R.; Brauer, David K.; Marek, Thomas H.; Porter, Dana O.

    2017-01-01

    Accurate estimates of actual crop evapotranspiration (ET) are important for optimal irrigation water management, especially in arid and semi-arid regions. Common ET sensing methods include Bowen Ratio, Eddy Covariance (EC), and scintillometers. Large weighing lysimeters are considered the ultimate standard for measurement of ET, however, they are expensive to install and maintain. Although EC and scintillometers are less costly and relatively portable, EC has known energy balance closure discrepancies. Previous scintillometer studies used EC for ground-truthing, but no studies considered weighing lysimeters. In this study, a Surface Layer Scintillometer (SLS) was evaluated for accuracy in determining ET as well as sensible and latent heat fluxes, as compared to a large weighing lysimeter in Bushland, TX. The SLS was installed over irrigated grain sorghum (Sorghum bicolor (L.) Moench) for the period 29 July–17 August 2015 and over grain corn (Zea mays L.) for the period 23 June–2 October 2016. Results showed poor correlation for sensible heat flux, but much better correlation with ET, with r2 values of 0.83 and 0.87 for hourly and daily ET, respectively. The accuracy of the SLS was comparable to other ET sensing instruments with an RMSE of 0.13 mm·h−1 (31%) for hourly ET; however, summing hourly values to a daily time step reduced the ET error to 14% (0.75 mm·d−1). This level of accuracy indicates that potential exists for the SLS to be used in some water management applications. As few studies have been conducted to evaluate the SLS for ET estimation, or in combination with lysimetric data, further evaluations would be beneficial to investigate the applicability of the SLS in water resources management. PMID:29036926

  2. Evaluation of Sensible Heat Flux and Evapotranspiration Estimates Using a Surface Layer Scintillometer and a Large Weighing Lysimeter.

    PubMed

    Moorhead, Jerry E; Marek, Gary W; Colaizzi, Paul D; Gowda, Prasanna H; Evett, Steven R; Brauer, David K; Marek, Thomas H; Porter, Dana O

    2017-10-14

    Accurate estimates of actual crop evapotranspiration (ET) are important for optimal irrigation water management, especially in arid and semi-arid regions. Common ET sensing methods include Bowen Ratio, Eddy Covariance (EC), and scintillometers. Large weighing lysimeters are considered the ultimate standard for measurement of ET, however, they are expensive to install and maintain. Although EC and scintillometers are less costly and relatively portable, EC has known energy balance closure discrepancies. Previous scintillometer studies used EC for ground-truthing, but no studies considered weighing lysimeters. In this study, a Surface Layer Scintillometer (SLS) was evaluated for accuracy in determining ET as well as sensible and latent heat fluxes, as compared to a large weighing lysimeter in Bushland, TX. The SLS was installed over irrigated grain sorghum ( Sorghum bicolor (L.) Moench) for the period 29 July-17 August 2015 and over grain corn ( Zea mays L.) for the period 23 June-2 October 2016. Results showed poor correlation for sensible heat flux, but much better correlation with ET, with r² values of 0.83 and 0.87 for hourly and daily ET, respectively. The accuracy of the SLS was comparable to other ET sensing instruments with an RMSE of 0.13 mm·h -1 (31%) for hourly ET; however, summing hourly values to a daily time step reduced the ET error to 14% (0.75 mm·d -1 ). This level of accuracy indicates that potential exists for the SLS to be used in some water management applications. As few studies have been conducted to evaluate the SLS for ET estimation, or in combination with lysimetric data, further evaluations would be beneficial to investigate the applicability of the SLS in water resources management.

  3. NEON's eddy-covariance: interoperable flux data products, software and services for you, now

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Desai, A. R.; Durden, D.; Hartmann, J.; Li, J.; Luo, H.; Durden, N. P.; Sachs, T.; Serafimovich, A.; Sturtevant, C.; Xu, K.

    2017-12-01

    Networks of eddy-covariance (EC) towers such as AmeriFlux, ICOS and NEON are vital for providing the necessary distributed observations to address interactions at the soil-vegetation-atmosphere interface. NEON, close to full operation with 47 tower sites, will represent the largest single-provider EC network globally. Its standardized observation and data processing suite is designed specifically for inter-site comparability and analysis of feedbacks across multiple spatial and temporal scales. Furthermore, NEON coordinates EC with rich contextual observations such as airborne remote sensing and in-situ sampling bouts. In January 2018 NEON enters its operational phase, and EC data products, software and services become fully available to the science community at large. These resources strive to incorporate lessons-learned through collaborations with AmeriFlux, ICOS, LTER and others, to suggest novel systemic solutions, and to synergize ongoing research efforts across science communities. Here, we present an overview of the ongoing product release, alongside efforts to integrate and collaborate with existing infrastructures, networks and communities. Near-real-time heat, water and carbon cycle observations in "basic" and "expanded", self-describing HDF5 formats become accessible from the NEON Data Portal, including an Application Program Interface. Subsequently, they are ingested into the AmeriFlux processing pipeline, together with inclusion in FLUXNET globally harmonized data releases. Software for reproducible, extensible and portable data analysis and science operations management also becomes available. This includes the eddy4R family of R-packages underlying the data product generation, together with the ability to directly participate in open development via GitHub version control and DockerHub image hosting. In addition, templates for science operations management include a web-based field maintenance application and a graphical user interface to simplify problem tracking and resolution along the entire data chain. We hope that this presentation can initiate further collaboration and synergies in challenge areas, and would appreciate input and discussion on continued development.

  4. Population pharmacokinetics and pharmacodynamics of bivalirudin in young healthy Chinese volunteers.

    PubMed

    Zhang, Dong-mei; Wang, Kun; Zhao, Xia; Li, Yun-fei; Zheng, Qing-shan; Wang, Zi-ning; Cui, Yi-min

    2012-11-01

    To investigate the population pharmacokinetics (PK) and pharmacodynamics (PD) of bivalirudin, a synthetic bivalent direct thrombin inhibitor, in young healthy Chinese subjects. Thirty-six young healthy volunteers were randomly assigned into 4 groups received bivalirudin 0.5 mg/kg, 0.75 mg/kg, and 1.05 mg/kg intravenous bolus, 0.75 mg/kg intravenous bolus followed by 1.75 mg/kg intravenous infusion per hour for 4 h. Blood samples were collected to measure bivalirudin plasma concentration and activated clotting time (ACT). Population PK-PD analysis was performed using the nonlinear mixed-effects model software NONMEM. The final models were validated with bootstrap and prediction-corrected visual predictive check (pcVPC) approaches. The final PK model was a two-compartment model without covariates. The typical PK population values of clearance (CL), apparent distribution volume of the central-compartment (V(1)), inter-compartmental clearance (Q) and apparent distribution volume of the peripheral compartment (V(2)) were 0.323 L·h(-1)·kg(-1), 0.086 L/kg, 0.0957 L·h(-1)·kg(-1), and 0.0554 L/kg, respectively. The inter-individual variabilities of these parameters were 14.8%, 24.2%, fixed to 0% and 15.6%, respectively. The final PK-PD model was a sigmoid E(max) model without the Hill coefficient. In this model, a covariate, red blood cell count (RBC(*)), had a significant effect on the EC(50) value. The typical PD population values of maximum effect (E(max)), EC(50), baseline ACT value (E(0)) and the coefficient of RBC(*) on EC(50) were 318 s, 2.44 mg/L, 134 s and 1.70, respectively. The inter-individual variabilities of E(max), EC(50), and E(0) were 6.80%, 46.4%, and 4.10%, respectively. Population PK-PD models of bivalirudin in healthy young Chinese subjects have been developed, which may provide a reference for future use of bivalirudin in China.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Claire L.; Bond-Lamberty, Ben; Desai, Ankur R.

    A recent acceleration of model-data synthesis activities has leveraged many terrestrial carbon (C) datasets, but utilization of soil respiration (RS) data has not kept pace with other types such as eddy covariance (EC) fluxes and soil C stocks. Here we argue that RS data, including non-continuous measurements from survey sampling campaigns, have unrealized value and should be utilized more extensively and creatively in data synthesis and modeling activities. We identify three major challenges in interpreting RS data, and discuss opportunities to address them. The first challenge is that when RS is compared to ecosystem respiration (RECO) measured from EC towers,more » it is not uncommon to find substantial mismatch, indicating one or both flux methodologies are unreliable. We argue the most likely cause of mismatch is unreliable EC data, and there is an unrecognized opportunity to utilize RS for EC quality control. The second challenge is that RS integrates belowground heterotrophic (RH) and autotrophic (RA) activity, whereas modelers generally prefer partitioned fluxes, and few models include an explicit RS output. Opportunities exist to use the total RS flux for data assimilation and model benchmarking methods rather than less-certain partitioned fluxes. Pushing for more experiments that not only partition RS but also monitor the age of RA and RH, as well as for the development of belowground RA components in models, would allow for more direct comparison between measured and modeled values. The third challenge is that soil respiration is generally measured at a very different resolution than that needed for comparison to EC or ecosystem- to global-scale models. Measuring soil fluxes with finer spatial resolution and more extensive coverage, and downscaling EC fluxes to match the scale of RS, will improve chamber and tower comparisons. Opportunities also exist to estimate RH at regional scales by implementing decomposition functional types, akin to plant functional types. We conclude by discussing the benefits that wide use of RS data will bring to model development, and database developments that will make RS data more robust, useful, and broadly available to the research community.« less

  6. Micrometeorological flux measurements at a coastal site

    NASA Astrophysics Data System (ADS)

    Song, Guozheng; Meixner, Franz X.; Bruse, Michael; Mamtimin, Buhalqem

    2014-05-01

    The eddy covariance (EC) technique is the only direct measurement of the momentum, heat, and trace gas (e.g. water vapor, CO2 and ozone) fluxes. The measurements are expected to be most accurate over flat terrain where there is an extended homogenous surface upwind from the tower, and when the environmental conditions are steady. Additionally, the one dimensional approach assumes that vertical turbulent exchange is the dominant flux, whereas advective influences should be negligible. The application of EC method under non-ideal conditions, for example in complex terrain, has yet to be fully explored. To explore the possibilities and limitations of EC technique under non-ideal conditions, an EC system was set up at Selles beach, Crete, Greece (35.33°N, 25.71°E) in the beginning of July 2012. The dominant wind direction was west, parallel to the coast. The EC system consisted of a sonic anemometer (CSAT3 Campbell Scientific), an infrared open-path CO2/H2O gas analyzer (LI-7500, Li-COR Biosciences) and a fast chemiluminescence ozone analyzer (enviscope GmbH). All the signals of these fast response instruments were sampled at 10 Hz and the measurement height was 3 m. Besides, another gradient system was setup. Air temperature, relative humidity (HYGROMER MP 103 A), and wind speed (WMT700 Vaisala) were measured every 10 seconds at 3 heights (0.7, 1.45, 3 m). Air intakes were set up at 0.7m and 3m. A pump drew the air through a flow system and a telflon valve alternately switched between the two heights every 30 seconds. H2O, CO2 (LI-840A, Li-COR Biosciences) and ozone mixing ratio s (model 205, 2BTechnologies) were measured every 10 seconds. Momentum, heat, CO2 and ozone fluxes were evaluated by both EC and gradient technique. For the calculation of turbulent fluxes, TK3 algorithm (Department of Micrometeorology, University Bayreuth, Germany) was applied. We will present the measured fluxes of the two systems and assess the data quality under such non-ideal condition.

  7. Surface Renewal: Micrometeorological Measurements Avoiding the Sonic Anemometer

    NASA Astrophysics Data System (ADS)

    Suvocarev, K.; Reba, M. L.; Runkle, B.

    2016-12-01

    Surface renewal (SR) is micrometeorological technique that has been suggested as an inexpensive alternative to eddy covariance (EC). While it was originally dependent on a calibration coefficient (α), a recent approach by Castellví (2004) showed that SR can be used as a stand-alone method where α is estimated using similarity theory. This "self-calibration" method is suitable for measuring different scalar fluxes under all stability conditions (Castellví et. al, 2008). According to the same authors, SR does not demand a sonic anemometer as only the horizontal wind speed is necessary to arrive to α values. Therefore, it is more affordable and applicable in both roughness and inertial sub-layers which makes this method less stringent to fetch requirements (Castellví, 2012). The SR method has not yet been tested when the equipment is reduced to scalar measurements and a simple anemometer (RM Young 5103 Wind Monitor Sensor). Here, our objective was to test this approach over temperature, H2O, CO2 and CH4 time series. When EC is taken as a reference for a comparison, our initial results show that all fluxes measured by SR are higher than corresponding reference fluxes. The portion of overestimation is in the range of typical values reported by SR literature. Still, more research will be done to improve its understanding as the correlation between flux measurements is very high. The SR method seems to be promising in avoiding the use of sonic anemometry (and related errors) while maintaining fewer fetch requirements and the possibility to yield observations from all wind directions.

  8. Turbulence considerations for comparing ecosystem exchange over old-growth and clear-cut stands for limited fetch and complex canopy flow conditions

    Treesearch

    Sonia Wharton; Matt Schroeder; Kyaw Tha Paw U; Matthias Falk; Ken Bible

    2009-01-01

    Carbon dioxide (CO2), water vapor, and energy fluxes were measured using eddy covariance (EC) methodology over three adjacent evergreen forests in southern Washington State to identify stand-level age-effects on ecosystem exchange. The sites represent Douglas-fir forest ecosystems at two contrasting successional stages: old-growth (OG) and early...

  9. Net ecosystem exchange of CO2 and H2O fluxes from irrigated grain sorghum and maize in the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    Net ecosystem exchange (NEE) of carbon dioxide (CO2) and water vapor (H2O) fluxes from irrigated grain sorghum (Sorghum bicolor L. Moench) and maize (Zea mays L.) fields in the Texas High Plains were quantified using the eddy covariance (EC) technique during 2014-2016 growing seasons and examined in...

  10. Examining the etiological associations among higher-order temperament dimensions

    PubMed Central

    Allan, Nicholas P.; Mikolajewski, Amy J.; Lonigan, Christopher J.; Hart, Sara A.; Taylor, Jeanette

    2014-01-01

    A multivariate independent pathway model was used to examine the shared and unique genetic and environmental influences of Positive Affect (PA), Negative Affect (NA), and effortful control (EC) in a sample of 686 twin pairs (M age = 10.07, SD = 1.74). There were common genetic influences and nonshared environmental influences shared across all three temperament dimensions and shared environmental influences in common to NA and EC. There were also significant independent genetic influences unique to PA and NA and significant independent shared environmental influences unique to PA. This study demonstrates that there are genetic and environmental influences that affect the covariance among temperament dimensions as well as unique genetic and environmental influences that influence the dimensions independently. PMID:24729641

  11. Chlorophyll Fluorescence Better Captures Seasonal and Interannual Gross Primary Productivity Dynamics Across Dryland Ecosystems of Southwestern North America

    NASA Astrophysics Data System (ADS)

    Smith, W. K.; Biederman, J. A.; Scott, R. L.; Moore, D. J. P.; He, M.; Kimball, J. S.; Yan, D.; Hudson, A.; Barnes, M. L.; MacBean, N.; Fox, A. M.; Litvak, M. E.

    2018-01-01

    Satellite remote sensing provides unmatched spatiotemporal information on vegetation gross primary productivity (GPP). Yet understanding of the relationship between GPP and remote sensing observations and how it changes with factors such as scale, biophysical constraint, and vegetation type remains limited. This knowledge gap is especially apparent for dryland ecosystems, which have characteristic high spatiotemporal variability and are under-represented by long-term field measurements. Here we utilize an eddy covariance (EC) data synthesis for southwestern North America in an assessment of how accurately satellite-derived vegetation proxies capture seasonal to interannual GPP dynamics across dryland gradients. We evaluate the enhanced vegetation index, solar-induced fluorescence (SIF), and the photochemical reflectivity index. We find evidence that SIF is more accurately capturing seasonal GPP dynamics particularly for evergreen-dominated EC sites and more accurately estimating the full magnitude of interannual GPP dynamics for all dryland EC sites. These results suggest that incorporation of SIF could significantly improve satellite-based GPP estimates.

  12. Evaluation of surface renewal and flux-variance methods above agricultural and forest surfaces

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Katul, G. G.; Noormets, A.; Poznikova, G.; Domec, J. C.; Trnka, M.; King, J. S.

    2016-12-01

    Measurements of turbulent surface energy fluxes are of high interest in agriculture and forest research. During last decades, eddy covariance (EC), has been adopted as the most commonly used micrometeorological method for measuring fluxes of greenhouse gases, energy and other scalars at the surface-atmosphere interface. Despite its robustness and accuracy, the costs of EC hinder its deployment at some research experiments and in practice like e.g. for irrigation scheduling. Therefore, testing and development of other cost-effective methods is of high interest. In our study, we tested performance of surface renewal (SR) and flux variance method (FV) for estimates of sensible heat flux density. Surface renewal method is based on the concept of non-random transport of scalars via so-called coherent structures which if accurately identified can be used for the computing of associated flux. Flux variance method predicts the flux from the scalar variance following the surface-layer similarity theory. We tested SR and FV against EC in three types of ecosystem with very distinct aerodynamic properties. First site was represented by agricultural wheat field in the Czech Republic. The second site was a 20-m tall mixed deciduous wetland forest on the coast of North Carolina, USA. The third site was represented by pine-switchgrass intercropping agro-forestry system located in coastal plain of North Carolina, USA. Apart from solving the coherent structures in a SR framework from the structure functions (representing the most common approach), we applied ramp wavelet detection scheme to test the hypothesis that the duration and amplitudes of the coherent structures are normally distributed within the particular 30-minutes time intervals and so just the estimates of their averages is sufficient for the accurate flux determination. Further, we tested whether the orthonormal wavelet thresholding can be used for isolating of the coherent structure scales which are associated with flux transport. Finally, we tested whether low-pass filtering in the Fourier domain based on integral length scale can improve estimates of both SR and FV as it supposedly removes the low frequency portion of the signal not related with the investigated fluxes.

  13. Scintillometer networks for calibration and validation of energy balance and soil moisture remote sensing algorithms

    NASA Astrophysics Data System (ADS)

    Hendrickx, Jan M. H.; Kleissl, Jan; Gómez Vélez, Jesús D.; Hong, Sung-ho; Fábrega Duque, José R.; Vega, David; Moreno Ramírez, Hernán A.; Ogden, Fred L.

    2007-04-01

    Accurate estimation of sensible and latent heat fluxes as well as soil moisture from remotely sensed satellite images poses a great challenge. Yet, it is critical to face this challenge since the estimation of spatial and temporal distributions of these parameters over large areas is impossible using only ground measurements. A major difficulty for the calibration and validation of operational remote sensing methods such as SEBAL, METRIC, and ALEXI is the ground measurement of sensible heat fluxes at a scale similar to the spatial resolution of the remote sensing image. While the spatial length scale of remote sensing images covers a range from 30 m (LandSat) to 1000 m (MODIS) direct methods to measure sensible heat fluxes such as eddy covariance (EC) only provide point measurements at a scale that may be considerably smaller than the estimate obtained from a remote sensing method. The Large Aperture scintillometer (LAS) flux footprint area is larger (up to 5000 m long) and its spatial extent better constraint than that of EC systems. Therefore, scintillometers offer the unique possibility of measuring the vertical flux of sensible heat averaged over areas comparable with several pixels of a satellite image (up to about 40 Landsat thermal pixels or about 5 MODIS thermal pixels). The objective of this paper is to present our experiences with an existing network of seven scintillometers in New Mexico and a planned network of three scintillometers in the humid tropics of Panama and Colombia.

  14. Monocarboxylate Transporter 1 (MCT1) is an independent prognostic biomarker in endometrial cancer.

    PubMed

    Latif, Ayşe; Chadwick, Amy L; Kitson, Sarah J; Gregson, Hannah J; Sivalingam, Vanitha N; Bolton, James; McVey, Rhona J; Roberts, Stephen A; Marshall, Kay M; Williams, Kaye J; Stratford, Ian J; Crosbie, Emma J

    2017-01-01

    Endometrial cancer (EC) is a major health concern due to its rising incidence. Whilst early stage disease is generally cured by surgery, advanced EC has a poor prognosis with limited treatment options. Altered energy metabolism is a hallmark of malignancy. Cancer cells drive tumour growth through aerobic glycolysis and must export lactate to maintain intracellular pH. The aim of this study was to evaluate the expression of the lactate/proton monocarboxylate transporters MCT1 and MCT4 and their chaperone CD147 in EC, with the ultimate aim of directing future drug development. MCT1, MCT4 and CD147 expression was examined using immunohistochemical analysis in 90 endometrial tumours and correlated with clinico-pathological characteristics and survival outcomes. MCT1 and MCT4 expression was observed in the cytoplasm, the plasma membrane or both locations. CD147 was detected in the plasma membrane and associated with MCT1 ( p  = 0.003) but not with MCT4 ( p  = 0.207) expression. High MCT1 expression was associated with reduced overall survival ( p  = 0.029) and remained statistically significant after adjustment for survival covariates ( p  = 0.017). Our data suggest that MCT1 expression is an important marker of poor prognosis in EC. MCT1 inhibition may have potential as a treatment for advanced or recurrent EC.

  15. False-Belief Understanding and Language Ability Mediate the Relationship between Emotion Comprehension and Prosocial Orientation in Preschoolers.

    PubMed

    Ornaghi, Veronica; Pepe, Alessandro; Grazzani, Ilaria

    2016-01-01

    Emotion comprehension (EC) is known to be a key correlate and predictor of prosociality from early childhood. In the present study, we examined this relationship within the broad theoretical construct of social understanding which includes a number of socio-emotional skills, as well as cognitive and linguistic abilities. Theory of mind, especially false-belief understanding, has been found to be positively correlated with both EC and prosocial orientation. Similarly, language ability is known to play a key role in children's socio-emotional development. The combined contribution of false-belief understanding and language to explaining the relationship between EC and prosociality has yet to be investigated. Thus, in the current study, we conducted an in-depth exploration of how preschoolers' false-belief understanding and language ability each contribute to modeling the relationship between children's comprehension of emotion and their disposition to act prosocially toward others, after controlling for age and gender. Participants were 101 4- to 6-year-old children (54% boys), who were administered measures of language ability, false-belief understanding, EC and prosocial orientation. Multiple mediation analysis of the data suggested that false-belief understanding and language ability jointly and fully mediated the effect of preschoolers' EC on their prosocial orientation. Analysis of covariates revealed that gender exerted no statistically significant effect, while age had a trivial positive effect. Theoretical and practical implications of the findings are discussed.

  16. An internal pilot study for a randomized trial aimed at evaluating the effectiveness of iron interventions in children with non-anemic iron deficiency: the OptEC trial.

    PubMed

    Abdullah, Kawsari; Thorpe, Kevin E; Mamak, Eva; Maguire, Jonathon L; Birken, Catherine S; Fehlings, Darcy; Hanley, Anthony J; Macarthur, Colin; Zlotkin, Stanley H; Parkin, Patricia C

    2015-07-14

    The OptEC trial aims to evaluate the effectiveness of oral iron in young children with non-anemic iron deficiency (NAID). The initial sample size calculated for the OptEC trial ranged from 112-198 subjects. Given the uncertainty regarding the parameters used to calculate the sample, an internal pilot study was conducted. The objectives of this internal pilot study were to obtain reliable estimate of parameters (standard deviation and design factor) to recalculate the sample size and to assess the adherence rate and reasons for non-adherence in children enrolled in the pilot study. The first 30 subjects enrolled into the OptEC trial constituted the internal pilot study. The primary outcome of the OptEC trial is the Early Learning Composite (ELC). For estimation of the SD of the ELC, descriptive statistics of the 4 month follow-up ELC scores were assessed within each intervention group. The observed SD within each group was then pooled to obtain an estimated SD (S2) of the ELC. Correlation (ρ) between the ELC measured at baseline and follow-up was assessed. Recalculation of the sample size was performed using analysis of covariance (ANCOVA) method which uses the design factor (1- ρ(2)). Adherence rate was calculated using a parent reported rate of missed doses of the study intervention. The new estimate of the SD of the ELC was found to be 17.40 (S2). The design factor was (1- ρ2) = 0.21. Using a significance level of 5%, power of 80%, S2 = 17.40 and effect estimate (Δ) ranging from 6-8 points, the new sample size based on ANCOVA method ranged from 32-56 subjects (16-28 per group). Adherence ranged between 14% and 100% with 44% of the children having an adherence rate ≥ 86%. Information generated from our internal pilot study was used to update the design of the full and definitive trial, including recalculation of sample size, determination of the adequacy of adherence, and application of strategies to improve adherence. ClinicalTrials.gov Identifier: NCT01481766 (date of registration: November 22, 2011).

  17. Modeling Particle Exposure in US Trucking Terminals

    PubMed Central

    Davis, ME; Smith, TJ; Laden, F; Hart, JE; Ryan, LM; Garshick, E

    2007-01-01

    Multi-tiered sampling approaches are common in environmental and occupational exposure assessment, where exposures for a given individual are often modeled based on simultaneous measurements taken at multiple indoor and outdoor sites. The monitoring data from such studies is hierarchical by design, imposing a complex covariance structure that must be accounted for in order to obtain unbiased estimates of exposure. Statistical methods such as structural equation modeling (SEM) represent a useful alternative to simple linear regression in these cases, providing simultaneous and unbiased predictions of each level of exposure based on a set of covariates specific to the exposure setting. We test the SEM approach using data from a large exposure assessment of diesel and combustion particles in the US trucking industry. The exposure assessment includes data from 36 different trucking terminals across the United States sampled between 2001 and 2005, measuring PM2.5 and its elemental carbon (EC), organic carbon (OC) components, by personal monitoring, and sampling at two indoor work locations and an outdoor “background” location. Using the SEM method, we predict: 1) personal exposures as a function of work related exposure and smoking status; 2) work related exposure as a function of terminal characteristics, indoor ventilation, job location, and background exposure conditions; and 3) background exposure conditions as a function of weather, nearby source pollution, and other regional differences across terminal sites. The primary advantage of SEMs in this setting is the ability to simultaneously predict exposures at each of the sampling locations, while accounting for the complex covariance structure among the measurements and descriptive variables. The statistically significant results and high R2 values observed from the trucking industry application supports the broader use of this approach in exposure assessment modeling. PMID:16856739

  18. Response of ecosystem carbon fluxes to drought events in a poplar plantation in Northern China

    Treesearch

    Jie Zhou; Zhiqiang Zhang; Ge Sun; Xianrui Fang; Tonggang Zha; Steve McNulty; Jiquan Chen; Ying Jin; Asko Noormets

    2013-01-01

    Poplar plantations are widely used for timber production and ecological restoration in northern China,a region that experiences frequent droughts and water scarcity. An open-path eddy-covariance (EC)system was used to continuously measure the carbon,water,and energy fluxes in a poplar plantation during the growing season (i.e., April–October)over the period 2006–2008...

  19. Impact of Canopy Decoupling and Subcanopy Advection on the Annual Carbon Balance of a Boreal Scots Pine Forest as Derived From Eddy Covariance

    NASA Astrophysics Data System (ADS)

    Jocher, Georg; Marshall, John; Nilsson, Mats B.; Linder, Sune; De Simon, Giuseppe; Hörnlund, Thomas; Lundmark, Tomas; Näsholm, Torgny; Ottosson Löfvenius, Mikaell; Tarvainen, Lasse; Wallin, Göran; Peichl, Matthias

    2018-02-01

    Apparent net uptake of carbon dioxide (CO2) during wintertime by an ˜ 90 year old Scots pine stand in northern Sweden led us to conduct canopy decoupling and subcanopy advection investigations over an entire year. Eddy covariance (EC) measurements ran simultaneously above and within the forest canopy for that purpose. We used the correlation of above- and below-canopy standard deviation of vertical wind speed (σw) as decoupling indicator. We identified 0.33 m s-1 and 0.06 m s-1 as site-specific σw thresholds for above- and below-canopy coupling during nighttime (global radiation <20 W m-2) and 0.23 m s-1 and 0.06 m s-1 as daytime (global radiation >20 W m-2) σw thresholds. Decoupling occurred in 53% of the annual nighttime and 14% of the annual daytime. The annual net ecosystem exchange (NEE), gross ecosystem exchange (GEE), and ecosystem respiration (Reco) derived via two-level filtered EC data were -357 g C m-2, -1,138 g C m-2, and 781 g C m-2, respectively. In comparison, both single-level friction velocity (u*) and quality filtering resulted in 22% higher NEE, mainly caused by 16% lower Reco. GEE remained similar among filtering regimes. Accounting for changes of CO2 storage across the canopy in the single-level filtered data could only marginally decrease these discrepancies. Consequently, advection appears to be responsible for the major part of this divergence. We conclude that the two-level filter is necessary to adequately address decoupling and subcanopy advection at our site, and we recommend this filter for all forested EC sites.

  20. A project summary: Water and energy budget assessment for a non-tidal wetland in the Sacramento-San Joaquin delta

    USGS Publications Warehouse

    Anderson, Frank E.; Snyder, R.L.; Paw, U.K.T.; Drexler, Judith Z.

    2004-01-01

    The methods used to obtain universal cover coefficient (Kc) values for a non-tidal restored wetland in the Sacramento-San Joaquin river delta, US, during the summer of the year 2002 and to investigate possible differences during changing wind patterns are described. A micrometeorological tower over the wetland was established to quantify actual evapotranspiration (ETa) rates and surface energy fluxes for water and energy budget analysis. The eddy-covariance (EC) system was used to measure the surface energy budget data in the period from May 23 to November 6, 2002. The results show that K c values should be lower during westerly than northerly wind events during the midseason period due to the reduced vapor pressure deficit.

  1. Two-wavelength Method Estimates Heat fluxes over Heterogeneous Surface in North-China

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Zheng, N.; Zhang, J.

    2017-12-01

    Heat fluxes is a key process of hydrological and heat transfer of soil-plant-atmosphere continuum (SPAC), and now it is becoming an important topic in meteorology, hydrology, ecology and other related research areas. Because the temporal and spatial variation of fluxes at regional scale is very complicated, it is still difficult to measure fluxes at the kilometer scale over a heterogeneous surface. A technique called "two-wavelength method" which combines optical scintillometer with microwave scintillometer is able to measure both sensible and latent heat fluxes over large spatial scales at the same time. The main purpose of this study is to investigate the fluxes over non-uniform terrain in North-China. Estimation of heat fluxes was carried out with the optical-microwave scintillometer and an eddy covariance (EC) system over heterogeneous surface in Tai Hang Mountains, China. EC method was set as a benchmark in the study. Structure parameters obtained from scintillometer showed that the typical measurement values of Cn2 are around 10-13 m-2/3 for microwave scintillometer, and values of Cn2 were around 10-15 m-2/3 for optical scintillometer. The correlation of heat fluxes (H) derived from scintillometer and EC system showed as a ratio of 1.05,and with R2=0.75, while the correlation of latent heat fluxes (LE) showed as 1.29 with R2=0.67. It was also found that heat fluxes derived from the two system showed good agreement (R2=0.9 for LE, R2=0.97 for H) when the Bowen ratio (β) was 1.03, while discrepancies showed significantly when β=0.75, and RMSD in H was 139.22 W/m2, 230.85 W/m2 in LE respectively.Experiment results in our research shows that, the two-wavelength method gives a larger heat fluxes over the study area, and a deeper study should be conduct. We expect that our investigate and analysis can be promoted the application of scintillometry method in regional evapotranspiration measurements and relevant disciplines.

  2. Eddy Covariance Measurements of Turbulent Fluxes of Atmospheric Aerosols From a Moving Ship From the Sea of Okhotsk to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Griessbaum, F.; Narita, Y.; Held, A.; Klemm, O.; Uematsu, M.

    2006-12-01

    Recent studies of emission and deposition of atmospheric aerosols employing the eddy covariance technique (EC) have been conducted in the terrestrial and marine boundary layer, the latter mainly limited to fixed platforms in the coastal domain. The captioned approach enables us to study the sinks and sources of atmospheric aerosols and their impact on the sea/air exchange of materials and on the direct and indirect radiation effect in the marine boundary layer from moving platforms, such as vessels. Measurements of atmospheric parameters from a ship are challenging especially due to the flow distortion caused by the ship's superstructure and the vessel's motions. It is known from recent work employing computational fluid dynamics (CFD) on the geometry of vessels, that the most suitable place for undistorted measurements is at the very bow and the most elevated location, commonly the foremast. For this reason, the entire eddy covariance instrumentation was fixed at the very top of the foremast, consisting of: sonic anemometer, condensation particle counter (CPC, from 5 nm particle diameter), fog droplet spectrometer (2 to 50 μm droplet diameter), CO{_2}/H{_2}O Analyser and an inertial sensing system. In order to operate the CPC also while the vessel is underway or in rough sea conditions, the max tilt angle (rolling and pitching) of the CPC was technically improved from 10° up to over 30°. This EC-measurement was conducted over the high primary productive region with high frequency of sea fog appearance during the cruise MR06-4 on R/V Mirai from Hokkaido, Japan, to the Chukchi Sea in Arctic Ocean, lasting from August 2 through September 29, 2006. Initial results will be presented and discussed.

  3. Modelling carbon and water fluxes at global scale

    NASA Astrophysics Data System (ADS)

    Balzarolo, M.; Balsamo, G.; Barbu, A.; Boussetta, S.; Calvet, J.-C.; Chevallier, F.; de Vries, J.; Kullmann, L.; Lafont, S.; Maignan, F.; Papale, D.; Poulter, B.

    2012-04-01

    Modelling and predicting seasonal and inter-annual variability of terrestrial carbon and water fluxes play an important role in understanding processes and interactions between plant-atmosphere and climate. Testing the model's capability to simulate fluxes across and within the ecosystems against eddy covariance data is essential. Thanks to the existing eddy covariance (EC) networks (e.g FLUXNET), where CO2 and water exchanges are continuously measured, it is now possible to verify the model's goodness at global scale. This paper reports the outcomes of the verification activities of the Land Carbon Core Information Service (LC-CIS) of the Geoland2 European project. The three used land surface models are C-TESSEL from ECMWF, SURFEX from CNRM and ORCHIDEE from IPSL. These models differ in their hypotheses used to describe processes and the interactions between ecological compartments (plant, soil and atmosphere) and climate and environmental conditions. Results of the verification and model benchmarking are here presented. Surface fluxes of the models are verified against FLUXNET sites representing main worldwide Plant Functional Types (PFTs: forest, grassland and cropland). The quality and accuracy of the EC data is verified using the CarboEurope database methodology. Modelled carbon and water fluxes magnitude, daily and annual cycles, inter-annual anomalies are verified against eddy covariance data using robust statistical analysis (r, RMSE, E, BE). We also verify the performance of the models in predicting the functional responses of Gross Primary Production (GPP) and RE (Ecosystem Respiration) to the environmental driving variables (i.e. temperature, soil water content and radiation) by comparing the functional relationships obtained from the outputs and observed data. Obtained results suggest some ways of improving such models for global carbon modelling.

  4. Rice evapotranspiration at the field and canopy scales under water-saving irrigation

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyin; Xu, Junzeng; Yang, Shihong; Zhang, Jiangang

    2018-04-01

    Evapotranspiration (ET) is an important process of land surface water and thermal cycling, with large temporal and spatial variability. To reveal the effect of water-saving irrigation (WSI) on rice ET at different spatial scales and understand the cross spatial scale difference, rice ET under WSI condition at canopy (ETCML) and field scale (ETEC) were measured simultaneously by mini-lysimeter and eddy covariance (EC) in the rice season of 2014. To overcome the shortage of energy balance deficit by EC system, and evaluate the influence of energy balance closure degree on ETEC, ETEC was corrected as {ET}_{EC}^{*} by energy balance closure correction according to the evaporative fraction. Seasonal average daily ETEC, {ET}_{EC}^{*} and ETCML of rice under WSI practice were estimated as 3.12, 4.03 and 4.35 mm day-1, smaller than the values reported in flooded paddy fields. Daily ETEC, {ET}_{EC}^{*} and ETCML varied in a similar trends and reached the maximum in late tillering, then decreased along with the crop growth in late season. The value of ETEC was much lower than ETCML, and was frequently 1-2 h lagged behind ETCML. It indicated that the energy balance deficit resulted in underestimation of crop ET by EC system. The corrected value of {ET}_{EC}^{*} matched ETCML much better than ETEC, with a smaller RMSE (0.086 mm h-1) and higher R 2 (0.843) and IOA (0.961). The time lapse between {ET}_{EC}^{*} and ETCML was mostly shortened to less than 0.5 h. The multiple stepwise regression analysis indicated that net radiation ( R n) is the dominant factor for rice ET, and soil moisture ( θ) is another significant factor ( p < 0.01) in WSI rice fields. The difference between ETCML and {ET}_{EC}^{*} ({ET}_{CML} - {ET}_{EC}^{*}) were significantly ( p < 0.05) correlated with R n, air temperature ( T a), and air vapor pressure deficit ( D), and its partial correlation coefficients to R n and T a were slightly greater than D. Thus, R n, T a and D are important variables for understanding the spatial scale effect of rice ET in WSI fields, and for its cross scale conversion.

  5. Contribution of trees and grasses to ecosystem fluxes of water, carbon, and energy throughout the seasons under different nutrient availability

    NASA Astrophysics Data System (ADS)

    El-Madany, T. S.; Migliavacca, M.; Perez-Priego, O.; Luo, Y.; Moreno, G.; Carrara, A.; Kolle, O.; Reichstein, M.

    2017-12-01

    In semi-arid savanna type ecosystems, the carbon and water cycle are closely related to each other. Water availability is the main driver for the development and phenology of the vegetation, especially for annual plants. Depending on tree density, nutrient availability and species the contribution of the tree- and the herbaceous layer to ecosystem fluxes can vary substantially. We present data from an ecosystem scale nutrient manipulation experiment within a Mediterranean savanna type ecosystem which is used for cattle. The footprint areas of two out of three ecosystem eddy co-variance (EC) towers were fertilized with nitrogen (NT) and nitrogen plus phosphorous (NPT) while the third one served as the control tower (CT). At each ecosystem EC-tower an additional herbaceous layer tower was installed that only sampled fluxes from the herbaceous layer. Under certain assumptions flux differences between the ecosystem EC and the herbaceous layer EC systems can be considered as the contribution of the trees to the ecosystem fluxes. Based on phenology of the herbaceous layer estimated through green-chromatic-coordinates from digital imagery the year was separated into spring, senescence, regreening, and winter. The focus of the analysis is (i) the evaluation of the method and how it works throughout the different seasons and (ii) the quantification of the contribution of trees and grasses to ecosystem fluxes of water, carbon, and energy under different environmental conditions and nutrient stoichiometry. The contribution of the trees to total ecosystem fluxes is variable in time. Especially, during the beginning of the senescence period high evapotranspiration rates and largest carbon uptake are measured while the contribution to sensible heat fluxes is largest during the end of the summer. During the regreening and winter the contribution of ET is relatively constant around 0.25 mm d-1. During the peak of the greenness ET and carbon flux of the herbaceous EC tower are sometimes higher than fluxes measured by the ecosystem tower which is most likely caused by the mismatch in footprints. Whenever the herbaceous layer is active it contributes clearly more to the fluxes as compared to the trees.

  6. Effects of management thinning on carbon dioxide uptake by a plantation oak woodland in SE England

    NASA Astrophysics Data System (ADS)

    Wilkinson, Matthew; Eaton, Edward; Casella, Eric; Crow, Peter; Morison, James

    2013-04-01

    Eddy covariance (EC) methods are widely used to estimate net ecosystem CO2 exchanges from sub-hourly to inter-annual time scales. The majority of forest sites contributing to the global EC networks are located in large, unmanaged forest areas. However, managed and plantation forests have an important role in greenhouse gas emissions abatement, nationally and globally, as exemplified by LULUCF inventory reporting. In the lowland areas of the UK forestry is mainly carried out in small woodlands, heterogeneous in species and structure and with regular management interventions. The aim of this study was to improve our understanding of the influence of management on forest CO2 uptake during a stand-scale thinning. CO2 fluxes have been measured using EC at the 70-80 year old, 90 ha oak-with-understorey plantation of the Straits Inclosure in the Alice Holt Research Forest since 1998. The mean annual net ecosystem productivity (NEP) from EC over 12 years was 486g C m-2 y-1, although there has been substantial inter-annual variation (95 % CI of ± 73g C m-2 y-1). This has been partitioned into a gross primary productivity (GPP) of 2034 ± 145g C m-2 y-1 and an ecosystem respiration rate (Reco) of 1548 ± 122 C m-2 y-1. In 2007 approximately 50% of the woodland area within the EC flux tower footprint was selectively thinned according to normal management prescription with mechanical harvesters. High resolution aerial LiDAR surveys of the whole woodland collected pre- (2006) and post- (2010) thin were used to characterise the canopy gap fraction and tree height changes. We then used EC footprint analysis combined with LiDAR data to quantify the effects of the management thinning and subsequent recovery on the CO2 flux and partitioning. Following the management thinning there was an average reduction in peak midday summer uptakes of approximately 5 μmol CO2 m-2 s-1 (20%) compared to fluxes from the un-thinned area, and a larger depression in night-time efflux. A depression in net daily CO2 uptake was still evident in the summer of 2010, three years after the thin. The implications of such management intervention for woodland C balances are discussed.

  7. False-Belief Understanding and Language Ability Mediate the Relationship between Emotion Comprehension and Prosocial Orientation in Preschoolers

    PubMed Central

    Ornaghi, Veronica; Pepe, Alessandro; Grazzani, Ilaria

    2016-01-01

    Emotion comprehension (EC) is known to be a key correlate and predictor of prosociality from early childhood. In the present study, we examined this relationship within the broad theoretical construct of social understanding which includes a number of socio-emotional skills, as well as cognitive and linguistic abilities. Theory of mind, especially false-belief understanding, has been found to be positively correlated with both EC and prosocial orientation. Similarly, language ability is known to play a key role in children’s socio-emotional development. The combined contribution of false-belief understanding and language to explaining the relationship between EC and prosociality has yet to be investigated. Thus, in the current study, we conducted an in-depth exploration of how preschoolers’ false-belief understanding and language ability each contribute to modeling the relationship between children’s comprehension of emotion and their disposition to act prosocially toward others, after controlling for age and gender. Participants were 101 4- to 6-year-old children (54% boys), who were administered measures of language ability, false-belief understanding, EC and prosocial orientation. Multiple mediation analysis of the data suggested that false-belief understanding and language ability jointly and fully mediated the effect of preschoolers’ EC on their prosocial orientation. Analysis of covariates revealed that gender exerted no statistically significant effect, while age had a trivial positive effect. Theoretical and practical implications of the findings are discussed. PMID:27774075

  8. Eddy Covariance Flux Measurements of Pollutant Gases in the Mexico City Urban Area: a Useful Technique to Evaluate Emissions inventories

    NASA Astrophysics Data System (ADS)

    Velasco, E.; Grivicke, R.; Pressley, S.; Allwine, G.; Jobson, T.; Westberg, H.; Lamb, B.; Ramos, R.; Molina, L.

    2007-12-01

    Direct measurements of emissions of pollutant gases that include all major and minor emissions sources in urban areas are a missing requirement to improve and evaluate emissions inventories. The quality of an urban emissions inventory relies on the accuracy of the information of anthropogenic activities, which in many cases is not available, in particular in urban areas of developing countries. As part of the MCMA-2003 field campaign, we demonstrated the feasibility of using eddy covariance (EC) techniques coupled with fast-response sensors to measure fluxes of volatile organic compounds (VOCs) and CO2 from a residential district of Mexico City. Those flux measurements demonstrated to be also a valuable tool to evaluate the emissions inventory used for air quality modeling. With the objective to confirm the representativeness of the 2003 flux measurements in terms of magnitude, composition and diurnal distribution, as well to evaluate the most recent emissions inventory, a second flux system was deployed in a different district of Mexico City during the 2006 MILAGRO field campaign. This system was located in a busy district surrounded by congested avenues close to the center of the city. In 2003 and 2006 fluxes of olefins and CO2 were measured by the EC technique using a Fast Isoprene Sensor calibrated with a propylene standard and an open path Infrared Gas Analyzer (IRGA), respectively. Fluxes of aromatic and oxygenated VOCs were analyzed by Proton Transfer Reaction-Mass Spectroscopy (PTR-MS) and the disjunct eddy covariance (DEC) technique. In 2006 the number of VOCs was extended using a disjunct eddy accumulation (DEA) system. This system collected whole air samples as function of the direction of the vertical wind component, and the samples were analyzed on site by gas chromatography / flame ionization detection (GC-FID). In both studies we found that the urban surface is a net source of CO2 and VOCs. The diurnal patterns were similar, but the 2006 fluxes showed higher magnitudes. This difference was due to the different characteristics of the monitored sites rather than an increment of the emissions over a 3-year period. The diurnal patterns of VOCs and CO2 fluxes were strongly related to vehicular traffic. Toluene and methanol fluxes also exhibited a strong influence from non-mobile sources; in particular the 2006 flux measurements were influenced on some days by the application of a resin to the sidewalks in the neighborhood near the flux tower. The fluxes of individual hydrocarbons measured by DEA showed good agreement with the fluxes measured by EC and DEC which demonstrates that the DEA method is valuable for flux measurements of additional individual species. Finally, the comparisons between the measured fluxes of VOCs and the emissions reported by the emissions inventory for the monitored sector of the city showed that these last were within the observed variability of the measured fluxes.

  9. Procedure for the Isolation of Endothelial Cells from Human Cerebral Arteriovenous Malformation (cAVM) Tissues.

    PubMed

    Hao, Qiang; Chen, Xiao-Lin; Ma, Li; Wang, Tong-Tong; Hu, Yue; Zhao, Yuan-Li

    2018-01-01

    In this study, we successfully established a stable method for the isolation of endothelial cells (ECs) from human cerebral arteriovenous malformation (cAVM) tissues. Despite human cAVM tissues having a minor population of ECs, they play an important role in the manifestation and development of cAVM as well as in hemorrhagic stroke and thrombogenesis. To characterize and understand the biology of ECs in human cAVM (cAVM-ECs), methods for the isolation and purification of these cells are necessary. We have developed this method to reliably obtain pure populations of ECs from cAVMs. To obtain pure cell populations, cAVM tissues were mechanically and enzymatically digested and the resulting single cAVM-ECs suspensions were then labeled with antibodies of specific cell antigens and selected by flow cytometry. Purified ECs were detected using specific makers of ECs by immunostaining and used to study different cellular mechanisms. Compared to the different methods of isolating ECs from tissues, we could isolate ECs from cAVMs confidently, and the numbers of cAVM-ECs harvested were almost similar to the amounts present in vessel components. In addition to optimizing the protocol for isolation of ECs from human cAVM tissues, the protocol could also be applied to isolate ECs from other human neurovascular-diseased tissues. Depending on the tissues, the whole procedure could be completed in about 20 days.

  10. Urban Evapotranspiration and Carbon Dioxide Flux in Miami - Dade, Florida

    NASA Astrophysics Data System (ADS)

    Bernier, T.; Hopper, W.

    2010-12-01

    Atmospheric Carbon Dioxide (CO2) concentrations are leading indicators of secular climate change. With increasing awareness of the consequences of climate change, methods for monitoring this change are becoming more important daily. Of particular interest is the carbon dioxide exchange between natural and urban landscapes and the correlation of atmospheric CO2 concentrations. Monitoring Evapotranspiration (ET) is important for assessments of water availability for growing populations. ET is surprisingly understudied in the hydrologic cycle considering ET removes as much as 80 to over 100% of precipitation back into the atmosphere as water vapor. Lack of understanding in spatial and temporal ET estimates can limit the credibility of hydrologic water budgets designed to promote sustainable water use and resolve water-use conflicts. Eddy covariance (EC) methods are commonly used to estimate ET and CO2 fluxes. The EC platform consist of a (CSAT) 3-D Sonic Anemometer and a Li-Cor Open Path CO2/ H2O Analyzer. Measurements collected at 10 Hz create a very large data sets. A EC flux tower located in the Snapper Creek Well Field as part of a study to estimate ET for the Miami Dade County Water and Sewer project. Data has been collected from December 17, 2009 to August 30, 2010. QA/QC is performed with the EdiRe data processing software according to Ameri-flux protocols. ET estimates along with other data--latent-heat flux, sensible-heat flux, rainfall, air temperature, wind speed and direction, solar irradiance, net radiation, soil-heat flux and relative humidity--can be used to aid in the development of water management policies and regulations. Currently, many financial institutions have adopted an understanding about baseline environmental monitoring. The “Equator Principle” is an example of a voluntary standard for managing social and environmental risk in project financing and has changed the way in which projects are financed.

  11. Combining eddy-covariance and chamber measurements to determine the methane budget from a small, heterogeneous urban floodplain wetland park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, T. H.; Bohrer, G.; Stefanik, K. C.

    Methane (CH 4) emissions and carbon uptake in temperate freshwater wetlands act in opposing directions in the context of global radiative forcing. Large uncertainties exist for the rates of CH 4 emissions making it difficult to determine the extent that CH 4 emissions counteract the carbon sequestration of wetlands. Urban temperate wetlands are typically small and feature highly heterogeneous land cover, posing an additional challenge to determining their CH 4 budget. The data analysis approach we introduce here combines two different CH 4 flux measurement techniques to overcome scale and heterogeneity problems and determine the overall CH 4 budget ofmore » a small, heterogeneous, urban wetland landscape. Temporally intermittent point measurements from non-steady-state chambers provided information about patch-level heterogeneity of fluxes, while continuous, high temporal resolution flux measurements using the eddy-covariance (EC) technique provided information about the temporal dynamics of the fluxes. Patch-level scaling parameterization was developed from the chamber data to scale eddy covariance data to a ‘fixed-frame’, which corrects for variability in the spatial coverage of the eddy covariance observation footprint at any single point in time. Finally, by combining two measurement techniques at different scales, we addressed shortcomings of both techniques with respect to heterogeneous wetland sites.« less

  12. Combining eddy-covariance and chamber measurements to determine the methane budget from a small, heterogeneous urban floodplain wetland park

    DOE PAGES

    Morin, T. H.; Bohrer, G.; Stefanik, K. C.; ...

    2017-02-17

    Methane (CH 4) emissions and carbon uptake in temperate freshwater wetlands act in opposing directions in the context of global radiative forcing. Large uncertainties exist for the rates of CH 4 emissions making it difficult to determine the extent that CH 4 emissions counteract the carbon sequestration of wetlands. Urban temperate wetlands are typically small and feature highly heterogeneous land cover, posing an additional challenge to determining their CH 4 budget. The data analysis approach we introduce here combines two different CH 4 flux measurement techniques to overcome scale and heterogeneity problems and determine the overall CH 4 budget ofmore » a small, heterogeneous, urban wetland landscape. Temporally intermittent point measurements from non-steady-state chambers provided information about patch-level heterogeneity of fluxes, while continuous, high temporal resolution flux measurements using the eddy-covariance (EC) technique provided information about the temporal dynamics of the fluxes. Patch-level scaling parameterization was developed from the chamber data to scale eddy covariance data to a ‘fixed-frame’, which corrects for variability in the spatial coverage of the eddy covariance observation footprint at any single point in time. Finally, by combining two measurement techniques at different scales, we addressed shortcomings of both techniques with respect to heterogeneous wetland sites.« less

  13. Eddy covariance measurements of net C exchange in the CAM bioenergy crop, Agave tequiliana

    NASA Astrophysics Data System (ADS)

    Owen, Nick A.; Choncubhair, Órlaith Ní; Males, Jamie; del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary

    2016-04-01

    Bioenergy crop cultivation may focus more on low grade and marginal lands in order to avoid competition with food production for land and water resources. However, in many regions, this would require improvements in plant water-use efficiency that are beyond the physiological capacity of most C3 and C4 bioenergy crop candidates. Crassulacean acid metabolism (CAM) plants, such as Agave tequiliana, can combine high above-ground productivity with as little as 20% of the water demand of C3 and C4 crops. This is achieved through temporal separation of carboxylase activities, with stomata opening at night to allow gas exchange and minimise transpirational losses. Previous studies have employed 'bottom-up' methodologies to investigate carbon (C) accumulation and productivity in Agave, by scaling leaf-level gas exchange and titratable acidity (TA) with leaf area index or maximum productivity. We used the eddy covariance (EC) technique to quantify ecosystem-scale gas exchange over an Agave plantation in Mexico ('top-down' approach). Measurements were made over 252 days, including the transition from wet to dry periods. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Net ecosystem exchange of CO2 displayed a CAM rhythm that alternated from a net C sink at night to a net C source during the day and partitioned canopy fluxes (gross C assimilation, FA,EC) showed a characteristic four-phase CO2 exchange pattern. The projected ecosystem C balance indicated that the site was a net sink of -333 ± 24 g C m-2 y-1, comprising cumulative soil respiration of 692 ± 7 g C m-2 y-1 and FA,EC of -1025 ± 25 g C m-2 y-1. EC-estimated biomass yield was 20.1 Mg ha-1 y-1. Average integrated daily FA,EC was -234 ± 5 mmol CO2 m-2 d-1 and persisted almost unchanged after 70 days of drought conditions. Our results suggest that the carbon acquisition strategy of drought avoidance employed by Agave and other CAM plants could offer significant yield advantages over conventional arid and semi-arid C3 and C4 bioenergy crops. Furthermore, their capacity for high productivity on marginal land and drought resilience suggest that CAM plants could play an important role in addressing conflicting land and water resource allocation issues.

  14. Enzyme catalysis-electrophoresis titration for multiplex enzymatic assay via moving reaction boundary chip.

    PubMed

    Zhong, Ran; Xie, Haiyang; Kong, Fanzhi; Zhang, Qiang; Jahan, Sharmin; Xiao, Hua; Fan, Liuyin; Cao, Chengxi

    2016-09-21

    In this work, we developed the concept of enzyme catalysis-electrophoresis titration (EC-ET) under ideal conditions, the theory of EC-ET for multiplex enzymatic assay (MEA), and a related method based on a moving reaction boundary (MRB) chip with a collateral channel and cell phone imaging. As a proof of principle, the model enzymes horseradish peroxidase (HRP), laccase and myeloperoxidase (MPO) were chosen for the tests of the EC-ET model. The experiments revealed that the EC-ET model could be achieved via coupling EC with ET within a MRB chip; particularly the MEA analyses of catalysis rate, maximum rate, activity, Km and Kcat could be conducted via a single run of the EC-ET chip, systemically demonstrating the validity of the EC-ET theory. Moreover, the developed method had these merits: (i) two orders of magnitude higher sensitivity than a fluorescence microplate reader, (ii) simplicity and low cost, and (iii) fairly rapid (30 min incubation, 20 s imaging) analysis, fair stability (<5.0% RSD) and accuracy, thus validating the EC-ET method. Finally, the developed EC-ET method was used for the clinical assay of MPO activity in blood samples; the values of MPO activity detected via the EC-ET chip were in agreement with those obtained by a traditional fluorescence microplate reader, indicating the applicability of the EC-ET method. The work opens a window for the development of enzymatic research, enzyme assay, immunoassay, and point-of-care testing as well as titration, one of the oldest methods of analysis, based on a simple chip.

  15. Sexual and Contraceptive Behaviors among Adolescents Requesting Emergency Contraception.

    PubMed

    Cwiak, Carrie; Howard, Brandon; Hsieh, Jennifer; Ricciotti, Nancy; Sucato, Gina S

    2016-12-01

    Unintended pregnancy rates in the United States remain high among adolescents. Emergency contraception (EC) provides the only option for pregnancy prevention after unprotected sex. To better define the population of adolescents who request and use EC pills, we performed a post hoc analysis of an over-the-counter simulation study of EC pills. Teen reproductive health clinics in 5 cities. Adolescents between the ages of 13 and 17 years who requested EC. Single-tablet levonorgestrel 1.5 mg. We calculated the correlations between age and baseline sexual and contraceptive behaviors. χ 2 Tests were used to compare behaviors of first-time and repeat EC users. Overall, the most commonly reported contraceptive methods ever used were condoms, oral contraceptives, none, and withdrawal; the most common method ever used in each age group was no method for 13- to 14-year-olds and condom for 15-, 16-, and 17-year-olds. The percentage of participants who had never used contraception before requesting EC decreased with age (53% [20/28] of 13- to 14-year-olds vs 15% [10/65] of 17-year-olds). First-time EC users were more likely to report no previous contraceptive use compared with repeat EC users (42% [88/208] vs 10% [13/135]; P < .001). Regardless of age, the most commonly reported reason for requesting EC was nonuse of any contraceptive method (ie, "unprotected sex"). Adolescents who requested EC most commonly reported ever-use of contraceptive methods that rely on user adherence or no method at all, with younger adolescents more likely than older adolescents to have used no previous method. The provision of EC presents an opportunity to provide education and access to highly effective, long-term contraceptive methods. Copyright © 2016 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  16. Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance

    USGS Publications Warehouse

    Krauss, Ken W.; Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Cormier, Nicole; Moss, Rebecca; Johnson, Darren; Neubauer, Scott C; Raynie, Richard C

    2016-01-01

    Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability to sequester carbon (C) is much greater for wetlands on a per-area basis than from most ecosystems, facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2, CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found that 182 g C m-2 y-1 was lost through NEEc from the brackish marsh. Of this, 11 g C m-2 y-1 resulted from net CH4 emissions and the remaining 171 g C m-2 y-1 resulted from net CO2 emissions. In contrast, -290 g C m2 y-1 was taken up through NEEc by the freshwater marsh, with 47 g C m-2 y-1 emitted as CH4 and -337 g C m-2 y-1 taken up as CO2. From chambers, we discovered that neither site had large fluxes of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive (warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques were 2-4 times different from emissions estimated through EC requires additional understanding of the artifacts created by different spatial and temporal sampling footprints between techniques.

  17. Fine carbonaceous aerosol characteristics at a megacity during the Chinese Spring Festival as given by OC/EC online measurements

    NASA Astrophysics Data System (ADS)

    Liu, Baoshuang; Bi, Xiaohui; Feng, Yinchang; Dai, Qili; Xiao, Zhimei; Li, Liwei; Wu, Jianhui; Yuan, Jie; Zhang, YuFen

    2016-11-01

    The OC/EC online monitoring campaign was carried out in Tianjin of China from 8th February to 15th March 2015 during the Chinese Spring Festival period (CSFP). The concentrations of OC, EC, BC and other ambient pollutants (e.g. SO2, NO2 and PM2.5, etc.) in high time resolution were measured with related online-monitoring instruments. During the CSFP, according to the peaks of PM2.5 concentrations and number concentrations (NC) of aerosol particles with aerodynamic diameters between 0.3 and 2.5 μm, five pollution-events were generally identified and displayed. These pollution-events were closely associated with large-scale fireworks displaying, combustion activities such as heating for winter, and the stable meteorological conditions, etc. During the CSFP, EC and OC concentrations showed variations up to one order of magnitude. The uncertainty of instrument itself and the difference for measured methods, further caused the differences between thermal OC (measured OC by thermal method) and optical OC (measured OC by optical method) concentrations, as well as between thermal EC (measured EC by thermal method) and optical EC (measured EC by optical method) concentrations. The high-concentration carbonaceous aerosols could enlarge the uncertainty of measuring instrument, reducing the correlations between OC and EC, and enhance the differences among thermal EC, optical BC and optical EC. The OC/EC ratios and the percentages of SOC/OC would be declined, when the pollution-events formed during the CSFP. Due to the different sources for thermal POC and thermal SOC, the correlation of the two was relatively lower (R2 = 0.39). Thermal POC dominated over thermal OC during the CSFP.

  18. The copper intrauterine device for emergency contraception: an opportunity to provide the optimal emergency contraception method and transition to highly effective contraception.

    PubMed

    Dermish, Amna I; Turok, David K

    2013-07-01

    Worldwide, 40% of all pregnancies are unintended. Widespread, over-the-counter availability of oral emergency contraception (EC) has not reduced unintended pregnancy rates. The EC visit presents an opportunity to initiate a highly effective method of contraception in a population at high risk of unintended pregnancy who are actively seeking to avoid pregnancy. The copper intrauterine device (IUD), the most effective method of EC, continues to provide contraception as effective as sterilization for up to 12 years, and it should be offered as the first-line method of EC wherever possible. Increased demand for and supply of the copper IUD for EC may have an important role in reducing rates of unintended pregnancy. The EC visit should include access to the copper IUD as optimal care but should ideally include access to all highly effective methods of contraception.

  19. A revised surface resistance parameterisation for estimating latent heat flux from remotely sensed data

    NASA Astrophysics Data System (ADS)

    Song, Yi; Wang, Jiemin; Yang, Kun; Ma, Mingguo; Li, Xin; Zhang, Zhihui; Wang, Xufeng

    2012-07-01

    Estimating evapotranspiration (ET) is required for many environmental studies. Remote sensing provides the ability to spatially map latent heat flux. Many studies have developed approaches to derive spatially distributed surface energy fluxes from various satellite sensors with the help of field observations. In this study, remote-sensing-based λE mapping was conducted using a Landsat Thematic Mapper (TM) image and an Enhanced Thematic Mapper Plus (ETM+) image. The remotely sensed data and field observations employed in this study were obtained from Watershed Allied Telemetry Experimental Research (WATER). A biophysics-based surface resistance model was revised to account for water stress and temperature constraints. The precision of the results was validated using 'ground truth' data obtained by eddy covariance (EC) system. Scale effects play an important role, especially for parameter optimisation and validation of the latent heat flux (λE). After considering the footprint of EC, the λE derived from the remote sensing data was comparable to the EC measured value during the satellite's passage. The results showed that the revised surface resistance parameterisation scheme was useful for estimating the latent heat flux over cropland in arid regions.

  20. Does Evapotranspiration Increase When Forests are converted to Grasslands?

    NASA Astrophysics Data System (ADS)

    Varcoe, Robert; Sterling, Shannon

    2017-04-01

    The conversion of forests to grasslands (FGC) is a widespread land cover change (LCC) and is also among the most commonly studied changes with respect to its impact on ET; such research employs a variety of experimental approaches, including, paired catchment (PC), Budyko and land surface models (LSM), and measurement methods, including the catchment water balance (CWB), eddy covariance (EC) and remote sensing (RS). Until recently, there has been consensus in the scientific literature that rates of ET decrease when a forest is converted to grassland; however, this consensus has recently come into question. Williams (2012) applied the Budyko framework to a global network of eddy covariance measurements with the results that grasslands have a 9% greater evaporative index than forests. In addition, HadGEM2, a recent Hadley Centre LSM, produced increased ET in the northern Amazon Basin after simulating global scale tropical deforestation (Brovkin et al., 2015). Here we present an analysis of available estimates of how ET rates change with FGC to increase our understanding of the forest - grassland-ET paradigm. We used two datasets to investigate the impacts land cover change on ET. I compiled a dataset of change in ET with land cover change (ΔETLCC) using published experiments that compare forest and grassland ET under conditions controlled for meteorological and landscape influences. Using the ΔETLCC dataset, we show that, in all cases, forest ET is higher than grassland under controlled conditions. Results suggest that the eddy covariance method measures smaller changes in ET when forests are converted to grasslands, though more data are needed for this result to be statistically significant. Finally, GETA2.0, a new global dataset of annual ET, projects that forest ET is greater than grassland, except at high latitudes and areas where orography influences precipitation (P). The data included in this study represent the data available on forest and grassland ET comparison and reveal an important gap in the scientific literature: the lack of data available regarding forest to grassland LCC.

  1. Linear regression techniques for use in the EC tracer method of secondary organic aerosol estimation

    NASA Astrophysics Data System (ADS)

    Saylor, Rick D.; Edgerton, Eric S.; Hartsell, Benjamin E.

    A variety of linear regression techniques and simple slope estimators are evaluated for use in the elemental carbon (EC) tracer method of secondary organic carbon (OC) estimation. Linear regression techniques based on ordinary least squares are not suitable for situations where measurement uncertainties exist in both regressed variables. In the past, regression based on the method of Deming [1943. Statistical Adjustment of Data. Wiley, London] has been the preferred choice for EC tracer method parameter estimation. In agreement with Chu [2005. Stable estimate of primary OC/EC ratios in the EC tracer method. Atmospheric Environment 39, 1383-1392], we find that in the limited case where primary non-combustion OC (OC non-comb) is assumed to be zero, the ratio of averages (ROA) approach provides a stable and reliable estimate of the primary OC-EC ratio, (OC/EC) pri. In contrast with Chu [2005. Stable estimate of primary OC/EC ratios in the EC tracer method. Atmospheric Environment 39, 1383-1392], however, we find that the optimal use of Deming regression (and the more general York et al. [2004. Unified equations for the slope, intercept, and standard errors of the best straight line. American Journal of Physics 72, 367-375] regression) provides excellent results as well. For the more typical case where OC non-comb is allowed to obtain a non-zero value, we find that regression based on the method of York is the preferred choice for EC tracer method parameter estimation. In the York regression technique, detailed information on uncertainties in the measurement of OC and EC is used to improve the linear best fit to the given data. If only limited information is available on the relative uncertainties of OC and EC, then Deming regression should be used. On the other hand, use of ROA in the estimation of secondary OC, and thus the assumption of a zero OC non-comb value, generally leads to an overestimation of the contribution of secondary OC to total measured OC.

  2. A Brazilian network of carbon flux stations

    NASA Astrophysics Data System (ADS)

    Roberti, Débora R.; Acevedo, Otávio C.; Moraes, Osvaldo L. L.

    2012-05-01

    First Brasflux Workshop; Santa Maria, Rio Grande do Sul, Brazil, 14-15 November 2011 Last November, 33 researchers participated in a workshop to establish Brasflux, the Brazilian network of carbon flux stations, with the objective of integrating previous efforts and planning for the future. Among the participants were those leading ongoing flux observation projects and others planning to establish flux stations in the near future. International scientists also participated to share the experiences gained with other networks. The need to properly characterize terrestrial ecosystems for their roles in the global carbon, water, and energy budgets has motivated the implementation of hundreds of micrometeorological research sites throughout the world in recent years. The eddy covariance (EC) technique for turbulent flux determination is the preferred method to provide integral information on ecosystematmosphere exchanges. Integrating the observations regionally and globally has proven to be an effective approach to maximizing the usefulness of this technique for carbon cycle studies at multiple scales.

  3. SQuAd - Approach for the Spatial Quantification of the Advection influence on the balance closure of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Schuetze, C.; Barth, M.; Hehn, M.; Ziemann, A.

    2016-12-01

    The eddy-covariance (EC) method can provide information about turbulent fluxes of energy and greenhouse gases (GHG) accurately if all necessary corrections and conversions are applied to the measured raw data and all boundary conditions for the method are satisfied. Nevertheless and even in flat terrain, advection can occur leading to a closing gap of energy and matter balances. Without accounting for advection, annual estimates of CO2 sink strength are overestimated, because advection usually results in underestimation of nocturnal CO2 flux. Advection is produced by low-frequent exchange processes, which can occur due to the surface heterogeneity. To measure advective fluxes there is still and strongly a need for ground-based remote sensing techniques which provide the relevant GHG concentration together with wind components spatially resolved within the same voxel structure. The SQuAd-approach applies an integrated method combination of acoustic tomography and open-path optical remote sensing based on infrared spectroscopy with the aim to obtain spatially and temporally resolved information about wind components and GHG concentration. The monitoring approach focuses on the validation of the joint application of the two independent, non-intrusive methods concerning the ability to close the existent gap in GHG balance. The innovative combination of acoustic travel-time tomography (A-TOM) and open-path Fourier transform infrared spectroscopy (OP-FTIR) together with atmospheric modelling will enable an upscaling and enhancement of EC measurements. OP-FTIR instrumentation has the significant advantage of real-time simultaneous measurements of line-averaged concentrations for CO2 and other GHG with high precision. A-TOM is a scalable method to remotely resolve 3D wind and temperature fields. The presentation will give an overview about the proposed method combination and results of experimental validation tests at an ICOS site (flat grassland) in Eastern Germany.

  4. Ongoing contraception after use of emergency contraception from a specialist contraceptive service.

    PubMed

    Cameron, Sharon T; Glasier, Anna; Johnstone, Anne; Rae, Leanne

    2011-10-01

    A consultation for emergency contraception (EC) gives way to an opportunity to provide women with an ongoing effective method of contraception. A review of the case notes of women seeking EC from a large family planning clinic in Edinburgh, Scotland, was conducted to determine what percentage of women were provided with an effective method of ongoing contraception. Case notes of 460 women presenting for EC over a 2-year period were reviewed. Women were of mean age 26 years (range 15-49 years) and presented because they had used no contraception (47%), experienced condom failure (42%) or missed oral contraceptive pills (9%). Only 2% (n=11) were given an intrauterine device for EC. All women who had missed contraceptive pills prior to taking EC opted to continue this method. Only 23% (n=89) of women using no method or condoms at EC received supplies of an effective contraceptive method (pills, patch, injectable). Two thirds (n=263) of the women chose condoms for ongoing contraception. Research is required to develop strategies to improve the uptake of effective contraception after EC. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. A qualitative exploration of emergency contraception users' willingness to select the copper IUD.

    PubMed

    Wright, Rachel L; Frost, Caren J; Turok, David K

    2012-01-01

    The copper T intrauterine device (IUD) is an effective but underutilized method of emergency contraception (EC). This study investigates the factors influencing a woman's decision around which method of EC to select. In-depth interviews with 14 IUD and 14 oral EC users aged 18-30 years accessing public health clinics. Emergency contraception users associated long-term methods of contraception with long-term sexual relationships. Women were not aware of the possibility of using the copper IUD for EC. Cost was identified as a major barrier to accessing IUDs. Perceived side effects and impact on future pregnancies further influenced the EC method a participant selected. Women think about contraception in the context of each separate relationship and not as a long-term individual plan. Most women were unaware of the copper IUD for EC. Furthermore, there is little discussion between women and their health-care providers around EC. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. A simulation study to quantify the impacts of exposure ...

