Structural Analysis of Covariance and Correlation Matrices.
ERIC Educational Resources Information Center
Joreskog, Karl G.
1978-01-01
A general approach to analysis of covariance structures is considered, in which the variances and covariances or correlations of the observed variables are directly expressed in terms of the parameters of interest. The statistical problems of identification, estimation and testing of such covariance or correlation structures are discussed.…
Gosho, Masahiko; Hirakawa, Akihiro; Noma, Hisashi; Maruo, Kazushi; Sato, Yasunori
2017-10-01
In longitudinal clinical trials, some subjects will drop out before completing the trial, so their measurements towards the end of the trial are not obtained. Mixed-effects models for repeated measures (MMRM) analysis with "unstructured" (UN) covariance structure are increasingly common as a primary analysis for group comparisons in these trials. Furthermore, model-based covariance estimators have been routinely used for testing the group difference and estimating confidence intervals of the difference in the MMRM analysis using the UN covariance. However, using the MMRM analysis with the UN covariance could lead to convergence problems for numerical optimization, especially in trials with a small-sample size. Although the so-called sandwich covariance estimator is robust to misspecification of the covariance structure, its performance deteriorates in settings with small-sample size. We investigated the performance of the sandwich covariance estimator and covariance estimators adjusted for small-sample bias proposed by Kauermann and Carroll ( J Am Stat Assoc 2001; 96: 1387-1396) and Mancl and DeRouen ( Biometrics 2001; 57: 126-134) fitting simpler covariance structures through a simulation study. In terms of the type 1 error rate and coverage probability of confidence intervals, Mancl and DeRouen's covariance estimator with compound symmetry, first-order autoregressive (AR(1)), heterogeneous AR(1), and antedependence structures performed better than the original sandwich estimator and Kauermann and Carroll's estimator with these structures in the scenarios where the variance increased across visits. The performance based on Mancl and DeRouen's estimator with these structures was nearly equivalent to that based on the Kenward-Roger method for adjusting the standard errors and degrees of freedom with the UN structure. The model-based covariance estimator with the UN structure under unadjustment of the degrees of freedom, which is frequently used in applications, resulted in substantial inflation of the type 1 error rate. We recommend the use of Mancl and DeRouen's estimator in MMRM analysis if the number of subjects completing is ( n + 5) or less, where n is the number of planned visits. Otherwise, the use of Kenward and Roger's method with UN structure should be the best way.
Bayesian Analysis of Structural Equation Models with Nonlinear Covariates and Latent Variables
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2006-01-01
In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…
Interspecific analysis of covariance structure in the masticatory apparatus of galagos.
Vinyard, Christopher J
2007-01-01
The primate masticatory apparatus (MA) is a functionally integrated set of features, each of which performs important functions in biting, ingestive, and chewing behaviors. A comparison of morphological covariance structure among species for these MA features will help us to further understand the evolutionary history of this region. In this exploratory analysis, the covariance structure of the MA is compared across seven galago species to investigate 1) whether there are differences in covariance structure in this region, and 2) if so, how has this covariation changed with respect to size, MA form, diet, and/or phylogeny? Ten measurements of the MA functionally related to bite force production and load resistance were obtained from 218 adults of seven galago species. Correlation matrices were generated for these 10 dimensions and compared among species via matrix correlations and Mantel tests. Subsequently, pairwise covariance disparity in the MA was estimated as a measure of difference in covariance structure between species. Covariance disparity estimates were correlated with pairwise distances related to differences in body size, MA size and shape, genetic distance (based on cytochrome-b sequences) and percentage of dietary foods to determine whether one or more of these factors is linked to differences in covariance structure. Galagos differ in MA covariance structure. Body size appears to be a major factor correlated with differences in covariance structure among galagos. The largest galago species, Otolemur crassicaudatus, exhibits large differences in body mass and covariance structure relative to other galagos, and thus plays a primary role in creating this association. MA size and shape do not correlate with covariance structure when body mass is held constant. Diet also shows no association. Genetic distance is significantly negatively correlated with covariance disparity when body mass is held constant, but this correlation appears to be a function of the small body size and large genetic distance for Galagoides demidoff. These exploratory results indicate that changing body size may have been a key factor in the evolution of the galago MA.
A Class of Population Covariance Matrices in the Bootstrap Approach to Covariance Structure Analysis
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Hayashi, Kentaro; Yanagihara, Hirokazu
2007-01-01
Model evaluation in covariance structure analysis is critical before the results can be trusted. Due to finite sample sizes and unknown distributions of real data, existing conclusions regarding a particular statistic may not be applicable in practice. The bootstrap procedure automatically takes care of the unknown distribution and, for a given…
ERIC Educational Resources Information Center
Dolan, Conor V.; Molenaar, Peter C. M.
1994-01-01
In multigroup covariance structure analysis with structured means, the traditional latent selection model is formulated as a special case of phenotypic selection. Illustrations with real and simulated data demonstrate how one can test specific hypotheses concerning selection on latent variables. (SLD)
ERIC Educational Resources Information Center
Lee, S. Y.; Jennrich, R. I.
1979-01-01
A variety of algorithms for analyzing covariance structures are considered. Additionally, two methods of estimation, maximum likelihood, and weighted least squares are considered. Comparisons are made between these algorithms and factor analysis. (Author/JKS)
ERIC Educational Resources Information Center
Fouladi, Rachel T.
2000-01-01
Provides an overview of standard and modified normal theory and asymptotically distribution-free covariance and correlation structure analysis techniques and details Monte Carlo simulation results on Type I and Type II error control. Demonstrates through the simulation that robustness and nonrobustness of structure analysis techniques vary as a…
ERIC Educational Resources Information Center
Muthen, Bengt
This paper investigates methods that avoid using multiple groups to represent the missing data patterns in covariance structure modeling, attempting instead to do a single-group analysis where the only action the analyst has to take is to indicate that data is missing. A new covariance structure approach developed by B. Muthen and G. Arminger is…
Altered structural covariance of the striatum in functional dyspepsia patients.
Liu, P; Zeng, F; Yang, F; Wang, J; Liu, X; Wang, Q; Zhou, G; Zhang, D; Zhu, M; Zhao, R; Wang, A; Gong, Q; Liang, F
2014-08-01
Functional dyspepsia (FD) is thought to be involved in dysregulation within the brain-gut axis. Recently, altered striatum activation has been reported in patients with FD. However, the gray matter (GM) volumes in the striatum and structural covariance patterns of this area are rarely explored. The purpose of this study was to examine the GM volumes and structural covariance patterns of the striatum between FD patients and healthy controls (HCs). T1-weighted magnetic resonance images were obtained from 44 FD patients and 39 HCs. Voxel-based morphometry (VBM) analysis was adopted to examine the GM volumes in the two groups. The caudate- or putamen-related regions identified from VBM analysis were then used as seeds to map the whole brain voxel-wise structural covariance patterns. Finally, a correlation analysis was used to investigate the effects of FD symptoms on the striatum. The results showed increased GM volumes in the bilateral putamen and right caudate. Compared with the structural covariance patterns of the HCs, the FD-related differences were mainly located in the amygdala, hippocampus/parahippocampus (HIPP/paraHIPP), thalamus, lingual gyrus, and cerebellum. And significant positive correlations were found between the volumes in the striatum and the FD duration in the patients. These findings provided preliminary evidence for GM changes in the striatum and different structural covariance patterns in patients with FD. The current results might expand our understanding of the pathophysiology of FD. © 2014 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Hu, Li-tze; Bentler, Peter M.
1999-01-01
The adequacy of "rule of thumb" conventional cutoff criteria and several alternatives for fit indices in covariance structure analysis was evaluated through simulation. Analyses suggest that, for all recommended fit indexes except one, a cutoff criterion greater than (or sometimes smaller than) the conventional rule of thumb is required…
ERIC Educational Resources Information Center
Bashkov, Bozhidar M.; Finney, Sara J.
2013-01-01
Traditional methods of assessing construct stability are reviewed and longitudinal mean and covariance structures (LMACS) analysis, a modern approach, is didactically illustrated using psychological entitlement data. Measurement invariance and latent variable stability results are interpreted, emphasizing substantive implications for educators and…
Robust Mean and Covariance Structure Analysis through Iteratively Reweighted Least Squares.
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Bentler, Peter M.
2000-01-01
Adapts robust schemes to mean and covariance structures, providing an iteratively reweighted least squares approach to robust structural equation modeling. Each case is weighted according to its distance, based on first and second order moments. Test statistics and standard error estimators are given. (SLD)
Subirà, Marta; Cano, Marta; de Wit, Stella J; Alonso, Pino; Cardoner, Narcís; Hoexter, Marcelo Q; Kwon, Jun Soo; Nakamae, Takashi; Lochner, Christine; Sato, João R; Jung, Wi Hoon; Narumoto, Jin; Stein, Dan J; Pujol, Jesus; Mataix-Cols, David; Veltman, Dick J; Menchón, José M; van den Heuvel, Odile A; Soriano-Mas, Carles
2016-03-01
Frontostriatal and frontoamygdalar connectivity alterations in patients with obsessive-compulsive disorder (OCD) have been typically described in functional neuroimaging studies. However, structural covariance, or volumetric correlations across distant brain regions, also provides network-level information. Altered structural covariance has been described in patients with different psychiatric disorders, including OCD, but to our knowledge, alterations within frontostriatal and frontoamygdalar circuits have not been explored. We performed a mega-analysis pooling structural MRI scans from the Obsessive-compulsive Brain Imaging Consortium and assessed whole-brain voxel-wise structural covariance of 4 striatal regions (dorsal and ventral caudate nucleus, and dorsal-caudal and ventral-rostral putamen) and 2 amygdalar nuclei (basolateral and centromedial-superficial). Images were preprocessed with the standard pipeline of voxel-based morphometry studies using Statistical Parametric Mapping software. Our analyses involved 329 patients with OCD and 316 healthy controls. Patients showed increased structural covariance between the left ventral-rostral putamen and the left inferior frontal gyrus/frontal operculum region. This finding had a significant interaction with age; the association held only in the subgroup of older participants. Patients with OCD also showed increased structural covariance between the right centromedial-superficial amygdala and the ventromedial prefrontal cortex. This was a cross-sectional study. Because this is a multisite data set analysis, participant recruitment and image acquisition were performed in different centres. Most patients were taking medication, and treatment protocols differed across centres. Our results provide evidence for structural network-level alterations in patients with OCD involving 2 frontosubcortical circuits of relevance for the disorder and indicate that structural covariance contributes to fully characterizing brain alterations in patients with psychiatric disorders.
ERIC Educational Resources Information Center
Cheung, Mike W.-L.; Cheung, Shu Fai
2016-01-01
Meta-analytic structural equation modeling (MASEM) combines the techniques of meta-analysis and structural equation modeling for the purpose of synthesizing correlation or covariance matrices and fitting structural equation models on the pooled correlation or covariance matrix. Both fixed-effects and random-effects models can be defined in MASEM.…
ERIC Educational Resources Information Center
Honjo, Shuji; And Others
1998-01-01
Evaluated statistically the effect of intranatal and early postnatal period factors on mental development of very low-birth-weight infants. Covariance structure analysis revealed direct influence of birth weight and gestational age in weeks on mental development at age 1, and of opthalmological aberrations and respirator disorder on mental…
Wallace, Meredith L; Anderson, Stewart J; Mazumdar, Sati
2010-12-20
Missing covariate data present a challenge to tree-structured methodology due to the fact that a single tree model, as opposed to an estimated parameter value, may be desired for use in a clinical setting. To address this problem, we suggest a multiple imputation algorithm that adds draws of stochastic error to a tree-based single imputation method presented by Conversano and Siciliano (Technical Report, University of Naples, 2003). Unlike previously proposed techniques for accommodating missing covariate data in tree-structured analyses, our methodology allows the modeling of complex and nonlinear covariate structures while still resulting in a single tree model. We perform a simulation study to evaluate our stochastic multiple imputation algorithm when covariate data are missing at random and compare it to other currently used methods. Our algorithm is advantageous for identifying the true underlying covariate structure when complex data and larger percentages of missing covariate observations are present. It is competitive with other current methods with respect to prediction accuracy. To illustrate our algorithm, we create a tree-structured survival model for predicting time to treatment response in older, depressed adults. Copyright © 2010 John Wiley & Sons, Ltd.
Structural Covariance of the Prefrontal-Amygdala Pathways Associated with Heart Rate Variability.
Wei, Luqing; Chen, Hong; Wu, Guo-Rong
2018-01-01
The neurovisceral integration model has shown a key role of the amygdala in neural circuits underlying heart rate variability (HRV) modulation, and suggested that reciprocal connections from amygdala to brain regions centered on the central autonomic network (CAN) are associated with HRV. To provide neuroanatomical evidence for these theoretical perspectives, the current study used covariance analysis of MRI-based gray matter volume (GMV) to map structural covariance network of the amygdala, and then determined whether the interregional structural correlations related to individual differences in HRV. The results showed that covariance patterns of the amygdala encompassed large portions of cortical (e.g., prefrontal, cingulate, and insula) and subcortical (e.g., striatum, hippocampus, and midbrain) regions, lending evidence from structural covariance analysis to the notion that the amygdala was a pivotal node in neural pathways for HRV modulation. Importantly, participants with higher resting HRV showed increased covariance of amygdala to dorsal medial prefrontal cortex and anterior cingulate cortex (dmPFC/dACC) extending into adjacent medial motor regions [i.e., pre-supplementary motor area (pre-SMA)/SMA], demonstrating structural covariance of the prefrontal-amygdala pathways implicated in HRV, and also implying that resting HRV may reflect the function of neural circuits underlying cognitive regulation of emotion as well as facilitation of adaptive behaviors to emotion. Our results, thus, provide anatomical substrates for the neurovisceral integration model that resting HRV may index an integrative neural network which effectively organizes emotional, cognitive, physiological and behavioral responses in the service of goal-directed behavior and adaptability.
Gaskins, J T; Daniels, M J
2016-01-02
The estimation of the covariance matrix is a key concern in the analysis of longitudinal data. When data consists of multiple groups, it is often assumed the covariance matrices are either equal across groups or are completely distinct. We seek methodology to allow borrowing of strength across potentially similar groups to improve estimation. To that end, we introduce a covariance partition prior which proposes a partition of the groups at each measurement time. Groups in the same set of the partition share dependence parameters for the distribution of the current measurement given the preceding ones, and the sequence of partitions is modeled as a Markov chain to encourage similar structure at nearby measurement times. This approach additionally encourages a lower-dimensional structure of the covariance matrices by shrinking the parameters of the Cholesky decomposition toward zero. We demonstrate the performance of our model through two simulation studies and the analysis of data from a depression study. This article includes Supplementary Material available online.
Spatio-Temporal EEG Models for Brain Interfaces
Gonzalez-Navarro, P.; Moghadamfalahi, M.; Akcakaya, M.; Erdogmus, D.
2016-01-01
Multichannel electroencephalography (EEG) is widely used in non-invasive brain computer interfaces (BCIs) for user intent inference. EEG can be assumed to be a Gaussian process with unknown mean and autocovariance, and the estimation of parameters is required for BCI inference. However, the relatively high dimensionality of the EEG feature vectors with respect to the number of labeled observations lead to rank deficient covariance matrix estimates. In this manuscript, to overcome ill-conditioned covariance estimation, we propose a structure for the covariance matrices of the multichannel EEG signals. Specifically, we assume that these covariances can be modeled as a Kronecker product of temporal and spatial covariances. Our results over the experimental data collected from the users of a letter-by-letter typing BCI show that with less number of parameter estimations, the system can achieve higher classification accuracies compared to a method that uses full unstructured covariance estimation. Moreover, in order to illustrate that the proposed Kronecker product structure could enable shortening the BCI calibration data collection sessions, using Cramer-Rao bound analysis on simulated data, we demonstrate that a model with structured covariance matrices will achieve the same estimation error as a model with no covariance structure using fewer labeled EEG observations. PMID:27713590
ERIC Educational Resources Information Center
Zhang, Wei
2008-01-01
A major issue in the utilization of covariance structure analysis is model fit evaluation. Recent years have witnessed increasing interest in various test statistics and so-called fit indexes, most of which are actually based on or closely related to F[subscript 0], a measure of model fit in the population. This study aims to provide a systematic…
Structural Covariance of the Prefrontal-Amygdala Pathways Associated with Heart Rate Variability
Wei, Luqing; Chen, Hong; Wu, Guo-Rong
2018-01-01
The neurovisceral integration model has shown a key role of the amygdala in neural circuits underlying heart rate variability (HRV) modulation, and suggested that reciprocal connections from amygdala to brain regions centered on the central autonomic network (CAN) are associated with HRV. To provide neuroanatomical evidence for these theoretical perspectives, the current study used covariance analysis of MRI-based gray matter volume (GMV) to map structural covariance network of the amygdala, and then determined whether the interregional structural correlations related to individual differences in HRV. The results showed that covariance patterns of the amygdala encompassed large portions of cortical (e.g., prefrontal, cingulate, and insula) and subcortical (e.g., striatum, hippocampus, and midbrain) regions, lending evidence from structural covariance analysis to the notion that the amygdala was a pivotal node in neural pathways for HRV modulation. Importantly, participants with higher resting HRV showed increased covariance of amygdala to dorsal medial prefrontal cortex and anterior cingulate cortex (dmPFC/dACC) extending into adjacent medial motor regions [i.e., pre-supplementary motor area (pre-SMA)/SMA], demonstrating structural covariance of the prefrontal-amygdala pathways implicated in HRV, and also implying that resting HRV may reflect the function of neural circuits underlying cognitive regulation of emotion as well as facilitation of adaptive behaviors to emotion. Our results, thus, provide anatomical substrates for the neurovisceral integration model that resting HRV may index an integrative neural network which effectively organizes emotional, cognitive, physiological and behavioral responses in the service of goal-directed behavior and adaptability. PMID:29545744
On Muthen's Maximum Likelihood for Two-Level Covariance Structure Models
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Hayashi, Kentaro
2005-01-01
Data in social and behavioral sciences are often hierarchically organized. Special statistical procedures that take into account the dependence of such observations have been developed. Among procedures for 2-level covariance structure analysis, Muthen's maximum likelihood (MUML) has the advantage of easier computation and faster convergence. When…
Structural Covariance of the Default Network in Healthy and Pathological Aging
Turner, Gary R.
2013-01-01
Significant progress has been made uncovering functional brain networks, yet little is known about the corresponding structural covariance networks. The default network's functional architecture has been shown to change over the course of healthy and pathological aging. We examined cross-sectional and longitudinal datasets to reveal the structural covariance of the human default network across the adult lifespan and through the progression of Alzheimer's disease (AD). We used a novel approach to identify the structural covariance of the default network and derive individual participant scores that reflect the covariance pattern in each brain image. A seed-based multivariate analysis was conducted on structural images in the cross-sectional OASIS (N = 414) and longitudinal Alzheimer's Disease Neuroimaging Initiative (N = 434) datasets. We reproduced the distributed topology of the default network, based on a posterior cingulate cortex seed, consistent with prior reports of this intrinsic connectivity network. Structural covariance of the default network scores declined in healthy and pathological aging. Decline was greatest in the AD cohort and in those who progressed from mild cognitive impairment to AD. Structural covariance of the default network scores were positively associated with general cognitive status, reduced in APOEε4 carriers versus noncarriers, and associated with CSF biomarkers of AD. These findings identify the structural covariance of the default network and characterize changes to the network's gray matter integrity across the lifespan and through the progression of AD. The findings provide evidence for the large-scale network model of neurodegenerative disease, in which neurodegeneration spreads through intrinsically connected brain networks in a disease specific manner. PMID:24048852
Large Covariance Estimation by Thresholding Principal Orthogonal Complements
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2012-01-01
This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented. PMID:24348088
Large Covariance Estimation by Thresholding Principal Orthogonal Complements.
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2013-09-01
This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented.
ERIC Educational Resources Information Center
Gomez, Rapson
2009-01-01
Objective: This study used the mean and covariance structures analysis approach to examine the equality or invariance of ratings of the 18 ADHD symptoms. Method: 783 Australian and 928 Malaysian parents provided ratings for an ADHD rating scale. Invariance was tested across these groups (Comparison 1), and North European Australian (n = 623) and…
Generating Nonnormal Multivariate Data Using Copulas: Applications to SEM
ERIC Educational Resources Information Center
Mair, Patrick; Satorra, Albert; Bentler, Peter M.
2012-01-01
This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo…
Nonparametric Estimation of Standard Errors in Covariance Analysis Using the Infinitesimal Jackknife
ERIC Educational Resources Information Center
Jennrich, Robert I.
2008-01-01
The infinitesimal jackknife provides a simple general method for estimating standard errors in covariance structure analysis. Beyond its simplicity and generality what makes the infinitesimal jackknife method attractive is that essentially no assumptions are required to produce consistent standard error estimates, not even the requirement that the…
Modified Distribution-Free Goodness-of-Fit Test Statistic.
Chun, So Yeon; Browne, Michael W; Shapiro, Alexander
2018-03-01
Covariance structure analysis and its structural equation modeling extensions have become one of the most widely used methodologies in social sciences such as psychology, education, and economics. An important issue in such analysis is to assess the goodness of fit of a model under analysis. One of the most popular test statistics used in covariance structure analysis is the asymptotically distribution-free (ADF) test statistic introduced by Browne (Br J Math Stat Psychol 37:62-83, 1984). The ADF statistic can be used to test models without any specific distribution assumption (e.g., multivariate normal distribution) of the observed data. Despite its advantage, it has been shown in various empirical studies that unless sample sizes are extremely large, this ADF statistic could perform very poorly in practice. In this paper, we provide a theoretical explanation for this phenomenon and further propose a modified test statistic that improves the performance in samples of realistic size. The proposed statistic deals with the possible ill-conditioning of the involved large-scale covariance matrices.
ERIC Educational Resources Information Center
Donoghue, John R.
Monte Carlo studies investigated effects of within-group covariance structure on subgroup recovery by several widely used hierarchical clustering methods. In Study 1, subgroup size, within-group correlation, within-group variance, and distance between subgroup centroids were manipulated. All clustering methods were strongly affected by…
Buchy, Lisa; Barbato, Mariapaola; Makowski, Carolina; Bray, Signe; MacMaster, Frank P; Deighton, Stephanie; Addington, Jean
2017-11-01
People with psychosis show deficits recognizing facial emotions and disrupted activation in the underlying neural circuitry. We evaluated associations between facial emotion recognition and cortical thickness using a correlation-based approach to map structural covariance networks across the brain. Fifteen people with an early psychosis provided magnetic resonance scans and completed the Penn Emotion Recognition and Differentiation tasks. Fifteen historical controls provided magnetic resonance scans. Cortical thickness was computed using CIVET and analyzed with linear models. Seed-based structural covariance analysis was done using the mapping anatomical correlations across the cerebral cortex methodology. To map structural covariance networks involved in facial emotion recognition, the right somatosensory cortex and bilateral fusiform face areas were selected as seeds. Statistics were run in SurfStat. Findings showed increased cortical covariance between the right fusiform face region seed and right orbitofrontal cortex in controls than early psychosis subjects. Facial emotion recognition scores were not significantly associated with thickness in any region. A negative effect of Penn Differentiation scores on cortical covariance was seen between the left fusiform face area seed and right superior parietal lobule in early psychosis subjects. Results suggest that facial emotion recognition ability is related to covariance in a temporal-parietal network in early psychosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Selecting a Separable Parametric Spatiotemporal Covariance Structure for Longitudinal Imaging Data
George, Brandon; Aban, Inmaculada
2014-01-01
Longitudinal imaging studies allow great insight into how the structure and function of a subject’s internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures, and the spatial from the outcomes of interest being observed at multiple points in a patients body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on Type I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the Type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be done in practice, as well as how covariance structure choice can change inferences about fixed effects. PMID:25293361
A class of covariate-dependent spatiotemporal covariance functions
Reich, Brian J; Eidsvik, Jo; Guindani, Michele; Nail, Amy J; Schmidt, Alexandra M.