    EPA Pesticide Factsheets

    BackgroundExposure measurement error in copollutant epidemiologic models has the potential to introduce bias in relative risk (RR) estimates. A simulation study was conducted using empirical data to quantify the impact of correlated measurement errors in time-series analyses of air pollution and health.MethodsZIP-code level estimates of exposure for six pollutants (CO, NOx, EC, PM2.5, SO4, O3) from 1999 to 2002 in the Atlanta metropolitan area were used to calculate spatial, population (i.e. ambient versus personal), and total exposure measurement error.Empirically determined covariance of pollutant concentration pairs and the associated measurement errors were used to simulate true exposure (exposure without error) from observed exposure. Daily emergency department visits for respiratory diseases were simulated using a Poisson time-series model with a main pollutant RR = 1.05 per interquartile range, and a null association for the copollutant (RR = 1). Monte Carlo experiments were used to evaluate the impacts of correlated exposure errors of different copollutant pairs.ResultsSubstantial attenuation of RRs due to exposure error was evident in nearly all copollutant pairs studied, ranging from 10 to 40% attenuation for spatial error, 3–85% for population error, and 31–85% for total error. When CO, NOx or EC is the main pollutant, we demonstrated the possibility of false positives, specifically identifying significant, positive associations for copoll

  7. Population pharmacodynamic modelling of midazolam induced sedation in terminally ill adult patients

    PubMed Central

    de Winter, Brenda C. M.; Masman, Anniek D.; van Dijk, Monique; Baar, Frans P. M.; Tibboel, Dick; Koch, Birgit C. P.; van Gelder, Teun; Mathot, Ron A. A.

    2017-01-01

    Aims Midazolam is the drug of choice for palliative sedation and is titrated to achieve the desired level of sedation. A previous pharmacokinetic (PK) study showed that variability between patients could be partly explained by renal function and inflammatory status. The goal of this study was to combine this PK information with pharmacodynamic (PD) data, to evaluate the variability in response to midazolam and to find clinically relevant covariates that may predict PD response. Method A population PD analysis using nonlinear mixed effect models was performed with data from 43 terminally ill patients. PK profiles were predicted by a previously described PK model and depth of sedation was measured using the Ramsay sedation score. Patient and disease characteristics were evaluated as possible covariates. The final model was evaluated using a visual predictive check. Results The effect of midazolam on the sedation level was best described by a differential odds model including a baseline probability, Emax model and interindividual variability on the overall effect. The EC50 value was 68.7 μg l–1 for a Ramsay score of 3–5 and 117.1 μg l–1 for a Ramsay score of 6. Comedication with haloperidol was the only significant covariate. The visual predictive check of the final model showed good model predictability. Conclusion We were able to describe the clinical response to midazolam accurately. As expected, there was large variability in response to midazolam. The use of haloperidol was associated with a lower probability of sedation. This may be a result of confounding by indication, as haloperidol was used to treat delirium, and deliria has been linked to a more difficult sedation procedure. PMID:28960387

  8. Assessment of the soil water balance by the combination of cosmic ray neutron sensing and eddy covariance technique in an irrigated citrus orchard (Marrakesh, Morocco)

    NASA Astrophysics Data System (ADS)

    Mroos, Katja; Baroni, Gabriele; Er-Raki, Salah; Francke, Till; Khabba, Said; Jarlan, Lionel; Hanich, Lahoucine; Oswald, Sascha E.

    2014-05-01

    Irrigation water requirement plays a crucial role in many agricultural areas and especially in arid and semi-arid landscapes. Improvements in the water management and the performance of the irrigation systems require a correct evaluation of the hydrological processes involved. However, some difficulties can arise due to the heterogeneity of the soil-plant system and of the irrigation scheme. To overcome these limitations, in this study, the soil water balance is analyzed by the combination of the Eddy Covariance technique (EC) and Cosmic Ray neutron Sensing (CRS). EC provides the measurement of the actual evapotranspiration over the area as it was presented in many field conditions. Moreover CRS showed to be a valuable approach to measure the root zone soil moisture integrated in a footprint of ~30 ha. In this way, the combination of the two methodologies should provide a better analysis of the soil water balance at field scale, as opposed to point observations, e.g. by TDR, evaporimeter and fluxmeter. Then, this could increase the capability to assess the irrigation efficiency and the agricultural water management. The study is conducted in a citrus orchard situated in a semi-arid region, 30 km southwest of Marrakesh (Morocco). The site is flat and planted with trees of same age growing in parallel rows with drip irrigation lines and application of fertilizer and pesticides. The original soil seems modified on the surface by the agricultural use, creating differences between trees, rows and lines. In addition, the drip irrigation creates also a spatial variability of the water flux distribution in the field, making this site an interesting area to test the methodology. Particular attention is given to the adaptation of the standard soil sampling campaign used for the calibration of the CRS and the introduction of a weighing function. Data were collected from June to December 2013, which corresponds to the high plant transpiration. Despite the intention of the farmer to maintain constant soil water contents in the root zone throughout the period, the CRS results showed a relatively strong dynamic of the soil water conditions at field scale and respond well to the EC measurements. Strong spatial heterogeneities and the difficulties of direct comparison between the different scales of measurements pose a challenge for full quantification of the water balance. Further analysis will address the assessment of the irrigation efficiency at different scales and of deep percolation. Keywords: Cosmic Ray Sensing, deep percolation, Eddy Covariance, evapotranspiration, irrigation, Morocco, soil moisture, semi-arid;

  9. The politics of place: presidential voting patterns and Providers' prescription of emergency contraception.

    PubMed

    Cleland, Kelly; Wagner, Brandon; Batur, Pelin; McNamara, Megan; Wu, Justine; Rothberg, Michael B

    2018-05-17

    The most effective forms of emergency contraception (EC) require a prescription or a medical procedure; therefore, provider willingness to offer EC remains critical to patient access. This study seeks to assess whether political alignment of a provider's county is associated with provider attitudes and behaviors regarding EC. We analyzed survey data collected from 1313 healthcare providers from February 2013 to April 2014 at 14 academic medical centers in the United States. Using logistic regression, we estimated associations between the county political alignment of a provider's practice and his or her EC-related beliefs and practices: 1) if the provider is aware of the most effective EC methods; 2) if knowing that a hypothetical EC method prevented implantation would make a provider less likely to prescribe that method because of personal ethical or religious reasons; and 3) if the provider prescribes any form of EC in his or her practice. In multivariate models, a one percentage-point increase in county Republican vote share was associated with a 2.9% decrease in the odds of a provider prescribing EC, after accounting for provider knowledge and attitudes about EC. EC provides a critical last chance to prevent pregnancy after unprotected sex, yet women living in Republican-leaning counties may face difficulty obtaining EC from healthcare providers. Programs seeking to improve access to EC should focus on areas likely to have fewer providers willing to prescribe EC, which may be those that are more Republican-leaning. The most effective forms of emergency contraception (EC) require a prescription or a medical procedure; therefore, provider willingness to offer EC remains critical to patient access. Women living in Republican-leaning counties may face difficulty obtaining emergency contraception from healthcare providers. Copyright © 2018. Published by Elsevier Inc.

  10. Long-term Lake Evaporation Measurements in Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Dias, N. L.; Cancelli, D. M.

    2007-05-01

    We report here for the first time the results of a long-term (37 months) campaign of lake evaporation measurements with the eddy-covariance (EC) method. The measurements were made at Furnas Lake, a large lake (1440 km2) in Southeastern Brazil (20° 44'S, 45° 58'W and 771.8 m ASL). Mean and maximum depths at the Maximum Normal Operating Level are 13 m and 90 m respectively. Taking advantage of a long drought during 2000--2001, a large metal tower was erected over the lake's dry bed. After the water level recovered, we were left with a stable platform for performing EC measurements in one of the lake's many basins. Fetch conditions over the prevailing wind directions were excellent (1000 m from the North, and more than 3000 m from the East), with the closest land at 420 m (from NE) and 440 m (from SW). Measurements included hourly means of water surface temperature, air temperature, specific humidity, downwelling solar radiation, net radiation, wind speed, and wind direction. 10-Hz eddy covariance measurements were made of turbulent fluctuations of 3 wind components, sonic virtual temperature, air temperature (with a fine-wire thermocouple) and of fluctuating specific humidity with a specially adapted capacitive hygrometer. The validation of this sensor to measure latent heat fluxes at high frequency was made on intensive field campaigns that deployed state-of-the art Ultra-Violet and Infra-Red fast-response hygrometers. Our data analysis indicates that atmospheric stability can be far from neutral, and that it plays a very important role in the mass-transfer and heat-transfer equations for the water vapor and sensible heat fluxes. We have also found that significantly different scalar roughenesses for water vapor and for sensible heat were necessary to calibrate properly the Monin-Obukhov Similarity Theory (MOST)-based transfer equations. Due to these differences, gradient-based Bowen ratios (as usually applied in the Energy Budget Bowen Ratio method in the absence of turbulence measurements) do not agree with flux-based Bowen ratios given directly by the ratio of the sensible heat flux and the latent heat flux. Finally, we give the mean monthly values for these two fluxes from July, 2003 to June, 2006 (with 5 months of missing data).

  11. Uncertainties in Eddy Covariance fluxes due to post-field data processing: a multi-site, full factorial analysis

    NASA Astrophysics Data System (ADS)

    Sabbatini, S.; Fratini, G.; Arriga, N.; Papale, D.

    2012-04-01

    Eddy Covariance (EC) is the only technologically available direct method to measure carbon and energy fluxes between ecosystems and atmosphere. However, uncertainties related to this method have not been exhaustively assessed yet, including those deriving from post-field data processing. The latter arise because there is no exact processing sequence established for any given situation, and the sequence itself is long and complex, with many processing steps and options available. However, the consistency and inter-comparability of flux estimates may be largely affected by the adoption of different processing sequences. The goal of our work is to quantify the uncertainty introduced in each processing step by the fact that different options are available, and to study how the overall uncertainty propagates throughout the processing sequence. We propose an easy-to-use methodology to assign a confidence level to the calculated fluxes of energy and mass, based on the adopted processing sequence, and on available information such as the EC system type (e.g. open vs. closed path), the climate and the ecosystem type. The proposed methodology synthesizes the results of a massive full-factorial experiment. We use one year of raw data from 15 European flux stations and process them so as to cover all possible combinations of the available options across a selection of the most relevant processing steps. The 15 sites have been selected to be representative of different ecosystems (forests, croplands and grasslands), climates (mediterranean, nordic, arid and humid) and instrumental setup (e.g. open vs. closed path). The software used for this analysis is EddyPro™ 3.0 (www.licor.com/eddypro). The critical processing steps, selected on the basis of the different options commonly used in the FLUXNET community, are: angle of attack correction; coordinate rotation; trend removal; time lag compensation; low- and high- frequency spectral correction; correction for air density fluctuations; and length of the flux averaging interval. We illustrate the results of the full-factorial combination relative to a subset of the selected sites with particular emphasis on the total uncertainty at different time scales and aggregations, as well as a preliminary analysis of the most critical steps for their contribution to the total uncertainties and their potential relation with site set-up characteristics and ecosystem type.

  12. Developing eco-friendly biofungicide for the management of major seed borne diseases of rice and assessing their physical stability and storage life.

    PubMed

    Naveenkumar, Ramasamy; Muthukumar, Arjunan; Sangeetha, Ganesan; Mohanapriya, Ramanathan

    2017-04-01

    Three plant oils (Cymbopogon citratus, Cymbopogon martini, and Pelargonium graveolens) were developed as EC formulations and tested for their physical stabilities. EC formulations (10EC, 20EC and 30EC) of C. citratus, C. martini and P. graveolens had emulsion stability, spontaneity property, heat and cold stability. EC formulated plant oils were screened against the major seed borne fungi of rice such as Curvularia lunata, Fusarium moniliforme, Bipolaris oryzae, and Sarocladium oryzae. The level of inhibition varied among the concentrations of EC formulations. Among the three EC formulations, that of C. citratus oil 30EC recorded 100% inhibition on the mycelial growth of test pathogens. In the blotter paper method, rice seeds treated with a formulation of C. citratus oil 30EC controlled the infection of C. lunata, F. moniliforme, B. oryzae and S. oryzae in rice seed to the tune of 66.0%, 60.4%, 66.0% and 69.1%, respectively. Seed soaking with formulation of C. citratus oil 30EC showed the highest percentage of normal seedlings, the lowest number of abnormal seedling and fresh ungerminated seeds when tested with the roll-towel method. Seed soaking with 30EC formulation of C. citratus oil increased seed germination, shoot length, root length and vigour of rice seedlings when tested with the plastic tray method. Transmission of pathogens from seed to seedling was reduced significantly by the 30EC formulation of C. citratus oil when tested with the plastic pot method. The effect of the storage life of the 30EC formulation of C. citratus oil showed that it had retained their antifungal effect till the end of the incubation period (120 days), and is able to inhibit the mycelial growth of all test pathogens to the 100% level. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  13. Comparison of Source Partitioning Methods for CO2 and H2O Fluxes Based on High Frequency Eddy Covariance Data

    NASA Astrophysics Data System (ADS)

    Klosterhalfen, Anne; Moene, Arnold; Schmidt, Marius; Ney, Patrizia; Graf, Alexander

    2017-04-01

    Source partitioning of eddy covariance (EC) measurements of CO2 into respiration and photosynthesis is routinely used for a better understanding of the exchange of greenhouse gases, especially between terrestrial ecosystems and the atmosphere. The most frequently used methods are usually based either on relations of fluxes to environmental drivers or on chamber measurements. However, they often depend strongly on assumptions or invasive measurements and do usually not offer partitioning estimates for latent heat fluxes into evaporation and transpiration. SCANLON and SAHU (2008) and SCANLON and KUSTAS (2010) proposed an promising method to estimate the contributions of transpiration and evaporation using measured high frequency time series of CO2 and H2O fluxes - no extra instrumentation necessary. This method (SK10 in the following) is based on the spatial separation and relative strength of sources and sinks of CO2 and water vapor among the sub-canopy and canopy. Assuming that air from those sources and sinks is not yet perfectly mixed before reaching EC sensors, partitioning is estimated based on the separate application of the flux-variance similarity theory to the stomatal and non-stomatal components of the regarded fluxes, as well as on additional assumptions on stomatal water use efficiency (WUE). The CO2 partitioning method after THOMAS et al. (2008) (TH08 in the following) also follows the argument that the dissimilarities of sources and sinks in and below a canopy affect the relation between H2O and CO2 fluctuations. Instead of involving assumptions on WUE, TH08 directly screens their scattergram for signals of joint respiration and evaporation events and applies a conditional sampling methodology. In spite of their different main targets (H2O vs. CO2), both methods can yield partitioning estimates on both fluxes. We therefore compare various sub-methods of SK10 and TH08 including own modifications (e.g., cluster analysis) to each other, to established source partitioning methods, and to chamber measurements at various agroecosystems. Further, profile measurements and a canopy-resolving Large Eddy Simulation model are used to test the assumptions involved in SK10. Scanlon, T.M., Kustas, W.P., 2010. Partitioning carbon dioxide and water vapor fluxes using correlation analysis. Agricultural and Forest Meteorology 150 (1), 89-99. Scanlon, T.M., Sahu, P., 2008. On the correlation structure of water vapor and carbon dioxide in the atmospheric surface layer: A basis for flux partitioning. Water Resources Research 44 (10), W10418, 15 pp. Thomas, C., Martin, J.G., Goeckede, M., Siqueira, M.B., Foken, T., Law, B.E., Loescher H.W., Katul, G., 2008. Estimating daytime subcanopy respiration from conditional sampling methods applied to multi-scalar high frequency turbulence time series. Agricultural and Forest Meteorology 148 (8-9), 1210-1229.

  14. Determination of elemental carbon in lake sediments using a thermal-optical transmittance (TOT) method

    NASA Astrophysics Data System (ADS)

    Khan, A. J.; Swami, Kamal; Ahmed, Tanveer; Bari, A.; Shareef, Akhtar; Husain, Liaquat

    2009-12-01

    An improved chemical oxidation pretreatment method has been developed for the determination of elemental carbon (EC) [also known as black carbon (BC) or soot] in lake sediments, using a thermal-optical transmittance (TOT) carbon analyzer. The method employs six steps: (1) removal of carbonates by treatment with HCl; (2) removal of silicates by treatment with HF + HCl; (3) removal of any remaining carbonates by treatment with HCl; (4) removal of humic acids by treatment with NaOH; and (5) oxidation of kerogens by K 2Cr 2O 7 + H 2SO 4. A critical step of zinc chloride treatment was added; this apparently changes EC's morphology and enhances retention on quartz fiber filter, resulting in several-fold increased chemical yield. EC was determined using the TOT method with modified combustion timings. Carbon black (acetylene) and four NIST standard reference materials (SRMs) were used for quality control, and to assess the precision of the analysis. The EC recoveries from 18 carbon black samples varied from 90 to 111%, with a mean value of 99 ± 6%. The high EC recoveries confirmed the validity of the method. Char reference materials (i.e. chestnut wood and grass char) were used to determine potential contribution to EC in our measurements. The char references containing about 700 mg total organic carbon (OC) contributed ˜1.5% EC. The measured EC values from four NIST standards were 17.0 ± 0.6, 24.2 ± 3.2, 5.6, and 1.9 ± 0.1 mg g dw-1 for SRM-1648, SRM-1649a, SRM-1941b and SRM-8704, respectively. These values in SRMs were in agreement (<±4%) with the previously reported values. The method was applied to determine the EC in sediment cores from an urban lake and a remote mountain lake in the Northeastern United States. The EC concentrations in two lakes mimic the model EC emissions from the industrial revolution in United States.

  15. Emergency Contraception in Mexico: Trends in Knowledge and Ever-Use 2006-2014.

    PubMed

    Han, Leo; Saavedra-Avendano, Biani; Lambert, William; Fu, Rongwei; Rodriguez, Maria I; Edelman, Alison; Darney, Blair

    2017-11-01

    Objectives A package of interventions to introduce emergency contraception (EC) to Mexico was implemented, resulting in the addition of EC to the national family planning guidelines in 2004. We describe EC knowledge and use among women in Mexico over time. Methods We used the 2006, 2009, and 2014 of waves of a nationally representative demographic survey (ENADID). We assessed EC knowledge and usage in women ages 15-29 who are not using permanent methods and tested whether EC knowledge and use is changing over time after controlling for socio-demographic characteristics using logistic regression. Results Our sample included n = 99,223 (population N = 40,234,355) women ages 15-29. Overall, knowledge of EC increased over time: 62% in 2006 to 79% in 2009 to 83% in 2014 (p < 0.001). Among young women who have used contraception (n = 42,883; N = 16,816,701), the proportion that reported EC use increased from 3 to 11% to 29% (p < 0.001). Compared to non-users, women who had ever used EC were more likely to be using no method of contraception (44 vs. 35%) or barrier method (22 vs. 17%). Demographic factors including lower wealth, lower education, indigenous status and rural living are significantly associated with less EC knowledge and use. Stratified multivariate analysis found that demographic disadvantages magnify lower EC use among rural residents compared to non-rural residents. Conclusions for Practice Knowledge and use of EC are growing rapidly in Mexico, but disparities persist in demographically disadvantaged women, particularly those living in rural areas. Women who use EC appear to be at higher risk of unintended pregnancy based on current contraceptive use.

  16. Ecosystem level methane fluxes from tidal freshwater and brackish marshes of the Mississippi River Delta: Implications for coastal wetland carbon projects

    USGS Publications Warehouse

    Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Krauss, Ken W.; Johnson, Darren J.; Raynie, Richard C.; Killebrew, Charles J.

    2016-01-01

    Sulfate from seawater inhibits methane production in tidal wetlands, and by extension, salinity has been used as a general predictor of methane emissions. With the need to reduce methane flux uncertainties from tidal wetlands, eddy covariance (EC) techniques provide an integrated methane budget. The goals of this study were to: 1) establish methane emissions from natural, freshwater and brackish wetlands in Louisiana based on EC; and 2) determine if EC estimates conform to a methane-salinity relationship derived from temperate tidal wetlands with chamber sampling. Annual estimates of methane emissions from this study were 62.3 g CH4/m2/yr and 13.8 g CH4/m2/yr for the freshwater and brackish (8–10 psu) sites, respectively. If it is assumed that long-term, annual soil carbon sequestration rates of natural marshes are ~200 g C/m2/yr (7.3 tCO2e/ha/yr), healthy brackish marshes could be expected to act as a net radiative sink, equivalent to less than one-half the soil carbon accumulation rate after subtracting methane emissions (4.1 tCO2e/ha/yr). Carbon sequestration rates would need case-by-case assessment, but the EC methane emissions estimates in this study conformed well to an existing salinity-methane model that should serve as a basis for establishing emission factors for wetland carbon offset projects.

  17. Turbulent flux variability and energy balance closure in the TERENO prealpine observatory: a hydrometeorological data analysis

    NASA Astrophysics Data System (ADS)

    Soltani, Mohsen; Mauder, Matthias; Laux, Patrick; Kunstmann, Harald

    2017-07-01

    The temporal multiscale variability of the surface heat fluxes is assessed by the analysis of the turbulent heat and moisture fluxes using the eddy covariance (EC) technique at the TERrestrial ENvironmental Observatories (TERENO) prealpine region. The fast and slow response variables from three EC sites located at Fendt, Rottenbuch, and Graswang are gathered for the period of 2013 to 2014. Here, the main goals are to characterize the multiscale variations and drivers of the turbulent fluxes, as well as to quantify the energy balance closure (EBC) and analyze the possible reasons for the lack of EBC at the EC sites. To achieve these goals, we conducted a principal component analysis (PCA) and a climatological turbulent flux footprint analysis. The results show significant differences in the mean diurnal variations of the sensible heat (H) and latent heat (LE) fluxes, because of variations in the solar radiation, precipitation patterns, soil moisture, and the vegetation fraction throughout the year. LE was the main consumer of net radiation. Based on the first principal component (PC1), the radiation and temperature components with a total mean contribution of 29.5 and 41.3%, respectively, were found to be the main drivers of the turbulent fluxes at the study EC sites. A general lack of EBC is observed, where the energy imbalance values amount 35, 44, and 35% at the Fendt, Rottenbuch, and Graswang sites, respectively. An average energy balance ratio (EBR) of 0.65 is obtained in the region. The best closure occurred in the afternoon peaking shortly before sunset with a different pattern and intensity between the study sites. The size and shape of the annual mean half-hourly turbulent flux footprint climatology was analyzed. On average, 80% of the flux footprint was emitted from a radius of approximately 250 m around the EC stations. Moreover, the overall shape of the flux footprints was in good agreement with the prevailing wind direction for all three TERENO EC sites.

  18. Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile.

    PubMed

    Verdejo, José; Ginocchio, Rosanna; Sauvé, Sébastien; Salgado, Eduardo; Neaman, Alexander

    2015-12-01

    It has been argued that the identification of the phytotoxic metal thresholds in soil should be based on field-collected soil rather than on artificially-contaminated soils. However, the use of field-collected soils presents several difficulties for interpretation because of mixed contamination and unavoidable covariance of metal contamination with other soil properties that affect plant growth. The objective of this study was to estimate thresholds of copper phytotoxicity in topsoils of 27 agricultural areas historically contaminated by mining activities in Chile. We performed emergence and early growth (21 days) tests (OECD 208 and ISO 11269-2) with perennial ryegrass (Lolium perenne L.). The total Cu content in soils was the best predictor of plant growth and shoot Cu concentrations, while soluble Cu and pCu(2+) did not well correlate with these biological responses. The effects of Pb, Zn, and As on plant responses were not significant, suggesting that Cu is a metal of prime concern for plant growth in soils exposed to copper mining activities in Chile. The effects of soil nutrient availability and shoot nutrient concentrations on ryegrass response were not significant. It was possible to determine EC10, EC25 and EC50 of total Cu in the soil of 327 mg kg(-1), 735 mg kg(-1) and 1144 mg kg(-1), respectively, using the shoot length as a response variable. However, the derived 95% confidence intervals for EC10, EC25 and EC50 values of total soil Cu were wide, and thus not allowing a robust assessment of metal toxicity for agricultural crops, based on total soil Cu concentrations. Thus, plant tests might need to be performed for metal toxicity assessment. This study suggests shoot length of ryegrass as a robust response variable for metal toxicity assessment in contaminated soils with different nutrient availability. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Technical note: Using distributed temperature sensing for Bowen ratio evaporation measurements

    NASA Astrophysics Data System (ADS)

    Schilperoort, Bart; Coenders-Gerrits, Miriam; Luxemburg, Willem; Jiménez Rodríguez, César; Cisneros Vaca, César; Savenije, Hubert

    2018-01-01

    Rapid improvements in the precision and spatial resolution of distributed temperature sensing (DTS) technology now allow its use in hydrological and atmospheric sciences. Introduced by ) is the use of DTS for measuring the Bowen ratio (BR-DTS), to estimate the sensible and latent heat flux. The Bowen ratio is derived from DTS-measured vertical profiles of the air temperature and wet-bulb temperature. However, in previous research the measured temperatures were not validated, and the cables were not shielded from solar radiation. Additionally, the BR-DTS method has not been tested above a forest before, where temperature gradients are small and energy storage in the air column becomes important. In this paper the accuracy of the wet-bulb and air temperature measurements of the DTS are verified, and the resulting Bowen ratio and heat fluxes are compared to eddy covariance data. The performance of BR-DTS was tested on a 46 m high tower in a mixed forest in the centre of the Netherlands in August 2016. The average tree height is 26 to 30 m, and the temperatures are measured below, in, and above the canopy. Using the vertical temperature profiles the storage of latent and sensible heat in the air column was calculated. We found a significant effect of solar radiation on the temperature measurements, leading to a deviation of up to 3 K. By installing screens, the error caused by sunlight is reduced to under 1 K. Wind speed seems to have a minimal effect on the measured wet-bulb temperature, both below and above the canopy. After a simple quality control, the Bowen ratio measured by DTS correlates well with eddy covariance (EC) estimates (r2 = 0.59). The average energy balance closure between BR-DTS and EC is good, with a mean underestimation of 3.4 W m-2 by the BR-DTS method. However, during daytime the BR-DTS method overestimates the available energy, and during night-time the BR-DTS method estimates the available energy to be more negative. This difference could be related to the biomass heat storage, which is neglected in this study. The BR-DTS method overestimates the latent heat flux on average by 18.7 W m-2, with RMSE = 90 W m-2. The sensible heat flux is underestimated on average by 10.6 W m-2, with RMSE = 76 W m-2. Estimates of the BR-DTS can be improved once the uncertainties in the energy balance are reduced. However, applying, for example, Monin-Obukhov similarity theory could provide independent estimates for the sensible heat flux. This would make the determination of the highly uncertain and difficult to determine net available energy redundant.

  20. Knowledge, attitudes and prescribing pattern of emergency contraceptives by health care workers in Kampala, Uganda.

    PubMed

    Byamugisha, Josaphat K; Mirembe, Florence M; Faxelid, Elisabeth; Gemzell-Danielsson, Kristina

    2007-01-01

    Health care workers (HCWs) play an important role in making emergency contraceptives (ECs) available to clients. They can influence accessibility positively through counselling, prescribing or advocating the use of ECs. However, in some settings, HCWs have been blamed for unfavourable attitudes and lack of accurate information. Objective. To assess the knowledge, attitudes and prescribing pattern of EC by HCWs in Kampala district, Uganda. The total number of health units at different levels of health care delivery in Kampala (894) was obtained. Probability proportional to size (PPS) technique of sampling was applied. Some 247 HCWs completed a self-administered questionnaire on their knowledge about EC, including methods, mechanism of action, prescription of EC, sources of information, attitudes towards EC, and if and how it should be made available. Of the HCWs, 80% had knowledge of ECs. However, 1 in every 4 was not sure about the time limit within which EC is effective. A total of 50% of the participants had obtained information from a physician (26.4%) or from a training school (24%). The Yuzpe regimen was the most commonly mentioned and prescribed method of EC. The HCWs attitudes to EC were generally positive, and it was suggested that the community should be informed and sensitised about EC. There was a significant difference between having had a family planning educational update or not in the last year and knowledge of EC (p=0.005). Most HCWs were aware of EC, but some lacked important knowledge on its use or available methods. HCWs should have regular (annual) in-service training in reproductive health issues, such as counselling on EC. This will enable them to keep up to date with the current evidence-based recommendations in the field of contraceptive technology.

  1. Emergency contraception: clinical outcomes.

    PubMed

    Glasier, Anna

    2013-03-01

    Emergency contraception (EC) is widely used to prevent unwanted pregnancy. This review considers the safety and efficacy of three commonly used methods -- levonorgestrel (LNG-EC), ulipristal acetate (UPA) and the copper intrauterine device. All are extremely safe, and side effects are minimal. Concerns about increased risks of ectopic pregnancy after EC use have proved unfounded, and possible teratogenic effects seem unlikely. Although the true effectiveness of EC is impossible to estimate, recent research suggests that LNG-EC prevents around 50% of expected pregnancies in women using the method within 72 h of intercourse, whereas UPA appeared to prevent almost two thirds of pregnancies. Emergency intrauterine device insertion probably prevents over 95% of pregnancies. However, although improved accessibility of EC has clearly led to increased use, it does not appear to have had any public health benefit in reducing unintended pregnancy rates. Most of the data on sexual behavior following improved access to EC do not show any detrimental effect on subsequent use of other more effective methods of contraception or on the incidence of unintended pregnancy or sexually transmitted infection. However, unless these other methods of contraception are also made easily available from pharmacies, improved access to EC risks unlinking its use with use of subsequent ongoing contraception. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Eddy Covariance measurements of stable CO2 and H2O isotopologues

    NASA Astrophysics Data System (ADS)

    Braden-Behrens, Jelka; Knohl, Alexander

    2015-04-01

    The analysis of the stable isotope composition of CO2 and H2O fluxes (such as 13C, 18O and 2H in H2O and CO2) has provided valuable insights into ecosystem gas exchange. The approach builds on differences in the isotope signature of different ecosystem components that are primarily caused by the preference for or the discrimination against respective isotope species by important processes within the ecosystem (e.g. photosynthesis or leaf water diffusion). With the ongoing development of laser spectrometric methods, fast and precise measurements of isotopologue mixing ratios became possible, hence also enabling Eddy Covariance (EC) based approaches to directly measure the isotopic composition of CO2 and H2Ov net fluxes on ecosystem scale. During an eight month long measurement campaign in 2015, we plan to simultaneously measure CO2 and H2Ov isotopologue fluxes using an EC approach in a managed beech forest in Thuringia, Germany. For this purpose, we will use two different laser spectrometers for high frequency measurements of isotopic compositions: For H2Ov measurements, we will use an off axis cavity output water vapour isotope analyser (WVIA, Los Gatos Research Inc.) with 5 Hz response; and for CO2 measurements, we will use a quantum cascade laser-based system (QCLAS, Aerodyne Research Inc.) with thermoelectrically cooled detectors and up to 10 Hz measurement capability. The resulting continuous isotopologue flux measurements will be accompanied by intensive sampling campaigns on the leaf scale: Water from leaf, twig, soil and precipitation samples will be analysed in the lab using isotope ratio mass spectrometry. During data analysis we will put a focus on (i) the influence of carbon and oxygen discrimination on the isotopic signature of respective net ecosystem exchange, (ii) on the relationship between evapotranspiration and leaf water enrichment, and (iii) on the 18O exchange between carbon dioxide and water. At present, we already carried out extensive instrument performance tests for both laser spectrometers that will be presented here. In addition, we will present the instrumentation, the measurement periphery as well as anticipated analysis approaches required for the planned measurement campaign.

  3. Provision of emergency contraception at student health centers in California community colleges.

    PubMed

    Trieu, Sang Leng; Shenoy, Divya P; Bratton, Sally; Marshak, Helen Hopp

    2011-01-01

    Approximately half of all pregnancies in the United States are unintended, with the highest rates reported among college-age women. The availability of emergency contraception (EC) pills can be an important component of efforts to reduce unintended pregnancy. Student health centers at community colleges can uniquely support student retention and academic achievement among college students by making EC available to reduce the rate of unintended pregnancy and prevent college drop-out. This article highlights findings from an assessment of EC provision in student health centers within the California community college system (n = 73). A web-based survey was used to explore the provision of EC, challenges and barriers of EC administration, promotion of EC availability, and attitudes toward EC. Descriptive statistics conducted revealed that more than 6 out of 10 (62%) student health centers provided EC, 77% of which dispense EC on site during clinic visits. The most common EC promotion methods were providing brochures at the health center (80%) and through information provided at family planning or primary care visits (73%). Challenges to EC administration included a perceived lack of awareness of EC among students (71%), followed by the notion that some students may overutilize EC (40%). Attitudes toward EC provision were more favorable among health center staff whose campuses offered EC than those who did not (p < .05). This article provides recommendations for community college health centers to improve access and delivery of EC by addressing issues such as cost and offering more novel EC promotion methods. Copyright © 2011 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.

  4. On the isolation of elemental carbon (EC) for micro-molar 14C accelerator mass spectrometry: development of a hybrid reference material for 14C-EC accuracy assurance, and a critical evaluation of the thermal optical kinetic (TOK) EC isolation procedure

    NASA Astrophysics Data System (ADS)

    Currie, L. A.; Kessler, J. D.

    2005-10-01

    The primary objective of the research reported here has been the development of a hybrid reference material (RM) to serve as a test of accuracy for elemental carbon (EC) isotopic (14C) speciation measurements. Such measurements are vital for the quantitative apportionment of fossil and biomass sources of "soot" (EC), the tracer of fire that has profound effects on health, atmospheric visibility, and climate. Previous studies of 14C-EC measurement quality, carried out with NIST SRM 1649a (Urban Dust), showed a range of results, but since the "truth" was not known for this natural matrix RM, one had to rely on isotopic-chemical consistency evidence (14C in PAH, EC) of measurement validity (Currie et al., 2002). Components of the new Hybrid RM (DiesApple), however, have known 14C and EC composition, and they are nearly orthogonal (isotopically and chemically). NIST SRM 2975 (Forklift Diesel Soot) has little or no 14C, and its major compositional component is EC; SRM 1515 (Apple Leaves) has the 14C content of biomass-C, and it has little or no EC. Thus, the Hybrid RM can serve as an absolute isotopic test for the absence of EC-mimicking pyrolysis-C (char) from SRM 1515 in the EC isolate of the Hybrid RM, as well as a test for conservation of its dominant soot fraction throughout the isolation procedure.

    The secondary objective was to employ the Hybrid RM for the comparative evaluation of the thermal optical kinetic (TOK) and thermal optical transmission (TOT) methods for the isolation of EC for micro-molar carbon accelerator mass spectrometry (AMS). As part of this process, the relatively new TOK method was subjected to a critical evaluation and significant development. Key findings of our study are: (1) both methods exhibited biomass-C "leakage"; for TOT, the EC fraction isolated for AMS contained about 8% of the original biomass-C; for TOK, the refractory carbon (RC) isolated contained about 3% of the original biomass-C.; (2) the initial isothermal oxidation stage of the TOK method substantially reduced the transfer of artifact char to the RC fraction, improving isolation capabilities; (3) the Hybrid RM was not equal to the sum of its parts, with matrix interactions inducing premature loss of EC which, however, could be quantified and minimized; (4) the three-stage TOK method provided a superior capability for carbonate quantification at the sub-micromolar level, with "reagent-free" removal of carbonate-C from EC - essential for low-level EC-14C AMS.

  5. Comparison of two thermal-optical methods for the determination of organic carbon and elemental carbon: Results from the southeastern United States

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; Zheng, Mei; He, Ke-bin; Chen, Yingjun; Yan, Bo; Russell, Armistead G.; Shi, Wenyan; Jiao, Zheng; Sheng, Guoying; Fu, Jiamo; Edgerton, Eric S.

    2011-02-01

    A total of 333 PM 2.5 samples were collected at four sites in the southeastern Aerosol Research and Characterization Study (SEARCH) network during four seasons from 2003 to 2005 and were simultaneously analyzed by two common thermal-optical methods, the National Institute of Occupational Safety and Health (NIOSH) method and the Interagency Monitoring of Protected Visual Environments (IMPROVE) method. The concentrations of total carbon measured by the two methods were comparable, whereas the split of organic carbon (OC) and elemental carbon (EC) was significantly different. The NIOSH-defined EC was lower (up to 80%) than that defined by IMPROVE since the NIOSH method applied the transmittance charring correction and a much higher peak inert mode temperature. The discrepancy between NIOSH- and IMPROVE-defined EC showed distinct seasonal and spatial variations. Potential factors contributing to this discrepancy besides the analytical method were investigated. The discrepancy between NIOSH- and IMPROVE-defined EC was larger in the spring compared to winter due to the influence of biomass burning, which is known to emit significant amount of brown carbon that would complicate the split of OC and EC. The NIOSH-defined EC to IMPROVE-defined EC ratio reached its minimum (0.2-0.5) in the summer, when the largest discrepancy was observed. This was most likely to be attributed to the influence of secondary organic aerosol (SOA). Moreover, the discrepancy between NIOSH- and IMPROVE-defined EC was larger in the coastal and the rural sites where the presence of abundant SOA was found based on previous studies in this region, providing supporting evidence that SOA could contribute to the observed discrepancy in summer.

  6. Robust covariance estimation of galaxy-galaxy weak lensing: validation and limitation of jackknife covariance

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Takada, Masahiro; Miyatake, Hironao; Takahashi, Ryuichi; Hamana, Takashi; Nishimichi, Takahiro; Murata, Ryoma

    2017-09-01

    We develop a method to simulate galaxy-galaxy weak lensing by utilizing all-sky, light-cone simulations and their inherent halo catalogues. Using the mock catalogue to study the error covariance matrix of galaxy-galaxy weak lensing, we compare the full covariance with the 'jackknife' (JK) covariance, the method often used in the literature that estimates the covariance from the resamples of the data itself. We show that there exists the variation of JK covariance over realizations of mock lensing measurements, while the average JK covariance over mocks can give a reasonably accurate estimation of the true covariance up to separations comparable with the size of JK subregion. The scatter in JK covariances is found to be ∼10 per cent after we subtract the lensing measurement around random points. However, the JK method tends to underestimate the covariance at the larger separations, more increasingly for a survey with a higher number density of source galaxies. We apply our method to the Sloan Digital Sky Survey (SDSS) data, and show that the 48 mock SDSS catalogues nicely reproduce the signals and the JK covariance measured from the real data. We then argue that the use of the accurate covariance, compared to the JK covariance, allows us to use the lensing signals at large scales beyond a size of the JK subregion, which contains cleaner cosmological information in the linear regime.

  7. Dog cloning with in vivo matured oocytes obtained using electric chemiluminescence immunoassay-predicted ovulation method.

    PubMed

    Lee, Seunghoon; Zhao, Minghui; No, Jingu; Nam, Yoonseok; Im, Gi-Sun; Hur, Tai-Young

    2017-01-01

    Radioactive immunoassay (RIA) is a traditional serum hormone assay method, but the application of the method in reproductive studies is limited by the associated radioactivity. The aim of present study was to evaluate the reliability of RIA and to compare its canine serum progesterone concentration determination accuracy to that of the electric chemiluminescence immunoassay (ECLI). In vivo matured oocytes were utilized for canine somatic cell nuclear transfer (SCNT), and serum progesterone levels were assessed to accurately determine ovulation and oocyte maturation. Canine serum progesterone concentrations during both proestrus and estrus were analyzed by RIA and ECLI to determine the ovulation day. Although both methods detected similar progesterone levels before ovulation, the mean progesterone concentration determined using ECLI was significantly higher than of RIA three days before ovulation. Following ovulation, oocytes were collected by surgery, and a lower percentage of mature oocytes were observed using ECLI (39%) as compared to RIA (67%) if 4-8ng/ml of progesterone were used for determination of ovulation. A high percentage of mature oocytes was observed using ECLI when 6-15 ng/mL of progesterone was used for ovulation determination. To determine whether ECLI could be used for canine cloning, six canines were selected as oocyte donors, and two puppies were obtained after SCNT and embryo transfer. In conclusion, compared to the traditional RIA method, the ECLI method is a safe and reliable method for canine cloning.

  8. Dog cloning with in vivo matured oocytes obtained using electric chemiluminescence immunoassay-predicted ovulation method

    PubMed Central

    No, Jingu; Nam, Yoonseok; Im, Gi-Sun; Hur, Tai-Young

    2017-01-01

    Radioactive immunoassay (RIA) is a traditional serum hormone assay method, but the application of the method in reproductive studies is limited by the associated radioactivity. The aim of present study was to evaluate the reliability of RIA and to compare its canine serum progesterone concentration determination accuracy to that of the electric chemiluminescence immunoassay (ECLI). In vivo matured oocytes were utilized for canine somatic cell nuclear transfer (SCNT), and serum progesterone levels were assessed to accurately determine ovulation and oocyte maturation. Canine serum progesterone concentrations during both proestrus and estrus were analyzed by RIA and ECLI to determine the ovulation day. Although both methods detected similar progesterone levels before ovulation, the mean progesterone concentration determined using ECLI was significantly higher than of RIA three days before ovulation. Following ovulation, oocytes were collected by surgery, and a lower percentage of mature oocytes were observed using ECLI (39%) as compared to RIA (67%) if 4-8ng/ml of progesterone were used for determination of ovulation. A high percentage of mature oocytes was observed using ECLI when 6–15 ng/mL of progesterone was used for ovulation determination. To determine whether ECLI could be used for canine cloning, six canines were selected as oocyte donors, and two puppies were obtained after SCNT and embryo transfer. In conclusion, compared to the traditional RIA method, the ECLI method is a safe and reliable method for canine cloning. PMID:28288197

  9. Performance of the METRIC model in estimating evapotranspiration fluxes over an irrigated field in Saudi Arabia using Landsat-8 images

    NASA Astrophysics Data System (ADS)

    Madugundu, Rangaswamy; Al-Gaadi, Khalid A.; Tola, ElKamil; Hassaballa, Abdalhaleem A.; Patil, Virupakshagouda C.

    2017-12-01

    Accurate estimation of evapotranspiration (ET) is essential for hydrological modeling and efficient crop water management in hyper-arid climates. In this study, we applied the METRIC algorithm on Landsat-8 images, acquired from June to October 2013, for the mapping of ET of a 50 ha center-pivot irrigated alfalfa field in the eastern region of Saudi Arabia. The METRIC-estimated energy balance components and ET were evaluated against the data provided by an eddy covariance (EC) flux tower installed in the field. Results indicated that the METRIC algorithm provided accurate ET estimates over the study area, with RMSE values of 0.13 and 4.15 mm d-1. The METRIC algorithm was observed to perform better in full canopy conditions compared to partial canopy conditions. On average, the METRIC algorithm overestimated the hourly ET by 6.6 % in comparison to the EC measurements; however, the daily ET was underestimated by 4.2 %.

  10. Interannual variability in ozone removal by a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Clifton, O. E.; Fiore, A. M.; Munger, J. W.; Malyshev, S.; Horowitz, L. W.; Shevliakova, E.; Paulot, F.; Murray, L. T.; Griffin, K. L.

    2017-01-01

    The ozone (O3) dry depositional sink and its contribution to observed variability in tropospheric O3 are both poorly understood. Distinguishing O3 uptake through plant stomata versus other pathways is relevant for quantifying the O3 influence on carbon and water cycles. We use a decade of O3, carbon, and energy eddy covariance (EC) fluxes at Harvard Forest to investigate interannual variability (IAV) in O3 deposition velocities (vd,O3). In each month, monthly mean vd,O3 for the highest year is twice that for the lowest. Two independent stomatal conductance estimates, based on either water vapor EC or gross primary productivity, vary little from year to year relative to canopy conductance. We conclude that nonstomatal deposition controls the substantial observed IAV in summertime vd,O3 during the 1990s over this deciduous forest. The absence of obvious relationships between meteorology and vd,O3 implies a need for additional long-term, high-quality measurements and further investigation of nonstomatal mechanisms.

  11. Some advance on the comprehension of SR analysis for estimating the flux of a scalar

    NASA Astrophysics Data System (ADS)

    Castellví, Dr

    2009-04-01

    In agronomy, the eddy covariance, EC, method likely is the preferred for measuring surface scalar fluxes. For latent heat flux, however, weighing lysimeters maybe preferred in agriculture, but they are rarely affordable and not portable. The dissipation method, DM, is considered the most reliable technique for measuring scalar fluxes over open water because instrument motion contaminates the EC measurements. The main advantage of DM over EC is that it is less sensitive to low frequency instrument platform motions (such as ship and buoys), sensor alignment, precise orientation and stringent steadiness in the mean meteorological conditions (Fairall and Larsen, 1986; Kader, 1992; Edson and Fairall, 1998). Over land, keeping in mind that the EC and DM methods require the same measurements for scalar flux measurement, the DM has several disadvantages versus the EC. Direct measurement of the scalar variance dissipation rate, VDR, requires to capture eddies in the Kolmogorov's microscale (thus scalar time series measured at frequencies in the order of kHz are needed). Therefore, it is not practical. Indirect methods to estimate VDR (such as spectral analysis and second or third order structure functions) requires implementing iterative methods involving similarity relationships that are not well established (Hsieh and Katul, 1997; Castellvi and Snyder, 2008). Currently, there is ample evidence that the DM as explained in traditional micrometeorological books (such as, Panofsky and Dutton, 1984; Brutsaert, 1988; Kaimal and Finnigan; 1994) is, in general, not correct. Accordingly, it likely explains why DM is typically omitted in revisits of micrometeorological methods for estimating scalar fluxes in agronomy. Within the last decade, over some agricultural surfaces, evidence has been shown on the advantages over other micrometeorological methods and the reliability (i.e., close performance to the EC method) of Surface Renewal, SR, theory in conjunction with the Analysis of the scalar time trace to estimate scalar surface fluxes (Paw U et al., 1995). The analysis consists on determination of the mean ramp-pattern dimensions observed in the trace measured at one height. SR analysis is a simple transilient theory that is Lagrangian in nature and based on the scalar conservation equation. Here, it is shown (indirectly) that for a steady, incompressible and horizontally homogeneous flow, the production term in the budget equation of the mean turbulent variance of a scalar can be expressed in terms of the mean ramp dimensions observed in the trace. Therefore, the budget equation provides a link between the contrasting DM and SR analysis methods for estimating scalar surface fluxes. The dissipation method is based on the finest turbulence scales, whereas the SR analysis is based on canopy-scale coherent structures. By normalizing the budget equation, and invoking similarity, it is shown that DM and SR analysis are closely related (details were given in Castellvi and Snyder, 2008). However, SR analysis avoids the disadvantages of DM and it also overcomes potential problems related with the EC method (such as perfect alignment, rotation of the wind field, sensor separation, shadowing, etc.) because the velocity field (i.e., the sonic anemometer) is not required in SR analysis. The relation between SR analysis and DM allows to better interpret a crucial parameter (originally, denoted as α) involved in SR analysis. The parameter α was implemented to account for three assumptions made to solve the scalar flux conservation equation coupled with the Lagrangian scalar mass conservation equation. Considering an air parcel that suddenly moves down to the surface which volume covers all the vertical extend of the surface sources (sinks), the assumptions made are the following; (1) The air parcel remains in contact with the sources (sinks) for a period during which it has been enriched (depleted) of scalar, (2) During the enrichment phase there is not loss of scalar (heat for temperature) through the air parcel top, and (3) Molecular diffusion within the air parcel can be neglected. According to the new α parameter expression derived, it is shown that the half-hourly α value is related to the capability of turbulence to mix the scalar within the air parcel during the enrichment (depletion) phase. The expression depends on the variance of the scalar associated to isotropic turbulence over the total (organized and isotropic). The α expression suggests that half-hourly α values are in the range, 0 < α ≤ 1, at least when measurements are taken in the inertial sub-layer over vegetated surfaces. Acknowledgments The author gratefully acknowledges K.T. Paw U and R.L Snyder for his encouragement in doing this study. This work was supported by the TRANSCLA project and a fellowship from the Ministerio de Ciencia y Innovaci

  12. Comparing evapotranspiration from Eddy covariance measurements, water budgets, remote sensing, and land surface models over Canada a, b

    DOE PAGES

    Wang, Shusen; Pan, Ming; Mu, Qiaozhen; ...

    2015-07-29

    Here, this study compares six evapotranspiration ET products for Canada's landmass, namely, eddy covariance EC measurements; surface water budget ET; remote sensing ET from MODIS; and land surface model (LSM) ET from the Community Land Model (CLM), the Ecological Assimilation of Land and Climate Observations (EALCO) model, and the Variable Infiltration Capacity model (VIC). The ET climatology over the Canadian landmass is characterized and the advantages and limitations of the datasets are discussed. The EC measurements have limited spatial coverage, making it difficult for model validations at the national scale. Water budget ET has the largest uncertainty because of datamore » quality issues with precipitation in mountainous regions and in the north. MODIS ET shows relatively large uncertainty in cold seasons and sparsely vegetated regions. The LSM products cover the entire landmass and exhibit small differences in ET among them. Annual ET from the LSMs ranges from small negative values to over 600 mm across the landmass, with a countrywide average of 256 ± 15 mm. Seasonally, the countrywide average monthly ET varies from a low of about 3 mm in four winter months (November-February) to 67 ± 7 mm in July. The ET uncertainty is scale dependent. Larger regions tend to have smaller uncertainties because of the offset of positive and negative biases within the region. More observation networks and better quality controls are critical to improving ET estimates. Future techniques should also consider a hybrid approach that integrates strengths of the various ET products to help reduce uncertainties in ET estimation.« less

  13. Modeling Energy and Mass Fluxes Over a Vineyard Using the Acasa Model

    NASA Astrophysics Data System (ADS)

    Marras, S.; Bellucco, V.; Pyles, D.; Falk, M.; Sirca, C.; Duce, P.; Snyder, R. L.; Paw U, K.; Spano, D.

    2012-12-01

    Energy and mass fluxes are widely monitored over natural ecosystems by the Eddy Covariance (EC) towers within the FLUXNET monitoring network. Only a few studies focused on EC measurements over tree crops and vines, and there is a lack of information useful to parameterize crop and flux models over such systems. The aim of this study was to improve our knowledge about the performance of the land surface model ACASA (Advanced Canopy-Atmosphere-Soil Algorithm) in estimating energy, water, and carbon fluxes over a typical Mediterranean vineyard located in Southern Sardinia (Italy). ACASA estimates turbulent fluxes per 20 canopy layers (10 layers within and 10 above the canopy) and 15 soil layers, using third-order closure equations. CO2 fluxes are estimated using a combination of Ball-Berry and Farquhar equations. The model parameters derived from literature, from a previous work conducted in Tuscany (Italy) and from direct measurements collected in the experimental site of this study. An Eddy Covariance measurement tower was installed to continuously monitor sensible and latent heat, and CO2 fluxes, in conjunction with a net radiometer, and soil heat flux plates from June 2009. A meteorological station was also set up for ancillary measurements. Model performance was evaluated by RMSE and linear regression statistics. Results for the energy balance components and CO2 exchanges will be presented. Detailed analysis was devoted to evaluate the model ability in estimating the vineyard evapotranspiration. This term of the energy balance is, in fact, important for farmers since they are mainly interested in quantify crop water requirements for a better irrigation management.

  14. Comparing evapotranspiration from Eddy covariance measurements, water budgets, remote sensing, and land surface models over Canada a, b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shusen; Pan, Ming; Mu, Qiaozhen

    Here, this study compares six evapotranspiration ET products for Canada's landmass, namely, eddy covariance EC measurements; surface water budget ET; remote sensing ET from MODIS; and land surface model (LSM) ET from the Community Land Model (CLM), the Ecological Assimilation of Land and Climate Observations (EALCO) model, and the Variable Infiltration Capacity model (VIC). The ET climatology over the Canadian landmass is characterized and the advantages and limitations of the datasets are discussed. The EC measurements have limited spatial coverage, making it difficult for model validations at the national scale. Water budget ET has the largest uncertainty because of datamore » quality issues with precipitation in mountainous regions and in the north. MODIS ET shows relatively large uncertainty in cold seasons and sparsely vegetated regions. The LSM products cover the entire landmass and exhibit small differences in ET among them. Annual ET from the LSMs ranges from small negative values to over 600 mm across the landmass, with a countrywide average of 256 ± 15 mm. Seasonally, the countrywide average monthly ET varies from a low of about 3 mm in four winter months (November-February) to 67 ± 7 mm in July. The ET uncertainty is scale dependent. Larger regions tend to have smaller uncertainties because of the offset of positive and negative biases within the region. More observation networks and better quality controls are critical to improving ET estimates. Future techniques should also consider a hybrid approach that integrates strengths of the various ET products to help reduce uncertainties in ET estimation.« less

  15. Bayesian regression analyses of radiation modality effects on pericardial and pleural effusion and survival in esophageal cancer.

    PubMed

    He, Liru; Chapple, Andrew; Liao, Zhongxing; Komaki, Ritsuko; Thall, Peter F; Lin, Steven H

    2016-10-01

    To evaluate radiation modality effects on pericardial effusion (PCE), pleural effusion (PE) and survival in esophageal cancer (EC) patients. We analyzed data from 470 EC patients treated with definitive concurrent chemoradiotherapy (CRT). Bayesian semi-competing risks (SCR) regression models were fit to assess effects of radiation modality and prognostic covariates on the risks of PCE and PE, and death either with or without these preceding events. Bayesian piecewise exponential regression models were fit for overall survival, the time to PCE or death, and the time to PE or death. All models included propensity score as a covariate to correct for potential selection bias. Median times to onset of PCE and PE after RT were 7.1 and 6.1months for IMRT, and 6.5 and 5.4months for 3DCRT, respectively. Compared to 3DCRT, the IMRT group had significantly lower risks of PE, PCE, and death. The respective probabilities of a patient being alive without either PCE or PE at 3-years and 5-years were 0.29 and 0.21 for IMRT compared to 0.13 and 0.08 for 3DCRT. In the SCR regression analyses, IMRT was associated with significantly lower risks of PCE (HR=0.26) and PE (HR=0.49), and greater overall survival (probability of beneficial effect (pbe)>0.99), after controlling for known clinical prognostic factors. IMRT reduces the incidence and postpones the onset of PCE and PE, and increases survival probability, compared to 3DCRT. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Deep level defects in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Farzana, Esmat; Ahmadi, Elaheh; Speck, James S.; Arehart, Aaron R.; Ringel, Steven A.

    2018-04-01

    Deep level defects were characterized in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy (PAMBE) using deep level optical spectroscopy (DLOS) and deep level transient (thermal) spectroscopy (DLTS) applied to Ni/β-Ga2O3:Ge (010) Schottky diodes that displayed Schottky barrier heights of 1.50 eV. DLOS revealed states at EC - 2.00 eV, EC - 3.25 eV, and EC - 4.37 eV with concentrations on the order of 1016 cm-3, and a lower concentration level at EC - 1.27 eV. In contrast to these states within the middle and lower parts of the bandgap probed by DLOS, DLTS measurements revealed much lower concentrations of states within the upper bandgap region at EC - 0.1 - 0.2 eV and EC - 0.98 eV. There was no evidence of the commonly observed trap state at ˜EC - 0.82 eV that has been reported to dominate the DLTS spectrum in substrate materials synthesized by melt-based growth methods such as edge defined film fed growth (EFG) and Czochralski methods [Zhang et al., Appl. Phys. Lett. 108, 052105 (2016) and Irmscher et al., J. Appl. Phys. 110, 063720 (2011)]. This strong sensitivity of defect incorporation on crystal growth method and conditions is unsurprising, which for PAMBE-grown β-Ga2O3:Ge manifests as a relatively "clean" upper part of the bandgap. However, the states at ˜EC - 0.98 eV, EC - 2.00 eV, and EC - 4.37 eV are reminiscent of similar findings from these earlier results on EFG-grown materials, suggesting that possible common sources might also be present irrespective of growth method.

  17. Predicting ambient aerosol thermal-optical reflectance measurements from infrared spectra: elemental carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-10-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as thermal-optical reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier transform infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive and nondestructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FT-IR spectra are divided into calibration and test sets. Two calibrations are developed: one developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a uniform distribution of Low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the Low EC calibration to Low EC samples and the Uniform EC calibration to all other samples is used to produce predictions for Low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), no bias (0.00 μg m-3, a concentration value based on the nominal IMPROVE sample volume of 32.8 m3), low error (0.03 μg m-3) and reasonable normalized error (21 %). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. Only the normalized error is higher for the FT-IR EC measurements than for collocated TOR. FT-IR spectra are also divided into calibration and test sets by the ratios OC/EC and ammonium/EC to determine the impact of OC and ammonium on EC prediction. We conclude that FT-IR analysis with partial least squares regression is a robust method for accurately predicting TOR EC in IMPROVE network samples, providing complementary information to TOR OC predictions (Dillner and Takahama, 2015) and the organic functional group composition and organic matter estimated previously from the same set of sample spectra (Ruthenburg et al., 2014).

  18. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: elemental carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-06-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the low EC calibration to low EC samples and the Uniform EC calibration to all other samples is used to produces predictions for low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no bias (0.00 μg m-3, concentration value based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.03 μg m-3) and reasonable normalized error (21 %). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. Only the normalized error is higher for the FT-IR EC measurements than for collocated TOR. FT-IR spectra are also divided into calibration and test sets by the ratios OC/EC and ammonium/EC to determine the impact of OC and ammonium on EC prediction. We conclude that FT-IR analysis with partial least squares regression is a robust method for accurately predicting TOR EC in IMPROVE network samples; providing complementary information to TOR OC predictions (Dillner and Takahama, 2015) and the organic functional group composition and organic matter (OM) estimated previously from the same set of sample spectra (Ruthenburg et al., 2014).

  19. Temporal variation of VOC fluxes measured with PTR-TOF above a boreal forest

    NASA Astrophysics Data System (ADS)

    Schallhart, Simon; Rantala, Pekka; Kajos, Maija K.; Aalto, Juho; Mammarella, Ivan; Ruuskanen, Taina M.; Kulmala, Markku

    2018-01-01

    Between April and June 2013 fluxes of volatile organic compounds (VOCs) were measured in a Scots pine and Norway spruce forest using the eddy covariance (EC) method with a proton transfer reaction time-of-flight (PTR-TOF) mass spectrometer. The observations were performed above a boreal forest at the SMEAR II site in southern Finland.We found a total of 25 different compounds with exchange and investigated their seasonal variations from spring to summer. The majority of the net VOC flux was comprised of methanol, monoterpenes, acetone and butene + butanol. The butene + butanol emissions were concluded to not originate from the forest and, therefore, be anthropogenic. The VOC exchange followed a seasonal trend and the emissions increased from spring to summer. Only three compounds were emitted during the snowmelt while in summer emissions of some 19 VOCs were observed. During the measurement period in April, the emissions were dominated by butene + butanol, while during the start of the growing season and in summer, methanol was the most emitted compound. The main source of methanol was likely the growth of new biomass. During a 21-day period in June, the net VOC flux was 2.1 nmol m-2 s-1. This is on the lower end of PTR-TOF flux measurements from other ecosystems, which range from 2 to 10 nmol m-2 s-1. The EC flux results were compared with surface layer profile measurements, using a proton transfer reaction quadrupole mass spectrometer, which is permanently installed at the SMEAR II site. For the major compounds, the fluxes measured with the two different methods agreed well.

  20. Childhood Obesity Research Demonstration Project: Cross-Site Evaluation Methods

    PubMed Central

    Lee, Rebecca E.; Mehta, Paras; Thompson, Debbe; Bhargava, Alok; Carlson, Coleen; Kao, Dennis; Layne, Charles S.; Ledoux, Tracey; O'Connor, Teresia; Rifai, Hanadi; Gulley, Lauren; Hallett, Allen M.; Kudia, Ousswa; Joseph, Sitara; Modelska, Maria; Ortega, Dana; Parker, Nathan; Stevens, Andria

    2015-01-01

    Abstract Introduction: The Childhood Obesity Research Demonstration (CORD) project links public health and primary care interventions in three projects described in detail in accompanying articles in this issue of Childhood Obesity. This article describes a comprehensive evaluation plan to determine the extent to which the CORD model is associated with changes in behavior, body weight, BMI, quality of life, and healthcare satisfaction in children 2–12 years of age. Design/Methods: The CORD Evaluation Center (EC-CORD) will analyze the pooled data from three independent demonstration projects that each integrate public health and primary care childhood obesity interventions. An extensive set of common measures at the family, facility, and community levels were defined by consensus among the CORD projects and EC-CORD. Process evaluation will assess reach, dose delivered, and fidelity of intervention components. Impact evaluation will use a mixed linear models approach to account for heterogeneity among project-site populations and interventions. Sustainability evaluation will assess the potential for replicability, continuation of benefits beyond the funding period, institutionalization of the intervention activities, and community capacity to support ongoing program delivery. Finally, cost analyses will assess how much benefit can potentially be gained per dollar invested in programs based on the CORD model. Conclusions: The keys to combining and analyzing data across multiple projects include the CORD model framework and common measures for the behavioral and health outcomes along with important covariates at the individual, setting, and community levels. The overall objective of the comprehensive evaluation will develop evidence-based recommendations for replicating and disseminating community-wide, integrated public health and primary care programs based on the CORD model. PMID:25679060

  1. Evaluation of metal mobility from copper mine tailings in northern Chile.

    PubMed

    Lam, Elizabeth J; Gálvez, M E; Cánovas, M; Montofré, I L; Rivero, D; Faz, A

    2016-06-01

    This work shows the results obtained on a copper mine tailing in the Antofagasta Region, Chile. The tailing was classified as saline-sodic with high concentrations of metals, especially Cu and Fe, with pH 8.4. Our objectives were to (1) compare the physicochemical properties of the tailing with surrounding soils of the mine under study, and (2) evaluate the effect of two amendments (CaCO3 and compost) and their mixtures on Cu(2+), Mn, Fe, Zn, Mg(2+), and K(+) and Ca(2+), SO4 (2-), NO3 (-), and PO4 (3-) leaching. The data obtained were submitted to variance and covariance analysis. The results from the comparison between both substrates showed that in general, the tailing presented greater content of metals. Regarding tailing leaching, pH, electrical conductivity (EC), and concentration of the elements of interest were measured. The statistical analysis showed that Cu(2+) leaching and immobilization of Fe occurred to the greatest extent with compost. The EC decreased throughout the experiment with irrigation and increased upon treatment with compost. The major interactions found among the chemical parameters were (1) tailings without treatment, Cu(2+)/Fe and NO3 (-)/SO4 (2-); (2) tailings treated with CaCO3, Cu(2+)/K(+); (3) tailings treated with compost, NO3 (-)/SO4 (-2) and EC/Cu(2+); and (4) tailings treated with both amendments, EC/Fe and Cu(2+)/Fe. The ANOVA showed that the number of irrigations and the amendments statistically significantly affected the copper mobility and the organic amendment significantly influenced the iron mobility.

  2. Estimating Emissions of Ammonia and Methane from an Anaerobic Livestock Lagoon Using Micrometeorological Methods and Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Shonkwiler, K. B.; Ham, J. M.; Williams, C.

    2012-12-01

    Evaluating the impact of increased carbon and nitrogen emissions on local air quality and regional bionetworks due to animal agricultural activity is of great interest to the public, political, economic and ecological welfare of areas within the scope of these practices. Globally, livestock operations account for 64% of annual anthropogenic emissions of ammonia (NH3) [1]. Concerning methane (CH4), anaerobic lagoons from commercial dairy operations contribute the second largest share of CH4 emissions from manure in the United States[1], and additionally are a local source of NH3 as well. Anaerobic lagoons are commonly used in commercial animal agriculture and as significant local sources of greenhouse gases (GHG), there is a strong need to quantify GHG emissions from these systems. In 2012 at a commercial dairy operation in Northern Colorado, USA, measurements of CH4 were made using eddy covariance (EC), while NH3 was estimated using a combination of real-time monitoring (cavity ring-down spectroscopy as well as time-integrated passive samplers). Methane emissions have been measured at this lagoon using EC since 2011, with fluxes ranging from 0.5 mg m-2 s-1 in early summer to >2 mg m-2 s-1 in late summer and early fall. Concentration data of both CH4 and NH3 were used to estimate emissions using a 2-dimensional inverse model based on solving the advection-diffusion equation[2]. In the case of the CH4-EC data, results from the inverse model were compared with the EC-derived flux estimates for enhanced parameterization of surface geometry within the lagoon environment. The model was then applied using measured NH3 concentrations to achieve emissions estimates. While NH3 fluxes from the lagoon tend to be much lower than those of CH4 by comparison, modeling emissions of NH3 from the simple geometry of a lagoon will assist in applying the model to more complex surfaces. [1] FAO, 2006. Livestock's long shadow: Environmental issues and options. Livestock, Environment, and Development Initiative. Food and Agriculture Organization of the United Nations, Rome, Italy. [2] Loubet, B., Génermont, S., Ferrara, R., Bedos, C., Decuq, C., Personne, E., Fanucci, O., Durand, B., Rana, G., Cellier, P., 2010. An inverse model to estimate ammonia emissions from fields. Eur. J. Soil Sci. 61: 793-805. Panorama of a weather station (left) utilizing micrometeorological methods to aid in estimating emissions of methane and ammonia from an anaerobic livestock lagoon (center) at a commercial dairy in Northern Colorado, USA.

  3. Estimating spatially distributed turbulent heat fluxes from high-resolution thermal imagery acquired with a UAV system

    PubMed Central

    Brenner, Claire; Thiem, Christina Elisabeth; Wizemann, Hans-Dieter; Bernhardt, Matthias; Schulz, Karsten

    2017-01-01

    ABSTRACT In this study, high-resolution thermal imagery acquired with a small unmanned aerial vehicle (UAV) is used to map evapotranspiration (ET) at a grassland site in Luxembourg. The land surface temperature (LST) information from the thermal imagery is the key input to a one-source and two-source energy balance model. While the one-source model treats the surface as a single uniform layer, the two-source model partitions the surface temperature and fluxes into soil and vegetation components. It thus explicitly accounts for the different contributions of both components to surface temperature as well as turbulent flux exchange with the atmosphere. Contrary to the two-source model, the one-source model requires an empirical adjustment parameter in order to account for the effect of the two components. Turbulent heat flux estimates of both modelling approaches are compared to eddy covariance (EC) measurements using the high-resolution input imagery UAVs provide. In this comparison, the effect of different methods for energy balance closure of the EC data on the agreement between modelled and measured fluxes is also analysed. Additionally, the sensitivity of the one-source model to the derivation of the empirical adjustment parameter is tested. Due to the very dry and hot conditions during the experiment, pronounced thermal patterns developed over the grassland site. These patterns result in spatially variable turbulent heat fluxes. The model comparison indicates that both models are able to derive ET estimates that compare well with EC measurements under these conditions. However, the two-source model, with a more complex treatment of the energy and surface temperature partitioning between the soil and vegetation, outperformed the simpler one-source model in estimating sensible and latent heat fluxes. This is consistent with findings from prior studies. For the one-source model, a time-variant expression of the adjustment parameter (to account for the difference between aerodynamic and radiometric temperature) that depends on the surface-to-air temperature gradient yielded the best agreement with EC measurements. This study showed that the applied UAV system equipped with a dual-camera set-up allows for the acquisition of thermal imagery with high spatial and temporal resolution that illustrates the small-scale heterogeneity of thermal surface properties. The UAV-based thermal imagery therefore provides the means for analysing patterns of LST and other surface properties with a high level of detail that cannot be obtained by traditional remote sensing methods. PMID:28515537

  4. Estimating spatially distributed turbulent heat fluxes from high-resolution thermal imagery acquired with a UAV system.

    PubMed

    Brenner, Claire; Thiem, Christina Elisabeth; Wizemann, Hans-Dieter; Bernhardt, Matthias; Schulz, Karsten

    2017-05-19

    In this study, high-resolution thermal imagery acquired with a small unmanned aerial vehicle (UAV) is used to map evapotranspiration (ET) at a grassland site in Luxembourg. The land surface temperature (LST) information from the thermal imagery is the key input to a one-source and two-source energy balance model. While the one-source model treats the surface as a single uniform layer, the two-source model partitions the surface temperature and fluxes into soil and vegetation components. It thus explicitly accounts for the different contributions of both components to surface temperature as well as turbulent flux exchange with the atmosphere. Contrary to the two-source model, the one-source model requires an empirical adjustment parameter in order to account for the effect of the two components. Turbulent heat flux estimates of both modelling approaches are compared to eddy covariance (EC) measurements using the high-resolution input imagery UAVs provide. In this comparison, the effect of different methods for energy balance closure of the EC data on the agreement between modelled and measured fluxes is also analysed. Additionally, the sensitivity of the one-source model to the derivation of the empirical adjustment parameter is tested. Due to the very dry and hot conditions during the experiment, pronounced thermal patterns developed over the grassland site. These patterns result in spatially variable turbulent heat fluxes. The model comparison indicates that both models are able to derive ET estimates that compare well with EC measurements under these conditions. However, the two-source model, with a more complex treatment of the energy and surface temperature partitioning between the soil and vegetation, outperformed the simpler one-source model in estimating sensible and latent heat fluxes. This is consistent with findings from prior studies. For the one-source model, a time-variant expression of the adjustment parameter (to account for the difference between aerodynamic and radiometric temperature) that depends on the surface-to-air temperature gradient yielded the best agreement with EC measurements. This study showed that the applied UAV system equipped with a dual-camera set-up allows for the acquisition of thermal imagery with high spatial and temporal resolution that illustrates the small-scale heterogeneity of thermal surface properties. The UAV-based thermal imagery therefore provides the means for analysing patterns of LST and other surface properties with a high level of detail that cannot be obtained by traditional remote sensing methods.