2014-01-01
In geostatistics, it is common to model spatially distributed phenomena through an underlying stationary and isotropic spatial process. However, these assumptions are often untenable in practice because of the influence of local effects in the correlation structure. Therefore, it has been of prolonged interest in the literature to provide flexible and effective ways to model non-stationarity in the spatial effects. Arguably, due to the local nature of the problem, we might envision that the correlation structure would be highly dependent on local characteristics of the domain of study, namely the latitude, longitude and altitude of the observation sites, as well as other locally defined covariate information. In this work, we provide a flexible and computationally feasible way for allowing the correlation structure of the underlying processes to depend on local covariate information. We discuss the properties of the induced covariance functions and discuss methods to assess its dependence on local covariate information by means of a simulation study and the analysis of data observed at ozone-monitoring stations in the Southeast United States. PMID:24772199
Plis, Sergey M; George, J S; Jun, S C; Paré-Blagoev, J; Ranken, D M; Wood, C C; Schmidt, D M
2007-01-01
We propose a new model to approximate spatiotemporal noise covariance for use in neural electromagnetic source analysis, which better captures temporal variability in background activity. As with other existing formalisms, our model employs a Kronecker product of matrices representing temporal and spatial covariance. In our model, spatial components are allowed to have differing temporal covariances. Variability is represented as a series of Kronecker products of spatial component covariances and corresponding temporal covariances. Unlike previous attempts to model covariance through a sum of Kronecker products, our model is designed to have a computationally manageable inverse. Despite increased descriptive power, inversion of the model is fast, making it useful in source analysis. We have explored two versions of the model. One is estimated based on the assumption that spatial components of background noise have uncorrelated time courses. Another version, which gives closer approximation, is based on the assumption that time courses are statistically independent. The accuracy of the structural approximation is compared to an existing model, based on a single Kronecker product, using both Frobenius norm of the difference between spatiotemporal sample covariance and a model, and scatter plots. Performance of ours and previous models is compared in source analysis of a large number of single dipole problems with simulated time courses and with background from authentic magnetoencephalography data.
Cross-population myelination covariance of human cerebral cortex.
Ma, Zhiwei; Zhang, Nanyin
2017-09-01
Cross-population covariance of brain morphometric quantities provides a measure of interareal connectivity, as it is believed to be determined by the coordinated neurodevelopment of connected brain regions. Although useful, structural covariance analysis predominantly employed bulky morphological measures with mixed compartments, whereas studies of the structural covariance of any specific subdivisions such as myelin are rare. Characterizing myelination covariance is of interest, as it will reveal connectivity patterns determined by coordinated development of myeloarchitecture between brain regions. Using myelin content MRI maps from the Human Connectome Project, here we showed that the cortical myelination covariance was highly reproducible, and exhibited a brain organization similar to that previously revealed by other connectivity measures. Additionally, the myelination covariance network shared common topological features of human brain networks such as small-worldness. Furthermore, we found that the correlation between myelination covariance and resting-state functional connectivity (RSFC) was uniform within each resting-state network (RSN), but could considerably vary across RSNs. Interestingly, this myelination covariance-RSFC correlation was appreciably stronger in sensory and motor networks than cognitive and polymodal association networks, possibly due to their different circuitry structures. This study has established a new brain connectivity measure specifically related to axons, and this measure can be valuable to investigating coordinated myeloarchitecture development. Hum Brain Mapp 38:4730-4743, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
An estimating equation approach to dimension reduction for longitudinal data
Xu, Kelin; Guo, Wensheng; Xiong, Momiao; Zhu, Liping; Jin, Li
2016-01-01
Sufficient dimension reduction has been extensively explored in the context of independent and identically distributed data. In this article we generalize sufficient dimension reduction to longitudinal data and propose an estimating equation approach to estimating the central mean subspace. The proposed method accounts for the covariance structure within each subject and improves estimation efficiency when the covariance structure is correctly specified. Even if the covariance structure is misspecified, our estimator remains consistent. In addition, our method relaxes distributional assumptions on the covariates and is doubly robust. To determine the structural dimension of the central mean subspace, we propose a Bayesian-type information criterion. We show that the estimated structural dimension is consistent and that the estimated basis directions are root-\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$n$\\end{document} consistent, asymptotically normal and locally efficient. Simulations and an analysis of the Framingham Heart Study data confirm the effectiveness of our approach. PMID:27017956
Analyzing average and conditional effects with multigroup multilevel structural equation models
Mayer, Axel; Nagengast, Benjamin; Fletcher, John; Steyer, Rolf
2014-01-01
Conventionally, multilevel analysis of covariance (ML-ANCOVA) has been the recommended approach for analyzing treatment effects in quasi-experimental multilevel designs with treatment application at the cluster-level. In this paper, we introduce the generalized ML-ANCOVA with linear effect functions that identifies average and conditional treatment effects in the presence of treatment-covariate interactions. We show how the generalized ML-ANCOVA model can be estimated with multigroup multilevel structural equation models that offer considerable advantages compared to traditional ML-ANCOVA. The proposed model takes into account measurement error in the covariates, sampling error in contextual covariates, treatment-covariate interactions, and stochastic predictors. We illustrate the implementation of ML-ANCOVA with an example from educational effectiveness research where we estimate average and conditional effects of early transition to secondary schooling on reading comprehension. PMID:24795668
Atrophy and structural covariance of the cholinergic basal forebrain in primary progressive aphasia.
Teipel, Stefan; Raiser, Theresa; Riedl, Lina; Riederer, Isabelle; Schroeter, Matthias L; Bisenius, Sandrine; Schneider, Anja; Kornhuber, Johannes; Fliessbach, Klaus; Spottke, Annika; Grothe, Michel J; Prudlo, Johannes; Kassubek, Jan; Ludolph, Albert; Landwehrmeyer, Bernhard; Straub, Sarah; Otto, Markus; Danek, Adrian
2016-10-01
Primary progressive aphasia (PPA) is characterized by profound destruction of cortical language areas. Anatomical studies suggest an involvement of cholinergic basal forebrain (BF) in PPA syndromes, particularly in the area of the nucleus subputaminalis (NSP). Here we aimed to determine the pattern of atrophy and structural covariance as a proxy of structural connectivity of BF nuclei in PPA variants. We studied 62 prospectively recruited cases with the clinical diagnosis of PPA and 31 healthy older control participants from the cohort study of the German consortium for frontotemporal lobar degeneration (FTLD). We determined cortical and BF atrophy based on high-resolution magnetic resonance imaging (MRI) scans. Patterns of structural covariance of BF with cortical regions were determined using voxel-based partial least square analysis. We found significant atrophy of total BF and BF subregions in PPA patients compared with controls [F(1, 82) = 20.2, p < .001]. Atrophy was most pronounced in the NSP and the posterior BF, and most severe in the semantic variant and the nonfluent variant of PPA. Structural covariance analysis in healthy controls revealed associations of the BF nuclei, particularly the NSP, with left hemispheric predominant prefrontal, lateral temporal, and parietal cortical areas, including Broca's speech area (p < .001, permutation test). In contrast, the PPA patients showed preserved structural covariance of the BF nuclei mostly with right but not with left hemispheric cortical areas (p < .001, permutation test). Our findings agree with the neuroanatomically proposed involvement of the cholinergic BF, particularly the NSP, in PPA syndromes. We found a shift from a structural covariance of the BF with left hemispheric cortical areas in healthy aging towards right hemispheric cortical areas in PPA, possibly reflecting a consequence of the profound and early destruction of cortical language areas in PPA. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Structural Equation Models in a Redundancy Analysis Framework With Covariates.
Lovaglio, Pietro Giorgio; Vittadini, Giorgio
2014-01-01
A recent method to specify and fit structural equation modeling in the Redundancy Analysis framework based on so-called Extended Redundancy Analysis (ERA) has been proposed in the literature. In this approach, the relationships between the observed exogenous variables and the observed endogenous variables are moderated by the presence of unobservable composites, estimated as linear combinations of exogenous variables. However, in the presence of direct effects linking exogenous and endogenous variables, or concomitant indicators, the composite scores are estimated by ignoring the presence of the specified direct effects. To fit structural equation models, we propose a new specification and estimation method, called Generalized Redundancy Analysis (GRA), allowing us to specify and fit a variety of relationships among composites, endogenous variables, and external covariates. The proposed methodology extends the ERA method, using a more suitable specification and estimation algorithm, by allowing for covariates that affect endogenous indicators indirectly through the composites and/or directly. To illustrate the advantages of GRA over ERA we propose a simulation study of small samples. Moreover, we propose an application aimed at estimating the impact of formal human capital on the initial earnings of graduates of an Italian university, utilizing a structural model consistent with well-established economic theory.
A Study of Effects of MultiCollinearity in the Multivariable Analysis
Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; (Peter) He, Qinghua; Lillard, James W.
2015-01-01
A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables. PMID:25664257
A Study of Effects of MultiCollinearity in the Multivariable Analysis.
Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; Peter He, Qinghua; Lillard, James W
2014-10-01
A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables.
ERIC Educational Resources Information Center
Molenaar, Dylan; Dolan, Conor V.; Wicherts, Jelle M.
2009-01-01
Research into sex differences in general intelligence, g, has resulted in two opposite views. In the first view, a g-difference is nonexistent, while in the second view, g is associated with a male advantage. Past research using Multi-Group Covariance and Mean Structure Analysis (MG-CMSA) found no sex difference in g. This failure raised the…
Selecting a separable parametric spatiotemporal covariance structure for longitudinal imaging data.
George, Brandon; Aban, Inmaculada
2015-01-15
Longitudinal imaging studies allow great insight into how the structure and function of a subject's internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures and the spatial from the outcomes of interest being observed at multiple points in a patient's body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on types I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be performed in practice, as well as how covariance structure choice can change inferences about fixed effects. Copyright © 2014 John Wiley & Sons, Ltd.
Language Ability Predicts Cortical Structure and Covariance in Boys with Autism Spectrum Disorder.
Sharda, Megha; Foster, Nicholas E V; Tryfon, Ana; Doyle-Thomas, Krissy A R; Ouimet, Tia; Anagnostou, Evdokia; Evans, Alan C; Zwaigenbaum, Lonnie; Lerch, Jason P; Lewis, John D; Hyde, Krista L
2017-03-01
There is significant clinical heterogeneity in language and communication abilities of individuals with Autism Spectrum Disorders (ASD). However, no consistent pathology regarding the relationship of these abilities to brain structure has emerged. Recent developments in anatomical correlation-based approaches to map structural covariance networks (SCNs), combined with detailed behavioral characterization, offer an alternative for studying these relationships. In this study, such an approach was used to study the integrity of SCNs of cortical thickness and surface area associated with language and communication, in 46 high-functioning, school-age children with ASD compared with 50 matched, typically developing controls (all males) with IQ > 75. Findings showed that there was alteration of cortical structure and disruption of fronto-temporal cortical covariance in ASD compared with controls. Furthermore, in an analysis of a subset of ASD participants, alterations in both cortical structure and covariance were modulated by structural language ability of the participants, but not communicative function. These findings indicate that structural language abilities are related to altered fronto-temporal cortical covariance in ASD, much more than symptom severity or cognitive ability. They also support the importance of better characterizing ASD samples while studying brain structure and for better understanding individual differences in language and communication abilities in ASD. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Picture of All Solutions of Successive 2-Block Maxbet Problems
ERIC Educational Resources Information Center
Choulakian, Vartan
2011-01-01
The Maxbet method is a generalized principal components analysis of a data set, where the group structure of the variables is taken into account. Similarly, 3-block[12,13] partial Maxdiff method is a generalization of covariance analysis, where only the covariances between blocks (1, 2) and (1, 3) are taken into account. The aim of this paper is…
Generating Nonnormal Multivariate Data Using Copulas: Applications to SEM.
Mair, Patrick; Satorra, Albert; Bentler, Peter M
2012-07-01
This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo evaluation of structural equation models within the context of nonnormal data. The new procedure for nonnormal data simulation is theoretically described and also implemented in the widely used R environment. The quality of the method is assessed by Monte Carlo simulations. A 1-sample test on the observed covariance matrix based on the copula methodology is proposed. This new test for evaluating the quality of a simulation is defined through a particular structural model specification and is robust against normality violations.
ERIC Educational Resources Information Center
Molenaar, Peter C. M.; Nesselroade, John R.
1998-01-01
Pseudo-Maximum Likelihood (p-ML) and Asymptotically Distribution Free (ADF) estimation methods for estimating dynamic factor model parameters within a covariance structure framework were compared through a Monte Carlo simulation. Both methods appear to give consistent model parameter estimates, but only ADF gives standard errors and chi-square…
Early grey matter changes in structural covariance networks in Huntington's disease.
Coppen, Emma M; van der Grond, Jeroen; Hafkemeijer, Anne; Rombouts, Serge A R B; Roos, Raymund A C
2016-01-01
Progressive subcortical changes are known to occur in Huntington's disease (HD), a hereditary neurodegenerative disorder. Less is known about the occurrence and cohesion of whole brain grey matter changes in HD. We aimed to detect network integrity changes in grey matter structural covariance networks and examined relationships with clinical assessments. Structural magnetic resonance imaging data of premanifest HD ( n = 30), HD patients (n = 30) and controls (n = 30) was used to identify ten structural covariance networks based on a novel technique using the co-variation of grey matter with independent component analysis in FSL. Group differences were studied controlling for age and gender. To explore whether our approach is effective in examining grey matter changes, regional voxel-based analysis was additionally performed. Premanifest HD and HD patients showed decreased network integrity in two networks compared to controls. One network included the caudate nucleus, precuneous and anterior cingulate cortex (in HD p < 0.001, in pre-HD p = 0.003). One other network contained the hippocampus, premotor, sensorimotor, and insular cortices (in HD p < 0.001, in pre-HD p = 0.023). Additionally, in HD patients only, decreased network integrity was observed in a network including the lingual gyrus, intracalcarine, cuneal, and lateral occipital cortices ( p = 0.032). Changes in network integrity were significantly associated with scores of motor and neuropsychological assessments. In premanifest HD, voxel-based analyses showed pronounced volume loss in the basal ganglia, but less prominent in cortical regions. Our results suggest that structural covariance might be a sensitive approach to reveal early grey matter changes, especially for premanifest HD.
A pilot study of cognitive insight and structural covariance in first-episode psychosis.
Kuang, Corin; Buchy, Lisa; Barbato, Mariapaola; Makowski, Carolina; MacMaster, Frank P; Bray, Signe; Deighton, Stephanie; Addington, Jean
2017-01-01
Cognitive insight is described as a balance between one's self-reflectiveness (recognition and correction of dysfunctional reasoning), and self-certainty (overconfidence). Neuroimaging studies have linked the ventrolateral prefrontal cortex (VLPFC) to cognitive insight in people with psychosis. However, the relationship between cognitive insight and structural connectivity between the VLPFC and other brain areas is unknown. Here, we investigated the modulation of cognitive insight on structural covariance networks involving the VLPFC in a first-episode psychosis sample. Fifteen patients with a first-episode psychosis provided magnetic resonance (MR) scans and completed the Beck Cognitive Insight Scale (BCIS). MR scans were also available for 15 historical controls. Seed-based analysis of structural covariance was conducted using the Mapping Anatomical Correlations Across the Cerebral Cortex (MACACC) methodology, whereby Pearson correlation coefficients were extracted between seed regions in left and right VLPFC and cortical thickness across the brain. Structural covariance maps between groups were compared at each vertex. In first-episode subjects, we evaluated the modulation of BCIS scores on cortical covariance between VLPFC and every other vertex. Findings showed no significant group difference between first-episode psychosis subjects and controls in thickness covariance seeded from left or right VLPFC. However, in first-episode psychosis subjects, a positive association with self-certainty was found in networks seeded from both left and right VLPFC with thickness in medial frontal cortex and right pars triangularis. No significant associations were found for self-reflectiveness. These results suggest that self-certainty, but not self-reflectiveness, positively modulated cortical covariance in a frontal network in patients with a first-episode psychosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Foldnes, Njål; Olsson, Ulf Henning
2016-01-01
We present and investigate a simple way to generate nonnormal data using linear combinations of independent generator (IG) variables. The simulated data have prespecified univariate skewness and kurtosis and a given covariance matrix. In contrast to the widely used Vale-Maurelli (VM) transform, the obtained data are shown to have a non-Gaussian copula. We analytically obtain asymptotic robustness conditions for the IG distribution. We show empirically that popular test statistics in covariance analysis tend to reject true models more often under the IG transform than under the VM transform. This implies that overly optimistic evaluations of estimators and fit statistics in covariance structure analysis may be tempered by including the IG transform for nonnormal data generation. We provide an implementation of the IG transform in the R environment.
Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol
2016-01-01
Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.
Liao, Hstau Y.; Hashem, Yaser; Frank, Joachim
2015-01-01
Summary Single-particle cryogenic electron microscopy (cryo-EM) is a powerful tool for the study of macromolecular structures at high resolution. Classification allows multiple structural states to be extracted and reconstructed from the same sample. One classification approach is via the covariance matrix, which captures the correlation between every pair of voxels. Earlier approaches employ computing-intensive resampling and estimate only the eigenvectors of the matrix, which are then used in a separate fast classification step. We propose an iterative scheme to explicitly estimate the covariance matrix in its entirety. In our approach, the flexibility in choosing the solution domain allows us to examine a part of the molecule in greater detail. 3D covariance maps obtained in this way from experimental data (cryo-EM images of the eukaryotic pre-initiation complex) prove to be in excellent agreement with conclusions derived by using traditional approaches, revealing in addition the interdependencies of ligand bindings and structural changes. PMID:25982529
Liao, Hstau Y; Hashem, Yaser; Frank, Joachim
2015-06-02
Single-particle cryogenic electron microscopy (cryo-EM) is a powerful tool for the study of macromolecular structures at high resolution. Classification allows multiple structural states to be extracted and reconstructed from the same sample. One classification approach is via the covariance matrix, which captures the correlation between every pair of voxels. Earlier approaches employ computing-intensive resampling and estimate only the eigenvectors of the matrix, which are then used in a separate fast classification step. We propose an iterative scheme to explicitly estimate the covariance matrix in its entirety. In our approach, the flexibility in choosing the solution domain allows us to examine a part of the molecule in greater detail. Three-dimensional covariance maps obtained in this way from experimental data (cryo-EM images of the eukaryotic pre-initiation complex) prove to be in excellent agreement with conclusions derived by using traditional approaches, revealing in addition the interdependencies of ligand bindings and structural changes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Power law tails in phylogenetic systems.
Qin, Chongli; Colwell, Lucy J
2018-01-23
Covariance analysis of protein sequence alignments uses coevolving pairs of sequence positions to predict features of protein structure and function. However, current methods ignore the phylogenetic relationships between sequences, potentially corrupting the identification of covarying positions. Here, we use random matrix theory to demonstrate the existence of a power law tail that distinguishes the spectrum of covariance caused by phylogeny from that caused by structural interactions. The power law is essentially independent of the phylogenetic tree topology, depending on just two parameters-the sequence length and the average branch length. We demonstrate that these power law tails are ubiquitous in the large protein sequence alignments used to predict contacts in 3D structure, as predicted by our theory. This suggests that to decouple phylogenetic effects from the interactions between sequence distal sites that control biological function, it is necessary to remove or down-weight the eigenvectors of the covariance matrix with largest eigenvalues. We confirm that truncating these eigenvectors improves contact prediction.
Brier, Matthew R; Mitra, Anish; McCarthy, John E; Ances, Beau M; Snyder, Abraham Z
2015-11-01
Functional connectivity refers to shared signals among brain regions and is typically assessed in a task free state. Functional connectivity commonly is quantified between signal pairs using Pearson correlation. However, resting-state fMRI is a multivariate process exhibiting a complicated covariance structure. Partial covariance assesses the unique variance shared between two brain regions excluding any widely shared variance, hence is appropriate for the analysis of multivariate fMRI datasets. However, calculation of partial covariance requires inversion of the covariance matrix, which, in most functional connectivity studies, is not invertible owing to rank deficiency. Here we apply Ledoit-Wolf shrinkage (L2 regularization) to invert the high dimensional BOLD covariance matrix. We investigate the network organization and brain-state dependence of partial covariance-based functional connectivity. Although RSNs are conventionally defined in terms of shared variance, removal of widely shared variance, surprisingly, improved the separation of RSNs in a spring embedded graphical model. This result suggests that pair-wise unique shared variance plays a heretofore unrecognized role in RSN covariance organization. In addition, application of partial correlation to fMRI data acquired in the eyes open vs. eyes closed states revealed focal changes in uniquely shared variance between the thalamus and visual cortices. This result suggests that partial correlation of resting state BOLD time series reflect functional processes in addition to structural connectivity. Copyright © 2015 Elsevier Inc. All rights reserved.
Brier, Matthew R.; Mitra, Anish; McCarthy, John E.; Ances, Beau M.; Snyder, Abraham Z.
2015-01-01
Functional connectivity refers to shared signals among brain regions and is typically assessed in a task free state. Functional connectivity commonly is quantified between signal pairs using Pearson correlation. However, resting-state fMRI is a multivariate process exhibiting a complicated covariance structure. Partial covariance assesses the unique variance shared between two brain regions excluding any widely shared variance, hence is appropriate for the analysis of multivariate fMRI datasets. However, calculation of partial covariance requires inversion of the covariance matrix, which, in most functional connectivity studies, is not invertible owing to rank deficiency. Here we apply Ledoit-Wolf shrinkage (L2 regularization) to invert the high dimensional BOLD covariance matrix. We investigate the network organization and brain-state dependence of partial covariance-based functional connectivity. Although RSNs are conventionally defined in terms of shared variance, removal of widely shared variance, surprisingly, improved the separation of RSNs in a spring embedded graphical model. This result suggests that pair-wise unique shared variance plays a heretofore unrecognized role in RSN covariance organization. In addition, application of partial correlation to fMRI data acquired in the eyes open vs. eyes closed states revealed focal changes in uniquely shared variance between the thalamus and visual cortices. This result suggests that partial correlation of resting state BOLD time series reflect functional processes in addition to structural connectivity. PMID:26208872
Linear mixed-effects modeling approach to FMRI group analysis
Chen, Gang; Saad, Ziad S.; Britton, Jennifer C.; Pine, Daniel S.; Cox, Robert W.
2013-01-01
Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance–covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance–covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity for activation detection. The importance of hypothesis formulation is also illustrated in the simulations. Comparisons with alternative group analysis approaches and the limitations of LME are discussed in details. PMID:23376789
Linear mixed-effects modeling approach to FMRI group analysis.
Chen, Gang; Saad, Ziad S; Britton, Jennifer C; Pine, Daniel S; Cox, Robert W
2013-06-01
Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance-covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance-covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity for activation detection. The importance of hypothesis formulation is also illustrated in the simulations. Comparisons with alternative group analysis approaches and the limitations of LME are discussed in details. Published by Elsevier Inc.
Chang, Yu-Tzu; Hsu, Shih-Wei; Tsai, Shih-Jen; Chang, Ya-Ting; Huang, Chi-Wei; Liu, Mu-En; Chen, Nai-Ching; Chang, Wen-Neng; Hsu, Jung-Lung; Lee, Chen-Chang; Chang, Chiung-Chih
2017-06-01
The 677 C to T transition in the MTHFR gene is a genetic determinant for hyperhomocysteinemia. We investigated whether this polymorphism modulates gray matter (GM) structural covariance networks independently of white-matter integrity in patients with Alzheimer's disease (AD). GM structural covariance networks were constructed by 3D T1-magnetic resonance imaging and seed-based analysis. The patients were divided into two genotype groups: C homozygotes (n = 73) and T carriers (n = 62). Using diffusion tensor imaging and white-matter parcellation, 11 fiber bundle integrities were compared between the two genotype groups. Cognitive test scores were the major outcome factors. The T carriers had higher homocysteine levels, lower posterior cingulate cortex GM volume, and more clusters in the dorsal medial lobe subsystem showing stronger covariance strength. Both posterior cingulate cortex seed and interconnected peak cluster volumes predicted cognitive test scores, especially in the T carriers. There were no between-group differences in fiber tract diffusion parameters. The MTHFR 677T polymorphism modulates posterior cingulate cortex-anchored structural covariance strength independently of white matter integrities. Hum Brain Mapp 38:3039-3051, 2017. © 2017 The Authors Human Brain Mapping Published Wiley by Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published Wiley by Periodicals, Inc.
Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol
2016-01-01
Study Objectives: Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). Methods: The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Results: Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Conclusion: Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. Citation: Suh S, Kim H, Dang-Vu TT, Joo E, Shin C. Cortical thinning and altered cortico-cortical structural covariance of the default mode network in patients with persistent insomnia symptoms. SLEEP 2016;39(1):161–171. PMID:26414892
Bruce, Iain P.; Karaman, M. Muge; Rowe, Daniel B.