  5. Measurements of VOC fluxes by Eddy-covariance with a PTR-Qi-TOF-MS over a mature wheat crop near Paris: Evaluation of data quality and uncertainties.

    NASA Astrophysics Data System (ADS)

    Buysse, Pauline; Loubet, Benjamin; Ciuraru, Raluca; Lafouge, Florence; Zurfluh, Olivier; Gonzaga-Gomez, Lais; Fanucci, Olivier; Gueudet, Jean-Christophe; Decuq, Céline; Gros, Valérie; Sarda, Roland; Zannoni, Nora

    2017-04-01

    The quantification of volatile organic compounds (VOC) fluxes exchanged by terrestrial ecosystems is of large interest because of their influence on the chemistry and composition of the atmosphere including aerosols and oxidants. Latest developments in the techniques for detecting, identifying and measuring VOC fluxes have considerably improved the abilities to get reliable estimates. Among these, the eddy-covariance (EC) methodology constitutes the most direct approach, and relies on both well-established principles (Aubinet et al. 2000) and a sound continuously worldwide improving experience. The combination of the EC methodology with the latest proton-transfer-reaction mass spectrometer (PTR-MS) device, the PTR-Qi-TOF-MS, which allows the identification and quantification of more than 500 VOC at high frequency, now provides a very powerful and precise tool for an accurate quantification of VOC fluxes on various types of terrestrial ecosystems. The complexity of the whole methodology however demands that several data quality requirements are fulfilled. VOC fluxes were measured by EC with a PTR-Qi-TOF-MS (national instrument within the ANAEE-France framework) for one month and a half over a mature wheat crop near Paris (FR-GRI ICOS site). Most important emissions (by descending order) were observed from detected compounds with mass-over-charge (m/z) ratios of 33.033 (methanol), 45.033 (acetaldehyde), 93.033 (not identified yet), 59.049 (acetone), and 63.026 (dimethyl sulfide or DMS). Emissions from higher-mass compounds, which might be due to pesticide applications at the beginning of our observation period, were also detected. Some compounds were also seen to deposit (e.g. m/z 47.013, 71.085, 75.044, 83.05) while others exhibited bidirectional fluxes (e.g. m/z 57.07, 69.07). Before analyzing VOC flux responses to meteorological and crop development drivers, a data quality check was performed which included (i) uncertainty analysis of mass and concentration calibration, (ii) determination of fragmentation patterns and (iii) of lag time high-frequency losses for all ions that showed a flux, and (iv) the determination of the flux random uncertainties and of the limit of detection.

  6. Eddy-Covariance Observations and Large-Eddy-Simulations of Near-Shore Fluxes from Water Bodies

    NASA Astrophysics Data System (ADS)

    Bohrer, G.; Rey Sanchez, C.; Kenny, W.; Morin, T. H.

    2017-12-01

    Eddy covariance (EC) measurement techniques are increasingly used in the study of lakes and coastal ecosystems. The sharp water-shore transitions in energy forcing and surface roughness are challenging the validity of the EC approach at these sites. We discuss the results of two seasonal campaigns to measure CO2 and water-vapor fluxes in coastal environments - a small lake in Michigan, and the water over a coral reef in the Red, Sea, Israel. We show that in both environments, horizontal advection of CO2 and water vapor is responsible to a non-negligible component of the total flux to/from the water. We used a two-tower approach to measure fluxes from the water and from the shore and calculate the advection and flux divergence between the two. An empirical footprint model was used to filter the observations and keep only the times when interference from the shore-line transition is minimal. Observations of both vertical turbulent fluxes and advection were gapfilled with a neural-network model, based on their observed relationships with environmental forcing. Gap-filled observations were used to determine the seasonal net fluxes for the tow ecosystems. We used Large-Eddy Simulations (LES) to conduct a case study of airflow patterns associated with a small inland lake surrounded by forest (i.e. radius of lake only ten times the height of the forest). We combined LES outputs with scalar dispersion simulations to model potential biases in EC flux measurements due to the heterogeneity of surface fluxes and vertical advection. Our simulations show that the lake-to-forest transition can induce a non-zero vertical wind component, which will strongly affect the interpretation of wind and flux measurements. Furthermore, significant horizontal gradients of CO2 are generated by the forest carbon sink and lake carbon source, which are further transported by local roughness-induced circulation. We simulated six hypothetical flux tower locations along a downwind gradient at various heights and calculated the effects of both average vertical advection and average turbulent flux divergence of CO2 at each.

  7. Using indirect covariance spectra to identify artifact responses in unsymmetrical indirect covariance calculated spectra.

    PubMed

    Martin, Gary E; Hilton, Bruce D; Blinov, Kirill A; Williams, Antony J

    2008-02-01

    Several groups of authors have reported studies in the areas of indirect and unsymmetrical indirect covariance NMR processing methods. Efforts have recently focused on the use of unsymmetrical indirect covariance processing methods to combine various discrete two-dimensional NMR spectra to afford the equivalent of the much less sensitive hyphenated 2D NMR experiments, for example indirect covariance (icv)-heteronuclear single quantum coherence (HSQC)-COSY and icv-HSQC-nuclear Overhauser effect spectroscopy (NOESY). Alternatively, unsymmetrical indirect covariance processing methods can be used to combine multiple heteronuclear 2D spectra to afford icv-13C-15N HSQC-HMBC correlation spectra. We now report the use of responses contained in indirect covariance processed HSQC spectra as a means for the identification of artifacts in both indirect covariance and unsymmetrical indirect covariance processed 2D NMR spectra. Copyright (c) 2007 John Wiley & Sons, Ltd.

  8. Emergency contraception: A multispecialty survey of clinician knowledge and practices.

    PubMed

    Batur, Pelin; Cleland, Kelly; McNamara, Megan; Wu, Justine; Pickle, Sarah

    2016-02-01

    To assess knowledge and provision of emergency contraception (EC), particularly the most effective methods. A web-based survey was distributed to a cross-sectional convenience sample of healthcare providers across specialties treating reproductive-aged women. The survey was sent to 3260 practicing physicians and advanced practice clinicians in 14 academic centers between February 2013 and April 2014. We analyzed responses by provider specialty using multivariable logistic regression. The final sample included 1684 providers (response rate=51.7%). Ninety-five percent of the respondents had heard of levonorgestrel (LNG) EC. Among reproductive health specialists, 81% provide LNG EC in their practice, although only half (52%) had heard of ulipristal acetate (UPA) and very few provide it (14%). The majority in family medicine (69%) and emergency medicine (74%) provide LNG, in contrast to 42% of internists and 55% of pediatricians. However, the more effective methods [UPA and copper intrauterine device (IUD)] were little known and rarely provided outside of reproductive health specialties; 18% of internists and 14% of emergency medicine providers had heard of UPA and 4% provide it. Only 22% of emergency providers and 32% of pediatricians had heard of the copper IUD used as EC. Among reproductive health specialists, only 36% provide copper IUD as EC in their practice. Specialty, provider type and proportion of women of reproductive age in the practice were related to knowledge and provision of some forms of EC. Awareness and provision of the most effective EC methods, UPA and the copper IUD (which are provider dependent), are substantially lower than for LNG EC, especially among providers who do not focus on reproductive health. In our sample of 1684 healthcare providers from diverse specialties who treat reproductive-aged women, knowledge and provision of the most effective forms of EC (UPA and the copper IUD) are far lower than for LNG EC. Women should be offered the full range of EC methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A Comparison between Different Methods of Estimating Anaerobic Energy Production

    PubMed Central

    Andersson, Erik P.; McGawley, Kerry

    2018-01-01

    Purpose: The present study aimed to compare four methods of estimating anaerobic energy production during supramaximal exercise. Methods: Twenty-one junior cross-country skiers competing at a national and/or international level were tested on a treadmill during uphill (7°) diagonal-stride (DS) roller-skiing. After a 4-minute warm-up, a 4 × 4-min continuous submaximal protocol was performed followed by a 600-m time trial (TT). For the maximal accumulated O2 deficit (MAOD) method the V.O2-speed regression relationship was used to estimate the V.O2 demand during the TT, either including (4+Y, method 1) or excluding (4-Y, method 2) a fixed Y-intercept for baseline V.O2. The gross efficiency (GE) method (method 3) involved calculating metabolic rate during the TT by dividing power output by submaximal GE, which was then converted to a V.O2 demand. An alternative method based on submaximal energy cost (EC, method 4) was also used to estimate V.O2 demand during the TT. Results: The GE/EC remained constant across the submaximal stages and the supramaximal TT was performed in 185 ± 24 s. The GE and EC methods produced identical V.O2 demands and O2 deficits. The V.O2 demand was ~3% lower for the 4+Y method compared with the 4-Y and GE/EC methods, with corresponding O2 deficits of 56 ± 10, 62 ± 10, and 63 ± 10 mL·kg−1, respectively (P < 0.05 for 4+Y vs. 4-Y and GE/EC). The mean differences between the estimated O2 deficits were −6 ± 5 mL·kg−1 (4+Y vs. 4-Y, P < 0.05), −7 ± 1 mL·kg−1 (4+Y vs. GE/EC, P < 0.05) and −1 ± 5 mL·kg−1 (4-Y vs. GE/EC), with respective typical errors of 5.3, 1.9, and 6.0%. The mean difference between the O2 deficit estimated with GE/EC based on the average of four submaximal stages compared with the last stage was 1 ± 2 mL·kg−1, with a typical error of 3.2%. Conclusions: These findings demonstrate a disagreement in the O2 deficits estimated using current methods. In addition, the findings suggest that a valid estimate of the O2 deficit may be possible using data from only one submaximal stage in combination with the GE/EC method. PMID:29472871

  10. The safety of available and emerging options for emergency contraception.

    PubMed

    Lee, Jessica K; Schwarz, Eleanor Bimla

    2017-10-01

    Emergency contraception (EC) is a way to significantly reduce the chance of becoming pregnant after an episode of unprotected intercourse. Considerable data support the safety of all available and emerging options for EC. Areas covered: This review presents a comprehensive summary of the literature regarding the safety of EC as well as directions for further study. PubMed was searched for all relevant studies published prior to June 2017. Expertopinion: All available methods of EC (i.e., ulipristal acetate pills, levonorgestrel pills, and the copper-IUD), carry only mild side effects and serious adverse events are essentially unknown. The copper IUD has the highest efficacy of EC methods. Given the excellent safety profiles of mifepristone and the levonorgestrel IUD, research is ongoing related to use of these products for EC.

  11. Culture methods impact recovery of antibiotic-resistant Enterococci including Enterococcus cecorum from pre- and postharvest chicken.

    PubMed

    Suyemoto, M M; Barnes, H J; Borst, L B

    2017-03-01

    Pathogenic strains of Enterococcus cecorum (EC) expressing multidrug resistance have emerged. In National Antimicrobial Resistance Monitoring System (NARMS) data, EC is rarely recovered from chickens. Two NARMS methodologies (FDA and USDA) were compared with standard culture (SC) techniques for recovery of EC. NARMS methods failed to detect EC in 58 caecal samples, 20 chicken breast or six whole broiler samples. EC was recovered from 1 of 38 (2·6%) and 2 of 38 (5·2%) preharvest spinal lesions (USDA and FDA method, respectively). In contrast, using the SC method, EC was recovered from 44 of 53 (83%) caecal samples, all 38 (100%) spinal lesions, 14 of 20 (70%) chicken breast samples, and all three spinal lesions identified in whole carcasses. Compared with other Enterococcus spp., EC isolates had a higher prevalence of resistance to macrolides. The NARMS methods significantly affected recovery of enterococcal species other than EC. When the postharvest FDA method was applied to preharvest caecal samples, isolates of Enterococcus faecium were preferentially recovered. All 11 E. faecium isolates were multidrug resistant, including resistance to penicillin, daptomycin and linezolid. These findings confirm that current methodologies may not accurately identify the amount and range of antimicrobial resistance of enterococci from chicken sources. Enterococci are an important reservoir for antimicrobial resistance. This study demonstrates how current culture methods underreport resistance to macrolides in enterococci by selecting against strains of Enterococcus cecorum in pre- and postharvest chicken. Further, the application of postharvest surveillance methods to preharvest samples resulted in selective recovery of Enterococcus faecium over Enterococcus faecalis. Isolates of E. faecium recovered exhibited multidrug resistance including penicillin, daptomycin and linezolid resistance. These findings suggest that culture methodology significantly impacts the range and amount of antimicrobial resistance detected in enterococci isolated from chicken. © 2016 The Society for Applied Microbiology.

  12. Emergency contraceptive pills as a backup for lactational amenorrhea method (LAM) of contraception: a randomized controlled trial.

    PubMed

    Shaaban, Omar M; Hassen, Shaimaa G; Nour, Sanna A; Kames, Mervat A; Yones, Entsar M

    2013-03-01

    The use of breastfeeding as a method of birth spacing occasionally ends in "unplanned pregnancy." This is due to unexpected expiration of one or more of the lactation amenorrhea method (LAM) prerequisites. The current study tests a new concept that the in-advance provision of single packet of progestogen emergency contraception (EC) pills during the postpartum LAM counseling may decrease the incidence of unplanned pregnancy during breastfeeding. This was a registered two-armed randomized controlled trial (NCT 01111929). Women intending to breastfeed and to postpone pregnancy for 1 year or more were approached. They received adequate postpartum contraceptive counseling. Women intending to use LAM were randomly assigned to one of two groups. The LAM-only group received the proper LAM counseling and did not receive counseling about EC. The LAM-EC group received counseling for both LAM and EC with in-advance provision of one packet of EC pills. They were advised to use these pills if one of the prerequisites of LAM expires and sexual relation has occurred before the initiation of another regular contraceptive protection. All the participants were advised that they need to use another regular method upon expiration of any of the LAM prerequisites. Eligible women were 1158 parturients randomized into two equal groups. Forty-four percent of the women provided with EC used them. Significantly more women in the LAM-EC group initiated regular contraception within or shortly after the first 6 months postpartum when compared with those in the LAM-only group (30.5% vs. 7.3%, respectively; p=.0004). Pregnancy occurred in 5% of the LAM-only group as compared with 0.8% in the LAM-EC group (p=.005). Minimal side effects were reported after EC use. In-advance provision of EC pills can increase the rate of initiation of regular contraception once one or more of the prerequisites of LAM expire. Consequently, the use of EC pills as a temporary backup of LAM can decrease the incidence of unplanned pregnancy during breastfeeding. The use of progestogen EC pill during lactation is safe and tolerable. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Contraceptive use among women presenting to pharmacies for emergency contraception: an opportunity for intervention.

    PubMed

    Michie, Lucy; Cameron, Sharon T; Glasier, Anna; Greed, Elizabeth

    2014-07-01

    Most women who use emergency contraception (EC) do so because of unprotected sexual intercourse or condom failure and so remain at risk of pregnancy unless they commence an effective method of contraception. In Great Britain, increasingly women now choose to obtain EC from a pharmacy; however, pharmacists do not currently provide effective ongoing contraception. We sought to determine the views of women obtaining EC from pharmacies and clinicians working in sexual and reproductive health care (SRH) about the possibility of pharmacists providing a temporary supply of a progestogen-only pill (POP) together with EC. Self-administered, anonymous questionnaires of (1) women requesting EC from pharmacies in Edinburgh, Scotland and (2) SRH clinicians attending a major UK scientific meeting. A total of 211/232 women completed questionnaires in pharmacies (a 91% response rate). Of those women not using a hormonal method of contraception at the time of EC (n=166; 79%), almost half (44%) wished to use an effective method. Most women (64%) agreed that the option of a pharmacist being able to supply a POP would have been helpful. Among the SRH clinicians, 110 completed questionnaires out of 150 distributed (a 73% response rate). The majority of respondents (92%) were positive about a pharmacist supplying a POP at the time of EC. A reasonable proportion of women requesting EC would like to start using an effective contraceptive method. Both the women and the SRH clinicians we surveyed are positive about the option of a short supply of a POP being provided by the pharmacy in the UK together with EC. Published by the BMJ Publishing Group Limited.

  14. Thermal/optical methods for elemental carbon quantification in soils and urban dusts: equivalence of different analysis protocols.

    PubMed

    Han, Yongming; Chen, Antony; Cao, Junji; Fung, Kochy; Ho, Fai; Yan, Beizhan; Zhan, Changlin; Liu, Suixin; Wei, Chong; An, Zhisheng

    2013-01-01

    Quantifying elemental carbon (EC) content in geological samples is challenging due to interferences of crustal, salt, and organic material. Thermal/optical analysis, combined with acid pretreatment, represents a feasible approach. However, the consistency of various thermal/optical analysis protocols for this type of samples has never been examined. In this study, urban street dust and soil samples from Baoji, China were pretreated with acids and analyzed with four thermal/optical protocols to investigate how analytical conditions and optical correction affect EC measurement. The EC values measured with reflectance correction (ECR) were found always higher and less sensitive to temperature program than the EC values measured with transmittance correction (ECT). A high-temperature method with extended heating times (STN120) showed the highest ECT/ECR ratio (0.86) while a low-temperature protocol (IMPROVE-550), with heating time adjusted for sample loading, showed the lowest (0.53). STN ECT was higher than IMPROVE ECT, in contrast to results from aerosol samples. A higher peak inert-mode temperature and extended heating times can elevate ECT/ECR ratios for pretreated geological samples by promoting pyrolyzed organic carbon (PyOC) removal over EC under trace levels of oxygen. Considering that PyOC within filter increases ECR while decreases ECT from the actual EC levels, simultaneous ECR and ECT measurements would constrain the range of EC loading and provide information on method performance. Further testing with standard reference materials of common environmental matrices supports the findings. Char and soot fractions of EC can be further separated using the IMPROVE protocol. The char/soot ratio was lower in street dusts (2.2 on average) than in soils (5.2 on average), most likely reflecting motor vehicle emissions. The soot concentrations agreed with EC from CTO-375, a pure thermal method.

  15. Development of an indirect ELISA for the determination of ethyl carbamate in Chinese rice wine.

    PubMed

    Luo, Lin; Lei, Hong-Tao; Yang, Jin-Yi; Liu, Gong-Liang; Sun, Yuan-Ming; Bai, Wei-Dong; Wang, Hong; Shen, Yu-Dong; Chen, Sui; Xu, Zhen-Lin

    2017-01-15

    The widespread occurrence of ethyl carbamate (EC, 89.09 Da), a group 2A carcinogen, in fermented foods and alcoholic beverages has raised worldwide public health concern. Immunoassay for EC is unavailable due to the simple and small structure of EC. In this work, an initial attempt to produce antibody specific for EC, by using 4-((ethoxycarbonyl)amino)butanoic acid as hapten, was made but failed. However, since EC can easily react with 9-xanthydrol to form xanthyl ethyl carbamate (XEC), two haptens based on XEC structure were designed and synthesized. Polyclonal antibody against XEC, instead of EC was obtained and then used to develop a competitive indirect ELISA for EC via a pre-analysis derivatization. After optimization, the ciELISA was applied in analyzing Chinese rice wine with detection limit of 166 μg/L, and negligible cross-reactivity with EC analogs. Recoveries of EC in fortified samples were from 84.4% to 100.9%, with coefficients of variation below 10%. Results for analysis of real samples by the ci-ELISA correlated well with that by reference method GC-MS, suggesting the good accuracy and reproducibility of the proposed method. This is the first report of an immunoassay capable of detecting EC, which is suitable for monitoring EC in a large amount of samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy

    NASA Astrophysics Data System (ADS)

    Meijide, A.; Manca, G.; Goded, I.; Magliulo, V.; di Tommasi, P.; Seufert, G.; Cescatti, A.

    2011-12-01

    Rice paddy fields are one of the greatest anthropogenic sources of methane (CH4), the third most important greenhouse gas after water vapour and carbon dioxide. In agricultural fields, CH4 is usually measured with the closed chamber technique, resulting in discontinuous series of measurements performed over a limited area, that generally do not provide sufficient information on the short-term variation of the fluxes. On the contrary, aerodynamic techniques have been rarely applied for the measurement of CH4 fluxes in rice paddy fields. The eddy covariance (EC) technique provides integrated continuous measurements over a large area and may increase our understanding of the underlying processes and diurnal and seasonal pattern of CH4 emissions in this ecosystem. For this purpose a Fast Methane Analyzer (Los Gatos Research Ltd.) was installed in a rice paddy field in the Po Valley (Northern Italy). Methane fluxes were measured during the rice growing season with both EC and manually operated closed chambers. Methane fluxes were strongly influenced by the height of the water table, with emissions peaking when it was above 10-12 cm. Soil temperature and the developmental stage of rice plants were also responsible of the seasonal variation on the fluxes. The measured EC fluxes showed a diurnal cycle in the emissions, which was more relevant during the vegetative period, and with CH4 emissions being higher in the late evening, possibly associated with higher water temperature. The comparison between the two measurement techniques shows that greater fluxes are measured with the chambers, especially when higher fluxes are being produced, resulting in 30 % higher seasonal estimations with the chambers than with the EC (41.1 and 31.7 g CH4 m-2 measured with chambers and EC respectively) and even greater differences are found if shorter periods with high chamber sampling frequency are compared. The differences may be a result of the combined effect of overestimation with the chambers and of the possible underestimation by the EC technique.

  17. Use of non-emergency contraceptive pills and concoctions as emergency contraception among Nigerian University students: results of a qualitative study.

    PubMed

    Ajayi, Anthony Idowu; Nwokocha, Ezebunwa Ethelbert; Akpan, Wilson; Adeniyi, Oladele Vincent

    2016-10-04

    Emergency contraception (EC) can significantly reduce the rate of unintended pregnancies and unsafe abortions especially in sub-Saharan Africa. Despite the increasing awareness of EC among educated young women in Nigeria, the rate of utilisation remains low. This study therefore explores the main barriers to the use of EC among female university students by analysing their knowledge of emergency contraception, methods ever used, perceived efficacy, and its acceptability. This paper brings together the findings from several focus groups (N = 5) and in-depth interviews (N = 20) conducted amongst unmarried female undergraduate students in two Nigerian universities. Participants considered the use of condom and abstinence as the most effective methods of preventing unplanned pregnancy. However, many participants were misinformed about emergency contraception. Generally, participants relied on unconventional and unproven ECs; Ampiclox, "Alabukun", salt water solution, and lime and potash and perceived them to be effective in preventing unplanned pregnancies. Furthermore, respondents' narratives about methods of preventing unwanted pregnancies revealed that inadequate information on emergency contraception, reliance on unproven crude contraceptive methods, and misconception about modern contraception constitute barriers to the use of emergency contraception. The findings suggested that female university students are misinformed about emergency contraception and their reliance on unproven ECs constitutes a barrier to the use of approved EC methods. These barriers have serious implications for prevention of unplanned pregnancies in the cohort. Behavioural interventions targeting the use of unproven emergency contraceptive methods and misperceptions about ECs would be crucial for this cohort in Nigeria.

  18. The Varied Circumstances Prompting Requests for Emergency Contraception at School-Based Clinics

    ERIC Educational Resources Information Center

    Sidebottom, Abbey; Harrison, Patricia A.; Amidon, Donna; Finnegan, Katie

    2008-01-01

    Background: Little is known about the circumstances that prompt teenagers to request emergency contraception (EC). This evaluation was designed to refine the EC clinical protocol and improve pregnancy prevention efforts in high school-based clinics by analyzing information on EC use and subsequent contraception use of EC patients. Methods: Sites…

  19. Emergency Contraception in Post-Conflict Somalia: An Assessment of Awareness and Perceptions of Need.

    PubMed

    Gure, Faduma; Dahir, Mohammed Koshin; Yusuf, Marian; Foster, Angel M

    2016-03-01

    In conflict-affected settings such as Somalia, emergency contraception (EC) has the potential to serve as an important means of pregnancy prevention. Yet Somalia remains one of the few countries without a registered progestin-only EC pill. In 2014, we conducted a qualitative, multi-methods study in Mogadishu to explore awareness of and perceptions of need for EC. Our project included 10 semi-structured key informant interviews, 20 structured in-person interviews with pharmacists, and four focus group discussions with married and unmarried Somali women. Our findings reveal a widespread lack of knowledge of both existing family planning methods and EC. However, once we described EC, participants expressed enthusiasm for expanding access to post-coital contraception. Our results shed light on why Somalia continues to be a global exception with respect to an EC product and suggest possible politically and culturally acceptable and effective avenues for introducing EC into the health system. © 2016 The Population Council, Inc.

  20. Emergency Contraception: A multi-specialty survey of clinician knowledge and practices

    PubMed Central

    Batur, Pelin; Cleland, Kelly; McNamara, Megan; Wu, Justine; Pickle, Sarah

    2015-01-01

    Objectives To assess knowledge and provision of emergency contraception (EC), particularly the most effective methods. Study Design A web-based survey was distributed to a cross-sectional convenience sample of healthcare providers across specialties treating reproductive-aged women. The survey was sent to 3,260 practicing physicians and advanced practice clinicians in 14 academic centers between February 2013 and April 2014. We analyzed responses by provider specialty using multivariable logistic regression. Results The final sample included 1,684 providers (response rate = 51.7%). Ninety-five percent of the respondents had heard of levonorgestrel (LNG) EC. Among reproductive health specialists, 81% provide levonorgestrel EC in their practice, although only half (52%) had heard of ulipristal acetate (UPA) and very few provide it (14%). The majority in family medicine (69%) and emergency medicine (74%) provide levonorgestrel, in contrast to 42% of internists and 55% of pediatricians. However, the more effective methods (UPA and copper IUD) were little known and rarely provided outside of reproductive health specialties; 18% of internists and 14% of emergency medicine providers had heard of UPA and 4% provide it. Only 22% of emergency providers and 32% of pediatricians had heard of the copper IUD used as EC. Among reproductive health specialists, only 36% provide copper IUD as EC in their practice. Specialty, provider type and proportion of women of reproductive age in the practice were related to knowledge and provision of some forms of EC. Conclusions Awareness and provision of the most effective EC methods, UPA and the copper IUD (which are provider-dependent), are substantially lower than for LNG EC, especially among providers who do not focus on reproductive health. Implications In our sample of 1,684 healthcare providers from diverse specialties who treat reproductive-aged women, knowledge and provision of the most effective forms of emergency contraception (ulipristal acetate and the copper IUD) are far lower than for levonorgestrel EC. Women should be offered the full range of EC methods. PMID:26363429

  1. Evaluating Micrometeorological Estimates of Groundwater Discharge from Great Basin Desert Playas

    NASA Astrophysics Data System (ADS)

    Jackson, T.; Halford, K. J.; Gardner, P.

    2017-12-01

    Groundwater availability studies in the arid southwestern United States traditionally have assumed that groundwater discharge by evapotranspiration (ETg) from desert playas is a significant component of the groundwater budget. This result occurs because desert playa ETg rates are poorly constrained by Bowen Ratio energy budget (BREB) and eddy-covariance (EC) micrometeorological measurement approaches. Best attempts by previous studies to constrain ETg from desert playas have resulted in ETg rates that are below the detection limit of micrometeorological approaches. This study uses numerical models to further constrain desert playa ETg rates that are below the detection limit of EC (0.1 mm/d) and BREB (0.3 mm/d) approaches, and to evaluate the effect of hydraulic properties and salinity-based groundwater-density contrasts on desert playa ETg rates. Numerical models simulated ETg rates from desert playas in Death Valley, California and Dixie Valley, Nevada. Results indicate that actual ETg rates from desert playas are significantly below the upper detection limits provided by the BREB- and EC-based micrometeorological measurements. Discharge from desert playas contribute less than 2 percent of total groundwater discharge from Dixie and Death Valleys, which suggests discharge from desert playas is negligible in other basins. Numerical simulation results also show that ETg from desert playas primarily is limited by differences in hydraulic properties between alluvial fan and playa sediments and, to a lesser extent, by salinity-based groundwater density contrasts.

  2. Retrieval of atmospheric elemental carbon records using lake sediments: Implications in radiative forcing

    NASA Astrophysics Data System (ADS)

    Ahmed, Tanveer

    Elemental or black carbon (EC or BC) aerosols produced during incomplete combustion strongly absorb solar radiation and contribute to global warming, and cause cardiopulmonary disease. Long-term atmospheric EC measurements, [EC]atm, are needed to validate global climate models to estimate the impact of EC on earth's temperature. Such data is sparse. In this work, a new technique was developed to retrieve the historical record of [EC]atm in the Northeastern US for the past two centuries. Measurements of [EC]atm were made in the monthly composites of daily filters collected over ˜30 yr at Whiteface Mountain (WFM), NY using the thermal optical method. Bottom sediment cores were collected from four lakes near WFM. They were sliced in horizontal sections, freeze dried, and their ages determined 210Pb dating technique. EC in sediments was chemically separated and its concentration determined using the same thermal-optical method. It was shown that [EC]sed = K [EC]atm where K is constant (m3/g). Measurements of [EC]atm and [EC]sed for the ˜1978 to 2005 period was used to determine the value for K. The value of K and [EC]sed for periods before 1978 were used to determine [EC]atm for the past ˜100 yrs. [EC]atm in the preindustrial period in US, ˜1850, varied between 38 and 73 ng/m3, with a mean value of 56 +/- 14 ng/m3. [EC]atm was found to increase sharply with rapid industrialization and reached its maximum value of 751 +/- 265 ng/m3 during 1920s, which was a factor of ˜12 higher compared to the mean preindustrial level. The [EC]atm declined gradually until ˜1980 and then decreased sharply. Directly measured values of [EC]atm are only ˜25% higher compared to the mean preindustrial level. Model US EC emissions estimates of Novakov et al. (2003), based on energy consumptions, reproduce our [EC]sed trends quite well for the ˜1900 to 1930 period. Subsequently, the model EC values drop-off more rapidly than our [EC]atm. To extend the technique where long tern [EC]atm are not available, a new generalized mathematical model expression to determine K was developed. The value of K calculated using the model agreed within +/-30% with the measurements.

  3. ToxCast HTS Assay Development and Retrofitting: Strategies ...

    EPA Pesticide Factsheets

    A presentation to EC JRC partners on new ToxCast HTS assay methods and strategies to address current limitations to HTS methods Slide presentation to EC JRC partners on new ToxCast HTS assay methods and strategies to address current limitations to HTS methods.

  4. Linear Regression with a Randomly Censored Covariate: Application to an Alzheimer's Study.

    PubMed

    Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A

    2017-01-01

    The association between maternal age of onset of dementia and amyloid deposition (measured by in vivo positron emission tomography (PET) imaging) in cognitively normal older offspring is of interest. In a regression model for amyloid, special methods are required due to the random right censoring of the covariate of maternal age of onset of dementia. Prior literature has proposed methods to address the problem of censoring due to assay limit of detection, but not random censoring. We propose imputation methods and a survival regression method that do not require parametric assumptions about the distribution of the censored covariate. Existing imputation methods address missing covariates, but not right censored covariates. In simulation studies, we compare these methods to the simple, but inefficient complete case analysis, and to thresholding approaches. We apply the methods to the Alzheimer's study.

  5. Diurnal and Seasonal Variations of Eddy-Covariance Carbon Dioxide Fluxes Above an Urban Wetland, Partitioned by Vegetation Cover

    NASA Astrophysics Data System (ADS)

    Schafer, K. V.; Duman, T.

    2017-12-01

    The New Jersey Meadowlands are an urban brackish marsh with a long history of human activity causing disturbances and alterations. Carbon emissions were measured from two sites in the Meadowlands, a natural site and a restored site, using eddy-covariance (EC) from 2014 to 2016. At each site, the EC towers were placed at the interface of two vegetation covers, allowing capturing this aspect of the wetland's heterogeneity. Using footprint modeling and light response curves we were able to partition measured fluxes between vegetation cover types and compare CO2 fluxes from patches of invasive versus native wetland vegetation communities. We show that further separating the data into seasonal and diurnal fluxes reveals patterns in CO2 fluxes that allow determining the nature of each vegetation cover as a source or sink for CO2. Our results also show that CO2 emissions from the restored wetland are significantly higher than the natural wetland. Areas of invasive Phragmites australis at the natural site had the lowest CO2 release rates during winter. These were consistently lower in magnitude than summer daytime uptake, therefore making this part of the wetland a CO2 sink. Areas planted with native Spartina alterniflora at the restored site had the largest uptake during daytime, therefore seemingly justifying restoration activities. However, they also had the highest emission rates during summer nighttime, and therefore the daily summer net uptake was not the highest compared with other vegetation covers. Furthermore, emissions from the restored site during winter were larger compared to the natural site, indicating that restoration activities might have led to a significant increase of carbon release from the wetland. Thus, during the study period the restored wetland acted as a carbon source.

  6. Comparison of methods for extraction of ethyl carbamate from alcoholic beverages in gas chromatography/mass spectrometry analysis.

    PubMed

    Mirzoian, Armen; Mabud, Abdul

    2006-01-01

    A procedure to analyze ethyl carbamate (EC) by gas chromatography/mass spectrometry was optimized and validated. Deuterated EC (d5-EC) was added to the samples as an internal standard followed by extraction with polystyrene crosslinked polystyrene cartridges using minimal volumes of ethyl acetate. The EC response was measured in selective ion monitoring (SIM) mode and found to be linear in the range between the limit of quantitation (10 micro/L) and 1000 microg/L. EC recoveries varied from 92 to 112%, with the average value of 100 +/- 8%. The procedure compared well (r2 = 0.9970) with the existing AOAC Official Method with the added benefits of minimal solvent usage and reduced matrix interferences.

  7. Urban Land Cover Type Influences CO2 Fluxes within Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Perez-Ruiz, E. R.; Vivoni, E. R.; Templeton, N. P.

    2017-12-01

    Urbanization is accompanied by the modification of land surface characteristics that should have an impact on local energy, water and carbon cycles. For instance, despite their relative small land area, cities are responsible for more than 70% of the global anthropogenic CO2 emissions. Nevertheless, relatively little is known on the dynamics of urban carbon fluxes or net ecosystem exchange (NEE), in particular over the multitude of land cover patches present within cities. In this study, we present a comparison of NEE measurements in four urban patches in the Phoenix metropolitan area. A mobile eddy covariance (EC) tower was deployed at a xeric landscaping, a parking lot and a mesic landscaping during consecutive, short-term ( 40 days) sampling periods and compared to a reference site (REF) in a suburban neighborhood over a longer deployment ( 9 months). Based on the datasets, we analyze the diurnal cycle and the daily and seasonal variations of NEE in the context of the measured meteorological conditions, including the surface energy budget. EC observations were then related to vegetation conditions through a satellite-based Normalized Difference Vegetation Index (NDVI) and to anthropogenic activities through local traffic counts. All deployment sites showed important differences in NEE with respect to the REF location due to the influence of the urban patch area sampled within the EC footprint. Daily NEE values at all sites exhibited differences among days of the week that were linked to traffic conditions, with higher values during weekdays and lower values during weekends. The diurnal behavior of NEE showed different trends depending on the amount of vegetation and the proximity to nearby roads. Minimum midday (around noon) values of NEE were noted where urban plants absorbed CO2, while maximum peaks of NEE occurred during rush hours (around 8 am and 6 pm) where the traffic influence was high. Overall, three of the four sites with low to moderate vegetation acted as a net source of CO2 during the respective deployments, while one site with a well-irrigated mesic landscaping acted as a net sink of CO2 during the summer. Thus, the characteristics and function of urban patches should have a strong control on the CO2 fluxes within cities, which can be reliably measured using the EC method.

  8. Pharmacists' knowledge and the difficulty of obtaining emergency contraception.

    PubMed

    Bennett, Wendy; Petraitis, Carol; D'Anella, Alicia; Marcella, Stephen

    2003-10-01

    This cross-sectional study was performed to examine knowledge and attitudes among pharmacists about emergency contraception (EC) and determine the factors associated with their provision of EC. A random systematic sampling method was used to obtain a sample (N = 320) of pharmacies in Pennsylvania. A "mystery shopper" telephone survey method was utilized. Only 35% of pharmacists stated that they would be able to fill a prescription for EC that day. Also, many community pharmacists do not have sufficient or accurate information about EC. In a logistic regression model, pharmacists' lack of information relates to the low proportion of pharmacists able to dispense it. In conclusion, access to EC from community pharmacists in Pennsylvania is severely limited. Interventions to improve timely access to EC involve increased education for pharmacists, as well as increased community request for these products as an incentive for pharmacists to stock them.

  9. Electrocoagulation in Water Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Huijuan; Zhao, Xu; Qu, Jiuhui

    Electrocoagulation (EC) is an electrochemical method of treating polluted water where sacrificial anodes corrode to release active coagulant precursors (usually aluminum or iron cations) into solution. At the cathode, gas evolves (usually as hydrogen bubbles) accompanying electrolytic reactions. EC needs simple equipments and is designable for virtually any size. It is cost effective and easily operable. Specially, the recent technical improvements combined with a growing need for small-scale water treatment facilities have led to a revaluation of EC. In this chapter, the basic principle of EC was introduced first. Following that, reactions at the electrodes and electrode assignment were reviewed; electrode passivation process and activation method were presented; comparison between electrocoagulation and chemical coagulation was performed; typical design of the EC reactors was also described; and factors affecting electrocoagulation including current density, effect of conductivity, temperature, and pH were introduced in details. Finally, application of EC in water treatment was given in details.

  10. Histological assessment of cervical lymph node identifies patients with head and neck squamous cell carcinoma (HNSCC): who would benefit from chemoradiation after surgery?

    PubMed

    Wan, Xiao Chloe; Egloff, Ann Marie; Johnson, Jonas

    2012-12-01

    Postoperative chemoradiation (CRT) has been shown to be more effective than postoperative radiotherapy (RT) alone in high risk head and neck squamous cell carcinoma (HNSCC) patients. Multimodality therapy is associated with more treatment related-toxicity. In this study, we assessed cervical lymph node histological characteristics to detect prognostic and predictive value differences to help guide therapeutic decision making. Retrospective analysis of Cancer Registry data. HNSCC surgical patients who had tumor resection and neck dissection at our institution from 1980 to 2008 were identified (n=1510). Multivariable Cox proportional hazards regression models were developed to identify significant predictors of three outcomes: overall survival (OS), disease-specific survival (DSS), and neck disease recurrence (NDR). Hazard ratios were estimated for the number of cervical nodal metastases and presence of extracapsular spread (ECS) by adjuvant treatment after controlling for significant covariates. Increasing number of positive nodes was significantly associated with poorer outcomes in OS, DSS, and NDR models (p<0.0001, p<0.0001, p=0.0002, respectively). OS and DSS associated with adjuvant treatment (none, RT, or CRT) were modified by number of positive nodes, ECS status, and cancer site. The presence of ECS was associated with reduced OS and DSS (p=0.077, p=0.001 respectively), but not significantly associated with NDR (p=0.179). Nodal positive patients benefited from adjuvant therapy regardless of ECS status. CRT consistently conferred a survival advantage over RT across all nodal categories, although the difference was not statistically significant. We observed a consistent survival advantage with CRT over RT for patients with positive cervical nodal metastasis, although the difference was not statistically significant. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  11. Climate controls over ecosystem metabolism: insights from a fifteen-year inductive artificial neural network synthesis for a subalpine forest.

    PubMed

    Albert, Loren P; Keenan, Trevor F; Burns, Sean P; Huxman, Travis E; Monson, Russell K

    2017-05-01

    Eddy covariance (EC) datasets have provided insight into climate determinants of net ecosystem productivity (NEP) and evapotranspiration (ET) in natural ecosystems for decades, but most EC studies were published in serial fashion such that one study's result became the following study's hypothesis. This approach reflects the hypothetico-deductive process by focusing on previously derived hypotheses. A synthesis of this type of sequential inference reiterates subjective biases and may amplify past assumptions about the role, and relative importance, of controls over ecosystem metabolism. Long-term EC datasets facilitate an alternative approach to synthesis: the use of inductive data-based analyses to re-examine past deductive studies of the same ecosystem. Here we examined the seasonal climate determinants of NEP and ET by analyzing a 15-year EC time-series from a subalpine forest using an ensemble of Artificial Neural Networks (ANNs) at the half-day (daytime/nighttime) time-step. We extracted relative rankings of climate drivers and driver-response relationships directly from the dataset with minimal a priori assumptions. The ANN analysis revealed temperature variables as primary climate drivers of NEP and daytime ET, when all seasons are considered, consistent with the assembly of past studies. New relations uncovered by the ANN approach include the role of soil moisture in driving daytime NEP during the snowmelt period, the nonlinear response of NEP to temperature across seasons, and the low relevance of summer rainfall for NEP or ET at the same daytime/nighttime time step. These new results offer a more complete perspective of climate-ecosystem interactions at this site than traditional deductive analyses alone.

  12. Stable estimate of primary OC/EC ratios in the EC tracer method

    NASA Astrophysics Data System (ADS)

    Chu, Shao-Hang

    In fine particulate matter studies, the primary OC/EC ratio plays an important role in estimating the secondary organic aerosol contribution to PM2.5 concentrations using the EC tracer method. In this study, numerical experiments are carried out to test and compare various statistical techniques in the estimation of primary OC/EC ratios. The influence of random measurement errors in both primary OC and EC measurements on the estimation of the expected primary OC/EC ratios is examined. It is found that random measurement errors in EC generally create an underestimation of the slope and an overestimation of the intercept of the ordinary least-squares regression line. The Deming regression analysis performs much better than the ordinary regression, but it tends to overcorrect the problem by slightly overestimating the slope and underestimating the intercept. Averaging the ratios directly is usually undesirable because the average is strongly influenced by unrealistically high values of OC/EC ratios resulting from random measurement errors at low EC concentrations. The errors generally result in a skewed distribution of the OC/EC ratios even if the parent distributions of OC and EC are close to normal. When measured OC contains a significant amount of non-combustion OC Deming regression is a much better tool and should be used to estimate both the primary OC/EC ratio and the non-combustion OC. However, if the non-combustion OC is negligibly small the best and most robust estimator of the OC/EC ratio turns out to be the simple ratio of the OC and EC averages. It not only reduces random errors by averaging individual variables separately but also acts as a weighted average of ratios to minimize the influence of unrealistically high OC/EC ratios created by measurement errors at low EC concentrations. The median of OC/EC ratios ranks a close second, and the geometric mean of ratios ranks third. This is because their estimations are insensitive to questionable extreme values. A real world example is given using the ambient data collected from an Atlanta STN site during the winter of 2001-2002.

  13. Covariance Manipulation for Conjunction Assessment

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.

    2016-01-01

    Use of probability of collision (Pc) has brought sophistication to CA. Made possible by JSpOC precision catalogue because provides covariance. Has essentially replaced miss distance as basic CA parameter. Embrace of Pc has elevated methods to 'manipulate' covariance to enable/improve CA calculations. Two such methods to be examined here; compensation for absent or unreliable covariances through 'Maximum Pc' calculation constructs, projection (not propagation) of epoch covariances forward in time to try to enable better risk assessments. Two questions to be answered about each; situations to which such approaches are properly applicable, amount of utility that such methods offer.

  14. Emergency Contraception.

    PubMed

    Batur, Pelin; Kransdorf, Lisa N; Casey, Petra M

    2016-06-01

    Emergency contraception (EC) may help prevent pregnancy in various circumstances, such as contraceptive method failure, unprotected sexual intercourse, or sexual assault, yet it remains underused. There are 4 approved EC options in the United States. Although ulipristal acetate requires a provider's prescription, oral levonorgestrel (LNG) is available over the counter for women of all ages. The most effective method of EC is the copper intrauterine device, which can be left in place for up to 10 years for efficacious, cost-effective, hormone-free, and convenient long-term primary contraception. Ulipristal acetate tends to be more efficacious in pregnancy prevention than is LNG, especially when taken later than 72 hours postcoitus. The mechanism of action of oral EC is delay of ovulation, and current evidence reveals that it is ineffective postovulation. Women who weigh more than 75 kg or have a body mass index greater than 25 kg/m(2) may have a higher risk of unintended pregnancy when using oral LNG EC; therefore, ulipristal acetate or copper intrauterine devices are preferable in this setting. Providers are often unaware of the range of EC options or are unsure of how to counsel patients regarding the access and use of EC. This article critically reviews current EC literature, summarizes recommendations, and provides guidance for counseling women about EC. Useful tips for health care providers are provided, with a focus on special populations, including breast-feeding women and those transitioning to long-term contraception after EC use. When treating women of reproductive age, clinicians should be prepared to counsel them about EC options, provide EC appropriately, and, if needed, refer for EC in a timely manner. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  15. Evapotranspiration of a pine-switchgrass intercropping bioenergy system measured by combined surface renewal and energy balance method

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Noormets, A.; Domec, J. C.; Rosa, R.; Williamson, J.; Boone, J.; Sucre, E.; Trnka, M.; King, J.

    2015-12-01

    Intercropping bioenergy grasses within traditional pine silvicultural systems provides an opportunity for economic diversification and regional bioenergy production in a way that complements existing land use systems. Bioenergy intercropping in pine plantations does not compete with food production for land and it is thought will increase ecosystem resource-use efficiencies. As the frequency and intensity of drought is expected to increase with the changing climate, maximizing water use-efficiency of intercropped bioenergy systems will become increasingly important for long-term economic and environmental sustainability. The presented study is focused on evapotranspiration (ET) of an experimental pine-switchgrass intercropping system in the Lower Coastal Plain of North Carolina. We measured ET of two pure switchgrass fields, two pure pine stands and two pine-switchgrass intercropping systems using combined surface renewal (SR) and energy balance (EB) method throughout 2015. SR is based on high-frequency measurement of air temperature at or above canopy. As previously demonstrated, temperature time series are associated with identifiable, repeated patterns called "turbulent coherent structures". These coherent structures are considered to be responsible for most of the turbulent transport. Statistical analysis of the coherent structures in temperature time series allows quantification of sensible heat flux density (H) from the investigated area. Information about H can be combined with measurement of net radiation and soil heat flux density to indirectly obtain ET estimates as a residual of the energy balance equation. Despite the recent progress in the SR method, there is no standard methodology and each method available includes assumptions which require more research. To validate our SR estimates of ET, we used an eddy covariance (EC) system placed temporarily next to the each SR station as a comparative measurement of H. The conference contribution will include: i) evaluation of SR method compared to EC; ii) comparison of different SR calculation procedures including application of various thermocouples sizes and measurement heights; iii) quantification of ET of the three investigated ecosystems; iv) analysis of ET diurnal and seasonal variation with respect to weather conditions.

  16. Corrected score estimation in the proportional hazards model with misclassified discrete covariates

    PubMed Central

    Zucker, David M.; Spiegelman, Donna

    2013-01-01

    SUMMARY We consider Cox proportional hazards regression when the covariate vector includes error-prone discrete covariates along with error-free covariates, which may be discrete or continuous. The misclassification in the discrete error-prone covariates is allowed to be of any specified form. Building on the work of Nakamura and his colleagues, we present a corrected score method for this setting. The method can handle all three major study designs (internal validation design, external validation design, and replicate measures design), both functional and structural error models, and time-dependent covariates satisfying a certain ‘localized error’ condition. We derive the asymptotic properties of the method and indicate how to adjust the covariance matrix of the regression coefficient estimates to account for estimation of the misclassification matrix. We present the results of a finite-sample simulation study under Weibull survival with a single binary covariate having known misclassification rates. The performance of the method described here was similar to that of related methods we have examined in previous works. Specifically, our new estimator performed as well as or, in a few cases, better than the full Weibull maximum likelihood estimator. We also present simulation results for our method for the case where the misclassification probabilities are estimated from an external replicate measures study. Our method generally performed well in these simulations. The new estimator has a broader range of applicability than many other estimators proposed in the literature, including those described in our own earlier work, in that it can handle time-dependent covariates with an arbitrary misclassification structure. We illustrate the method on data from a study of the relationship between dietary calcium intake and distal colon cancer. PMID:18219700

  17. Improving the complementary methods to estimate evapotranspiration under diverse climatic and physical conditions

    NASA Astrophysics Data System (ADS)

    Anayah, F. M.; Kaluarachchi, J. J.

    2014-06-01

    Reliable estimation of evapotranspiration (ET) is important for the purpose of water resources planning and management. Complementary methods, including complementary relationship areal evapotranspiration (CRAE), advection aridity (AA) and Granger and Gray (GG), have been used to estimate ET because these methods are simple and practical in estimating regional ET using meteorological data only. However, prior studies have found limitations in these methods especially in contrasting climates. This study aims to develop a calibration-free universal method using the complementary relationships to compute regional ET in contrasting climatic and physical conditions with meteorological data only. The proposed methodology consists of a systematic sensitivity analysis using the existing complementary methods. This work used 34 global FLUXNET sites where eddy covariance (EC) fluxes of ET are available for validation. A total of 33 alternative model variations from the original complementary methods were proposed. Further analysis using statistical methods and simplified climatic class definitions produced one distinctly improved GG-model-based alternative. The proposed model produced a single-step ET formulation with results equal to or better than the recent studies using data-intensive, classical methods. Average root mean square error (RMSE), mean absolute bias (BIAS) and R2 (coefficient of determination) across 34 global sites were 20.57 mm month-1, 10.55 mm month-1 and 0.64, respectively. The proposed model showed a step forward toward predicting ET in large river basins with limited data and requiring no calibration.

  18. Application of the thiocarbohydrazide method for vicinal glycol group detection to the study of gastric mucosa endocrine cells.

    PubMed

    Lefranc, G; Chung, Y T; Barrière, P; Pradal, G

    1980-01-01

    The thiocarbohydrazide-silver proteinate (TCH SP) method was applied to the study of cat, rabbit and mouse gastric mucosa endocrine cells. After 24-h treatment with thiocarbohydrazide (TCH), glycogen was seen in the hyaloplasm of X, D, P, A and O cells but not in EC, EC-like or D1 cells. With flotation times as short as 30 to 40 min glycogen was readily detected in X cells. Secretory granules of EC cells were constantly stained, while those of D1 cells failed to react. In most experiments granules of X, A and O cells showed peripheral "staining", while in others staining of variable intensity affected the entire granular cross-section in X, D and P cells. With 72-h exposure to TCH, EC and EC-like cells showed particles resembling glycogen, even staining or only peripheral staining of certain EC cell granules. From the results of this and previous studies, EC cell staining is believed to be due wholly or partly, according to exposure times, to the action of silver proteinate, while that of certain non-EC cells is probably a specific indicator of complexed carbohydrates.

  19. A Comparison of Methods for Estimating the Determinant of High-Dimensional Covariance Matrix.

    PubMed

    Hu, Zongliang; Dong, Kai; Dai, Wenlin; Tong, Tiejun

    2017-09-21

    The determinant of the covariance matrix for high-dimensional data plays an important role in statistical inference and decision. It has many real applications including statistical tests and information theory. Due to the statistical and computational challenges with high dimensionality, little work has been proposed in the literature for estimating the determinant of high-dimensional covariance matrix. In this paper, we estimate the determinant of the covariance matrix using some recent proposals for estimating high-dimensional covariance matrix. Specifically, we consider a total of eight covariance matrix estimation methods for comparison. Through extensive simulation studies, we explore and summarize some interesting comparison results among all compared methods. We also provide practical guidelines based on the sample size, the dimension, and the correlation of the data set for estimating the determinant of high-dimensional covariance matrix. Finally, from a perspective of the loss function, the comparison study in this paper may also serve as a proxy to assess the performance of the covariance matrix estimation.

  20. [Detection of methyl carbamate and ethyl carbamate in yellow rice wine by gas chromatography-mass spectrometry].

    PubMed

    Wu, Ping-gu; Ma, Bing-jie; Wang, Li-yuan; Shen, Xiang-hong; Zhang, Jing; Tan, Ying; Jiang, Wei

    2013-11-01

    To establish the method of simultaneous determination of methylcarbamate (MC) and ethylcarbamate (EC) in yellow rice wine by gas chromatography-mass spectrometry (GC/MS). MC and EC in yellow rice wine were derived by 9-xanthydrol, and then the derivants were detected by GC/MS; and quantitatively analyzed by D5-EC isotope internal standard method. The linearity of MC and EC ranged from 2.0 µg/L to 400.0 µg/L, with correlation coefficients at 0.998 and 0.999, respectively. The limits of quantitation (LOQ) and detection (LOD) were 0.67 and 2.0 µg/kg. When MC and EC were added in yellow rice wine at the range of 2.0-300.0 µg/kg, the intraday average recovery rate was 78.8%-102.3%, relative standard deviation was 3.2%-11.6%; interday average recovery rate was 75.4%-101.3%, relative standard deviation was 3.8%-13.4%. 20 samples of yellow rice wine from supermarket were detected using this method, the contents of MC were in the range of ND (no detected) to 1.2 µg/kg, the detection rate was 6% (3/20), the contents of EC in the range of 18.6 µg/kg to 432.3 µg/kg, with the average level at 135.2 µg/kg. The method is simple, rapid and useful for simultaneous determination of MC and EC in yellow rice wine.

  1. Limitations of the colloidal silica method in mapping the endothelial plasma membrane proteome of the mouse heart.

    PubMed

    Arjunan, Selvam; Reinartz, Michael; Emde, Barbara; Zanger, Klaus; Schrader, Jürgen

    2009-01-01

    The endothelial cell (EC) membrane is an important interface, which plays a crucial role in signal transduction. Our aim was to selectively purify luminal EC membrane proteins from the coronary vasculature of the isolated perfused mouse heart and analyze its composition with mass spectrometry (MS). To specifically label coronary ECs in the intact heart, the colloidal silica method was applied, which is based on the binding of positively charged colloidal silica to the surface of EC membranes. Transmission electron microscopy revealed the specific labeling of ECs of macro and microvessels. Two different methods of tissue homogenization (Teflon pestle and ultra blade) together with density centrifugation were used for membrane protein enrichment. Enrichment and purity was controlled by Western blot analysis using the EC-specific protein caveolin 1 and various intracellular marker proteins. The ultra blade method resulted in a tenfold enrichment of caveolin 1, while there was negligible contamination as judged by Western blot. However, protein yield was low and required pooling of ten hearts for MS. When enriched endothelial membrane proteins were digested with trypsin and analyzed by LC-MS, a total of 56 proteins could be identified, of which only 12 were membrane proteins. We conclude that coronary endothelial membranes can be conveniently labeled with colloidal silica. However, due to the ionic nature of interaction of colloidal silica with the EC membrane the shear rate required for cardiac homogenization resulted in a substantial loss of specificity.

  2. Net carbon balance of three full crop rotations at an agricultural site near Gebesee, Germany

    NASA Astrophysics Data System (ADS)

    Hurkuck, M.; Brümmer, C.; Kolle, O.; Kutsch, W. L.; Moffat, A. M.; Mukwashi, K.; Truckenbrodt, S. C.; Herbst, M.

    2015-12-01

    Continuous eddy-covariance (EC) measurements of biosphere-atmosphere CO2 and H2O exchange have been conducted since 2001 at an agricultural site near Gebesee, Germany, thus providing one of the longest EC time series of European croplands. During the experimental period, winter wheat and winter barley were alternately planted with potatoes, sugar beet, rape, and peppermint covering three full crop rotations (2001-2004, 2005-2009, and 2010-2014). In this study, data of 14 years of net ecosystem CO2 exchange (NEE) and evapotranspiration (E) were re-calculated. Based on these data, we present the net carbon (C) balance (net biome production, NBP) accounting for any additional C input by fertilization and C output by harvest. Further emphasis was placed on the sensitivity of water use efficiency (WUE) and E to climate and crop type. The main aim was to investigate the interannual variability in both NBP and WUE, thus disentangling the impacts of climatic conditions and land management on the net C balance as well as on WUE and E.

  3. Turbulent fluxes by "Conditional Eddy Sampling"

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas

    2015-04-01

    Turbulent flux measurements are key to understanding ecosystem scale energy and matter exchange, including atmospheric trace gases. While the eddy covariance approach has evolved as an invaluable tool to quantify fluxes of e.g. CO2 and H2O continuously, it is limited to very few atmospheric constituents for which sufficiently fast analyzers exist. High instrument cost, lack of field-readiness or high power consumption (e.g. many recent laser-based systems requiring strong vacuum) further impair application to other tracers. Alternative micrometeorological approaches such as conditional sampling might overcome major limitations. Although the idea of eddy accumulation has already been proposed by Desjardin in 1972 (Desjardin, 1977), at the time it could not be realized for trace gases. Major simplifications by Businger and Oncley (1990) lead to it's widespread application as 'Relaxed Eddy Accumulation' (REA). However, those simplifications (flux gradient similarity with constant flow rate sampling irrespective of vertical wind velocity and introduction of a deadband around zero vertical wind velocity) have degraded eddy accumulation to an indirect method, introducing issues of scalar similarity and often lack of suitable scalar flux proxies. Here we present a real implementation of a true eddy accumulation system according to the original concept. Key to our approach, which we call 'Conditional Eddy Sampling' (CES), is the mathematical formulation of conditional sampling in it's true form of a direct eddy flux measurement paired with a performant real implementation. Dedicated hardware controlled by near-real-time software allows full signal recovery at 10 or 20 Hz, very fast valve switching, instant vertical wind velocity proportional flow rate control, virtually no deadband and adaptive power management. Demonstrated system performance often exceeds requirements for flux measurements by orders of magnitude. The system's exceptionally low power consumption is ideal for the field (one to two orders of magnitude lower compared to current closed-path laser based eddy covariance systems). Potential applications include fluxes of CO2, CH4, N2O, VOCs and other tracers. Finally we assess the flux accuracy of the Conditional Eddy Sampling (CES) approach as in our real implementation relative to alternative techniques including eddy covariance (EC) and relaxed eddy accumulation (REA). We further quantify various sources of instrument and method specific measurement errors. This comparison uses real measurements of 20 Hz turbulent time series of 3D wind velocity, sonic temperature and CO2 mixing ratio over a mixed decidious forest at the 'ICOS' flux tower site 'Hainich', Germany. Results from a simulation using real wind and CO2 timeseries from the Hainich site from 30 April to 3 November 2014 and real instrument performance suggest that the maximum flux estimates error (50% and 75% error quantiles) from Conditional Eddy Sampling (CES) relative to the true flux is 1.3% and 10%, respectively for monthly net fluxes, 1.6% and 7%, respectively for daily net fluxes and 8% and 35%, respectively for 30-minute CO2 flux estimates. Those results from CES are promising and outperform our REA estimates by about a factor of 50 assuming REA with constant b value. Results include flux time series from the EC, CES and REA approaches from 30-min to annual resolution.

  4. Control of abusive water addition to Octopus vulgaris with non-destructive methods.

    PubMed

    Mendes, Rogério; Schimmer, Ove; Vieira, Helena; Pereira, João; Teixeira, Bárbara

    2018-01-01

    Abusive water addition to octopus has evidenced the need for quick non-destructive methods for product qualification in the industry and control of fresh commercial products in markets. Electric conductivity (EC)/pH and dielectric property measurements were selected to detect water uptake in octopus. A significant EC decrease was determined after soaking octopus in freshwater for 4 h. EC reflected the water uptake of octopus and the correspondent concentration decrease of available ions in the interstitial fluid. Significant correlations were determined between octopus water uptake, EC (R = -0.940) and moisture/protein (M/P) ratio (R = 0.923) changes. Seasonal and spatial variation in proximate composition did not introduce any uncertainty in EC discrimination of freshwater tampering. Immersion in 5 g L -1 sodium tripolyphosphate (STPP) increased EC to a value similar to control octopus. EC false negatives resulting from the use of additives (STPP and citric acid) were eliminated with the additional determination of pH. Octopus soaked in freshwater, STPP and citric acid can also be clearly discriminated from untreated samples (control) and also from frozen (thawed) ones using the dielectric properties. No significant differences in the dielectric property scores were found between octopus sizes or geographical locations. Simultaneous EC/pH or dielectric property measurements can be used in a handheld device for non-destructive water addition detection in octopus. M/P ratio can be used as a reference destructive method. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Absorbing boundaries in numerical solutions of the time-dependent Schroedinger equation on a grid using exterior complex scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, F.; Ruiz, C.; Becker, A.

    We study the suppression of reflections in the numerical simulation of the time-dependent Schroedinger equation for strong-field problems on a grid using exterior complex scaling (ECS) as an absorbing boundary condition. It is shown that the ECS method can be applied in both the length and the velocity gauge as long as appropriate approximations are applied in the ECS transformation of the electron-field coupling. It is found that the ECS method improves the suppression of reflection as compared to the conventional masking function technique in typical simulations of atoms exposed to an intense laser pulse. Finally, we demonstrate the advantagemore » of the ECS technique to avoid unphysical artifacts in the evaluation of high harmonic spectra.« less

  6. Electrochemistry coupled online to liquid chromatography-mass spectrometry for fast simulation of biotransformation reactions of the insecticide chlorpyrifos.

    PubMed

    Mekonnen, Tessema F; Panne, Ulrich; Koch, Matthias

    2017-05-01

    An automated method is presented for fast simulation of (bio)transformation products (TPs) of the organophosphate insecticide chlorpyrifos (CPF) based on electrochemistry coupled online to liquid chromatography-mass spectrometry (EC-LC-MS). Oxidative TPs were produced by a boron doped diamond (BDD) electrode, separated by reversed phase HPLC and online detected by electrospray ionization-mass spectrometry (ESI-MS). Furthermore, EC oxidative TPs were investigated by HPLC-tandem mass spectrometry (LC-MS/MS) and FT-ICR high resolution mass spectrometry (HRMS) and compared to in vitro assay metabolites (rat and human liver microsomes). Main phase I metabolites of CPF: chlorpyrifos oxon (CPF oxon), trichloropyridinol (TCP), diethylthiophosphate (DETP), diethylphosphate (DEP), desethyl chlorpyrifos (De-CPF), and desethyl chlorpyrifos oxon (De-CPF oxon), were successfully identified by the developed EC-LC-MS method. The EC-LC-MS method showed similar metabolites compared to the in vitro assay with possibilities of determining reactive species. Our results reveal that online EC-(LC)-MS brings an advantage on time of analysis by eliminating sample preparation steps and matrix complexity compared to conventional in vivo or in vitro methods.

  7. Thermal/Optical Methods for Elemental Carbon Quantification in Soils and Urban Dusts: Equivalence of Different Analysis Protocols

    PubMed Central

    Han, Yongming; Chen, Antony; Cao, Junji; Fung, Kochy; Ho, Fai; Yan, Beizhan; Zhan, Changlin; Liu, Suixin; Wei, Chong; An, Zhisheng

    2013-01-01

    Quantifying elemental carbon (EC) content in geological samples is challenging due to interferences of crustal, salt, and organic material. Thermal/optical analysis, combined with acid pretreatment, represents a feasible approach. However, the consistency of various thermal/optical analysis protocols for this type of samples has never been examined. In this study, urban street dust and soil samples from Baoji, China were pretreated with acids and analyzed with four thermal/optical protocols to investigate how analytical conditions and optical correction affect EC measurement. The EC values measured with reflectance correction (ECR) were found always higher and less sensitive to temperature program than the EC values measured with transmittance correction (ECT). A high-temperature method with extended heating times (STN120) showed the highest ECT/ECR ratio (0.86) while a low-temperature protocol (IMPROVE-550), with heating time adjusted for sample loading, showed the lowest (0.53). STN ECT was higher than IMPROVE ECT, in contrast to results from aerosol samples. A higher peak inert-mode temperature and extended heating times can elevate ECT/ECR ratios for pretreated geological samples by promoting pyrolyzed organic carbon (PyOC) removal over EC under trace levels of oxygen. Considering that PyOC within filter increases ECR while decreases ECT from the actual EC levels, simultaneous ECR and ECT measurements would constrain the range of EC loading and provide information on method performance. Further testing with standard reference materials of common environmental matrices supports the findings. Char and soot fractions of EC can be further separated using the IMPROVE protocol. The char/soot ratio was lower in street dusts (2.2 on average) than in soils (5.2 on average), most likely reflecting motor vehicle emissions. The soot concentrations agreed with EC from CTO-375, a pure thermal method. PMID:24358286

  8. Radiocarbon Analysis to Calculate New End-Member Values for Biomass Burning Source Samples Specific to the Bay Area

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Kirchstetter, T.; Fairley, D.; Sheesley, R. J.; Tang, X.

    2017-12-01

    Elemental carbon (EC), also known as black carbon or soot, is an important particulate air pollutant that contributes to climate forcing through absorption of solar radiation and to adverse human health impacts through inhalation. Both fossil fuel combustion and biomass burning, via residential firewood burning, agricultural burning, wild fires, and controlled burns, are significant sources of EC. Our ability to successfully control ambient EC concentrations requires understanding the contribution of these different emission sources. Radiocarbon (14C) analysis has been increasingly used as an apportionment tool to distinguish between EC from fossil fuel and biomass combustion sources. However, there are uncertainties associated with this method including: 1) uncertainty associated with the isolation of EC to be used for radiocarbon analysis (e.g., inclusion of organic carbon, blank contamination, recovery of EC, etc.) 2) uncertainty associated with the radiocarbon signature of the end member. The objective of this research project is to utilize laboratory experiments to evaluate some of these uncertainties, particularly for EC sources that significantly impact the San Francisco Bay Area. Source samples of EC only and a mix of EC and organic carbon (OC) were produced for this study to represent known emission sources and to approximate the mixing of EC and OC that would be present in the atmosphere. These samples include a combination of methane flame soot, various wood smoke samples (i.e. cedar, oak, sugar pine, pine at various ages, etc.), meat cooking, and smoldering cellulose smoke. EC fractions were isolated using a Sunset Laboratory's thermal optical transmittance carbon analyzer. For 14C analysis, samples were sent to Woods Hole Oceanographic Institution for isotope analysis using an accelerated mass spectrometry. End member values and uncertainties for the EC isolation utilizing this method will be reported.

  9. Adhesion Molecule Expression and Function of Primary Endothelial Cells in Benign and Malignant Tissues Correlates with Proliferation

    PubMed Central

    Sievert, Wolfgang; Tapio, Soile; Breuninger, Stephanie; Gaipl, Udo; Andratschke, Nicolaus; Trott, Klaus-Rüdiger; Multhoff, Gabriele

    2014-01-01

    Background Comparative analysis of the cellular biology of the microvasculature in different tissues requires the availability of viable primary endothelial cells (ECs). This study describes a novel method to isolate primary ECs from healthy organs, repair blastemas and tumors as examples of non-proliferating and proliferating benign and malignant tissues and their functional characterization. Methodology/Principal Findings Single cell suspensions from hearts, lungs, repair blastemas and tumors were incubated consecutively with an anti-CD31 antibody and magnetic micro-beads, coupled to a derivative of biotin and streptavidin, respectively. Following magnetic bead separation, CD31-positive ECs were released by biotin-streptavidin competition. In the absence of micro-beads, ECs became adherent to plastic surfaces. ECs from proliferating repair blastemas and tumors were larger and exhibited higher expression densities of CD31, CD105 and CD102 compared to those from non-proliferating normal tissues such as heart and lung. The expression density of CD34 was particularly high in tumor-derived ECs, and that of CD54 and CD144 in ECs of repair blastemas. Functionally, ECs of non-proliferating and proliferating tissues differed in their capacity to form tubes in matrigel and to align under flow conditions. Conclusions/Significance This method provides a powerful tool to generate high yields of viable, primary ECs of different origins. The results suggest that an altered expression of adhesion molecules on ECs in proliferating tissues contribute to loss of EC function that might cause a chaotic tumor vasculature. PMID:24632811

  10. Dietary intake of acrylamide and endometrial cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort

    PubMed Central

    Obón-Santacana, M; Kaaks, R; Slimani, N; Lujan-Barroso, L; Freisling, H; Ferrari, P; Dossus, L; Chabbert-Buffet, N; Baglietto, L; Fortner, R T; Boeing, H; Tjønneland, A; Olsen, A; Overvad, K; Menéndez, V; Molina-Montes, E; Larrañaga, N; Chirlaque, M-D; Ardanaz, E; Khaw, K-T; Wareham, N; Travis, R C; Lu, Y; Merritt, M A; Trichopoulou, A; Benetou, V; Trichopoulos, D; Saieva, C; Sieri, S; Tumino, R; Sacerdote, C; Galasso, R; Bueno-de-Mesquita, H B; Wirfält, E; Ericson, U; Idahl, A; Ohlson, N; Skeie, G; Gram, I T; Weiderpass, E; Onland-Moret, N C; Riboli, E; Duell, E J

    2014-01-01

    Background: Three prospective studies have evaluated the association between dietary acrylamide intake and endometrial cancer (EC) risk with inconsistent results. The objective of this study was to evaluate the association between acrylamide intake and EC risk: for overall EC, for type-I EC, and in never smokers and never users of oral contraceptives (OCs). Smoking is a source of acrylamide, and OC use is a protective factor for EC risk. Methods: Cox regression was used to estimate hazard ratios (HRs) for the association between acrylamide intake and EC risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Acrylamide intake was estimated from the EU acrylamide monitoring database, which was matched with EPIC questionnaire-based food consumption data. Acrylamide intake was energy adjusted using the residual method. Results: No associations were observed between acrylamide intake and overall EC (n=1382) or type-I EC risk (n=627). We observed increasing relative risks for type-I EC with increasing acrylamide intake among women who both never smoked and were non-users of OCs (HRQ5vsQ1: 1.97, 95% CI: 1.08–3.62; likelihood ratio test (LRT) P-value: 0.01, n=203). Conclusions: Dietary intake of acrylamide was not associated with overall or type-I EC risk; however, positive associations with type I were observed in women who were both non-users of OCs and never smokers. PMID:24937665

  11. Turbulence Considerations for Comparing Ecosystem Exchange over Old-Growth and Clear-Cut Stands For Limited Fetch and Complex Canopy Flow Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wharton, S; Schroeder, M; Paw U, K T

    2009-01-08

    Carbon dioxide, water vapor and energy fluxes were measured using eddy covariance (EC) methodology over three adjacent forests in southern Washington State to identify stand-level age-effects on ecosystem exchange. The sites represent Douglas-fir forest ecosystems at two contrasting successional stages: old-growth (OG) and early seral (ES). Here we present eddy flux and meteorological data from two early seral stands and the Wind River AmeriFlux old-growth forest during the growing season (March-October) in 2006 and 2007. We show an alternative approach to the usual friction velocity (u*) method for determining periods of adequate atmospheric boundary layer (ABL) mixing based on themore » ratio of mean horizontal ({bar u}) and vertical ({bar w}) wind flow to a modified turbulent kinetic energy scale (uTKE). This new parameter in addition to footprint modeling showed that daytime CO{sub 2} fluxes (F{sub NEE}) in small clear-cuts (< 10 hectares) can be measured accurately with EC if micrometeorological conditions are carefully evaluated. Peak midday CO{sub 2} fluxes (F{sub NEE} = -14.0 to -12.3 {micro}mol m{sup -2} s{sup -1}) at OG were measured in April in both 2006 and 2007 before bud break when air and soil temperatures and vapor pressure deficit were relatively low, and soil moisture and light levels were favorable for photosynthesis. At the early seral stands, peak midday CO{sub 2} fluxes (F{sub NEE} = -11.0 to -8.7 {micro}mol m{sup -2} s{sup -1}) were measured in June and July while spring-time CO{sub 2} fluxes were much smaller (F{sub NEE} = -3.8 to -3.6 {micro}mol m{sup -2} s{sup -1}). Overall, we measured lower evapotranspiration (OG = 230 mm; ES = 297 mm) higher midday F{sub NEE} (OG F{sub NEE} = -9.0 {micro}mol m{sup -2} s{sup -1}; ES F{sub NEE} = -7.3 {micro}mol m{sup -2} s{sup -1}) and higher Bowen ratios (OG {beta} = 2.0. ES {beta} = 1.2) at the old-growth forest than at the ES sites during the summer months (May-August). Eddy covariance studies such as ours add critical land-atmosphere exchange data for an abundant, but rarely studied Douglas-fir age class.« less

  12. Reasons for requesting emergency contraception: a survey of 506 Italian women.

    PubMed

    Bastianelli, C; Farris, M; Benagiano, G

    2005-09-01

    To evaluate the reason for requesting emergency contraception (EC), previous use of contraceptive methods and provision route in a Family Planning Clinic in Italy. Women requesting EC were interviewed, through a questionnaire containing questions on demographic characteristics, about their reasons for requesting EC, their prior contraceptive use, their reasons for not using an effective contraceptive method (or possible reasons for its failure) and specifically about the so-called 'provision route' (i.e. whether and where they had previously requested EC receiving a negative response). Almost 70% of all women requesting EC were aged between 18 and 25 years. Some 80% of all women were in a stable relationship with their partner, with fewer than 20% having had an occasional intercourse. The vast majority of women (83%) reported prior use of a modern contraceptive method, i.e. 64% with a condom, 27% for combined oral contraceptives and 1.1% for the intrauterine device (IUD). In addition, 15% of the women had used more than one method (oral pills and condoms). Concerning the reasons for requesting EC, condom breakage or slipping was the most frequently cited (64%), followed by totally unprotected intercourse (28%), failed withdrawal (5%) and forgetting one or more pill (only 1.1%). More than one-third of the women interviewed had previously used an emergency contraceptive modality; although no one did so more than four times. Therefore, it can be inferred that-at least in the present series-EC had not been used as a routine contraceptive method. Finally, it seems clear that in Italy, even in large cities, information about the availability, proper usage and mechanism of action is lacking. This seems due to information being spread by word of mouth between peers and friends, with more formal communication channels lagging behind.

  13. Improving adolescent knowledge of emergency contraception: challenges and solutions

    PubMed Central

    Seetharaman, Sujatha; Yen, Sophia; Ammerman, Seth D

    2016-01-01

    Globally, unintended adolescent pregnancies pose a significant burden. One of the most important tools that can help prevent unintended pregnancy is the timely use of emergency contraception (EC), which in turn will decrease the need for abortions and complications related to adolescent pregnancies. Indications for the use of EC include unprotected sexual intercourse, contraceptive failure, or sexual assault. Use of EC is recommended within 120 hours, though is most effective if used as soon as possible after unprotected sex. To use EC, adolescents need to be equipped with knowledge about the various EC methods, and how and where EC can be accessed. Great variability in the knowledge and use of EC around the world exists, which is a major barrier to its use. The aims of this paper were to 1) provide a brief overview of EC, 2) discuss key social determinants affecting knowledge and use of EC, and 3) explore best practices for overcoming the barriers of lack of knowledge, use, and access of EC. PMID:29386948

  14. Simultaneous determination of ethyl carbamate and urea in Korean rice wine by ultra-performance liquid chromatography coupled with mass spectrometric detection.

    PubMed

    Lee, Gyeong-Hweon; Bang, Dae-Young; Lim, Jung-Hoon; Yoon, Seok-Min; Yea, Myeong-Jai; Chi, Young-Min

    2017-10-15

    In this study, a rapid method for simultaneous detection of ethyl carbamate (EC) and urea in Korean rice wine was developed. To achieve quantitative analysis of EC and urea, the conditions for Ultra-performance liquid chromatography (UPLC) separation and atmospheric-pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) detection were first optimized. Under the established conditions, the detection limit, relative standard deviation and linear range were 2.83μg/L, 3.75-5.96%, and 0.01-10.0mg/L, respectively, for urea; the corresponding values were 0.17μg/L, 1.06-4.01%, and 1.0-50.0μg/L, respectively, for EC. The correlation between the contents of EC and its precursor urea was determined under specific pH (3.5 and 4.5) and temperature (4, 25, and 50°C) conditions using the developed method. As a result, EC content was increased with greater temperature and lower pH. In Korean rice wine, urea was detected 0.19-1.37mg/L and EC was detected 2.0-7.7μg/L. The method developed in this study, which has the advantages of simplified sample preparation, low detection limits, and good selectivity, was successfully applied for the rapid analysis of EC and urea. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS.

    PubMed

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2011-01-01

    The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied.

  16. Measuring continuous baseline covariate imbalances in clinical trial data

    PubMed Central

    Ciolino, Jody D.; Martin, Renee’ H.; Zhao, Wenle; Hill, Michael D.; Jauch, Edward C.; Palesch, Yuko Y.

    2014-01-01

    This paper presents and compares several methods of measuring continuous baseline covariate imbalance in clinical trial data. Simulations illustrate that though the t-test is an inappropriate method of assessing continuous baseline covariate imbalance, the test statistic itself is a robust measure in capturing imbalance in continuous covariate distributions. Guidelines to assess effects of imbalance on bias, type I error rate, and power for hypothesis test for treatment effect on continuous outcomes are presented, and the benefit of covariate-adjusted analysis (ANCOVA) is also illustrated. PMID:21865270

  17. A clinical laboratory model for evaluating the acute effects of electronic "cigarettes": nicotine delivery profile and cardiovascular and subjective effects.

    PubMed

    Vansickel, Andrea R; Cobb, Caroline O; Weaver, Michael F; Eissenberg, Thomas E

    2010-08-01

    Electronic "cigarettes" are marketed to tobacco users as potential reduced exposure products (PREP), albeit with little information regarding electronic cigarette user toxicant exposure and effects. This information may be obtained by adapting clinical laboratory methods used to evaluate other PREPs for smokers. Thirty-two smokers participated in four independent Latin-square ordered conditions that differed by product: own brand cigarette, "NPRO" electronic cigarettes (NPRO EC; 18 mg cartridge), "Hydro" electronic cigarettes (Hydro EC; 16 mg cartridge), or sham (unlit cigarette). Participants took 10 puffs at two separate times during each session. Plasma nicotine and carbon monoxide (CO) concentration, heart rate, and subjective effects were assessed. Own brand significantly increased plasma nicotine and CO concentration and heart rate within the first five minutes of administration whereas NPRO EC, Hydro EC, and sham smoking did not. Own brand, NPRO EC, and Hydro EC (but not sham) significantly decreased tobacco abstinence symptom ratings and increased product acceptability ratings. The magnitude of symptom suppression and increased acceptability was greater for own brand than for NPRO EC and Hydro EC. Under these acute testing conditions, neither of the electronic cigarettes exposed users to measurable levels of nicotine or CO, although both suppressed nicotine/tobacco abstinence symptom ratings. This study illustrates how clinical laboratory methods can be used to understand the acute effects of these and other PREPs for tobacco users. The results and methods reported here will likely be relevant to the evaluation and empirically based regulation of electronic cigarettes and similar products. (c)2010 AACR.

  18. A new method to model electroconvulsive therapy in rats with increased construct validity and enhanced translational value.

    PubMed

    Theilmann, Wiebke; Löscher, Wolfgang; Socala, Katarzyna; Frieling, Helge; Bleich, Stefan; Brandt, Claudia

    2014-06-01

    Electroconvulsive therapy is the most effective therapy for major depressive disorder (MDD). The remission rate is above 50% in previously pharmacoresistant patients but the mechanisms of action are not fully understood. Electroconvulsive stimulation (ECS) in rodents mimics antidepressant electroconvulsive therapy (ECT) in humans and is widely used to investigate the underlying mechanisms of ECT. For the translational value of findings in animal models it is essential to establish models with the highest construct, face and predictive validity possible. The commonly used model for ECT in rodents does not meet the demand for high construct validity. For ECT, cortical surface electrodes are used to induce therapeutic seizures whereas ECS in rodents is exclusively performed by auricular or corneal electrodes. However, the stimulation site has a major impact on the type and spread of the induced seizure activity and its antidepressant effect. We propose a method in which ECS is performed by screw electrodes placed above the motor cortex of rats to closely simulate the clinical situation and thereby increase the construct validity of the model. Cortical ECS in rats induced reliably seizures comparable to human ECT. Cortical ECS was more effective than auricular ECS to reduce immobility in the forced swim test. Importantly, auricular stimulation had a negative influence on the general health condition of the rats with signs of fear during the stimulation sessions. These results suggest that auricular ECS in rats is not a suitable ECT model. Cortical ECS in rats promises to be a valid method to mimic ECT. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Diffusion in Brain Extracellular Space

    PubMed Central

    Syková, Eva; Nicholson, Charles

    2009-01-01

    Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is about 20% and the tortuosity about 1.6 (i.e. free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties are valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain. PMID:18923183

  20. Towards the isolation and estimation of elemental carbon in atmospheric aerosols using supercritical fluid extraction and thermo-optical analysis.

    PubMed

    Azeem, Hafiz Abdul; Martinsson, Johan; Stenström, Kristina Eriksson; Swietlicki, Erik; Sandahl, Margareta

    2017-07-01

    Air-starved combustion of biomass and fossil fuels releases aerosols, including airborne carbonaceous particles, causing negative climatic and health effects. Radiocarbon analysis of the elemental carbon (EC) fraction can help apportion sources of its emission, which is greatly constrained by the challenges in isolation of EC from organic compounds in atmospheric aerosols. The isolation of EC using thermo-optical analysis is however biased by the presence of interfering compounds that undergo pyrolysis during the analysis. EC is considered insoluble in all acidic, basic, and organic solvents. Based on the property of insolubility, a sample preparation method using supercritical CO 2 and methanol as co-solvent was developed to remove interfering organic compounds. The efficiency of the method was studied by varying the density of supercritical carbon dioxide by means of temperature and pressure and by varying the methanol content. Supercritical CO 2 with 10% methanol by volume at a temperature of 60 °C, a pressure of 350 bar and 20 min static mode extraction were found to be the most suitable conditions for the removal of 59 ± 3% organic carbon, including compounds responsible for pyrolysis with 78 ± 16% EC recovery. The results indicate that the method has potential for the estimation and isolation of EC from OC for subsequent analysis methods and source apportionment studies.

  1. Earth Observing System Covariance Realism

    NASA Technical Reports Server (NTRS)

    Zaidi, Waqar H.; Hejduk, Matthew D.

    2016-01-01

    The purpose of covariance realism is to properly size a primary object's covariance in order to add validity to the calculation of the probability of collision. The covariance realism technique in this paper consists of three parts: collection/calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics. An empirical cumulative distribution function (ECDF) Goodness-of-Fit (GOF) method is employed to determine if a covariance is properly sized by comparing the empirical distribution of Mahalanobis distance calculations to the hypothesized parent 3-DoF chi-squared distribution. To realistically size a covariance for collision probability calculations, this study uses a state noise compensation algorithm that adds process noise to the definitive epoch covariance to account for uncertainty in the force model. Process noise is added until the GOF tests pass a group significance level threshold. The results of this study indicate that when outliers attributed to persistently high or extreme levels of solar activity are removed, the aforementioned covariance realism compensation method produces a tuned covariance with up to 80 to 90% of the covariance propagation timespan passing (against a 60% minimum passing threshold) the GOF tests-a quite satisfactory and useful result.

  2. Toward finding a universally applicable parameterization of the β factor for Relaxed Eddy Accumulation applications

    NASA Astrophysics Data System (ADS)

    Vogl, Teresa; Hrdina, Amy; Thomas, Christoph

    2016-04-01

    The traditional eddy covariance (EC) technique requires the use of fast responding sensors (≥ 10 Hz) that do not exist for many chemical species found in the atmosphere. In this case, the Relaxed Eddy Accumulation (REA) method offers a means to calculate fluxes of trace gases and other scalar quantities (Businger and Oncley, 1990) and was originally derived from the eddy accumulation method (EA) first proposed by Desjardins (1972). While REA lessens the requirements for sensors and sampling and thus offers practical appeal, it introduces a dependence of the computed flux from a proportionality factor β. The accuracy of the REA fluxes hinges upon the correct determination of β, which was found to vary between 0.40 and 0.63 (Milne et al., 1999, Ammann and Meixner, 2002, Ruppert et al., 2006). However, formulating a universally valid parameterization for β instead of empirical evaluation has remained a conundrum and has been a main limitation for REA. In this study we take a fresh look at the dependencies and mathematical models of β by analyzing eddy covariance (EC) data and REA simulations for two field experiments in drastically contrasting environments: an exclusively physically driven environment in the Dry Valleys of Antarctica, and a biologically active system in a grassland in Germany. The main objective is to work toward a model parameterization for β that can be applied over wide range of surface conditions and forcings without the need for empirical evaluation, which is not possible for most REA applications. Our study discusses two different models to define β: (i) based upon scalar-scalar similarity, in which a different scalar is measured with fast-response sensors as a proxy for the scalar of interest, here referred to as β0; and (ii) computed solely from the vertical wind statistics, assuming a linear relationship between the scalar of interest and the vertical wind speed, referred to as βw. Results are presented for the carbon-dioxide, latent and sensible heat fluxes across the contrasting environments. First, the choice of an appropriate scalar to calculate β0 is discussed considering the sources and sinks of each scalar with an emphasis on the carbon dioxide flux, which shows strongly dissimilar dynamics between the Antarctic ecosystem and the grassland. Secondly, the impact of atmospheric stability on both β models is investigated. In a next step, we attempt to find a physically meaningful explanation for the overestimation of the REA scalar fluxes compared to those from EC for using βw. We do so by analyzing the probability density function (pdf) and its statistical moments for the vertical wind speed. We found its pdf to be non-Gaussian for the majority of cases, and detected a close to linear relationship of its kurtosis with βw. Finally, in an attempt to provide practical guidance for field measurements, we integrate our findings and propose an enhanced model parameterization, and evaluate the differences between our new model and a constant β. Ammann, C. and Meixner, F.X. (2002) Stability dependence of the relaxed eddy accumulation coefficient for various scalar quantities. J. Geophys. Res. 107. ACL7.1-ACL7.9 doi:10.1029/2001JD000649 Businger, J.A., Oncley, S.P. (1990) Flux measurement with conditional sampling. J. Atmos. Ocean. Tech. 7:349-352. Desjardins, R. L. (1972) A study of carbon-dioxide and sensible heat fluxes using the eddy correlation technique, Ph.D. dissertation, Cornell University, 189 pp. Desjardins, R.L. (1977) Description and evaluation of sensible heat flux detector. Boundary-Layer Meteorol. 11:147-154. Katul, G., Finkelstein, P. L., Clarke, J. F., and Ellestad, T. G. (1996) An Investigation of the Conditional Sampling Methods Used to Estimate Fluxes of Active, Reactive and Passive Scalars. J. Appl. Meteorol. 35: 1835-1845. Milne, R., Beverland, I. J., Hargreaves, K., and Moncrieff, J. B. (1999) Variation of the beta coefficient in the relaxed eddy accumulation method. Boundary-Layer Meteorol. 93: 211-225. Ruppert, J. ATEM software for atmospheric turbulent exchange measurements using eddy covariance and relaxed eddy accumulation systems: Bayreuth whole-air REA system setup, Universität Bayreuth, Abt. Mikrometeorologie, Print, ISSN 1614-8916, Arbeitsergebnisse 28, 29 S, 2005 Ruppert, J., Thomas, C., and Foken, T. (2006) scalar similarity for relaxed eddy accumulation methods. Boundary-Layer Meteorol. 120: 39-63.

  3. Organ culture storage of pre-prepared corneal donor material for Descemet's membrane endothelial keratoplasty

    PubMed Central

    Bhogal, Maninder; Matter, Karl; Balda, Maria S; Allan, Bruce D

    2016-01-01

    Purpose To evaluate the effect of media composition and storage method on pre-prepared Descemet's membrane endothelial keratoplasty (DMEK) grafts. Methods 50 corneas were used. Endothelial wound healing and proliferation in different media were assessed using a standard injury model. DMEK grafts were stored using three methods: peeling with free scroll storage; partial peeling with storage on the stroma and fluid bubble separation with storage on the stroma. Endothelial cell (EC) phenotype and the extent of endothelial overgrowth were examined. Global cell viability was assessed for storage methods that maintained a normal cell phenotype. Results 1 mm wounds healed within 4 days. Enhanced media did not increase EC proliferation but may have increased EC migration into the wounded area. Grafts that had been trephined showed evidence of EC overgrowth, whereas preservation of a physical barrier in the bubble group prevented this. In grafts stored in enhanced media or reapposed to the stroma after trephination, endothelial migration occurred sooner and cells underwent endothelial-mesenchymal transformation. Ongoing cell loss, with new patterns of cell death, was observed after returning grafts to storage. Grafts stored as free scrolls retained more viable ECs than grafts prepared with the fluid bubble method (74.2± 3% vs 60.3±6%, p=0.04 (n=8). Conclusion Free scroll storage is superior to liquid bubble and partial peeling techniques. Free scrolls only showed overgrowth of ECs after 4 days in organ culture, indicating a viable time window for the clinical use of pre-prepared DMEK donor material using this method. Methods for tissue preparation and storage media developed for whole corneas should not be used in pre-prepared DMEK grafts without prior evaluation. PMID:27543290

  4. Use of effective contraception 6 months after emergency contraception with a copper intrauterine device or ulipristal acetate - a prospective observational cohort study.

    PubMed

    Envall, Niklas; Groes Kofoed, Nina; Kopp-Kallner, Helena

    2016-08-01

    Emergency contraception must be followed by the use of an effective method of contraception in order to reduce future risk of unintended pregnancies. Provision of long-acting reversible contraception (LARC) is highly effective in this regard. The aim of our study was to compare use of an effective method of contraception 6 months following insertion of a copper intrauterine device (Cu-IUD) or intake of ulipristal acetate (UPA) for emergency contraception (EC). Women (n = 79) presenting with need for EC at an outpatient midwifery clinic chose either Cu-IUD or UPA according to preference. Follow up was 3 and 6 months later through telephone interviews. Primary outcome was use of an effective contraceptive method at the 6-month follow up. Secondary outcomes included use of an effective contraceptive method at 3 months follow up and acceptability of Cu-IUD. A total of 30/36 (83.3%) women who opted for Cu-IUD for EC used an effective contraceptive method 6 months after their first visit compared with 18/31 (58.1%) women who opted for UPA (p = 0.03). In the Cu-IUD group 28/36 (77.8%) were still using Cu-IUD at 6 months and 31/36 (86%) stated that they would recommend the Cu-IUD to others as an EC method. Significantly more women who chose Cu-IUD for EC used an effective method for contraception at the 6-month follow up. The results of this study support increased use of Cu-IUDs for EC. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.

  5. Modelling evapotranspiration using the modified Penman-Monteith equation and MODIS data over the Albany Thicket in South Africa

    NASA Astrophysics Data System (ADS)

    Gwate, O.; Mantel, Sukhmani K.; Palmer, Anthony R.; Gibson, Lesley A.

    2016-10-01

    Evapotranspiration (ET) is one of the least understood components of the water cycle, particularly in data scarce areas. In a context of climate change, evaluating water vapour fluxes of a particular area is crucial to help understand dynamics in water balance. In data scarce areas, ET modelling becomes vital. The study modelled ET using the Penman-Monteith- Leuning (PML) equation forced by Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) and MODIS albedo with ancillary meteorological data from an automatic weather station. The study area is located on the Albany Thicket (AT) biome of South Africa and the dominant plant species is Portulacaria afra. The biggest challenge to the implementation of the PML is the parameterisation of surface and stomatal conductance. We tested the use of volumetric soil water content (fswc), precipitation and equilibrium evaporation ratio (fzhang) and soil drying after precipitation (f) approaches to account for the fraction (f) of evaporation from the soil. ET from the model was validated using an eddy covariance system (EC). Post processing of eddy covariance data was implement using EddyPro software. The fdrying method performed better with a root mean square observations standard deviation ratio (RSR) of 0.97. The results suggest that modelling ET over the AT vegetation is delicate owing to strong vegetation phenological control of the ET process. The convergent evolution of the vegetation has resulted in high plant available water than the model can detect. It is vital to quantify plant available water in order to improve ET modelling in thicket vegetation.

  6. Eddy current loss analysis of open-slot fault-tolerant permanent-magnet machines based on conformal mapping method

    NASA Astrophysics Data System (ADS)

    Ji, Jinghua; Luo, Jianhua; Lei, Qian; Bian, Fangfang

    2017-05-01

    This paper proposed an analytical method, based on conformal mapping (CM) method, for the accurate evaluation of magnetic field and eddy current (EC) loss in fault-tolerant permanent-magnet (FTPM) machines. The aim of modulation function, applied in CM method, is to change the open-slot structure into fully closed-slot structure, whose air-gap flux density is easy to calculate analytically. Therefore, with the help of Matlab Schwarz-Christoffel (SC) Toolbox, both the magnetic flux density and EC density of FTPM machine are obtained accurately. Finally, time-stepped transient finite-element method (FEM) is used to verify the theoretical analysis, showing that the proposed method is able to predict the magnetic flux density and EC loss precisely.

  7. Inversion analysis of estimating interannual variability and its uncertainties in biotic and abiotic parameters of a parsimonious physiologically based model after wind disturbance

    NASA Astrophysics Data System (ADS)

    Toda, M.; Yokozawa, M.; Richardson, A. D.; Kohyama, T.

    2011-12-01

    The effects of wind disturbance on interannual variability in ecosystem CO2 exchange have been assessed in two forests in northern Japan, i.e., a young, even-aged, monocultured, deciduous forest and an uneven-aged mixed forest of evergreen and deciduous trees, including some over 200 years old using eddy covariance (EC) measurements during 2004-2008. The EC measurements have indicated that photosynthetic recovery of trees after a huge typhoon occurred during early September in 2004 activated annual carbon uptake of both forests due to changes in physiological response of tree leaves during their growth stages. However, little have been resolved about what biotic and abiotic factors regulated interannual variability in heat, water and carbon exchange between an atmosphere and forests. In recent years, an inverse modeling analysis has been utilized as a powerful tool to estimate biotic and abiotic parameters that might affect heat, water and CO2 exchange between the atmosphere and forest of a parsimonious physiologically based model. We conducted the Bayesian inverse model analysis for the model with the EC measurements. The preliminary result showed that the above model-derived NEE values were consistent with observed ones on the hourly basis with optimized parameters by Baysian inversion. In the presentation, we would examine interannual variability in biotic and abiotic parameters related to heat, water and carbon exchange between the atmosphere and forests after disturbance by typhoon.

  8. Evaluating Micrometeorological Estimates of Groundwater Discharge from Great Basin Desert Playas.

    PubMed

    Jackson, Tracie R; Halford, Keith J; Gardner, Philip M

    2018-03-06

    Groundwater availability studies in the arid southwestern United States traditionally have assumed that groundwater discharge by evapotranspiration (ET g ) from desert playas is a significant component of the groundwater budget. However, desert playa ET g rates are poorly constrained by Bowen ratio energy budget (BREB) and eddy-covariance (EC) micrometeorological measurement approaches. Best attempts by previous studies to constrain ET g from desert playas have resulted in ET g rates that are within the measurement error of micrometeorological approaches. This study uses numerical models to further constrain desert playa ET g rates that are within the measurement error of BREB and EC approaches, and to evaluate the effect of hydraulic properties and salinity-based groundwater density contrasts on desert playa ET g rates. Numerical models simulated ET g rates from desert playas in Death Valley, California and Dixie Valley, Nevada. Results indicate that actual ET g rates from desert playas are significantly below the uncertainty thresholds of BREB- and EC-based micrometeorological measurements. Discharge from desert playas likely contributes less than 2% of total groundwater discharge from Dixie and Death Valleys, which suggests discharge from desert playas also is negligible in other basins. Simulation results also show that ET g from desert playas primarily is limited by differences in hydraulic properties between alluvial fan and playa sediments and, to a lesser extent, by salinity-based groundwater density contrasts. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  9. Unplanned pregnancy-risks and use of emergency contraception: a survey of two Nigerian Universities.

    PubMed

    Ajayi, Anthony Idowu; Nwokocha, Ezebunwa Ethelbert; Adeniyi, Oladele Vincent; Ter Goon, Daniel; Akpan, Wilson

    2017-06-02

    The vulnerabilities of young women of low socio-economic status and those with little or no formal education tend to dominate the discourse on unplanned pregnancy, unsafe abortion and emergency contraception (EC) in sub-Saharan Africa. This article draws on a survey conducted among female undergraduate students to shed light on sexual behaviour and the dynamics of emergency contraceptive use among this cohort. The survey involved 420 female undergraduate students drawn using a multistage sampling technique, while a self-administered questionnaire was used for data collection. Univariate and bivariate analyses were applied to examine the factors associated with the use of emergency contraception. Of the 176 female students who reported being sexually active in the year preceding the survey, only 38.6% reported the use of condom during the entire year. Of those who reported unplanned pregnancy anxiety n = 94, about 30.1% used EC, 20.4% used non-EC pills as EC, while others reported having used no EC. A few respondents (n = 3) had terminated a pregnancy under unsafe conditions. Awareness of EC (p < 0.001), knowledge of timing of EC (p = 0.001), perceived risk of unplanned pregnancy (p < 0.001), and level of study (p = 0.013), were significantly correlated with the use of EC. The study revealed that educated youths engaged in high-risk sexual activities and also, sought recourse to unproven and unsafe contraceptive methods. Poor knowledge of EC methods and timing of use, as well as wrong perception about EC side effects, are barriers to the utilisation of EC for the prevention of unplanned pregnancy among the study participants.

  10. Exemplary Care as a Mediator of the Effects of Caregiver Subjective Appraisal and Emotional Outcomes

    PubMed Central

    Harris, Grant M.; Durkin, Daniel W.; Allen, Rebecca S.; DeCoster, Jamie; Burgio, Louis D.

    2011-01-01

    Purpose: Exemplary care (EC) is a new construct encompassing care behaviors that warrants further study within stress process models of dementia caregiving. Previous research has examined EC within the context of cognitively intact older adult care recipients (CRs) and their caregivers (CGs). This study sought to expand our knowledge of quality of care by investigating EC within a diverse sample of dementia CGs. Design and Methods: We examined the relation between CG subjective appraisal (daily care bother, burden, and behavioral bother), EC, and CG emotional outcomes (depression and positive aspects of caregiving [PAC]). Specifically, EC was examined as a possible mediator of the effects of CG subjective appraisals on emotional outcomes. Using a bootstrapping method and an SPSS macro developed by Preacher and Hayes (2008 Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models), we tested the indirect effect of EC on the relation between CG subjective appraisals and CG emotional outcomes. Results: Overall, EC partially mediates the relation between the subjective appraisal variables (daily care bother, burden, and behavioral bother) and PAC. Results for depression were similar except that EC did not mediate the relation between burden and depression. This pattern of results varied by race/ethnicity. Implications: Overall, CGs’ perception of providing EC to individuals with dementia partially explains the relation between subjective appraisal and symptoms of depression and PAC. Results of this study suggest that interventions may benefit from training CGs to engage in EC to improve their emotional outcomes and quality of care. PMID:21350038

  11. Velocity profile development for a poultry facility acid scrubber

    USDA-ARS?s Scientific Manuscript database

    Determination of the air velocity profile for 12 experimental configurations (ECs) of an acid scrubber was carried out using an equal area traverse method with a vane axial anemometer. Four velocity profile plots were created for each configuration to determine the four optimal ECs. ECs were selecte...

  12. Water requirements of short rotation poplar coppice: Experimental and modelling analyses across Europe

    DOE PAGES

    Fischer, Milan; Zenone, Terenzio; Trnka, Miroslav; ...

    2017-12-26

    Poplars are among the most widely used short rotation woody coppice (SRWC) species but due to their assumed high water use, concerns have been raised with respect to large-scale exploitation and potentially detrimental effects on water resources. Here we present a quantitative analysis of the water requirements of poplar SRWC using experimental data and a soil water balance modelling approach at three different sites across Europe. We used (i) eddy covariance (EC) measurements (2004–2006) at an irrigated SRWC grown on a previous rice paddy in northern Italy, (ii) Bowen ratio and energy balance (BREB) measurements (2008–2015) and EC (2011–2015) atmore » a SRWC in rain-fed uplands in the Czech Republic, and (iii) EC measurements (2010–2013) at a SRWC on a previous agricultural land with a shallow water table in Belgium. Without any calibration against water balance component measurements, simulations by the newly developed soil water balance model R-4ET were compared with evapotranspiration (ET) measurements by EC and BREB with a resulting mean root mean square error (RMSE) of 0.75 mm day -1. In general, there was better agreement between EC and the model (RMSE = 0.66 mm day -1) when EC data were adjusted for lack of energy balance closure. A comparison of the simulated and measured soil water content yielded a mean RMSE of 0.03 m 3 m -3. The mean annual crop coefficient, i.e. the ratio between actual and reference ET, was 0.82 (ranging from 0.65 to 0.95) while the monthly maxima reached 1.16. These values indicated that ET of poplar SRWC was significantly lower than ET of a well-watered grass cover at the annual time scale, but exceeded ET of the reference cover at shorter time scales during the growing season. We show that the model R-4ET is a simple, yet reliable tool for the assessment of water requirements of existing or planned SRWC. For very simple assessments on an annual basis, using a crop coefficient of 0.86 (adjusted to a sub-humid climate), representing an average value across the three sites in years with no evident drought stress, is supported by this analysis.« less

  13. Water requirements of short rotation poplar coppice: Experimental and modelling analyses across Europe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Milan; Zenone, Terenzio; Trnka, Miroslav

    Poplars are among the most widely used short rotation woody coppice (SRWC) species but due to their assumed high water use, concerns have been raised with respect to large-scale exploitation and potentially detrimental effects on water resources. Here we present a quantitative analysis of the water requirements of poplar SRWC using experimental data and a soil water balance modelling approach at three different sites across Europe. We used (i) eddy covariance (EC) measurements (2004–2006) at an irrigated SRWC grown on a previous rice paddy in northern Italy, (ii) Bowen ratio and energy balance (BREB) measurements (2008–2015) and EC (2011–2015) atmore » a SRWC in rain-fed uplands in the Czech Republic, and (iii) EC measurements (2010–2013) at a SRWC on a previous agricultural land with a shallow water table in Belgium. Without any calibration against water balance component measurements, simulations by the newly developed soil water balance model R-4ET were compared with evapotranspiration (ET) measurements by EC and BREB with a resulting mean root mean square error (RMSE) of 0.75 mm day -1. In general, there was better agreement between EC and the model (RMSE = 0.66 mm day -1) when EC data were adjusted for lack of energy balance closure. A comparison of the simulated and measured soil water content yielded a mean RMSE of 0.03 m 3 m -3. The mean annual crop coefficient, i.e. the ratio between actual and reference ET, was 0.82 (ranging from 0.65 to 0.95) while the monthly maxima reached 1.16. These values indicated that ET of poplar SRWC was significantly lower than ET of a well-watered grass cover at the annual time scale, but exceeded ET of the reference cover at shorter time scales during the growing season. We show that the model R-4ET is a simple, yet reliable tool for the assessment of water requirements of existing or planned SRWC. For very simple assessments on an annual basis, using a crop coefficient of 0.86 (adjusted to a sub-humid climate), representing an average value across the three sites in years with no evident drought stress, is supported by this analysis.« less

  14. A modified approach to estimating sample size for simple logistic regression with one continuous covariate.

    PubMed

    Novikov, I; Fund, N; Freedman, L S

    2010-01-15

    Different methods for the calculation of sample size for simple logistic regression (LR) with one normally distributed continuous covariate give different results. Sometimes the difference can be large. Furthermore, some methods require the user to specify the prevalence of cases when the covariate equals its population mean, rather than the more natural population prevalence. We focus on two commonly used methods and show through simulations that the power for a given sample size may differ substantially from the nominal value for one method, especially when the covariate effect is large, while the other method performs poorly if the user provides the population prevalence instead of the required parameter. We propose a modification of the method of Hsieh et al. that requires specification of the population prevalence and that employs Schouten's sample size formula for a t-test with unequal variances and group sizes. This approach appears to increase the accuracy of the sample size estimates for LR with one continuous covariate.

  15. HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS

    PubMed Central

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2012-01-01

    The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied. PMID:22661790

  16. Electrocoagulation of Palm Oil Mill Effluent

    PubMed Central

    Agustin, Melissa B.; Sengpracha, Waya P.; Phutdhawong, Weerachai

    2008-01-01

    Electrocoagulation (EC) is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME) was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand) was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as well as some of its heavy metal contents. Phenolic compounds are also removed from the effluent. Recovery techniques were employed in the coagulated fraction and the recovered compounds was analysed for antioxidant activity by DPPH method. The isolate was found to have a moderate antioxidant activity. From this investigation, it can be concluded that EC is an efficient method for the treatment of POME. PMID:19139537

  17. Galaxy two-point covariance matrix estimation for next generation surveys

    NASA Astrophysics Data System (ADS)

    Howlett, Cullan; Percival, Will J.

    2017-12-01

    We perform a detailed analysis of the covariance matrix of the spherically averaged galaxy power spectrum and present a new, practical method for estimating this within an arbitrary survey without the need for running mock galaxy simulations that cover the full survey volume. The method uses theoretical arguments to modify the covariance matrix measured from a set of small-volume cubic galaxy simulations, which are computationally cheap to produce compared to larger simulations and match the measured small-scale galaxy clustering more accurately than is possible using theoretical modelling. We include prescriptions to analytically account for the window function of the survey, which convolves the measured covariance matrix in a non-trivial way. We also present a new method to include the effects of super-sample covariance and modes outside the small simulation volume which requires no additional simulations and still allows us to scale the covariance matrix. As validation, we compare the covariance matrix estimated using our new method to that from a brute-force calculation using 500 simulations originally created for analysis of the Sloan Digital Sky Survey Main Galaxy Sample. We find excellent agreement on all scales of interest for large-scale structure analysis, including those dominated by the effects of the survey window, and on scales where theoretical models of the clustering normally break down, but the new method produces a covariance matrix with significantly better signal-to-noise ratio. Although only formally correct in real space, we also discuss how our method can be extended to incorporate the effects of redshift space distortions.

  18. Complementary nonparametric analysis of covariance for logistic regression in a randomized clinical trial setting.

    PubMed

    Tangen, C M; Koch, G G

    1999-03-01

    In the randomized clinical trial setting, controlling for covariates is expected to produce variance reduction for the treatment parameter estimate and to adjust for random imbalances of covariates between the treatment groups. However, for the logistic regression model, variance reduction is not obviously obtained. This can lead to concerns about the assumptions of the logistic model. We introduce a complementary nonparametric method for covariate adjustment. It provides results that are usually compatible with expectations for analysis of covariance. The only assumptions required are based on randomization and sampling arguments. The resulting treatment parameter is a (unconditional) population average log-odds ratio that has been adjusted for random imbalance of covariates. Data from a randomized clinical trial are used to compare results from the traditional maximum likelihood logistic method with those from the nonparametric logistic method. We examine treatment parameter estimates, corresponding standard errors, and significance levels in models with and without covariate adjustment. In addition, we discuss differences between unconditional population average treatment parameters and conditional subpopulation average treatment parameters. Additional features of the nonparametric method, including stratified (multicenter) and multivariate (multivisit) analyses, are illustrated. Extensions of this methodology to the proportional odds model are also made.

  19. Cox regression analysis with missing covariates via nonparametric multiple imputation.

    PubMed

    Hsu, Chiu-Hsieh; Yu, Mandi

    2018-01-01

    We consider the situation of estimating Cox regression in which some covariates are subject to missing, and there exists additional information (including observed event time, censoring indicator and fully observed covariates) which may be predictive of the missing covariates. We propose to use two working regression models: one for predicting the missing covariates and the other for predicting the missing probabilities. For each missing covariate observation, these two working models are used to define a nearest neighbor imputing set. This set is then used to non-parametrically impute covariate values for the missing observation. Upon the completion of imputation, Cox regression is performed on the multiply imputed datasets to estimate the regression coefficients. In a simulation study, we compare the nonparametric multiple imputation approach with the augmented inverse probability weighted (AIPW) method, which directly incorporates the two working models into estimation of Cox regression, and the predictive mean matching imputation (PMM) method. We show that all approaches can reduce bias due to non-ignorable missing mechanism. The proposed nonparametric imputation method is robust to mis-specification of either one of the two working models and robust to mis-specification of the link function of the two working models. In contrast, the PMM method is sensitive to misspecification of the covariates included in imputation. The AIPW method is sensitive to the selection probability. We apply the approaches to a breast cancer dataset from Surveillance, Epidemiology and End Results (SEER) Program.

  20. Knowledge and Usage of Emergency Contraceptives Among University Students in Ghana.

    PubMed

    Darteh, Eugene Kofuor Maafo; Doku, David Teye

    2016-02-01

    Contraceptive use is an important strategy for the prevention of unwanted pregnancy and avoidance of induced abortion. Of all the contraception methods, emergency contraceptive (EC) offers the last chance to achieve this. However, few studies have documented the use of EC among young people in Ghana. This study explored knowledge and usage of EC as well as the factors associated with it among University of Cape Coast students. Data were obtained on the knowledge and usage of ECs among University of Cape Coast students in 2013. Logistic regression analysis was used to investigate the association between students' socio-demographic characteristics and EC knowledge and use. More male students (72%) than females (59%) were sexually active. Fifty-seven percent of the respondents had ever heard of EC and 36% had ever used EC. Although males were more likely to be sexually active, females were more likely to have knowledge of EC use compared to males. The study underscores the need to increase awareness regarding EC among University students in order to offer them the opportunity that EC provides if other forms of contraceptives are missed.

  1. Evanescent wave DNA-aptamer biosensor based on long period gratings for the specific recognition of E. coli outer membrane proteins.

    PubMed

    Queirós, R B; Gouveia, C; Fernandes, J R A; Jorge, P A S

    2014-12-15

    An evanescent wave fiber optic sensor for detection of Escherichia coli (E. coli) outer membranes proteins (EcOMPs) using long period gratings (LPGs) as a refractometric platform is presented. The sensing probes were attained by the functionalization of LPGs inscribed in single mode fiber using two different methods of immobilization; electrostatic assembly and covalent binding. The resulting label-free configuration enabled the specific recognition of EcOMPs in water by monitoring the resonance wavelength shift due to refractive index changes induced by binding events. The sensors displayed linear responses in the range of 0.1 nM to 10 nM EcOMPs with sensitivities of -0.1563±0.005 nm decade(-1) [EcOMP, M] (electrostatic method) and -0.1597±0.004 nm decade(-1) [EcOMP, M] (covalent method). The devices could be regenerated (under low pH conditions) with a deviation less than 0.1% for at least three subsequent detection events. The sensors were also applied to spiked environmental water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Direct Isolation, Culture and Transplant of Mouse Skeletal Muscle Derived Endothelial Cells with Angiogenic Potential

    PubMed Central

    Ieronimakis, Nicholas; Balasundaram, Gayathri; Reyes, Morayma

    2008-01-01

    Background Although diseases associated with microvascular endothelial dysfunction are among the most prevalent illnesses to date, currently no method exists to isolate pure endothelial cells (EC) from skeletal muscle for in vivo or in vitro study. Methodology By utilizing multicolor fluorescent-activated cell sorting (FACS), we have isolated a distinct population of Sca-1+, CD31+, CD34dim and CD45− cells from skeletal muscles of C57BL6 mice. Characterization of this population revealed these cells are functional EC that can be expanded several times in culture without losing their phenotype or capabilities to uptake acetylated low-density lipoprotein (ac-LDL), produce nitric oxide (NO) and form vascular tubes. When transplanted subcutaneously or intramuscularly into the tibialis anterior muscle, EC formed microvessels and integrated with existing vasculature. Conclusion This method, which is highly reproducible, can be used to study the biology and role of EC in diseases such as peripheral vascular disease. In addition this method allows us to isolate large quantities of skeletal muscle derived EC with potential for therapeutic angiogenic applications. PMID:18335025

  3. Evaluation of home allergen sampling devices.

    PubMed

    Sercombe, J K; Liu-Brennan, D; Garcia, M L; Tovey, E R

    2005-04-01

    Simple, inexpensive methods of sampling from allergen reservoirs are necessary for large-scale studies or low-cost householder-operated allergen measurement. We tested two commercial devices: the Indoor Biotechnologies Mitest Dust Collector and the Drager Bio-Check Allergen Control; two devices of our own design: the Electrostatic Cloth Sampler (ECS) and the Press Tape Sampler (PTS); and a Vacuum Sampler as used in many allergen studies (our Reference Method). Devices were used to collect dust mite allergen samples from 16 domestic carpets. Results were examined for correlations between the sampling methods. With mite allergen concentration expressed as microg/g, the Mitest, the ECS and the PTS correlated with the Reference Method but not with each other. When mite allergen concentration was expressed as microg/m2 the Mitest and the ECS correlated with the Reference Method but the PTS did not. In the high allergen conditions of this study, the Drager Bio-Check did not relate to any methods. The Mitest Dust Collector, the ECS and the PTS show performance consistent with the Reference Method. Many techniques can be used to collect dust mite allergen samples. More investigation is needed to prove any method as superior for estimating allergen exposure.

  4. Performance evaluation of multi-material electronic cleansing for ultra-low-dose dual-energy CT colonography

    NASA Astrophysics Data System (ADS)

    Tachibana, Rie; Kohlhase, Naja; Näppi, Janne J.; Hironaka, Toru; Ota, Junko; Ishida, Takayuki; Regge, Daniele; Yoshida, Hiroyuki

    2016-03-01

    Accurate electronic cleansing (EC) for CT colonography (CTC) enables the visualization of the entire colonic surface without residual materials. In this study, we evaluated the accuracy of a novel multi-material electronic cleansing (MUMA-EC) scheme for non-cathartic ultra-low-dose dual-energy CTC (DE-CTC). The MUMA-EC performs a wateriodine material decomposition of the DE-CTC images and calculates virtual monochromatic images at multiple energies, after which a random forest classifier is used to label the images into the regions of lumen air, soft tissue, fecal tagging, and two types of partial-volume boundaries based on image-based features. After the labeling, materials other than soft tissue are subtracted from the CTC images. For pilot evaluation, 384 volumes of interest (VOIs), which represented sources of subtraction artifacts observed in current EC schemes, were sampled from 32 ultra-low-dose DE-CTC scans. The voxels in the VOIs were labeled manually to serve as a reference standard. The metric for EC accuracy was the mean overlap ratio between the labels of the reference standard and the labels generated by the MUMA-EC, a dualenergy EC (DE-EC), and a single-energy EC (SE-EC) scheme. Statistically significant differences were observed between the performance of the MUMA/DE-EC and the SE-EC methods (p<0.001). Visual assessment confirmed that the MUMA-EC generated less subtraction artifacts than did DE-EC and SE-EC. Our MUMA-EC scheme yielded superior performance over conventional SE-EC scheme in identifying and minimizing subtraction artifacts on noncathartic ultra-low-dose DE-CTC images.

  5. Productivity and CO2 exchange of Great Plains ecoregions. I. Shortgrass steppe: Flux tower estimates

    USGS Publications Warehouse

    Gilmanov, Tagir G.; Morgan, Jack A.; Hanan, Niall P.; Wylie, Bruce K.; Rajan, Nithya; Smith, David P.; Howard, Daniel M.

    2017-01-01

    The shortgrass steppe (SGS) occupies the southwestern part of the Great Plains. Half of the land is cultivated, but significant areas remain under natural vegetation. Despite previous studies of the SGS carbon cycle, not all aspects have been completely addressed, including gross productivity, ecosystem respiration, and ecophysiological parameters. Our analysis of 1998 − 2007 flux tower measurements at five Bowen ratio–energy balance (BREB) and three eddy covariance (EC) sites characterized seasonal and interannual variability of gross photosynthesis and ecosystem respiration. Identification of the nonrectangular hyperbolic equation for the diurnal CO2 exchange, with vapor pressure deficit (VPD) limitation and exponential temperature response, quantified quantum yield α, photosynthetic capacity Amax, and respiration rate rd with variation ranges (19 \\< α \\< 51 mmol mol− 1, 0.48 \\< Amax \\< 2.1 mg CO2 m− 2 s− 1, 0.15 \\< rd \\< 0.49 mg CO2 m− 2 s− 1). Gross photosynthesis varied from 1 100 to 2 700 g CO2 m− 2 yr− 1, respiration from 900 to 3,000 g CO2 m− 2 yr− 1, and net ecosystem production from − 900 to + 700 g CO2 m− 2 yr− 1, indicating that SGS may switch from a sink to a source depending on weather. Comparison of the 2004 − 2006 measurements at two BREB and two parallel EC flux towers located at comparable SGS sites showed moderately higher photosynthesis, lower respiration, and higher net production at the BREB than EC sites. However, the difference was not related only to methodologies, as the normalized difference vegetation index at the BREB sites was higher than at the EC sites. Overall magnitudes and seasonal patterns at the BREB and the EC sites during the 3-yr period were similar, with trajectories within the ± 1.5 standard deviation around the mean of the four sites and mostly reflecting the effects of meteorology.

  6. Nitrogen Fertilization Effects on Net Ecosystem and Net Primary Productivities as Determined from Flux Tower, Biometric, and Model Estimates for a Coastal Douglas-fir Forest in British Columbia

    NASA Astrophysics Data System (ADS)

    Trofymow, J. A.; Metsaranta, J. M.; Black, T. A.; Jassal, R. S.; Filipescu, C.

    2013-12-01

    In coastal BC, 6,000-10,000 ha of public and significant areas of private forest land are annually fertilized with nitrogen, with or without thinning, to increase merchantable wood and reduce rotation age. Fertilization has also been viewed as a way to increase carbon (C) sequestration in forests and obtain C offsets. Such offset projects must demonstrate additionality with reference to a baseline and include monitoring to verify net C gains over the project period. Models in combination with field-plot measurements are currently the accepted methods for most C offset protocols. On eastern Vancouver Island, measurements of net ecosystem production (NEP), ecosystem respiration (Re) and gross primary productivity (GPP) using the eddy-covariance (EC) technique as well as component C fluxes and stocks have been made since 1998 in an intermediate-aged Douglas-fir dominated forest planted in 1949. In January 2007 an area around the EC flux tower was aerially fertilized with 200 kg urea-N ha-1. Ground plots in the fertilized area and an adjacent unfertilized control area were also monitored for soil (Rs) and heterotrophic (Rh) respiration, litterfall, and tree growth. To determine fertilization effects on whole tree growth, sample trees were felled in both areas for the 4-year (2003-06) pre- and the 4-year (2007-10) post-fertilization periods and were compared with EC NEP estimates and tree-ring based NEP estimates from Carbon Budget Model - Canadian Forest Sector (CBM-CFS3) for the same periods. Empirical equations using climate and C fluxes from 1998-2006 were derived to estimate what the EC fluxes would have been in 2007-10 for the fertilized area had it been unfertilized. Mean EC NEP for 2007-10 was 561 g C m2 y-1 , a 64% increase above pre-fertilization NEP (341 g C m2 y-1) or 28% increase above estimated unfertilized NEP (438 g C m2 y-1). Most of the increase was attributed to increased tree C uptake (i.e., GPP), with little change in Re. In 2007 fertilization caused a small increase in Rs and litter decay, and a small decrease in Rh. Litterfall rates averaged 100 g C m2 y-1 and did not differ between fertilized and control plots. Stem wood increments for 2007-10 indicated aboveground growth in fertilized trees was 35% greater than in control trees. However this was due to fertilized tree growth being 30% greater and control trees 5% less when compared to growth in the pre-fertilization period. Preliminary examination of root wood increments indicated that the post-fertilization growth was less than pre-fertilization growth, suggesting that the post-fertilization NPP was lower than if just estimated from stem wood. Mean CBM-CFS3 NEP for seven groundplots around the tower were 465 g C m2 y-1 for 2007-10, a 34% increase above pre-fertilization model NEP (347 g C m2 y-1). Using post- and pre-fertilization values, fertilization effects on EC NEP (64%) were nearly twice that of CBM-CFS3 model NEP (34%) or biometric tree growth (30%). However, if fertilized and unfertilized control values for 2007-10 were used; fertilization effects on EC NEP (28%) were comparable to those from biometric tree growth (35%). Results suggest choice of an appropriate baseline will be important in determining the C gains of forest C offset projects.

  7. Influence of advection on measurements of the net ecosystem-atmosphere exchange of CO2 from a very tall tower

    NASA Astrophysics Data System (ADS)

    Yi, C.; Davis, K. J.; Bakwin, P. S.; Berger, B. W.; Marr, L. C.

    2000-04-01

    In most studies of the net ecosystem-atmosphere exchange of CO2 (NEE) using tower-based eddy covariance (EC) systems it has been assumed that advection is negligible. In this study we use a scalar conservation budget method to estimate the contribution of advection to NEE measurements from a very tall tower in northern Wisconsin. We examine data for June-August 1997. Measured NEE0, calculated as the sum of the EC flux plus the rate of change of storage below the EC measurement level, is expected to be constant with measurement height, and we take the differences between levels as a measure of advection. We find that the average difference in total advection ΔFCadtot between 30 and 122 m is as large as 6 μmol m-2s-1 during the morning transition from stable to convective conditions and the average difference ΔFCadtot between 122 and 396 m is as large as 4 μmol m-2s-1 during daytime. For the month of July, advection between 30 and 122 m is 27% of the diurnally integrated NEE0 at 122 m, and advection between 122 and 396 m accounts for 5% of the NEE0 observed at 396 m. The observed differences of advection often have significant correlation with the vertical integral of wind speed within the same layer. This indicates that the horizontal advection contribution to NEE could be significant. Direct observations of the vertical gradient in CO2 show that ΔFCadtot cannot be explained by vertical advection alone. It is hypothesized that differing flux footprints and pooling of CO2 in the heterogeneous landscape causes the advection contribution. The magnitudes of the total advection component FCadtot of NEE at the 30 m level are roughly estimated by a linear extrapolation. A peak in FCadtot at 30 m of ˜ 3 μmol m-2 s-1 during the morning transition is predicted for all three months. The July integrated FCadtot is estimated to be 10% of the diurnally integrated NEE0 at 30 m.

  8. Evaluating the two-source energy balance model using local thermal and surface flux observations in a strongly advective irrigated agricultural area

    NASA Astrophysics Data System (ADS)

    Kustas, William P.; Alfieri, Joseph G.; Anderson, Martha C.; Colaizzi, Paul D.; Prueger, John H.; Evett, Steven R.; Neale, Christopher M. U.; French, Andrew N.; Hipps, Lawrence E.; Chávez, José L.; Copeland, Karen S.; Howell, Terry A.

    2012-12-01

    Application and validation of many thermal remote sensing-based energy balance models involve the use of local meteorological inputs of incoming solar radiation, wind speed and air temperature as well as accurate land surface temperature (LST), vegetation cover and surface flux measurements. For operational applications at large scales, such local information is not routinely available. In addition, the uncertainty in LST estimates can be several degrees due to sensor calibration issues, atmospheric effects and spatial variations in surface emissivity. Time differencing techniques using multi-temporal thermal remote sensing observations have been developed to reduce errors associated with deriving the surface-air temperature gradient, particularly in complex landscapes. The Dual-Temperature-Difference (DTD) method addresses these issues by utilizing the Two-Source Energy Balance (TSEB) model of Norman et al. (1995) [1], and is a relatively simple scheme requiring meteorological input from standard synoptic weather station networks or mesoscale modeling. A comparison of the TSEB and DTD schemes is performed using LST and flux observations from eddy covariance (EC) flux towers and large weighing lysimeters (LYs) in irrigated cotton fields collected during BEAREX08, a large-scale field experiment conducted in the semi-arid climate of the Texas High Plains as described by Evett et al. (2012) [2]. Model output of the energy fluxes (i.e., net radiation, soil heat flux, sensible and latent heat flux) generated with DTD and TSEB using local and remote meteorological observations are compared with EC and LY observations. The DTD method is found to be significantly more robust in flux estimation compared to the TSEB using the remote meteorological observations. However, discrepancies between model and measured fluxes are also found to be significantly affected by the local inputs of LST and vegetation cover and the representativeness of the remote sensing observations with the local flux measurement footprint.

  9. Temporal Variability of Canopy Light Use Efficiency and its Environmental Controls in a Subtropical Mangrove Wetland

    NASA Astrophysics Data System (ADS)

    Zhu, X.

    2016-12-01

    Mangrove wetlands play an important role in global carbon cycle due to their strong carbon sequestration resulting from high plant carbon assimilation and low soil respiration. However, temporal variability of carbon sequestration in mangrove wetlands is less understood since carbon processes of mangrove wetlands are influenced by many complicated and concurrent environmental controls including tidal activities, site climate and soil conditions. Canopy light use efficiency (LUE), is the most important plant physiological parameter that can be used to describe the temporal dynamics of canopy photosynthesis, and therefore a better characterization of temporal variability of canopy LUE will improve our understanding in mangrove photosynthesis and carbon balance. One of our aims is to study the temporal variability of canopy LUE and its environmental controls in a subtropical mangrove wetland. Half-hourly canopy LUE is derived from eddy covariance (EC) carbon flux and photosynthesis active radiation observations, and half-hourly environmental controls we measure include temperature, humidity, precipitation, radiation, tidal height, salinity, etc. Another aim is to explore the links between canopy LUE and spectral indices derived from near-surface tower-based remote sensing (normalized difference vegetation index, enhanced vegetation index, photochemical reflectance index, solar-induced chlorophyll fluorescence, etc.), and then identify potential quantitative relationships for developing remote sensing-based estimation methods of canopy LUE. At present, some instruments in our in-situ observation system have not yet been installed (planned in next months) and therefore we don't have enough measurements to support our analysis. However, a preliminary analysis of our historical EC and climate observations in past several years indicates that canopy LUE shows strong temporal variability and is greatly affected by environmental factors such as tidal activity. Detailed and systematic analyses of temporal variability of canopy LUE and its environmental controls and potential remote sensing estimation methods will be conducted when our in-situ observation system is ready in near future.

  10. When brain neuroscience meets hydrology: timeseries analysis methods for capturing structural and functional aspects of hydrologic connectivity

    NASA Astrophysics Data System (ADS)

    Ali, G.; Rinderer, M.

    2016-12-01

    In hydrology, several connectivity definitions exist that hinder intercomparison between different studies. Yet, consensus exists on the distinction between structural connectivity (i.e., physical adjacency of landscape elements that is thought to influence material transfer) and functional or effective connectivity (i.e., interaction or causality between spatial adjacency characteristics and temporally varying factors, leading to the connected flow of material). While hydrologists have succeeded in deriving measures of structural connectivity (SC), the quantification of functional (FC) or effective connectivity (EC) is elusive. Here we borrowed timeseries analysis methods from brain neuroscience to quantify EC and FC among groundwater (n = 34) and stream discharge (n = 1) monitoring sites in a 20-ha Swiss catchment where topography is assumed to be a major driver of connectivity. Influence maps created from elevation data were used to assess SC. FC was assessed by cross-correlation, total and partial mutual information and EC quantified via total and partial entropy, Granger causality and a phase slope index. Results show that generally, a fair percentage of structural connections were also expressed as functional or effective connections. Some FC and EC measures had clear advantages over others, for instance in terms of making a distinction between Darcian fluxes of water and pressure wave-driven processes. False-positive estimations, i.e., the detection of FC and EC despite the absence of SC, were also encountered and used to invalidate the applicability of some brain-connectivity measures in a hydrological context. While our goal was not to identify the best measure of FC or EC, our study showed that the application of brain neuroscience methods for assessing FC and EC in hydrology was possible as long as SC measures were used as constraints for (or prior beliefs about) the establishment of FC and EC.

  11. Verifying the distributed temperature sensing Bowen ratio method for measuring evaporation

    NASA Astrophysics Data System (ADS)

    Schilperoort, Bart; Coenders-Gerrits, Miriam; Luxemburg, Willem; Cisneros Vaca, César; Ucer, Murat

    2016-04-01

    Evaporation is an important process in the hydrological cycle, therefore measuring evaporation accurately is essential for water resource management, hydrological management and climate change models. Current techniques to measure evaporation, like eddy covariance systems, scintillometers, or lysimeters, have their limitations and therefore cannot always be used to estimate evaporation correctly. Also the conventional Bowen ratio surface energy balance method has as drawback that two sensors are used, which results in large measuring errors. In Euser et al. (2014) a new method was introduced, the DTS-based Bowen ratio (BR-DTS), that overcomes this drawback. It uses a distributed temperature sensing technique (DTS) whereby a fibre optic cable is placed vertically, going up and down along a measurement tower. One stretch of the cable is dry, the other wrapped with cloth and kept wet, akin to a psychrometer. Using this, the wet and dry bulb temperatures are determined every 12.5 cm over the height, from which the Bowen ratio can be determined. As radiation and wind have an effect on the cooling and heating of the cable's sheath as well, the DTS cables do not necessarily always measure dry and wet bulb temperature of the air accurately. In this study the accuracy in representing the dry and wet bulb temperatures of the cable are verified, and evaporation observations of the BR-DTS method are compared to Eddy Covariance (EC) measurements. Two ways to correct for errors due to wind and solar radiation warming up the DTS cables are presented: one for the dry cable and one for the wet cable. The measurements were carried out in a pine forest near Garderen (The Netherlands), along a 46-meter tall scaffold tower (15 meters above the canopy). Both the wet (Twet) and dry (Tdry) temperature of the DTS cable were compared to temperature and humidity (from which Twet is derived) observations from sensors placed along the height of the tower. Underneath the canopy, where there was barely any direct sunlight, the non-corrected temperatures correlated well for both Tdry (R2=0.998) and Twet (R2=0.995). Above the canopy the two temperature corrections worked well Tdry (R2=0.978) and Twet (R2=0.979). The comparison of the latent and sensible heat flux from the BR-DTS and the EC-system was often not possible, due to large energy balance residuals estimated during north-eastern winds (using an averaging interval of 30 minutes). For the limited days with other wind directions the BR-DTS overestimated the latent and sensible heat flux. Additionally, we even found that the applied temperature corrections resulted in a lower performance due to increased uncertainties in the applied corrections. Furthermore, we found that both the corrected and uncorrected DTS-temperatures resulted in rather similar latent and sensible heat fluxes, due to the fact that BR-DTS applies gradients of temperatures over the height, rather than absolute values. Hence, based on our limited data, the correction methods are not recommended if one is interested in the fluxes.

  12. Evaluation of PCR-based methods for the identification of EAggEC in Sprouts

    USDA-ARS?s Scientific Manuscript database

    Introduction: Enteroaggregative E. coli (EAggEC) and Shiga toxin-producing E. coli (STEC) have been recognized worldwide as causes of foodborne gastroenteritis for the past three decades. In 2011 a hemorrhagic EAggEC (EAHEC)O104:H4 strain, having acquired a gene encoding Shiga toxin 2, caused an out...

  13. A simple method for plasma total vitamin C analysis suitable for routine clinical laboratory use.

    PubMed

    Robitaille, Line; Hoffer, L John

    2016-04-21

    In-hospital hypovitaminosis C is highly prevalent but almost completely unrecognized. Medical awareness of this potentially important disorder is hindered by the inability of most hospital laboratories to determine plasma vitamin C concentrations. The availability of a simple, reliable method for analyzing plasma vitamin C could increase opportunities for routine plasma vitamin C analysis in clinical medicine. Plasma vitamin C can be analyzed by high performance liquid chromatography (HPLC) with electrochemical (EC) or ultraviolet (UV) light detection. We modified existing UV-HPLC methods for plasma total vitamin C analysis (the sum of ascorbic and dehydroascorbic acid) to develop a simple, constant-low-pH sample reduction procedure followed by isocratic reverse-phase HPLC separation using a purely aqueous low-pH non-buffered mobile phase. Although EC-HPLC is widely recommended over UV-HPLC for plasma total vitamin C analysis, the two methods have never been directly compared. We formally compared the simplified UV-HPLC method with EC-HPLC in 80 consecutive clinical samples. The simplified UV-HPLC method was less expensive, easier to set up, required fewer reagents and no pH adjustments, and demonstrated greater sample stability than many existing methods for plasma vitamin C analysis. When compared with the gold-standard EC-HPLC method in 80 consecutive clinical samples exhibiting a wide range of plasma vitamin C concentrations, it performed equivalently. The easy set up, simplicity and sensitivity of the plasma vitamin C analysis method described here could make it practical in a normally equipped hospital laboratory. Unlike any prior UV-HPLC method for plasma total vitamin C analysis, it was rigorously compared with the gold-standard EC-HPLC method and performed equivalently. Adoption of this method could increase the availability of plasma vitamin C analysis in clinical medicine.

  14. Open Circuit Resonant (SansEC) Sensor Technology for Lightning Mitigation and Damage Detection and Diagnosis for Composite Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Szatkowski, George N.; Dudley, Kenneth L.; Smith, Laura J.; Wang, Chuantong; Ticatch, Larry A.

    2014-01-01

    Traditional methods to protect composite aircraft from lightning strike damage rely on a conductive layer embedded on or within the surface of the aircraft composite skin. This method is effective at preventing major direct effect damage and minimizes indirect effects to aircraft systems from lightning strike attachment, but provides no additional benefit for the added parasitic weight from the conductive layer. When a known lightning strike occurs, the points of attachment and detachment on the aircraft surface are visually inspected and checked for damage by maintenance personnel to ensure continued safe flight operations. A new multi-functional lightning strike protection (LSP) method has been developed to provide aircraft lightning strike protection, damage detection and diagnosis for composite aircraft surfaces. The method incorporates a SansEC sensor array on the aircraft exterior surfaces forming a "Smart skin" surface for aircraft lightning zones certified to withstand strikes up to 100 kiloamperes peak current. SansEC sensors are open-circuit devices comprised of conductive trace spiral patterns sans (without) electrical connections. The SansEC sensor is an electromagnetic resonator having specific resonant parameters (frequency, amplitude, bandwidth & phase) which when electromagnetically coupled with a composite substrate will indicate the electrical impedance of the composite through a change in its resonant response. Any measureable shift in the resonant characteristics can be an indication of damage to the composite caused by a lightning strike or from other means. The SansEC sensor method is intended to diagnose damage for both in-situ health monitoring or ground inspections. In this paper, the theoretical mathematical framework is established for the use of open circuit sensors to perform damage detection and diagnosis on carbon fiber composites. Both computational and experimental analyses were conducted to validate this new method and system for aircraft composite damage detection and diagnosis. Experimental test results on seeded fault damage coupons and computational modeling simulation results are presented. This paper also presents the shielding effectiveness along with the lightning direct effect test results from several different SansEC LSP and baseline protected and unprotected carbon fiber reinforced polymer (CFRP) test panels struck at 40 and 100 kiloamperes following a universal common practice test procedure to enable damage comparisons between SansEC LSP configurations and common practice copper mesh LSP approaches. The SansEC test panels were mounted in a LSP test bed during the lightning test. Electrical, mechanical and thermal parameters were measured during lightning attachment and are presented with post test nondestructive inspection comparisons. The paper provides correlational results between the SansEC sensors computed electric field distribution and the location of the lightning attachment on the sensor trace and visual observations showing the SansEC sensor's affinity for dispersing the lightning attachment.

  15. [Hormonal (levonorgestrel) emergency contraception--effectiveness and mechanism of action].

    PubMed

    Medard, Lech M; Ostrowska, Lucyna

    2010-07-01

    Periodic abstinence and coitus interruptus are the most popular methods of contraception in Poland. Recent studies have provided us with evidence that the so-called "menstrual calendar" may be much less effective than it was believed. In these circumstances, promotion and use of safe and truly effective contraceptives is very important for Polish women. Emergency contraception (EC) is a method which could be used even in cases when other contraception methods have failed. Mechanism of action of levonorgestrel used for EC and possible disturbances in the process of implantation of the blastocyst in the endometrium, remain the source of heated discussion among medical professionals. The latest publications provide us with evidence that the use of levonorgestrel in EC neither alters endometrial receptivity nor impedes implantation. Hormonal EC effectiveness is another hot topic of gynecological endocrinology and statistics. There is, however, no better, safer, and more ethically accepted method of preventing unwanted pregnancy for patients in need of postcoital contraception.

  16. Stable Estimation of a Covariance Matrix Guided by Nuclear Norm Penalties

    PubMed Central

    Chi, Eric C.; Lange, Kenneth

    2014-01-01

    Estimation of a covariance matrix or its inverse plays a central role in many statistical methods. For these methods to work reliably, estimated matrices must not only be invertible but also well-conditioned. The current paper introduces a novel prior to ensure a well-conditioned maximum a posteriori (MAP) covariance estimate. The prior shrinks the sample covariance estimator towards a stable target and leads to a MAP estimator that is consistent and asymptotically efficient. Thus, the MAP estimator gracefully transitions towards the sample covariance matrix as the number of samples grows relative to the number of covariates. The utility of the MAP estimator is demonstrated in two standard applications – discriminant analysis and EM clustering – in this sampling regime. PMID:25143662

  17. Video based object representation and classification using multiple covariance matrices.

    PubMed

    Zhang, Yurong; Liu, Quan

    2017-01-01

    Video based object recognition and classification has been widely studied in computer vision and image processing area. One main issue of this task is to develop an effective representation for video. This problem can generally be formulated as image set representation. In this paper, we present a new method called Multiple Covariance Discriminative Learning (MCDL) for image set representation and classification problem. The core idea of MCDL is to represent an image set using multiple covariance matrices with each covariance matrix representing one cluster of images. Firstly, we use the Nonnegative Matrix Factorization (NMF) method to do image clustering within each image set, and then adopt Covariance Discriminative Learning on each cluster (subset) of images. At last, we adopt KLDA and nearest neighborhood classification method for image set classification. Promising experimental results on several datasets show the effectiveness of our MCDL method.

  18. Mineral inversion for element capture spectroscopy logging based on optimization theory

    NASA Astrophysics Data System (ADS)

    Zhao, Jianpeng; Chen, Hui; Yin, Lu; Li, Ning

    2017-12-01

    Understanding the mineralogical composition of a formation is an essential key step in the petrophysical evaluation of petroleum reservoirs. Geochemical logging tools can provide quantitative measurements of a wide range of elements. In this paper, element capture spectroscopy (ECS) was taken as an example and an optimization method was adopted to solve the mineral inversion problem for ECS. This method used the converting relationship between elements and minerals as response equations and took into account the statistical uncertainty of the element measurements and established an optimization function for ECS. Objective function value and reconstructed elemental logs were used to check the robustness and reliability of the inversion method. Finally, the inversion mineral results had a good agreement with x-ray diffraction laboratory data. The accurate conversion of elemental dry weights to mineral dry weights formed the foundation for the subsequent applications based on ECS.