2012-01-01
The acquisition of sub-sampled data from an array of receiver coils has become a common means of reducing data acquisition time in MRI. Of the various techniques used in parallel MRI, SENSitivity Encoding (SENSE) is one of the most common, making use of a complex-valued weighted least squares estimation to unfold the aliased images. It was recently shown in Bruce et al. [Magn. Reson. Imag. 29(2011):1267–1287] that when the SENSE model is represented in terms of a real-valued isomorphism, it assumes a skew-symmetric covariance between receiver coils, as well as an identity covariance structure between voxels. In this manuscript, we show that not only is the skew-symmetric coil covariance unlike that of real data, but the estimated covariance structure between voxels over a time series of experimental data is not an identity matrix. As such, a new model, entitled SENSE-ITIVE, is described with both revised coil and voxel covariance structures. Both the SENSE and SENSE-ITIVE models are represented in terms of real-valued isomorphisms, allowing for a statistical analysis of reconstructed voxel means, variances, and correlations resulting from the use of different coil and voxel covariance structures used in the reconstruction processes to be conducted. It is shown through both theoretical and experimental illustrations that the miss-specification of the coil and voxel covariance structures in the SENSE model results in a lower standard deviation in each voxel of the reconstructed images, and thus an artificial increase in SNR, compared to the standard deviation and SNR of the SENSE-ITIVE model where both the coil and voxel covariances are appropriately accounted for. It is also shown that there are differences in the correlations induced by the reconstruction operations of both models, and consequently there are differences in the correlations estimated throughout the course of reconstructed time series. These differences in correlations could result in meaningful differences in interpretation of results. PMID:22617147
Community factors to promote parents' quality of child-nurturing life.
Aoyama, Megumi; Wei, Chang Nian; Chang-nian, Wei; Harada, Koichi; Ueda, Kimiyo; Takano, Miyuki; Ueda, Atsushi
2013-01-01
The purpose of this study was to clarify the role of community factors in parents' quality of child-nurturing life (QCNL). We developed a questionnaire to evaluate the degree of QCNL and determine the structural factors related to QCNL as community factors related to parents' QCNL derived from focus group interviews and the Delphi technique. The questionnaire also included the battery of the self-rating depression scale and Tsumori-Inage Infant's Developmental Test. Using the questionnaire, we then conducted a quantitative survey of parents whose children attended nursery schools in Kumamoto Prefecture. Factor analysis, calculation of the mean score and/or ratio to each item, Pearson's correlation coefficient, t test, multiple regression analysis, and covariance structure analysis were performed. The questionnaire we developed consisted of seven items with 75 elements, involving ten elements as community factors. Subjects included 699 parents (mean age 33.6 ± 5.4 years) and 965 children (age range 0-6 years). Factor analysis revealed that community factors consisted of five factors, such as "lifestyle rooted in the ground," "balance of housekeeping and work," "community network," "amenity," and "regeneration of life". These factors may be dominant in a rural area. Finally, we developed a structural model with "community factors," QCNL, QOL, and "child growth" by covariance structural analysis. The analysis revealed that community factors had a positive relation to parents' QCNL (r = 0.81, p < 0.001) and that parental SDS score had a negative relation to parents' QCNL (r = -0.59, p < 0.001). The analysis did show that community factors were positively related to the sound growth of children. The covariance structure analysis revealed that community factors were associated with parents' QCNL, SDS, and "child growth."
Holtschlag, David J.; Sweat, M.J.
1999-01-01
Quarterly water-level measurements were analyzed to assess the effectiveness of a monitoring network of 26 wells in Huron County, Michigan. Trends were identified as constant levels and autoregressive components were computed at all wells on the basis of data collected from 1993 to 1997, using structural time series analysis. Fixed seasonal components were identified at 22 wells and outliers were identified at 23 wells. The 95- percent confidence intervals were forecast for water-levels during the first and second quarters of 1998. Intervals in the first quarter were consistent with 92.3 percent of the measured values. In the second quarter, measured values were within the forecast intervals only 65.4 percent of the time. Unusually low precipitation during the second quarter is thought to have contributed to the reduced reliability of the second-quarter forecasts. Spatial interrelations among wells were investigated on the basis of the autoregressive components, which were filtered to create a set of innovation sequences that were temporally uncorrelated. The empirical covariance among the innovation sequences indicated both positive and negative spatial interrelations. The negative covariance components are considered to be physically implausible and to have resulted from random sampling error. Graphical modeling, a form of multivariate analysis, was used to model the covariance structure. Results indicate that only 29 of the 325 possible partial correlations among the water-level innovations were statistically significant. The model covariance matrix, corresponding to the model partial correlation structure, contained only positive elements. This model covariance was sequentially partitioned to compute a set of partial covariance matrices that were used to rank the effectiveness of the 26 monitoring wells from greatest to least. Results, for example, indicate that about 50 percent of the uncertainty of the water-level innovations currently monitored by the 26- well network could be described by the 6 most effective wells.
Sun, Delin; Haswell, Courtney C; Morey, Rajendra A; De Bellis, Michael D
2018-04-10
Child maltreatment is a major cause of pediatric posttraumatic stress disorder (PTSD). Previous studies have not investigated potential differences in network architecture in maltreated youth with PTSD and those resilient to PTSD. High-resolution magnetic resonance imaging brain scans at 3 T were completed in maltreated youth with PTSD (n = 31), without PTSD (n = 32), and nonmaltreated controls (n = 57). Structural covariance network architecture was derived from between-subject intraregional correlations in measures of cortical thickness in 148 cortical regions (nodes). Interregional positive partial correlations controlling for demographic variables were assessed, and those correlations that exceeded specified thresholds constituted connections in cortical brain networks. Four measures of network centrality characterized topology, and the importance of cortical regions (nodes) within the network architecture were calculated for each group. Permutation testing and principle component analysis method were employed to calculate between-group differences. Principle component analysis is a methodological improvement to methods used in previous brain structural covariance network studies. Differences in centrality were observed between groups. Larger centrality was found in maltreated youth with PTSD in the right posterior cingulate cortex; smaller centrality was detected in the right inferior frontal cortex compared to youth resilient to PTSD and controls, demonstrating network characteristics unique to pediatric maltreatment-related PTSD. Larger centrality was detected in right frontal pole in maltreated youth resilient to PTSD compared to youth with PTSD and controls, demonstrating structural covariance network differences in youth resilience to PTSD following maltreatment. Smaller centrality was found in the left posterior cingulate cortex and in the right inferior frontal cortex in maltreated youth compared to controls, demonstrating attributes of structural covariance network topology that is unique to experiencing maltreatment. This work is the first to identify cortical thickness-based structural covariance network differences between maltreated youth with and without PTSD. We demonstrated network differences in both networks unique to maltreated youth with PTSD and those resilient to PTSD. The networks identified are important for the successful attainment of age-appropriate social cognition, attention, emotional processing, and inhibitory control. Our findings in maltreated youth with PTSD versus those without PTSD suggest vulnerability mechanisms for developing PTSD.
Bayes linear covariance matrix adjustment
NASA Astrophysics Data System (ADS)
Wilkinson, Darren J.
1995-12-01
In this thesis, a Bayes linear methodology for the adjustment of covariance matrices is presented and discussed. A geometric framework for quantifying uncertainties about covariance matrices is set up, and an inner-product for spaces of random matrices is motivated and constructed. The inner-product on this space captures aspects of our beliefs about the relationship between covariance matrices of interest to us, providing a structure rich enough for us to adjust beliefs about unknown matrices in the light of data such as sample covariance matrices, exploiting second-order exchangeability and related specifications to obtain representations allowing analysis. Adjustment is associated with orthogonal projection, and illustrated with examples of adjustments for some common problems. The problem of adjusting the covariance matrices underlying exchangeable random vectors is tackled and discussed. Learning about the covariance matrices associated with multivariate time series dynamic linear models is shown to be amenable to a similar approach. Diagnostics for matrix adjustments are also discussed.
NASA Astrophysics Data System (ADS)
Wang, Qiqi; Rigas, Georgios; Esclapez, Lucas; Magri, Luca; Blonigan, Patrick
2016-11-01
Bluff body flows are of fundamental importance to many engineering applications involving massive flow separation and in particular the transport industry. Coherent flow structures emanating in the wake of three-dimensional bluff bodies, such as cars, trucks and lorries, are directly linked to increased aerodynamic drag, noise and structural fatigue. For low Reynolds laminar and transitional regimes, hydrodynamic stability theory has aided the understanding and prediction of the unstable dynamics. In the same framework, sensitivity analysis provides the means for efficient and optimal control, provided the unstable modes can be accurately predicted. However, these methodologies are limited to laminar regimes where only a few unstable modes manifest. Here we extend the stability analysis to low-dimensional chaotic regimes by computing the Lyapunov covariant vectors and their associated Lyapunov exponents. We compare them to eigenvectors and eigenvalues computed in traditional hydrodynamic stability analysis. Computing Lyapunov covariant vectors and Lyapunov exponents also enables the extension of sensitivity analysis to chaotic flows via the shadowing method. We compare the computed shadowing sensitivities to traditional sensitivity analysis. These Lyapunov based methodologies do not rely on mean flow assumptions, and are mathematically rigorous for calculating sensitivities of fully unsteady flow simulations.
Yee, Yohan; Fernandes, Darren J; French, Leon; Ellegood, Jacob; Cahill, Lindsay S; Vousden, Dulcie A; Spencer Noakes, Leigh; Scholz, Jan; van Eede, Matthijs C; Nieman, Brian J; Sled, John G; Lerch, Jason P
2018-05-18
An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the visceral area. Additionally, this pattern of explained variation differed spatially across the brain, with transcriptomic similarity playing a larger role in the cortex than subcortex, while connectivity explains structural covariance best in parts of the cortex, midbrain, and hindbrain. These results suggest that both gene expression and connectivity underlie structural volume covariance, albeit to different extents depending on brain region, and this relationship is modulated by distance. Copyright © 2018. Published by Elsevier Inc.
Fast Component Pursuit for Large-Scale Inverse Covariance Estimation.
Han, Lei; Zhang, Yu; Zhang, Tong
2016-08-01
The maximum likelihood estimation (MLE) for the Gaussian graphical model, which is also known as the inverse covariance estimation problem, has gained increasing interest recently. Most existing works assume that inverse covariance estimators contain sparse structure and then construct models with the ℓ 1 regularization. In this paper, different from existing works, we study the inverse covariance estimation problem from another perspective by efficiently modeling the low-rank structure in the inverse covariance, which is assumed to be a combination of a low-rank part and a diagonal matrix. One motivation for this assumption is that the low-rank structure is common in many applications including the climate and financial analysis, and another one is that such assumption can reduce the computational complexity when computing its inverse. Specifically, we propose an efficient COmponent Pursuit (COP) method to obtain the low-rank part, where each component can be sparse. For optimization, the COP method greedily learns a rank-one component in each iteration by maximizing the log-likelihood. Moreover, the COP algorithm enjoys several appealing properties including the existence of an efficient solution in each iteration and the theoretical guarantee on the convergence of this greedy approach. Experiments on large-scale synthetic and real-world datasets including thousands of millions variables show that the COP method is faster than the state-of-the-art techniques for the inverse covariance estimation problem when achieving comparable log-likelihood on test data.
[Job satisfaction of sales people: a covariance structure analysis of the motivational process].
Adachi, T
1998-08-01
The purpose of this study was to investigate the relationship among job satisfaction, job involvement, and work motivation. Two hundred thirty-nine sales people completed a questionnaire of job satisfaction (pay, interpersonal relationship, work environment, and job content), job involvement, and work motivation. The data were analyzed with covariance structure analysis, and the model, which was constructed beforehand, fitted well with relatively high GFI and AGFI. Results of the analysis showed that job satisfaction, in terms of pay and interpersonal relationship, influenced job content satisfaction, which in turn indirectly influenced work motivation, mediated through job involvement. In addition, the data indicated that satisfaction with customer relationship was strongly related to job content satisfaction in the sample of sales people.
Wu, Huawang; Sun, Hui; Wang, Chao; Yu, Lin; Li, Yilan; Peng, Hongjun; Lu, Xiaobing; Hu, Qingmao; Ning, Yuping; Jiang, Tianzi; Xu, Jinping; Wang, Jiaojian
2017-01-01
Major depressive disorder (MDD) is a common psychiatric disorder that is characterized by cognitive deficits and affective symptoms. To date, an increasing number of neuroimaging studies have focused on emotion regulation and have consistently shown that emotion dysregulation is one of the central features and underlying mechanisms of MDD. Although gray matter morphological abnormalities in regions within emotion regulation networks have been identified in MDD, the interactions and relationships between these gray matter structures remain largely unknown. Thus, in this study, we adopted a structural covariance method based on gray matter volume to investigate the brain morphological abnormalities within the emotion regulation networks in a large cohort of 65 MDD patients and 65 age- and gender-matched healthy controls. A permutation test with p < 0.05 was used to identify the significant changes in covariance connectivity strengths between MDD patients and healthy controls. The structural covariance analysis revealed an increased correlation strength of gray matter volume between the left angular gyrus and the left amygdala and between the right angular gyrus and the right amygdala, as well as a decreased correlation strength of the gray matter volume between the right angular gyrus and the posterior cingulate cortex in MDD. Our findings support the notion that emotion dysregulation is an underlying mechanism of MDD by revealing disrupted structural covariance patterns in the emotion regulation network. Copyright © 2016 Elsevier Ltd. All rights reserved.
Paquola, Casey; Bennett, Maxwell; Lagopoulos, Jim
2018-05-15
Structural covariance networks (SCNs) may offer unique insights into the developmental impact of childhood maltreatment because they are thought to reflect coordinated maturation of distinct grey matter regions. T1-weighted magnetic resonance images were acquired from 121 young people with emerging mental illness. Diffusion weighted and resting state functional imaging was also acquired from a random subset of the participants (n=62). Ten study-specific SCNs were identified using a whole brain grey matter independent component analysis. The effects of childhood maltreatment and age on average grey matter density and the expression of each SCN were calculated. Childhood maltreatment was linked to age-related decreases in grey matter density across a SCN that overlapped with the default mode and fronto-parietal networks. Resting state functional connectivity and structural connectivity were calculated in the study-specific SCN and across the whole brain. Grey matter covariance was significantly correlated with rsFC across the SCN, and rsFC fully mediated the relationship between grey matter covariance and structural connectivity in the non-maltreated group. A unique association of grey matter covariance with structural connectivity was detected amongst individuals with a history of childhood maltreatment. Perturbation of grey matter development across the default mode and fronto-parietal networks following childhood maltreatment may have significant implications for mental well-being, given the networks' roles in self-referential activity. Cross-modal comparisons suggest reduced grey matter following childhood maltreatment could arise from deficient functional activity earlier in life.
Decreased centrality of cortical volume covariance networks in autism spectrum disorders.
Balardin, Joana Bisol; Comfort, William Edgar; Daly, Eileen; Murphy, Clodagh; Andrews, Derek; Murphy, Declan G M; Ecker, Christine; Sato, João Ricardo
2015-10-01
Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions characterized by atypical structural and functional brain connectivity. Complex network analysis has been mainly used to describe altered network-level organization for functional systems and white matter tracts in ASD. However, atypical functional and structural connectivity are likely to be also linked to abnormal development of the correlated structure of cortical gray matter. Such covariations of gray matter are particularly well suited to the investigation of the complex cortical pathology of ASD, which is not confined to isolated brain regions but instead acts at the systems level. In this study, we examined network centrality properties of gray matter networks in adults with ASD (n = 84) and neurotypical controls (n = 84) using graph theoretical analysis. We derived a structural covariance network for each group using interregional correlation matrices of cortical volumes extracted from a surface-based parcellation scheme containing 68 cortical regions. Differences between groups in closeness network centrality measures were evaluated using permutation testing. We identified several brain regions in the medial frontal, parietal and temporo-occipital cortices with reductions in closeness centrality in ASD compared to controls. We also found an association between an increased number of autistic traits and reduced centrality of visual nodes in neurotypicals. Our study shows that ASD are accompanied by atypical organization of structural covariance networks by means of a decreased centrality of regions relevant for social and sensorimotor processing. These findings provide further evidence for the altered network-level connectivity model of ASD. Copyright © 2015 Elsevier Ltd. All rights reserved.
Socio-Cognitive Phenotypes Differentially Modulate Large-Scale Structural Covariance Networks.
Valk, Sofie L; Bernhardt, Boris C; Böckler, Anne; Trautwein, Fynn-Mathis; Kanske, Philipp; Singer, Tania
2017-02-01
Functional neuroimaging studies have suggested the existence of 2 largely distinct social cognition networks, one for theory of mind (taking others' cognitive perspective) and another for empathy (sharing others' affective states). To address whether these networks can also be dissociated at the level of brain structure, we combined behavioral phenotyping across multiple socio-cognitive tasks with 3-Tesla MRI cortical thickness and structural covariance analysis in 270 healthy adults, recruited across 2 sites. Regional thickness mapping only provided partial support for divergent substrates, highlighting that individual differences in empathy relate to left insular-opercular thickness while no correlation between thickness and mentalizing scores was found. Conversely, structural covariance analysis showed clearly divergent network modulations by socio-cognitive and -affective phenotypes. Specifically, individual differences in theory of mind related to structural integration between temporo-parietal and dorsomedial prefrontal regions while empathy modulated the strength of dorsal anterior insula networks. Findings were robust across both recruitment sites, suggesting generalizability. At the level of structural network embedding, our study provides a double dissociation between empathy and mentalizing. Moreover, our findings suggest that structural substrates of higher-order social cognition are reflected rather in interregional networks than in the the local anatomical markup of specific regions per se. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Structural covariance networks across the life span, from 6 to 94 years of age.
DuPre, Elizabeth; Spreng, R Nathan
2017-10-01
Structural covariance examines covariation of gray matter morphology between brain regions and across individuals. Despite significant interest in the influence of age on structural covariance patterns, no study to date has provided a complete life span perspective-bridging childhood with early, middle, and late adulthood-on the development of structural covariance networks. Here, we investigate the life span trajectories of structural covariance in six canonical neurocognitive networks: default, dorsal attention, frontoparietal control, somatomotor, ventral attention, and visual. By combining data from five open-access data sources, we examine the structural covariance trajectories of these networks from 6 to 94 years of age in a sample of 1,580 participants. Using partial least squares, we show that structural covariance patterns across the life span exhibit two significant, age-dependent trends. The first trend is a stable pattern whose integrity declines over the life span. The second trend is an inverted-U that differentiates young adulthood from other age groups. Hub regions, including posterior cingulate cortex and anterior insula, appear particularly influential in the expression of this second age-dependent trend. Overall, our results suggest that structural covariance provides a reliable definition of neurocognitive networks across the life span and reveal both shared and network-specific trajectories.
Structural covariance networks across the life span, from 6 to 94 years of age
DuPre, Elizabeth; Spreng, R. Nathan
2017-01-01
Structural covariance examines covariation of gray matter morphology between brain regions and across individuals. Despite significant interest in the influence of age on structural covariance patterns, no study to date has provided a complete life span perspective—bridging childhood with early, middle, and late adulthood—on the development of structural covariance networks. Here, we investigate the life span trajectories of structural covariance in six canonical neurocognitive networks: default, dorsal attention, frontoparietal control, somatomotor, ventral attention, and visual. By combining data from five open-access data sources, we examine the structural covariance trajectories of these networks from 6 to 94 years of age in a sample of 1,580 participants. Using partial least squares, we show that structural covariance patterns across the life span exhibit two significant, age-dependent trends. The first trend is a stable pattern whose integrity declines over the life span. The second trend is an inverted-U that differentiates young adulthood from other age groups. Hub regions, including posterior cingulate cortex and anterior insula, appear particularly influential in the expression of this second age-dependent trend. Overall, our results suggest that structural covariance provides a reliable definition of neurocognitive networks across the life span and reveal both shared and network-specific trajectories. PMID:29855624
Prussia, G E; Kinicki, A J; Bracker, J S
1993-06-01
B. Weiner's (1985) attribution model of achievement motivation and emotion was used as a theoretical foundation to examine the mediating processes between involuntary job loss and employment status. Seventy-nine manufacturing employees were surveyed 1 month prior to permanent displacement, and finding another job was assessed 18 months later. Covariance structure analysis was used to evaluate goodness of fit and to compare the model to alternative measurement and structural representations. Discriminant validity analyses indicated that the causal dimensions underlying the model were not independent. Model predictions were supported in that internal and stable attributions for job loss negatively influenced finding another job through expectations for re-employment. These predictions held up even after controlling for influential unmeasured variables. Practical and theoretical implications are discussed.
Statistical Analysis of Big Data on Pharmacogenomics
Fan, Jianqing; Liu, Han
2013-01-01
This paper discusses statistical methods for estimating complex correlation structure from large pharmacogenomic datasets. We selectively review several prominent statistical methods for estimating large covariance matrix for understanding correlation structure, inverse covariance matrix for network modeling, large-scale simultaneous tests for selecting significantly differently expressed genes and proteins and genetic markers for complex diseases, and high dimensional variable selection for identifying important molecules for understanding molecule mechanisms in pharmacogenomics. Their applications to gene network estimation and biomarker selection are used to illustrate the methodological power. Several new challenges of Big data analysis, including complex data distribution, missing data, measurement error, spurious correlation, endogeneity, and the need for robust statistical methods, are also discussed. PMID:23602905
Multivariate analysis of longitudinal rates of change.
Bryan, Matthew; Heagerty, Patrick J
2016-12-10
Longitudinal data allow direct comparison of the change in patient outcomes associated with treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a common underlying health status, or characterize processes that are influenced in a similar way by covariates such as exposure or demographic characteristics. Statistical methods that can combine multivariate response variables into common measures of covariate effects have been proposed in the literature. Current methods for characterizing the relationship between covariates and the rate of change in multivariate outcomes are limited to select models. For example, 'accelerated time' methods have been developed which assume that covariates rescale time in longitudinal models for disease progression. In this manuscript, we detail an alternative multivariate model formulation that directly structures longitudinal rates of change and that permits a common covariate effect across multiple outcomes. We detail maximum likelihood estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the potential gain in power that may be achieved with a common analysis of multiple outcomes. We apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare rates of change for HIV infected and uninfected infants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Performance of internal covariance estimators for cosmic shear correlation functions
Friedrich, O.; Seitz, S.; Eifler, T. F.; ...
2015-12-31
Data re-sampling methods such as the delete-one jackknife are a common tool for estimating the covariance of large scale structure probes. In this paper we investigate the concepts of internal covariance estimation in the context of cosmic shear two-point statistics. We demonstrate how to use log-normal simulations of the convergence field and the corresponding shear field to carry out realistic tests of internal covariance estimators and find that most estimators such as jackknife or sub-sample covariance can reach a satisfactory compromise between bias and variance of the estimated covariance. In a forecast for the complete, 5-year DES survey we show that internally estimated covariance matrices can provide a large fraction of the true uncertainties on cosmological parameters in a 2D cosmic shear analysis. The volume inside contours of constant likelihood in themore » $$\\Omega_m$$-$$\\sigma_8$$ plane as measured with internally estimated covariance matrices is on average $$\\gtrsim 85\\%$$ of the volume derived from the true covariance matrix. The uncertainty on the parameter combination $$\\Sigma_8 \\sim \\sigma_8 \\Omega_m^{0.5}$$ derived from internally estimated covariances is $$\\sim 90\\%$$ of the true uncertainty.« less
Galaxy two-point covariance matrix estimation for next generation surveys
NASA Astrophysics Data System (ADS)
Howlett, Cullan; Percival, Will J.
2017-12-01
We perform a detailed analysis of the covariance matrix of the spherically averaged galaxy power spectrum and present a new, practical method for estimating this within an arbitrary survey without the need for running mock galaxy simulations that cover the full survey volume. The method uses theoretical arguments to modify the covariance matrix measured from a set of small-volume cubic galaxy simulations, which are computationally cheap to produce compared to larger simulations and match the measured small-scale galaxy clustering more accurately than is possible using theoretical modelling. We include prescriptions to analytically account for the window function of the survey, which convolves the measured covariance matrix in a non-trivial way. We also present a new method to include the effects of super-sample covariance and modes outside the small simulation volume which requires no additional simulations and still allows us to scale the covariance matrix. As validation, we compare the covariance matrix estimated using our new method to that from a brute-force calculation using 500 simulations originally created for analysis of the Sloan Digital Sky Survey Main Galaxy Sample. We find excellent agreement on all scales of interest for large-scale structure analysis, including those dominated by the effects of the survey window, and on scales where theoretical models of the clustering normally break down, but the new method produces a covariance matrix with significantly better signal-to-noise ratio. Although only formally correct in real space, we also discuss how our method can be extended to incorporate the effects of redshift space distortions.