  19. Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage

    PubMed Central

    Ganapathy, Vengatesh; Manyanga, Jimmy; Brame, Lacy; McGuire, Dehra; Sadhasivam, Balaji; Floyd, Evan; Rubenstein, David A.; Ramachandran, Ilangovan; Wagener, Theodore

    2017-01-01

    Background Electronic cigarette (EC) aerosols contain unique compounds in addition to toxicants and carcinogens traditionally found in tobacco smoke. Studies are warranted to understand the public health risks of ECs. Objective The aim of this study was to determine the genotoxicity and the mechanisms induced by EC aerosol extracts on human oral and lung epithelial cells. Methods Cells were exposed to EC aerosol or mainstream smoke extracts and DNA damage was measured using the primer anchored DNA damage detection assay (q-PADDA) and 8-oxo-dG ELISA assay. Cell viability, reactive oxygen species (ROS) and total antioxidant capacity (TAC) were measured using standard methods. mRNA and protein expression were evaluated by RT-PCR and western blot, respectively. Results EC aerosol extracts induced DNA damage in a dose-dependent manner, but independently of nicotine concentration. Overall, EC aerosol extracts induced significantly less DNA damage than mainstream smoke extracts, as measured by q-PADDA. However, the levels of oxidative DNA damage, as indicated by the presence of 8-oxo-dG, a highly mutagenic DNA lesion, were similar or slightly higher after exposure to EC aerosol compared to mainstream smoke extracts. Mechanistically, while exposure to EC extracts significantly increased ROS, it decreased TAC as well as the expression of 8-oxoguanine DNA glycosylase (OGG1), an enzyme essential for the removal of oxidative DNA damage. Conclusions Exposure to EC aerosol extracts suppressed the cellular antioxidant defenses and led to significant DNA damage. These findings emphasize the urgent need to investigate the potential long-term cancer risk of exposure to EC aerosol for vapers and the general public. PMID:28542301

  20. Synthesis of linear regression coefficients by recovering the within-study covariance matrix from summary statistics.

    PubMed

    Yoneoka, Daisuke; Henmi, Masayuki

    2017-06-01

    Recently, the number of regression models has dramatically increased in several academic fields. However, within the context of meta-analysis, synthesis methods for such models have not been developed in a commensurate trend. One of the difficulties hindering the development is the disparity in sets of covariates among literature models. If the sets of covariates differ across models, interpretation of coefficients will differ, thereby making it difficult to synthesize them. Moreover, previous synthesis methods for regression models, such as multivariate meta-analysis, often have problems because covariance matrix of coefficients (i.e. within-study correlations) or individual patient data are not necessarily available. This study, therefore, proposes a brief explanation regarding a method to synthesize linear regression models under different covariate sets by using a generalized least squares method involving bias correction terms. Especially, we also propose an approach to recover (at most) threecorrelations of covariates, which is required for the calculation of the bias term without individual patient data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Simultaneous determination of ethyl carbamate and 4-(5-)methylimidazole in yellow rice wine and soy sauce by gas chromatography with mass spectrometry.

    PubMed

    Wu, Pinggu; Zhang, Liqun; Wang, Liyuan; Zhang, Jing; Tan, Ying; Tang, Jun; Ma, Bingjie; Pan, Xiaodong; Jiang, Wei

    2014-08-01

    We developed a new method, based on alkaline diatomite solid-phase extraction followed by gas chromatography with mass spectrometry, for the simultaneous determination of the toxic contaminants ethyl carbamate (EC) and 4-(5-)methylimidazole (4-MEI) in yellow rice wine and soy sauce. The optimal extraction conditions were defined. With the application of alkaline diatomite solid-phase extraction, damage to the capillary column by organic acids was greatly reduced. With deuterated EC used as the internal standard, the linearity of the calibration curves for EC and 4-MEI was good with correlation coefficient above 0.99. In a spiked experiment with EC and 4-MEI in yellow rice wine and soy sauce, recovery of the added EC was 80.5-102.5% and that of 4-MEI was 78.3-92.8%. The limit of quantification and limit of detection for EC were 6.0 and 2.0 μg/kg, respectively, and for 4-MEI were 15.0 and 5.0 μg/kg, respectively. The validation results demonstrate that the method is fast, simple, and selective, and therefore is suitable for simultaneously determining the presence of EC and 4-MEI in fermented food. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California

    NASA Astrophysics Data System (ADS)

    Na, Kwangsam; Sawant, Aniket A.; Song, Chen; Cocker, David R.

    Elemental carbon (EC), organic carbon (OC) and PM 2.5 mass concentrations were measured from September 2001 through January 2002 in Mira Loma, CA. EC and OC were analyzed using the NIOSH (National Institute of Occupational Safety and Health) 5040 thermal/optical transmittance method. OC concentrations in Mira Loma were found to be higher than those of other urban sites in the South Coast Air Basin (SoCAB), while EC concentrations were comparable to or lower than those of other SoCAB sites. Overall, OC and EC concentrations accounted for 26% and 5% of the total PM 2.5, respectively. OC/EC ratios ranged from 1.6 to 12.8 with an average of 5.2. These values were higher than those observed at other urban sites in the United States by a factor of 2. A stronger correlation between suspended OC and EC concentrations was noted in months with lower photochemical activity (December and January, r=0.82) than in months with greater photochemical activity (September and October, r=0.64). The elevated levels of OC, OC/EC ratios, and the seasonal difference in correlation between OC and EC concentrations were attributed in part to significant secondary organic aerosol formation. The fraction of total organic carbon that was secondary organic carbon (SOC) was estimated using the OC/EC minimum ratio method and Chemical Mass Balance (CMB) modeling. Based on the OC/EC minimum ratio method, the contribution of SOC to the total organic carbon tended to be higher during the months with greater photochemical activity (63%) than those with lower photochemical activity (44%). Based on CMB modeling, SOC contributed to 14% of the total PM 2.5 mass and 57% of the total organic carbon during the study period. Overall, these findings suggest that photochemical activity can appreciably affect total PM 2.5 mass concentrations in Mira Loma, and that measures to control emissions of SOC precursors incorporated as part of a region-wide air quality management plan could lead to a perceptible drop in total PM 2.5 mass concentrations in this area.

  3. Prospective and retrospective high order eddy current mitigation for diffusion weighted echo planar imaging.

    PubMed

    Xu, Dan; Maier, Joseph K; King, Kevin F; Collick, Bruce D; Wu, Gaohong; Peters, Robert D; Hinks, R Scott

    2013-11-01

    The proposed method is aimed at reducing eddy current (EC) induced distortion in diffusion weighted echo planar imaging, without the need to perform further image coregistration between diffusion weighted and T2 images. These ECs typically have significant high order spatial components that cannot be compensated by preemphasis. High order ECs are first calibrated at the system level in a protocol independent fashion. The resulting amplitudes and time constants of high order ECs can then be used to calculate imaging protocol specific corrections. A combined prospective and retrospective approach is proposed to apply correction during data acquisition and image reconstruction. Various phantom, brain, body, and whole body diffusion weighted images with and without the proposed method are acquired. Significantly reduced image distortion and misregistration are consistently seen in images with the proposed method compared with images without. The proposed method is a powerful (e.g., effective at 48 cm field of view and 30 cm slice coverage) and flexible (e.g., compatible with other image enhancements and arbitrary scan plane) technique to correct high order ECs induced distortion and misregistration for various diffusion weighted echo planar imaging applications, without the need for further image post processing, protocol dependent prescan, or sacrifice in signal-to-noise ratio. Copyright © 2013 Wiley Periodicals, Inc.

  4. Common genetic variants in the 9p21 region and their associations with multiple tumours.

    PubMed

    Gu, F; Pfeiffer, R M; Bhattacharjee, S; Han, S S; Taylor, P R; Berndt, S; Yang, H; Sigurdson, A J; Toro, J; Mirabello, L; Greene, M H; Freedman, N D; Abnet, C C; Dawsey, S M; Hu, N; Qiao, Y-L; Ding, T; Brenner, A V; Garcia-Closas, M; Hayes, R; Brinton, L A; Lissowska, J; Wentzensen, N; Kratz, C; Moore, L E; Ziegler, R G; Chow, W-H; Savage, S A; Burdette, L; Yeager, M; Chanock, S J; Chatterjee, N; Tucker, M A; Goldstein, A M; Yang, X R

    2013-04-02

    The chromosome 9p21.3 region has been implicated in the pathogenesis of multiple cancers. We systematically examined up to 203 tagging SNPs of 22 genes on 9p21.3 (19.9-32.8 Mb) in eight case-control studies: thyroid cancer, endometrial cancer (EC), renal cell carcinoma, colorectal cancer (CRC), colorectal adenoma (CA), oesophageal squamous cell carcinoma (ESCC), gastric cardia adenocarcinoma and osteosarcoma (OS). We used logistic regression to perform single SNP analyses for each study separately, adjusting for study-specific covariates. We combined SNP results across studies by fixed-effect meta-analyses and a newly developed subset-based statistical approach (ASSET). Gene-based P-values were obtained by the minP method using the Adaptive Rank Truncated Product program. We adjusted for multiple comparisons by Bonferroni correction. Rs3731239 in cyclin-dependent kinase inhibitors 2A (CDKN2A) was significantly associated with ESCC (P=7 × 10(-6)). The CDKN2A-ESCC association was further supported by gene-based analyses (Pgene=0.0001). In the meta-analyses by ASSET, four SNPs (rs3731239 in CDKN2A, rs615552 and rs573687 in CDKN2B and rs564398 in CDKN2BAS) showed significant associations with ESCC and EC (P<2.46 × 10(-4)). One SNP in MTAP (methylthioadenosine phosphorylase) (rs7023329) that was previously associated with melanoma and nevi in multiple genome-wide association studies was associated with CRC, CA and OS by ASSET (P=0.007). Our data indicate that genetic variants in CDKN2A, and possibly nearby genes, may be associated with ESCC and several other tumours, further highlighting the importance of 9p21.3 genetic variants in carcinogenesis.

  5. From Sub-basin to Grid Scale Soil Moisture Disaggregation in SMART, A Semi-distributed Hydrologic Modeling Framework

    NASA Astrophysics Data System (ADS)

    Ajami, H.; Sharma, A.

    2016-12-01

    A computationally efficient, semi-distributed hydrologic modeling framework is developed to simulate water balance at a catchment scale. The Soil Moisture and Runoff simulation Toolkit (SMART) is based upon the delineation of contiguous and topologically connected Hydrologic Response Units (HRUs). In SMART, HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are distributed cross sections or equivalent cross sections (ECS) delineated in first order sub-basins. ECSs are formulated by aggregating topographic and physiographic properties of the part or entire first order sub-basins to further reduce computational time in SMART. Previous investigations using SMART have shown that temporal dynamics of soil moisture are well captured at a HRU level using the ECS delineation approach. However, spatial variability of soil moisture within a given HRU is ignored. Here, we examined a number of disaggregation schemes for soil moisture distribution in each HRU. The disaggregation schemes are either based on topographic based indices or a covariance matrix obtained from distributed soil moisture simulations. To assess the performance of the disaggregation schemes, soil moisture simulations from an integrated land surface-groundwater model, ParFlow.CLM in Baldry sub-catchment, Australia are used. ParFlow is a variably saturated sub-surface flow model that is coupled to the Common Land Model (CLM). Our results illustrate that the statistical disaggregation scheme performs better than the methods based on topographic data in approximating soil moisture distribution at a 60m scale. Moreover, the statistical disaggregation scheme maintains temporal correlation of simulated daily soil moisture while preserves the mean sub-basin soil moisture. Future work is focused on assessing the performance of this scheme in catchments with various topographic and climate settings.

  6. Evaluation of Approaches to Deal with Low-Frequency Nuisance Covariates in Population Pharmacokinetic Analyses.

    PubMed

    Lagishetty, Chakradhar V; Duffull, Stephen B

    2015-11-01

    Clinical studies include occurrences of rare variables, like genotypes, which due to their frequency and strength render their effects difficult to estimate from a dataset. Variables that influence the estimated value of a model-based parameter are termed covariates. It is often difficult to determine if such an effect is significant, since type I error can be inflated when the covariate is rare. Their presence may have either an insubstantial effect on the parameters of interest, hence are ignorable, or conversely they may be influential and therefore non-ignorable. In the case that these covariate effects cannot be estimated due to power and are non-ignorable, then these are considered nuisance, in that they have to be considered but due to type 1 error are of limited interest. This study assesses methods of handling nuisance covariate effects. The specific objectives include (1) calibrating the frequency of a covariate that is associated with type 1 error inflation, (2) calibrating its strength that renders it non-ignorable and (3) evaluating methods for handling these non-ignorable covariates in a nonlinear mixed effects model setting. Type 1 error was determined for the Wald test. Methods considered for handling the nuisance covariate effects were case deletion, Box-Cox transformation and inclusion of a specific fixed effects parameter. Non-ignorable nuisance covariates were found to be effectively handled through addition of a fixed effect parameter.

  7. Evaluation of the lactose Tergitol-7, m-Endo LES, Colilert 18, Readycult Coliforms 100, Water-Check-100, 3M Petrifilm EC and DryCult Coliform test methods for detection of total coliforms and Escherichia coli in water samples.

    PubMed

    Hörman, Ari; Hänninen, Marja-Liisa

    2006-10-01

    In this study we compared the reference membrane filtration (MF) lactose Tergitol-7 (LTTC) method ISO 9308-1:2000 with the MF m-Endo LES method SFS 3016:2001, the defined substrate chromogenic/fluorogenic Colilert 18, Readycult Coliforms and Water Check methods, and ready-made culture media, 3M Petrifilm EC and DryCult Coli methods for the detection of coliforms and Escherichia coli in various water samples. When the results of E. coli detection were compared between test methods, the highest agreement (both tests negative or positive) with the LTTC method was calculated for the m-Endo LES method (83.6%), followed by Colilert 18 (82.7%), Water-Check (81.8%) and Readycult (78.4%), whereas Petrifilm EC (70.6%) and DryCult Coli (68.9%) showed the weakest agreement. The m-Endo LES method was the only method showing no statistical difference in E. coli counts compared with the LTTC method, whereas the Colilert 18 and Readycult methods gave significantly higher counts for E. coli than the LTTC method. In general, those tests based on the analysis of a 1-ml sample (Petrifilm EC and DryCult Coli) showed weak sensitivity (39.5-52.5%) but high specificity (90.9-78.8%).

  8. Accuracy of the energy-corrected sudden (ECS) scaling procedure for rotational excitation of CO by collisions with Ar

    NASA Technical Reports Server (NTRS)

    Green, S.; Cochrane, D. L.; Truhlar, D. G.

    1986-01-01

    The utility of the energy-corrected sudden (ECS) scaling method is evaluated on the basis of how accurately it predicts the entire matrix of state-to-state rate constants, when the fundamental rate constants are independently known. It is shown for the case of Ar-CO collisions at 500 K that when a critical impact parameter is about 1.75-2.0 A, the ECS method yields excellent excited state rates on the average and has an rms error of less than 20 percent.

  9. Large and Small Scale Nitrogen and Phosporous Manipulation Experiment in a Tree-Grass Ecosystem: first year of results

    NASA Astrophysics Data System (ADS)

    Migliavacca, Mirco; Perez Priego, Oscar; El-Madany, Tarek; Guan, JinHong; Carrara, Arnaud; Fava, Francesco; Moreno, Gerardo; Kolle, Olaf; Rossini, Micol; Schrumpf, Marion; Julitta, Tommaso; Reichstein, Markus

    2015-04-01

    Recent studies have shown how human induced N/P imbalances affect essential ecosystem processes (e.g. photosynthesis, plant growth rate, respiration), and might be particularly important in water-limited ecosystems. In this contribution we will present the experimental design and the results of the first year of two nutrient manipulation experiments conducted at different spatial scale. In the first experiment a cluster of 2 eddy covariance (EC) flux towers has been set up beside a long-term EC site (Las Majadas del Tietar, Spain). Sites are selected in a way to have similar nutrient conditions, canopy structure, and stoichiometry of the different vegetation and soil pools. Two of the three footprints will be manipulated with addition of N and NP fertilizer at the beginning of 2015. The comparison of the three EC flux towers installed during the first year of the experiment (without fertilization) will be shown. We characterized the differences of the responses of carbon and water fluxes measured by the EC systems to environmental drivers, and structural and biophysical properties of the canopy. The second experiment was conducted over a Mediterranean grassland, where 16 plots of 10x10 meters that were manipulated by adding nutrient (N, P, and NP). The overall objective was to investigate the response of the gross primary productivity (GPP), assessed by using transparent transient-state canopy chambers, to different nutrient availability. The second objective was to evaluate the capability of hyperspectral data and Solar induced fluorescence to track short- and long-term GPP and light use efficiency variation under different N and P fertilization treatments. Spectral vegetation indices (VIs) were acquired manually using high resolution spectrometers (HR4000, OceanOptics, USA) along a phenological cycle. The VIs used included photochemical reflectance index (PRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI). Solar-induced chlorophyll fluorescence calculated at the oxygen absorption band O2-A (F760) using spectral fitting methods was also used. The results showed significant differences (p<0.05) in midday GPP values between N and without N addition plots. While NDVI did not show any significant difference between treatments, VIs sensitive to pigment variations and physiology (PRI, MTCI) and F760 showed differences between different treatments. Different formulations of Light Use Efficiency (LUE) modelling approaches were applied and the results indicated that the use of LUE models based on VIs related to physiology and fluorescence are key to account for nutrient availability in LUE models and to better predict GPP.

  10. Lipid Droplet Biogenesis and Function in the Endothelium

    PubMed Central

    Kuo, Andrew; Lee, Monica Y.; Sessa, William C.

    2017-01-01

    Rationale Fatty acids (FA) are transported across the capillary endothelium to parenchymal tissues. However, it is not known how endothelial cells (EC) process a post-prandial surge of FA. Objective This study was designed to characterize lipid droplet (LD) formation and function in EC. Methods and Results LD form and degrade in EC in vivo after FA loading. In cultured EC, LD synthesis and turnover is dynamic and function to protect EC from lipotoxic stress and provide FA for metabolic needs. Conclusions Our results delineate endothelial LD dynamics for the first time, demonstrating their protective role in lipotoxicity, FA utilization and mobilization. PMID:28119423

  11. WhiteRef: a new tower-based hyperspectral system for continuous reflectance measurements.

    PubMed

    Sakowska, Karolina; Gianelle, Damiano; Zaldei, Alessandro; MacArthur, Alasdair; Carotenuto, Federico; Miglietta, Franco; Zampedri, Roberto; Cavagna, Mauro; Vescovo, Loris

    2015-01-08

    Proximal sensing is fundamental to monitor the spatial and seasonal dynamics of ecosystems and can be considered as a crucial validation tool to upscale in situ observations to the satellite level. Linking hyperspectral remote sensing with carbon fluxes and biophysical parameters is critical to allow the exploitation of spatial and temporal extensive information for validating model simulations at different scales. In this study, we present the WhiteRef, a new hyperspectral system designed as a direct result of the needs identified during the EUROSPEC ES0903 Cost Action, and developed by Fondazione Edmund Mach and the Institute of Biometeorology, CNR, Italy. The system is based on the ASD FieldSpec Pro spectroradiometer and was designed to acquire continuous radiometric measurements at the Eddy Covariance (EC) towers and to fill a gap in the scientific community: in fact, no system for continuous spectral measurements in the Short Wave Infrared was tested before at the EC sites. The paper illustrates the functioning of the WhiteRef and describes its main advantages and disadvantages. The WhiteRef system, being based on a robust and high quality commercially available instrument, has a clear potential for unattended continuous measurements aiming at the validation of satellites' vegetation products.

  12. Emergency contraception in Honduras: knowledge, attitudes, and practice among urban family planning clients.

    PubMed

    García, Sandra G; Lara, Diana; Landis, Sarah H; Yam, Eileen A; Pavón, Suyapa

    2006-09-01

    Emergency contraception (EC) has the potential to improve women's reproductive health significantly. In Honduras, where nearly one-fourth of pregnancies are unplanned, the need for EC is substantial. To increase awareness of this option, nongovernmental organizations launched countrywide EC outreach activities in 2001-03. We conducted pre- and postintervention cross-sectional surveys among a total of 2,693 family planning clinic clients to assess EC knowledge, attitudes, and practice at baseline and at two years postintroduction. EC awareness increased over time, but remained at just 20 percent at follow-up. Respondents generally demonstrated a positive attitude and low rates of concern about EC. Awareness of and willingness to use EC were strongly associated with age, educational status, and city of residence. Public-sector acceptance of the method is essential to increase awareness of and access to EC. This study is intended to fill an information gap regarding EC in Latin America and the Caribbean and to be useful in determining educational messages and target audiences for future awareness campaigns in Honduras.

  13. Companies commit to emergency contraception -- have you?

    PubMed

    1999-12-01

    Despite the efforts of the medical community, as well as promotional efforts by pharmaceutical companies, relatively few women in the US have heard of emergency contraceptives (ECs). Gynetics, marketer of Preven, plans to file a new drug application for a levonorgestrel EC by the end of 1999, with an anticipated approval in the second half of 2000. Women's Capital Corp., marketer of Plan B, is also aiming for a national commercial launch of its product. According to a recently published acceptability study, women will use ECs when they are made available. A survey among 235 women at 13 Kaiser Permanente medical offices in San Diego, California, regarding their experiences with ECs showed that 91% were satisfied with ECs, and 97% said they would use ECs for emergencies only--dispelling fears that women would forego use of ongoing contraception. About 70% of the women who participated in the study were using a contraceptive method when they requested ECs.

  14. The influence of temperature calibration on the OC-EC results from a dual-optics thermal carbon analyzer

    NASA Astrophysics Data System (ADS)

    Pavlovic, J.; Kinsey, J. S.; Hays, M. D.

    2014-09-01

    Thermal-optical analysis (TOA) is a widely used technique that fractionates carbonaceous aerosol particles into organic and elemental carbon (OC and EC), or carbonate. Thermal sub-fractions of evolved OC and EC are also used for source identification and apportionment; thus, oven temperature accuracy during TOA analysis is essential. Evidence now indicates that the "actual" sample (filter) temperature and the temperature measured by the built-in oven thermocouple (or set-point temperature) can differ by as much as 50 °C. This difference can affect the OC-EC split point selection and consequently the OC and EC fraction and sub-fraction concentrations being reported, depending on the sample composition and in-use TOA method and instrument. The present study systematically investigates the influence of an oven temperature calibration procedure for TOA. A dual-optical carbon analyzer that simultaneously measures transmission and reflectance (TOT and TOR) is used, functioning under the conditions of both the National Institute of Occupational Safety and Health Method 5040 (NIOSH) and Interagency Monitoring of Protected Visual Environment (IMPROVE) protocols. The application of the oven calibration procedure to our dual-optics instrument significantly changed NIOSH 5040 carbon fractions (OC and EC) and the IMPROVE OC fraction. In addition, the well-known OC-EC split difference between NIOSH and IMPROVE methods is even further perturbed following the instrument calibration. Further study is needed to determine if the widespread application of this oven temperature calibration procedure will indeed improve accuracy and our ability to compare among carbonaceous aerosol studies that use TOA.

  15. Nicotine, aerosol particles, carbonyls and volatile organic compounds in tobacco- and menthol-flavored e-cigarettes.

    PubMed

    Lee, Mi-Sun; LeBouf, Ryan F; Son, Youn-Suk; Koutrakis, Petros; Christiani, David C

    2017-04-27

    We aimed to assess the content of electronic cigarette (EC) emissions for five groups of potentially toxic compounds that are known to be present in tobacco smoke: nicotine, particles, carbonyls, volatile organic compounds (VOCs), and trace elements by flavor and puffing time. We used ECs containing a common nicotine strength (1.8%) and the most popular flavors, tobacco and menthol. An automatic multiple smoking machine was used to generate EC aerosols under controlled conditions. Using a dilution chamber, we targeted nicotine concentrations similar to that of exposure in a general indoor environment. The selected toxic compounds were extracted from EC aerosols into a solid or liquid phase and analyzed with chromatographic and spectroscopic methods. We found that EC aerosols contained toxic compounds including nicotine, fine and nanoparticles, carbonyls, and some toxic VOCs such as benzene and toluene. Higher mass and number concentrations of aerosol particles were generated from tobacco-flavored ECs than from menthol-flavored ECs. We found that diluted machine-generated EC aerosols contain some pollutants. These findings are limited by the small number of ECs tested and the conditions of testing. More comprehensive research on EC exposure extending to more brands and flavor compounds is warranted.

  16. Computed tomography detection of extracapsular spread of squamous cell carcinoma of the head and neck in metastatic cervical lymph nodes.

    PubMed

    Carlton, Joshua A; Maxwell, Adam W; Bauer, Lyndsey B; McElroy, Sara M; Layfield, Lester J; Ahsan, Humera; Agarwal, Ajay

    2017-06-01

    Background and purpose In patients with squamous cell carcinoma of the head and neck (HNSCC), extracapsular spread (ECS) of metastases in cervical lymph nodes affects prognosis and therapy. We assessed the accuracy of intravenous contrast-enhanced computed tomography (CT) and the utility of imaging criteria for preoperative detection of ECS in metastatic cervical lymph nodes in patients with HNSCC. Materials and methods Preoperative intravenous contrast-enhanced neck CT images of 93 patients with histopathological HNSCC metastatic nodes were retrospectively assessed by two neuroradiologists for ECS status and ECS imaging criteria. Radiological assessments were compared with histopathological assessments of neck dissection specimens, and interobserver agreement of ECS status and ECS imaging criteria were measured. Results Sensitivity, specificity, positive predictive value, and accuracy for overall ECS assessment were 57%, 81%, 82% and 67% for observer 1, and 66%, 76%, 80% and 70% for observer 2, respectively. Correlating three or more ECS imaging criteria with histopathological ECS increased specificity and positive predictive value, but decreased sensitivity and accuracy. Interobserver agreement for overall ECS assessment demonstrated a kappa of 0.59. Central necrosis had the highest kappa of 0.74. Conclusion CT has moderate specificity for ECS assessment in HNSCC metastatic cervical nodes. Identifying three or more ECS imaging criteria raises specificity and positive predictive value, therefore preoperative identification of multiple criteria may be clinically useful. Interobserver agreement is moderate for overall ECS assessment, substantial for central necrosis. Other ECS CT criteria had moderate agreement at best and therefore should not be used individually as criteria for detecting ECS by CT.

  17. Evaluating the role of phase I expansion cohorts in oncologic drug development.

    PubMed

    Norris, Robin E; Behtaj, Mohadese; Fu, Pingfu; Dowlati, Afshin

    2017-02-01

    Importance Use of expansion cohorts (EC) in phase I trials is increasing. However, the utility of phase I EC in aiding drug development is unclear. We sought to determine factors associated with the inclusion of EC in phase I studies and the impact of EC on subsequent clinical development. Methods We performed a systematic review of all phase I trials published in the Journal of Clinical Oncology between June 2004 and May 2014. Presence of an EC, number of participants, funding source, class of agent, tumor type, and maximum tolerated dose (MTD)/recommended phase 2 dose (RP2D) were identified. Subsequent conduct of phase II studies and FDA approval of the study agent was also assessed. Results We identified 252 phase I studies. An EC was included in 105 studies. Average accrual on EC studies was 47 compared to 31 in studies without EC (p < 0.0001). There was no impact of time on the inclusion of EC. Only 4 % of phase I studies with an EC provided sample size justification. Source of funding had the only significant association with inclusion of EC. Addition of a phase I EC did not impact the phase I MTD/RP2D, subsequent phase II trial, or FDA approval. Conclusion The importance of including an EC in phase I trials is subject to ongoing debate. Our results demonstrated little benefit to including EC in phase I studies. These findings support that innovative design strategies are needed to optimize the utility of EC in phase I studies.

  18. Noise covariance incorporated MEG-MUSIC algorithm: a method for multiple-dipole estimation tolerant of the influence of background brain activity.

    PubMed

    Sekihara, K; Poeppel, D; Marantz, A; Koizumi, H; Miyashita, Y

    1997-09-01

    This paper proposes a method of localizing multiple current dipoles from spatio-temporal biomagnetic data. The method is based on the multiple signal classification (MUSIC) algorithm and is tolerant of the influence of background brain activity. In this method, the noise covariance matrix is estimated using a portion of the data that contains noise, but does not contain any signal information. Then, a modified noise subspace projector is formed using the generalized eigenvectors of the noise and measured-data covariance matrices. The MUSIC localizer is calculated using this noise subspace projector and the noise covariance matrix. The results from a computer simulation have verified the effectiveness of the method. The method was then applied to source estimation for auditory-evoked fields elicited by syllable speech sounds. The results strongly suggest the method's effectiveness in removing the influence of background activity.

  19. Adapting Covariance Propagation to Account for the Presence of Modeled and Unmodeled Maneuvers

    NASA Technical Reports Server (NTRS)

    Schiff, Conrad

    2006-01-01

    This paper explores techniques that can be used to adapt the standard linearized propagation of an orbital covariance matrix to the case where there is a maneuver and an associated execution uncertainty. A Monte Carlo technique is used to construct a final orbital covariance matrix for a 'prop-burn-prop' process that takes into account initial state uncertainty and execution uncertainties in the maneuver magnitude. This final orbital covariance matrix is regarded as 'truth' and comparisons are made with three methods using modified linearized covariance propagation. The first method accounts for the maneuver by modeling its nominal effect within the state transition matrix but excludes the execution uncertainty by omitting a process noise matrix from the computation. The second method does not model the maneuver but includes a process noise matrix to account for the uncertainty in its magnitude. The third method, which is essentially a hybrid of the first two, includes the nominal portion of the maneuver via the state transition matrix and uses a process noise matrix to account for the magnitude uncertainty. The first method is unable to produce the final orbit covariance except in the case of zero maneuver uncertainty. The second method yields good accuracy for the final covariance matrix but fails to model the final orbital state accurately. Agreement between the simulated covariance data produced by this method and the Monte Carlo truth data fell within 0.5-2.5 percent over a range of maneuver sizes that span two orders of magnitude (0.1-20 m/s). The third method, which yields a combination of good accuracy in the computation of the final covariance matrix and correct accounting for the presence of the maneuver in the nominal orbit, is the best method for applications involving the computation of times of closest approach and the corresponding probability of collision, PC. However, applications for the two other methods exist and are briefly discussed. Although the process model ("prop-burn-prop") that was studied is very simple - point-mass gravitational effects due to the Earth combined with an impulsive delta-V in the velocity direction for the maneuver - generalizations to more complex scenarios, including high fidelity force models, finite duration maneuvers, and maneuver pointing errors, are straightforward and are discussed in the conclusion.

  20. Treatment selection in a randomized clinical trial via covariate-specific treatment effect curves.

    PubMed

    Ma, Yunbei; Zhou, Xiao-Hua

    2017-02-01

    For time-to-event data in a randomized clinical trial, we proposed two new methods for selecting an optimal treatment for a patient based on the covariate-specific treatment effect curve, which is used to represent the clinical utility of a predictive biomarker. To select an optimal treatment for a patient with a specific biomarker value, we proposed pointwise confidence intervals for each covariate-specific treatment effect curve and the difference between covariate-specific treatment effect curves of two treatments. Furthermore, to select an optimal treatment for a future biomarker-defined subpopulation of patients, we proposed confidence bands for each covariate-specific treatment effect curve and the difference between each pair of covariate-specific treatment effect curve over a fixed interval of biomarker values. We constructed the confidence bands based on a resampling technique. We also conducted simulation studies to evaluate finite-sample properties of the proposed estimation methods. Finally, we illustrated the application of the proposed method in a real-world data set.

  1. The Study of the Impacts of The agriculture practices on ET by In-situ Measurement and Numeric Modeling in Southern China

    NASA Astrophysics Data System (ADS)

    Huang, Jinhui Jeanne; Chan, Han

    2017-04-01

    ABSTRACT Evapotranspiration (ET) has long been regarded as a very important component in energy and mass exchange between hydrosphere, atmosphere and biosphere. It is estimated that about 70% annual precipitation goes back to atmosphere through the process of ET, ET thus plays a significant role in modeling regional and global climate and assessing stresses on natural and agricultural ecosystems. The variation of ET is affected by many processes including hydrological, metrological as well as biological processes. Water used in Agriculture Sector is normally accounted for about 70% of total water consumption. ET may also be enhanced by agriculture practices as it is the key component of water consumption in agriculture practices. A two-year continuous in-situ ET measurement (in half minute time scale) by eddy covariance method (using EC-QCL analyzer and three-dimensional ultrasonic anemometer) was conducted in a large vegetable farmland in the suburb of Yueyang City, Hunan Province. EddyPro software was employed to calculate the actual evapotranspiration, water vapor flux, latent heat flux (LE) and analysis the trend of actual evapotranspiration in different time scales. A RZWQM2 (Root Zone Water Quality Model) model was also developed based on the local metrological data and agriculture practices including planting, harvesting, irrigation practices and fertilization etc., The field observations including in-situ ET measurement are used to calibrate the RZWQM2 model. The calibrated model was further used to study the effects of various agriculture activates on ET. The study shows that the crop density has the greatest effects on the variation of plant transpiration following by irrigation and fertilization. This study provides some scientific basis for the optimization and improvement of agricultural activities in the future. Key words: ET; Agricultural Practices; Eddy Covariance Method; RZWQM2 model

  2. Analysis of the release process of phenylpropanolamine hydrochloride from ethylcellulose matrix granules.

    PubMed

    Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu

    2002-11-01

    The release properties of phenylpropanolamine hydrochloride (PPA) from ethylcellulose (EC, ethylcellulose 10 cps (EC#10) and/or 100 cps (EC#100)) matrix granules prepared by the extrusion granulation method were examined. The release process could be divided into two parts, and was well analyzed by applying square-root time law and cube root law equations, respectively. The validity of the treatments was confirmed by the fitness of the simulation curve with the measured curve. At the initial stage, PPA was released from the gel layer of swollen EC in the matrix granules. At the second stage, the drug existing below the gel layer dissolved, and was released through the gel layer. Also, the time and release ratio at the connection point of the simulation curves was examined to determine the validity of the analysis. Comparing the release properties of PPA from the two types of EC matrix granules, EC#100 showed more effective sustained release than EC#10. On the other hand, changes in the release property of the EC#10 matrix granule were relatively more clear than that of the EC#100 matrix granule. Thus, it was supposed that EC#10 is more available for controlled and sustained release formulations than EC#100.

  3. Validation of a measure of the Satter eating competence model with low-income females

    PubMed Central

    2011-01-01

    Background The purpose of this study was to evaluate the construct validity of a version of the ecSatter Inventory (ecSI), a measure of eating competence (EC), as adapted for use in a low-income (LI) population. Methods Females (n = 507), aged 18 to 45 years, living in households with a history of participating in the Supplemental Nutrition Assistance Program completed a web-based survey that included the ecSI for LI (ecSI/LI) and valid measures of cognitive and affective eating behavior, food preference and practice, and food preparation. Results Most correlations and differences between eating competent and non-eating competent categories and among EC tertiles were compatible with hypothesized relationships. ecSI/LI scores were positively related with self-reported physical activity, food acceptance, fruit and vegetable intake, and food planning/resource management. ecSI/LI scores were negatively associated with body mass index, dissatisfaction with body weight, tendency to overeat in response to external or emotional stimuli, and indices of psychosocial attributes related to disordered eating. Conclusions The ecSI/LI is a valid measure of EC for low-income females and provides a tool for researchers and educators to assess intervention outcomes and further explore the EC construct. PMID:21473765

  4. Informatics in Radiology: Dual-Energy Electronic Cleansing for Fecal-Tagging CT Colonography

    PubMed Central

    Kim, Se Hyung; Lee, June-Goo; Yoshida, Hiroyuki

    2013-01-01

    Electronic cleansing (EC) is an emerging technique for the removal of tagged fecal materials at fecal-tagging computed tomographic (CT) colonography. However, existing EC methods may generate various types of artifacts that severely impair the quality of the cleansed CT colonographic images. Dual-energy fecal-tagging CT colonography is regarded as a next-generation imaging modality. EC that makes use of dual-energy fecal-tagging CT colonographic images promises to be effective in reducing cleansing artifacts by means of applying the material decomposition capability of dual-energy CT. The dual-energy index (DEI), which is calculated from the relative change in the attenuation values of a material at two different photon energies, is a reliable and effective indicator for differentiating tagged fecal materials from various types of tissues on fecal-tagging CT colonographic images. A DEI-based dual-energy EC scheme uses the DEI to help differentiate the colonic lumen—including the luminal air, tagged fecal materials, and air-tagging mixture—from the colonic soft-tissue structures, and then segments the entire colonic lumen for cleansing of the tagged fecal materials. As a result, dual-energy EC can help identify partial-volume effects in the air-tagging mixture and inhomogeneous tagging in residual fecal materials, the major causes of EC artifacts. This technique has the potential to significantly improve the quality of EC and promises to provide images of a cleansed colon that are free of the artifacts commonly observed with conventional single-energy EC methods. © RSNA, 2013 PMID:23479680

  5. Abuse liability assessment of an e-cigarette refill liquid using intracranial self-stimulation and self-administration models in rats

    PubMed Central

    LeSage, MG; Staley, M; Muelken, P; Smethells, JR; Stepanov, I; Vogel, RI; Pentel, PR; Harris, AC

    2016-01-01

    Background The popularity of electronic cigarettes (ECs) has increased dramatically despite their unknown health consequences. Because the abuse liability of ECs is one of the leading concerns of the Food and Drug Administration (FDA), models to assess it are urgently needed to inform FDA regulatory decisions regarding these products. The purpose of this study was to assess the relative abuse liability of an EC liquid compared to nicotine alone in rats. Because this EC liquid contains non-nicotine constituents that may enhance its abuse liability, we hypothesized that it would have greater abuse liability than nicotine alone. Methods Nicotine alone and nicotine dose-equivalent concentrations of EC liquid were compared in terms of their acute effects on intracranial self-stimulation (ICSS) thresholds, acquisition of self-administration, reinforcing efficacy (i.e., elasticity of demand), blockade of these behavioral effects by mecamylamine, nicotine pharmacokinetics and nicotinic acetylcholine receptor binding and activation. Results There were no significant differences between formulations on any measure, except that EC liquid produced less of an elevation in ICSS thresholds at high nicotine doses. Conclusions Collectively, these findings suggest that the relative abuse liability of this EC liquid is similar to that of nicotine alone in terms of its reinforcing and reinforcement-enhancing effects, but that it may have less aversive/anhedonic effects at high doses. The present methods may be useful for assessing the abuse liability of other ECs to inform potential FDA regulation of those products. PMID:27627814

  6. Marginalized zero-inflated Poisson models with missing covariates.

    PubMed

    Benecha, Habtamu K; Preisser, John S; Divaris, Kimon; Herring, Amy H; Das, Kalyan

    2018-05-11

    Unlike zero-inflated Poisson regression, marginalized zero-inflated Poisson (MZIP) models for counts with excess zeros provide estimates with direct interpretations for the overall effects of covariates on the marginal mean. In the presence of missing covariates, MZIP and many other count data models are ordinarily fitted using complete case analysis methods due to lack of appropriate statistical methods and software. This article presents an estimation method for MZIP models with missing covariates. The method, which is applicable to other missing data problems, is illustrated and compared with complete case analysis by using simulations and dental data on the caries preventive effects of a school-based fluoride mouthrinse program. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of particulate air pollution on blood pressure in a highly exposed population in Beijing, China: a repeated-measure study.

    PubMed

    Baccarelli, Andrea; Barretta, Francesco; Dou, Chang; Zhang, Xiao; McCracken, John P; Díaz, Anaité; Bertazzi, Pier Alberto; Schwartz, Joel; Wang, Sheng; Hou, Lifang

    2011-12-21

    Particulate Matter (PM) exposure is critical in Beijing due to high population density and rapid increase in vehicular traffic. PM effects on blood pressure (BP) have been investigated as a mechanism mediating cardiovascular risks, but results are still inconsistent. The purpose of our study is to determine the effects of ambient and personal PM exposure on BP. Before the 2008 Olympic Games (June 15-July 27), we examined 60 truck drivers and 60 office workers on two days, 1-2 weeks apart (n = 240). We obtained standardized measures of post-work BP. Exposure assessment included personal PM(2.5) and Elemental Carbon (EC, a tracer of traffic particles) measured using portable monitors during work hours; and ambient PM(10) averaged over 1-8 days pre-examination. We examined associations of exposures (exposure group, personal PM(2.5)/EC, ambient PM(10)) with BP controlling for multiple covariates. Mean personal PM(2.5) was 94.6 μg/m(3) (SD = 64.9) in office workers and 126.8 (SD = 68.8) in truck drivers (p-value < 0.001). In all participants combined, a 10 μg/m(3) increase in 8-day ambient PM(10) was associated with BP increments of 0.98 (95%CI 0.34; 1.61; p-value = 0.003), 0.71 (95%CI 0.18; 1.24; p-value = 0.01), and 0.81 (95%CI 0.31; 1.30; p-value = 0.002) mmHg for systolic, diastolic, and mean BP, respectively. BP was not significantly different between the two groups (p-value > 0.14). Personal PM(2.5) and EC during work hours were not associated with increased BP. Our results indicate delayed effects of ambient PM(10) on BP. Lack of associations with exposure groups and personal PM(2.5)/EC indicates that PM effects are related to background levels of pollution in Beijing, and not specifically to work-related exposure.

  8. Dangers in Using Analysis of Covariance Procedures.

    ERIC Educational Resources Information Center

    Campbell, Kathleen T.

    Problems associated with the use of analysis of covariance (ANCOVA) as a statistical control technique are explained. Three problems relate to the use of "OVA" methods (analysis of variance, analysis of covariance, multivariate analysis of variance, and multivariate analysis of covariance) in general. These are: (1) the wasting of information when…

  9. Using confirmatory factor analysis to understand executive control in preschool children: sources of variation in emergent mathematic achievement

    PubMed Central

    Bull, Rebecca; Espy, Kimberly Andrews; Wiebe, Sandra A.; Sheffield, Tiffany D.; Nelson, Jennifer Mize

    2010-01-01

    Latent variable modeling methods have demonstrated utility for understanding the structure of executive control (EC) across development. These methods are utilized to better characterize the relation between EC and mathematics achievement in the preschool period, and to understand contributing sources of individual variation. Using the sample and battery of laboratory tasks described in Wiebe, Espy and Charak (2008), latent EC was related strongly to emergent mathematics achievement in preschool, and was robust after controlling for crystallized intellectual skills. The relation between crystallized skills and emergent mathematics differed between girls and boys, although the predictive association between EC and mathematics did not. Two dimensions of the child’s social environment contributed to mathematics achievement: social network support through its relation to EC and environmental stressors through its relation with crystallized skills. These findings underscore the need to examine the dimensions, mechanisms, and individual pathways that influence the development of early competence in basic cognitive processes that underpin early academic achievement. PMID:21676089

  10. Using confirmatory factor analysis to understand executive control in preschool children: sources of variation in emergent mathematic achievement.

    PubMed

    Bull, Rebecca; Espy, Kimberly Andrews; Wiebe, Sandra A; Sheffield, Tiffany D; Nelson, Jennifer Mize

    2011-07-01

    Latent variable modeling methods have demonstrated utility for understanding the structure of executive control (EC) across development. These methods are utilized to better characterize the relation between EC and mathematics achievement in the preschool period, and to understand contributing sources of individual variation. Using the sample and battery of laboratory tasks described in Wiebe, Espy and Charak (2008), latent EC was related strongly to emergent mathematics achievement in preschool, and was robust after controlling for crystallized intellectual skills. The relation between crystallized skills and emergent mathematics differed between girls and boys, although the predictive association between EC and mathematics did not. Two dimensions of the child 's social environment contributed to mathematics achievement: social network support through its relation to EC and environmental stressors through its relation with crystallized skills. These findings underscore the need to examine the dimensions, mechanisms, and individual pathways that influence the development of early competence in basic cognitive processes that underpin early academic achievement. © 2010 Blackwell Publishing Ltd.

  11. Determination of Ethyl Carbamate in Chinese Yellow Rice Wine by Diatomaceous Earth Extraction and GC/MS Method.

    PubMed

    Wu, Pinggu; Zhang, Liqun; Shen, Xianghong; Wang, Liyuan; Zou, Yan; Zhang, Jing; Tan, Ying; Tang, Jun; Ma, Bingjie; Pan, Xiaodong; Jiang, Wei

    2015-01-01

    A sensitive and rapid analytical method based on alkaline diatomaceous earth extraction followed by GC/MS was developed for the quantitative determination of the toxic contaminant ethyl carbamate (EC) in yellow rice wines. The optimal extraction conditions were investigated. With the application of diatomaceous earth extraction, the damage of organic acids to the capillary column was greatly reduced. By using d5-EC as an internal standard for quantitative analysis of EC, the linearity of the calibration curves was good between 10 and 1000 ng/mL. The LOD and LOQ were 1.7 and 5.0 μg/kg, respectively. The spiked level of EC was 5.0-300 μg/kg, and the average recovery of the spikes was between 78.4 and 98.2%, with an RSD between 4.3 and 8.3%. Upon validation by five laboratories when spiked with 50, 100, and 300 μg/kg, the average respective recoveries were 102.9, 102.2, and 98.7% with a RSD between 0.7 and 8.1%. The validation results demonstrated that the method is fast, simple, selective, and suitable for the determination of EC in yellow rice wines.

  12. Removal of emerging contaminants from the environment by adsorption.

    PubMed

    Sophia A, Carmalin; Lima, Eder C

    2018-04-15

    Emerging contaminants (EC's) are pollutants of growing concern. They are mainly organic compounds such as: pesticides, pharmaceuticals and personal care products, hormones, plasticizers, food additives, wood preservatives, laundry detergents, surfactants, disinfectants, flame retardants, and other organic compounds that were found recently in natural wastewater stream generated by human and industrial activities. A majority of ECs does not have standard regulations and could lead to lethal effects on human and aquatic life even at small concentrations. The conventional primary and secondary water treatment plants do not remove or degrade these toxic pollutants efficiently and hence need cost effective tertiary treatment method. Adsorption is a promising method worldwide for EC removal since it is low initial cost for implementation, highly-efficient and has simple operating design. Research has shown that the application of different adsorbents such as, activated carbons(ACs), modified biochars (BCs), nanoadsorbents (carbon nanotubes and graphene), composite adsorbents, and other are being used for EC's removal from water and wastewater. The current review intends to investigate adsorption process as an efficient method for the treatment of ECs. The mechanism of adsorption has also been discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Emerging Options for Emergency Contraception

    PubMed Central

    Koyama, Atsuko; Hagopian, Laura; Linden, Judith

    2013-01-01

    Emergency post-coital contraception (EC) is an effective method of preventing pregnancy when used appropriately. EC has been available since the 1970s, and its availability and use have become widespread. Options for EC are broad and include the copper intrauterine device (IUD) and emergency contraceptive pills such as levonorgestrel, ulipristal acetate, combined oral contraceptive pills (Yuzpe method), and less commonly, mifepristone. Some options are available over-the-counter, while others require provider prescription or placement. There are no absolute contraindications to the use of emergency contraceptive pills, with the exception of ulipristal acetate and mifepristone. This article reviews the mechanisms of action, efficacy, safety, side effects, clinical considerations, and patient preferences with respect to EC usage. The decision of which regimen to use is influenced by local availability, cost, and patient preference. PMID:24453516

  14. Building Emergency Contraception Awareness among Adolescents. A Toolkit for Schools and Community-Based Organizations.

    ERIC Educational Resources Information Center

    Simkin, Linda; Radosh, Alice; Nelsesteun, Kari; Silverstein, Stacy

    This toolkit presents emergency contraception (EC) as a method to help adolescent women avoid pregnancy and abortion after unprotected sexual intercourse. The sections of this toolkit are designed to help increase your knowledge of EC and stay up to date. They provide suggestions for increasing EC awareness in the workplace, whether it is a school…

  15. Snow Sublimation in Mountain Environments and Its Sensitivity to Forest Disturbance and Climate Warming

    NASA Astrophysics Data System (ADS)

    Sexstone, Graham A.; Clow, David W.; Fassnacht, Steven R.; Liston, Glen E.; Hiemstra, Christopher A.; Knowles, John F.; Penn, Colin A.

    2018-02-01

    Snow sublimation is an important component of the snow mass balance, but the spatial and temporal variability of this process is not well understood in mountain environments. This study combines a process-based snow model (SnowModel) with eddy covariance (EC) measurements to investigate (1) the spatio-temporal variability of simulated snow sublimation with respect to station observations, (2) the contribution of snow sublimation to the ablation of the snowpack, and (3) the sensitivity and response of snow sublimation to bark beetle-induced forest mortality and climate warming across the north-central Colorado Rocky Mountains. EC-based observations of snow sublimation compared well with simulated snow sublimation at stations dominated by surface and canopy sublimation, but blowing snow sublimation in alpine areas was not well captured by the EC instrumentation. Water balance calculations provided an important validation of simulated sublimation at the watershed scale. Simulated snow sublimation across the study area was equivalent to 28% of winter precipitation on average, and the highest relative snow sublimation fluxes occurred during the lowest snow years. Snow sublimation from forested areas accounted for the majority of sublimation fluxes, highlighting the importance of canopy and sub-canopy surface sublimation in this region. Simulations incorporating the effects of tree mortality due to bark-beetle disturbance resulted in a 4% reduction in snow sublimation from forested areas. Snow sublimation rates corresponding to climate warming simulations remained unchanged or slightly increased, but total sublimation losses decreased by up to 6% because of a reduction in snow covered area and duration.

  16. Solar photocatalytic ozonation of a mixture of pharmaceutical compounds in water.

    PubMed

    Márquez, Gracia; Rodríguez, Eva M; Beltrán, Fernando J; Álvarez, Pedro M

    2014-10-01

    Aqueous solutions of mixtures of four pharmaceutical compounds (atenolol, hydrochlorothiazide, ofloxacin and trimethoprim) both in Milli-Q ultrapure water and in a secondary effluent from a municipal wastewater treatment plant have been treated at pH 7 by different oxidation methods, such as conventional ozonation, photolytic ozonation, TiO2 catalytic ozonation, TiO2 photocatalytic oxidation and TiO2 photocatalytic ozonation. Experiments were carried out using a solar compound parabolic concentrator. The performance results have been compared in terms of removal of emerging contaminants (ECs), generation rate of phenolic intermediates, organic matter mineralization, ecotoxicity removal and enhancement of biodegradability. Also, the consumption of ozone to achieve certain treatment goals (95% removal of ECs and 40% mineralization) is discussed. Results reveal that solar photocatalytic ozonation is a promising oxidation method as it led to the best results in terms of EC mineralization (∼85%), toxicity removal (∼90%) and efficient use of ozone (∼2mgO3mgEC(-1) to achieve complete EC removal and ∼18mgO3mgTOC(-1) to achieve 40% EC mineralization, respectively). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Modeling light use efficiency in a subtropical mangrove forest equipped with CO2 eddy covariance

    USGS Publications Warehouse

    Barr, J.G.; Engel, V.; Fuentes, J.D.; Fuller, D.O.; Kwon, H.

    2013-01-01

    Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC) systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE), and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt) increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and information about environmental conditions.

  18. Methodological comparison of alpine meadow evapotranspiration on the Tibetan Plateau, China.

    PubMed

    Chang, Yaping; Wang, Jie; Qin, Dahe; Ding, Yongjian; Zhao, Qiudong; Liu, Fengjing; Zhang, Shiqiang

    2017-01-01

    Estimation of evapotranspiration (ET) for alpine meadow areas in the Tibetan Plateau (TP) is essential for water resource management. However, observation data has been limited due to the extreme climates and complex terrain of this region. To address these issues, four representative methods, Penman-Monteith (PM), Priestley-Taylor (PT), Hargreaves-Samani (HS), and Mahringer (MG) methods, were adopted to estimate ET, which were then compared with ET measured using Eddy Covariance (EC) for five alpine meadow sites during the growing seasons from 2010 to 2014. And each site was measured for one growing season during this period. The results demonstrate that the PT method outperformed at all sites with a coefficient of determination (R2) ranging from 0.76 to 0.94 and root mean square error (RMSE) ranging from 0.41 to 0.62 mm d-1. The PM method showed better performance than HS and MG methods, and the HS method produced relatively acceptable results with higher R2 (0.46) and lower RMSE (0.89 mm d-1) compared to MG method with R2 of 0.16 and RMSE of 1.62 mm d-1, while MG underestimated ET at all alpine meadow sites. Therefore, the PT method, being the simpler approach and less data dependent, is recommended to estimate ET for alpine meadow areas in the Tibetan Plateau. The PM method produced reliable results when available data were sufficient, and the HS method proved to be a complementary method when variables were insufficient. On the contrary, the MG method always underestimated ET and is, thus, not suitable for alpine meadows. These results provide a basis for estimating ET on the Tibetan Plateau for annual data collection, analysis, and future studies.

  19. Methodological comparison of alpine meadow evapotranspiration on the Tibetan Plateau, China

    PubMed Central

    Chang, Yaping; Wang, Jie; Qin, Dahe; Ding, Yongjian; Zhao, Qiudong; Liu, Fengjing

    2017-01-01

    Estimation of evapotranspiration (ET) for alpine meadow areas in the Tibetan Plateau (TP) is essential for water resource management. However, observation data has been limited due to the extreme climates and complex terrain of this region. To address these issues, four representative methods, Penman-Monteith (PM), Priestley-Taylor (PT), Hargreaves-Samani (HS), and Mahringer (MG) methods, were adopted to estimate ET, which were then compared with ET measured using Eddy Covariance (EC) for five alpine meadow sites during the growing seasons from 2010 to 2014. And each site was measured for one growing season during this period. The results demonstrate that the PT method outperformed at all sites with a coefficient of determination (R2) ranging from 0.76 to 0.94 and root mean square error (RMSE) ranging from 0.41 to 0.62 mm d-1. The PM method showed better performance than HS and MG methods, and the HS method produced relatively acceptable results with higher R2 (0.46) and lower RMSE (0.89 mm d-1) compared to MG method with R2 of 0.16 and RMSE of 1.62 mm d-1, while MG underestimated ET at all alpine meadow sites. Therefore, the PT method, being the simpler approach and less data dependent, is recommended to estimate ET for alpine meadow areas in the Tibetan Plateau. The PM method produced reliable results when available data were sufficient, and the HS method proved to be a complementary method when variables were insufficient. On the contrary, the MG method always underestimated ET and is, thus, not suitable for alpine meadows. These results provide a basis for estimating ET on the Tibetan Plateau for annual data collection, analysis, and future studies. PMID:29236754

  20. A stochastic multiple imputation algorithm for missing covariate data in tree-structured survival analysis.

    PubMed

    Wallace, Meredith L; Anderson, Stewart J; Mazumdar, Sati

    2010-12-20

    Missing covariate data present a challenge to tree-structured methodology due to the fact that a single tree model, as opposed to an estimated parameter value, may be desired for use in a clinical setting. To address this problem, we suggest a multiple imputation algorithm that adds draws of stochastic error to a tree-based single imputation method presented by Conversano and Siciliano (Technical Report, University of Naples, 2003). Unlike previously proposed techniques for accommodating missing covariate data in tree-structured analyses, our methodology allows the modeling of complex and nonlinear covariate structures while still resulting in a single tree model. We perform a simulation study to evaluate our stochastic multiple imputation algorithm when covariate data are missing at random and compare it to other currently used methods. Our algorithm is advantageous for identifying the true underlying covariate structure when complex data and larger percentages of missing covariate observations are present. It is competitive with other current methods with respect to prediction accuracy. To illustrate our algorithm, we create a tree-structured survival model for predicting time to treatment response in older, depressed adults. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Covariate analysis of bivariate survival data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, L.E.

    1992-01-01

    The methods developed are used to analyze the effects of covariates on bivariate survival data when censoring and ties are present. The proposed method provides models for bivariate survival data that include differential covariate effects and censored observations. The proposed models are based on an extension of the univariate Buckley-James estimators which replace censored data points by their expected values, conditional on the censoring time and the covariates. For the bivariate situation, it is necessary to determine the expectation of the failure times for one component conditional on the failure or censoring time of the other component. Two different methodsmore » have been developed to estimate these expectations. In the semiparametric approach these expectations are determined from a modification of Burke's estimate of the bivariate empirical survival function. In the parametric approach censored data points are also replaced by their conditional expected values where the expected values are determined from a specified parametric distribution. The model estimation will be based on the revised data set, comprised of uncensored components and expected values for the censored components. The variance-covariance matrix for the estimated covariate parameters has also been derived for both the semiparametric and parametric methods. Data from the Demographic and Health Survey was analyzed by these methods. The two outcome variables are post-partum amenorrhea and breastfeeding; education and parity were used as the covariates. Both the covariate parameter estimates and the variance-covariance estimates for the semiparametric and parametric models will be compared. In addition, a multivariate test statistic was used in the semiparametric model to examine contrasts. The significance of the statistic was determined from a bootstrap distribution of the test statistic.« less

  2. Measurements of diurnal variations and eddy covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: description of the Fast LED-CE-DOAS instrument

    NASA Astrophysics Data System (ADS)

    Coburn, S.; Ortega, I.; Thalman, R.; Blomquist, B.; Fairall, C. W.; Volkamer, R.

    2014-10-01

    Here we present first eddy covariance (EC) measurements of fluxes of glyoxal, the smallest α-dicarbonyl product of hydrocarbon oxidation, and a precursor for secondary organic aerosol (SOA). The unique physical and chemical properties of glyoxal - i.e., high solubility in water (effective Henry's law constant, KH = 4.2 × 105 M atm-1) and short atmospheric lifetime (~2 h at solar noon) - make it a unique indicator species for organic carbon oxidation in the marine atmosphere. Previous reports of elevated glyoxal over oceans remain unexplained by atmospheric models. Here we describe a Fast Light-Emitting Diode Cavity-Enhanced Differential Optical Absorption Spectroscopy (Fast LED-CE-DOAS) instrument to measure diurnal variations and EC fluxes of glyoxal and inform about its unknown sources. The fast in situ sensor is described, and first results are presented from a cruise deployment over the eastern tropical Pacific Ocean (20° N to 10° S; 133 to 85° W) as part of the Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOCs (TORERO) field experiment (January to March 2012). The Fast LED-CE-DOAS is a multispectral sensor that selectively and simultaneously measures glyoxal (CHOCHO), nitrogen dioxide (NO2), oxygen dimers (O4), and water vapor (H2O) with ~2 Hz time resolution (Nyquist frequency ~1 Hz) and a precision of ~40 pptv Hz-0.5 for glyoxal. The instrument is demonstrated to be a "white-noise" sensor suitable for EC flux measurements. Fluxes of glyoxal are calculated, along with fluxes of NO2, H2O, and O4, which are used to aid the interpretation of the glyoxal fluxes. Further, highly sensitive and inherently calibrated glyoxal measurements are obtained from temporal averaging of data (e.g., detection limit smaller than 2.5 pptv in an hour). The campaign average mixing ratio in the Southern Hemisphere (SH) is found to be 43 ± 9 pptv glyoxal, which is higher than the Northern Hemisphere (NH) average of 32 ± 6 pptv (error reflects variability over multiple days). The diurnal variation of glyoxal in the marine boundary layer (MBL) is measured for the first time, and mixing ratios vary by ~8 pptv (NH) and ~12 pptv (SH) over the course of 24 h. Consistently, maxima are observed at sunrise (NH: 35 ± 5 pptv; SH: 47 ± 7 pptv), and minima at dusk (NH: 27 ± 5 pptv; SH: 35 ± 8 pptv). In both hemispheres, the daytime flux was directed from the atmosphere into the ocean, indicating that the ocean is a net sink for glyoxal during the day. After sunset the ocean was a source for glyoxal to the atmosphere (positive flux) in the SH; this primary ocean source was operative throughout the night. In the NH, the nighttime flux was positive only shortly after sunset and negative during most of the night. Positive EC fluxes of soluble glyoxal over oceans indicate the presence of an ocean surface organic microlayer (SML) and locate a glyoxal source within the SML. The origin of most atmospheric glyoxal, and possibly other oxygenated hydrocarbons over tropical oceans, remains unexplained and warrants further investigation.

  3. In vitro characteristics of endothelial cells prepared from human cerebral arteriovenous malformation lesions using a novel method.

    PubMed

    Hao, Q; Chen, X L; Ma, L; Ye, X; Wang, H; Wang, T T; Hu, Y; Zhao, Y L

    2018-03-01

    The cerebral arteriovenous malformation (cAVM) is a usual and continually unaware reason of heamorrhage and seizure. It contains of feeder arteries, drain veins and abnormal vessel nets. However, pathologic mechanisms of the development of cAVM are unknown. The purpose of this study was to explore a novel protocol to isolate, culture and passage endothelial cells (ECs) from human cAVM lesions. We developed a protocol for isolating and growing ECs from eight patients with cAVM. The tissues were microsurgically removed from cAVM lesion and were digested by 0.25% Trypsin-EDTA, and cultured in ECM medium. ECs were selected by FACS and confirmed their EC origin by immunocytochemistry of the basic expression patterns of CD31 and CD34. LDL-uptake and capillary tube formation were used to determine their functional features. The isolated cAVM-ECs exhibited contact inhibition of growth and appearance of rounded cobblestone. cAVM-ECs were CD31- and CD34-positive. In functional assays, cAVM-ECs were able to uptake LDL and form capillary tubes. cAVM-ECs from younger patients proliferated faster than that from elders, and cAVM-ECs were less stable than normal artery ECs. In addition, cAVM-ECs appeared to more easily transform into mesenchymal cells than normal artery ECs. Using the protocol, isolated cAVM-ECs are stably established, and retain their endothelial phenotypes. These cAVM-ECs may provide a biological tool to examine molecular phenotypes and mechanisms responsible for human cAVM. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Penalized Ordinal Regression Methods for Predicting Stage of Cancer in High-Dimensional Covariate Spaces.

    PubMed

    Gentry, Amanda Elswick; Jackson-Cook, Colleen K; Lyon, Debra E; Archer, Kellie J

    2015-01-01

    The pathological description of the stage of a tumor is an important clinical designation and is considered, like many other forms of biomedical data, an ordinal outcome. Currently, statistical methods for predicting an ordinal outcome using clinical, demographic, and high-dimensional correlated features are lacking. In this paper, we propose a method that fits an ordinal response model to predict an ordinal outcome for high-dimensional covariate spaces. Our method penalizes some covariates (high-throughput genomic features) without penalizing others (such as demographic and/or clinical covariates). We demonstrate the application of our method to predict the stage of breast cancer. In our model, breast cancer subtype is a nonpenalized predictor, and CpG site methylation values from the Illumina Human Methylation 450K assay are penalized predictors. The method has been made available in the ordinalgmifs package in the R programming environment.

  5. DISSCO: direct imputation of summary statistics allowing covariates

    PubMed Central

    Xu, Zheng; Duan, Qing; Yan, Song; Chen, Wei; Li, Mingyao; Lange, Ethan; Li, Yun

    2015-01-01

    Background: Imputation of individual level genotypes at untyped markers using an external reference panel of genotyped or sequenced individuals has become standard practice in genetic association studies. Direct imputation of summary statistics can also be valuable, for example in meta-analyses where individual level genotype data are not available. Two methods (DIST and ImpG-Summary/LD), that assume a multivariate Gaussian distribution for the association summary statistics, have been proposed for imputing association summary statistics. However, both methods assume that the correlations between association summary statistics are the same as the correlations between the corresponding genotypes. This assumption can be violated in the presence of confounding covariates. Methods: We analytically show that in the absence of covariates, correlation among association summary statistics is indeed the same as that among the corresponding genotypes, thus serving as a theoretical justification for the recently proposed methods. We continue to prove that in the presence of covariates, correlation among association summary statistics becomes the partial correlation of the corresponding genotypes controlling for covariates. We therefore develop direct imputation of summary statistics allowing covariates (DISSCO). Results: We consider two real-life scenarios where the correlation and partial correlation likely make practical difference: (i) association studies in admixed populations; (ii) association studies in presence of other confounding covariate(s). Application of DISSCO to real datasets under both scenarios shows at least comparable, if not better, performance compared with existing correlation-based methods, particularly for lower frequency variants. For example, DISSCO can reduce the absolute deviation from the truth by 3.9–15.2% for variants with minor allele frequency <5%. Availability and implementation: http://www.unc.edu/∼yunmli/DISSCO. Contact: yunli@med.unc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25810429

  6. Triangular covariance factorizations for. Ph.D. Thesis. - Calif. Univ.

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.

    1976-01-01

    An improved computational form of the discrete Kalman filter is derived using an upper triangular factorization of the error covariance matrix. The covariance P is factored such that P = UDUT where U is unit upper triangular and D is diagonal. Recursions are developed for propagating the U-D covariance factors together with the corresponding state estimate. The resulting algorithm, referred to as the U-D filter, combines the superior numerical precision of square root filtering techniques with an efficiency comparable to that of Kalman's original formula. Moreover, this method is easily implemented and involves no more computer storage than the Kalman algorithm. These characteristics make the U-D method an attractive realtime filtering technique. A new covariance error analysis technique is obtained from an extension of the U-D filter equations. This evaluation method is flexible and efficient and may provide significantly improved numerical results. Cost comparisons show that for a large class of problems the U-D evaluation algorithm is noticeably less expensive than conventional error analysis methods.

  7. Integrative measurements focusing on carbon, energy and water fluxes at the forest site 'Hohes Holz' and the grassland 'Grosses Bruch'

    NASA Astrophysics Data System (ADS)

    Rebmann, Corinna; Claudia, Schütze; Sara, Marañón-Jiménez; Sebastian, Gimper; Matthias, Zink; Luis, Samaniego; Matthias, Cuntz

    2017-04-01

    The reduction of greenhouse gas (GHG) emissions and the optimization of Carbon sequestration by ecosystems have become priority objectives for current climate change policies. In this context, the long term research project TERENO and the research infrastructure ICOS have been established. The eddy covariance technique allows obtaining an integrative estimate of the ecosystem carbon, water and energy balances at the ecosystem level. The relative contributions of evaporation and transpiration as well as carbon sources and sinks need, however, to be determined separately for thorough process understanding. Two different ecosystem observatories have recently been established in the Magdeburger Börde: a deciduous forest (Hohes Holz) and a meadow (Grosses Bruch). A comprehensive system of instrumentation provides continuous data for the evaluation of energy, water and carbon fluxes at the 1500 ha large forest site, including a 50 m high eddy covariance (EC) tower for micrometeorological investigations in different heights above and below canopy, throughfall and stem flow sensors, a soil moisture and temperature sensor network, soil respiration chambers, sap flow sensors, and ancillary analysis of trees such a dendrometer and leaf area index measurements. Eddy covariance measurements allow the assessment of the carbon (Net Ecosystem Exchange, NEE) and water balance at the ecosystem scale. To better understand the contributing processes we partition water und carbon fluxes of the forest ecosystem by different methods. Tower-based data of NEE are therefore complemented and validated by continuous automatic and manual campaign measurements of soil effluxes and their drivers. Water fluxes into the ecosystem are partitioned by stem flow and throughfall measurements and a distributed soil moisture network. Gap fraction in the forest has a strong influence on the distribution on the water fluxes and is therefore determined on a regular basis. Since the establishment of the flux sites, two abnormally dry years (2015 and 2016) occurred. Fluxes from these years are evaluated in detail here. These data are additionally used to evaluate the drought assessment of the German Drought Monitor (www.ufz.de/droughtmonitor).

  8. MSFC Sortie Laboratory Environmental Control System (ECS) phase B design study results

    NASA Technical Reports Server (NTRS)

    Ignatonis, A. J.; Mitchell, K. L.

    1974-01-01

    Phase B effort of the Sortie Lab program has concluded. Results of that effort are presented which pertain to the definitions of the environmental control system (ECS). Numerous design studies were performed in Phase B to investigate system feasibility, complexity, weight, and cost. The results and methods employed for these design studies are included. An autonomous Sortie Lab ECS was developed which utilizes a deployed space radiator. Total system weight was projected to be 1814.4 kg including the radiator and fluids. ECS power requirements were estimated at 950 watts.

  9. Emergency contraceptive use in Addis Ababa, Ethiopia: Challenging common assumptions about young people's contraceptive practices.

    PubMed

    Both, Rosalijn

    2015-05-01

    Drawing on an ethnographic case study of young people's (aged 18-29) use of emergency contraceptives (ECs) in Addis Ababa, Ethiopia, this article highlights areas of disconnect between how reproductive health experts envision EC use and local meanings ascribed to ECs by young people. ECs - designed by reproductive health experts to be used only in case of emergency - were preferred by study participants over other contraceptive methods because of their ease of use, discreetness, perceived minimal side effects on beauty and future fertility, and usefulness in navigating reproductive intentions. The findings point to features that young people find desirable when it comes to contraceptive methods and suggest that common assumptions of reproductive health experts about young people's contraceptive practices need to be reconsidered, namely: 1) that young people can plan for prevention of unwanted pregnancy by buying a contraceptive method in advance; 2) that existing contraceptive technologies are appropriate for young people; 3) that young people prefer to use modern contraceptive methods; and 4) that young people in premarital relationships aim to prevent unplanned pregnancy. Copyright © 2015. Published by Elsevier Ltd.

  10. Covariance Matrix Estimation for Massive MIMO

    NASA Astrophysics Data System (ADS)

    Upadhya, Karthik; Vorobyov, Sergiy A.

    2018-04-01

    We propose a novel pilot structure for covariance matrix estimation in massive multiple-input multiple-output (MIMO) systems in which each user transmits two pilot sequences, with the second pilot sequence multiplied by a random phase-shift. The covariance matrix of a particular user is obtained by computing the sample cross-correlation of the channel estimates obtained from the two pilot sequences. This approach relaxes the requirement that all the users transmit their uplink pilots over the same set of symbols. We derive expressions for the achievable rate and the mean-squared error of the covariance matrix estimate when the proposed method is used with staggered pilots. The performance of the proposed method is compared with existing methods through simulations.