Gomez, Rapson
2009-03-01
This study used the mean and covariance structures analysis approach to examine the equality or invariance of ratings of the 18 ADHD symptoms. 783 Australian and 928 Malaysian parents provided ratings for an ADHD rating scale. Invariance was tested across these groups (Comparison 1), and North European Australian (n = 623) and Malay Malaysian (n = 571, Comparison 2) groups. Results indicate support for form and item factor loading invariance; more than half the total number of symptoms showed item intercept invariance, and 14 symptoms showed invariance for error variances. There was invariance for both the factor variances and the covariance, and the latent mean scores for hyperactivity/impulsivity. For inattention latent scores, the Malaysian (Comparison 1) and Malay Malaysian (Comparison 2) groups had higher scores. These results indicate fairly good support for invariance for parent ratings of the ADHD symptoms across the groups compared.
A formal and data-based comparison of measures of motor-equivalent covariation.
Verrel, Julius
2011-09-15
Different analysis methods have been developed for assessing motor-equivalent organization of movement variability. In the uncontrolled manifold (UCM) method, the structure of variability is analyzed by comparing goal-equivalent and non-goal-equivalent variability components at the level of elemental variables (e.g., joint angles). In contrast, in the covariation by randomization (CR) approach, motor-equivalent organization is assessed by comparing variability at the task level between empirical and decorrelated surrogate data. UCM effects can be due to both covariation among elemental variables and selective channeling of variability to elemental variables with low task sensitivity ("individual variation"), suggesting a link between the UCM and CR method. However, the precise relationship between the notion of covariation in the two approaches has not been analyzed in detail yet. Analysis of empirical and simulated data from a study on manual pointing shows that in general the two approaches are not equivalent, but the respective covariation measures are highly correlated (ρ > 0.7) for two proposed definitions of covariation in the UCM context. For one-dimensional task spaces, a formal comparison is possible and in fact the two notions of covariation are equivalent. In situations in which individual variation does not contribute to UCM effects, for which necessary and sufficient conditions are derived, this entails the equivalence of the UCM and CR analysis. Implications for the interpretation of UCM effects are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Givens, Geof H; Ozaksoy, Isin
2007-01-01
We describe a general model for pairwise microsatellite allele matching probabilities. The model can be used for analysis of population substructure, and is particularly focused on relating genetic correlation to measurable covariates. The approach is intended for cases when the existence of subpopulations is uncertain and a priori assignment of samples to hypothesized subpopulations is difficult. Such a situation arises, for example, with western Arctic bowhead whales, where genetic samples are available only from a possibly mixed migratory assemblage. We estimate genetic structure associated with spatial, temporal, or other variables that may confound the detection of population structure. In the bowhead case, the model permits detection of genetic patterns associated with a temporally pulsed multi-population assemblage in the annual migration. Hypothesis tests for population substructure and for covariate effects can be carried out using permutation methods. Simulated and real examples illustrate the effectiveness and reliability of the approach and enable comparisons with other familiar approaches. Analysis of the bowhead data finds no evidence for two temporally pulsed subpopulations using the best available data, although a significant pattern found by other researchers using preliminary data is also confirmed here. Code in the R language is available from www.stat.colostate.edu/~geof/gammmp.html.
Generalized Least Squares Estimators in the Analysis of Covariance Structures.
ERIC Educational Resources Information Center
Browne, Michael W.
This paper concerns situations in which a p x p covariance matrix is a function of an unknown q x 1 parameter vector y-sub-o. Notation is defined in the second section, and some algebraic results used in subsequent sections are given. Section 3 deals with asymptotic properties of generalized least squares (G.L.S.) estimators of y-sub-o. Section 4…
Using Structural Equation Models with Latent Variables to Study Student Growth and Development.
ERIC Educational Resources Information Center
Pike, Gary R.
1991-01-01
Analysis of data on freshman-to-senior developmental gains in 722 University of Tennessee-Knoxville students provides evidence of the advantages of structural equation modeling with latent variables and suggests that the group differences identified by traditional analysis of variance and covariance techniques may be an artifact of measurement…
Improvement of structural models using covariance analysis and nonlinear generalized least squares
NASA Technical Reports Server (NTRS)
Glaser, R. J.; Kuo, C. P.; Wada, B. K.
1992-01-01
The next generation of large, flexible space structures will be too light to support their own weight, requiring a system of structural supports for ground testing. The authors have proposed multiple boundary-condition testing (MBCT), using more than one support condition to reduce uncertainties associated with the supports. MBCT would revise the mass and stiffness matrix, analytically qualifying the structure for operation in space. The same procedure is applicable to other common test conditions, such as empty/loaded tanks and subsystem/system level tests. This paper examines three techniques for constructing the covariance matrix required by nonlinear generalized least squares (NGLS) to update structural models based on modal test data. The methods range from a complicated approach used to generate the simulation data (i.e., the correct answer) to a diagonal matrix based on only two constants. The results show that NGLS is very insensitive to assumptions about the covariance matrix, suggesting that a workable NGLS procedure is possible. The examples also indicate that the multiple boundary condition procedure more accurately reduces errors than individual boundary condition tests alone.
Ortiz, Andrés; Munilla, Jorge; Álvarez-Illán, Ignacio; Górriz, Juan M; Ramírez, Javier
2015-01-01
Alzheimer's Disease (AD) is the most common neurodegenerative disease in elderly people. Its development has been shown to be closely related to changes in the brain connectivity network and in the brain activation patterns along with structural changes caused by the neurodegenerative process. Methods to infer dependence between brain regions are usually derived from the analysis of covariance between activation levels in the different areas. However, these covariance-based methods are not able to estimate conditional independence between variables to factor out the influence of other regions. Conversely, models based on the inverse covariance, or precision matrix, such as Sparse Gaussian Graphical Models allow revealing conditional independence between regions by estimating the covariance between two variables given the rest as constant. This paper uses Sparse Inverse Covariance Estimation (SICE) methods to learn undirected graphs in order to derive functional and structural connectivity patterns from Fludeoxyglucose (18F-FDG) Position Emission Tomography (PET) data and segmented Magnetic Resonance images (MRI), drawn from the ADNI database, for Control, MCI (Mild Cognitive Impairment Subjects), and AD subjects. Sparse computation fits perfectly here as brain regions usually only interact with a few other areas. The models clearly show different metabolic covariation patters between subject groups, revealing the loss of strong connections in AD and MCI subjects when compared to Controls. Similarly, the variance between GM (Gray Matter) densities of different regions reveals different structural covariation patterns between the different groups. Thus, the different connectivity patterns for controls and AD are used in this paper to select regions of interest in PET and GM images with discriminative power for early AD diagnosis. Finally, functional an structural models are combined to leverage the classification accuracy. The results obtained in this work show the usefulness of the Sparse Gaussian Graphical models to reveal functional and structural connectivity patterns. This information provided by the sparse inverse covariance matrices is not only used in an exploratory way but we also propose a method to use it in a discriminative way. Regression coefficients are used to compute reconstruction errors for the different classes that are then introduced in a SVM for classification. Classification experiments performed using 68 Controls, 70 AD, and 111 MCI images and assessed by cross-validation show the effectiveness of the proposed method.
Corrected goodness-of-fit test in covariance structure analysis.
Hayakawa, Kazuhiko
2018-05-17
Many previous studies report simulation evidence that the goodness-of-fit test in covariance structure analysis or structural equation modeling suffers from the overrejection problem when the number of manifest variables is large compared with the sample size. In this study, we demonstrate that one of the tests considered in Browne (1974) can address this long-standing problem. We also propose a simple modification of Satorra and Bentler's mean and variance adjusted test for non-normal data. A Monte Carlo simulation is carried out to investigate the performance of the corrected tests in the context of a confirmatory factor model, a panel autoregressive model, and a cross-lagged panel (panel vector autoregressive) model. The simulation results reveal that the corrected tests overcome the overrejection problem and outperform existing tests in most cases. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Hoyle, R H
1991-02-01
Indirect measures of psychological constructs are vital to clinical research. On occasion, however, the meaning of indirect measures of psychological constructs is obfuscated by statistical procedures that do not account for the complex relations between items and latent variables and among latent variables. Covariance structure analysis (CSA) is a statistical procedure for testing hypotheses about the relations among items that indirectly measure a psychological construct and relations among psychological constructs. This article introduces clinical researchers to the strengths and limitations of CSA as a statistical procedure for conceiving and testing structural hypotheses that are not tested adequately with other statistical procedures. The article is organized around two empirical examples that illustrate the use of CSA for evaluating measurement models with correlated error terms, higher-order factors, and measured and latent variables.
Covariance Matrix Estimation for the Cryo-EM Heterogeneity Problem*
Katsevich, E.; Katsevich, A.; Singer, A.
2015-01-01
In cryo-electron microscopy (cryo-EM), a microscope generates a top view of a sample of randomly oriented copies of a molecule. The problem of single particle reconstruction (SPR) from cryo-EM is to use the resulting set of noisy two-dimensional projection images taken at unknown directions to reconstruct the three-dimensional (3D) structure of the molecule. In some situations, the molecule under examination exhibits structural variability, which poses a fundamental challenge in SPR. The heterogeneity problem is the task of mapping the space of conformational states of a molecule. It has been previously suggested that the leading eigenvectors of the covariance matrix of the 3D molecules can be used to solve the heterogeneity problem. Estimating the covariance matrix is challenging, since only projections of the molecules are observed, but not the molecules themselves. In this paper, we formulate a general problem of covariance estimation from noisy projections of samples. This problem has intimate connections with matrix completion problems and high-dimensional principal component analysis. We propose an estimator and prove its consistency. When there are finitely many heterogeneity classes, the spectrum of the estimated covariance matrix reveals the number of classes. The estimator can be found as the solution to a certain linear system. In the cryo-EM case, the linear operator to be inverted, which we term the projection covariance transform, is an important object in covariance estimation for tomographic problems involving structural variation. Inverting it involves applying a filter akin to the ramp filter in tomography. We design a basis in which this linear operator is sparse and thus can be tractably inverted despite its large size. We demonstrate via numerical experiments on synthetic datasets the robustness of our algorithm to high levels of noise. PMID:25699132
Meta-Analysis of Effect Sizes Reported at Multiple Time Points Using General Linear Mixed Model.
Musekiwa, Alfred; Manda, Samuel O M; Mwambi, Henry G; Chen, Ding-Geng
2016-01-01
Meta-analysis of longitudinal studies combines effect sizes measured at pre-determined time points. The most common approach involves performing separate univariate meta-analyses at individual time points. This simplistic approach ignores dependence between longitudinal effect sizes, which might result in less precise parameter estimates. In this paper, we show how to conduct a meta-analysis of longitudinal effect sizes where we contrast different covariance structures for dependence between effect sizes, both within and between studies. We propose new combinations of covariance structures for the dependence between effect size and utilize a practical example involving meta-analysis of 17 trials comparing postoperative treatments for a type of cancer, where survival is measured at 6, 12, 18 and 24 months post randomization. Although the results from this particular data set show the benefit of accounting for within-study serial correlation between effect sizes, simulations are required to confirm these results.
The Structure of Personality Disorders in Individuals with Posttraumatic Stress Disorder
Wolf, Erika J.; Miller, Mark W.; Brown, Timothy A.
2015-01-01
Research on the structure of personality disorders (PDs) has relied primarily on exploratory analyses to evaluate trait-based models of the factors underlying the covariation of these disorders. This study used confirmatory factor analysis to evaluate whether a model that included both PD traits and a general personality dysfunction factor would account for the comorbidity of the PDs better than a trait-only model. It also examined if the internalizing/externalizing model of psychopathology, developed previously through research on the structure of Axis I disorders, might similarly account for the covariation of the Axis II disorders in a sample of 245 veterans and non-veterans with posttraumatic stress disorder. Results indicated that the best fitting model was a modified bifactor structure composed of nine lower-order common factors. These factors indexed pathology ranging from aggression to dependency, with the correlations among them accounted for by higher-order Internalizing and Externalizing factors. Further, a general factor, reflecting a construct that we termed boundary disturbance, accounted for additional variance and covariance across nearly all the indicators. The Internalizing, Externalizing, and Boundary Disturbance factors evidenced differential associations with trauma-related covariates. These findings suggest continuity in the underlying structure of psychopathology across DSM-IV Axes I & II and provide empirical evidence of a pervasive, core disturbance in the boundary between self and other across the PDs. PMID:22448802
Ximénez, Carmen
2016-01-01
This article extends previous research on the recovery of weak factor loadings in confirmatory factor analysis (CFA) by exploring the effects of adding the mean structure. This issue has not been examined in previous research. This study is based on the framework of Yung and Bentler (1999) and aims to examine the conditions that affect the recovery of weak factor loadings when the model includes the mean structure, compared to analyzing the covariance structure alone. A simulation study was conducted in which several constraints were defined for one-, two-, and three-factor models. Results show that adding the mean structure improves the recovery of weak factor loadings and reduces the asymptotic variances for the factor loadings, particularly for the models with a smaller number of factors and a small sample size. Therefore, under certain circumstances, modeling the means should be seriously considered for covariance models containing weak factor loadings. PMID:26779071
Schep, Daniel G.; Rubinstein, John L.
2016-01-01
Rotary ATPases couple ATP synthesis or hydrolysis to proton translocation across a membrane. However, understanding proton translocation has been hampered by a lack of structural information for the membrane-embedded a subunit. The V/A-ATPase from the eubacterium Thermus thermophilus is similar in structure to the eukaryotic V-ATPase but has a simpler subunit composition and functions in vivo to synthesize ATP rather than pump protons. We determined the T. thermophilus V/A-ATPase structure by cryo-EM at 6.4 Å resolution. Evolutionary covariance analysis allowed tracing of the a subunit sequence within the map, providing a complete model of the rotary ATPase. Comparing the membrane-embedded regions of the T. thermophilus V/A-ATPase and eukaryotic V-ATPase from Saccharomyces cerevisiae allowed identification of the α-helices that belong to the a subunit and revealed the existence of previously unknown subunits in the eukaryotic enzyme. Subsequent evolutionary covariance analysis enabled construction of a model of the a subunit in the S. cerevisae V-ATPase that explains numerous biochemical studies of that enzyme. Comparing the two a subunit structures determined here with a structure of the distantly related a subunit from the bovine F-type ATP synthase revealed a conserved pattern of residues, suggesting a common mechanism for proton transport in all rotary ATPases. PMID:26951669
ERIC Educational Resources Information Center
Mandys, Frantisek; Dolan, Conor V.; Molenaar, Peter C. M.
1994-01-01
Studied the conditions under which the quasi-Markov simplex model fits a linear growth curve covariance structure and determined when the model is rejected. Presents a quasi-Markov simplex model with structured means and gives an example. (SLD)
The Specific Analysis of Structural Equation Models
ERIC Educational Resources Information Center
McDonald, Roderick P.
2004-01-01
Conventional structural equation modeling fits a covariance structure implied by the equations of the model. This treatment of the model often gives misleading results because overall goodness of fit tests do not focus on the specific constraints implied by the model. An alternative treatment arising from Pearl's directed acyclic graph theory…
A Note on the Factor Analysis of Partial Covariance Matrices
ERIC Educational Resources Information Center
McDonald, Roderick P.
1978-01-01
The relationship between the factor structure of a convariance matrix and the factor structure of a partial convariance matrix when one or more variables are partialled out of the original matrix is given in this brief note. (JKS)
Structural Equation Model Trees
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2015-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. PMID:22984789
Multivariate Analysis of Longitudinal Rates of Change
Bryan, Matthew; Heagerty, Patrick J.
2016-01-01
Longitudinal data allow direct comparison of the change in patient outcomes associated with treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a common underlying health status, or characterize processes that are influenced in a similar way by covariates such as exposure or demographic characteristics. Statistical methods that can combine multivariate response variables into common measures of covariate effects have been proposed by Roy and Lin [1]; Proust-Lima, Letenneur and Jacqmin-Gadda [2]; and Gray and Brookmeyer [3] among others. Current methods for characterizing the relationship between covariates and the rate of change in multivariate outcomes are limited to select models. For example, Gray and Brookmeyer [3] introduce an “accelerated time” method which assumes that covariates rescale time in longitudinal models for disease progression. In this manuscript we detail an alternative multivariate model formulation that directly structures longitudinal rates of change, and that permits a common covariate effect across multiple outcomes. We detail maximum likelihood estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the potential gain in power that may be achieved with a common analysis of multiple outcomes. We apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare rates of change for HIV infected and uninfected infants. PMID:27417129
Finding Imaging Patterns of Structural Covariance via Non-Negative Matrix Factorization
Sotiras, Aristeidis; Resnick, Susan M.; Davatzikos, Christos
2015-01-01
In this paper, we investigate the use of Non-Negative Matrix Factorization (NNMF) for the analysis of structural neuroimaging data. The goal is to identify the brain regions that co-vary across individuals in a consistent way, hence potentially being part of underlying brain networks or otherwise influenced by underlying common mechanisms such as genetics and pathologies. NNMF offers a directly data-driven way of extracting relatively localized co-varying structural regions, thereby transcending limitations of Principal Component Analysis (PCA), Independent Component Analysis (ICA) and other related methods that tend to produce dispersed components of positive and negative loadings. In particular, leveraging upon the well known ability of NNMF to produce parts-based representations of image data, we derive decompositions that partition the brain into regions that vary in consistent ways across individuals. Importantly, these decompositions achieve dimensionality reduction via highly interpretable ways and generalize well to new data as shown via split-sample experiments. We empirically validate NNMF in two data sets: i) a Diffusion Tensor (DT) mouse brain development study, and ii) a structural Magnetic Resonance (sMR) study of human brain aging. We demonstrate the ability of NNMF to produce sparse parts-based representations of the data at various resolutions. These representations seem to follow what we know about the underlying functional organization of the brain and also capture some pathological processes. Moreover, we show that these low dimensional representations favorably compare to descriptions obtained with more commonly used matrix factorization methods like PCA and ICA. PMID:25497684
Ding, Aidong Adam; Hsieh, Jin-Jian; Wang, Weijing
2015-01-01
Bivariate survival analysis has wide applications. In the presence of covariates, most literature focuses on studying their effects on the marginal distributions. However covariates can also affect the association between the two variables. In this article we consider the latter issue by proposing a nonstandard local linear estimator for the concordance probability as a function of covariates. Under the Clayton copula, the conditional concordance probability has a simple one-to-one correspondence with the copula parameter for different data structures including those subject to independent or dependent censoring and dependent truncation. The proposed method can be used to study how covariates affect the Clayton association parameter without specifying marginal regression models. Asymptotic properties of the proposed estimators are derived and their finite-sample performances are examined via simulations. Finally, for illustration, we apply the proposed method to analyze a bone marrow transplant data set.
NASA Technical Reports Server (NTRS)
Menga, G.
1975-01-01
An approach, is proposed for the design of approximate, fixed order, discrete time realizations of stochastic processes from the output covariance over a finite time interval, was proposed. No restrictive assumptions are imposed on the process; it can be nonstationary and lead to a high dimension realization. Classes of fixed order models are defined, having the joint covariance matrix of the combined vector of the outputs in the interval of definition greater or equal than the process covariance; (the difference matrix is nonnegative definite). The design is achieved by minimizing, in one of those classes, a measure of the approximation between the model and the process evaluated by the trace of the difference of the respective covariance matrices. Models belonging to these classes have the notable property that, under the same measurement system and estimator structure, the output estimation error covariance matrix computed on the model is an upper bound of the corresponding covariance on the real process. An application of the approach is illustrated by the modeling of random meteorological wind profiles from the statistical analysis of historical data.
MODELING SNAKE MICROHABITAT FROM RADIOTELEMETRY STUDIES USING POLYTOMOUS LOGISTIC REGRESSION
Multivariate analysis of snake microhabitat has historically used techniques that were derived under assumptions of normality and common covariance structure (e.g., discriminant function analysis, MANOVA). In this study, polytomous logistic regression (PLR which does not require ...
Fitting direct covariance structures by the MSTRUCT modeling language of the CALIS procedure.
Yung, Yiu-Fai; Browne, Michael W; Zhang, Wei
2015-02-01
This paper demonstrates the usefulness and flexibility of the general structural equation modelling (SEM) approach to fitting direct covariance patterns or structures (as opposed to fitting implied covariance structures from functional relationships among variables). In particular, the MSTRUCT modelling language (or syntax) of the CALIS procedure (SAS/STAT version 9.22 or later: SAS Institute, 2010) is used to illustrate the SEM approach. The MSTRUCT modelling language supports a direct covariance pattern specification of each covariance element. It also supports the input of additional independent and dependent parameters. Model tests, fit statistics, estimates, and their standard errors are then produced under the general SEM framework. By using numerical and computational examples, the following tests of basic covariance patterns are illustrated: sphericity, compound symmetry, and multiple-group covariance patterns. Specification and testing of two complex correlation structures, the circumplex pattern and the composite direct product models with or without composite errors and scales, are also illustrated by the MSTRUCT syntax. It is concluded that the SEM approach offers a general and flexible modelling of direct covariance and correlation patterns. In conjunction with the use of SAS macros, the MSTRUCT syntax provides an easy-to-use interface for specifying and fitting complex covariance and correlation structures, even when the number of variables or parameters becomes large. © 2014 The British Psychological Society.
Huang, Chi-Wei; Hsu, Shih-Wei; Tsai, Shih-Jen; Chen, Nai-Ching; Liu, Mu-En; Lee, Chen-Chang; Huang, Shu-Hua; Chang, Weng-Neng; Chang, Ya-Ting; Tsai, Wan-Chen; Chang, Chiung-Chih
2017-01-18
Inflammatory processes play a pivotal role in the degenerative process of Alzheimer's disease. In humans, a biallelic (C/T) polymorphism in the promoter region (position-511) (rs16944) of the interleukin-1 beta gene has been significantly associated with differences in the secretory capacity of interleukin-1 beta. In this study, we investigated whether this functional polymorphism mediates the brain networks in patients with Alzheimer's disease. We enrolled a total of 135 patients with Alzheimer's disease (65 males, 70 females), and investigated their gray matter structural covariance networks using 3D T1 magnetic resonance imaging and their white matter macro-structural integrities using fractional anisotropy. The patients were classified into two genotype groups: C-carriers (n = 108) and TT-carriers (n = 27), and the structural covariance networks were constructed using seed-based analysis focusing on the default mode network medial temporal or dorsal medial subsystem, salience network and executive control network. Neurobehavioral scores were used as the major outcome factors for clinical correlations. There were no differences between the two genotype groups in the cognitive test scores, seed, or peak cluster volumes and white matter fractional anisotropy. The covariance strength showing C-carriers > TT-carriers was the entorhinal-cingulum axis. There were two peak clusters (Brodmann 6 and 10) in the salience network and four peak clusters (superior prefrontal, precentral, fusiform, and temporal) in the executive control network that showed C-carriers < TT-carriers in covariance strength. The salience network and executive control network peak clusters in the TT group and the default mode network peak clusters in the C-carriers strongly predicted the cognitive test scores. Interleukin-1 beta C-511 T polymorphism modulates the structural covariance strength on the anterior brain network and entorhinal-interconnected network which were independent of the white matter tract integrity. Depending on the specific C-511 T genotype, different network clusters could predict the cognitive tests.
Marroig, G; Cheverud, J M
2001-12-01
Similarity of genetic and phenotypic variation patterns among populations is important for making quantitative inferences about past evolutionary forces acting to differentiate populations and for evaluating the evolution of relationships among traits in response to new functional and developmental relationships. Here, phenotypic co variance and correlation structure is compared among Platyrrhine Neotropical primates. Comparisons range from among species within a genus to the superfamily level. Matrix correlation followed by Mantel's test and vector correlation among responses to random natural selection vectors (random skewers) were used to compare correlation and variance/covariance matrices of 39 skull traits. Sampling errors involved in matrix estimates were taken into account in comparisons using matrix repeatability to set upper limits for each pairwise comparison. Results indicate that covariance structure is not strictly constant but that the amount of variance pattern divergence observed among taxa is generally low and not associated with taxonomic distance. Specific instances of divergence are identified. There is no correlation between the amount of divergence in covariance patterns among the 16 genera and their phylogenetic distance derived from a conjoint analysis of four already published nuclear gene datasets. In contrast, there is a significant correlation between phylogenetic distance and morphological distance (Mahalanobis distance among genus centroids). This result indicates that while the phenotypic means were evolving during the last 30 millions years of New World monkey evolution, phenotypic covariance structures of Neotropical primate skulls have remained relatively consistent. Neotropical primates can be divided into four major groups based on their feeding habits (fruit-leaves, seed-fruits, insect-fruits, and gum-insect-fruits). Differences in phenotypic covariance structure are correlated with differences in feeding habits, indicating that to some extent changes in interrelationships among skull traits are associated with changes in feeding habits. Finally, common patterns and levels of morphological integration are found among Platyrrhine primates, suggesting that functional/developmental integration could be one major factor keeping covariance structure relatively stable during evolutionary diversification of South American monkeys.