  11. Threshold regression to accommodate a censored covariate.

    PubMed

    Qian, Jing; Chiou, Sy Han; Maye, Jacqueline E; Atem, Folefac; Johnson, Keith A; Betensky, Rebecca A

    2018-06-22

    In several common study designs, regression modeling is complicated by the presence of censored covariates. Examples of such covariates include maternal age of onset of dementia that may be right censored in an Alzheimer's amyloid imaging study of healthy subjects, metabolite measurements that are subject to limit of detection censoring in a case-control study of cardiovascular disease, and progressive biomarkers whose baseline values are of interest, but are measured post-baseline in longitudinal neuropsychological studies of Alzheimer's disease. We propose threshold regression approaches for linear regression models with a covariate that is subject to random censoring. Threshold regression methods allow for immediate testing of the significance of the effect of a censored covariate. In addition, they provide for unbiased estimation of the regression coefficient of the censored covariate. We derive the asymptotic properties of the resulting estimators under mild regularity conditions. Simulations demonstrate that the proposed estimators have good finite-sample performance, and often offer improved efficiency over existing methods. We also derive a principled method for selection of the threshold. We illustrate the approach in application to an Alzheimer's disease study that investigated brain amyloid levels in older individuals, as measured through positron emission tomography scans, as a function of maternal age of dementia onset, with adjustment for other covariates. We have developed an R package, censCov, for implementation of our method, available at CRAN. © 2018, The International Biometric Society.

  12. Nutrient demand interacts with grass maturity to affect milk fat concentration and digestion responses in dairy cows.

    PubMed

    Kammes, K L; Allen, M S

    2012-09-01

    Effects of grass maturity on dry matter intake (DMI), milk production, ruminal fermentation and pool sizes, digestion and passage kinetics, and chewing activity and the relationship of these effects with preliminary DMI (pDMI) were evaluated using 13 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 18-d treatment periods. During the preliminary period, pDMI of individual cows ranged from 23.5 to 28.2 kg/d (mean=26.1 kg/d) and 3.5% fat-corrected milk (FCM) yield ranged from 30.8 to 57.2 kg/d (mean=43.7 kg/d). Experimental treatments were diets containing orchardgrass silage harvested either (1) early-cut, less mature (EC) or (2) late-cut, more mature (LC) as the sole forage. Early- and late-cut orchardgrass contained 44.9 and 54.4% neutral detergent fiber (NDF) and 20.1 and 15.3% crude protein, respectively. Forage:concentrate ratio was 58:42 and 46:54 for EC and LC, respectively; both diets contained approximately 25% forage NDF and 30% total NDF. Preliminary DMI, an index of nutrient demand, was determined during the last 4d of the preliminary period when cows were fed a common diet and used as a covariate. Main effects of grass maturity and their interaction with pDMI were tested by ANOVA. The EC diet decreased milk yield and increased milk fat concentration compared with the LC diet. Grass maturity and its interaction with pDMI did not affect FCM yield, DMI, rumen pH, or microbial efficiency. The EC diet increased rates of ruminal digestion of potentially digestible NDF and passage of indigestible NDF (iNDF) compared with the LC diet. The lower concentration and faster passage rate of iNDF for EC resulted in lower rumen pools of iNDF, total NDF, organic matter, and dry matter for EC than LC. Ruminal passage rates of potentially digestible NDF and starch were related to level of intake (quadratic and linear interactions, respectively) and subsequently affected ruminal digestibility of these nutrients. The EC diet decreased eating, ruminating, and total chewing time per unit of forage NDF intake compared with the LC diet. When grass silage was the only source of forage in the diet, cows supplemented with additional concentrate to account for decreasing protein and increasing fiber concentrations associated with more mature grass had similar feed intake and produced similar FCM yields as cows fed less mature grass. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Reconstructing signals from noisy data with unknown signal and noise covariance.

    PubMed

    Oppermann, Niels; Robbers, Georg; Ensslin, Torsten A

    2011-10-01

    We derive a method to reconstruct Gaussian signals from linear measurements with Gaussian noise. This new algorithm is intended for applications in astrophysics and other sciences. The starting point of our considerations is the principle of minimum Gibbs free energy, which was previously used to derive a signal reconstruction algorithm handling uncertainties in the signal covariance. We extend this algorithm to simultaneously uncertain noise and signal covariances using the same principles in the derivation. The resulting equations are general enough to be applied in many different contexts. We demonstrate the performance of the algorithm by applying it to specific example situations and compare it to algorithms not allowing for uncertainties in the noise covariance. The results show that the method we suggest performs very well under a variety of circumstances and is indeed qualitatively superior to the other methods in cases where uncertainty in the noise covariance is present.

  14. Organ culture storage of pre-prepared corneal donor material for Descemet's membrane endothelial keratoplasty.

    PubMed

    Bhogal, Maninder; Matter, Karl; Balda, Maria S; Allan, Bruce D

    2016-11-01

    To evaluate the effect of media composition and storage method on pre-prepared Descemet's membrane endothelial keratoplasty (DMEK) grafts. 50 corneas were used. Endothelial wound healing and proliferation in different media were assessed using a standard injury model. DMEK grafts were stored using three methods: peeling with free scroll storage; partial peeling with storage on the stroma and fluid bubble separation with storage on the stroma. Endothelial cell (EC) phenotype and the extent of endothelial overgrowth were examined. Global cell viability was assessed for storage methods that maintained a normal cell phenotype. 1 mm wounds healed within 4 days. Enhanced media did not increase EC proliferation but may have increased EC migration into the wounded area. Grafts that had been trephined showed evidence of EC overgrowth, whereas preservation of a physical barrier in the bubble group prevented this. In grafts stored in enhanced media or reapposed to the stroma after trephination, endothelial migration occurred sooner and cells underwent endothelial-mesenchymal transformation. Ongoing cell loss, with new patterns of cell death, was observed after returning grafts to storage. Grafts stored as free scrolls retained more viable ECs than grafts prepared with the fluid bubble method (74.2± 3% vs 60.3±6%, p=0.04 (n=8). Free scroll storage is superior to liquid bubble and partial peeling techniques. Free scrolls only showed overgrowth of ECs after 4 days in organ culture, indicating a viable time window for the clinical use of pre-prepared DMEK donor material using this method. Methods for tissue preparation and storage media developed for whole corneas should not be used in pre-prepared DMEK grafts without prior evaluation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. The externally corrected coupled cluster approach with four- and five-body clusters from the CASSCF wave function.

    PubMed

    Xu, Enhua; Li, Shuhua

    2015-03-07

    An externally corrected CCSDt (coupled cluster with singles, doubles, and active triples) approach employing four- and five-body clusters from the complete active space self-consistent field (CASSCF) wave function (denoted as ecCCSDt-CASSCF) is presented. The quadruple and quintuple excitation amplitudes within the active space are extracted from the CASSCF wave function and then fed into the CCSDt-like equations, which can be solved in an iterative way as the standard CCSDt equations. With a size-extensive CASSCF reference function, the ecCCSDt-CASSCF method is size-extensive. When the CASSCF wave function is readily available, the computational cost of the ecCCSDt-CASSCF method scales as the popular CCSD method (if the number of active orbitals is small compared to the total number of orbitals). The ecCCSDt-CASSCF approach has been applied to investigate the potential energy surface for the simultaneous dissociation of two O-H bonds in H2O, the equilibrium distances and spectroscopic constants of 4 diatomic molecules (F2(+), O2(+), Be2, and NiC), and the reaction barriers for the automerization reaction of cyclobutadiene and the Cl + O3 → ClO + O2 reaction. In most cases, the ecCCSDt-CASSCF approach can provide better results than the CASPT2 (second order perturbation theory with a CASSCF reference function) and CCSDT methods.

  16. Relationship between global structural parameters and Enzyme Commission hierarchy: implications for function prediction.

    PubMed

    Boareto, Marcelo; Yamagishi, Michel E B; Caticha, Nestor; Leite, Vitor B P

    2012-10-01

    In protein databases there is a substantial number of proteins structurally determined but without function annotation. Understanding the relationship between function and structure can be useful to predict function on a large scale. We have analyzed the similarities in global physicochemical parameters for a set of enzymes which were classified according to the four Enzyme Commission (EC) hierarchical levels. Using relevance theory we introduced a distance between proteins in the space of physicochemical characteristics. This was done by minimizing a cost function of the metric tensor built to reflect the EC classification system. Using an unsupervised clustering method on a set of 1025 enzymes, we obtained no relevant clustering formation compatible with EC classification. The distance distributions between enzymes from the same EC group and from different EC groups were compared by histograms. Such analysis was also performed using sequence alignment similarity as a distance. Our results suggest that global structure parameters are not sufficient to segregate enzymes according to EC hierarchy. This indicates that features essential for function are rather local than global. Consequently, methods for predicting function based on global attributes should not obtain high accuracy in main EC classes prediction without relying on similarities between enzymes from training and validation datasets. Furthermore, these results are consistent with a substantial number of studies suggesting that function evolves fundamentally by recruitment, i.e., a same protein motif or fold can be used to perform different enzymatic functions and a few specific amino acids (AAs) are actually responsible for enzyme activity. These essential amino acids should belong to active sites and an effective method for predicting function should be able to recognize them. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Postinduction Dexamethasone and Individualized Dosing of Escherichia Coli L-Asparaginase Each Improve Outcome of Children and Adolescents With Newly Diagnosed Acute Lymphoblastic Leukemia: Results From a Randomized Study—Dana-Farber Cancer Institute ALL Consortium Protocol 00-01

    PubMed Central

    Vrooman, Lynda M.; Stevenson, Kristen E.; Supko, Jeffrey G.; O'Brien, Jane; Dahlberg, Suzanne E.; Asselin, Barbara L.; Athale, Uma H.; Clavell, Luis A.; Kelly, Kara M.; Kutok, Jeffery L.; Laverdière, Caroline; Lipshultz, Steven E.; Michon, Bruno; Schorin, Marshall; Relling, Mary V.; Cohen, Harvey J.; Neuberg, Donna S.; Sallan, Stephen E.; Silverman, Lewis B.

    2013-01-01

    Purpose We assessed the toxicity and efficacy of dexamethasone and a novel dosing method of Escherichia coli L-asparaginase (EC-Asnase) in children and adolescents with newly diagnosed acute lymphoblastic leukemia (ALL). Patients and Methods Patients achieving complete remission (CR) on Dana-Farber Cancer Institute ALL Consortium Protocol 00-01 were eligible for random assignment to 1) dexamethasone or prednisone, administered as 5-day pulses, every 3 weeks, and 2) weekly EC-Asnase, administered as a 25,000 IU/m2 fixed dose (FD) or individualized dose (ID) starting at 12,500-IU/m2, adjusted every 3 weeks based on nadir serum asparaginase activity (NSAA) determinations. Results Between 2000 and 2004, 492 evaluable patients (ages 1 to 18 years) enrolled; 473 patients (96%) achieved CR. Four hundred eight patients (86%) participated in the corticosteroid randomization and 384 patients (81%) in the EC-Asnase randomization. With 4.9 years of median follow-up, dexamethasone was associated with superior 5-year event-free survival (EFS; 90% v 81% for prednisone; P = .01) but higher rates of infection (P = .03) and, in older children, higher cumulative incidence of osteonecrosis (P = .02) and fracture (P = .06). ID EC-Asnase had superior 5-year EFS (90% v 82% for FD; P = .04), but did not reduce the frequency of asparaginase-related toxicity. Multivariable analysis identified both dexamethasone and ID EC-Asnase as independent predictors of favorable EFS. Conclusion There was no overall difference in skeletal toxicity by corticosteroid type; dexamethasone was associated with more infections and, in older children, increased incidence of osteonecrosis and fracture. There was no difference in asparaginase-related toxicity by EC-Asnase dosing method. Dexamethasone and ID EC-Asnase were each associated with superior EFS. Monitoring NSAA during treatment with EC-Asnase may be an effective strategy to improve outcome in pediatric ALL. PMID:23358966

  18. A Contact-Based Method for Differentiation of Human Mesenchymal Stem Cells into an Endothelial Cell-Phenotype.

    PubMed

    Joddar, Binata; Kumar, Shweta Anil; Kumar, Alok

    2018-06-01

    Adult stem cells such as mesenchymal stem cells (MSC) are known to possess the ability to augment neovascularization processes and are thus widely popular as an autologous source of progenitor cells. However there is a huge gap in our current knowledge of mechanisms involved in differentiating MSC into endothelial cells (EC), essential for lining engineered blood vessels. To fill up this gap, we attempted to differentiate human MSC into EC, by culturing the former onto chemically fixed layers of EC or its ECM, respectively. We expected direct contact of MSC when cultured atop fixed EC or its ECM, would coax the former to differentiate into EC. Results showed that human MSC cultured atop chemically fixed EC or its ECM using EC-medium showed enhanced expression of CD31, a marker for EC, compared to other cases. Further in all human MSC cultured using EC-medium, typically characteristic cobble stone shaped morphologies were noted in comparison to cells cultured using MSC medium, implying that the differentiated cells were sensitive to soluble VEGF supplementation present in the EC-medium. Results will enhance and affect therapies utilizing autologous MSC as a cell source for generating vascular cells to be used in a variety of tissue engineering applications.

  19. Prevalence and Risk Factors of Esophageal Candidiasis in Healthy Individuals: A Single Center Experience in Korea

    PubMed Central

    Choi, Jae Hyeuk; Lee, Chang Geun; Kang, Hyoun Woo; Lim, Chi Yeon; Choi, Jong-Sun

    2013-01-01

    Purpose Esophageal candidiasis (EC) is the most frequent opportunistic fungal infection in immunocompromised host. However, we have found EC in healthy individuals through esophagogastroduodenoscopy (EGD). The aim of this study was to determine the prevalence and risk factors for EC in healthy individuals. Materials and Methods We retrospectively reviewed the medical records of 281 patients who had been incidentally diagnosed with EC. We also conducted age and sex matched case control study to identify the risk factor for EC. Results The prevalence of EC was 0.32% (281/88125). The most common coexisting EGD finding was reflux esophagitis (49/281, 17.4%). An antifungal agent was prescribed in about half of EC, 139 cases (49.5%). Follow-up EGD was undertaken in 83 cases (29.5%) and 20 cases of candidiasis was persistently found. Case control study revealed EC were more often found in user of antibiotics (p=0.015), corticosteroids (p=0.002) and herb medication (p=0.006) as well as heavy drinking (p<0.001). Conclusion The prevalence of EC was 0.32% (281/88125) in Korea. Use of antibiotics, corticosteroids and herb as well as heavy drinking were significant risk factors for EC in healthy individuals. PMID:23225813

  20. Epithelial Membrane Protein-2 Expression is an Early Predictor of Endometrial Cancer Development

    PubMed Central

    Habeeb, Omar; Goodglick, Lee; Soslow, Robert A.; Rao, Rajiv; Gordon, Lynn K.; Schirripa, Osvaldo; Horvath, Steve; Braun, Jonathan; Seligson, David B.; Wadehra, Madhuri

    2010-01-01

    BACKGROUND Endometrial cancer (EC) is a common malignancy worldwide. It is often preceded by endometrial hyperplasia, whose management and risk of neoplastic progression vary. Previously, we have shown that the tetraspan protein Epithelial Membrane Protein-2 (EMP2) is a prognostic indicator for EC aggressiveness and survival. Here we validate the expression of EMP2 in EC, and further examine whether EMP2 expression within preneoplastic lesions is an early prognostic biomarker for EC development. METHODS A tissue microarray (TMA) was constructed with a wide representation of benign and malignant endometrial samples. The TMA contains a metachronous cohort of cases from individuals who either developed or did not develop EC. Intensity and frequency of EMP2 expression were assessed using immunohistochemistry. RESULTS There was a stepwise, statistically-significant increase in the average EMP2 expression from benign to hyperplasia to atypia to EC. Furthermore, detailed analysis of EMP2 expression in potentially premalignant cases demonstrated that EMP2 positivity was a strong predictor for EC development. CONCLUSION EMP2 is an early predictor of EC development in preneoplastic lesions. In addition, combined with our previous findings, these results validate that EMP2 as a novel biomarker for EC development. PMID:20578181

  1. Endothelial cells of extremely premature infants display impaired immune response after proinflammatory stimulation.

    PubMed

    Wisgrill, Lukas; Muck, Martina; Wessely, Isabelle; Berger, Angelika; Spittler, Andreas; Förster-Waldl, Elisabeth; Sadeghi, Kambis

    2018-01-01

    BackgroundEndothelial cells (ECs) exert immunological functions such as production of proinflammatory cytokines/chemokines as well as facilitation of extravasation of immune cells into infected tissue. Limited data are available on the functionality of ECs from extremely preterm neonates during infection. Accordingly, the aim of our study was to investigate the immune response of premature ECs after proinflammatory stimulation.MethodsCell adhesion receptors' expression and function, nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NFκB) signaling, and chemokine production were analyzed in umbilical cord ECs from extremely preterm and term neonates after proinflammatory stimulation.ResultsP-selectin and E-selectin surface expression as well as NFκB signaling were lower after lipopolysaccharide (LPS) stimulation in premature ECs. Preterm ECs exhibited lower, but significant, cell-adhesive functions after LPS stimulation compared with term ECs. CCL2/CXCL8 chemokine secretion was significantly upregulated after proinflammatory stimulation in both groups. CXCL10 production was significantly increased in term but not in preterm ECs upon stimulation with tumor necrosis factor compared with unstimulated ECs.ConclusionExtremely premature ECs showed partly reduced expression levels and function of cell adhesion molecules. Both NFκB signaling and chemokine/cytokine production were reduced in premature ECs. The diminished endothelial proinflammatory immune response might result in impaired infection control of preterm newborns rendering them prone to severe infection.

  2. Meta-analytical synthesis of regression coefficients under different categorization scheme of continuous covariates.

    PubMed

    Yoneoka, Daisuke; Henmi, Masayuki

    2017-11-30

    Recently, the number of clinical prediction models sharing the same regression task has increased in the medical literature. However, evidence synthesis methodologies that use the results of these regression models have not been sufficiently studied, particularly in meta-analysis settings where only regression coefficients are available. One of the difficulties lies in the differences between the categorization schemes of continuous covariates across different studies. In general, categorization methods using cutoff values are study specific across available models, even if they focus on the same covariates of interest. Differences in the categorization of covariates could lead to serious bias in the estimated regression coefficients and thus in subsequent syntheses. To tackle this issue, we developed synthesis methods for linear regression models with different categorization schemes of covariates. A 2-step approach to aggregate the regression coefficient estimates is proposed. The first step is to estimate the joint distribution of covariates by introducing a latent sampling distribution, which uses one set of individual participant data to estimate the marginal distribution of covariates with categorization. The second step is to use a nonlinear mixed-effects model with correction terms for the bias due to categorization to estimate the overall regression coefficients. Especially in terms of precision, numerical simulations show that our approach outperforms conventional methods, which only use studies with common covariates or ignore the differences between categorization schemes. The method developed in this study is also applied to a series of WHO epidemiologic studies on white blood cell counts. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Emergency Contraception in Emergency Departments in Oregon, 2003

    PubMed Central

    Rosenberg, Kenneth D.; DeMunter, Jodi K.; Liu, Jihong

    2005-01-01

    Objectives. We sought to learn about access to emergency contraception (EC) in Oregon emergency departments, both for women who are rape patients and for women who have had consensual unprotected sexual intercourse (“nonrape patients”). Methods. We interviewed emergency department staff in 54 of Oregon’s 57 licensed emergency departments in February–March 2003 (response rate = 94.7%). Results. Only 61.1% of Oregon emergency departments routinely offered EC to rape patients. Catholic hospitals were as likely as non-Catholic hospitals to routinely offer EC to rape patients. The hospitals most likely to routinely offer EC to rape patients had a written protocol for the care of rape patients that included offering EC (P = .02) and access to staff with specialized sexual assault training (P=.002). For nonrape patients, 46.3% of emergency departments discouraged the prescribing of EC. Catholic hospitals were significantly less likely than non-Catholic hospitals to provide access to EC for nonrape patients (P=.05). Conclusions. Oregon emergency departments do not routinely offer EC to women who have been raped or to women who have had consensual unprotected sexual intercourse. PMID:15985646

  4. Smart-device environmental control systems: experiences of people with cervical spinal cord injuries.

    PubMed

    Hooper, Bethany; Verdonck, Michele; Amsters, Delena; Myburg, Michelle; Allan, Emily

    2017-09-06

    Environmental control systems (ECS) are devices that enable people with severe physical limitations to independently control household appliances. Recent advancements in the area of environmental control technology have led to the development of ECS that can be controlled through mainstream smart-devices. There is limited research on ECS within Australia and no known research addressing smart-device ECS. The current study sought to explore users' experiences with smart-device ECS within Australia. The study followed a single embedded case study method. Participants (n = 5) were existing ECS users with a cervical spinal cord injury. Data were collected through semi-structured interviews with participants, reflexive journals and field notes. An inductive approach was used to analyze the data thematically. The experience of using a smart-device ECS presented both opportunities and costs to users. The opportunities included: independent control, choice, peace of mind, connection, effective resource use, and control over smart-phone functions and applications. The associated costs included: financial, time, frustration, and technical limitations. While findings are similar to previous research into traditional ECS this study indicates that smart-device ECS also offered a new opportunity for users to access mainstream smart-device functions and applications. Future research should investigate methods and resources that practitioners could utilize to better support new users of smart-device ECS. Implications for Rehabilitation As with traditional environmental control systems, users of smart environmental control systems report increased independence, choice and control. Smart-device environmental control systems provide users with access to mainstream smart-device functions and applications, which facilitate connection to family and the outside world. The costs to the user of smart-device environmental control systems include monetary and time investment, dealing with technical limitations and resulting frustration. Prescribers and installers must consider ways to mitigate these costs experienced by users.

  5. Emergency contraception in Albania: a multimethods qualitative study of awareness, knowledge, attitudes and practices.

    PubMed

    Doci, Florida; Thaci, Jonida; Foster, Angel M

    2018-04-11

    Contraceptive prevalence is relatively low in Albania, and abortion is the mainstay of family planning. Although levonorgestrel-only emergency contraceptive pills are available, uptake of this method is minimal. Emergency contraception (EC) could play a significant role in addressing women's need for an effective and discreet pregnancy prevention method. However, information about the dynamics surrounding EC is limited. In 2016-2017, we conducted a multimethods qualitative study that aimed to explore awareness, knowledge, attitudes and practices toward EC in Albania. This project comprised four components: a community-based survey with 115 respondents, six focus group discussions with women of reproductive age, 19 semistructured key informant interviews, and 16 structured interviews with retail pharmacists. We analyzed our data using descriptive statistics and for content and themes. Our findings suggest that EC is widely available in pharmacies in Albania. However, a quarter of our survey participants did not know whether EC was available, and more than a third did not think EC was safe to use. Women face numerous barriers to accessing this form of contraception. Misconceptions about hormonal contraceptives, in general, and about progestin-only EC in particular, lack of training among providers, and stigma and fear of judgment were common obstacles identified by participants. Misinformation and lack of knowledge about EC among women and providers in Albania appears common. Training health service providers, raising awareness among women, and developing linguistically and culturally resonant materials for distribution could be keys to improving access to and use of EC. Although the availability of progestin-only EC is widespread in Albania, our findings suggest that more work needs to be done to align national regulatory policies with international standards, facilitate evidence-based service delivery, and increase access to medically accurate information in Albanian. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Some advance on the comprehension of SR analysis for estimating the flux of a scalar

    NASA Astrophysics Data System (ADS)

    Castellví, Dr

    2009-04-01

    In agronomy, the eddy covariance, EC, method likely is the preferred for measuring surface scalar fluxes. For latent heat flux, however, weighing lysimeters maybe preferred in agriculture, but they are rarely affordable and not portable. The dissipation method, DM, is considered the most reliable technique for measuring scalar fluxes over open water because instrument motion contaminates the EC measurements. The main advantage of DM over EC is that it is less sensitive to low frequency instrument platform motions (such as ship and buoys), sensor alignment, precise orientation and stringent steadiness in the mean meteorological conditions (Fairall and Larsen, 1986; Kader, 1992; Edson and Fairall, 1998). Over land, keeping in mind that the EC and DM methods require the same measurements for scalar flux measurement, the DM has several disadvantages versus the EC. Direct measurement of the scalar variance dissipation rate, VDR, requires to capture eddies in the Kolmogorov's microscale (thus scalar time series measured at frequencies in the order of kHz are needed). Therefore, it is not practical. Indirect methods to estimate VDR (such as spectral analysis and second or third order structure functions) requires implementing iterative methods involving similarity relationships that are not well established (Hsieh and Katul, 1997; Castellvi and Snyder, 2008). Currently, there is ample evidence that the DM as explained in traditional micrometeorological books (such as, Panofsky and Dutton, 1984; Brutsaert, 1988; Kaimal and Finnigan; 1994) is, in general, not correct. Accordingly, it likely explains why DM is typically omitted in revisits of micrometeorological methods for estimating scalar fluxes in agronomy. Within the last decade, over some agricultural surfaces, evidence has been shown on the advantages over other micrometeorological methods and the reliability (i.e., close performance to the EC method) of Surface Renewal, SR, theory in conjunction with the Analysis of the scalar time trace to estimate scalar surface fluxes (Paw U et al., 1995). The analysis consists on determination of the mean ramp-pattern dimensions observed in the trace measured at one height. SR analysis is a simple transilient theory that is Lagrangian in nature and based on the scalar conservation equation. Here, it is shown (indirectly) that for a steady, incompressible and horizontally homogeneous flow, the production term in the budget equation of the mean turbulent variance of a scalar can be expressed in terms of the mean ramp dimensions observed in the trace. Therefore, the budget equation provides a link between the contrasting DM and SR analysis methods for estimating scalar surface fluxes. The dissipation method is based on the finest turbulence scales, whereas the SR analysis is based on canopy-scale coherent structures. By normalizing the budget equation, and invoking similarity, it is shown that DM and SR analysis are closely related (details were given in Castellvi and Snyder, 2008). However, SR analysis avoids the disadvantages of DM and it also overcomes potential problems related with the EC method (such as perfect alignment, rotation of the wind field, sensor separation, shadowing, etc.) because the velocity field (i.e., the sonic anemometer) is not required in SR analysis. The relation between SR analysis and DM allows to better interpret a crucial parameter (originally, denoted as ) involved in SR analysis. The parameter  was implemented to account for three assumptions made to solve the scalar flux conservation equation coupled with the Lagrangian scalar mass conservation equation. Considering an air parcel that suddenly moves down to the surface which volume covers all the vertical extend of the surface sources (sinks), the assumptions made are the following; (1) The air parcel remains in contact with the sources (sinks) for a period during which it has been enriched (depleted) of scalar, (2) During the enrichment phase there is not loss of scalar (heat for temperature) through the air parcel top, and (3) Molecular diffusion within the air parcel can be neglected. According to the new  parameter expression derived, it is shown that the half-hourly value is related to the capability of turbulence to mix the scalar within the air parcel during the enrichment (depletion) phase. The expression depends on the variance of the scalar associated to isotropic turbulence over the total (organized and isotropic). The  expression suggests that half-hourly values are in the range, 0 <  ≤ 1, at least when measurements are taken in the inertial sub-layer over vegetated surfaces. Acknowledgments The author gratefully acknowledges K.T. Paw U and R.L Snyder for his encouragement in doing this study. This work was supported by the TRANSCLA project and a fellowship from the Ministerio de Ciencia y Innovación of Spain. References Brutsaert W. 1988. Evaporation into the atmosphere. D. Reidel P.C: Doordrech; 299. Castellvi F, Snyder RL. 2008. Combining the Dissipation method and Surface Renewal analysis to estimate Scalar Fluxes from the time traces over rangeland grass near Ione (California). Hydrol. Proccesses, In Press. Edson JB, Fairall CW. 1998. Similarity Relationships in the Marine Atmospheric Surface Layer for terms on the TKE and Scalar Variance Budgets. Journal of Atmospheric Sciences 55: 2311-2328. Fairall CW, Larsen SE. 1986. Inertial-dissipation methods and turbulent fluxes at the air-ocean interface. Boundary Layer Meteorology 34: 287-301. Hsieh CI, Katul GG. 1997. Dissipation methods, Taylor's hypothesis, and stability correction functions in the atmospheric surface layer. Journal of Geophysical Research 102: (14), 16391-16405. Kader BA. 1992. Determination of turbulent momentum and heat fluxes by spectral methods. Boundary Layer Meteorology 61: 323-347. Kaimal JC, Finnigan JJ. 1994. Atmospheric Boundary Layer Flows. Oxford Univ. Press; 289. Panofsky H, Dutton J. 1984. Atmospheric Turbulence: Models and Methods for Engineering Aplications. John Wiley, NY:397.

  7. Portable Lock-in Amplifier-Based Electrochemical Method to Measure an Array of 64 Sensors for Point-of-Care Applications.

    PubMed

    Hrdý, Radim; Kynclová, Hana; Klepáčová, Ivana; Bartošík, Martin; Neužil, Pavel

    2017-09-05

    We present a portable lock-in amplifier-based electrochemical sensing system. The basic unit (cluster) consists of four electrochemical cells (EC), each containing one pseudoreference electrode (PRE) and one working electrode (WE). All four ECs are simultaneously interrogated, each at different frequencies, with square wave pulses superposed on a sawtooth signal for cyclic voltammetry (CV). Lock-in amplification provides independent read-out of four signals, with excellent noise suppression. We expanded a single cluster system into an array of 16 clusters by using electronic switches. The chip with an array of ECs was fabricated using planar technology with a gap between a WE and a PRE of ≈2 μm, which results in partial microelectrode-type behavior. The basic electrode characterization was performed with the model case using a ferricyanide-ferrocyanide redox couple (Fe 2+ /Fe 3+ ) reaction, performing CV and differential pulse voltammetry (DPV). We then used this system to perform cyclic lock-in voltammetry (CLV) to measure concurrently responses of the four ECs. We repeated this method with all 64 ECs on the chip. The standard deviation of a peak oxidation and reduction current in a single channel consisting of 13 ECs was ≈7.46% and ≈5.6%, respectively. The four-EC configuration in each measured spot allows determination of nonperforming ECs and, thus, to eliminate potential false results. This system is built in a portable palm-size format suitable for point-of-care applications. It can perform either individual or multiple measurements of active compounds, such as biomarkers.

  8. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data

    USGS Publications Warehouse

    Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, Allen H.; Gianelle, D.; Rossi, F.; Suyker, A.E.; Verma, S.B.

    2010-01-01

    The simulation of gross primary production (GPP) at various spatial and temporal scales remains a major challenge for quantifying the global carbon cycle. We developed a light use efficiency model, called EC-LUE, driven by only four variables: normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and the Bowen ratio of sensible to latent heat flux. The EC-LUE model may have the most potential to adequately address the spatial and temporal dynamics of GPP because its parameters (i.e., the potential light use efficiency and optimal plant growth temperature) are invariant across the various land cover types. However, the application of the previous EC-LUE model was hampered by poor prediction of Bowen ratio at the large spatial scale. In this study, we substituted the Bowen ratio with the ratio of evapotranspiration (ET) to net radiation, and revised the RS-PM (Remote Sensing-Penman Monteith) model for quantifying ET. Fifty-four eddy covariance towers, including various ecosystem types, were selected to calibrate and validate the revised RS-PM and EC-LUE models. The revised RS-PM model explained 82% and 68% of the observed variations of ET for all the calibration and validation sites, respectively. Using estimated ET as input, the EC-LUE model performed well in calibration and validation sites, explaining 75% and 61% of the observed GPP variation for calibration and validation sites respectively.Global patterns of ET and GPP at a spatial resolution of 0.5° latitude by 0.6° longitude during the years 2000–2003 were determined using the global MERRA dataset (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate Resolution Imaging Spectroradiometer). The global estimates of ET and GPP agreed well with the other global models from the literature, with the highest ET and GPP over tropical forests and the lowest values in dry and high latitude areas. However, comparisons with observed GPP at eddy flux towers showed significant underestimation of ET and GPP due to lower net radiation of MERRA dataset. Applying a procedure to correct the systematic errors of global meteorological data would improve global estimates of GPP and ET. The revised RS-PM and EC-LUE models will provide the alternative approaches making it possible to map ET and GPP over large areas because (1) the model parameters are invariant across various land cover types and (2) all driving forces of the models may be derived from remote sensing data or existing climate observation networks.

  9. Analysis of utilization technologies for Eichhornia crassipes biomass harvested after restoration of wastewater.

    PubMed

    Feng, Wei; Xiao, Kai; Zhou, Wenbing; Zhu, Duanwei; Zhou, Yiyong; Yuan, Yu; Xiao, Naidong; Wan, Xiaoqiong; Hua, Yumei; Zhao, Jianwei

    2017-01-01

    Eichhornia crassipes (EC, water hyacinth) has gained attention due to its alarming reproductive capacity, which subsequently leads to serious ecological damage of water in many eutrophic lakes in the world. The traditional mechanical removal methods have disadvantages. They squander this valuable lignocellulosic resource. Meanwhile, there is a bottleneck for the subsequently reasonable and efficient utilization of EC biomass on a large scale after phytoremediation of polluted water using EC. As a result, the exploration of effective EC utilization technologies has become a popular research field. After years of exploration and amelioration, there have been significant breakthroughs in this research area, including the synthesis of excellent EC cellulose-derived materials, innovative bioenergy production, etc. This review organizes the research of the utilization of the EC biomass among several important fields and then analyses the advantages and disadvantages for each pathway. Finally, comprehensive EC utilization technologies are proposed as a reference. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Intercomparison of thermal-optical method with different temperature protocols: Implications from source samples and solvent extraction

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; Duan, Feng-kui; He, Ke-bin; Du, Zhen-yu; Zheng, Mei; Ma, Yong-liang

    2012-12-01

    Three temperature protocols with different peak inert mode temperature (Tpeak-inert) were compared based on source and ambient samples (both untreated and extracted using a mixture of hexane, methylene chloride, and acetone) collected in Beijing, China. The ratio of EC580 (elemental carbon measured by the protocol with a Tpeak-inert of 580 °C; similar hereinafter) to EC850 could be as high as 4.8 for biomass smoke samples whereas the ratio was about 1.0 for diesel and gasoline exhaust samples. The EC580 to EC850 ratio averaged 1.95 ± 0.89 and 1.13 ± 0.20 for the untreated and extracted ambient samples, whereas the EC580 to EC650 ratio of ambient samples was 1.22 ± 0.10 and 1.20 ± 0.12 before and after extraction. It was suggested that there are two competing mechanisms for the effects of Tpeak-inert on the EC results such that when Tpeak-inert is increased, one mechanism tends to decrease EC by increasing the amount of charring whereas the other tends to increase EC through promoting more charring to evolve before native EC. Results from this study showed that EC does not always decrease when increasing the peak inert mode temperature. Moreover, reducing the charring amount could improve the protocols agreement on EC measurements, whereas temperature protocol would not influence the EC results if no charring is formed. This study also demonstrated the benefits of allowing for the OC and EC split occurring in the inert mode when a high Tpeak-inert is used (e.g., 850 °C).

  11. Can weighing lysimeter ET represent surrounding field ET well enough to test flux station measurements of daily and sub-daily ET?

    NASA Astrophysics Data System (ADS)

    Evett, Steven R.; Schwartz, Robert C.; Howell, Terry A.; Louis Baumhardt, R.; Copeland, Karen S.

    2012-12-01

    Weighing lysimeters and neutron probes (NP) are both used to determine the change in soil water storage needed to solve for evapotranspiration (ET) using the soil water balance equation. We compared irrigated cotton ET determined using two large (3 × 3 × 2.4-m deep) weighing lysimeters and eight NP soil water profiles located outside the lysimeters in cotton fields during the BEAREX08 field campaign (see [16] Evett et al., 2012). The objectives were to (i) determine if lysimeter-based ET fluxes were representative of those from the fields, designated NE and SE, in which the lysimeters were centered, and (ii) investigate different methods of computing the soil water balance using NP data. Field fluxes were determined from the soil water balance using neutron probe measurements of change in profile water content storage. Fluxes of ET from the SE lysimeter were representative of those from the field throughout the season and can be used with reasonable certainty for comparisons of ET fluxes and energy balance closure derived from Bowen ratio (BR) and eddy covariance (EC) measurements whose footprints lay in the SE field. Comparisons of ET fluxes from EC and BR systems to those from the NE lysimeter should consider that NE lysimeter fluxes were up to 18% larger than those from the NE field during the period of rapid vegetative growth. This was due to plants on the lysimeter having greater height and width than those in the field. Nevertheless, the data from this and companion studies documents substantial underestimation of crop ET by EC stations under the conditions of BEAREX08. Comparison of zero flux plane (ZFP) and simple soil water balance methods of calculating ET from NP data showed them to be equivalent in this study; and for the ZFP method, the depth of the control volume should be determined by the depth at which the hydraulic gradient reverses, not by the depth of calculated minimum flux. If supported by a sufficiently dense and widespread network of deep soil water balance based estimates of ET in the surrounding patch and by ancillary measurements of crop stand and growth within the lysimeter and in the surrounding patch, a weighing lysimeter can provide accurate ET ground truth for comparisons with ET estimated using flux stations or ET calculated using satellite imagery. It must be emphasized that the water balance measurements must include soil profile water content measurements to well below (e.g., 0.5 to 1 m below) the root zone in order to close the water balance.

  12. New observations of VOC emissions and concentrations in, above, and around the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Goldstein, A. H.; Fares, S.; Gentner, D. R.; Park, J.; Weber, R.; Ormeno, E.; Holzinger, R.; Misztal, P. K.; Karl, T. R.; Guenther, A. B.; Fischer, M. L.; Harley, R. A.; Karlik, J. F.

    2011-12-01

    Large portions of the Central Valley of California are out of compliance with current state and federal air quality standards for ozone and particulate matter, and the relative importance of biogenic and anthropogenic VOC emissions to their photochemical production in this region remains uncertain. In 2009-2011 multiple measurement campaigns were completed investigating the VOC emission inventory and concentration distributions. In 2009 BVOC emissions from more than 20 species of major agricultural crops in California were measured in a greenhouse using branch enclosures by both PTRMS and in-situ GC. Overall, crops were found to emit low amounts of BVOC compared to the natural forests surrounding the valley. Crops mainly emitted methanol and terpenes, with a broad array of other species emitted at lower levels, and all the measured crops showed negligible emissions of isoprene. Navel oranges were the largest crop BVOC emitters measured so a full year of flux measurements were made in an orange grove near Visalia in 2010 by eddy covariance(EC)-PTRMS with two multi-week periods of concentration measurements by hourly in-situ GC, and one month of high mass resolution flux measurements by EC-PTR-TOF-MS. The dominant BVOC emissions from the orange grove were methanol and terpenes, followed by acetone, acetaldehyde, and a low level of emissions for many other species. In 2011 aircraft eddy covariance measurements of BVOC fluxes were made by EC-PTRMS covering a large area of California as part of the California Airborne Bvoc Emission Research in Natural Ecosystem Transects (CABERNET) campaign aimed at improving BVOC emission models on regional scales, mainly profiling BVOC emissions from oak woodlands surrounding the Central Valley. In 2010, hourly in-situ VOC measurements were made via in-situ GC in Bakersfield, CA as part of the CalNex experiment. Additionally, in-situ measurements of fresh motor vehicle exhaust were made in Oakland's Caldecott tunnel. Measurements by in-situ GC included more than 200 anthropogenic and biogenic VOCs with a wide range of volatilities (up to 17 carbon atoms in size) and various functional groups (e.g. aldehydes, ketones, alcohols, halogens, sulfur, & nitrogen). Finally, in 2011 vertical profiles of VOC were made at 5 heights on a communication tower at Walnut Grove (~20 miles south of Sacramento) from 30' to 1550' by PTRMS. Results from all of these studies combined provide a novel overview of the distribution of VOC emissions and concentrations in, around, and above the Central Valley of California.

  13. Using Confirmatory Factor Analysis to Understand Executive Control in Preschool Children: Sources of Variation in Emergent Mathematic Achievement

    ERIC Educational Resources Information Center

    Bull, Rebecca; Espy, Kimberly Andrews; Wiebe, Sandra A.; Sheffield, Tiffany D.; Nelson, Jennifer Mize

    2011-01-01

    Latent variable modeling methods have demonstrated utility for understanding the structure of executive control (EC) across development. These methods are utilized to better characterize the relation between EC and mathematics achievement in the preschool period, and to understand contributing sources of individual variation. Using the sample and…

  14. Eddy-Covariance and auxiliary measurements, NGEE-Barrow, 2012-2013

    DOE Data Explorer

    Torn, Margaret; Billesbach, Dave; Raz-Yaseef, Naama

    2014-03-24

    The EC tower is operated as part of the Next Generation Ecosystem Experiment-Arctic (NGEE) at Barrow, Alaska. The tower is collecting flux data from the beginning of the thaw season, early June, and until conditions are completely frozen, early November. The tower is equipped with a Gill R3-50 Sonic Anemometer, LI-7700 (CH4) sensor, a LI-7500A (CO2/H2O) sensor, and radiation sensors (Kipp and Zonen CNR-4 (four component radiometer), two LiCor LI-190 quantum sensors (PAR upwelling and downwelling), and a down-looking Apogee SI-111 infrared radiometer (surface temperature)). The sensors are remotely controlled, and communication with the tower allows us to retrieve information in real time.

  15. Four years of highly time resolved measurements of elemental and organic carbon at a rural background site in Central Europe

    NASA Astrophysics Data System (ADS)

    Mbengue, Saliou; Fusek, Michal; Schwarz, Jaroslav; Vodička, Petr; Šmejkalová, Adéla Holubová; Holoubek, Ivan

    2018-06-01

    Elemental carbon (EC) and organic carbon (OC) in fine atmospheric aerosols (PM2.5: aerodynamic diameter smaller than 2.5 μm) have been measured with a semi-automatic instrument during a 4-year survey at the National Atmospheric Observatory Košetice (NAOK), Czech Republic. Ground based measurements were performed from March 2013 to December 2016 with a field Semi-Continuous OCEC Aerosol Analyzer (Sunset Laboratory Inc., USA). The variation of EC and OC concentrations and the OC/EC ratio was characterized for different seasons and days of the week. During our survey, higher concentrations of EC and OC were observed in winter (0.83 ± 0.67 and 3.33 ± 2.28 μg m-3, respectively), and lower concentrations were recorded in summer (0.34 ± 0.18 and 2.30 ± 1.15 μg m-3, respectively). Inversely, the OC/EC ratio with mean value (5.1 ± 2.6) characteristic to rural background area was higher in summer (7.33 ± 3.23) in comparison to the other seasons. Since the data contain values below detection and quantification limits of the measuring device (i.e., censored values), statistical methods for censored data have been used in order to compare mean EC and OC concentrations between various seasons. It was found out that there is a significant difference between summer and the other seasons with the exception of mean OC concentrations at noon. In most cases, there was also a significant difference between winter and the other seasons. Moreover, it was found out that when dealing with OC concentrations, it is possible to replace censored values by a constant and still obtain reasonable results. In case of EC concentrations, the method based on censored distributions should be preferred when the sample size is small and the proportion of censored values is high. The diurnal variation of EC and OC is less pronounced in summer. During working days, the EC diurnal pattern displays a morning (between 6:00 and 10:00) and an afternoon/evening (between 18:00 and 22:00) peaks, while for OC, only the afternoon/evening peak is observed. These seasonal, diurnal and weekly variations of EC and OC concentrations and OC/EC ratio are probably related to variability in terms of emission sources (residential heating, traffic), transport characteristic and meteorological conditions. A weaker correlation between EC and OC in summer (r = 0.56) suggests additional sources and/or transport processes during other seasons. The elevated OC/EC ratio, the higher correlation between OC and O3, and the temperature and solar radiation during summer confirmed an increasing contribution of OC from secondary organic carbon (SOC) estimated as at least 59 ± 11% of total carbon in the PM2.5 using the EC tracer method. Backward trajectories of air masses arriving at 100 m AGL calculated in winter and summer show that higher pollution episodes of EC and OC are predominantly associated with continental air masses confined over Central Europe (about 79%), while lower EC and OC levels are mainly associated with episodes of long-range transport of marine air masses. Interestingly, the results reveal that in winter pollutants emitted during workdays could be accumulated above the region and influence the rural background air quality during some prolonged time of the weekend, especially on Saturday.

  16. Electric and hybrid vehicles environmental control subsystem study

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An environmental control subsystem (ECS) in the passenger compartment of electric and hybrid vehicles is studied. Various methods of obtaining the desired temperature control for the battery pack is also studied. The functional requirements of ECS equipment is defined. Following categorization by methodology, technology availability and risk, all viable ECS concepts are evaluated. Each is assessed independently for benefits versus risk, as well as for its feasibility to short, intermediate and long term product development. Selection of the preferred concept is made against these requirements, as well as the study's major goal of providing safe, highly efficient and thermally confortable ECS equipment.

  17. Adolescents and Young Adults' Perceptions of Electronic Cigarettes as a Gateway to Smoking: A Qualitative Study in Switzerland

    ERIC Educational Resources Information Center

    Akre, Christina; Suris, Joan-Carles

    2017-01-01

    Electronic cigarettes (ECs) acting as a gateway to smoking traditional cigarettes (TCs) is a growing public health concern of EC use among youths. To gather the opinions and perceptions of adolescents and young adults (AYAs) on whether and how EC can act as a gateway to smoking TC among youths. A qualitative method included 42 AYAs. Participants…

  18. Electrochemical reductive dehalogenation of iodine-containing contrast agent pharmaceuticals: Examination of reactions of diatrizoate and iopamidol using the method of rotating ring-disc electrode (RRDE).

    PubMed

    Yan, Mingquan; Chen, Zhanghao; Li, Na; Zhou, Yuxuan; Zhang, Chenyang; Korshin, Gregory

    2018-06-01

    This study examined the electrochemical (EC) reduction of iodinated contrast media (ICM) exemplified by iopamidol and diatrizoate. The method of rotating ring-disc electrode (RRDE) was used to elucidate rates and mechanisms of the EC reactions of the selected ICMs. Experiments were carried at varying hydrodynamic conditions, concentrations of iopamidol, diatrizoate, natural organic matter (NOM) and model compounds (resorcinol, catechol, guaiacol) which were used to examine interactions between products of the EC reduction of ICMs and halogenation-active species. The data showed that iopamidol and diatrizoate were EC-reduced at potentials < -0.45 V vs. s.c.e. In the range of potentials -0.65 to -0.85 V their reduction was mass transfer-controlled. The presence of NOM and model compounds did not affect the EC reduction of iopamidol and diatrizoate but active iodine species formed as a result of the EC-induced transformations of these ICMs reacted readily with NOM and model compounds. These data provide more insight into the nature of generation of iodine-containing by-products in the case of reductive degradation of ICMs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Influence of softening sequencing on electrocoagulation treatment of produced water.

    PubMed

    Esmaeilirad, Nasim; Carlson, Ken; Omur Ozbek, Pinar

    2015-01-01

    Electrocoagulation has been used to remove solids and some metals from both water and wastewater sources for decades. Additionally, chemical softening is commonly employed in water treatment systems to remove hardness. This paper assesses the combination and sequence of softening and EC methods to treat hydraulic fracturing flowback and produced water from shale oil and gas operations. EC is one of the available technologies to treat produced water for reuse in frac fluids, eliminating not only the need to transport more water but also the costs of providing fresh water. In this paper, the influence of chemical softening on EC was studied. In the softening process, pH was raised to 9.5 and 10.2 before and after EC, respectively. Softening, when practiced before EC was more effective for removing turbidity with samples from wells older than one month (99% versus 88%). However, neither method was successful in treating samples collected from early flowback (1-day and 2-day samples), likely due to the high concentration of organic matter. For total organic carbon, hardness, Ba, Sr, and B removal, application of softening before EC appeared to be the most efficient approach, likely due to the formation of solids before the coagulation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance.

    PubMed

    Zheng, Binqi; Fu, Pengcheng; Li, Baoqing; Yuan, Xiaobing

    2018-03-07

    The Unscented Kalman filter (UKF) may suffer from performance degradation and even divergence while mismatch between the noise distribution assumed as a priori by users and the actual ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF (RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance. More specifically, at each timestep, a standard UKF will be implemented first to obtain the state estimations using the new acquired measurement data. Then an online fault-detection mechanism is adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based method and residual-based method are used to calculate the estimations of current noise covariance of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the last noise covariance matrices with the estimations as the new noise covariance matrices. Finally, the state estimations will be corrected according to the new noise covariance matrices and previous state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF converges faster to the actual noise covariance and thus achieves a better performance in terms of robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance, which is demonstrated by the simulation results.

  1. A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance

    PubMed Central

    Zheng, Binqi; Yuan, Xiaobing

    2018-01-01

    The Unscented Kalman filter (UKF) may suffer from performance degradation and even divergence while mismatch between the noise distribution assumed as a priori by users and the actual ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF (RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance. More specifically, at each timestep, a standard UKF will be implemented first to obtain the state estimations using the new acquired measurement data. Then an online fault-detection mechanism is adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based method and residual-based method are used to calculate the estimations of current noise covariance of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the last noise covariance matrices with the estimations as the new noise covariance matrices. Finally, the state estimations will be corrected according to the new noise covariance matrices and previous state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF converges faster to the actual noise covariance and thus achieves a better performance in terms of robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance, which is demonstrated by the simulation results. PMID:29518960

  2. Random sampling and validation of covariance matrices of resonance parameters

    NASA Astrophysics Data System (ADS)

    Plevnik, Lucijan; Zerovnik, Gašper

    2017-09-01

    Analytically exact methods for random sampling of arbitrary correlated parameters are presented. Emphasis is given on one hand on the possible inconsistencies in the covariance data, concentrating on the positive semi-definiteness and consistent sampling of correlated inherently positive parameters, and on the other hand on optimization of the implementation of the methods itself. The methods have been applied in the program ENDSAM, written in the Fortran language, which from a file from a nuclear data library of a chosen isotope in ENDF-6 format produces an arbitrary number of new files in ENDF-6 format which contain values of random samples of resonance parameters (in accordance with corresponding covariance matrices) in places of original values. The source code for the program ENDSAM is available from the OECD/NEA Data Bank. The program works in the following steps: reads resonance parameters and their covariance data from nuclear data library, checks whether the covariance data is consistent, and produces random samples of resonance parameters. The code has been validated with both realistic and artificial data to show that the produced samples are statistically consistent. Additionally, the code was used to validate covariance data in existing nuclear data libraries. A list of inconsistencies, observed in covariance data of resonance parameters in ENDF-VII.1, JEFF-3.2 and JENDL-4.0 is presented. For now, the work has been limited to resonance parameters, however the methods presented are general and can in principle be extended to sampling and validation of any nuclear data.

  3. Functional connectivity change as shared signal dynamics

    PubMed Central

    Cole, Michael W.; Yang, Genevieve J.; Murray, John D.; Repovš, Grega; Anticevic, Alan

    2015-01-01

    Background An increasing number of neuroscientific studies gain insights by focusing on differences in functional connectivity – between groups, individuals, temporal windows, or task conditions. We found using simulations that additional insights into such differences can be gained by forgoing variance normalization, a procedure used by most functional connectivity measures. Simulations indicated that these functional connectivity measures are sensitive to increases in independent fluctuations (unshared signal) in time series, consistently reducing functional connectivity estimates (e.g., correlations) even though such changes are unrelated to corresponding fluctuations (shared signal) between those time series. This is inconsistent with the common notion of functional connectivity as the amount of inter-region interaction. New Method Simulations revealed that a version of correlation without variance normalization – covariance – was able to isolate differences in shared signal, increasing interpretability of observed functional connectivity change. Simulations also revealed cases problematic for non-normalized methods, leading to a “covariance conjunction” method combining the benefits of both normalized and non-normalized approaches. Results We found that covariance and covariance conjunction methods can detect functional connectivity changes across a variety of tasks and rest in both clinical and non-clinical functional MRI datasets. Comparison with Existing Method(s) We verified using a variety of tasks and rest in both clinical and non-clinical functional MRI datasets that it matters in practice whether correlation, covariance, or covariance conjunction methods are used. Conclusions These results demonstrate the practical and theoretical utility of isolating changes in shared signal, improving the ability to interpret observed functional connectivity change. PMID:26642966

  4. Covariance Manipulation for Conjunction Assessment

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.

    2016-01-01

    The manipulation of space object covariances to try to provide additional or improved information to conjunction risk assessment is not an uncommon practice. Types of manipulation include fabricating a covariance when it is missing or unreliable to force the probability of collision (Pc) to a maximum value ('PcMax'), scaling a covariance to try to improve its realism or see the effect of covariance volatility on the calculated Pc, and constructing the equivalent of an epoch covariance at a convenient future point in the event ('covariance forecasting'). In bringing these methods to bear for Conjunction Assessment (CA) operations, however, some do not remain fully consistent with best practices for conducting risk management, some seem to be of relatively low utility, and some require additional information before they can contribute fully to risk analysis. This study describes some basic principles of modern risk management (following the Kaplan construct) and then examines the PcMax and covariance forecasting paradigms for alignment with these principles; it then further examines the expected utility of these methods in the modern CA framework. Both paradigms are found to be not without utility, but only in situations that are somewhat carefully circumscribed.

  5. Object Tracking Using Adaptive Covariance Descriptor and Clustering-Based Model Updating for Visual Surveillance

    PubMed Central

    Qin, Lei; Snoussi, Hichem; Abdallah, Fahed

    2014-01-01

    We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences. PMID:24865883

  6. On the Emergent Constraints of Climate Sensitivity [On proposed emergent constraints of climate sensitivity

    DOE PAGES

    Qu, Xin; Hall, Alex; DeAngelis, Anthony M.; ...

    2018-01-11

    Differences among climate models in equilibrium climate sensitivity (ECS; the equilibrium surface temperature response to a doubling of atmospheric CO2) remain a significant barrier to the accurate assessment of societally important impacts of climate change. Relationships between ECS and observable metrics of the current climate in model ensembles, so-called emergent constraints, have been used to constrain ECS. Here a statistical method (including a backward selection process) is employed to achieve a better statistical understanding of the connections between four recently proposed emergent constraint metrics and individual feedbacks influencing ECS. The relationship between each metric and ECS is largely attributable tomore » a statistical connection with shortwave low cloud feedback, the leading cause of intermodel ECS spread. This result bolsters confidence in some of the metrics, which had assumed such a connection in the first place. Additional analysis is conducted with a few thousand artificial metrics that are randomly generated but are well correlated with ECS. The relationships between the contrived metrics and ECS can also be linked statistically to shortwave cloud feedback. Thus, any proposed or forthcoming ECS constraint based on the current generation of climate models should be viewed as a potential constraint on shortwave cloud feedback, and physical links with that feedback should be investigated to verify that the constraint is real. Additionally, any proposed ECS constraint should not be taken at face value since other factors influencing ECS besides shortwave cloud feedback could be systematically biased in the models.« less

  7. On the Emergent Constraints of Climate Sensitivity [On proposed emergent constraints of climate sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Xin; Hall, Alex; DeAngelis, Anthony M.

    Differences among climate models in equilibrium climate sensitivity (ECS; the equilibrium surface temperature response to a doubling of atmospheric CO2) remain a significant barrier to the accurate assessment of societally important impacts of climate change. Relationships between ECS and observable metrics of the current climate in model ensembles, so-called emergent constraints, have been used to constrain ECS. Here a statistical method (including a backward selection process) is employed to achieve a better statistical understanding of the connections between four recently proposed emergent constraint metrics and individual feedbacks influencing ECS. The relationship between each metric and ECS is largely attributable tomore » a statistical connection with shortwave low cloud feedback, the leading cause of intermodel ECS spread. This result bolsters confidence in some of the metrics, which had assumed such a connection in the first place. Additional analysis is conducted with a few thousand artificial metrics that are randomly generated but are well correlated with ECS. The relationships between the contrived metrics and ECS can also be linked statistically to shortwave cloud feedback. Thus, any proposed or forthcoming ECS constraint based on the current generation of climate models should be viewed as a potential constraint on shortwave cloud feedback, and physical links with that feedback should be investigated to verify that the constraint is real. Additionally, any proposed ECS constraint should not be taken at face value since other factors influencing ECS besides shortwave cloud feedback could be systematically biased in the models.« less

  8. DISSCO: direct imputation of summary statistics allowing covariates.

    PubMed

    Xu, Zheng; Duan, Qing; Yan, Song; Chen, Wei; Li, Mingyao; Lange, Ethan; Li, Yun

    2015-08-01

    Imputation of individual level genotypes at untyped markers using an external reference panel of genotyped or sequenced individuals has become standard practice in genetic association studies. Direct imputation of summary statistics can also be valuable, for example in meta-analyses where individual level genotype data are not available. Two methods (DIST and ImpG-Summary/LD), that assume a multivariate Gaussian distribution for the association summary statistics, have been proposed for imputing association summary statistics. However, both methods assume that the correlations between association summary statistics are the same as the correlations between the corresponding genotypes. This assumption can be violated in the presence of confounding covariates. We analytically show that in the absence of covariates, correlation among association summary statistics is indeed the same as that among the corresponding genotypes, thus serving as a theoretical justification for the recently proposed methods. We continue to prove that in the presence of covariates, correlation among association summary statistics becomes the partial correlation of the corresponding genotypes controlling for covariates. We therefore develop direct imputation of summary statistics allowing covariates (DISSCO). We consider two real-life scenarios where the correlation and partial correlation likely make practical difference: (i) association studies in admixed populations; (ii) association studies in presence of other confounding covariate(s). Application of DISSCO to real datasets under both scenarios shows at least comparable, if not better, performance compared with existing correlation-based methods, particularly for lower frequency variants. For example, DISSCO can reduce the absolute deviation from the truth by 3.9-15.2% for variants with minor allele frequency <5%. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxide.

    PubMed

    Govindan, Kadarkarai; Raja, Mohan; Noel, Michael; James, E J

    2014-05-15

    The present study is to investigate the reactivity of free radicals (SO4(-) and HO) generated from common oxidants (peroxomonosulfate (PMS), peroxodisulfate (PDS) and hydrogen peroxide (HP)) activated by electrochemically generated Fe(2+)/Fe(3+) ions which furthermore are evaluated to destroy pentachlorophenol (PCP) in aqueous solution. The effect of solution pH and amount of oxidants (PMS, PDS and HP) in electrocoagulation (EC) on PCP degradation is analyzed in detail. The experimental results reveal that, optimum initial solution pH is 4.5 and PMS is more efficient oxidant addition in EC. 75% PCP degradation is achieved at 60min electrolysis time from PMS assisted EC. According to the first order rate constant, faster PCP degradation rate is obtained by PMS assisted EC. The PCP degradation rate by oxidant assisted EC is observed in the following order: EC/PMS>EC/PDS>EC/HP>EC. Further to identify the influences of experimental factors involved in PCP degradation by oxidant assisted EC, an experimental design based on an orthogonal array (OA) L9 (3(3)) is proposed using Taguchi method. The factors that most significantly affect the process robustness are identified as A (oxidant) and B (pH) which together account for nearly 86% of the variance. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Determining the vertical carbon dioxide source/sink distribution in a mountain pine beetle attacked forest: A comparison of eddy-covariance and ecophysiological approaches

    NASA Astrophysics Data System (ADS)

    Emmel, C.; Bowler, R.; Black, T. A.; Christen, A.

    2012-12-01

    Disturbance of forests caused by insect attacks, such as the mountain pine beetle (Dendroctonus ponderosae, MPB) outbreak in Western North America may lead to a conversion of affected forests from a net carbon dioxide (CO2) sink to a net source. Informed management of forests can help reduce the associated CO2 emissions. The objective of this study is to determine the vertical distribution of sources and sinks of CO2 in an open MPB attacked lodgepole pine (Pinus contorta var. latifolia) canopy (stand height h = 17 m, leaf areas index LAI = 0.55 m2 m-2) in the Interior of British Columbia. The stand has a considerable living secondary structure with a maximum height of 12 m while 99% of the mature pine trees composing the upper canopy are dead. We compared two different methods to accomplish the goal of determining the vertical divergence of the CO2 flux and relate it to the different vegetation layers. Data from a field campaign in July / August 2010 were used. The first method employs eddy-covariance (EC) measurements to determine the vertical source/sink distribution within and above the canopy. The instrumentation included open-path infrared gas analyzers and 3D ultrasonic anemometers. With simultaneous EC measurements at seven heights (z/h = 0.05, 0.15, 0.40, 0.60, 0.85, 1.05 and 1.30) we determined the CO2 uptake or release of the layers between the measurement levels by calculating the flux density divergence and the CO2 storage change in the air of each layer. The second method uses an ecophysiological approach developing a canopy CO2 exchange model. CO2 exchange was directly measured on tree boles and the soil using a portable non-steady-state CO2 chamber system and on leaves using a LI-COR LI-6400 photosynthesis system. Measurements were made during different times of the day and under varying temperature and moisture conditions over the course of the campaign. Airborne light detection and ranging (LIDAR) measurements, and vertical, horizontal and species-specific LAI measurements provided necessary information about the stand structure. We combined this information with measurements of photosynthetically active radiation (PAR) at 6 levels, soil moisture and temperature measurements to model the vertical CO2 source/sink distribution over the course of the campaign. In earlier research, it was found that this stand made the transition from a carbon source to a sink faster than expected (Brown et al., 2010, Agric For Meteorol 150, 254-264). The flux profile showed substantial daytime CO2 uptake below z/h = 0.5, while in the upper canopy there was respiratory CO2 loss. PAR penetrates deep into the canopy with on average almost 60% reaching the ground level (z/h = 0.05). Our study demonstrates that the secondary structure is responsible for significant CO2 uptake, while the understory together with the soil and the dead lodgepole pine trees in the upper canopy are weak CO2 sources, resulting in the stand being a carbon sink. We will discuss the strengths and weaknesses of the two proposed methods with regard to technical challenges and uncertainties, and how the two methods compared overall.

  11. Cancer cells cause vascular endothelial cell (vEC) retraction via 12(S)HETE secretion; the possible role of cancer cell derived microparticle.

    PubMed

    Uchide, Keiji; Sakon, Masato; Ariyoshi, Hideo; Nakamori, Syouji; Tokunaga, Masaru; Monden, Morito

    2007-02-01

    Cancer cell mediated vascular endothelial cell (vEC) retraction plays a pivotal role in cancer metastasis. The aim of this study is to clarify the biochemical character of vEC retraction factor derived from human breast cancer cell line, MCF-7. In order to estimate vEC retracting activity, transwell chamber assay system was employed. We first tested the effects of trypsin digestion as well as lipid extraction of culture medium (CM). Trypsin digestion of CM resulted in approximately 40% loss of vEC retracting activity and lipid extraction of CM by Brigh and Dyer methods recovered approximately 60% of vEC retracting activity, suggesting that approximately 60% of vEC retracting activity in MCF-7 derived CM is due to lipid. Although Nordihydroguaiaretic acid (NDGA), the specific lipoxygenase inhibitor, suppressed vEC retracting activity in CM, Acetyl salicylic acid (ASA), a specific cyclooxygenase inhibitor, did not affect the activity, suggesting that lipid exerting vEC retracting activity in CM belongs to lipoxygenase mediated arachidonate metabolites. Thin layer chromatography clearly demonstrated that Rf value of lipid vEC retracting factor in CM is identical to 12HETE. Authentic 12(S)HETE, but not 12(R)HETE, showed vEC retracting activity. After the ultracentrifugation of CM, most lipid vEC retracting activity was recovered from the pellet fraction, and flow cytometric analysis using specific antibody against 12(S)HETE clearly showed the association of 12(S)HETE with small particle in CM. These findings suggested the principal involvement of 12(S)HETE in cancer cell derived microparticles in cancer cell mediated vEC retraction.

  12. Scleroderma dermal microvascular endothelial cells exhibit defective response to pro-angiogenic chemokines

    PubMed Central

    Rabquer, Bradley J.; Ohara, Ray A.; Stinson, William A.; Campbell, Phillip L.; Amin, M. Asif; Balogh, Beatrix; Zakhem, George; Renauer, Paul A.; Lozier, Ann; Arasu, Eshwar; Haines, G. Kenneth; Kahaleh, Bashar; Schiopu, Elena; Khanna, Dinesh; Koch, Alisa E.

    2016-01-01

    Objectives. Angiogenesis plays a critical role in SSc (scleroderma). The aim of this study was to examine the expression of growth-regulated protein-γ (Gro-γ/CXCL3), granulocyte chemotactic protein 2 (GCP-2/CXCL6) and their receptor CXCR2 in endothelial cells (ECs) isolated from SSc skin and determine whether these cells mount an angiogenic response towards pro-angiogenic chemokines. The downstream signalling pathways as well as the pro-angiogenic transcription factor inhibitor of DNA-binding protein 1 (Id-1) were also examined. Methods. Skin biopsies were obtained from patients with dcSSc. ECs were isolated via magnetic positive selection. Angiogenesis was measured by EC chemotaxis assay. Results. Gro-γ/CXCL3 and GCP-2/CXCL6 were minimally expressed in both skin types but elevated in SSc serum. Pro-angiogenic chemokine mRNA was greater in SSc ECs than in normal ECs. SSc ECs did not migrate to vascular endothelial growth factor (VEGF), Gro-γ/CXCL3, GCP-2/CXCL6 or CXCL16. The signalling pathways stimulated by these chemokines were also dysregulated. Id-1 mRNA in SSc ECs was lower compared with normal ECs, and overexpression of Id-1 in SSc ECs increased their ability to migrate towards VEGF and CXCL16. Conclusion. Our results show that SSc ECs are unable to respond to pro-angiogenic chemokines despite their increased expression in serum and ECs. This might be due to the differences in the signalling pathways activated by these chemokines in normal vs SSc ECs. In addition, the lower expression of Id-1 also decreases the angiogenic response. The inability of pro-angiogenic chemokines to promote EC migration provides an additional mechanism for the impaired angiogenesis that characterizes SSc. PMID:26705326

  13. Partitioning carbon fluxes from a Midwestern corn and soybean rotation system using footprint analysis

    NASA Astrophysics Data System (ADS)

    Dold, C.; Hatfield, J.; Prueger, J. H.; Wacha, K.

    2017-12-01

    Midwestern US agriculture is dominated by corn and soybean production. Corn has typically higher Net Ecosystem Exchange (NEE) than soybean due to increased carboxylation efficiency and different crop management. The conjoined NEE may be measured with eddy covariance (EC) stations covering both crops, however, it is often unclear what the contribution of each crop is, as the CO2 source area remains unknown. The aim of this study was to quantify the contribution of CO2 fluxes from each crop for a conventional corn-soybean rotation system from 2007 - 2015. Therefore, the combined CO2 flux of three adjacent fields with annual corn-soybean rotation was measured with a 9.1 m EC tower (Flux 30). In the center of two of these fields, additional EC towers (Flux 10 and Flux 11) were positioned above the corn and soybean canopy to validate Flux 30 NEE. For each EC system the annual 90% NEE footprint area was calculated, footprints were partitioned among fields, and NEE separated accordingly. The average annual 90% footprint area of Flux 30, and Flux 10/11 corn and soybean was estimated to 206, 11 and 7 ha, respectively. The annual average (±SE) NEE of Flux 30 was -693 ± 47 g CO2 m-2 yr-1, of which 83% out of 90% originated from the three adjacent fields. Corn and soybean NEE measured at Flux 10 and 11 was -1124 ± 95 and 173 ± 73 g CO2 m-2 yr-1, respectively, and 89% and 90% originated from these fields. That demonstrates, that Flux 30 represents the combined NEE of a corn-soybean rotation, and Flux 10 and 11 measured NEE from a single crop. However, the share of Flux 30 NEE originating from corn and soybean grown on the Flux 10/11 fields was -192 ± 16 and -205 ± 18 g CO2 m-2 yr-1, indicating a substantial difference to single crop NEE. While it was possible to measure the NEE of a corn-soybean rotation with a tall EC tower, footprint partitioning could not retrieve NEE for each crop, probably due to differences in measurement height and footprint source area.

  14. Carbon balance of a plastic mulch and drip irrigated cotton field in an arid oasis of Northwest China

    NASA Astrophysics Data System (ADS)

    Ming, G.

    2017-12-01

    Carbon balance of a plastic mulch and drip irrigated cotton field in an arid oasis of Northwest ChinaGuanghui Ming1, Fuqiang Tian1*, Hongchang Hu11State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China,Abstracts: Agricultural ecosystems have the potential to offset rising CO2 concentration in the atmosphere but the potential is often altered by agricultural management. Plastic film mulching and drip irrigation (PMDI) have been widespread for saving water and improving crop yield worldwide. To comprehensively assess the carbon balance and to detect the controlling factors of the carbon flux in a PMDI cotton field, experiments combining eddy covariance (EC) system, chamber method and crop sampling were implemented in an arid oasis of Xinjiang from the year 2012 to 2016. The annual net ecosystem exchange (NEE) was -250.18 ± 80.41 g C m-2 in the five years, which indicated that the filed was a much stronger carbon sink. After removal of the harvest of cotton as seed oil (Ch) of 108.81±7.57 g C m-2, the field was still a moderate carbon sink with net biome productivity (NBP) of 141.37±73.7 g C m-2. Soil temperature can explain 82% of seasonal variation of nighttime NEE while PAR can explain 36-81% of daytime NEE varying with crop development and photosynthetic activity. NEE was separated into total ecosystem respiration (Reco, 1214.20±144.42 g C m-2) and gross primary productivity (GPP, 1464.38±122.78 g C m-2). Interannual Reco changed more drastically than GPP and respiration may be the main determinant of carbon balance in the PMDI field. Seasonal NPP measured by cop sampling method (NPPCS) agreed well with NPP calculated with EC (NPPEC), with the annual NPP of 708.86 ± 52.26 g C m-2, which indicated that our carbon flux measurements and separating methods reasonable. The PMDI cotton field induced more GPP and Reco than other croplands with larger light use efficiency (LUE) but relatively smaller carbon use efficiency (CUE) and water use efficiency (WUE). So far the PMDI field was a good farming method for carbon sequestration.