The Infinitesimal Jackknife with Exploratory Factor Analysis
ERIC Educational Resources Information Center
Zhang, Guangjian; Preacher, Kristopher J.; Jennrich, Robert I.
2012-01-01
The infinitesimal jackknife, a nonparametric method for estimating standard errors, has been used to obtain standard error estimates in covariance structure analysis. In this article, we adapt it for obtaining standard errors for rotated factor loadings and factor correlations in exploratory factor analysis with sample correlation matrices. Both…
Altered Integration of Structural Covariance Networks in Young Children With Type 1 Diabetes.
Hosseini, S M Hadi; Mazaika, Paul; Mauras, Nelly; Buckingham, Bruce; Weinzimer, Stuart A; Tsalikian, Eva; White, Neil H; Reiss, Allan L
2016-11-01
Type 1 diabetes mellitus (T1D), one of the most frequent chronic diseases in children, is associated with glucose dysregulation that contributes to an increased risk for neurocognitive deficits. While there is a bulk of evidence regarding neurocognitive deficits in adults with T1D, little is known about how early-onset T1D affects neural networks in young children. Recent data demonstrated widespread alterations in regional gray matter and white matter associated with T1D in young children. These widespread neuroanatomical changes might impact the organization of large-scale brain networks. In the present study, we applied graph-theoretical analysis to test whether the organization of structural covariance networks in the brain for a cohort of young children with T1D (N = 141) is altered compared to healthy controls (HC; N = 69). While the networks in both groups followed a small world organization-an architecture that is simultaneously highly segregated and integrated-the T1D network showed significantly longer path length compared with HC, suggesting reduced global integration of brain networks in young children with T1D. In addition, network robustness analysis revealed that the T1D network model showed more vulnerability to neural insult compared with HC. These results suggest that early-onset T1D negatively impacts the global organization of structural covariance networks and influences the trajectory of brain development in childhood. This is the first study to examine structural covariance networks in young children with T1D. Improving glycemic control for young children with T1D might help prevent alterations in brain networks in this population. Hum Brain Mapp 37:4034-4046, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Xu, Weijia; Ozer, Stuart; Gutell, Robin R
2009-01-01
With an increasingly large amount of sequences properly aligned, comparative sequence analysis can accurately identify not only common structures formed by standard base pairing but also new types of structural elements and constraints. However, traditional methods are too computationally expensive to perform well on large scale alignment and less effective with the sequences from diversified phylogenetic classifications. We propose a new approach that utilizes coevolutional rates among pairs of nucleotide positions using phylogenetic and evolutionary relationships of the organisms of aligned sequences. With a novel data schema to manage relevant information within a relational database, our method, implemented with a Microsoft SQL Server 2005, showed 90% sensitivity in identifying base pair interactions among 16S ribosomal RNA sequences from Bacteria, at a scale 40 times bigger and 50% better sensitivity than a previous study. The results also indicated covariation signals for a few sets of cross-strand base stacking pairs in secondary structure helices, and other subtle constraints in the RNA structure.
Xu, Weijia; Ozer, Stuart; Gutell, Robin R.
2010-01-01
With an increasingly large amount of sequences properly aligned, comparative sequence analysis can accurately identify not only common structures formed by standard base pairing but also new types of structural elements and constraints. However, traditional methods are too computationally expensive to perform well on large scale alignment and less effective with the sequences from diversified phylogenetic classifications. We propose a new approach that utilizes coevolutional rates among pairs of nucleotide positions using phylogenetic and evolutionary relationships of the organisms of aligned sequences. With a novel data schema to manage relevant information within a relational database, our method, implemented with a Microsoft SQL Server 2005, showed 90% sensitivity in identifying base pair interactions among 16S ribosomal RNA sequences from Bacteria, at a scale 40 times bigger and 50% better sensitivity than a previous study. The results also indicated covariation signals for a few sets of cross-strand base stacking pairs in secondary structure helices, and other subtle constraints in the RNA structure. PMID:20502534
Structural covariance networks across healthy young adults and their consistency.
Guo, Xiaojuan; Wang, Yan; Guo, Taomei; Chen, Kewei; Zhang, Jiacai; Li, Ke; Jin, Zhen; Yao, Li
2015-08-01
To investigate structural covariance networks (SCNs) as measured by regional gray matter volumes with structural magnetic resonance imaging (MRI) from healthy young adults, and to examine their consistency and stability. Two independent cohorts were included in this study: Group 1 (82 healthy subjects aged 18-28 years) and Group 2 (109 healthy subjects aged 20-28 years). Structural MRI data were acquired at 3.0T and 1.5T using a magnetization prepared rapid-acquisition gradient echo sequence for these two groups, respectively. We applied independent component analysis (ICA) to construct SCNs and further applied the spatial overlap ratio and correlation coefficient to evaluate the spatial consistency of the SCNs between these two datasets. Seven and six independent components were identified for Group 1 and Group 2, respectively. Moreover, six SCNs including the posterior default mode network, the visual and auditory networks consistently existed across the two datasets. The overlap ratios and correlation coefficients of the visual network reached the maximums of 72% and 0.71. This study demonstrates the existence of consistent SCNs corresponding to general functional networks. These structural covariance findings may provide insight into the underlying organizational principles of brain anatomy. © 2014 Wiley Periodicals, Inc.
Wright, Aidan G. C.; Beltz, Adriene M.; Gates, Kathleen M.; Molenaar, Peter C. M.; Simms, Leonard J.
2015-01-01
Psychiatric diagnostic covariation suggests that the underlying structure of psychopathology is not one of circumscribed disorders. Quantitative modeling of individual differences in diagnostic patterns has uncovered several broad domains of mental disorder liability, of which the Internalizing and Externalizing spectra have garnered the greatest support. These dimensions have generally been estimated from lifetime or past-year comorbidity patters, which are distal from the covariation of symptoms and maladaptive behavior that ebb and flow in daily life. In this study, structural models are applied to daily diary data (Median = 94 days) of maladaptive behaviors collected from a sample (N = 101) of individuals diagnosed with personality disorders (PDs). Using multilevel and unified structural equation modeling, between-person, within-person, and person-specific structures were estimated from 16 behaviors that are encompassed by the Internalizing and Externalizing spectra. At the between-person level (i.e., individual differences in average endorsement across days) we found support for a two-factor Internalizing–Externalizing model, which exhibits significant associations with corresponding diagnostic spectra. At the within-person level (i.e., dynamic covariation among daily behavior pooled across individuals) we found support for a more differentiated, four-factor, Negative Affect-Detachment-Hostility-Disinhibition structure. Finally, we demonstrate that the person-specific structures of associations between these four domains are highly idiosyncratic. PMID:26732546
Multiple-Group Analysis Using the sem Package in the R System
ERIC Educational Resources Information Center
Evermann, Joerg
2010-01-01
Multiple-group analysis in covariance-based structural equation modeling (SEM) is an important technique to ensure the invariance of latent construct measurements and the validity of theoretical models across different subpopulations. However, not all SEM software packages provide multiple-group analysis capabilities. The sem package for the R…
Chang, Chiung-Chih; Tsai, Shih-Jen; Chen, Nai-Ching; Huang, Chi-Wei; Hsu, Shih-Wei; Chang, Ya-Ting; Liu, Mu-En; Chang, Wen-Neng; Tsai, Wan-Chen; Lee, Chen-Chang
2018-06-01
The catechol-O-methyltransferase enzyme metabolizes dopamine in the prefrontal axis, and its genetic polymorphism (rs4680; Val158Met) is a known determinant of dopamine signaling. In this study, we investigated the possible structural covariance networks that may be modulated by this functional polymorphism in patients with Alzheimer's disease. Structural covariance networks were constructed by 3D T1 magnetic resonance imaging. The patients were divided into two groups: Met-carriers (n = 91) and Val-homozygotes (n = 101). Seed-based analysis was performed focusing on triple-network models and six striatal networks. Neurobehavioral scores served as the major outcome factors. The role of seed or peak cluster volumes, or a covariance strength showing Met-carriers > Val-homozygotes were tested for the effect on dopamine. Clinically, the Met-carriers had higher mental manipulation and hallucination scores than the Val-homozygotes. The volume-score correlations suggested the significance of the putaminal seed in the Met-carriers and caudate seed in the Val-homozygotes. Only the dorsal-rostral and dorsal-caudal putamen interconnected peak clusters showed covariance strength interactions (Met-carriers > Val-homozygotes), and the peak clusters also correlated with the neurobehavioral scores. Although the triple-network model is important for a diagnosis of Alzheimer's disease, our results validated the role of the dorsal-putaminal-anchored network by the catechol-O-methyltransferase Val158Met polymorphism in predicting the severity of cognitive and behavior in subjects with Alzheimer's disease.
PACM: A Two-Stage Procedure for Analyzing Structural Models.
ERIC Educational Resources Information Center
Lehmann, Donald R.; Gupta, Sunil
1989-01-01
Path Analysis of Covariance Matrix (PACM) is described as a way to separately estimate measurement and structural models using standard least squares procedures. PACM was empirically compared to simultaneous maximum likelihood estimation and use of the LISREL computer program, and its advantages are identified. (SLD)
Finding imaging patterns of structural covariance via Non-Negative Matrix Factorization.
Sotiras, Aristeidis; Resnick, Susan M; Davatzikos, Christos
2015-03-01
In this paper, we investigate the use of Non-Negative Matrix Factorization (NNMF) for the analysis of structural neuroimaging data. The goal is to identify the brain regions that co-vary across individuals in a consistent way, hence potentially being part of underlying brain networks or otherwise influenced by underlying common mechanisms such as genetics and pathologies. NNMF offers a directly data-driven way of extracting relatively localized co-varying structural regions, thereby transcending limitations of Principal Component Analysis (PCA), Independent Component Analysis (ICA) and other related methods that tend to produce dispersed components of positive and negative loadings. In particular, leveraging upon the well known ability of NNMF to produce parts-based representations of image data, we derive decompositions that partition the brain into regions that vary in consistent ways across individuals. Importantly, these decompositions achieve dimensionality reduction via highly interpretable ways and generalize well to new data as shown via split-sample experiments. We empirically validate NNMF in two data sets: i) a Diffusion Tensor (DT) mouse brain development study, and ii) a structural Magnetic Resonance (sMR) study of human brain aging. We demonstrate the ability of NNMF to produce sparse parts-based representations of the data at various resolutions. These representations seem to follow what we know about the underlying functional organization of the brain and also capture some pathological processes. Moreover, we show that these low dimensional representations favorably compare to descriptions obtained with more commonly used matrix factorization methods like PCA and ICA. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Baoyue; Bruyneel, Luk; Lesaffre, Emmanuel
2014-05-20
A traditional Gaussian hierarchical model assumes a nested multilevel structure for the mean and a constant variance at each level. We propose a Bayesian multivariate multilevel factor model that assumes a multilevel structure for both the mean and the covariance matrix. That is, in addition to a multilevel structure for the mean we also assume that the covariance matrix depends on covariates and random effects. This allows to explore whether the covariance structure depends on the values of the higher levels and as such models heterogeneity in the variances and correlation structure of the multivariate outcome across the higher level values. The approach is applied to the three-dimensional vector of burnout measurements collected on nurses in a large European study to answer the research question whether the covariance matrix of the outcomes depends on recorded system-level features in the organization of nursing care, but also on not-recorded factors that vary with countries, hospitals, and nursing units. Simulations illustrate the performance of our modeling approach. Copyright © 2013 John Wiley & Sons, Ltd.
Maximum Likelihood Analysis of a Two-Level Nonlinear Structural Equation Model with Fixed Covariates
ERIC Educational Resources Information Center
Lee, Sik-Yum; Song, Xin-Yuan
2005-01-01
In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…
[Stress and attitudes toward negative emotions in adolescence].
Ozawa, Eiji
2010-12-01
This study investigated the relationship between stress and attitudes toward negative emotions in adolescents. Adolescent students (N=1500) completed a questionnaire that measured attitudes toward negative emotions, emotional-stress reactions, and stress coping. Analysis of date yielded, two factors of the attitudes toward negative emotions: "Negative feelings about negative emotions" and "Capabilities of switching of negative emotions". In order to examine the theoretical relationships among attitudes toward negative emotions, emotional-stress reactions, and stress coping, a hypothetical model was tested by covariance structure analysis. This model predicted that students who have a high level of attitudes toward negative emotions would report enhanced problem solving which promoted stress coping. The results indicated that "Negative feelings about negative emotions" enhanced avoidable coping, and avoidable coping enhanced stress reactions. "Capabilities of switching of negative emotions" was related to a decrease of avoidable coping. Based on the results from covariance structure analysis and a multiple population analysis, the clinical significance and developmental characteristics were discussed.
Modeling Human-Computer Decision Making with Covariance Structure Analysis.
ERIC Educational Resources Information Center
Coovert, Michael D.; And Others
Arguing that sufficient theory exists about the interplay between human information processing, computer systems, and the demands of various tasks to construct useful theories of human-computer interaction, this study presents a structural model of human-computer interaction and reports the results of various statistical analyses of this model.…
Dangers in Using Analysis of Covariance Procedures.
ERIC Educational Resources Information Center
Campbell, Kathleen T.
Problems associated with the use of analysis of covariance (ANCOVA) as a statistical control technique are explained. Three problems relate to the use of "OVA" methods (analysis of variance, analysis of covariance, multivariate analysis of variance, and multivariate analysis of covariance) in general. These are: (1) the wasting of information when…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, A.R.; Bartell, S.M.
1988-06-01
The state of an ecosystem at any time t may be characterized by a multidimensional state vector x(t). Changes in state are represented by the trajectory traced out by x(t) over time. The effects of toxicant stress are summarized by the displacement of a perturbed state vector, x/sub p/(t), relative to an appropriate control, x/sub c/(t). Within a multivariate statistical framework, the response of an ecosystem to perturbation is conveniently quantified by the distance separating x/sub p/(t) from x/sub c/(t) as measured by a Mahalanobis metric. Use of the Mahalanobis metric requires that the covariance matrix associated with the controlmore » state vector be estimated. State space displacement analysis was applied to data on the response of aquatic microcosms and outdoor ponds to alkylphenols. Dose-response relationships were derived using calculated state space separations as integrated measures of the ecological effects of toxicant exposure. Inspection of the data also revealed that the covariance structure varied both with time and with toxicant exposure, suggesting that analysis of such changes might be a useful tool for probing control mechanisms underlying ecosystem dynamics. 90 refs., 53 figs., 9 tabs.« less
Communication: Three-fold covariance imaging of laser-induced Coulomb explosions
NASA Astrophysics Data System (ADS)
Pickering, James D.; Amini, Kasra; Brouard, Mark; Burt, Michael; Bush, Ian J.; Christensen, Lauge; Lauer, Alexandra; Nielsen, Jens H.; Slater, Craig S.; Stapelfeldt, Henrik
2016-04-01
We apply a three-fold covariance imaging method to analyse previously acquired data [C. S. Slater et al., Phys. Rev. A 89, 011401(R) (2014)] on the femtosecond laser-induced Coulomb explosion of spatially pre-aligned 3,5-dibromo-3',5'-difluoro-4'-cyanobiphenyl molecules. The data were acquired using the "Pixel Imaging Mass Spectrometry" camera. We show how three-fold covariance imaging of ionic photofragment recoil trajectories can be used to provide new information about the parent ion's molecular structure prior to its Coulomb explosion. In particular, we show how the analysis may be used to obtain information about molecular conformation and provide an alternative route for enantiomer determination.
A Systematic Approach for Identifying Level-1 Error Covariance Structures in Latent Growth Modeling
ERIC Educational Resources Information Center
Ding, Cherng G.; Jane, Ten-Der; Wu, Chiu-Hui; Lin, Hang-Rung; Shen, Chih-Kang
2017-01-01
It has been pointed out in the literature that misspecification of the level-1 error covariance structure in latent growth modeling (LGM) has detrimental impacts on the inferences about growth parameters. Since correct covariance structure is difficult to specify by theory, the identification needs to rely on a specification search, which,…
Li, Xinwei; Li, Qiongling; Wang, Xuetong; Li, Deyu; Li, Shuyu
2018-01-01
The hippocampus plays an important role in memory function relying on information interaction between distributed brain areas. The hippocampus can be divided into the anterior and posterior sections with different structure and function along its long axis. The aim of this study is to investigate the effects of normal aging on the structural covariance of the anterior hippocampus (aHPC) and the posterior hippocampus (pHPC). In this study, 240 healthy subjects aged 18-89 years were selected and subdivided into young (18-23 years), middle-aged (30-58 years), and older (61-89 years) groups. The aHPC and pHPC was divided based on the location of uncal apex in the MNI space. Then, the structural covariance networks were constructed by examining their covariance in gray matter volumes with other brain regions. Finally, the influence of age on the structural covariance of these hippocampal sections was explored. We found that the aHPC and pHPC had different structural covariance patterns, but both of them were associated with the medial temporal lobe and insula. Moreover, both increased and decreased covariances were found with the aHPC but only increased covariance was found with the pHPC with age ( p < 0.05, family-wise error corrected). These decreased connections occurred within the default mode network, while the increased connectivity mainly occurred in other memory systems that differ from the hippocampus. This study reveals different age-related influence on the structural networks of the aHPC and pHPC, providing an essential insight into the mechanisms of the hippocampus in normal aging.
Structural and Maturational Covariance in Early Childhood Brain Development.
Geng, Xiujuan; Li, Gang; Lu, Zhaohua; Gao, Wei; Wang, Li; Shen, Dinggang; Zhu, Hongtu; Gilmore, John H
2017-03-01
Brain structural covariance networks (SCNs) composed of regions with correlated variation are altered in neuropsychiatric disease and change with age. Little is known about the development of SCNs in early childhood, a period of rapid cortical growth. We investigated the development of structural and maturational covariance networks, including default, dorsal attention, primary visual and sensorimotor networks in a longitudinal population of 118 children after birth to 2 years old and compared them with intrinsic functional connectivity networks. We found that structural covariance of all networks exhibit strong correlations mostly limited to their seed regions. By Age 2, default and dorsal attention structural networks are much less distributed compared with their functional maps. The maturational covariance maps, however, revealed significant couplings in rates of change between distributed regions, which partially recapitulate their functional networks. The structural and maturational covariance of the primary visual and sensorimotor networks shows similar patterns to the corresponding functional networks. Results indicate that functional networks are in place prior to structural networks, that correlated structural patterns in adult may arise in part from coordinated cortical maturation, and that regional co-activation in functional networks may guide and refine the maturation of SCNs over childhood development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A maximum pseudo-profile likelihood estimator for the Cox model under length-biased sampling
Huang, Chiung-Yu; Qin, Jing; Follmann, Dean A.
2012-01-01
This paper considers semiparametric estimation of the Cox proportional hazards model for right-censored and length-biased data arising from prevalent sampling. To exploit the special structure of length-biased sampling, we propose a maximum pseudo-profile likelihood estimator, which can handle time-dependent covariates and is consistent under covariate-dependent censoring. Simulation studies show that the proposed estimator is more efficient than its competitors. A data analysis illustrates the methods and theory. PMID:23843659
Westgate, Philip M
2013-07-20
Generalized estimating equations (GEEs) are routinely used for the marginal analysis of correlated data. The efficiency of GEE depends on how closely the working covariance structure resembles the true structure, and therefore accurate modeling of the working correlation of the data is important. A popular approach is the use of an unstructured working correlation matrix, as it is not as restrictive as simpler structures such as exchangeable and AR-1 and thus can theoretically improve efficiency. However, because of the potential for having to estimate a large number of correlation parameters, variances of regression parameter estimates can be larger than theoretically expected when utilizing the unstructured working correlation matrix. Therefore, standard error estimates can be negatively biased. To account for this additional finite-sample variability, we derive a bias correction that can be applied to typical estimators of the covariance matrix of parameter estimates. Via simulation and in application to a longitudinal study, we show that our proposed correction improves standard error estimation and statistical inference. Copyright © 2012 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Palmieri, Patrick A.; Smith, Gregory C.
2007-01-01
The authors examined the structural validity of the parent informant version of the Strengths and Difficulties Questionnaire (SDQ) with a sample of 733 custodial grandparents. Three models of the SDQ's factor structure were evaluated with confirmatory factor analysis based on the item covariance matrix. Although indices of fit were good across all…
Ziyatdinov, Andrey; Vázquez-Santiago, Miquel; Brunel, Helena; Martinez-Perez, Angel; Aschard, Hugues; Soria, Jose Manuel
2018-02-27
Quantitative trait locus (QTL) mapping in genetic data often involves analysis of correlated observations, which need to be accounted for to avoid false association signals. This is commonly performed by modeling such correlations as random effects in linear mixed models (LMMs). The R package lme4 is a well-established tool that implements major LMM features using sparse matrix methods; however, it is not fully adapted for QTL mapping association and linkage studies. In particular, two LMM features are lacking in the base version of lme4: the definition of random effects by custom covariance matrices; and parameter constraints, which are essential in advanced QTL models. Apart from applications in linkage studies of related individuals, such functionalities are of high interest for association studies in situations where multiple covariance matrices need to be modeled, a scenario not covered by many genome-wide association study (GWAS) software. To address the aforementioned limitations, we developed a new R package lme4qtl as an extension of lme4. First, lme4qtl contributes new models for genetic studies within a single tool integrated with lme4 and its companion packages. Second, lme4qtl offers a flexible framework for scenarios with multiple levels of relatedness and becomes efficient when covariance matrices are sparse. We showed the value of our package using real family-based data in the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT2) project. Our software lme4qtl enables QTL mapping models with a versatile structure of random effects and efficient computation for sparse covariances. lme4qtl is available at https://github.com/variani/lme4qtl .
Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina
2018-01-01
Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC–vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder. PMID:28944772
Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina
2018-04-01
Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC-vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder.
Examining the Factorial Structure of the T-CRS 2.1
ERIC Educational Resources Information Center
Weber, Melissa R.; Lotyczewski, Bohdan S.; Montes, Guillermo; Hightower, A. Dirk; Allan, Marjorie
2017-01-01
The factor structure of the Teacher-Child Rating Scale (T-CRS 2.1) was examined using confirmatory factor analysis (CFA). A cross-sectional study was carried out on 68,497 children in prekindergarten through Grade 10. Item reduction was carried out based on modification indices, standardized residual covariance, and standardized factor loadings. A…
2011-01-01
Background The identification of genes or quantitative trait loci that are expressed in response to different environmental factors such as temperature and light, through functional mapping, critically relies on precise modeling of the covariance structure. Previous work used separable parametric covariance structures, such as a Kronecker product of autoregressive one [AR(1)] matrices, that do not account for interaction effects of different environmental factors. Results We implement a more robust nonparametric covariance estimator to model these interactions within the framework of functional mapping of reaction norms to two signals. Our results from Monte Carlo simulations show that this estimator can be useful in modeling interactions that exist between two environmental signals. The interactions are simulated using nonseparable covariance models with spatio-temporal structural forms that mimic interaction effects. Conclusions The nonparametric covariance estimator has an advantage over separable parametric covariance estimators in the detection of QTL location, thus extending the breadth of use of functional mapping in practical settings. PMID:21269481
Chang, Ya-Ting; Lu, Cheng-Hsien; Wu, Ming-Kung; Hsu, Shih-Wei; Huang, Chi-Wei; Chang, Wen-Neng; Lien, Chia-Yi; Lee, Jun-Jun; Chang, Chiung-Chih
2017-01-01
Purpose: In Parkinson's disease with mild cognitive impairment (PD-MCI), we investigated the clinical significance of salience network (SN) in depression and cognitive performance. Methods: Seventy seven PD-MCI patients that fulfilled multi-domain and non-amnestic subtype were included. Gray matter structural covariance networks were constructed by 3D T1-magnetic resonance imaging and seed based analysis. The patients were divided into two groups by psychiatric interviews and screening of Geriatric Depression Scale (GDS): PD-MCI with depression (PD-MCI-D) or without depression (PD-MCI-ND). The seed or peak cluster volume, or the significant differences in the regression slopes in each seed-peak cluster correlation, were used to evaluate the significance with the neurobehavioral scores. Results: This study is the first to demonstrate that the PD-MCI-ND group presented a larger number of voxels of structural covariance in SN than the PD-MCI-D group. The right fronto-insular seed volumes and the peak cluster of left lingual gyrus showed significant inverse correlation with the Geriatric Depression Scale (GDS; r = -0.231, P = 0.046). Conclusions: This study is the first to validate the clinical significance of the SN in PD-MCI-D. The right insular seed value and the SN correlated with the severity of depression in PD-MCI.