  15. How many flux towers are enough? How tall is a tower tall enough? How elaborate a scaling is scaling enough?

    NASA Astrophysics Data System (ADS)

    Xu, K.; Sühring, M.; Metzger, S.; Desai, A. R.

    2017-12-01

    Most eddy covariance (EC) flux towers suffer from footprint bias. This footprint not only varies rapidly in time, but is smaller than the resolution of most earth system models, leading to a systemic scale mismatch in model-data comparison. Previous studies have suggested this problem can be mitigated (1) with multiple towers, (2) by building a taller tower with a large flux footprint, and (3) by applying advanced scaling methods. Here we ask: (1) How many flux towers are needed to sufficiently sample the flux mean and variation across an Earth system model domain? (2) How tall is tall enough for a single tower to represent the Earth system model domain? (3) Can we reduce the requirements derived from the first two questions with advanced scaling methods? We test these questions with output from large eddy simulations (LES) and application of the environmental response function (ERF) upscaling method. PALM LES (Maronga et al. 2015) was set up over a domain of 12 km x 16 km x 1.8 km at 7 m spatial resolution and produced 5 hours of output at a time step of 0.3 s. The surface Bowen ratio alternated between 0.2 and 1 among a series of 3 km wide stripe-like surface patches, with horizontal wind perpendicular to the surface heterogeneity. A total of 384 virtual towers were arranged on a regular grid across the LES domain, recording EC observations at 18 vertical levels. We use increasing height of a virtual flux tower and increasing numbers of virtual flux towers in the domain to compute energy fluxes. Initial results show a large (>25) number of towers is needed sufficiently sample the mean domain energy flux. When the ERF upscaling method was applied to the virtual towers in the LES environment, we were able to map fluxes over the domain to within 20% precision with a significantly smaller number of towers. This was achieved by relating sub-hourly turbulent fluxes to meteorological forcings and surface properties. These results demonstrate how advanced scaling techniques can decrease the number of towers, and thus experimental expense, required for domain-scaling over heterogeneous surface.

  16. Fatty acids rather than hormones restore in vitro angiogenesis in human male and female endothelial cells cultured in charcoal-stripped serum

    PubMed Central

    Vanetti, Claudia; Bifari, Francesco; Vicentini, Lucia M.

    2017-01-01

    Charcoal-stripped serum (CSS) is a well-accepted method to model effects of sex hormones in cell cultures. We have recently shown that human endothelial cells (ECs) fail to growth and to undergo in vitro angiogenesis when cultured in CSS. However, the mechanism(s) underlying the CSS-induced impairment of in vitro EC properties are still unknown. In addition, whether there is any sexual dimorphism in the CSS-induced EC phenotype remains to be determined. Here, by independently studying human male and female ECs, we found that CSS inhibited both male and female EC growth and in vitro angiogenesis, with a more pronounced effect on male EC sprouting. Reconstitution of CSS with 17-β estradiol, dihydrotestosterone, or the lipophilic thyroid hormone did not restore EC functions in both sexes. On the contrary, supplementation with palmitic acid or the acetyl-CoA precursor acetate significantly rescued the CSS-induced inhibition of growth and sprouting in both male and female ECs. We can conclude that the loss of metabolic precursors (e.g., fatty acids) rather than of hormones is involved in the impairment of in vitro proliferative and angiogenic properties of male and female ECs cultured with CSS. PMID:29232396

  17. Electronic cigarettes: Review of use, content, safety, effects on smokers, and potential for harm and benefit

    PubMed Central

    Hajek, Peter; Etter, Jean-François; Benowitz, Neal; Eissenberg, Thomas; McRobbie, Hayden

    2015-01-01

    Aims We reviewed available research on the use, content and safety of electronic cigarettes (EC) and on their effects on users, to assess their potential for harm or benefit and to extract evidence that can guide future policy. Methods Studies were identified by systematic database searches and screening references to February 2014. Results EC aerosol can contain some of the toxicants present in tobacco smoke, but at levels which are much lower. Long-term health effects of EC use are unknown but compared with cigarettes, EC are likely to be much less, if at all, harmful to users or bystanders. EC are increasingly popular among smokers, but to date there is no evidence of regular use by never-smokers or by non-smoking children. EC enable some users to reduce or quit smoking. Conclusions Allowing EC to compete with cigarettes in the marketplace might decrease smoking-related morbidity and mortality. Regulating EC as strictly as cigarettes, or even more strictly as some regulators propose, is not warranted on current evidence. Health professionals may consider advising smokers unable or unwilling to quit through other routes to switch to EC as a safer alternative to smoking and a possible pathway to complete cessation of nicotine use. PMID:25078252

  18. A Parallel-Plate Flow Chamber for Mechanical Characterization of Endothelial Cells Exposed to Laminar Shear Stress

    PubMed Central

    Wong, Andrew K.; LLanos, Pierre; Boroda, Nickolas; Rosenberg, Seth R.; Rabbany, Sina Y.

    2017-01-01

    Shear stresses induced by laminar fluid flow are essential to properly recapitulate the physiological microenvironment experienced by endothelial cells (ECs). ECs respond to these stresses via mechanotransduction by modulating their phenotype and biomechanical characteristics, which can be characterized by Atomic Force Microscopy (AFM). Parallel Plate Flow Chambers (PPFCs) apply unidirectional laminar fluid flow to EC monolayers in vitro. Since ECs in sealed PPFCs are inaccessible to AFM probes, cone-and-plate viscometers (CPs) are commonly used to apply shear stress. This paper presents a comparison of the efficacies of both methods. Computational Fluid Dynamic simulation and validation testing using EC responses as a metric have indicated limitations in the use of CPs to apply laminar shear stress. Monolayers subjected to laminar fluid flow in a PPFC respond by increasing cortical stiffness, elongating, and aligning filamentous actin in the direction of fluid flow to a greater extent than CP devices. Limitations using CP devices to provide laminar flow across an EC monolayer suggest they are better suited when studying EC response for disturbed flow conditions. PPFC platforms allow for exposure of ECs to laminar fluid flow conditions, recapitulating cellular biomechanical behaviors, whereas CP platforms allow for mechanical characterization of ECs under secondary flow. PMID:28989541

  19. Sparse Covariance Matrix Estimation With Eigenvalue Constraints

    PubMed Central

    LIU, Han; WANG, Lie; ZHAO, Tuo

    2014-01-01

    We propose a new approach for estimating high-dimensional, positive-definite covariance matrices. Our method extends the generalized thresholding operator by adding an explicit eigenvalue constraint. The estimated covariance matrix simultaneously achieves sparsity and positive definiteness. The estimator is rate optimal in the minimax sense and we develop an efficient iterative soft-thresholding and projection algorithm based on the alternating direction method of multipliers. Empirically, we conduct thorough numerical experiments on simulated datasets as well as real data examples to illustrate the usefulness of our method. Supplementary materials for the article are available online. PMID:25620866

  20. Improved Method for the Incorporation of Heme Cofactors into Recombinant Proteins Using Escherichia coli Nissle 1917.

    PubMed

    Fiege, Kerstin; Querebillo, Christine Joy; Hildebrandt, Peter; Frankenberg-Dinkel, Nicole

    2018-05-15

    Recombinant production of heme proteins in Escherichia coli is often limited by the availability of heme in the host. Therefore, several methods, including the reconstitution of heme proteins after production but prior to purification or the HPEX system, conferring the ability to take up external heme have been developed and used in the past. Here we describe the use of the apathogenic E. coli strain Nissle 1917 (EcN) as a suitable host for the recombinant production of heme proteins. EcN has an advantage over commonly used lab strains in that it is able to take up heme from the environment through the heme receptor ChuA. Expression of several heme proteins from different prokaryotic sources led to high yield and quantitative incorporation of the cofactor when heme was supplied in the growth medium. Comparative UV-vis and resonance Raman measurements revealed that the method employed has significant influence on heme coordination with the EcN system representing the most native situation. Therefore, the use of EcN as a host for recombinant heme protein production represents an inexpensive and straightforward method to facilitate further investigations of structure and function.

  1. Adhesion behavior of endothelial progenitor cells to endothelial cells in simple shear flow

    NASA Astrophysics Data System (ADS)

    Gong, Xiao-Bo; Li, Yu-Qing; Gao, Quan-Chao; Cheng, Bin-Bin; Shen, Bao-Rong; Yan, Zhi-Qiang; Jiang, Zong-Lai

    2011-12-01

    The adhesion of endothelial progenitor cells (EPCs) on endothelial cells (ECs) is one of the critical physiological processes for the regenesis of vascular vessels and the prevention of serious cardiovascular diseases. Here, the rolling and adhesion behavior of EPCs on ECs was studied numerically. A two-dimensional numerical model was developed based on the immersed boundary method for simulating the rolling and adhesion of cells in a channel flow. The binding force arising from the catch bond of a receptor and ligand pair was modeled with stochastic Monte Carlo method and Hookean spring model. The effect of tumor necrosis factor alpha (TNF- α) on the expression of the number of adhesion molecules in ECs was analyzed experimentally. A flow chamber system with CCD camera was set up to observe the top view of the rolling of EPCs on the substrate cultivated with ECs. Numerical results prove that the adhesion of EPC on ECs is closely related to membrane stiffness of the cell and shear rate of the flow. It also suggests that the adhesion force between EPC and EC by P-selectin glycoprotein ligand-1 only is not strong enough to bond the cell onto vessel walls unless contributions of other catch bond are considered. Experimental results demonstrate that TNF- α enhanced the expressions of VCAM, ICAM, P-selectin and E-selectin in ECs, which supports the numerical results that the rolling velocity of EPC on TNF- α treated EC substrate decreases obviously compared with its velocity on the untreated one. It is found that because the adhesion is affected by both the rolling velocity and the deformability of the cell, an optimal stiffness of EPC may exist at a given shear rate of flow for achieving maximum adhesion rates.

  2. Future of emergency contraception lies in pharmacists' hands.

    PubMed

    Monastersky, Nicole; Landau, Sharon Cohen

    2006-01-01

    To increase community pharmacists' awareness about issues related to the provision of emergency contraception (EC) to women by describing pharmacist outreach and training programs and discussing pharmacy access and stocking issues, California's EC Pharmacy Program, methods for raising pharmacists' awareness, and professional development opportunities. EC is both safe and effective in reducing the risk of unintended pregnancy after unprotected intercourse, yet awareness of and demand for the medication has not been high, and it often is not stocked in pharmacies. Various advocacy organizations have engaged in educating the public and physicians about EC, but relatively little attention and few resources have been targeted to ensure that the pharmacy community is aware of and educated about EC. Increased visibility and access to EC in the several states that allow pharmacists to provide EC directly to women have resulted from the active participation and leadership of pharmacists. In these states, women are showing interest in and receptivity to reproductive health services provided by pharmacists. In California, some 3000 pharmacists statewide have completed training, and in 2004 they provided EC directly to approximately 175,000 women. Pharmacists who provide EC overwhelmingly (91%) report that they do so because they see it as an important community service, and many (57%) recognize the opportunity for professional development. Pharmacists are uniquely positioned to improve access to EC, and leadership within the pharmacy community can facilitate efforts to improve access. Increased education and training of pharmacists about EC--such as continuing education programs available online at www.pharmacyaccess. learnsomething.com--are critical to ensure not only that EC is available in pharmacies but also that pharmacists are engaged in meeting the reproductive health needs of women. Increased access to EC can expand pharmacists' role in health care provision. State-specific information about EC pharmacy access initiatives is available on the Web at www.GO2EC.org.

  3. Propensity score to detect baseline imbalance in cluster randomized trials: the role of the c-statistic.

    PubMed

    Leyrat, Clémence; Caille, Agnès; Foucher, Yohann; Giraudeau, Bruno

    2016-01-22

    Despite randomization, baseline imbalance and confounding bias may occur in cluster randomized trials (CRTs). Covariate imbalance may jeopardize the validity of statistical inferences if they occur on prognostic factors. Thus, the diagnosis of a such imbalance is essential to adjust statistical analysis if required. We developed a tool based on the c-statistic of the propensity score (PS) model to detect global baseline covariate imbalance in CRTs and assess the risk of confounding bias. We performed a simulation study to assess the performance of the proposed tool and applied this method to analyze the data from 2 published CRTs. The proposed method had good performance for large sample sizes (n =500 per arm) and when the number of unbalanced covariates was not too small as compared with the total number of baseline covariates (≥40% of unbalanced covariates). We also provide a strategy for pre selection of the covariates needed to be included in the PS model to enhance imbalance detection. The proposed tool could be useful in deciding whether covariate adjustment is required before performing statistical analyses of CRTs.

  4. Estimation of diffusion coefficients from voltammetric signals by support vector and gaussian process regression

    PubMed Central

    2014-01-01

    Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463

  5. Satellite-Based Analysis of Evapotranspiration and Water Balance in the Grassland Ecosystems of Dryland East Asia

    PubMed Central

    Xia, Jiangzhou; Liang, Shunlin; Chen, Jiquan; Yuan, Wenping; Liu, Shuguang; Li, Linghao; Cai, Wenwen; Zhang, Li; Fu, Yang; Zhao, Tianbao; Feng, Jinming; Ma, Zhuguo; Ma, Mingguo; Liu, Shaomin; Zhou, Guangsheng; Asanuma, Jun; Chen, Shiping; Du, Mingyuan; Davaa, Gombo; Kato, Tomomichi; Liu, Qiang; Liu, Suhong; Li, Shenggong; Shao, Changliang; Tang, Yanhong; Zhao, Xiang

    2014-01-01

    The regression tree method is used to upscale evapotranspiration (ET) measurements at eddy-covariance (EC) towers to the grassland ecosystems over the Dryland East Asia (DEA). The regression tree model was driven by satellite and meteorology datasets, and explained 82% and 76% of the variations of ET observations in the calibration and validation datasets, respectively. The annual ET estimates ranged from 222.6 to 269.1 mm yr−1 over the DEA region with an average of 245.8 mm yr−1 from 1982 through 2009. Ecosystem ET showed decreased trends over 61% of the DEA region during this period, especially in most regions of Mongolia and eastern Inner Mongolia due to decreased precipitation. The increased ET occurred primarily in the western and southern DEA region. Over the entire study area, water balance (the difference between precipitation and ecosystem ET) decreased substantially during the summer and growing season. Precipitation reduction was an important cause for the severe water deficits. The drying trend occurring in the grassland ecosystems of the DEA region can exert profound impacts on a variety of terrestrial ecosystem processes and functions. PMID:24845063

  6. Satellite-based analysis of evapotranspiration and water balance in the grassland ecosystems of Dryland East Asia.

    PubMed

    Xia, Jiangzhou; Liang, Shunlin; Chen, Jiquan; Yuan, Wenping; Liu, Shuguang; Li, Linghao; Cai, Wenwen; Zhang, Li; Fu, Yang; Zhao, Tianbao; Feng, Jinming; Ma, Zhuguo; Ma, Mingguo; Liu, Shaomin; Zhou, Guangsheng; Asanuma, Jun; Chen, Shiping; Du, Mingyuan; Davaa, Gombo; Kato, Tomomichi; Liu, Qiang; Liu, Suhong; Li, Shenggong; Shao, Changliang; Tang, Yanhong; Zhao, Xiang

    2014-01-01

    The regression tree method is used to upscale evapotranspiration (ET) measurements at eddy-covariance (EC) towers to the grassland ecosystems over the Dryland East Asia (DEA). The regression tree model was driven by satellite and meteorology datasets, and explained 82% and 76% of the variations of ET observations in the calibration and validation datasets, respectively. The annual ET estimates ranged from 222.6 to 269.1 mm yr(-1) over the DEA region with an average of 245.8 mm yr(-1) from 1982 through 2009. Ecosystem ET showed decreased trends over 61% of the DEA region during this period, especially in most regions of Mongolia and eastern Inner Mongolia due to decreased precipitation. The increased ET occurred primarily in the western and southern DEA region. Over the entire study area, water balance (the difference between precipitation and ecosystem ET) decreased substantially during the summer and growing season. Precipitation reduction was an important cause for the severe water deficits. The drying trend occurring in the grassland ecosystems of the DEA region can exert profound impacts on a variety of terrestrial ecosystem processes and functions.

  7. Direct measurement of electrocaloric effect in lead-free Ba(SnxTi1-x)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Sanlialp, Mehmet; Luo, Zhengdong; Shvartsman, Vladimir V.; Wei, Xianzhu; Liu, Yang; Dkhil, Brahim; Lupascu, Doru C.

    2017-10-01

    In this study, we report on investigation of the electrocaloric (EC) effect in lead-free Ba(SnxTi1-x)O3 (BSnT) ceramics with compositions in the range of 0.08 ≤ x ≤ 0.15 by the direct measurement method using a differential scanning calorimeter. The maximum EC temperature change, ΔTEC-max = 0.63 K under an electric field of 2 kV/mm, was observed for the composition with x = 0.11 at ˜44 °C around the multiphase coexistence region. We observed that the EC effect also peaks at transitions between ferroelectric phases of different symmetries. Comparison with the results of indirect EC measurements from our previous work shows that the indirect approach provides reasonable estimations of the magnitude of the largest EC temperature changes and EC strength. However, it fails to describe correctly temperature dependences of the EC effect for the compositions showing relaxor-like behaviour (x = 0.14 and 0.15) because of their non-ergodic nature. Our study provides strong evidence supporting that looking for multiphase ferroelectric materials can be very useful to optimize EC performance.

  8. The Anti-Inflammatory Cytokine Interleukin-19 Is Expressed in and Angiogenic for Human Endothelial Cells

    PubMed Central

    Jain, Surbhi; Gabunia, Khatuna; Kelemen, Sheri E.; Panetti, Tracee S.; Autieri, Michael V.

    2010-01-01

    OBJECTIVE The expression and effects of anti-inflammatory interleukins on endothelial cell (EC) activation and development of angiogenesis is uncharacterized. The purpose of this study is to characterize the expression and function of Interleukin-19 (IL-19), a recently described Th2 anti-inflammatory interleukin on EC pathophysiology. METHODS and RESULTS We demonstrate by immunohistochemistry and immunoblot that IL-19 is expressed in inflamed, but not normal human coronary endothelium, and can be induced in cultured human EC by serum and bFGF. IL-19 is mitogenic, chemotactic, and promotes cell EC spreading. IL-19 activates the signaling proteins STAT3, p44/42, and Rac1. In functional ex vivo studies, IL-19 promotes cord-like structure formation of cultured EC and also enhances microvessel sprouting in the mouse aortic ring assay. IL-19 induces tube formation in matrigel plugs in vivo. CONCLUSIONS These data are the first to report expression of the anti-inflammatory interleukin IL-19 in EC, and the first to indicate that IL-19 is mitogenic and chemotactic for EC, and can induce the angiogenic potential of EC. PMID:20966397

  9. On the robustness of EC-PC spike detection method for online neural recording.

    PubMed

    Zhou, Yin; Wu, Tong; Rastegarnia, Amir; Guan, Cuntai; Keefer, Edward; Yang, Zhi

    2014-09-30

    Online spike detection is an important step to compress neural data and perform real-time neural information decoding. An unsupervised, automatic, yet robust signal processing is strongly desired, thus it can support a wide range of applications. We have developed a novel spike detection algorithm called "exponential component-polynomial component" (EC-PC) spike detection. We firstly evaluate the robustness of the EC-PC spike detector under different firing rates and SNRs. Secondly, we show that the detection Precision can be quantitatively derived without requiring additional user input parameters. We have realized the algorithm (including training) into a 0.13 μm CMOS chip, where an unsupervised, nonparametric operation has been demonstrated. Both simulated data and real data are used to evaluate the method under different firing rates (FRs), SNRs. The results show that the EC-PC spike detector is the most robust in comparison with some popular detectors. Moreover, the EC-PC detector can track changes in the background noise due to the ability to re-estimate the neural data distribution. Both real and synthesized data have been used for testing the proposed algorithm in comparison with other methods, including the absolute thresholding detector (AT), median absolute deviation detector (MAD), nonlinear energy operator detector (NEO), and continuous wavelet detector (CWD). Comparative testing results reveals that the EP-PC detection algorithm performs better than the other algorithms regardless of recording conditions. The EC-PC spike detector can be considered as an unsupervised and robust online spike detection. It is also suitable for hardware implementation. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Treating Sample Covariances for Use in Strongly Coupled Atmosphere-Ocean Data Assimilation

    NASA Astrophysics Data System (ADS)

    Smith, Polly J.; Lawless, Amos S.; Nichols, Nancy K.

    2018-01-01

    Strongly coupled data assimilation requires cross-domain forecast error covariances; information from ensembles can be used, but limited sampling means that ensemble derived error covariances are routinely rank deficient and/or ill-conditioned and marred by noise. Thus, they require modification before they can be incorporated into a standard assimilation framework. Here we compare methods for improving the rank and conditioning of multivariate sample error covariance matrices for coupled atmosphere-ocean data assimilation. The first method, reconditioning, alters the matrix eigenvalues directly; this preserves the correlation structures but does not remove sampling noise. We show that it is better to recondition the correlation matrix rather than the covariance matrix as this prevents small but dynamically important modes from being lost. The second method, model state-space localization via the Schur product, effectively removes sample noise but can dampen small cross-correlation signals. A combination that exploits the merits of each is found to offer an effective alternative.

  11. OM/OC Ratio and Specific Attenuation Coefficient in Ambient Particulate Matter at a Rural Site in Southern Ontario: Implications for Aerosol Aging and Emission Sources

    NASA Astrophysics Data System (ADS)

    Chan, T. W.; Huang, L.; Leaitch, R.; Sharma, S.; Brook, J.; Slowik, J.; Abbatt, J.

    2008-05-01

    Carbonaceous species (organic carbon (OC) and elemental carbon (EC)) contribute a large portion of atmospheric fine particle mass and influence air quality, human health, and climate forcing. However, their emission sources and atmospheric aging processes are not well understood. The OM/OC ratio, defined as the organic mass per unit OC mass, is useful to understand the degree of oxidation of aerosol particles in atmospheric processes. We define the modified BC/EC (mod BC/EC) ratio as the ratio of the non-scattering corrected absorption coefficient per unit mass of EC. The mod BC/EC ratio has a similar meaning as the site specific attenuation coefficient, which is an important parameter used to convert light absorption measurements to black carbon mass. The mod BC/EC ratio can vary due to light scattering effect on absorption measurements, in which the oxygenated organics may play a role. The pyrolysis organic carbon (POC) is defined as the carbon mass fraction obtained at T= 870°C under a pure helium environment using the thermal separation method [Huang et al., 2006]. Since POC mass is generally proportional to the amount of oxygenated OC, studying the relationships among OC, EC, POC, as well as OM/OC and mod BC/EC ratios may help us understand the mechanisms of aerosol aging from different emission sources. Two 1-month field studies were conducted at a rural site in southern Ontario (NW of Toronto) during fall 2005 and spring 2007. Quartz filter samples were collected and analyzed for OC, POC, and EC concentrations using a thermal/optical method [Huang et al., 2006]. Together with the total organic matter measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and the absorption coefficient obtained from a Particle Soot Absorption Photometer (PSAP), the OM/OC and mod BC/EC ratios for ambient aerosols were obtained. Our results show that when air mass was mainly from south, OC, POC, and EC were relatively high, with average ratios of OC/EC, OM/OC, and POC/EC as 1.94, 1.41, and 0.52, respectively; this indicates significant anthropogenic impacts and relatively large portion of oxygenated OC, which might be due to either primary emissions or photo-chemical reactions occurred in a short period of time. When air mass was mainly from north, OC, POC, and EC were much lower, with average ratios of OC/EC, OM/OC, and POC/EC as 3.10, 1.20, and 0.79, respectively; this suggests less influence from anthropogenic emissions and relatively aged air mass from biogenic-source dominated clean air. Using POC, we estimate the specific attenuation at the site to be 5.8 m2 g-1 independent of the air mass origin. The relationships among OM/OC, mod BC/EC, and POC will be further discussed. References: Huang, L., Brook, J.R., Zhang, W., Li, S.M., Graham, L., Ernst, D., Chivulescu, A., and Lu, G. (2006) Stable isotope measurements of carbon fractions (OC/EC) in airborne particulate: a new dimension for source characterization and apportionment, Atmospheric Environment, 40, 2690-2705.

  12. A comparison of the pro-angiogenic potential of human induced pluripotent stem cell derived endothelial cells and induced endothelial cells in a murine model of peripheral arterial disease.

    PubMed

    Clayton, Zoe E; Yuen, Gloria S C; Sadeghipour, Sara; Hywood, Jack D; Wong, Jack W T; Huang, Ngan F; Ng, Martin K C; Cooke, John P; Patel, Sanjay

    2017-05-01

    Endothelial cells derived from human induced pluripotent stem cells (iPSC-ECs) promote angiogenesis, and more recently induced endothelial cells (iECs) have been generated via fibroblast trans-differentiation. These cell types have potential as treatments for peripheral arterial disease (PAD). However, it is unknown whether different reprogramming methods produce cells that are equivalent in terms of their pro-angiogenic capabilities. We aimed to directly compare iPSC-ECs and iECs in an animal model of PAD, in order to identify which cell type, if any, displays superior therapeutic potential. IPSC-ECs and iECs were generated from human fibroblasts, and transduced with a reporter construct encoding GFP and firefly luciferase for bioluminescence imaging (BLI). Endothelial phenotype was confirmed using in vitro assays. NOD-SCID mice underwent hindlimb ischaemia surgery and received an intramuscular injection of either 1×10 6 iPSC-ECs, 1×10 6 iECs or control vehicle only. Perfusion recovery was measured by laser Doppler. Hindlimb muscle samples were taken for histological analyses. Perfusion recovery was enhanced in iPSC-EC treated mice on day 14 (Control vs. iPSC-EC; 0.35±0.04 vs. 0.54±0.08, p<0.05) and in iEC treated mice on days 7 (Control vs. iEC; 0.23±0.02 vs. 0.44±0.06, p<0.05), 10 (0.31±0.04 vs. 0.64±0.07, p<0.001) and 14 (0.35±0.04 vs. 0.68±0.07, p<0.001) post-treatment. IEC-treated mice also had greater capillary density in the ischaemic gastrocnemius muscle (Control vs. iEC; 125±10 vs. 179±11 capillaries/image; p<0.05). BLI detected iPSC-EC and iEC presence in vivo for two weeks post-treatment. IPSC-ECs and iECs exhibit similar, but not identical, endothelial functionality and both cell types enhance perfusion recovery after hindlimb ischaemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A Multipixel Time Series Analysis Method Accounting for Ground Motion, Atmospheric Noise, and Orbital Errors

    NASA Astrophysics Data System (ADS)

    Jolivet, R.; Simons, M.

    2018-02-01

    Interferometric synthetic aperture radar time series methods aim to reconstruct time-dependent ground displacements over large areas from sets of interferograms in order to detect transient, periodic, or small-amplitude deformation. Because of computational limitations, most existing methods consider each pixel independently, ignoring important spatial covariances between observations. We describe a framework to reconstruct time series of ground deformation while considering all pixels simultaneously, allowing us to account for spatial covariances, imprecise orbits, and residual atmospheric perturbations. We describe spatial covariances by an exponential decay function dependent of pixel-to-pixel distance. We approximate the impact of imprecise orbit information and residual long-wavelength atmosphere as a low-order polynomial function. Tests on synthetic data illustrate the importance of incorporating full covariances between pixels in order to avoid biased parameter reconstruction. An example of application to the northern Chilean subduction zone highlights the potential of this method.

  14. Emergency contraception. Widely available and effective but disappointing as a public health intervention: a review

    PubMed Central

    Baird, D.T.; Cameron, S.; Evers, J.L.H.; Gemzell-Danielsson, K.; Glasier, A.; Moreau, C.; Trussell, J.; von Hertzen, H.; Crosignani, P.G.; La Vecchia, C.; Volpe, A.; Glasier, A.; Crosignani, P.G.

    2015-01-01

    Emergency contraception (EC) prevents pregnancy after unprotected sex or contraceptive failure. Use of EC has increased markedly in countries where a product is available over the counter, yet barriers to availability and use remain. Although effective in clinical trials, it has not yet been possible to show a public health benefit of EC in terms of reduction of unintended pregnancy rates. Selective progesterone receptor modulators developed as emergency contraceptives offer better effectiveness than levonorgestrel, but still EC is less effective than use of ongoing regular contraception. Methods which inhibit ovulation whenever they are taken or which act after ovulation to prevent implantation and strategies to increase the uptake of effective ongoing contraception after EC use would prevent more pregnancies. PMID:25678571

  15. Propensity score method: a non-parametric technique to reduce model dependence

    PubMed Central

    2017-01-01

    Propensity score analysis (PSA) is a powerful technique that it balances pretreatment covariates, making the causal effect inference from observational data as reliable as possible. The use of PSA in medical literature has increased exponentially in recent years, and the trend continue to rise. The article introduces rationales behind PSA, followed by illustrating how to perform PSA in R with MatchIt package. There are a variety of methods available for PS matching such as nearest neighbors, full matching, exact matching and genetic matching. The task can be easily done by simply assigning a string value to the method argument in the matchit() function. The generic summary() and plot() functions can be applied to an object of class matchit to check covariate balance after matching. Furthermore, there is a useful package PSAgraphics that contains several graphical functions to check covariate balance between treatment groups across strata. If covariate balance is not achieved, one can modify model specifications or use other techniques such as random forest and recursive partitioning to better represent the underlying structure between pretreatment covariates and treatment assignment. The process can be repeated until the desirable covariate balance is achieved. PMID:28164092

  16. Computation of transform domain covariance matrices

    NASA Technical Reports Server (NTRS)

    Fino, B. J.; Algazi, V. R.

    1975-01-01

    It is often of interest in applications to compute the covariance matrix of a random process transformed by a fast unitary transform. Here, the recursive definition of fast unitary transforms is used to derive recursive relations for the covariance matrices of the transformed process. These relations lead to fast methods of computation of covariance matrices and to substantial reductions of the number of arithmetic operations required.

  17. Puffing Topography and Nicotine Intake of Electronic Cigarette Users

    PubMed Central

    Behar, Rachel Z.; Hua, My; Talbot, Prue

    2015-01-01

    Background Prior electronic cigarette (EC) topography data are based on two video analyses with limited parameters. Alternate methods for measuring topography are needed to understand EC use and nicotine intake. Objectives This study evaluated EC topography with a CReSS Pocket device and quantified nicotine intake. Methods Validation tests on pressure drop, flow rate, and volume confirmed reliable performance of the CReSS Pocket device. Twenty participants used Blu Cigs and V2 Cigs for 10 minute intervals with a 10–15 minute break between brands. Brand order was reversed and repeated within 7 days Data were analyzed to determine puff duration, puff count, volume, flow rate, peak flow, and inter-puff interval. Nicotine intake was estimated from cartomizer fluid consumption and topography data. Results Nine patterns of EC use were identified. The average puff count and inter-puff interval were 32 puffs and 17.9 seconds. All participants, except one, took more than 20 puffs/10 minutes. The averages for puff duration (2.65 seconds/puff), volume/puff (51ml/puff), total puff volume (1,579 ml), EC fluid consumption (79.6 mg), flow rate (20 ml/s), and peak flow rate (27 ml/s) were determined for 10-minute sessions. All parameters except total puff count were significantly different for Blu versus V2 EC. Total volume for Blu versus V2 was four-times higher than for conventional cigarettes. Average nicotine intake for Blu and V2 across both sessions was 1.2 ± 0.5 mg and 1.4 ± 0.7 mg, respectively, which is similar to conventional smokers. Conclusions EC puffing topography was variable among participants in the study, but often similar within an individual between brands or days. Puff duration, inter-puff interval, and puff volume varied from conventional cigarette standards. Data on total puff volume and nicotine intake are consistent with compensatory usage of EC. These data can contribute to the development of a standard protocol for laboratory testing of EC products. PMID:25664463

  18. Inter-comparison of NIOSH and IMPROVE protocols for OC and EC determination: implications for inter-protocol data conversion

    NASA Astrophysics Data System (ADS)

    Wu, Cheng; Huang, X. H. Hilda; Ng, Wai Man; Griffith, Stephen M.; Zhen Yu, Jian

    2016-09-01

    Organic carbon (OC) and elemental carbon (EC) are operationally defined by analytical methods. As a result, OC and EC measurements are protocol dependent, leading to uncertainties in their quantification. In this study, more than 1300 Hong Kong samples were analyzed using both National Institute for Occupational Safety and Health (NIOSH) thermal optical transmittance (TOT) and Interagency Monitoring of Protected Visual Environment (IMPROVE) thermal optical reflectance (TOR) protocols to explore the cause of EC disagreement between the two protocols. EC discrepancy mainly (83 %) arises from a difference in peak inert mode temperature, which determines the allocation of OC4NSH, while the rest (17 %) is attributed to a difference in the optical method (transmittance vs. reflectance) applied for the charring correction. Evidence shows that the magnitude of the EC discrepancy is positively correlated with the intensity of the biomass burning signal, whereby biomass burning increases the fraction of OC4NSH and widens the disagreement in the inter-protocol EC determination. It is also found that the EC discrepancy is positively correlated with the abundance of metal oxide in the samples. Two approaches (M1 and M2) that translate NIOSH TOT OC and EC data into IMPROVE TOR OC and EC data are proposed. M1 uses direct relationship between ECNSH_TOT and ECIMP_TOR for reconstruction: M1 : ECIMP_TOR = a × ECNSH_TOT + b; while M2 deconstructs ECIMP_TOR into several terms based on analysis principles and applies regression only on the unknown terms: M2 : ECIMP_TOR = AECNSH + OC4NSH - (a × PCNSH_TOR + b), where AECNSH, apparent EC by the NIOSH protocol, is the carbon that evolves in the He-O2 analysis stage, OC4NSH is the carbon that evolves at the fourth temperature step of the pure helium analysis stage of NIOSH, and PCNSH_TOR is the pyrolyzed carbon as determined by the NIOSH protocol. The implementation of M1 to all urban site data (without considering seasonal specificity) yields the following equation: M1(urban data) : ECIMP_TOR = 2.20 × ECNSH_TOT - 0.05. While both M1 and M2 are acceptable, M2 with site-specific parameters provides the best reconstruction performance. Secondary OC (SOC) estimation using OC and EC by the two protocols is compared. An analysis of the usability of reconstructed ECIMP_TOR and OCIMP_TOR suggests that the reconstructed values are not suitable for SOC estimation due to the poor reconstruction of the OC / EC ratio.

  19. Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.

    PubMed

    Xie, Yanmei; Zhang, Biao

    2017-04-20

    Missing covariate data occurs often in regression analysis, which frequently arises in the health and social sciences as well as in survey sampling. We study methods for the analysis of a nonignorable covariate-missing data problem in an assumed conditional mean function when some covariates are completely observed but other covariates are missing for some subjects. We adopt the semiparametric perspective of Bartlett et al. (Improving upon the efficiency of complete case analysis when covariates are MNAR. Biostatistics 2014;15:719-30) on regression analyses with nonignorable missing covariates, in which they have introduced the use of two working models, the working probability model of missingness and the working conditional score model. In this paper, we study an empirical likelihood approach to nonignorable covariate-missing data problems with the objective of effectively utilizing the two working models in the analysis of covariate-missing data. We propose a unified approach to constructing a system of unbiased estimating equations, where there are more equations than unknown parameters of interest. One useful feature of these unbiased estimating equations is that they naturally incorporate the incomplete data into the data analysis, making it possible to seek efficient estimation of the parameter of interest even when the working regression function is not specified to be the optimal regression function. We apply the general methodology of empirical likelihood to optimally combine these unbiased estimating equations. We propose three maximum empirical likelihood estimators of the underlying regression parameters and compare their efficiencies with other existing competitors. We present a simulation study to compare the finite-sample performance of various methods with respect to bias, efficiency, and robustness to model misspecification. The proposed empirical likelihood method is also illustrated by an analysis of a data set from the US National Health and Nutrition Examination Survey (NHANES).

  20. Flux and turbulence measurements at a densely built-up site in Marseille: Heat, mass (water and carbon dioxide), and momentum

    NASA Astrophysics Data System (ADS)

    Grimmond, C. S. B.; Salmond, J. A.; Oke, T. R.; Offerle, B.; Lemonsu, A.

    2004-12-01

    Eddy covariance (EC) observations above the densely built-up center of Marseille during the Expérience sur site pour contraindre les modèles de pollution atmosphérique et de transport d'émissions (ESCOMPTE) summertime measurement campaign extend current understanding of surface atmosphere exchanges in cities. The instrument array presented opportunities to address issues of the representativeness of local-scale fluxes in urban settings. Separate EC systems operated at two levels, and a telescoping tower allowed the pair to be exposed at two different sets of heights. The flux and turbulence observations taken at the four heights, stratified by wind conditions (mistral wind and sea breeze), are used to address the partitioning of the surface energy balance in an area with large roughness elements. The turbulent sensible heat flux dominates in the daytime, although the storage heat flux is a significant term that peaks before solar noon. The turbulent latent heat flux is small but not negligible. Carbon dioxide fluxes show that this central city district is almost always a source, but the vegetation reduces the magnitude of the fluxes in the afternoon. The atmosphere in such a heavily developed area is rarely stable. The turbulence characteristics support the empirical functions proposed by M. Roth.

  1. Net ecosystem productivity of temperate and boreal forests after clearcutting - a Fluxnet-Canada measurement and modelling synthesis

    NASA Astrophysics Data System (ADS)

    Grant, R. F.; Barr, A.; Black, T. A.; Margolis, H. A.; McCaughey, J. H.; Trofymow, J. A.

    2010-05-01

    Clearcutting strongly affects subsequent forest net ecosystem productivity (NEP). Hypotheses for ecological controls on NEP in the ecosystem model ecosys were tested with CO2 fluxes measured by eddy covariance (EC) in three post-clearcut conifer chronosequences. An algorithm for microbial colonization of fine and woody debris allowed the model to reproduce sigmoidal declines in debris observed after clearcutting. In the model, Rh drove debris decomposition that drove microbial growth, N mineralization and asymbiotic N2 fixation. These processes controlled root N uptake, and thereby CO2 fixation in regrowing vegetation. Interactions among soil and plant processes allowed the model to simulate hourly CO2 fluxes and annual NEP within the uncertainty of EC measurements from 2003 through 2007 over forest stands from 1 to 80 years of age in all three chronosequences without site- or species-specific parameterization. The model was then used to study the impacts of increasing harvest removals on subsequent C stocks at one of the chronosequence sites. Model results indicated that increasing harvest removals would hasten recovery of NEP during the first 30 years after clearcutting, but would reduce ecosystem C stocks by about 15% of the increased removals at the end of an 80 year harvest cycle.

  2. Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes

    NASA Astrophysics Data System (ADS)

    Vihermaa, Leena E.; Waldron, Susan; Domingues, Tomas; Grace, John; Cosio, Eric G.; Limonchi, Fabian; Hopkinson, Chris; da Rocha, Humberto Ribeiro; Gloor, Emanuel

    2016-12-01

    We constructed a whole carbon budget for a catchment in the Western Amazon Basin, combining drainage water analyses with eddy covariance (EC) measured terrestrial CO2 fluxes. As fluvial C export can represent permanent C export it must be included in assessments of whole site C balance, but it is rarely done. The footprint area of the flux tower is drained by two small streams ( 5-7 km2) from which we measured the dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), particulate organic carbon (POC) export, and CO2 efflux. The EC measurements showed the site C balance to be +0.7 ± 9.7 Mg C ha-1 yr-1 (a source to the atmosphere) and fluvial export was 0.3 ± 0.04 Mg C ha-1 yr-1. Of the total fluvial loss 34% was DIC, 37% DOC, and 29% POC. The wet season was most important for fluvial C export. There was a large uncertainty associated with the EC results and with previous biomass plot studies (-0.5 ± 4.1 Mg C ha-1 yr-1); hence, it cannot be concluded with certainty whether the site is C sink or source. The fluvial export corresponds to only 3-7% of the uncertainty related to the site C balance; thus, other factors need to be considered to reduce the uncertainty and refine the estimated C balance. However, stream C export is significant, especially for almost neutral sites where fluvial loss may determine the direction of the site C balance. The fate of C downstream then dictates the overall climate impact of fluvial export.

  3. Physical controls on half-hourly, daily, and monthly turbulent flux and energy budget over a high-altitude small lake on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Ma, Yaoming; Ma, Weiqiang; Su, Zhongbo

    2017-02-01

    Precise measurements of evaporation and understanding of the physical controls on turbulent heat flux over lakes have fundamental significance for catchment-scale water balance analysis and local-scale climate modeling. The observation and simulation of lake-air turbulent flux processes have been widely carried out, but studies that examine high-altitude lakes on the Tibetan Plateau are still rare, especially for small lakes. An eddy covariance (EC) system, together with a four-component radiation sensor and instruments for measuring water temperature profiles, was set up in a small lake within the Nam Co basin in April 2012 for long-term evaporation and energy budget observations. With the valuable measurements collected during the ice-free periods in 2012 and 2013, the main conclusions are summarized as follows: First, a bulk aerodynamic transfer model (B model), with parameters optimized for the specific wave pattern in the small lake, could provide reliable and consistent results with EC measurements, and B model simulations are suitable for data interpolation due to inadequate footprint or malfunction of the EC instrument. Second, the total evaporation in this small lake (812 mm) is approximately 200 mm larger than that from adjacent Nam Co (approximately 627 mm) during their ice-free seasons. Third, wind speed shows significance at temporal scales of half hourly, whereas water vapor and temperature gradients have higher correlations over temporal scales of daily and monthly in lake-air turbulent heat exchange. Finally, energy stored during April to June is mainly released during September to November, suggesting an energy balance closure value of 0.97.

  4. Assessing diel variation of CH4 flux from rice paddies through temperature patterns

    NASA Astrophysics Data System (ADS)

    Centeno, Caesar Arloo R.; Alberto, Ma Carmelita R.; Wassmann, Reiner; Sander, Bjoern Ole

    2017-10-01

    The diel variation in methane (CH4) flux from irrigated rice was characterized during the dry and wet cropping seasons in 2013 and 2014 using the eddy covariance (EC) technique. The EC technique has the advantage of obtaining measurements of fluxes at an extremely high temporal resolution (10Hz), meaning it records 36,000 measurements per hour. The EC measurements can very well capture the temporal variations of the diel (both diurnal and nocturnal) fluxes of CH4 and the environmental factors (temperature, surface energy flux, and gross ecosystem photosynthesis) at 30-min intervals. The information generated by this technique is important to enhance our mechanistic understanding of the different factors affecting the landscape scale diel CH4 flux. Distinct diel patterns of CH4 flux were observed when the data were partitioned into different cropping periods (pre-planting, growth, and fallow). The temporal variations of the diel CH4 flux during the dry seasons were more pronounced than during the wet seasons because the latter had so much climatic disturbance from heavy monsoon rains and occasional typhoons. Pearson correlation analysis and Granger causality test were used to confirm if the environmental factors evaluated were not only correlated with but also Granger-causing the diel CH4 flux. Soil temperature at 2.5 cm depth (Ts 2.5 cm) can be used as simple proxy for predicting diel variations of CH4 fluxes in rice paddies using simple linear regression during both the dry and wet seasons. This simple site-specific temperature response function can be used for gap-filling CH4 flux data for improving the estimates of CH4 source strength from irrigated rice production.

  5. Smooth individual level covariates adjustment in disease mapping.

    PubMed

    Huque, Md Hamidul; Anderson, Craig; Walton, Richard; Woolford, Samuel; Ryan, Louise

    2018-05-01

    Spatial models for disease mapping should ideally account for covariates measured both at individual and area levels. The newly available "indiCAR" model fits the popular conditional autoregresssive (CAR) model by accommodating both individual and group level covariates while adjusting for spatial correlation in the disease rates. This algorithm has been shown to be effective but assumes log-linear associations between individual level covariates and outcome. In many studies, the relationship between individual level covariates and the outcome may be non-log-linear, and methods to track such nonlinearity between individual level covariate and outcome in spatial regression modeling are not well developed. In this paper, we propose a new algorithm, smooth-indiCAR, to fit an extension to the popular conditional autoregresssive model that can accommodate both linear and nonlinear individual level covariate effects while adjusting for group level covariates and spatial correlation in the disease rates. In this formulation, the effect of a continuous individual level covariate is accommodated via penalized splines. We describe a two-step estimation procedure to obtain reliable estimates of individual and group level covariate effects where both individual and group level covariate effects are estimated separately. This distributed computing framework enhances its application in the Big Data domain with a large number of individual/group level covariates. We evaluate the performance of smooth-indiCAR through simulation. Our results indicate that the smooth-indiCAR method provides reliable estimates of all regression and random effect parameters. We illustrate our proposed methodology with an analysis of data on neutropenia admissions in New South Wales (NSW), Australia. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Analysis of the release process of phenylpropanolamine hydrochloride from ethylcellulose matrix granules IV.(1)) Evaluation of the controlled release properties for in vivo and in vitro release systems.

    PubMed

    Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu

    2007-11-01

    In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the release properties. The dissolution test is a very important and useful method for understanding and predicting drug-release properties. It was readily confirmed in the previous paper that the release process could be assessed quantitatively by a combination of the square-root time law and cube-root law equations for ethylcellulose (EC) matrix granules of phenylpropanolamine hydrochloride (PPA). In this paper EC layered granules were used in addition to EC matrix. The relationship between release property and the concentration of PPA in plasma after administration using beagle dogs were examined. Then it was confirmed that the correlativity for EC layered granules and EC matrix were similar each other. Therefore, it was considered that the dissolution test is useful for prediction of changes in concentration of PPA in the blood with time. And it was suggested that EC layered granules were suitable as a controlled release system as well as EC matrix.

  7. Measurement of the depth of narrow slotted sections in eddy current reference standards

    NASA Astrophysics Data System (ADS)

    Kim, Young-Joo; Kim, Young-gil; Ahn, Bongyoung; Yoon, Dong-Jin

    2007-02-01

    The dimensions of the slots in eddy current (EC) reference standards are too narrow to be measured by general depth measurement methods such as the optical (laser) or stylus methods. However, measurement of the dimensions of the machined slots is a prerequisite to using the blocks as references. The present paper suggests a measurement method for the slotted section using an ultrasonic test. The width and depth of the slots measured in our study are roughly 0.1 mm and 0.5 mm, respectively. The time of flight (TOF) of the ultrasonic wave was measured precisely. The ultrasonic velocity in the material of the EC reference standard was calculated with the measured values of the TOF and its thickness. Reflected waves from the tip of the slot and the bottom surface of the EC standard were successfully classified. Using this method we have successfully determined the depth of the slotted section.

  8. On-Line Identification of Simulation Examples for Forgetting Methods to Track Time Varying Parameters Using the Alternative Covariance Matrix in Matlab

    NASA Astrophysics Data System (ADS)

    Vachálek, Ján

    2011-12-01

    The paper compares the abilities of forgetting methods to track time varying parameters of two different simulated models with different types of excitation. The observed parameters in the simulations are the integral sum of the Euclidean norm, deviation of the parameter estimates from their true values and a selected band prediction error count. As supplementary information, we observe the eigenvalues of the covariance matrix. In the paper we used a modified method of Regularized Exponential Forgetting with Alternative Covariance Matrix (REFACM) along with Directional Forgetting (DF) and three standard regularized methods.

  9. A Simple and Computationally Efficient Sampling Approach to Covariate Adjustment for Multifactor Dimensionality Reduction Analysis of Epistasis

    PubMed Central

    Gui, Jiang; Andrew, Angeline S.; Andrews, Peter; Nelson, Heather M.; Kelsey, Karl T.; Karagas, Margaret R.; Moore, Jason H.

    2010-01-01

    Epistasis or gene-gene interaction is a fundamental component of the genetic architecture of complex traits such as disease susceptibility. Multifactor dimensionality reduction (MDR) was developed as a nonparametric and model-free method to detect epistasis when there are no significant marginal genetic effects. However, in many studies of complex disease, other covariates like age of onset and smoking status could have a strong main effect and may potentially interfere with MDR's ability to achieve its goal. In this paper, we present a simple and computationally efficient sampling method to adjust for covariate effects in MDR. We use simulation to show that after adjustment, MDR has sufficient power to detect true gene-gene interactions. We also compare our method with the state-of-art technique in covariate adjustment. The results suggest that our proposed method performs similarly, but is more computationally efficient. We then apply this new method to an analysis of a population-based bladder cancer study in New Hampshire. PMID:20924193

  10. Access to Emergency Contraception in the Over-the-Counter Era

    PubMed Central

    Cleland, Kelly; Bass, Jamie; Doci, Florida; Foster, Angel M.

    2016-01-01

    Introduction After years of complex regulatory changes, levonorgestrel emergency contraception (LNG EC) is now approved for unrestricted sale in the US. Timely access to EC pills is critical because they are more likely to work the sooner they are taken. This study assesses whether LNG EC is sold in accordance with current Food and Drug Administration regulations. Methods We distributed an online questionnaire through an EC-focused listserv for reproductive health professionals, asking data collectors to visit local stores and document product names, price, over-the-counter (OTC) shelf availability, and misinformation about age restrictions. We used Chi-square analysis to assess bivariate associations and t-tests and Wilcoxon rank-sum tests to determine differences in means. Results We collected information about 220 stores. The majority (65%) stocked EC on OTC shelves, although only 22% of these displayed it without a locked security enclosure. Chain pharmacies were more likely to shelf-stock EC than independent pharmacies (77% vs 5%; p=0.000), but variation existed among stores within the same chain. Among stores that were asked, 40% incorrectly reported an age restriction for non-prescription purchase of LNG EC, while 95% correctly reported that men can buy LNG EC. The average price of branded and generic LNG EC was $49.64 and $40.05, respectively. Conclusion Changes in the regulatory status of LNG EC have resulted in widespread confusion about how EC can be sold, and its high price contributes to access barriers. Retailers should ensure that consumers can access LNG EC quickly and easily by stocking the product on OTC shelves and educating staff about current regulations. PMID:27682018

  11. Reducing The Cost of Transport and Increasing Walking Distance After Stroke: A Randomized Controlled Trial on Fast Locomotor Training Combined With Functional Electrical Stimulation

    PubMed Central

    Awad, Louis N.; Reisman, Darcy S.; Pohlig, Ryan T.; Binder-Macleod, Stuart A.

    2015-01-01

    Background Neurorehabilitation efforts have been limited in their ability to restore walking function after stroke. Recent work has demonstrated proof-of-concept for a Functional Electrical Stimulation (FES)-based combination therapy designed to improve poststroke walking by targeting deficits in paretic propulsion. Objectives To determine the effects on the energy cost of walking (EC) and long-distance walking ability of locomotor training that combines fast walking with FES to the paretic ankle musculature (FastFES). Methods Fifty participants >6 months poststroke were randomized to 12 weeks of gait training at self-selected speeds (SS), fast speeds (Fast), or FastFES. Participants’ 6-Minute Walk Test (6MWT) distance and EC at comfortable (EC-CWS) and fast (EC-Fast) walking speeds were measured pretraining, posttraining, and at a 3-month follow-up. A reduction in EC-CWS, independent of changes in speed, was the primary outcome. Also evaluated were group differences in the number of 6MWT responders and moderation by baseline speed. Results When compared with SS and Fast, FastFES produced larger reductions in EC (p’s ≤0.03). FastFES produced reductions of 24% and 19% in EC-CWS and EC-Fast (p’s <0.001), whereas neither Fast nor SS influenced EC. Between-group 6MWT differences were not observed; however, 73% of FastFES and 68% of Fast participants were responders, in contrast to 35% of SS participants. Conclusions Combining fast locomotor training with FES is an effective approach to reducing the high EC of persons poststroke. Surprisingly, differences in 6MWT gains were not observed between groups. Closer inspection of the 6MWT and EC relationship and elucidation of how reduced EC may influence walking-related disability is warranted. PMID:26621366

  12. Covariance specification and estimation to improve top-down Green House Gas emission estimates

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Lopez-Coto, I.; Prasad, K.; Whetstone, J. R.

    2015-12-01

    The National Institute of Standards and Technology (NIST) operates the North-East Corridor (NEC) project and the Indianapolis Flux Experiment (INFLUX) in order to develop measurement methods to quantify sources of Greenhouse Gas (GHG) emissions as well as their uncertainties in urban domains using a top down inversion method. Top down inversion updates prior knowledge using observations in a Bayesian way. One primary consideration in a Bayesian inversion framework is the covariance structure of (1) the emission prior residuals and (2) the observation residuals (i.e. the difference between observations and model predicted observations). These covariance matrices are respectively referred to as the prior covariance matrix and the model-data mismatch covariance matrix. It is known that the choice of these covariances can have large effect on estimates. The main objective of this work is to determine the impact of different covariance models on inversion estimates and their associated uncertainties in urban domains. We use a pseudo-data Bayesian inversion framework using footprints (i.e. sensitivities of tower measurements of GHGs to surface emissions) and emission priors (based on Hestia project to quantify fossil-fuel emissions) to estimate posterior emissions using different covariance schemes. The posterior emission estimates and uncertainties are compared to the hypothetical truth. We find that, if we correctly specify spatial variability and spatio-temporal variability in prior and model-data mismatch covariances respectively, then we can compute more accurate posterior estimates. We discuss few covariance models to introduce space-time interacting mismatches along with estimation of the involved parameters. We then compare several candidate prior spatial covariance models from the Matern covariance class and estimate their parameters with specified mismatches. We find that best-fitted prior covariances are not always best in recovering the truth. To achieve accuracy, we perform a sensitivity study to further tune covariance parameters. Finally, we introduce a shrinkage based sample covariance estimation technique for both prior and mismatch covariances. This technique allows us to achieve similar accuracy nonparametrically in a more efficient and automated way.

  13. Ecstasy induces reactive oxygen species, kidney water absorption and rhabdomyolysis in normal rats. Effect of N-acetylcysteine and Allopurinol in oxidative stress and muscle fiber damage

    PubMed Central

    de Bragança, Ana C.; Moreau, Regina L. M.; de Brito, Thales; Shimizu, Maria H. M.; Canale, Daniele; de Jesus, Denise A.; Silva, Ana M. G.; Gois, Pedro H.; Seguro, Antonio C.

    2017-01-01

    Background Ecstasy (Ec) use produces hyperthermia, excessive sweating, intense thirst, an inappropriate antidiuretic hormone secretion (SIADH) and a multisystemic toxicity due to oxidative stress (OS). Intense thirst induces high intake of pure water, which associated with SIADH, usually develops into acute hyponatremia (Hn). As Hn is induced rapidly, experiments to check if Ec acted directly on the Inner Medullary Collecting Ducts (IMCD) of rats were conducted. Rhabdomyolysis and OS were also studied because Ec is known to induce Reactive Oxygen Species (ROS) and tissue damage. To decrease OS, the antioxidant inhibitors N-acetylcysteine (NAC) and Allopurinol (Allo) were used. Methods Rats were maintained on a lithium (Li) diet to block the Vasopressin action before Ec innoculation. AQP2 (Aquaporin 2), ENaC (Epitheliun Sodium Channel) and NKCC2 (Sodium, Potassium, 2 Chloride) expression were determined by Western Blot in isolated IMCDs. The TBARS (thiobarbituric acid reactive substances) and GSH (reduced form of Glutathione) were determined in the Ec group (6 rats injected with Ec-10mg/kg), in Ec+NAC groups (NAC 100mg/Kg/bw i.p.) and in Allo+Ec groups (Allo 50mg/Kg/i.p.). Results Enhanced AQP2 expression revealed that Ec increased water transporter expression, decreased by Li diet, but the expression of the tubular transporters did not change. The Ec, Ec+NAC and Allo+Ec results showed that Ec increased TBARS and decreased GSH, showing evidence of ROS occurrence, which was protected by NAC and Allo. Rhabdomyolysis was only protected by Allo. Conclusion Results showed that Ec induced an increase in AQP2 expression, evidencing another mechanism that might contribute to cause rapid hyponatremia. In addition, they showed that NAC and Allo protected against OS, but only Allo decreased rhabdomyolysis and hyperthermia. PMID:28678861

  14. Vasohibin-1 is identified as a master-regulator of endothelial cell apoptosis using gene network analysis

    PubMed Central

    2013-01-01

    Background Apoptosis is a critical process in endothelial cell (EC) biology and pathology, which has been extensively studied at protein level. Numerous gene expression studies of EC apoptosis have also been performed, however few attempts have been made to use gene expression data to identify the molecular relationships and master regulators that underlie EC apoptosis. Therefore, we sought to understand these relationships by generating a Bayesian gene regulatory network (GRN) model. Results ECs were induced to undergo apoptosis using serum withdrawal and followed over a time course in triplicate, using microarrays. When generating the GRN, this EC time course data was supplemented by a library of microarray data from EC treated with siRNAs targeting over 350 signalling molecules. The GRN model proposed Vasohibin-1 (VASH1) as one of the candidate master-regulators of EC apoptosis with numerous downstream mRNAs. To evaluate the role played by VASH1 in EC, we used siRNA to reduce the expression of VASH1. Of 10 mRNAs downstream of VASH1 in the GRN that were examined, 7 were significantly up- or down-regulated in the direction predicted by the GRN.Further supporting an important biological role of VASH1 in EC, targeted reduction of VASH1 mRNA abundance conferred resistance to serum withdrawal-induced EC death. Conclusion We have utilised Bayesian GRN modelling to identify a novel candidate master regulator of EC apoptosis. This study demonstrates how GRN technology can complement traditional methods to hypothesise the regulatory relationships that underlie important biological processes. PMID:23324451

  15. Efficient generation of endothelial cells from human pluripotent stem cells and characterization of their functional properties.

    PubMed

    Song, Wei; Kaufman, Dan S; Shen, Wei

    2016-03-01

    Although endothelial cells (ECs) have been derived from human pluripotent stem cells (hPSCs), large-scale generation of hPSC-ECs remains challenging and their functions are not well characterized. Here we report a simple and efficient three-stage method that allows generation of approximately 98 and 9500 ECs on day 16 and day 34, respectively, from each human embryonic stem cell (hESC) input. The functional properties of hESC-ECs derived in the presence and absence of a TGFβ-inhibitory molecule SB431542 were characterized and compared with those of human umbilical vein endothelial cells (HUVECs). Confluent monolayers formed by SB431542 + hESC-ECs, SB431542 - hESC-ECs, and HUVECs showed similar permeability to 10,000 Da dextran, but these cells exhibited striking differences in forming tube-like structures in 3D fibrin gels. The SB431542 + hESC-ECs were most potent in forming tube-like structures regardless of whether VEGF and bFGF were present in the medium; less potent SB431542 - hESC-ECs and HUVECs responded differently to VEGF and bFGF, which significantly enhanced the ability of HUVECs to form tube-like structures but had little impact on SB431542 - hESC-ECs. This study offers an efficient approach to large-scale hPSC-EC production and suggests that the phenotypes and functions of hPSC-ECs derived under different conditions need to be thoroughly examined before their use in technology development. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 678-687, 2016. © 2015 Wiley Periodicals, Inc.

  16. Do electronic cigarettes impart a lower potential disease burden than conventional tobacco cigarettes? Review on E-cigarette vapor versus tobacco smoke.

    PubMed

    Oh, Anne Y; Kacker, Ashutosh

    2014-12-01

    Development and utilization of electronic cigarettes (ECs) resulted from the search for healthier alternatives to conventional tobacco cigarettes (TCs) and the search for alternative methods for quitting TCs. This review compares the potential disease burden presented by TC smoke to that of EC vapor. Potential disease burden of EC vapor versus TC smoke was assessed by reviewing clinical studies that measured inhaled components. Chemicals and carcinogens produced by vapor versus smoke were compared. Studies show that EC vapors contain far less carcinogenic particles than TC smoke. Whereas ECs have the ability to reach peak serum cotinine/nicotine levels comparable to that of TCs, ECs do not cause an increase in total white blood cell count; thus, ECs have the potential to lower the risk of atherosclerosis and systemic inflammation. Use of ECs has been shown to improve indoor air quality in a home exposed to TC smoke. This reduces secondhand smoke exposure, thus having the potential to decrease respiratory illness/asthma, middle-ear disease, sudden infant death syndrome, and more. However, some studies claim that propylene glycol (PG) vapor can induce respiratory irritation and increase chances for asthma. To minimize risks, EC manufacturers are replacing PG with distilled water and glycerin for vapor production. Based on the comparison of the chemical analysis of EC and TC carcinogenic profiles and association with health-indicating parameters, ECs impart a lower potential disease burden than conventional TCs. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  17. Line-averaging measurement methods to estimate the gap in the CO2 balance closure - possibilities, challenges, and uncertainties

    NASA Astrophysics Data System (ADS)

    Ziemann, Astrid; Starke, Manuela; Schütze, Claudia

    2017-11-01

    An imbalance of surface energy fluxes using the eddy covariance (EC) method is observed in global measurement networks although all necessary corrections and conversions are applied to the raw data. Mainly during nighttime, advection can occur, resulting in a closing gap that consequently should also affect the CO2 balances. There is the crucial need for representative concentration and wind data to measure advective fluxes. Ground-based remote sensing techniques are an ideal tool as they provide the spatially representative CO2 concentration together with wind components within the same voxel structure. For this purpose, the presented SQuAd (Spatially resolved Quantification of the Advection influence on the balance closure of greenhouse gases) approach applies an integrated method combination of acoustic and optical remote sensing. The innovative combination of acoustic travel-time tomography (A-TOM) and open-path Fourier-transform infrared spectroscopy (OP-FTIR) will enable an upscaling and enhancement of EC measurements. OP-FTIR instrumentation offers the significant advantage of real-time simultaneous measurements of line-averaged concentrations for CO2 and other greenhouse gases (GHGs). A-TOM is a scalable method to remotely resolve 3-D wind and temperature fields. The paper will give an overview about the proposed SQuAd approach and first results of experimental tests at the FLUXNET site Grillenburg in Germany. Preliminary results of the comprehensive experiments reveal a mean nighttime horizontal advection of CO2 of about 10 µmol m-2 s-1 estimated by the spatially integrating and representative SQuAd method. Additionally, uncertainties in determining CO2 concentrations using passive OP-FTIR and wind speed applying A-TOM are systematically quantified. The maximum uncertainty for CO2 concentration was estimated due to environmental parameters, instrumental characteristics, and retrieval procedure with a total amount of approximately 30 % for a single measurement. Instantaneous wind components can be derived with a maximum uncertainty of 0.3 m s-1 depending on sampling, signal analysis, and environmental influences on sound propagation. Averaging over a period of 30 min, the standard error of the mean values can be decreased by a factor of at least 0.5 for OP-FTIR and 0.1 for A-TOM depending on the required spatial resolution. The presented validation of the joint application of the two independent, nonintrusive methods is in the focus of attention concerning their ability to quantify advective fluxes.

  18. Searching Sinks and Sources: CO2 Fluxes Before and After Partial Deforestation of a Spruce Forest

    NASA Astrophysics Data System (ADS)

    Ney, P.; Graf, A.; Druee, C.; Esser, O.; Klosterhalfen, A.; Valler, V.; Pick, K.; Vereecken, H.

    2017-12-01

    Forest ecosystems in the northern mid-latitudes act as a sink for atmospheric carbon dioxide (CO2) and hence play an important role in the terrestrial carbon cycle. Disturbances of these landscapes may have a significant impact on their ecosystem carbon budget. We present seven years of eddy covariance (EC) measurements (September 2013 to September 2017) over a 70 year old spruce stock, including three years prior to and four years after partial deforestation. We analyzed the seasonal and inter-annual changes of carbon fluxes as affected mainly by the forest transition. The measurements were carried out in a small headwater catchment (38.5 ha) within the TERENO (TERrestrial Environmental Observatories) network in the Eifel National Park Germany (50°30'N, 06°19'E, 595-629 m a.s.l.). An EC system, mounted on the top of a 38 m high tower, continuously samples fluxes of momentum, sensible heat, latent heat and CO2. In August and September 2013, more than 20% of the catchment was deforested and planned for regeneration towards natural deciduous vegetation, and a second EC station (2.5 m height) was installed in the middle of this clearcut. Flux partitioning and gap filling methods were used to calculate full time series and annual carbon budgets of the measured net ecosystem exchange (NEE) and its components gross primary production (GPP) and total ecosystem respiration (Reco). Additionally, soil respiration was measured with manual chambers on a monthly to bi-monthly basis at 25 transect points in the forest and deforested area. Annual sums of NEE represent the forest as a carbon sink with small inter-annual variability. In contrast, the deforested area showed a clear trend. In the first year after partial deforestation, regrowth on the deforested area consisted mainly of grasses and red foxglove (Digitalis purpurea L.), while since the second year also growth of mountain ash (Sorbus aucuparia L.) and broom (Cytisus scoparius L.) increased. The regrowth of biomass is reflected in the annual sums of NEE, which decreased from + 500 g C m-2 y-1 to nearly zero over the past four years, due to an increase in the magnitude of GPP.

  19. The Elephant in the Room: Spatial Heterogeneity and the Uncertainty of Measurements and Models

    NASA Astrophysics Data System (ADS)

    Alfieri, J. G.; Kustas, W. P.; Prueger, J. H.; Agam, N.; Neale, C. M. U.; Evett, S. R.

    2014-12-01

    Variations in surface conditions can significantly influence the exchange of heat and moisture between the land and atmosphere. As a result, measurements of surface fluxes using disparate methods not only may differ, they may fail to represent the surrounding landscape due to localized differences in surface conditions. To illustrate this, data collected over adjacent cotton fields during the Bushland Evapotranspiration and Agricultural Remote Sensing Experiment (BEAREX08) will be used. The evapotranspiration (ET) within each field was determined via lysimetry (LY), mass balance using neutron probe (NP) data, and a pair of eddy covariance (EC) systems. A comparison of the cumulative ET from each field showed that ET from LY was 20% to 25% greater than that derived from NP and 10% to 15% greater than those from EC. Additionally, the cumulative flux for the two fields collected using the same approach differed by 5% to 10%. These discrepancies can be explained, in large part, by the variations in vegetation density within the two fields. Not only were there substantial variations in the leaf area index (LAI) within the source areas of the different measurement systems - for example, the LAI within LY was, on average, 0.4 m2 m-2 greater than the LAI within the source area of NP - there were also significant differences in the LAI between the fields as a whole. The cumulative ET output by the remote sensing-based Two-Source Energy Balance (TSEB) model was also compared to the cumulative ET from each of the three measurement approaches. Depending on which measurement technique is used, the model either underestimated the moisture flux by approximately 5%, in the case of LY, or overestimated the flux by nearly 20%, in the case of NP. Comparison of the model output with EC data also indicated that the model overestimated ET, in this case, by approximately 10%. Clearly, the choice of which dataset is used to validate the model significantly effects the conclusions drawn regarding the model's accuracy and utility in estimating ET. The results of this study also underscores the limitations of each of these measurement techniques and the need to understand those limitations when using observational datasets to make general conclusions about field scale ET and validating model output.

  20. Remediating Non-Positive Definite State Covariances for Collision Probability Estimation

    NASA Technical Reports Server (NTRS)

    Hall, Doyle T.; Hejduk, Matthew D.; Johnson, Lauren C.

    2017-01-01

    The NASA Conjunction Assessment Risk Analysis team estimates the probability of collision (Pc) for a set of Earth-orbiting satellites. The Pc estimation software processes satellite position+velocity states and their associated covariance matri-ces. On occasion, the software encounters non-positive definite (NPD) state co-variances, which can adversely affect or prevent the Pc estimation process. Inter-polation inaccuracies appear to account for the majority of such covariances, alt-hough other mechanisms contribute also. This paper investigates the origin of NPD state covariance matrices, three different methods for remediating these co-variances when and if necessary, and the associated effects on the Pc estimation process.

  1. Enhanced Skeletal Muscle Expression of EcSOD Mitigates Streptozotocin-Induced Diabetic Cardiomyopathy by Reducing Oxidative Stress and Aberrant Cell Signaling

    PubMed Central

    Call, Jarrod A.; Chain, Kristopher H.; Martin, Kyle S.; Lira, Vitor A.; Okutsu, Mitsuharu; Zhang, Mei; Yan, Zhen

    2015-01-01

    Background Exercise training enhances extracellular superoxide dismutase (EcSOD) expression in skeletal muscle and elicits positive health outcomes in individuals with diabetes. The goal of this study was to determine if enhanced skeletal muscle expression of EcSOD is sufficient to mitigate streptozotocin (STZ)-induced diabetic cardiomyopathy (DCM). Methods and Results Exercise training promotes EcSOD expression in skeletal muscle and provides protection against DCM; however, it is not known if enhanced EcSOD expression in skeletal muscle plays a functional role in this protection. Here, we show that skeletal muscle-specific EcSOD transgenic mice (TG) are protected from cardiac hypertrophy, fibrosis and dysfunction under the condition of type-1 diabetes induced by STZ injection. We also show that both exercise training and muscle-specific transgenic expression of EcSOD result in elevated EcSOD protein in the blood and heart without increased transcription in the heart, suggesting enhanced expression of EcSOD from skeletal muscle redistributes to the heart. Importantly, cardiac tissue in TG mice displayed significantly reduced oxidative stress, aberrant cell signaling and inflammatory cytokine expression compared with wild type mice under the same diabetic condition. Conclusions Enhanced expression of EcSOD in skeletal muscle is sufficient to mitigate STZ-induced DCM through attenuation of oxidative stress, aberrant cell signaling and inflammation, suggesting a cross-organ mechanism by which exercise training improves cardiac function in diabetes. PMID:25504759

  2. Eddy Covariance Method: Overview of General Guidelines and Conventional Workflow

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Anderson, D. J.; Amen, J. L.