Chang, Ya-Ting; Lu, Cheng-Hsien; Wu, Ming-Kung; Hsu, Shih-Wei; Huang, Chi-Wei; Chang, Wen-Neng; Lien, Chia-Yi; Lee, Jun-Jun; Chang, Chiung-Chih
2018-01-01
Purpose: In Parkinson’s disease with mild cognitive impairment (PD-MCI), we investigated the clinical significance of salience network (SN) in depression and cognitive performance. Methods: Seventy seven PD-MCI patients that fulfilled multi-domain and non-amnestic subtype were included. Gray matter structural covariance networks were constructed by 3D T1-magnetic resonance imaging and seed based analysis. The patients were divided into two groups by psychiatric interviews and screening of Geriatric Depression Scale (GDS): PD-MCI with depression (PD-MCI-D) or without depression (PD-MCI-ND). The seed or peak cluster volume, or the significant differences in the regression slopes in each seed-peak cluster correlation, were used to evaluate the significance with the neurobehavioral scores. Results: This study is the first to demonstrate that the PD-MCI-ND group presented a larger number of voxels of structural covariance in SN than the PD-MCI-D group. The right fronto-insular seed volumes and the peak cluster of left lingual gyrus showed significant inverse correlation with the Geriatric Depression Scale (GDS; r = -0.231, P = 0.046). Conclusions: This study is the first to validate the clinical significance of the SN in PD-MCI-D. The right insular seed value and the SN correlated with the severity of depression in PD-MCI. PMID:29375361
Liao, Weiqi; Long, Xiaojing; Jiang, Chunxiang; Diao, Yanjun; Liu, Xin; Zheng, Hairong; Zhang, Lijuan
2014-05-01
Differentiating mild cognitive impairment (MCI) and Alzheimer Disease (AD) from healthy aging remains challenging. This study aimed to explore the cerebral structural alterations of subjects with MCI or AD as compared to healthy elderly based on the individual and collective effects of cerebral morphologic indices using univariate and multivariate analyses. T1-weighted images (T1WIs) were retrieved from Alzheimer Disease Neuroimaging Initiative database for 116 subjects who were categorized into groups of healthy aging, MCI, and AD. Analysis of covariance (ANCOVA) and multivariate analysis of covariance (MANCOVA) were performed to explore the intergroup morphologic alterations indexed by surface area, curvature index, cortical thickness, and subjacent white matter volume with age and sex controlled as covariates, in 34 parcellated gyri regions of interest (ROIs) for both cerebral hemispheres based on the T1WI. Statistical parameters were mapped on the anatomic images to facilitate visual inspection. Global rather than region-specific structural alterations were revealed in groups of MCI and AD relative to healthy elderly using MANCOVA. ANCOVA revealed that the cortical thickness decreased more prominently in entorhinal, temporal, and cingulate cortices and was positively correlated with patients' cognitive performance in AD group but not in MCI. The temporal lobe features marked atrophy of white matter during the disease dynamics. Significant intercorrelations were observed among the morphologic indices with univariate analysis for given ROIs. Significant global structural alterations were identified in MCI and AD based on MANCOVA model with improved sensitivity. The intercorrelation among the morphologic indices may dampen the use of individual morphological parameter in featuring cerebral structural alterations. Decrease in cortical thickness is not reflective of the cognitive performance at the early stage of AD. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
Conservative Sample Size Determination for Repeated Measures Analysis of Covariance.
Morgan, Timothy M; Case, L Douglas
2013-07-05
In the design of a randomized clinical trial with one pre and multiple post randomized assessments of the outcome variable, one needs to account for the repeated measures in determining the appropriate sample size. Unfortunately, one seldom has a good estimate of the variance of the outcome measure, let alone the correlations among the measurements over time. We show how sample sizes can be calculated by making conservative assumptions regarding the correlations for a variety of covariance structures. The most conservative choice for the correlation depends on the covariance structure and the number of repeated measures. In the absence of good estimates of the correlations, the sample size is often based on a two-sample t-test, making the 'ultra' conservative and unrealistic assumption that there are zero correlations between the baseline and follow-up measures while at the same time assuming there are perfect correlations between the follow-up measures. Compared to the case of taking a single measurement, substantial savings in sample size can be realized by accounting for the repeated measures, even with very conservative assumptions regarding the parameters of the assumed correlation matrix. Assuming compound symmetry, the sample size from the two-sample t-test calculation can be reduced at least 44%, 56%, and 61% for repeated measures analysis of covariance by taking 2, 3, and 4 follow-up measures, respectively. The results offer a rational basis for determining a fairly conservative, yet efficient, sample size for clinical trials with repeated measures and a baseline value.
Das, Kiranmoy; Daniels, Michael J.
2014-01-01
Summary Estimation of the covariance structure for irregular sparse longitudinal data has been studied by many authors in recent years but typically using fully parametric specifications. In addition, when data are collected from several groups over time, it is known that assuming the same or completely different covariance matrices over groups can lead to loss of efficiency and/or bias. Nonparametric approaches have been proposed for estimating the covariance matrix for regular univariate longitudinal data by sharing information across the groups under study. For the irregular case, with longitudinal measurements that are bivariate or multivariate, modeling becomes more difficult. In this article, to model bivariate sparse longitudinal data from several groups, we propose a flexible covariance structure via a novel matrix stick-breaking process for the residual covariance structure and a Dirichlet process mixture of normals for the random effects. Simulation studies are performed to investigate the effectiveness of the proposed approach over more traditional approaches. We also analyze a subset of Framingham Heart Study data to examine how the blood pressure trajectories and covariance structures differ for the patients from different BMI groups (high, medium and low) at baseline. PMID:24400941
Alternative Multiple Imputation Inference for Mean and Covariance Structure Modeling
ERIC Educational Resources Information Center
Lee, Taehun; Cai, Li
2012-01-01
Model-based multiple imputation has become an indispensable method in the educational and behavioral sciences. Mean and covariance structure models are often fitted to multiply imputed data sets. However, the presence of multiple random imputations complicates model fit testing, which is an important aspect of mean and covariance structure…
ARMA Cholesky Factor Models for the Covariance Matrix of Linear Models.
Lee, Keunbaik; Baek, Changryong; Daniels, Michael J
2017-11-01
In longitudinal studies, serial dependence of repeated outcomes must be taken into account to make correct inferences on covariate effects. As such, care must be taken in modeling the covariance matrix. However, estimation of the covariance matrix is challenging because there are many parameters in the matrix and the estimated covariance matrix should be positive definite. To overcomes these limitations, two Cholesky decomposition approaches have been proposed: modified Cholesky decomposition for autoregressive (AR) structure and moving average Cholesky decomposition for moving average (MA) structure, respectively. However, the correlations of repeated outcomes are often not captured parsimoniously using either approach separately. In this paper, we propose a class of flexible, nonstationary, heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the covariance matrix that we denote as ARMACD. We analyze a recent lung cancer study to illustrate the power of our proposed methods.
NASA Astrophysics Data System (ADS)
Provo, Judy; Lamar, Carlton; Newby, Timothy
2002-01-01
A cross section was used to enhance three-dimensional knowledge of anatomy of the canine head. All veterinary students in two successive classes (n = 124) dissected the head; experimental groups also identified structures on a cross section of the head. A test assessing spatial knowledge of the head generated 10 dependent variables from two administrations. The test had content validity and statistically significant interrater and test-retest reliability. A live-dog examination generated one additional dependent variable. Analysis of covariance controlling for performance on course examinations and quizzes revealed no treatment effect. Including spatial skill as a third covariate revealed a statistically significant effect of spatial skill on three dependent variables. Men initially had greater spatial skill than women, but spatial skills were equal after 8 months. A qualitative analysis showed the positive impact of this experience on participants. Suggestions for improvement and future research are discussed.
Propensity score method: a non-parametric technique to reduce model dependence
2017-01-01
Propensity score analysis (PSA) is a powerful technique that it balances pretreatment covariates, making the causal effect inference from observational data as reliable as possible. The use of PSA in medical literature has increased exponentially in recent years, and the trend continue to rise. The article introduces rationales behind PSA, followed by illustrating how to perform PSA in R with MatchIt package. There are a variety of methods available for PS matching such as nearest neighbors, full matching, exact matching and genetic matching. The task can be easily done by simply assigning a string value to the method argument in the matchit() function. The generic summary() and plot() functions can be applied to an object of class matchit to check covariate balance after matching. Furthermore, there is a useful package PSAgraphics that contains several graphical functions to check covariate balance between treatment groups across strata. If covariate balance is not achieved, one can modify model specifications or use other techniques such as random forest and recursive partitioning to better represent the underlying structure between pretreatment covariates and treatment assignment. The process can be repeated until the desirable covariate balance is achieved. PMID:28164092
Ito, Satoshi; Nagoshi, Tomohisa; Minai, Kosuke; Kashiwagi, Yusuke; Sekiyama, Hiroshi; Yoshii, Akira; Kimura, Haruka; Inoue, Yasunori; Ogawa, Kazuo; Tanaka, Toshikazu D; Ogawa, Takayuki; Kawai, Makoto; Yoshimura, Michihiro
2017-01-01
Although glucose-insulin-potassium (GIK) therapy ought to be beneficial for ischemic heart disease in general, variable outcomes in many clinical trials of GIK in acute coronary syndrome (ACS) had a controversial impact. This study was designed to examine whether "insulin resistance" is involved in ACS and to clarify other potential intrinsic compensatory mechanisms for GIK tolerance through highly statistical procedure. We compared the degree of insulin resistance during ACS attack and remission phase after treatment in individual patients (n = 104). During ACS, homeostasis model assessment of insulin resistance (HOMA-IR) values were significantly increased (P<0.001), while serum potassium levels were transiently decreased (degree of which was indicated by ΔK) (P<0.001). This finding provides a renewed paradox, as ΔK, a surrogate marker of intrinsic GIK cascade activation, probably reflects the validated glucose metabolism during ischemic attack. Indeed, multiple regression analysis revealed that plasma glucose level during ACS was positively correlated with ΔK (P = 0.026), whereas HOMA-IR had no impact on ΔK. This positive correlation between ΔK and glucose was confirmed by covariance structure analysis with a strong impact (β: 0.398, P = 0.015). Intriguingly, a higher incidence of myocardial infarction relative to unstable angina pectoris, as well as a longer hospitalization period were observed in patients with larger ΔK, indicating that ΔK also reflects disease severity of ACS. Insulin resistance most likely increases during ACS; however, ΔK was positively correlated with plasma glucose level, which overwhelmed insulin resistance condition. The present study with covariance structure analysis suggests that there are potential endogenous glucose-coupled potassium lowering mechanisms, other than insulin, regulating glucose metabolism during ACS.
Liu, Feng; Tian, Hongjun; Li, Jie; Li, Shen; Zhuo, Chuanjun
2018-05-04
Previous seed- and atlas-based structural covariance/connectivity analyses have demonstrated that patients with schizophrenia is accompanied by aberrant structural connection and abnormal topological organization. However, it remains unclear whether this disruption is present in unbiased whole-brain voxel-wise structural covariance networks (SCNs) and whether brain genetic expression variations are linked with network alterations. In this study, ninety-five patients with schizophrenia and 95 matched healthy controls were recruited and gray matter volumes were extracted from high-resolution structural magnetic resonance imaging scans. Whole-brain voxel-wise gray matter SCNs were constructed at the group level and were further analyzed by using graph theory method. Nonparametric permutation tests were employed for group comparisons. In addition, regression modes along with random effect analysis were utilized to explore the associations between structural network changes and gene expression from the Allen Human Brain Atlas. Compared with healthy controls, the patients with schizophrenia showed significantly increased structural covariance strength (SCS) in the right orbital part of superior frontal gyrus and bilateral middle frontal gyrus, while decreased SCS in the bilateral superior temporal gyrus and precuneus. The altered SCS showed reproducible correlations with the expression profiles of the gene classes involved in therapeutic targets and neurodevelopment. Overall, our findings not only demonstrate that the topological architecture of whole-brain voxel-wise SCNs is impaired in schizophrenia, but also provide evidence for the possible role of therapeutic targets and neurodevelopment-related genes in gray matter structural brain networks in schizophrenia.
Analysis of correlated mutations in HIV-1 protease using spectral clustering.
Liu, Ying; Eyal, Eran; Bahar, Ivet
2008-05-15
The ability of human immunodeficiency virus-1 (HIV-1) protease to develop mutations that confer multi-drug resistance (MDR) has been a major obstacle in designing rational therapies against HIV. Resistance is usually imparted by a cooperative mechanism that can be elucidated by a covariance analysis of sequence data. Identification of such correlated substitutions of amino acids may be obscured by evolutionary noise. HIV-1 protease sequences from patients subjected to different specific treatments (set 1), and from untreated patients (set 2) were subjected to sequence covariance analysis by evaluating the mutual information (MI) between all residue pairs. Spectral clustering of the resulting covariance matrices disclosed two distinctive clusters of correlated residues: the first, observed in set 1 but absent in set 2, contained residues involved in MDR acquisition; and the second, included those residues differentiated in the various HIV-1 protease subtypes, shortly referred to as the phylogenetic cluster. The MDR cluster occupies sites close to the central symmetry axis of the enzyme, which overlap with the global hinge region identified from coarse-grained normal-mode analysis of the enzyme structure. The phylogenetic cluster, on the other hand, occupies solvent-exposed and highly mobile regions. This study demonstrates (i) the possibility of distinguishing between the correlated substitutions resulting from neutral mutations and those induced by MDR upon appropriate clustering analysis of sequence covariance data and (ii) a connection between global dynamics and functional substitution of amino acids.
Nguyen, Tuong-Vi; McCracken, James T; Albaugh, Matthew D; Botteron, Kelly N.; Hudziak, James J; Ducharme, Simon
2015-01-01
Structural covariance, the examination of anatomic correlations between brain regions, has emerged recently as a valid and useful measure of developmental brain changes. Yet the exact biological processes leading to changes in covariance, and the relation between such covariance and behavior, remain largely unexplored. The steroid hormone testosterone represents a compelling mechanism through which this structural covariance may be developmentally regulated in humans. Although steroid hormone receptors can be found throughout the central nervous system, the amygdala represents a key target for testosterone-specific effects, given its high density of androgen receptors. In addition, testosterone has been found to impact cortical thickness (CTh) across the whole brain, suggesting that it may also regulate the structural relationship, or covariance, between the amygdala and CTh. Here we examined testosterone-related covariance between amygdala volumes and whole-brain CTh, as well as its relationship to aggression levels, in a longitudinal sample of children, adolescents, and young adults 6 to 22 years old. We found: (1) testosterone-specific modulation of the covariance between the amygdala and medial prefrontal cortex (mPFC); (2) a significant relationship between amygdala-mPFC covariance and levels of aggression; and (3) mediation effects of amygdala-mPFC covariance on the relationship between testosterone and aggression. These effects were independent of sex, age, pubertal stage, estradiol levels and anxious-depressed symptoms. These findings are consistent with prior evidence that testosterone targets the neural circuits regulating affect and impulse regulation, and show, for the first time in humans, how androgen-dependent organizational effects may regulate a very specific, aggression-related structural brain phenotype from childhood to young adulthood. PMID:26431805
Nguyen, Tuong-Vi; McCracken, James T; Albaugh, Matthew D; Botteron, Kelly N; Hudziak, James J; Ducharme, Simon
2016-01-01
Structural covariance, the examination of anatomic correlations between brain regions, has emerged recently as a valid and useful measure of developmental brain changes. Yet the exact biological processes leading to changes in covariance, and the relation between such covariance and behavior, remain largely unexplored. The steroid hormone testosterone represents a compelling mechanism through which this structural covariance may be developmentally regulated in humans. Although steroid hormone receptors can be found throughout the central nervous system, the amygdala represents a key target for testosterone-specific effects, given its high density of androgen receptors. In addition, testosterone has been found to impact cortical thickness (CTh) across the whole brain, suggesting that it may also regulate the structural relationship, or covariance, between the amygdala and CTh. Here, we examined testosterone-related covariance between amygdala volumes and whole-brain CTh, as well as its relationship to aggression levels, in a longitudinal sample of children, adolescents, and young adults 6-22 years old. We found: (1) testosterone-specific modulation of the covariance between the amygdala and medial prefrontal cortex (mPFC); (2) a significant relationship between amygdala-mPFC covariance and levels of aggression; and (3) mediation effects of amygdala-mPFC covariance on the relationship between testosterone and aggression. These effects were independent of sex, age, pubertal stage, estradiol levels and anxious-depressed symptoms. These findings are consistent with prior evidence that testosterone targets the neural circuits regulating affect and impulse regulation, and show, for the first time in humans, how androgen-dependent organizational effects may regulate a very specific, aggression-related structural brain phenotype from childhood to young adulthood. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nordin, Kristin; Persson, Jonas; Stening, Eva; Herlitz, Agneta; Larsson, Elna-Marie; Söderlund, Hedvig
2018-02-01
The hippocampus (HC) interacts with distributed brain regions to support memory and shows significant volume reductions in aging, but little is known about age effects on hippocampal whole-brain structural covariance. It is also unclear whether the anterior and posterior HC show similar or distinct patterns of whole-brain covariance and to what extent these are related to memory functions organized along the hippocampal longitudinal axis. Using the multivariate approach partial least squares, we assessed structural whole-brain covariance of the HC in addition to regional volume, in young, middle-aged and older adults (n = 221), and assessed associations with episodic and spatial memory. Based on findings of sex differences in both memory and brain aging, we further considered sex as a potential modulating factor of age effects. There were two main covariance patterns: one capturing common anterior and posterior covariance, and one differentiating the two regions by capturing anterior-specific covariance only. These patterns were differentially related to associative memory while unrelated to measures of single-item memory and spatial memory. Although patterns were qualitatively comparable across age groups, participants' expression of both patterns decreased with age, independently of sex. The results suggest that the organization of hippocampal structural whole-brain covariance remains stable across age, but that the integrity of these networks decreases as the brain undergoes age-related alterations. © 2017 Wiley Periodicals, Inc.
Stening, Eva; Persson, Jonas; Eriksson, Elias; Wahlund, Lars-Olof; Zetterberg, Henrik; Söderlund, Hedvig
2017-05-30
Apolipoprotein E (APOE) ε4 has been associated with smaller hippocampal volumes in healthy aging, while findings in young adults are inconclusive. Previous studies have mostly used univariate methods, and without considering potential anterior/posterior differences. Here, we used a multivariate method, partial least squares, and assessed whole-brain structural covariance of the anterior (aHC) and posterior (pHC) hippocampus in young adults (n=97) as a function of APOE ε4 status and sex. Two significant patterns emerged: (1) specific structural covariance of the aHC with frontal regions, temporal and occipital areas in APOE ε4 women, whereas the volume of both the aHC and pHC in all other groups co-varied with frontal, parietal and cerebellar areas; and (2) opposite structural covariance of the pHC in ε4 carriers compared to the aHC in non-carriers, with the pHC of ε4 carriers covarying with parietal and frontal areas, and the aHC of ε4 non-carriers covarying with motor areas and the middle frontal gyrus. APOE ε4 has in young adults been associated with better episodic and spatial memory, functions involving the aHC and pHC, respectively. We found no associations between structural covariance and performance, suggesting that other factors underlie the performance differences seen between carriers and non-carriers. Our findings indicate that APOE ε4 carriers and non-carriers differ in hippocampal organization and that there are differences as a function of sex and hippocampal segment. They stress the need to consider the hippocampus as a heterogeneous structure, and highlight the benefits of multivariate methods in assessing group differences in the brain. Copyright © 2017 Elsevier B.V. All rights reserved.
Using Fit Indexes to Select a Covariance Model for Longitudinal Data
ERIC Educational Resources Information Center
Liu, Siwei; Rovine, Michael J.; Molenaar, Peter C. M.
2012-01-01
This study investigated the performance of fit indexes in selecting a covariance structure for longitudinal data. Data were simulated to follow a compound symmetry, first-order autoregressive, first-order moving average, or random-coefficients covariance structure. We examined the ability of the likelihood ratio test (LRT), root mean square error…
Non-Gaussian Methods for Causal Structure Learning.
Shimizu, Shohei
2018-05-22
Causal structure learning is one of the most exciting new topics in the fields of machine learning and statistics. In many empirical sciences including prevention science, the causal mechanisms underlying various phenomena need to be studied. Nevertheless, in many cases, classical methods for causal structure learning are not capable of estimating the causal structure of variables. This is because it explicitly or implicitly assumes Gaussianity of data and typically utilizes only the covariance structure. In many applications, however, non-Gaussian data are often obtained, which means that more information may be contained in the data distribution than the covariance matrix is capable of containing. Thus, many new methods have recently been proposed for using the non-Gaussian structure of data and inferring the causal structure of variables. This paper introduces prevention scientists to such causal structure learning methods, particularly those based on the linear, non-Gaussian, acyclic model known as LiNGAM. These non-Gaussian data analysis tools can fully estimate the underlying causal structures of variables under assumptions even in the presence of unobserved common causes. This feature is in contrast to other approaches. A simulated example is also provided.
Using Analysis of Covariance (ANCOVA) with Fallible Covariates
ERIC Educational Resources Information Center
Culpepper, Steven Andrew; Aguinis, Herman
2011-01-01
Analysis of covariance (ANCOVA) is used widely in psychological research implementing nonexperimental designs. However, when covariates are fallible (i.e., measured with error), which is the norm, researchers must choose from among 3 inadequate courses of action: (a) know that the assumption that covariates are perfectly reliable is violated but…
ERIC Educational Resources Information Center
Schweizer, Karl
2008-01-01
Structural equation modeling provides the framework for investigating experimental effects on the basis of variances and covariances in repeated measurements. A special type of confirmatory factor analysis as part of this framework enables the appropriate representation of the experimental effect and the separation of experimental and…
Constrained Maximum Likelihood Estimation for Two-Level Mean and Covariance Structure Models
ERIC Educational Resources Information Center
Bentler, Peter M.; Liang, Jiajuan; Tang, Man-Lai; Yuan, Ke-Hai
2011-01-01
Maximum likelihood is commonly used for the estimation of model parameters in the analysis of two-level structural equation models. Constraints on model parameters could be encountered in some situations such as equal factor loadings for different factors. Linear constraints are the most common ones and they are relatively easy to handle in…
Applications of geostatistics and Markov models for logo recognition
NASA Astrophysics Data System (ADS)
Pham, Tuan
2003-01-01
Spatial covariances based on geostatistics are extracted as representative features of logo or trademark images. These spatial covariances are different from other statistical features for image analysis in that the structural information of an image is independent of the pixel locations and represented in terms of spatial series. We then design a classifier in the sense of hidden Markov models to make use of these geostatistical sequential data to recognize the logos. High recognition rates are obtained from testing the method against a public-domain logo database.
A New SEYHAN's Approach in Case of Heterogeneity of Regression Slopes in ANCOVA.
Ankarali, Handan; Cangur, Sengul; Ankarali, Seyit
2018-06-01
In this study, when the assumptions of linearity and homogeneity of regression slopes of conventional ANCOVA are not met, a new approach named as SEYHAN has been suggested to use conventional ANCOVA instead of robust or nonlinear ANCOVA. The proposed SEYHAN's approach involves transformation of continuous covariate into categorical structure when the relationship between covariate and dependent variable is nonlinear and the regression slopes are not homogenous. A simulated data set was used to explain SEYHAN's approach. In this approach, we performed conventional ANCOVA in each subgroup which is constituted according to knot values and analysis of variance with two-factor model after MARS method was used for categorization of covariate. The first model is a simpler model than the second model that includes interaction term. Since the model with interaction effect has more subjects, the power of test also increases and the existing significant difference is revealed better. We can say that linearity and homogeneity of regression slopes are not problem for data analysis by conventional linear ANCOVA model by helping this approach. It can be used fast and efficiently for the presence of one or more covariates.
Multilevel covariance regression with correlated random effects in the mean and variance structure.
Quintero, Adrian; Lesaffre, Emmanuel
2017-09-01
Multivariate regression methods generally assume a constant covariance matrix for the observations. In case a heteroscedastic model is needed, the parametric and nonparametric covariance regression approaches can be restrictive in the literature. We propose a multilevel regression model for the mean and covariance structure, including random intercepts in both components and allowing for correlation between them. The implied conditional covariance function can be different across clusters as a result of the random effect in the variance structure. In addition, allowing for correlation between the random intercepts in the mean and covariance makes the model convenient for skewedly distributed responses. Furthermore, it permits us to analyse directly the relation between the mean response level and the variability in each cluster. Parameter estimation is carried out via Gibbs sampling. We compare the performance of our model to other covariance modelling approaches in a simulation study. Finally, the proposed model is applied to the RN4CAST dataset to identify the variables that impact burnout of nurses in Belgium. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vedula, Pavan; Cruz, Lissette A; Gutierrez, Natasha; Davis, Justin; Ayee, Brian; Abramczyk, Rachel; Rodriguez, Alexis J
2016-06-30
Quantifying multi-molecular complex assembly in specific cytoplasmic compartments is crucial to understand how cells use assembly/disassembly of these complexes to control function. Currently, biophysical methods like Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy provide quantitative measurements of direct protein-protein interactions, while traditional biochemical approaches such as sub-cellular fractionation and immunoprecipitation remain the main approaches used to study multi-protein complex assembly/disassembly dynamics. In this article, we validate and quantify multi-protein adherens junction complex assembly in situ using light microscopy and Fluorescence Covariance Analysis. Utilizing specific fluorescently-labeled protein pairs, we quantified various stages of adherens junction complex assembly, the multiprotein complex regulating epithelial tissue structure and function following de novo cell-cell contact. We demonstrate: minimal cadherin-catenin complex assembly in the perinuclear cytoplasm and subsequent localization to the cell-cell contact zone, assembly of adherens junction complexes, acto-myosin tension-mediated anchoring, and adherens junction maturation following de novo cell-cell contact. Finally applying Fluorescence Covariance Analysis in live cells expressing fluorescently tagged adherens junction complex proteins, we also quantified adherens junction complex assembly dynamics during epithelial monolayer formation.
Xu, Nan; Veesler, David; Doerschuk, Peter C; Johnson, John E
2018-05-01
The information content of cryo EM data sets exceeds that of the electron scattering potential (cryo EM) density initially derived for structure determination. Previously we demonstrated the power of data variance analysis for characterizing regions of cryo EM density that displayed functionally important variance anomalies associated with maturation cleavage events in Nudaurelia Omega Capensis Virus and the presence or absence of a maturation protease in bacteriophage HK97 procapsids. Here we extend the analysis in two ways. First, instead of imposing icosahedral symmetry on every particle in the data set during the variance analysis, we only assume that the data set as a whole has icosahedral symmetry. This change removes artifacts of high variance along icosahedral symmetry axes, but retains all of the features previously reported in the HK97 data set. Second we present a covariance analysis that reveals correlations in structural dynamics (variance) between the interior of the HK97 procapsid with the protease and regions of the exterior (not seen in the absence of the protease). The latter analysis corresponds well with hydrogen deuterium exchange studies previously published that reveal the same correlation. Copyright © 2018 Elsevier Inc. All rights reserved.
Stamovlasis, Dimitrios; Papageorgiou, George; Tsitsipis, Georgios; Tsikalas, Themistoklis; Vaiopoulou, Julie
2018-01-01
This paper illustrates two psychometric methods, latent class analysis (LCA) and taxometric analysis (TA) using empirical data from research probing children's mental representation in science learning. LCA is used to obtain a typology based on observed variables and to further investigate how the encountered classes might be related to external variables, where the effectiveness of classification process and the unbiased estimations of parameters become the main concern. In the step-wise LCA, the class membership is assigned and subsequently its relationship with covariates is established. This leading-edge modeling approach suffers from severe downward-biased estimations. The illustration of LCA is focused on alternative bias correction approaches and demonstrates the effect of modal and proportional class-membership assignment along with BCH and ML correction procedures. The illustration of LCA is presented with three covariates, which are psychometric variables operationalizing formal reasoning, divergent thinking and field dependence-independence, respectively. Moreover, taxometric analysis, a method designed to detect the type of the latent structural model, categorical or dimensional, is introduced, along with the relevant basic concepts and tools. TA was applied complementarily in the same data sets to answer the fundamental hypothesis about children's naïve knowledge on the matters under study and it comprises an additional asset in building theory which is fundamental for educational practices. Taxometric analysis provided results that were ambiguous as far as the type of the latent structure. This finding initiates further discussion and sets a problematization within this framework rethinking fundamental assumptions and epistemological issues. PMID:29713300
SEPARABLE FACTOR ANALYSIS WITH APPLICATIONS TO MORTALITY DATA
Fosdick, Bailey K.; Hoff, Peter D.
2014-01-01
Human mortality data sets can be expressed as multiway data arrays, the dimensions of which correspond to categories by which mortality rates are reported, such as age, sex, country and year. Regression models for such data typically assume an independent error distribution or an error model that allows for dependence along at most one or two dimensions of the data array. However, failing to account for other dependencies can lead to inefficient estimates of regression parameters, inaccurate standard errors and poor predictions. An alternative to assuming independent errors is to allow for dependence along each dimension of the array using a separable covariance model. However, the number of parameters in this model increases rapidly with the dimensions of the array and, for many arrays, maximum likelihood estimates of the covariance parameters do not exist. In this paper, we propose a submodel of the separable covariance model that estimates the covariance matrix for each dimension as having factor analytic structure. This model can be viewed as an extension of factor analysis to array-valued data, as it uses a factor model to estimate the covariance along each dimension of the array. We discuss properties of this model as they relate to ordinary factor analysis, describe maximum likelihood and Bayesian estimation methods, and provide a likelihood ratio testing procedure for selecting the factor model ranks. We apply this methodology to the analysis of data from the Human Mortality Database, and show in a cross-validation experiment how it outperforms simpler methods. Additionally, we use this model to impute mortality rates for countries that have no mortality data for several years. Unlike other approaches, our methodology is able to estimate similarities between the mortality rates of countries, time periods and sexes, and use this information to assist with the imputations. PMID:25489353
NASA Astrophysics Data System (ADS)
Dhanya, M.; Chandrasekar, A.
2016-02-01
The background error covariance structure influences a variational data assimilation system immensely. The simulation of a weather phenomenon like monsoon depression can hence be influenced by the background correlation information used in the analysis formulation. The Weather Research and Forecasting Model Data assimilation (WRFDA) system includes an option for formulating multivariate background correlations for its three-dimensional variational (3DVar) system (cv6 option). The impact of using such a formulation in the simulation of three monsoon depressions over India is investigated in this study. Analysis and forecast fields generated using this option are compared with those obtained using the default formulation for regional background error correlations (cv5) in WRFDA and with a base run without any assimilation. The model rainfall forecasts are compared with rainfall observations from the Tropical Rainfall Measurement Mission (TRMM) and the other model forecast fields are compared with a high-resolution analysis as well as with European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis. The results of the study indicate that inclusion of additional correlation information in background error statistics has a moderate impact on the vertical profiles of relative humidity, moisture convergence, horizontal divergence and the temperature structure at the depression centre at the analysis time of the cv5/cv6 sensitivity experiments. Moderate improvements are seen in two of the three depressions investigated in this study. An improved thermodynamic and moisture structure at the initial time is expected to provide for improved rainfall simulation. The results of the study indicate that the skill scores of accumulated rainfall are somewhat better for the cv6 option as compared to the cv5 option for at least two of the three depression cases studied, especially at the higher threshold levels. Considering the importance of utilising improved flow-dependent correlation structures for efficient data assimilation, the need for more studies on the impact of background error covariances is obvious.
The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.
Epskamp, Sacha; Waldorp, Lourens J; Mõttus, René; Borsboom, Denny
2018-04-16
We discuss the Gaussian graphical model (GGM; an undirected network of partial correlation coefficients) and detail its utility as an exploratory data analysis tool. The GGM shows which variables predict one-another, allows for sparse modeling of covariance structures, and may highlight potential causal relationships between observed variables. We describe the utility in three kinds of psychological data sets: data sets in which consecutive cases are assumed independent (e.g., cross-sectional data), temporally ordered data sets (e.g., n = 1 time series), and a mixture of the 2 (e.g., n > 1 time series). In time-series analysis, the GGM can be used to model the residual structure of a vector-autoregression analysis (VAR), also termed graphical VAR. Two network models can then be obtained: a temporal network and a contemporaneous network. When analyzing data from multiple subjects, a GGM can also be formed on the covariance structure of stationary means-the between-subjects network. We discuss the interpretation of these models and propose estimation methods to obtain these networks, which we implement in the R packages graphicalVAR and mlVAR. The methods are showcased in two empirical examples, and simulation studies on these methods are included in the supplementary materials.
Covariance hypotheses for LANDSAT data
NASA Technical Reports Server (NTRS)
Decell, H. P.; Peters, C.
1983-01-01
Two covariance hypotheses are considered for LANDSAT data acquired by sampling fields, one an autoregressive covariance structure and the other the hypothesis of exchangeability. A minimum entropy approximation of the first structure by the second is derived and shown to have desirable properties for incorporation into a mixture density estimation procedure. Results of a rough test of the exchangeability hypothesis are presented.
Nassar, Rula; Kaczkurkin, Antonia N; Xia, Cedric Huchuan; Sotiras, Aristeidis; Pehlivanova, Marieta; Moore, Tyler M; Garcia de La Garza, Angel; Roalf, David R; Rosen, Adon F G; Lorch, Scott A; Ruparel, Kosha; Shinohara, Russell T; Davatzikos, Christos; Gur, Ruben C; Gur, Raquel E; Satterthwaite, Theodore D
2018-04-21
Prematurity is associated with diverse developmental abnormalities, yet few studies relate cognitive and neurostructural deficits to a dimensional measure of prematurity. Leveraging a large sample of children, adolescents, and young adults (age 8-22 years) studied as part of the Philadelphia Neurodevelopmental Cohort, we examined how variation in gestational age impacted cognition and brain structure later in development. Participants included 72 preterm youth born before 37 weeks' gestation and 206 youth who were born at term (37 weeks or later). Using a previously-validated factor analysis, cognitive performance was assessed in three domains: (1) executive function and complex reasoning, (2) social cognition, and (3) episodic memory. All participants completed T1-weighted neuroimaging at 3 T to measure brain volume. Structural covariance networks were delineated using non-negative matrix factorization, an advanced multivariate analysis technique. Lower gestational age was associated with both deficits in executive function and reduced volume within 11 of 26 structural covariance networks, which included orbitofrontal, temporal, and parietal cortices as well as subcortical regions including the hippocampus. Notably, the relationship between lower gestational age and executive dysfunction was accounted for in part by structural network deficits. Together, these findings emphasize the durable impact of prematurity on cognition and brain structure, which persists across development.
Bayes Factor Covariance Testing in Item Response Models.
Fox, Jean-Paul; Mulder, Joris; Sinharay, Sandip
2017-12-01
Two marginal one-parameter item response theory models are introduced, by integrating out the latent variable or random item parameter. It is shown that both marginal response models are multivariate (probit) models with a compound symmetry covariance structure. Several common hypotheses concerning the underlying covariance structure are evaluated using (fractional) Bayes factor tests. The support for a unidimensional factor (i.e., assumption of local independence) and differential item functioning are evaluated by testing the covariance components. The posterior distribution of common covariance components is obtained in closed form by transforming latent responses with an orthogonal (Helmert) matrix. This posterior distribution is defined as a shifted-inverse-gamma, thereby introducing a default prior and a balanced prior distribution. Based on that, an MCMC algorithm is described to estimate all model parameters and to compute (fractional) Bayes factor tests. Simulation studies are used to show that the (fractional) Bayes factor tests have good properties for testing the underlying covariance structure of binary response data. The method is illustrated with two real data studies.
Taylor, J M; Law, N
1998-10-30
We investigate the importance of the assumed covariance structure for longitudinal modelling of CD4 counts. We examine how individual predictions of future CD4 counts are affected by the covariance structure. We consider four covariance structures: one based on an integrated Ornstein-Uhlenbeck stochastic process; one based on Brownian motion, and two derived from standard linear and quadratic random-effects models. Using data from the Multicenter AIDS Cohort Study and from a simulation study, we show that there is a noticeable deterioration in the coverage rate of confidence intervals if we assume the wrong covariance. There is also a loss in efficiency. The quadratic random-effects model is found to be the best in terms of correctly calibrated prediction intervals, but is substantially less efficient than the others. Incorrectly specifying the covariance structure as linear random effects gives too narrow prediction intervals with poor coverage rates. Fitting using the model based on the integrated Ornstein-Uhlenbeck stochastic process is the preferred one of the four considered because of its efficiency and robustness properties. We also use the difference between the future predicted and observed CD4 counts to assess an appropriate transformation of CD4 counts; a fourth root, cube root and square root all appear reasonable choices.
Structural Equation Modeling of Multivariate Time Series
ERIC Educational Resources Information Center
du Toit, Stephen H. C.; Browne, Michael W.
2007-01-01
The covariance structure of a vector autoregressive process with moving average residuals (VARMA) is derived. It differs from other available expressions for the covariance function of a stationary VARMA process and is compatible with current structural equation methodology. Structural equation modeling programs, such as LISREL, may therefore be…
Using SAS PROC CALIS to fit Level-1 error covariance structures of latent growth models.
Ding, Cherng G; Jane, Ten-Der
2012-09-01
In the present article, we demonstrates the use of SAS PROC CALIS to fit various types of Level-1 error covariance structures of latent growth models (LGM). Advantages of the SEM approach, on which PROC CALIS is based, include the capabilities of modeling the change over time for latent constructs, measured by multiple indicators; embedding LGM into a larger latent variable model; incorporating measurement models for latent predictors; and better assessing model fit and the flexibility in specifying error covariance structures. The strength of PROC CALIS is always accompanied with technical coding work, which needs to be specifically addressed. We provide a tutorial on the SAS syntax for modeling the growth of a manifest variable and the growth of a latent construct, focusing the documentation on the specification of Level-1 error covariance structures. Illustrations are conducted with the data generated from two given latent growth models. The coding provided is helpful when the growth model has been well determined and the Level-1 error covariance structure is to be identified.
Extracting factors for interest rate scenarios
NASA Astrophysics Data System (ADS)
Molgedey, L.; Galic, E.
2001-04-01
Factor based interest rate models are widely used for risk managing purposes, for option pricing and for identifying and capturing yield curve anomalies. The movements of a term structure of interest rates are commonly assumed to be driven by a small number of orthogonal factors such as SHIFT, TWIST and BUTTERFLY (BOW). These factors are usually obtained by a Principal Component Analysis (PCA) of historical bond prices (interest rates). Although PCA diagonalizes the covariance matrix of either the interest rates or the interest rate changes, it does not use both covariance matrices simultaneously. Furthermore higher linear and nonlinear correlations are neglected. These correlations as well as the mean reverting properties of the interest rates become crucial, if one is interested in a longer time horizon (infrequent hedging or trading). We will show that Independent Component Analysis (ICA) is a more appropriate tool than PCA, since ICA uses the covariance matrix of the interest rates as well as the covariance matrix of the interest rate changes simultaneously. Additionally higher linear and nonlinear correlations may be easily incorporated. The resulting factors are uncorrelated for various time delays, approximately independent but nonorthogonal. This is in contrast to the factors obtained from the PCA, which are orthogonal and uncorrelated for identical times only. Although factors from the ICA are nonorthogonal, it is sufficient to consider only a few factors in order to explain most of the variation in the original data. Finally we will present examples that ICA based hedges outperforms PCA based hedges specifically if the portfolio is sensitive to structural changes of the yield curve.
Lang, Xu; Li, Huabing; Qin, Wen; Yu, Chunshui
2014-01-01
Investigations on hippocampal and amygdalar volume have revealed inconsistent results in patients with posttraumatic stress disorder (PTSD). Little is known about the structural covariance alterations between the hippocampus and amygdala in PTSD. In this study, we evaluated the alteration in the hippocampal and amygdalar volume and their structural covariance in the coal mine gas explosion related PTSD. High resolution T1-weighted magnetic resonance imaging (MRI) was performed on coal mine gas explosion related PTSD male patients (n = 14) and non-traumatized coalminers without PTSD (n = 25). The voxel-based morphometry (VBM) method was used to test the inter-group differences in hippocampal and amygdalar volume as well as the inter-group differences in structural covariance between the ipsilateral hippocampus and amygdala. PTSD patients exhibited decreased gray matter volume (GMV) in the bilateral hippocampi compared to controls (p<0.05, FDR corrected). GMV covariances between the ipsilateral hippocampus and amygdala were significantly reduced in PTSD patients compared with controls (p<0.05, FDR corrected). The coalminers with gas explosion related PTSD had decreased hippocampal volume and structural covariance with the ipsilateral amygdala, suggesting that the structural impairment of the hippocampus may implicate in the pathophysiology of PTSD. PMID:25000505
ERIC Educational Resources Information Center
Donoghue, John R.
A Monte Carlo study compared the usefulness of six variable weighting methods for cluster analysis. Data were 100 bivariate observations from 2 subgroups, generated according to a finite normal mixture model. Subgroup size, within-group correlation, within-group variance, and distance between subgroup centroids were manipulated. Of the clustering…
Changing stand structure and regional growth reductions in Georgia's natural pine stands
W.A. Bechtold; G.A. Ruark; F.T. Lloyd
1991-01-01
Forest Inventory and Analysis (FIA) data indicate reductions in the growth of naturally regenerated pines in Georgia between the two latest measurement periods (1961-1972 vs. 1972-1982). Analysis of Covariance was used to adjust stand-level basal area growth rates for differences between periods in stand age, stand density, site index, mortality, and hardwood...
Krams, Indrikis A; Niemelä, Petri T; Trakimas, Giedrius; Krams, Ronalds; Burghardt, Gordon M; Krama, Tatjana; Kuusik, Aare; Mänd, Marika; Rantala, Markus J; Mänd, Raivo; Kekäläinen, Jukka; Sirkka, Ilkka; Luoto, Severi; Kortet, Raine
2017-03-29
The causes and consequences of among-individual variation and covariation in behaviours are of substantial interest to behavioural ecology, but the proximate mechanisms underpinning this (co)variation are still unclear. Previous research suggests metabolic rate as a potential proximate mechanism to explain behavioural covariation. We measured the resting metabolic rate (RMR), boldness and exploration in western stutter-trilling crickets, Gryllus integer , selected differentially for short and fast development over two generations. After applying mixed-effects models to reveal the sign of the covariation, we applied structural equation models to an individual-level covariance matrix to examine whether the RMR generates covariation between the measured behaviours. All traits showed among-individual variation and covariation: RMR and boldness were positively correlated, RMR and exploration were negatively correlated, and boldness and exploration were negatively correlated. However, the RMR was not a causal factor generating covariation between boldness and exploration. Instead, the covariation between all three traits was explained by another, unmeasured mechanism. The selection lines differed from each other in all measured traits and significantly affected the covariance matrix structure between the traits, suggesting that there is a genetic component in the trait integration. Our results emphasize that interpretations made solely from the correlation matrix might be misleading. © 2017 The Author(s).
Trakimas, Giedrius; Krams, Ronalds; Burghardt, Gordon M.; Krama, Tatjana; Kuusik, Aare; Mänd, Marika; Rantala, Markus J.; Mänd, Raivo; Sirkka, Ilkka; Luoto, Severi; Kortet, Raine
2017-01-01
The causes and consequences of among-individual variation and covariation in behaviours are of substantial interest to behavioural ecology, but the proximate mechanisms underpinning this (co)variation are still unclear. Previous research suggests metabolic rate as a potential proximate mechanism to explain behavioural covariation. We measured the resting metabolic rate (RMR), boldness and exploration in western stutter-trilling crickets, Gryllus integer, selected differentially for short and fast development over two generations. After applying mixed-effects models to reveal the sign of the covariation, we applied structural equation models to an individual-level covariance matrix to examine whether the RMR generates covariation between the measured behaviours. All traits showed among-individual variation and covariation: RMR and boldness were positively correlated, RMR and exploration were negatively correlated, and boldness and exploration were negatively correlated. However, the RMR was not a causal factor generating covariation between boldness and exploration. Instead, the covariation between all three traits was explained by another, unmeasured mechanism. The selection lines differed from each other in all measured traits and significantly affected the covariance matrix structure between the traits, suggesting that there is a genetic component in the trait integration. Our results emphasize that interpretations made solely from the correlation matrix might be misleading. PMID:28330918
Covariance, correlation matrix, and the multiscale community structure of networks.
Shen, Hua-Wei; Cheng, Xue-Qi; Fang, Bin-Xing
2010-07-01
Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this paper, we consider detecting the multiscale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multiscale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multiscale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multiscale community structure of network, as well as the translation and rotation transformations.
Counts, Christopher J.; Ho, P. Shing; Donlin, Maureen J.; Tavis, John E.; Chen, Chaoping
2015-01-01
HIV-1 protease (PR) is a viral enzyme vital to the production of infectious virions. It is initially synthesized as part of the Gag-Pol polyprotein precursor in the infected cell. The free mature PR is liberated as a result of precursor autoprocessing upon virion release. We previously described a model system to examine autoprocessing in transfected mammalian cells. Here, we report that a covariance analysis of miniprecursor (p6*-PR) sequences derived from drug naïve patients identified a series of amino acid pairs that vary together across independent viral isolates. These covariance pairs were used to build the first topology map of the miniprecursor that suggests high levels of interaction between the p6* peptide and the mature PR. Additionally, several PR-PR covariance pairs are located far from each other (>12 Å Cα to Cα) relative to their positions in the mature PR structure. Biochemical characterization of one such covariance pair (77–93) revealed that each residue shows distinct preference for one of three alkyl amino acids (V, I, and L) and that a polar or charged amino acid at either of these two positions abolishes precursor autoprocessing. The most commonly observed 77V is preferred by the most commonly observed 93I, but the 77I variant is preferred by other 93 variances (L, V, or M) in supporting precursor autoprocessing. Furthermore, the 77I93V covariant enhanced precursor autoprocessing and Gag polyprotein processing but decreased the mature PR activity. Therefore, both covariance and biochemical analyses support a functional association between residues 77 and 93, which are spatially distant from each other in the mature PR structure. Our data also suggests that these covariance pairs differentially regulate precursor autoprocessing and the mature protease activity. PMID:25893662
Regression analysis using dependent Polya trees.
Schörgendorfer, Angela; Branscum, Adam J
2013-11-30
Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.
Loss of integrity and atrophy in cingulate structural covariance networks in Parkinson's disease.
de Schipper, Laura J; van der Grond, Jeroen; Marinus, Johan; Henselmans, Johanna M L; van Hilten, Jacobus J
2017-01-01
In Parkinson's disease (PD), the relation between cortical brain atrophy on MRI and clinical progression is not straightforward. Determination of changes in structural covariance networks - patterns of covariance in grey matter density - has shown to be a valuable technique to detect subtle grey matter variations. We evaluated how structural network integrity in PD is related to clinical data. 3 Tesla MRI was performed in 159 PD patients. We used nine standardized structural covariance networks identified in 370 healthy subjects as a template in the analysis of the PD data. Clinical assessment comprised motor features (Movement Disorder Society-Unified Parkinson's Disease Rating Scale; MDS-UPDRS motor scale) and predominantly non-dopaminergic features (SEverity of Non-dopaminergic Symptoms in Parkinson's Disease; SENS-PD scale: postural instability and gait difficulty, psychotic symptoms, excessive daytime sleepiness, autonomic dysfunction, cognitive impairment and depressive symptoms). Voxel-based analyses were performed within networks significantly associated with PD. The anterior and posterior cingulate network showed decreased integrity, associated with the SENS-PD score, p = 0.001 (β = - 0.265, η p 2 = 0.070) and p = 0.001 (β = - 0.264, η p 2 = 0.074), respectively. Of the components of the SENS-PD score, cognitive impairment and excessive daytime sleepiness were associated with atrophy within both networks. We identified loss of integrity and atrophy in the anterior and posterior cingulate networks in PD patients. Abnormalities of both networks were associated with predominantly non-dopaminergic features, specifically cognition and excessive daytime sleepiness. Our findings suggest that (components of) the cingulate networks display a specific vulnerability to the pathobiology of PD and may operate as interfaces between networks involved in cognition and alertness.