    2007-12-01

    Atmospheric flux measurements are widely used to estimate water, heat, carbon dioxide and trace gas exchange between the ecosystem and the atmosphere. The Eddy Covariance method is one of the most direct, defensible ways to measure and calculate turbulent fluxes within the atmospheric boundary layer. However, the method is mathematically complex, and requires significant care to set up and process data. These reasons may be why the method is currently used predominantly by micrometeorologists. Modern instruments and software can potentially expand the use of this method beyond micrometeorology and prove valuable for plant physiology, hydrology, biology, ecology, entomology, and other non-micrometeorological areas of research. The main challenge of the method for a non-expert is the complexity of system design, implementation, and processing of the large volume of data. In the past several years, efforts of the flux networks (e.g., FluxNet, Ameriflux, CarboEurope, Fluxnet-Canada, Asiaflux, etc.) have led to noticeable progress in unification of the terminology and general standardization of processing steps. The methodology itself, however, is difficult to unify, because various experimental sites and different purposes of studies dictate different treatments, and site-, measurement- and purpose-specific approaches. Here we present an overview of theory and typical workflow of the Eddy Covariance method in a format specifically designed to (i) familiarize a non-expert with general principles, requirements, applications, and processing steps of the conventional Eddy Covariance technique, (ii) to assist in further understanding the method through more advanced references such as textbooks, network guidelines and journal papers, (iii) to help technicians, students and new researchers in the field deployment of the Eddy Covariance method, and (iv) to assist in its use beyond micrometeorology. The overview is based, to a large degree, on the frequently asked questions received from new users of the Eddy Covariance method and relevant instrumentation, and employs non-technical language to be of practical use to those new to this field. Information is provided on theory of the method (including state of methodology, basic derivations, practical formulations, major assumptions and sources of errors, error treatment, and use in non- traditional terrains), practical workflow (e.g., experimental design, implementation, data processing, and quality control), alternative methods and applications, and the most frequently overlooked details of the measurements. References and access to an extended 141-page Eddy Covariance Guideline in three electronic formats are also provided.

  3. Ground-penetrating radar (GPR) responses for sub-surface salt contamination and solid waste: modeling and controlled lysimeter studies.

    PubMed

    Wijewardana, Y N S; Shilpadi, A T; Mowjood, M I M; Kawamoto, K; Galagedara, L W

    2017-02-01

    The assessment of polluted areas and municipal solid waste (MSW) sites using non-destructive geophysical methods is timely and much needed in the field of environmental monitoring and management. The objectives of this study are (i) to evaluate the ground-penetrating radar (GPR) wave responses as a result of different electrical conductivity (EC) in groundwater and (ii) to conduct MSW stratification using a controlled lysimeter and modeling approach. A GPR wave simulation was carried out using GprMax2D software, and the field test was done on two lysimeters that were filled with sand (Lysimeter-1) and MSW (Lysimeter-2). A Pulse EKKO-Pro GPR system with 200- and 500-MHz center frequency antennae was used to collect GPR field data. Amplitudes of GPR-reflected waves (sub-surface reflectors and water table) were studied under different EC levels injected to the water table. Modeling results revealed that the signal strength of the reflected wave decreases with increasing EC levels and the disappearance of the subsurface reflection and wave amplitude reaching zero at higher EC levels (when EC >0.28 S/m). Further, when the EC level was high, the plume thickness did not have a significant effect on the amplitude of the reflected wave. However, it was also found that reflected signal strength decreases with increasing plume thickness at a given EC level. 2D GPR profile images under wet conditions showed stratification of the waste layers and relative thickness, but it was difficult to resolve the waste layers under dry conditions. These results show that the GPR as a non-destructive method with a relatively larger sample volume can be used to identify highly polluted areas with inorganic contaminants in groundwater and waste stratification. The current methods of MSW dumpsite investigation are tedious, destructive, time consuming, costly, and provide only point-scale measurements. However, further research is needed to verify the results under heterogeneous aquifer conditions and complex dumpsite conditions.

  4. A Patient-Centered, Provider-Facilitated Approach to the Refinement of Nonlinear Frequency Compression Parameters Based on Subjective Preference Ratings of Amplified Sound Quality.

    PubMed

    Johnson, Earl E; Light, Keri C

    2015-09-01

    To evaluate sound quality preferences of participants wearing hearing aids with different strengths of nonlinear frequency compression (NFC) processing versus no NFC processing. Two analysis methods, one without and one with a qualifier as to the magnitude of preferences, were compared for their percent agreement to differentiate a small difference in perceived sound quality as a result of applied NFC processing. A single-blind design was used with participants unaware of the presence or strength of NFC processing (independent variable). The National Acoustic Laboratories-Nonlinear 2 (NAL-NL2) prescription of amplification was chosen because audibility is intentionally not prescribed in the presence of larger sensorineural hearing loss thresholds. A lack of prescribed audibility, when present, was deemed an objective qualifier for NFC. NFC is known to improve the input bandwidth available to listeners when high-frequency audibility is not otherwise available and increasing strengths of NFC were examined. Experimental condition 3 (EC3) was stronger than the manufacturer default (EC2). More aggressive strengths (e.g., EC4 and EC5), however, were expected to include excessive distortion and even reduce the output bandwidth that had been prescribed as audible by NAL-NL2 (EC1). A total of 14 male Veterans with severe high-frequency sensorineural hearing loss. Participant sound quality preference ratings (dependent variable) without a qualifier as to the magnitude of preference were analyzed based on binomial probability theory, as is traditional with paired comparison data. The ratings with a qualifier as to the magnitude of preference were analyzed based on the nonparametric statistic of the Wilcoxon signed rank test. The binomial probability analysis method identified a sound quality preference as well as the nonparametric probability test method. As the strength of NFC increased, more participants preferred the EC with less NFC. Fourteen of 14 participants showed equal preference between EC1 and EC2 perhaps, in part, because EC2 showed no objective improvement in audibility for six of the 14 participants (42%). Thirteen of the 14 participants showed no preference between NAL-NL2 and EC3, but all participants had an objective improvement in audibility. With more NFC than EC3, more and more participants preferred the other EC with less NFC in the paired comparison. By referencing the recommended sensation levels of amplitude compression (e.g., NAL-NL2) in the ear canal of hearing aid wearers, the targeting of NFC parameters can likely be optimized with respect to improvements in effective audibility that may contribute to speech recognition without adversely impacting sound quality. After targeting of NFC parameters, providers can facilitate decisions about the use of NFC parameters (strengths of processing) via sound quality preference judgments using paired comparisons. American Academy of Audiology.

  5. Solar absorption by elemental and brown carbon determined from spectral observations.

    PubMed

    Bahadur, Ranjit; Praveen, Puppala S; Xu, Yangyang; Ramanathan, V

    2012-10-23

    Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols (TC) and is typically dominated by soot-like elemental carbon (EC). However, organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC), which is typically not represented in climate models. We propose an observationally based analytical method for rigorously partitioning measured absorption aerosol optical depths (AAOD) and single scattering albedo (SSA) among EC and BrC, using multiwavelength measurements of total (EC, OC, and dust) absorption. EC is found to be strongly absorbing (SSA of 0.38) whereas the BrC SSA varies globally between 0.77 and 0.85. The method is applied to the California region. We find TC (EC + BrC) contributes 81% of the total absorption at 675 nm and 84% at 440 nm. The BrC absorption at 440 nm is about 40% of the EC, whereas at 675 nm it is less than 10% of EC. We find an enhanced absorption due to OC in the summer months and in southern California (related to forest fires and secondary OC). The fractions and trends are broadly consistent with aerosol chemical-transport models as well as with regional emission inventories, implying that we have obtained a representative estimate for BrC absorption. The results demonstrate that current climate models that treat OC as nonabsorbing are underestimating the total warming effect of carbonaceous aerosols by neglecting part of the atmospheric heating, particularly over biomass-burning regions that emit BrC.

  6. The covariance matrix for the solution vector of an equality-constrained least-squares problem

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.

    1976-01-01

    Methods are given for computing the covariance matrix for the solution vector of an equality-constrained least squares problem. The methods are matched to the solution algorithms given in the book, 'Solving Least Squares Problems.'

  7. Design and control of a prosthetic leg for above-knee amputees operated in semi-active and active modes

    NASA Astrophysics Data System (ADS)

    Park, Jinhyuk; Yoon, Gun-Ha; Kang, Je-Won; Choi, Seung-Bok

    2016-08-01

    This paper proposes a new prosthesis operated in two different modes; the semi-active and active modes. The semi-active mode is achieved from a flow mode magneto-rheological (MR) damper, while the active mode is obtained from an electronically commutated (EC) motor. The knee joint part of the above knee prosthesis is equipped with the MR damper and EC motor. The MR damper generates reaction force by controlling the field-dependent yield stress of the MR fluid, while the EC motor actively controls the knee joint angle during gait cycle. In this work, the MR damper is designed as a two-end type flow mode mechanism without air chamber for compact size. On other hand, in order to predict desired knee joint angle to be controlled by EC motor, a polynomial prediction function using a statistical method is used. A nonlinear proportional-derivative controller integrated with the computed torque method is then designed and applied to both MR damper and EC motor to control the knee joint angle. It is demonstrated that the desired knee joint angle is well achieved in different walking velocities on the ground ground.

  8. Time-resolved method to distinguish protein/peptide oxidation during electrospray ionization mass spectrometry.

    PubMed

    Pei, Jiying; Hsu, Cheng-Chih; Yu, Kefu; Wang, Yinghui; Huang, Guangming

    2018-06-29

    Electrospray ionization mass spectrometry (ESI-MS) is one of the most prevalent techniques used to monitor protein/peptide oxidation induced by reactive oxygen species (ROSs). However, both corona discharge (CD) and electrochemistry (EC) can also lead to protein/peptide oxidation during ESI. Because the two types of oxidation occur almost simultaneously, determining the extent to which the two pathways contribute to protein/peptide oxidation is difficult. Herein, a time-resolved method was introduced to identify and differentiate CD- and EC-induced oxidation. Using this approach, we separated the instantaneous CD-induced oxidation from the hysteretic EC-induced oxidation, and the effects of the spray voltage and flow rate of the ESI source on both oxidation types were investigated with a homemade ESI source. For angiotensin II analogue (b-DRVYVHPF-y), the dehydrogenation and oxygenation species were the detected EC-induced oxidation products, while the oxygenation species were the major CD-induced oxidation products. This time-resolved approach was also applicable to a commercial HESI source, in which both CD and EC were responsible for hemoglobin and cytochrome c oxidation with upstream grounding while CD dominated the oxidation without upstream grounding. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Covariance Method of the Tunneling Radiation from High Dimensional Rotating Black Holes

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ling; Han, Yi-Wen; Chen, Shuai-Ru; Ding, Cong

    2018-04-01

    In this paper, Angheben-Nadalini-Vanzo-Zerbini (ANVZ) covariance method is used to study the tunneling radiation from the Kerr-Gödel black hole and Myers-Perry black hole with two independent angular momentum. By solving the Hamilton-Jacobi equation and separating the variables, the radial motion equation of a tunneling particle is obtained. Using near horizon approximation and the distance of the proper pure space, we calculate the tunneling rate and the temperature of Hawking radiation. Thus, the method of ANVZ covariance is extended to the research of high dimensional black hole tunneling radiation.

  10. A systematic analysis of online marketing materials used by providers of expanded carrier screening.

    PubMed

    Chokoshvili, Davit; Borry, Pascal; Vears, Danya F

    2017-12-14

    PurposeExpanded carrier screening (ECS) for a large number of recessive disorders is available to prospective parents through commercial providers. This study aimed to analyze the content of marketing materials on ECS providers' websites.MethodsTo identify providers of ECS tests, we undertook a comprehensive online search, reviewed recent academic literature on commercial carrier screening, and consulted with colleagues familiar with the current ECS landscape. The identified websites were archived in April 2017, and inductive content analysis was performed on website text, brochures and educational materials, and video transcripts.ResultsWe identified 18 ECS providers, including 16 commercial genetic testing companies. Providers typically described ECS as an important family planning tool. The content differed in both the tone used to promote ECS and the accuracy and completeness of the test information provided. We found that most providers offered complimentary genetic counseling to their consumers, although this was often optional, limited to the posttest context, and, in some cases, appeared to be available only to test-positive individuals.ConclusionThe quality of ECS providers' websites could be improved by offering more complete and accurate information about ECS and their tests. Providers should also ensure that all carrier couples receive posttest genetic counseling to inform their subsequent reproductive decision making.Genet Med advance online publication, 14 December 2017; doi:10.1038/gim.2017.222.

  11. Probing the Interaction between Cyclic ADTC1 Ac-CADTPPVC-NH2) Peptide with EC1-EC2 domain of E-cadherin using Molecular Docking Approach

    NASA Astrophysics Data System (ADS)

    Siahaan, P.; Wuning, S.; Manna, A.; Prasasty, V. D.; Hudiyanti, D.

    2018-04-01

    Deeply understanding that intermolecular interaction between molecules on the paracellular pathway has given insight to its microscopic and macroscopic properties. In the paracellular pathway, synthetic cyclic ADTC1 (Ac-CADTPPVC-NH2) peptide has been studied to modulate EC1-EC2 domain, computationally using molecular docking method. The aim of this research is to probe the effect of amino acid alanine (A) of ADTC1 on its interaction properties. The study carried out in two steps: 1. the optimization using GROMACS v4.6.5 program and; 2. Determination of the interaction properties using AutoDock 4.2 program. The interaction was done for A-J box, and the best position of the binding site and binding energy on the OC and CC ADTC1 peptides against the EC1-EC2 domain of E-cadherin was selected. The result showed that the CC of the F box ADTC1 has the best interaction with binding energy of - 26.36 kJ/mol and its energy was lower than ADTC5 without alanine amino acid. ADTC1 interacted with EC1 of EC1-EC2 on Asp1, Trp2, Val3, Ile4, Ile24, Lys25, Ser26, Asn27, and Met92 residues.

  12. Removal of metals in leachate from sewage sludge using electrochemical technology.

    PubMed

    Meunier, N; Drogui, P; Gourvenec, C; Mercier, G; Hausler, R; Blais, J F

    2004-02-01

    Heavy metals in acidic leachates from sewage sludge are usually removed by chemical precipitation, which often requires high concentration of chemicals and induces high metallic sludge production. Electrochemical technique has been explored as an alternative method in a laboratory pilot scale reactor for heavy metals (Cu and Zn) removal from sludge leachate. Three electrolytic cell arrangements using different electrodes materials were tested: mild steel or aluminium bipolar electrode (EC cell), Graphite/stainless steel monopolar electrodes (ER cell) and iron-monopolar electrodes (EC-ER cell). Results showed that the best performances of metal removal were obtained with EC and EC-ER cells using mild steel electrodes operated respectively at current intensities of 0.8 and 2.0 A through 30 and 60 min of treatment. The yields of Cu and Zn removal from leachate varied respectively from 92.4 to 98.9% and from 69.8 to 76.6%. The amounts of 55 and 44 kg tds(-1) of metallic sludge were respectively produced using EC and EC-ER cells. EC and EC-ER systems involved respectively a total cost of 21.2 and 13.1 CAN dollars per ton of dry sludge treated including only energy consumption and metallic sludge disposal. The treatment using EC-ER system was found to be effective and more economical than the traditional metal precipitation using either Ca(OH)2 and/or NaOH.

  13. Assignment of EC Numbers to Enzymatic Reactions with Reaction Difference Fingerprints

    PubMed Central

    Hu, Qian-Nan; Zhu, Hui; Li, Xiaobing; Zhang, Manman; Deng, Zhe; Yang, Xiaoyan; Deng, Zixin

    2012-01-01

    The EC numbers represent enzymes and enzyme genes (genomic information), but they are also utilized as identifiers of enzymatic reactions (chemical information). In the present work (ECAssigner), our newly proposed reaction difference fingerprints (RDF) are applied to assign EC numbers to enzymatic reactions. The fingerprints of reactant molecules minus the fingerprints of product molecules will generate reaction difference fingerprints, which are then used to calculate reaction Euclidean distance, a reaction similarity measurement, of two reactions. The EC number of the most similar training reaction will be assigned to an input reaction. For 5120 balanced enzymatic reactions, the RDF with a fingerprint length at 3 obtained at the sub-subclass, subclass, and main class level with cross-validation accuracies of 83.1%, 86.7%, and 92.6% respectively. Compared with three published methods, ECAssigner is the first fully automatic server for EC number assignment. The EC assignment system (ECAssigner) is freely available via: http://cadd.whu.edu.cn/ecassigner/. PMID:23285222

  14. Comparison of Sensible Heat Flux from Eddy Covariance and Scintillometer over different land surface conditions

    NASA Astrophysics Data System (ADS)

    Zeweldi, D. A.; Gebremichael, M.; Summis, T.; Wang, J.; Miller, D.

    2008-12-01

    The large source of uncertainty in satellite-based evapotranspiration algorithm results from the estimation of sensible heat flux H. Traditionally eddy covariance sensors, and recently large-aperture scintillometers, have been used as ground truth to evaluate satellite-based H estimates. The two methods rely on different physical measurement principles, and represent different foot print sizes. In New Mexico, we conducted a field campaign during summer 2008 to compare H estimates obtained from the eddy covariance and scintillometer methods. During this field campaign, we installed sonic anemometers; one propeller eddy covariance (OPEC) equipped with net radiometer and soil heat flux sensors; large aperture scintillometer (LAS); and weather station consisting of wind speed, direction and radiation sensors over three different experimental areas consisting of different roughness conditions (desert, irrigated area and lake). Our results show the similarities and differences in H estimates obtained from these various methods over the different land surface conditions. Further, our results show that the H estimates obtained from the LAS agree with those obtained from the eddy covariance method when high frequency thermocouple temperature, instead of the typical weather station temperature measurements, is used in the LAS analysis.

  15. Multivariate analysis of longitudinal rates of change.

    PubMed

    Bryan, Matthew; Heagerty, Patrick J

    2016-12-10

    Longitudinal data allow direct comparison of the change in patient outcomes associated with treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a common underlying health status, or characterize processes that are influenced in a similar way by covariates such as exposure or demographic characteristics. Statistical methods that can combine multivariate response variables into common measures of covariate effects have been proposed in the literature. Current methods for characterizing the relationship between covariates and the rate of change in multivariate outcomes are limited to select models. For example, 'accelerated time' methods have been developed which assume that covariates rescale time in longitudinal models for disease progression. In this manuscript, we detail an alternative multivariate model formulation that directly structures longitudinal rates of change and that permits a common covariate effect across multiple outcomes. We detail maximum likelihood estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the potential gain in power that may be achieved with a common analysis of multiple outcomes. We apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare rates of change for HIV infected and uninfected infants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Estimation of Noise Properties for TV-regularized Image Reconstruction in Computed Tomography

    PubMed Central

    Sánchez, Adrian A.

    2016-01-01

    A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128 × 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR. PMID:26308968

  17. Estimation of noise properties for TV-regularized image reconstruction in computed tomography.

    PubMed

    Sánchez, Adrian A

    2015-09-21

    A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128 × 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR.

  18. Estimation of noise properties for TV-regularized image reconstruction in computed tomography

    NASA Astrophysics Data System (ADS)

    Sánchez, Adrian A.

    2015-09-01

    A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128× 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR.

  19. Relations of Positive and Negative Expressivity and Effortful Control to Kindergarteners’ Student-Teacher Relationship, Academic Engagement, and Externalizing Problems at School

    PubMed Central

    Diaz, Anjolii; Eisenberg, Nancy; Valiente, Carlos; VanSchyndel, Sarah; Spinrad, Tracy L.; Berger, Rebecca; Hernandez, Maciel M.; Silva, Kassondra M.; Southworth, Jody

    2015-01-01

    The current study examined the role of naturally-occurring negative and positive emotion expressivity in kindergarten and children’s effortful control (EC) on their relationships with teachers, academic engagement, and problems behaviors in school. Further, the potential moderating role of EC on these important school outcomes was assessed. Emotion and engagement were observed at school. EC was assessed by multiple methods. Teachers reported on their student–teacher relationships and student’s externalizing behaviors. Children’s emotion expressivity and EC were related to engagement and relationships with teachers as well as behavioral problems at school. Children low in EC may be particularly vulnerable to the poor outcomes associated with relatively intense emotion expressivity as they struggle to manage their emotions and behaviors in the classroom. PMID:28584388

  20. Corneoscleral Laceration and Ocular Burns Caused by Electronic Cigarette Explosions

    PubMed Central

    Paley, Grace L.; Echalier, Elizabeth; Eck, Thomas W.; Hong, Augustine R.; Gregory, Darren G.; Lubniewski, Anthony J.

    2016-01-01

    Purpose: To report cases of acute globe rupture and bilateral corneal burns from electronic cigarette (EC) explosions. Methods: Case series. Results: We describe a series of patients with corneal injury caused by EC explosions. Both patients suffered bilateral corneal burns and decreased visual acuity, and one patient sustained a unilateral corneoscleral laceration with prolapsed iris tissue and hyphema. A review of the scientific literature revealed no prior reported cases of ocular injury secondary to EC explosions; however, multiple media and government agency articles describe fires and explosions involving ECs, including at least 4 with ocular injuries. Conclusions: Given these cases and the number of recent media reports, ECs pose a significant public health risk. Users should be warned regarding the possibility of severe injury, including sight-threatening ocular injuries ranging from corneal burns to full-thickness corneoscleral laceration. PMID:27191672

  1. Gram-Schmidt algorithms for covariance propagation

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Bierman, G. J.

    1977-01-01

    This paper addresses the time propagation of triangular covariance factors. Attention is focused on the square-root free factorization, P = UD(transpose of U), where U is unit upper triangular and D is diagonal. An efficient and reliable algorithm for U-D propagation is derived which employs Gram-Schmidt orthogonalization. Partitioning the state vector to distinguish bias and coloured process noise parameters increase mapping efficiency. Cost comparisons of the U-D, Schmidt square-root covariance and conventional covariance propagation methods are made using weighted arithmetic operation counts. The U-D time update is shown to be less costly than the Schmidt method; and, except in unusual circumstances, it is within 20% of the cost of conventional propagation.

  2. Gram-Schmidt algorithms for covariance propagation

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Bierman, G. J.

    1975-01-01

    This paper addresses the time propagation of triangular covariance factors. Attention is focused on the square-root free factorization, P = UDU/T/, where U is unit upper triangular and D is diagonal. An efficient and reliable algorithm for U-D propagation is derived which employs Gram-Schmidt orthogonalization. Partitioning the state vector to distinguish bias and colored process noise parameters increases mapping efficiency. Cost comparisons of the U-D, Schmidt square-root covariance and conventional covariance propagation methods are made using weighted arithmetic operation counts. The U-D time update is shown to be less costly than the Schmidt method; and, except in unusual circumstances, it is within 20% of the cost of conventional propagation.

  3. Simplification of the Kalman filter for meteorological data assimilation

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.

    1991-01-01

    The paper proposes a new statistical method of data assimilation that is based on a simplification of the Kalman filter equations. The forecast error covariance evolution is approximated simply by advecting the mass-error covariance field, deriving the remaining covariances geostrophically, and accounting for external model-error forcing only at the end of each forecast cycle. This greatly reduces the cost of computation of the forecast error covariance. In simulations with a linear, one-dimensional shallow-water model and data generated artificially, the performance of the simplified filter is compared with that of the Kalman filter and the optimal interpolation (OI) method. The simplified filter produces analyses that are nearly optimal, and represents a significant improvement over OI.

  4. Comparing Multiple Evapotranspiration-calculating Methods, Including Eddy Covariance and Surface Renewal, Using Empirical Measurements from Alfalfa Fields in the Sacramento-San Joaquin River Delta

    NASA Astrophysics Data System (ADS)

    Clay, J.; Kent, E. R.; Leinfelder-Miles, M.; Lambert, J. J.; Little, C.; Paw U, K. T.; Snyder, R. L.

    2016-12-01

    Eddy covariance and surface renewal measurements were used to estimate evapotranspiration (ET) over a variety of crop fields in the Sacramento-San Joaquin River Delta during the 2016 growing season. However, comparing and evaluating multiple measurement systems and methods for determining ET was focused upon at a single alfalfa site. The eddy covariance systems included two systems for direct measurement of latent heat flux: one using a separate sonic anemometer and an open path infrared gas analyzer and another using a combined system (Campbell Scientific IRGASON). For these methods, eddy covariance was used with measurements from the Campbell Scientific CSAT3, the LI-COR 7500a, the Campbell Scientific IRGASON, and an additional R.M. Young sonic anemometer. In addition to those direct measures, the surface renewal approach included several energy balance residual methods in which net radiation, ground heat flux, and sensible heat flux (H) were measured. H was measured using several systems and different methods, including using multiple fast-response thermocouple measurements and using the temperatures measured by the sonic anemometers. The energy available for ET was then calculated as the residual of the surface energy balance equation. Differences in ET values were analyzed between the eddy covariance and surface renewal methods, using the IRGASON-derived values of ET as the standard for accuracy.

  5. Empirical Performance of Covariates in Education Observational Studies

    ERIC Educational Resources Information Center

    Wong, Vivian C.; Valentine, Jeffrey C.; Miller-Bains, Kate

    2017-01-01

    This article summarizes results from 12 empirical evaluations of observational methods in education contexts. We look at the performance of three common covariate-types in observational studies where the outcome is a standardized reading or math test. They are: pretest measures, local geographic matching, and rich covariate sets with a strong…

  6. Alternative Multiple Imputation Inference for Mean and Covariance Structure Modeling

    ERIC Educational Resources Information Center

    Lee, Taehun; Cai, Li

    2012-01-01

    Model-based multiple imputation has become an indispensable method in the educational and behavioral sciences. Mean and covariance structure models are often fitted to multiply imputed data sets. However, the presence of multiple random imputations complicates model fit testing, which is an important aspect of mean and covariance structure…

  7. Light-intensity grazing improves alpine meadow productivity and adaption to climate change on the Tibetan Plateau.

    PubMed

    Zhang, Tao; Zhang, Yangjian; Xu, Mingjie; Zhu, Juntao; Wimberly, Michael C; Yu, Guirui; Niu, Shuli; Xi, Yi; Zhang, Xianzhou; Wang, Jingsheng

    2015-10-30

    To explore grazing effects on carbon fluxes in alpine meadow ecosystems, we used a paired eddy-covariance (EC) system to measure carbon fluxes in adjacent fenced (FM) and grazed (GM) meadows on the Tibetan plateau. Gross primary productivity (GPP) and ecosystem respiration (Re) were greater at GM than FM for the first two years of fencing. In the third year, the productivity at FM increased to a level similar to the GM site. The higher productivity at GM was mainly caused by its higher photosynthetic capacity. Grazing exclusion did not increase carbon sequestration capacity for this alpine grassland system. The higher optimal photosynthetic temperature and the weakened ecosystem response to climatic factors at GM may help to facilitate the adaption of alpine meadow ecosystems to changing climate.

  8. (13)C-(15)N correlation via unsymmetrical indirect covariance NMR: application to vinblastine.

    PubMed

    Martin, Gary E; Hilton, Bruce D; Blinov, Kirill A; Williams, Antony J

    2007-12-01

    Unsymmetrical indirect covariance processing methods allow the derivation of hyphenated 2D NMR data from the component 2D spectra, potentially circumventing the acquisition of the much lower sensitivity hyphenated 2D NMR experimental data. Calculation of HSQC-COSY and HSQC-NOESY spectra from GHSQC, COSY, and NOESY spectra, respectively, has been reported. The use of unsymmetrical indirect covariance processing has also been applied to the combination of (1)H- (13)C GHSQC and (1)H- (15)N long-range correlation data (GHMBC, IMPEACH, or CIGAR-HMBC). The application of unsymmetrical indirect covariance processing to spectra of vinblastine is now reported, specifically the algorithmic extraction of (13)C- (15)N correlations via the unsymmetrical indirect covariance processing of the combination of (1)H- (13)C GHSQC and long-range (1)H- (15)N GHMBC to produce the equivalent of a (13)C- (15)N HSQC-HMBC correlation spectrum. The elimination of artifact responses with aromatic solvent-induced shifts (ASIS) is shown in addition to a method of forecasting potential artifact responses through the indirect covariance processing of the GHSQC spectrum used in the unsymmetrical indirect covariance processing.

  9. Emergency contraception: knowledge, attitudes and practices among married Malay women staff at a public university in Malaysia.

    PubMed

    Najafi, Fatemeh; Rahman, Hejar Abdul; Hanafiah, Muhamad; Momtaz, Yadollah A; Ahmad, Zaiton

    2012-11-01

    There is a high rate of unintended pregnancies in Malaysia due to low contraceptive use. Only 30% of married women use modern contraceptive methods. Emergency contraception (EC) is used within a few days of unprotected sex to prevent pregnancy. The purpose of this study was to investigate the knowledge, attitudes, and practices regarding EC pill use among Malay women. A cross sectional study was conducted among married female staff using stratified random sampling from 15 faculties in the Universiti Putra Malaysia (UPM). Data about sociodemographic factors, reproductive health, knowledge, attitudes and practices regarding EC use were gathered using validated self-administered questionnaire. The response rate was 87%. Half the 294 subjects who participated had a low knowledge, 33.0% a moderate knowledge and 17.0% a good knowledge about the EC pill. Eighty-eight percent of respondents had a positive attitude and 12.0% a negative attitude toward EC. Eleven percent of respondents had previously used EC. Unplanned and unwanted pregnancies were reported by 35.0% and 14.0% of respondents, respectively. Most respondents lacked knowledge about the indications for using EC, its mechanism of action, when it can be used and its side effects. Our findings show a need to educate women about EC.

  10. Cellular trafficking and anticancer activity of Garcinia mangostana extract-encapsulated polymeric nanoparticles

    PubMed Central

    Pan-In, Porntip; Wanichwecharungruang, Supason; Hanes, Justin; Kim, Anthony J

    2014-01-01

    Garcinia mangostana Linn extract (GME) is a natural product that has received considerable attention in cancer therapy, and has the potential to reduce side effects of chemotherapeutics and improve efficacy. We formulated GME-encapsulated ethyl cellulose (GME-EC) and a polymer blend of ethyl cellulose and methyl cellulose (GME-EC/MC) nanoparticles. We achieved high drug-loading and encapsulation efficiency using a solvent-displacement method with particle sizes around 250 nm. Cellular uptake and accumulation of GME was higher for GME-encapsulated nanoparticles compared to free GME. In vitro cytotoxicity analysis showed effective anticancer activity of GME-EC and GME-EC/MC nanoparticles in HeLa cells in a dose-dependent manner. GME-EC/MC nanoparticles showed approximately twofold-higher anticancer activity compared to GME-EC nanoparticles, likely due to their enhanced bioavailability. GME-encapsulated nanoparticles primarily entered HeLa cells by clathrin-mediated endocytosis and trafficked through the endolysosomal pathway. As far as we know, this is the first report on the cellular uptake and intracellular trafficking mechanism of drug-loaded cellulose-based nanoparticles. In summary, encapsulation of GME using cellulose-derivative nanoparticles – GME-EC and GME-EC/MC nanoparticles – successfully improved the bioavailability of GME in aqueous solution, enhanced cellular uptake, and displayed effective anticancer activity. PMID:25125977

  11. Identification of the Key Genes and Pathways in Esophageal Carcinoma.

    PubMed

    Su, Peng; Wen, Shiwang; Zhang, Yuefeng; Li, Yong; Xu, Yanzhao; Zhu, Yonggang; Lv, Huilai; Zhang, Fan; Wang, Mingbo; Tian, Ziqiang

    2016-01-01

    Objective . Esophageal carcinoma (EC) is a frequently common malignancy of gastrointestinal cancer in the world. This study aims to screen key genes and pathways in EC and elucidate the mechanism of it. Methods . 5 microarray datasets of EC were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) were screened by bioinformatics analysis. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network construction were performed to obtain the biological roles of DEGs in EC. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression level of DEGs in EC. Results . A total of 1955 genes were filtered as DEGs in EC. The upregulated genes were significantly enriched in cell cycle and the downregulated genes significantly enriched in Endocytosis. PPI network displayed CDK4 and CCT3 were hub proteins in the network. The expression level of 8 dysregulated DEGs including CDK4, CCT3, THSD4, SIM2, MYBL2, CENPF, CDCA3, and CDKN3 was validated in EC compared to adjacent nontumor tissues and the results were matched with the microarray analysis. Conclusion . The significantly DEGs including CDK4, CCT3, THSD4, and SIM2 may play key roles in tumorigenesis and development of EC involved in cell cycle and Endocytosis.

  12. A robust bi-orthogonal/dynamically-orthogonal method using the covariance pseudo-inverse with application to stochastic flow problems

    NASA Astrophysics Data System (ADS)

    Babaee, Hessam; Choi, Minseok; Sapsis, Themistoklis P.; Karniadakis, George Em

    2017-09-01

    We develop a new robust methodology for the stochastic Navier-Stokes equations based on the dynamically-orthogonal (DO) and bi-orthogonal (BO) methods [1-3]. Both approaches are variants of a generalized Karhunen-Loève (KL) expansion in which both the stochastic coefficients and the spatial basis evolve according to system dynamics, hence, capturing the low-dimensional structure of the solution. The DO and BO formulations are mathematically equivalent [3], but they exhibit computationally complimentary properties. Specifically, the BO formulation may fail due to crossing of the eigenvalues of the covariance matrix, while both BO and DO become unstable when there is a high condition number of the covariance matrix or zero eigenvalues. To this end, we combine the two methods into a robust hybrid framework and in addition we employ a pseudo-inverse technique to invert the covariance matrix. The robustness of the proposed method stems from addressing the following issues in the DO/BO formulation: (i) eigenvalue crossing: we resolve the issue of eigenvalue crossing in the BO formulation by switching to the DO near eigenvalue crossing using the equivalence theorem and switching back to BO when the distance between eigenvalues is larger than a threshold value; (ii) ill-conditioned covariance matrix: we utilize a pseudo-inverse strategy to invert the covariance matrix; (iii) adaptivity: we utilize an adaptive strategy to add/remove modes to resolve the covariance matrix up to a threshold value. In particular, we introduce a soft-threshold criterion to allow the system to adapt to the newly added/removed mode and therefore avoid repetitive and unnecessary mode addition/removal. When the total variance approaches zero, we show that the DO/BO formulation becomes equivalent to the evolution equation of the Optimally Time-Dependent modes [4]. We demonstrate the capability of the proposed methodology with several numerical examples, namely (i) stochastic Burgers equation: we analyze the performance of the method in the presence of eigenvalue crossing and zero eigenvalues; (ii) stochastic Kovasznay flow: we examine the method in the presence of a singular covariance matrix; and (iii) we examine the adaptivity of the method for an incompressible flow over a cylinder where for large stochastic forcing thirteen DO/BO modes are active.

  13. A tunable electrochromic fabry-perot filter for adaptive optics applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaich, Jonathan David; Kammler, Daniel R.; Ambrosini, Andrea

    2006-10-01

    The potential for electrochromic (EC) materials to be incorporated into a Fabry-Perot (FP) filter to allow modest amounts of tuning was evaluated by both experimental methods and modeling. A combination of chemical vapor deposition (CVD), physical vapor deposition (PVD), and electrochemical methods was used to produce an ECFP film stack consisting of an EC WO{sub 3}/Ta{sub 2}O{sub 5}/NiO{sub x}H{sub y} film stack (with indium-tin-oxide electrodes) sandwiched between two Si{sub 3}N{sub 4}/SiO{sub 2} dielectric reflector stacks. A process to produce a NiO{sub x}H{sub y} charge storage layer that freed the EC stack from dependence on atmospheric humidity and allowed construction ofmore » this complex EC-FP stack was developed. The refractive index (n) and extinction coefficient (k) for each layer in the EC-FP film stack was measured between 300 and 1700 nm. A prototype EC-FP filter was produced that had a transmission at 500 nm of 36%, and a FWHM of 10 nm. A general modeling approach that takes into account the desired pass band location, pass band width, required transmission and EC optical constants in order to estimate the maximum tuning from an EC-FP filter was developed. Modeling shows that minor thickness changes in the prototype stack developed in this project should yield a filter with a transmission at 600 nm of 33% and a FWHM of 9.6 nm, which could be tuned to 598 nm with a FWHM of 12.1 nm and a transmission of 16%. Additional modeling shows that if the EC WO{sub 3} absorption centers were optimized, then a shift from 600 nm to 598 nm could be made with a FWHM of 11.3 nm and a transmission of 20%. If (at 600 nm) the FWHM is decreased to 1 nm and transmission maintained at a reasonable level (e.g. 30%), only fractions of a nm of tuning would be possible with the film stack considered in this study. These tradeoffs may improve at other wavelengths or with EC materials different than those considered here. Finally, based on our limited investigation and material set, the severe absorption associated with the refractive index change suggests that incorporating EC materials into phase correcting spatial light modulators (SLMS) would allow for only negligible phase correction before transmission losses became too severe. However, we would like to emphasize that other EC materials may allow sufficient phase correction with limited absorption, which could make this approach attractive.« less

  14. Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar

    PubMed Central

    Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Jing

    2015-01-01

    In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then, based on the Khatri–Rao product, a real-valued sparse representation framework of the covariance vector is formulated to estimate DOA. Compared to the existing sparsity-inducing DOA estimation methods, the proposed method provides better angle estimation performance and lower computational complexity. Simulation results verify the effectiveness and advantage of the proposed method. PMID:26569241

  15. Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar.

    PubMed

    Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Jing

    2015-11-10

    In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then, based on the Khatri-Rao product, a real-valued sparse representation framework of the covariance vector is formulated to estimate DOA. Compared to the existing sparsity-inducing DOA estimation methods, the proposed method provides better angle estimation performance and lower computational complexity. Simulation results verify the effectiveness and advantage of the proposed method.

  16. Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue

    PubMed Central

    Halnes, Geir; Mäki-Marttunen, Tuomo; Keller, Daniel; Pettersen, Klas H.; Andreassen, Ole A.

    2016-01-01

    Recorded potentials in the extracellular space (ECS) of the brain is a standard measure of population activity in neural tissue. Computational models that simulate the relationship between the ECS potential and its underlying neurophysiological processes are commonly used in the interpretation of such measurements. Standard methods, such as volume-conductor theory and current-source density theory, assume that diffusion has a negligible effect on the ECS potential, at least in the range of frequencies picked up by most recording systems. This assumption remains to be verified. We here present a hybrid simulation framework that accounts for diffusive effects on the ECS potential. The framework uses (1) the NEURON simulator to compute the activity and ionic output currents from multicompartmental neuron models, and (2) the electrodiffusive Kirchhoff-Nernst-Planck framework to simulate the resulting dynamics of the potential and ion concentrations in the ECS, accounting for the effect of electrical migration as well as diffusion. Using this framework, we explore the effect that ECS diffusion has on the electrical potential surrounding a small population of 10 pyramidal neurons. The neural model was tuned so that simulations over ∼100 seconds of biological time led to shifts in ECS concentrations by a few millimolars, similar to what has been seen in experiments. By comparing simulations where ECS diffusion was absent with simulations where ECS diffusion was included, we made the following key findings: (i) ECS diffusion shifted the local potential by up to ∼0.2 mV. (ii) The power spectral density (PSD) of the diffusion-evoked potential shifts followed a 1/f2 power law. (iii) Diffusion effects dominated the PSD of the ECS potential for frequencies up to several hertz. In scenarios with large, but physiologically realistic ECS concentration gradients, diffusion was thus found to affect the ECS potential well within the frequency range picked up in experimental recordings. PMID:27820827

  17. Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue.

    PubMed

    Halnes, Geir; Mäki-Marttunen, Tuomo; Keller, Daniel; Pettersen, Klas H; Andreassen, Ole A; Einevoll, Gaute T

    2016-11-01

    Recorded potentials in the extracellular space (ECS) of the brain is a standard measure of population activity in neural tissue. Computational models that simulate the relationship between the ECS potential and its underlying neurophysiological processes are commonly used in the interpretation of such measurements. Standard methods, such as volume-conductor theory and current-source density theory, assume that diffusion has a negligible effect on the ECS potential, at least in the range of frequencies picked up by most recording systems. This assumption remains to be verified. We here present a hybrid simulation framework that accounts for diffusive effects on the ECS potential. The framework uses (1) the NEURON simulator to compute the activity and ionic output currents from multicompartmental neuron models, and (2) the electrodiffusive Kirchhoff-Nernst-Planck framework to simulate the resulting dynamics of the potential and ion concentrations in the ECS, accounting for the effect of electrical migration as well as diffusion. Using this framework, we explore the effect that ECS diffusion has on the electrical potential surrounding a small population of 10 pyramidal neurons. The neural model was tuned so that simulations over ∼100 seconds of biological time led to shifts in ECS concentrations by a few millimolars, similar to what has been seen in experiments. By comparing simulations where ECS diffusion was absent with simulations where ECS diffusion was included, we made the following key findings: (i) ECS diffusion shifted the local potential by up to ∼0.2 mV. (ii) The power spectral density (PSD) of the diffusion-evoked potential shifts followed a 1/f2 power law. (iii) Diffusion effects dominated the PSD of the ECS potential for frequencies up to several hertz. In scenarios with large, but physiologically realistic ECS concentration gradients, diffusion was thus found to affect the ECS potential well within the frequency range picked up in experimental recordings.

  18. CO2 and CH4 exchange by Phragmites australis under different climates

    NASA Astrophysics Data System (ADS)

    Serrano Ortiz, Penélope; Chojnickic, Bogdan H.; Sánchez-Cañete, Enrique P.; Kowalska, Natalia; López-Ballesteros, Ana; Fernández, Néstor; Urbaniak, Marek; Olejnik, Janusz; Kowalski, Andrew S.

    2015-04-01

    The key role of wetlands regarding global warming is the resulting balance between net CO2 assimilation, via photosynthesis, and CO2 and CH4 emissions, given the potential to release stored carbon, because of the high temperature sensitivity of heterotrophic soil respiration and anoxic conditions. However, it is still unknown whether wetlands will convert from long-term carbon sinks to sources as a result of climate change and other anthropogenic effects such as land use changes. Phragmites australis is one of the most common species found in wetlands and is considered the most globally widespread and productive plant species in this type of ecosystem. In this context, the main objective of this study is to analyse the GHG exchange (CO2 and CH4) of two wetlands with Phragmites australis as the dominant species under different climates using the eddy covariance (EC) technique. The first site, Padul, is located in southern Spain, with a sub-humid warm climate, characterised by a mean annual temperature of 16°C and annual precipitation of ca. 470 mm, with a very dry summer. The second site, Rzecin is located in Poland with a mean annual temperature of 8°C, and annual precipitation around 600mm with no dry season. The Padul EC station is equipped with two infrared gas analysers to measure CO2 and CH4 fluxes (LI-7200 and LI-7700 respectively) while the Rzecin EC station has the same CH4 sensor as Padul, but also a sensor measuring both GHG fluxes (DLT-100 Fast Methane Analyser, Los Gatos). In this study, we present: i) the results of a CH4 analyser inter-comparison campaign (LI-7700 vs. Los Gatos), ii) a comparative analysis of the functional behaviour of respiration and photosynthesis in both sites testing relationships between CO2 fluxes measured with the EC technique and meteorological variables such as temperature and direct or diffuse radiation and iii) the CH4 dynamicsat both sites by identifying, when possible, annual, seasonal and diurnal patterns.

  19. Information matrix estimation procedures for cognitive diagnostic models.

    PubMed

    Liu, Yanlou; Xin, Tao; Andersson, Björn; Tian, Wei

    2018-03-06

    Two new methods to estimate the asymptotic covariance matrix for marginal maximum likelihood estimation of cognitive diagnosis models (CDMs), the inverse of the observed information matrix and the sandwich-type estimator, are introduced. Unlike several previous covariance matrix estimators, the new methods take into account both the item and structural parameters. The relationships between the observed information matrix, the empirical cross-product information matrix, the sandwich-type covariance matrix and the two approaches proposed by de la Torre (2009, J. Educ. Behav. Stat., 34, 115) are discussed. Simulation results show that, for a correctly specified CDM and Q-matrix or with a slightly misspecified probability model, the observed information matrix and the sandwich-type covariance matrix exhibit good performance with respect to providing consistent standard errors of item parameter estimates. However, with substantial model misspecification only the sandwich-type covariance matrix exhibits robust performance. © 2018 The British Psychological Society.

  20. Local linear estimation of concordance probability with application to covariate effects models on association for bivariate failure-time data.

    PubMed

    Ding, Aidong Adam; Hsieh, Jin-Jian; Wang, Weijing

    2015-01-01

    Bivariate survival analysis has wide applications. In the presence of covariates, most literature focuses on studying their effects on the marginal distributions. However covariates can also affect the association between the two variables. In this article we consider the latter issue by proposing a nonstandard local linear estimator for the concordance probability as a function of covariates. Under the Clayton copula, the conditional concordance probability has a simple one-to-one correspondence with the copula parameter for different data structures including those subject to independent or dependent censoring and dependent truncation. The proposed method can be used to study how covariates affect the Clayton association parameter without specifying marginal regression models. Asymptotic properties of the proposed estimators are derived and their finite-sample performances are examined via simulations. Finally, for illustration, we apply the proposed method to analyze a bone marrow transplant data set.

  1. Application of seemingly unrelated regression in medical data with intermittently observed time-dependent covariates.

    PubMed

    Keshavarzi, Sareh; Ayatollahi, Seyyed Mohammad Taghi; Zare, Najaf; Pakfetrat, Maryam

    2012-01-01

    BACKGROUND. In many studies with longitudinal data, time-dependent covariates can only be measured intermittently (not at all observation times), and this presents difficulties for standard statistical analyses. This situation is common in medical studies, and methods that deal with this challenge would be useful. METHODS. In this study, we performed the seemingly unrelated regression (SUR) based models, with respect to each observation time in longitudinal data with intermittently observed time-dependent covariates and further compared these models with mixed-effect regression models (MRMs) under three classic imputation procedures. Simulation studies were performed to compare the sample size properties of the estimated coefficients for different modeling choices. RESULTS. In general, the proposed models in the presence of intermittently observed time-dependent covariates showed a good performance. However, when we considered only the observed values of the covariate without any imputations, the resulted biases were greater. The performances of the proposed SUR-based models in comparison with MRM using classic imputation methods were nearly similar with approximately equal amounts of bias and MSE. CONCLUSION. The simulation study suggests that the SUR-based models work as efficiently as MRM in the case of intermittently observed time-dependent covariates. Thus, it can be used as an alternative to MRM.

  2. Estimating and testing interactions when explanatory variables are subject to non-classical measurement error.

    PubMed

    Murad, Havi; Kipnis, Victor; Freedman, Laurence S

    2016-10-01

    Assessing interactions in linear regression models when covariates have measurement error (ME) is complex.We previously described regression calibration (RC) methods that yield consistent estimators and standard errors for interaction coefficients of normally distributed covariates having classical ME. Here we extend normal based RC (NBRC) and linear RC (LRC) methods to a non-classical ME model, and describe more efficient versions that combine estimates from the main study and internal sub-study. We apply these methods to data from the Observing Protein and Energy Nutrition (OPEN) study. Using simulations we show that (i) for normally distributed covariates efficient NBRC and LRC were nearly unbiased and performed well with sub-study size ≥200; (ii) efficient NBRC had lower MSE than efficient LRC; (iii) the naïve test for a single interaction had type I error probability close to the nominal significance level, whereas efficient NBRC and LRC were slightly anti-conservative but more powerful; (iv) for markedly non-normal covariates, efficient LRC yielded less biased estimators with smaller variance than efficient NBRC. Our simulations suggest that it is preferable to use: (i) efficient NBRC for estimating and testing interaction effects of normally distributed covariates and (ii) efficient LRC for estimating and testing interactions for markedly non-normal covariates. © The Author(s) 2013.

  3. Inventory Uncertainty Quantification using TENDL Covariance Data in Fispact-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastwood, J.W.; Morgan, J.G.; Sublet, J.-Ch., E-mail: jean-christophe.sublet@ccfe.ac.uk

    2015-01-15

    The new inventory code Fispact-II provides predictions of inventory, radiological quantities and their uncertainties using nuclear data covariance information. Central to the method is a novel fast pathways search algorithm using directed graphs. The pathways output provides (1) an aid to identifying important reactions, (2) fast estimates of uncertainties, (3) reduced models that retain important nuclides and reactions for use in the code's Monte Carlo sensitivity analysis module. Described are the methods that are being implemented for improving uncertainty predictions, quantification and propagation using the covariance data that the recent nuclear data libraries contain. In the TENDL library, above themore » upper energy of the resolved resonance range, a Monte Carlo method in which the covariance data come from uncertainties of the nuclear model calculations is used. The nuclear data files are read directly by FISPACT-II without any further intermediate processing. Variance and covariance data are processed and used by FISPACT-II to compute uncertainties in collapsed cross sections, and these are in turn used to predict uncertainties in inventories and all derived radiological data.« less

  4. Model selection for marginal regression analysis of longitudinal data with missing observations and covariate measurement error.

    PubMed

    Shen, Chung-Wei; Chen, Yi-Hau

    2015-10-01

    Missing observations and covariate measurement error commonly arise in longitudinal data. However, existing methods for model selection in marginal regression analysis of longitudinal data fail to address the potential bias resulting from these issues. To tackle this problem, we propose a new model selection criterion, the Generalized Longitudinal Information Criterion, which is based on an approximately unbiased estimator for the expected quadratic error of a considered marginal model accounting for both data missingness and covariate measurement error. The simulation results reveal that the proposed method performs quite well in the presence of missing data and covariate measurement error. On the contrary, the naive procedures without taking care of such complexity in data may perform quite poorly. The proposed method is applied to data from the Taiwan Longitudinal Study on Aging to assess the relationship of depression with health and social status in the elderly, accommodating measurement error in the covariate as well as missing observations. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Evaluation of subset matching methods and forms of covariate balance.

    PubMed

    de Los Angeles Resa, María; Zubizarreta, José R

    2016-11-30

    This paper conducts a Monte Carlo simulation study to evaluate the performance of multivariate matching methods that select a subset of treatment and control observations. The matching methods studied are the widely used nearest neighbor matching with propensity score calipers and the more recently proposed methods, optimal matching of an optimally chosen subset and optimal cardinality matching. The main findings are: (i) covariate balance, as measured by differences in means, variance ratios, Kolmogorov-Smirnov distances, and cross-match test statistics, is better with cardinality matching because by construction it satisfies balance requirements; (ii) for given levels of covariate balance, the matched samples are larger with cardinality matching than with the other methods; (iii) in terms of covariate distances, optimal subset matching performs best; (iv) treatment effect estimates from cardinality matching have lower root-mean-square errors, provided strong requirements for balance, specifically, fine balance, or strength-k balance, plus close mean balance. In standard practice, a matched sample is considered to be balanced if the absolute differences in means of the covariates across treatment groups are smaller than 0.1 standard deviations. However, the simulation results suggest that stronger forms of balance should be pursued in order to remove systematic biases due to observed covariates when a difference in means treatment effect estimator is used. In particular, if the true outcome model is additive, then marginal distributions should be balanced, and if the true outcome model is additive with interactions, then low-dimensional joints should be balanced. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    NASA Astrophysics Data System (ADS)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-11-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.

  7. An Upper Bound on High Speed Satellite Collision Probability When Only One Object has Position Uncertainty Information

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2015-01-01

    Upper bounds on high speed satellite collision probability, PC †, have been investigated. Previous methods assume an individual position error covariance matrix is available for each object. The two matrices being combined into a single, relative position error covariance matrix. Components of the combined error covariance are then varied to obtain a maximum PC. If error covariance information for only one of the two objects was available, either some default shape has been used or nothing could be done. An alternative is presented that uses the known covariance information along with a critical value of the missing covariance to obtain an approximate but potentially useful Pc upper bound.

  8. MiR-328 suppresses the survival of esophageal cancer cells by targeting PLCE1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Na; Zhao, Wenchao; Zhang, Zhongmian

    2016-01-29

    Esophageal cancer (EC) is the sixth leading cause of death worldwide. Recent studies have highlighted the vital role of microRNAs (miRNAs) in EC development and diagnosis. In our study, qPCR analysis showed that miRNA-328 was expressed at significantly low levels in EC109 and EC9706 cells. The results also showed that overexpression of miR-328 by lentivirus-mediated gene transfer markedly inhibited cell proliferation and invasion, and enhanced apoptosis; whereas, inhibition of miR-328 significantly promoted cell proliferation and invasion, and suppressed apoptosis in EC109 and EC9706 cells. Dual-luciferase reporter assay confirmed that miR-328 directly targeted phospholipase C epsilon 1 (PLCE1) by binding to target sequencesmore » in the 3′-UTR. qPCR and Western blot analysis showed that the PLCE1 was overexpressed in EC109 and EC9706 cells. Additionally, we found that miR-328 overexpression decreased PLCE1 mRNA and protein levels, while miR-328 inhibition enhanced the PLCE1 expression. Further analysis showed that PLCE1 overexpression rescued the inhibitory effect of miR-328 on cell proliferation and invasion, and repressed the promotive effect of miR-328 on cell apoptosis. In conclusion, our results suggest that miR-328 suppresses the survival of EC cells by regulating PLCE1 expression, which might be a potential therapeutic method for EC. - Highlights: • PLCE1 was a target gene of miR-328. • MiR-328 overexpression decreased PLCE1 expression. • PLCE1 overexpression rescued the inhibitory effect of miR-328 on the survival of EC cells.« less

  9. A formal and data-based comparison of measures of motor-equivalent covariation.

    PubMed

    Verrel, Julius

    2011-09-15

    Different analysis methods have been developed for assessing motor-equivalent organization of movement variability. In the uncontrolled manifold (UCM) method, the structure of variability is analyzed by comparing goal-equivalent and non-goal-equivalent variability components at the level of elemental variables (e.g., joint angles). In contrast, in the covariation by randomization (CR) approach, motor-equivalent organization is assessed by comparing variability at the task level between empirical and decorrelated surrogate data. UCM effects can be due to both covariation among elemental variables and selective channeling of variability to elemental variables with low task sensitivity ("individual variation"), suggesting a link between the UCM and CR method. However, the precise relationship between the notion of covariation in the two approaches has not been analyzed in detail yet. Analysis of empirical and simulated data from a study on manual pointing shows that in general the two approaches are not equivalent, but the respective covariation measures are highly correlated (ρ > 0.7) for two proposed definitions of covariation in the UCM context. For one-dimensional task spaces, a formal comparison is possible and in fact the two notions of covariation are equivalent. In situations in which individual variation does not contribute to UCM effects, for which necessary and sufficient conditions are derived, this entails the equivalence of the UCM and CR analysis. Implications for the interpretation of UCM effects are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Risk-Stratified Imputation in Survival Analysis

    PubMed Central

    Kennedy, Richard E.; Adragni, Kofi P.; Tiwari, Hemant K.; Voeks, Jenifer H.; Brott, Thomas G.; Howard, George

    2013-01-01

    Background Censoring that is dependent on covariates associated with survival can arise in randomized trials due to changes in recruitment and eligibility criteria to minimize withdrawals, potentially leading to biased treatment effect estimates. Imputation approaches have been proposed to address censoring in survival analysis; and while these approaches may provide unbiased estimates of treatment effects, imputation of a large number of outcomes may over- or underestimate the associated variance based on the imputation pool selected. Purpose We propose an improved method, risk-stratified imputation, as an alternative to address withdrawal related to the risk of events in the context of time-to-event analyses. Methods Our algorithm performs imputation from a pool of replacement subjects with similar values of both treatment and covariate(s) of interest, that is, from a risk-stratified sample. This stratification prior to imputation addresses the requirement of time-to-event analysis that censored observations are representative of all other observations in the risk group with similar exposure variables. We compared our risk-stratified imputation to case deletion and bootstrap imputation in a simulated dataset in which the covariate of interest (study withdrawal) was related to treatment. A motivating example from a recent clinical trial is also presented to demonstrate the utility of our method. Results In our simulations, risk-stratified imputation gives estimates of treatment effect comparable to bootstrap and auxiliary variable imputation while avoiding inaccuracies of the latter two in estimating the associated variance. Similar results were obtained in analysis of clinical trial data. Limitations Risk-stratified imputation has little advantage over other imputation methods when covariates of interest are not related to treatment, although its performance is superior when covariates are related to treatment. Risk-stratified imputation is intended for categorical covariates, and may be sensitive to the width of the matching window if continuous covariates are used. Conclusions The use of the risk-stratified imputation should facilitate the analysis of many clinical trials, in which one group has a higher withdrawal rate that is related to treatment. PMID:23818434

  11. Short-time windowed covariance: A metric for identifying non-stationary, event-related covariant cortical sites

    PubMed Central

    Blakely, Timothy; Ojemann, Jeffrey G.; Rao, Rajesh P.N.

    2014-01-01

    Background Electrocorticography (ECoG) signals can provide high spatio-temporal resolution and high signal to noise ratio recordings of local neural activity from the surface of the brain. Previous studies have shown that broad-band, spatially focal, high-frequency increases in ECoG signals are highly correlated with movement and other cognitive tasks and can be volitionally modulated. However, significant additional information may be present in inter-electrode interactions, but adding additional higher order inter-electrode interactions can be impractical from a computational aspect, if not impossible. New method In this paper we present a new method of calculating high frequency interactions between electrodes called Short-Time Windowed Covariance (STWC) that builds on mathematical techniques currently used in neural signal analysis, along with an implementation that accelerates the algorithm by orders of magnitude by leveraging commodity, off-the-shelf graphics processing unit (GPU) hardware. Results Using the hardware-accelerated implementation of STWC, we identify many types of event-related inter-electrode interactions from human ECoG recordings on global and local scales that have not been identified by previous methods. Unique temporal patterns are observed for digit flexion in both low- (10 mm spacing) and high-resolution (3 mm spacing) electrode arrays. Comparison with existing methods Covariance is a commonly used metric for identifying correlated signals, but the standard covariance calculations do not allow for temporally varying covariance. In contrast STWC allows and identifies event-driven changes in covariance without identifying spurious noise correlations. Conclusions: STWC can be used to identify event-related neural interactions whose high computational load is well suited to GPU capabilities. PMID:24211499

  12. Electronic cigarette, effective or harmful for quitting smoking and respiratory health: A quantitative review papers.

    PubMed

    Heydari, Gholamreza; Ahmady, Arezoo Ebn; Chamyani, Fahimeh; Masjedi, Mohammadreza; Fadaizadeh, Lida

    2017-01-01

    In recent years, electronic cigarettes (ECs) have been heavily advertised as an alternative smoking device as well as a possible cessation method. We aimed to review all published scientific literature pertaining to ECs and to present a simple conclusion about their effects for quitting smoking and respiratory health. This was a cross-sectional study with a search of PubMed, limited to English publications upto September 2014. The total number of papers which had ECs in its title and their conclusions positive or negative regarding ECs effects were computed. The number of negative papers was subtracted from the number of positive ones to make a score. Of the 149 articles, 137 (91.9%) were accessible, of which 68 did not have inclusion criteria. In the 69 remaining articles, 24 studies supported ECs and 45 considered these to be harmful. Finally, based on this evidence, the score of ECs (computed result with positive minus negative) was -21. Evidence to suggest that ECs may be effective and advisable for quitting smoking or a safe alternative for smoking is lacking and may instead harm the respiratory system. However, further studies are needed.

  13. Comparison of TiO2 photocatalysis, electrochemically assisted Fenton reaction and direct electrochemistry for simulation of phase I metabolism reactions of drugs.

    PubMed

    Ruokolainen, Miina; Gul, Turan; Permentier, Hjalmar; Sikanen, Tiina; Kostiainen, Risto; Kotiaho, Tapio

    2016-02-15

    The feasibility of titanium dioxide (TiO2) photocatalysis, electrochemically assisted Fenton reaction (EC-Fenton) and direct electrochemical oxidation (EC) for simulation of phase I metabolism of drugs was studied by comparing the reaction products of buspirone, promazine, testosterone and 7-ethoxycoumarin with phase I metabolites of the same compounds produced in vitro by human liver microsomes (HLM). Reaction products were analysed by UHPLC-MS. TiO2 photocatalysis simulated the in vitro phase I metabolism in HLM more comprehensively than did EC-Fenton or EC. Even though TiO2 photocatalysis, EC-Fenton and EC do not allow comprehensive prediction of phase I metabolism, all three methods produce several important metabolites without the need for demanding purification steps to remove the biological matrix. Importantly, TiO2 photocatalysis produces aliphatic and aromatic hydroxylation products where direct EC fails. Furthermore, TiO2 photocatalysis is an extremely rapid, simple and inexpensive way to generate oxidation products in a clean matrix and the reaction can be simply initiated and quenched by switching the UV lamp on/off. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A Dynamic Time Warping based covariance function for Gaussian Processes signature identification

    NASA Astrophysics Data System (ADS)

    Silversides, Katherine L.; Melkumyan, Arman

    2016-11-01

    Modelling stratiform deposits requires a detailed knowledge of the stratigraphic boundaries. In Banded Iron Formation (BIF) hosted ores of the Hamersley Group in Western Australia these boundaries are often identified using marker shales. Both Gaussian Processes (GP) and Dynamic Time Warping (DTW) have been previously proposed as methods to automatically identify marker shales in natural gamma logs. However, each method has different advantages and disadvantages. We propose a DTW based covariance function for the GP that combines the flexibility of the DTW with the probabilistic framework of the GP. The three methods are tested and compared on their ability to identify two natural gamma signatures from a Marra Mamba type iron ore deposit. These tests show that while all three methods can identify boundaries, the GP with the DTW covariance function combines and balances the strengths and weaknesses of the individual methods. This method identifies more positive signatures than the GP with the standard covariance function, and has a higher accuracy for identified signatures than the DTW. The combined method can handle larger variations in the signature without requiring multiple libraries, has a probabilistic output and does not require manual cut-off selections.

  15. Shear velocity estimates on the inner shelf off Grays Harbor, Washington, USA

    USGS Publications Warehouse

    Sherwood, C.R.; Lacy, J.R.; Voulgaris, G.

    2006-01-01

    Shear velocity was estimated from current measurements near the bottom off Grays Harbor, Washington between May 4 and June 6, 2001 under mostly wave-dominated conditions. A downward-looking pulse-coherent acoustic Doppler profiler (PCADP) and two acoustic-Doppler velocimeters (field version; ADVFs) were deployed on a tripod at 9-m water depth. Measurements from these instruments were used to estimate shear velocity with (1) a modified eddy-correlation (EC) technique, (2) the log-profile (LP) method, and (3) a dissipation-rate method. Although values produced by the three methods agreed reasonably well (within their broad ranges of uncertainty), there were important systematic differences. Estimates from the EC method were generally lowest, followed by those from the inertial-dissipation method. The LP method produced the highest values and the greatest scatter. We show that these results are consistent with boundary-layer theory when sediment-induced stratification is present. The EC method provides the most fundamental estimate of kinematic stress near the bottom, and stratification causes the LP method to overestimate bottom stress. These results remind us that the methods are not equivalent and that comparison among sites and with models should be made carefully. ?? 2006 Elsevier Ltd. All rights reserved.

  16. How to deal with the high condition number of the noise covariance matrix of gravity field functionals synthesised from a satellite-only global gravity field model?

    NASA Astrophysics Data System (ADS)

    Klees, R.; Slobbe, D. C.; Farahani, H. H.

    2018-03-01

    The posed question arises for instance in regional gravity field modelling using weighted least-squares techniques if the gravity field functionals are synthesised from the spherical harmonic coefficients of a satellite-only global gravity model (GGM), and are used as one of the noisy datasets. The associated noise covariance matrix, appeared to be extremely ill-conditioned with a singular value spectrum that decayed gradually to zero without any noticeable gap. We analysed three methods to deal with the ill-conditioned noise covariance matrix: Tihonov regularisation of the noise covariance matrix in combination with the standard formula for the weighted least-squares estimator, a formula of the weighted least-squares estimator, which does not involve the inverse noise covariance matrix, and an estimator based on Rao's unified theory of least-squares. Our analysis was based on a numerical experiment involving a set of height anomalies synthesised from the GGM GOCO05s, which is provided with a full noise covariance matrix. We showed that the three estimators perform similar, provided that the two regularisation parameters each method knows were chosen properly. As standard regularisation parameter choice rules do not apply here, we suggested a new parameter choice rule, and demonstrated its performance. Using this rule, we found that the differences between the three least-squares estimates were within noise. For the standard formulation of the weighted least-squares estimator with regularised noise covariance matrix, this required an exceptionally strong regularisation, much larger than one expected from the condition number of the noise covariance matrix. The preferred method is the inversion-free formulation of the weighted least-squares estimator, because of its simplicity with respect to the choice of the two regularisation parameters.

  17. Specific patterns of whole-brain structural covariance of the anterior and posterior hippocampus in young APOE ε4 carriers.

    PubMed

    Stening, Eva; Persson, Jonas; Eriksson, Elias; Wahlund, Lars-Olof; Zetterberg, Henrik; Söderlund, Hedvig

    2017-05-30

    Apolipoprotein E (APOE) ε4 has been associated with smaller hippocampal volumes in healthy aging, while findings in young adults are inconclusive. Previous studies have mostly used univariate methods, and without considering potential anterior/posterior differences. Here, we used a multivariate method, partial least squares, and assessed whole-brain structural covariance of the anterior (aHC) and posterior (pHC) hippocampus in young adults (n=97) as a function of APOE ε4 status and sex. Two significant patterns emerged: (1) specific structural covariance of the aHC with frontal regions, temporal and occipital areas in APOE ε4 women, whereas the volume of both the aHC and pHC in all other groups co-varied with frontal, parietal and cerebellar areas; and (2) opposite structural covariance of the pHC in ε4 carriers compared to the aHC in non-carriers, with the pHC of ε4 carriers covarying with parietal and frontal areas, and the aHC of ε4 non-carriers covarying with motor areas and the middle frontal gyrus. APOE ε4 has in young adults been associated with better episodic and spatial memory, functions involving the aHC and pHC, respectively. We found no associations between structural covariance and performance, suggesting that other factors underlie the performance differences seen between carriers and non-carriers. Our findings indicate that APOE ε4 carriers and non-carriers differ in hippocampal organization and that there are differences as a function of sex and hippocampal segment. They stress the need to consider the hippocampus as a heterogeneous structure, and highlight the benefits of multivariate methods in assessing group differences in the brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Information campaign and advocacy efforts to promote access to emergency contraception in Mexico.

    PubMed

    Ellertson, Charlotte; Heimburger, Angela; Acevedo-Garcia, Dolores; Schiavon, Raffaela; Mejia, Guillermina; Corona, Georgina; del Castillo, Eduardo; Langer, Ana

    2002-11-01

    Emergency contraception (EC) has the potential to reduce unwanted pregnancy significantly, in Mexico as elsewhere. Recent years have seen tremendous growth in programs and research devoted to expanding access to emergency methods worldwide. In Mexico we developed a comprehensive model introduction effort that included four components: provider training, public information (through a dedicated hotline and website, free media, paid radio and TV spots, participation in talk shows, and alternative media channels), collaboration with the public sector to include EC in the official family planning norms, and assistance to partner with commercial firms to register a dedicated EC product. Ongoing efforts to combat misperceptions and overcome opposition are crucial to informing the public and ensuring greater access to the method.

  19. Fractionation and antioxidant activity potency of the extract of Garcinia lateriflora Blume var. javanica Boerl leaf

    NASA Astrophysics Data System (ADS)

    Mahayasih, Putu Gita Maya Widyaswari; Elya, Berna; Hanafi, Muhammad

    2018-02-01

    Garcinia lateriflora leaves extract of the family Guttiferae has been known to have excellent antioxidant activity. The objective of the study was to determine the antioxidant effect of the n-hexane, ethyl acetate and methanol extracts of G. lateriflora leaves extract. The antioxidant activity was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging methods and Feric Reducing Antioxidant Power (FRAP) to determine the antioxidant properties. The extracts were fractionated by using column chromatography. The Methanol extract exhibited the strongest antioxidant activity with EC50 values are 13.95 and 19.65 µg/mL by DPPH and FRAP methods respectively. E13 fraction was the most active fraction from ethyl acetate extract with EC50 value for DPPH scavenging method was 37.14 µg/mL and 34.46 µg/mL for reducing power by the FRAP method. Meanwhile M3 fraction was the most active fraction in methanol extract with EC50 value for DPPH scavenging method was 50.02 µg/mL and 37.32 µg/mL for reducing power by the FRAP method.

  20. Best (but oft-forgotten) practices: propensity score methods in clinical nutrition research.

    PubMed

    Ali, M Sanni; Groenwold, Rolf Hh; Klungel, Olaf H

    2016-08-01

    In observational studies, treatment assignment is a nonrandom process and treatment groups may not be comparable in their baseline characteristics, a phenomenon known as confounding. Propensity score (PS) methods can be used to achieve comparability of treated and nontreated groups in terms of their observed covariates and, as such, control for confounding in estimating treatment effects. In this article, we provide a step-by-step guidance on how to use PS methods. For illustrative purposes, we used simulated data based on an observational study of the relation between oral nutritional supplementation and hospital length of stay. We focused on the key aspects of PS analysis, including covariate selection, PS estimation, covariate balance assessment, treatment effect estimation, and reporting. PS matching, stratification, covariate adjustment, and weighting are discussed. R codes and example data are provided to show the different steps in a PS analysis. © 2016 American Society for Nutrition.

Top