Kim, Hee-Jong; Shin, Jeong-Hyeon; Han, Cheol E; Kim, Hee Jin; Na, Duk L; Seo, Sang Won; Seong, Joon-Kyung
2016-01-01
Cortical thinning patterns in Alzheimer's disease (AD) have been widely reported through conventional regional analysis. In addition, the coordinated variance of cortical thickness in different brain regions has been investigated both at the individual and group network levels. In this study, we aim to investigate network architectural characteristics of a structural covariance network (SCN) in AD, and further to show that the structural covariance connectivity becomes disorganized across the brain regions in AD, while the normal control (NC) subjects maintain more clustered and consistent coordination in cortical atrophy variations. We generated SCNs directly from T1-weighted MR images of individual patients using surface-based cortical thickness data, with structural connectivity defined as similarity in cortical thickness within different brain regions. Individual SCNs were constructed using morphometric data from the Samsung Medical Center (SMC) dataset. The structural covariance connectivity showed higher clustering than randomly generated networks, as well as similar minimum path lengths, indicating that the SCNs are "small world." There were significant difference between NC and AD group in characteristic path lengths (z = -2.97, p < 0.01) and small-worldness values (z = 4.05, p < 0.01). Clustering coefficients in AD was smaller than that of NC but there was no significant difference (z = 1.81, not significant). We further observed that the AD patients had significantly disrupted structural connectivity. We also show that the coordinated variance of cortical thickness is distributed more randomly from one region to other regions in AD patients when compared to NC subjects. Our proposed SCN may provide surface-based measures for understanding interaction between two brain regions with co-atrophy of the cerebral cortex due to normal aging or AD. We applied our method to the AD Neuroimaging Initiative (ADNI) data to show consistency in results with the SMC dataset.
Vogel, Curtis R; Tyler, Glenn A; Wittich, Donald J
2014-07-01
We introduce a framework for modeling, analysis, and simulation of aero-optics wavefront aberrations that is based on spatial-temporal covariance matrices extracted from wavefront sensor measurements. Within this framework, we present a quasi-homogeneous structure function to analyze nonhomogeneous, mildly anisotropic spatial random processes, and we use this structure function to show that phase aberrations arising in aero-optics are, for an important range of operating parameters, locally Kolmogorov. This strongly suggests that the d5/3 power law for adaptive optics (AO) deformable mirror fitting error, where d denotes actuator separation, holds for certain important aero-optics scenarios. This framework also allows us to compute bounds on AO servo lag error and predictive control error. In addition, it provides us with the means to accurately simulate AO systems for the mitigation of aero-effects, and it may provide insight into underlying physical processes associated with turbulent flow. The techniques introduced here are demonstrated using data obtained from the Airborne Aero-Optics Laboratory.
Adlaf, E M; Kohn, P M
1989-07-01
Re-analysis employing covariance-structural models was conducted on Strickland's (1983) survey data on 772 drinking students from Grades 7, 9 and 11. These data bear on the relations among alcohol consumption, alcohol abuse, association with drinking peers and exposure to televised alcohol advertising. Whereas Strickland used a just-identified model which, therefore, could not be tested for goodness of fit, our re-analysis tested several alternative models, which could be contradicted by the data. One model did fit his data particularly well. Its major implications are as follows: (1) Symptomatic consumption, negative consequences and self-rated severity of alcohol-related problems apparently reflect a common underlying factor, namely alcohol abuse. (2) Use of alcohol to relieve distress and frequency of intoxication, however, appear not to reflect abuse, although frequent intoxication contributes substantially to it. (3). Alcohol advertising affects consumption directly and abuse indirectly, although peer association has far greater impact on both consumption and abuse. These findings are interpreted as lending little support to further restrictions on advertising.
[The influence of meaning making following stressful life experiences on change of self-concept].
Horita, Ryo; Sugie, Masashi
2013-10-01
As interest in meaning making following stressful life experiences continues to grow, it is important to clarify the features and functions of the meaning- making process. We examined the influence of meaning making following stressful life experiences on change of self-concept. In two studies, university students selected their most stressful life experience and completed the Assimilation and Accommodation of Meaning Making Scale. In Study 1, 235 university students also completed questionnaires regarding post-traumatic growth and positive change of the sense of identity following their stressful life experience. The results of covariance structure analysis indicated that accommodation promoted a positive change of self-concept. In Study 2, 199 university students completed questionnaires regarding change of self-concept and emotion as a positive or negative change following stressful life experiences. The results of covariance structure analysis indicated that accommodation promoted a positive change, similar to the results of Study 1. In addition, accommodation also promoted negative change. However, assimilation did not promote positive change but did restrain negative change.
Meyer, Karin; Kirkpatrick, Mark
2005-01-01
Principal component analysis is a widely used 'dimension reduction' technique, albeit generally at a phenotypic level. It is shown that we can estimate genetic principal components directly through a simple reparameterisation of the usual linear, mixed model. This is applicable to any analysis fitting multiple, correlated genetic effects, whether effects for individual traits or sets of random regression coefficients to model trajectories. Depending on the magnitude of genetic correlation, a subset of the principal component generally suffices to capture the bulk of genetic variation. Corresponding estimates of genetic covariance matrices are more parsimonious, have reduced rank and are smoothed, with the number of parameters required to model the dispersion structure reduced from k(k + 1)/2 to m(2k - m + 1)/2 for k effects and m principal components. Estimation of these parameters, the largest eigenvalues and pertaining eigenvectors of the genetic covariance matrix, via restricted maximum likelihood using derivatives of the likelihood, is described. It is shown that reduced rank estimation can reduce computational requirements of multivariate analyses substantially. An application to the analysis of eight traits recorded via live ultrasound scanning of beef cattle is given. PMID:15588566
Sensitivity of Fit Indices to Misspecification in Growth Curve Models
ERIC Educational Resources Information Center
Wu, Wei; West, Stephen G.
2010-01-01
This study investigated the sensitivity of fit indices to model misspecification in within-individual covariance structure, between-individual covariance structure, and marginal mean structure in growth curve models. Five commonly used fit indices were examined, including the likelihood ratio test statistic, root mean square error of…
USDA-ARS?s Scientific Manuscript database
Partitioned land surfaces fluxes (e.g. evaporation, transpiration, photosynthesis, and ecosystem respiration) are needed as input, calibration, and validation data for numerous hydrological and land surface models. However, one of the most commonly used techniques for measuring land surface fluxes,...
Williams, M. L.; Wiarda, D.; Ilas, G.; ...
2014-06-15
Recently, we processed a new covariance data library based on ENDF/B-VII.1 for the SCALE nuclear analysis code system. The multigroup covariance data are discussed here, along with testing and application results for critical benchmark experiments. Moreover, the cross section covariance library, along with covariances for fission product yields and decay data, is used to compute uncertainties in the decay heat produced by a burned reactor fuel assembly.
Fan, Liqiong; Yeatts, Sharon D; Foster, Lydia D; Khatri, Pooja; Tomsick, Thomas; Broderick, Joseph P; Palesch, Yuko Y
2017-03-01
The Interventional Management of Stroke (IMS) III trial was a randomized controlled trial designed to compare the effect of endovascular therapy after intravenous recombinant tissue plasminogen activator (i.v. rt-PA) as compared to i.v. rt-PA alone. The primary outcome was modified Rankin Scale at 90 days. Secondary outcomes included National Institutes of Health Stroke Scale (NIHSS), which was assessed repeatedly through 90 days. The objective of this analysis is to evaluate the treatment effect of endovascular therapy over time on NIHSS. 656 subjects were enrolled in the IMS III trial, including 434 subjects randomized to endovascular therapy and 222 to i.v. rt-PA only. NIHSS scores evaluated at 40 min, 24 h, Day 5, and Day 90 were included in the analysis. A covariance structure model was used to investigate the treatment effect on NIHSS over time, adjusting for relevant covariates including baseline stroke severity. Model assumptions were valid. Based on the covariance structure model, after adjusting for relevant baseline covariates, a significant time-by-treatment interaction effect ( p = 0.0137) was observed. Only NIHSS at Day 90 showed a significant treatment effect ( p = 0.0473), with subjects in the endovascular arm having a lower NIHSS (less neurologic deficit) compared to the i.v. rt-PA arm. The IMS III trial demonstrated an endovascular treatment effect based on the secondary outcome of NIHSS. However, the magnitude of this treatment effect varied by the time of assessment. It was only at Day 90 that the endovascular arm had a significantly lower NIHSS compared to that in the i.v. rt-PA arm.
Real longitudinal data analysis for real people: building a good enough mixed model.
Cheng, Jing; Edwards, Lloyd J; Maldonado-Molina, Mildred M; Komro, Kelli A; Muller, Keith E
2010-02-20
Mixed effects models have become very popular, especially for the analysis of longitudinal data. One challenge is how to build a good enough mixed effects model. In this paper, we suggest a systematic strategy for addressing this challenge and introduce easily implemented practical advice to build mixed effects models. A general discussion of the scientific strategies motivates the recommended five-step procedure for model fitting. The need to model both the mean structure (the fixed effects) and the covariance structure (the random effects and residual error) creates the fundamental flexibility and complexity. Some very practical recommendations help to conquer the complexity. Centering, scaling, and full-rank coding of all the predictor variables radically improve the chances of convergence, computing speed, and numerical accuracy. Applying computational and assumption diagnostics from univariate linear models to mixed model data greatly helps to detect and solve the related computational problems. Applying computational and assumption diagnostics from the univariate linear models to the mixed model data can radically improve the chances of convergence, computing speed, and numerical accuracy. The approach helps to fit more general covariance models, a crucial step in selecting a credible covariance model needed for defensible inference. A detailed demonstration of the recommended strategy is based on data from a published study of a randomized trial of a multicomponent intervention to prevent young adolescents' alcohol use. The discussion highlights a need for additional covariance and inference tools for mixed models. The discussion also highlights the need for improving how scientists and statisticians teach and review the process of finding a good enough mixed model. (c) 2009 John Wiley & Sons, Ltd.
Tao, Chenyang; Nichols, Thomas E.; Hua, Xue; Ching, Christopher R.K.; Rolls, Edmund T.; Thompson, Paul M.; Feng, Jianfeng
2017-01-01
We propose a generalized reduced rank latent factor regression model (GRRLF) for the analysis of tensor field responses and high dimensional covariates. The model is motivated by the need from imaging-genetic studies to identify genetic variants that are associated with brain imaging phenotypes, often in the form of high dimensional tensor fields. GRRLF identifies from the structure in the data the effective dimensionality of the data, and then jointly performs dimension reduction of the covariates, dynamic identification of latent factors, and nonparametric estimation of both covariate and latent response fields. After accounting for the latent and covariate effects, GRLLF performs a nonparametric test on the remaining factor of interest. GRRLF provides a better factorization of the signals compared with common solutions, and is less susceptible to overfitting because it exploits the effective dimensionality. The generality and the flexibility of GRRLF also allow various statistical models to be handled in a unified framework and solutions can be efficiently computed. Within the field of neuroimaging, it improves the sensitivity for weak signals and is a promising alternative to existing approaches. The operation of the framework is demonstrated with both synthetic datasets and a real-world neuroimaging example in which the effects of a set of genes on the structure of the brain at the voxel level were measured, and the results compared favorably with those from existing approaches. PMID:27666385
The Azimuth Structure of Nuclear Collisions — I
NASA Astrophysics Data System (ADS)
Trainor, Thomas A.; Kettler, David T.
We describe azimuth structure commonly associated with elliptic and directed flow in the context of 2D angular autocorrelations for the purpose of precise separation of so-called nonflow (mainly minijets) from flow. We extend the Fourier-transform description of azimuth structure to include power spectra and autocorrelations related by the Wiener-Khintchine theorem. We analyze several examples of conventional flow analysis in that context and question the relevance of reaction plane estimation to flow analysis. We introduce the 2D angular autocorrelation with examples from data analysis and describe a simulation exercise which demonstrates precise separation of flow and nonflow using the 2D autocorrelation method. We show that an alternative correlation measure based on Pearson's normalized covariance provides a more intuitive measure of azimuth structure.
Missing continuous outcomes under covariate dependent missingness in cluster randomised trials
Diaz-Ordaz, Karla; Bartlett, Jonathan W
2016-01-01
Attrition is a common occurrence in cluster randomised trials which leads to missing outcome data. Two approaches for analysing such trials are cluster-level analysis and individual-level analysis. This paper compares the performance of unadjusted cluster-level analysis, baseline covariate adjusted cluster-level analysis and linear mixed model analysis, under baseline covariate dependent missingness in continuous outcomes, in terms of bias, average estimated standard error and coverage probability. The methods of complete records analysis and multiple imputation are used to handle the missing outcome data. We considered four scenarios, with the missingness mechanism and baseline covariate effect on outcome either the same or different between intervention groups. We show that both unadjusted cluster-level analysis and baseline covariate adjusted cluster-level analysis give unbiased estimates of the intervention effect only if both intervention groups have the same missingness mechanisms and there is no interaction between baseline covariate and intervention group. Linear mixed model and multiple imputation give unbiased estimates under all four considered scenarios, provided that an interaction of intervention and baseline covariate is included in the model when appropriate. Cluster mean imputation has been proposed as a valid approach for handling missing outcomes in cluster randomised trials. We show that cluster mean imputation only gives unbiased estimates when missingness mechanism is the same between the intervention groups and there is no interaction between baseline covariate and intervention group. Multiple imputation shows overcoverage for small number of clusters in each intervention group. PMID:27177885
Missing continuous outcomes under covariate dependent missingness in cluster randomised trials.
Hossain, Anower; Diaz-Ordaz, Karla; Bartlett, Jonathan W
2017-06-01
Attrition is a common occurrence in cluster randomised trials which leads to missing outcome data. Two approaches for analysing such trials are cluster-level analysis and individual-level analysis. This paper compares the performance of unadjusted cluster-level analysis, baseline covariate adjusted cluster-level analysis and linear mixed model analysis, under baseline covariate dependent missingness in continuous outcomes, in terms of bias, average estimated standard error and coverage probability. The methods of complete records analysis and multiple imputation are used to handle the missing outcome data. We considered four scenarios, with the missingness mechanism and baseline covariate effect on outcome either the same or different between intervention groups. We show that both unadjusted cluster-level analysis and baseline covariate adjusted cluster-level analysis give unbiased estimates of the intervention effect only if both intervention groups have the same missingness mechanisms and there is no interaction between baseline covariate and intervention group. Linear mixed model and multiple imputation give unbiased estimates under all four considered scenarios, provided that an interaction of intervention and baseline covariate is included in the model when appropriate. Cluster mean imputation has been proposed as a valid approach for handling missing outcomes in cluster randomised trials. We show that cluster mean imputation only gives unbiased estimates when missingness mechanism is the same between the intervention groups and there is no interaction between baseline covariate and intervention group. Multiple imputation shows overcoverage for small number of clusters in each intervention group.
NASA Astrophysics Data System (ADS)
Witte, M.; Morrison, H.; Jensen, J. B.; Bansemer, A.; Gettelman, A.
2017-12-01
The spatial covariance of cloud and rain water (or in simpler terms, small and large drops, respectively) is an important quantity for accurate prediction of the accretion rate in bulk microphysical parameterizations that account for subgrid variability using assumed probability density functions (pdfs). Past diagnoses of this covariance from remote sensing, in situ measurements and large eddy simulation output have implicitly assumed that the magnitude of the covariance is insensitive to grain size (i.e. horizontal resolution) and averaging length, but this is not the case because both cloud and rain water exhibit scale invariance across a wide range of scales - from tens of centimeters to tens of kilometers in the case of cloud water, a range that we will show is primarily limited by instrumentation and sampling issues. Since the individual variances systematically vary as a function of spatial scale, it should be expected that the covariance follows a similar relationship. In this study, we quantify the scaling properties of cloud and rain water content and their covariability from high frequency in situ aircraft measurements of marine stratocumulus taken over the southeastern Pacific Ocean aboard the NSF/NCAR C-130 during the VOCALS-REx field experiment of October-November 2008. First we confirm that cloud and rain water scale in distinct manners, indicating that there is a statistically and potentially physically significant difference in the spatial structure of the two fields. Next, we demonstrate that the covariance is a strong function of spatial scale, which implies important caveats regarding the ability of limited-area models with domains smaller than a few tens of kilometers across to accurately reproduce the spatial organization of precipitation. Finally, we present preliminary work on the development of a scale-aware parameterization of cloud-rain water subgrid covariability based in multifractal analysis intended for application in large-scale model microphysics schemes.
Yiu, Sean; Farewell, Vernon T; Tom, Brian D M
2018-02-01
In psoriatic arthritis, it is important to understand the joint activity (represented by swelling and pain) and damage processes because both are related to severe physical disability. The paper aims to provide a comprehensive investigation into both processes occurring over time, in particular their relationship, by specifying a joint multistate model at the individual hand joint level, which also accounts for many of their important features. As there are multiple hand joints, such an analysis will be based on the use of clustered multistate models. Here we consider an observation level random-effects structure with dynamic covariates and allow for the possibility that a subpopulation of patients is at minimal risk of damage. Such an analysis is found to provide further understanding of the activity-damage relationship beyond that provided by previous analyses. Consideration is also given to the modelling of mean sojourn times and jump probabilities. In particular, a novel model parameterization which allows easily interpretable covariate effects to act on these quantities is proposed.
Tseng, Z. Jack; Flynn, John J.
2018-01-01
Skull shape convergence is pervasive among vertebrates. Although this is frequently inferred to indicate similar functional underpinnings, neither the specific structure-function linkages nor the selective environments in which the supposed functional adaptations arose are commonly identified and tested. We demonstrate that nonfeeding factors relating to sexual maturity and precipitation-related arboreality also can generate structure-function relationships in the skulls of carnivorans (dogs, cats, seals, and relatives) through covariation with masticatory performance. We estimated measures of masticatory performance related to ecological variables that covary with cranial shape in the mammalian order Carnivora, integrating geometric morphometrics and finite element analyses. Even after accounting for phylogenetic autocorrelation, cranial shapes are significantly correlated to both feeding and nonfeeding ecological variables, and covariation with both variable types generated significant masticatory performance gradients. This suggests that mechanisms of obligate shape covariation with nonfeeding variables can produce performance changes resembling those arising from feeding adaptations in Carnivora. PMID:29441363
Analysis of longitudinal data from animals where some data are missing in SPSS
Duricki, DA; Soleman, S; Moon, LDF
2017-01-01
Testing of therapies for disease or injury often involves analysis of longitudinal data from animals. Modern analytical methods have advantages over conventional methods (particularly where some data are missing) yet are not used widely by pre-clinical researchers. We provide here an easy to use protocol for analysing longitudinal data from animals and present a click-by-click guide for performing suitable analyses using the statistical package SPSS. We guide readers through analysis of a real-life data set obtained when testing a therapy for brain injury (stroke) in elderly rats. We show that repeated measures analysis of covariance failed to detect a treatment effect when a few data points were missing (due to animal drop-out) whereas analysis using an alternative method detected a beneficial effect of treatment; specifically, we demonstrate the superiority of linear models (with various covariance structures) analysed using Restricted Maximum Likelihood estimation (to include all available data). This protocol takes two hours to follow. PMID:27196723
Low-dimensional Representation of Error Covariance
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; Cohn, Stephen E.; Todling, Ricardo; Marchesin, Dan
2000-01-01
Ensemble and reduced-rank approaches to prediction and assimilation rely on low-dimensional approximations of the estimation error covariances. Here stability properties of the forecast/analysis cycle for linear, time-independent systems are used to identify factors that cause the steady-state analysis error covariance to admit a low-dimensional representation. A useful measure of forecast/analysis cycle stability is the bound matrix, a function of the dynamics, observation operator and assimilation method. Upper and lower estimates for the steady-state analysis error covariance matrix eigenvalues are derived from the bound matrix. The estimates generalize to time-dependent systems. If much of the steady-state analysis error variance is due to a few dominant modes, the leading eigenvectors of the bound matrix approximate those of the steady-state analysis error covariance matrix. The analytical results are illustrated in two numerical examples where the Kalman filter is carried to steady state. The first example uses the dynamics of a generalized advection equation exhibiting nonmodal transient growth. Failure to observe growing modes leads to increased steady-state analysis error variances. Leading eigenvectors of the steady-state analysis error covariance matrix are well approximated by leading eigenvectors of the bound matrix. The second example uses the dynamics of a damped baroclinic wave model. The leading eigenvectors of a lowest-order approximation of the bound matrix are shown to approximate well the leading eigenvectors of the steady-state analysis error covariance matrix.
The HOME Inventory and Family Demographics.
ERIC Educational Resources Information Center
Bradley, Robert H.; Caldwell, Bettye M.
1984-01-01
Examines the relation between the Home Observation for Measurement of Environment (HOME) Inventory and sex, race, socioeconomic status, the amount of crowding in the home, and birth order. Performs multivariate analysis of covariance on an intact family sample using HOME subscales as criterion measures and status and structural variables as…
Using Robust Variance Estimation to Combine Multiple Regression Estimates with Meta-Analysis
ERIC Educational Resources Information Center
Williams, Ryan
2013-01-01
The purpose of this study was to explore the use of robust variance estimation for combining commonly specified multiple regression models and for combining sample-dependent focal slope estimates from diversely specified models. The proposed estimator obviates traditionally required information about the covariance structure of the dependent…
Strategies for estimating the marine geoid from altimeter data
NASA Technical Reports Server (NTRS)
Argentiero, P.; Kahn, W. D.; Garza-Robles, R.
1976-01-01
Altimeter data from a spacecraft borne altimeter was processed to estimate the fine structure of the marine geoid. Simulation studies show that, among several competing parameterizations, the mean free air gravity anomaly model exhibited promising geoid recovery characteristics. Using covariance analysis techniques, quantitative measures of the orthogonality properties are investigated.
Chang, Chiung-Chih; Chang, Ya-Ting; Huang, Chi-Wei; Tsai, Shih-Jen; Hsu, Shih-Wei; Huang, Shu-Hua; Lee, Chen-Chang; Chang, Wen-Neng; Lui, Chun-Chung; Lien, Chia-Yi
2018-02-08
Alzheimer's disease (AD) is a complex neurodegenerative disease, and genetic differences may mediate neuronal degeneration. In humans, a single-nucleotide polymorphism in the B-cell chronic lymphocytic leukemia/lymphoma-2 (Bcl-2) gene, rs956572, has been found to significantly modulate Bcl-2 protein expression in the brain. The Bcl-2 AA genotype has been associated with reduced Bcl-2 levels and lower gray matter volume in healthy populations. We hypothesized that different Bcl-2 genotype groups may modulate large-scale brain networks that determine neurobehavioral test scores. Gray matter structural covariance networks (SCNs) were constructed in 104 patients with AD using T1-weighted magnetic resonance imaging with seed-based correlation analysis. The patients were stratified into two genotype groups on the basis of Bcl-2 expression (G carriers, n = 76; A homozygotes, n = 28). Four SCNs characteristic of AD were constructed from seeds in the default mode network, salience network, and executive control network, and cognitive test scores served as the major outcome factor. For the G carriers, influences of the SCNs were observed mostly in the default mode network, of which the peak clusters anchored by the posterior cingulate cortex seed determined the cognitive test scores. In contrast, genetic influences in the A homozygotes were found mainly in the executive control network, and both the dorsolateral prefrontal cortex seed and the interconnected peak clusters were correlated with the clinical scores. Despite a small number of cases, the A homozygotes showed greater covariance strength than the G carriers among all four SCNs. Our results suggest that the Bcl-2 rs956572 polymorphism is associated with different strengths of structural covariance in AD that determine clinical outcomes. The greater covariance strength in the four SCNs shown in the A homozygotes suggests that different Bcl-2 polymorphisms play different modulatory roles.
Robustness of meta-analyses in finding gene × environment interactions
Shi, Gang; Nehorai, Arye
2017-01-01
Meta-analyses that synthesize statistical evidence across studies have become important analytical tools for genetic studies. Inspired by the success of genome-wide association studies of the genetic main effect, researchers are searching for gene × environment interactions. Confounders are routinely included in the genome-wide gene × environment interaction analysis as covariates; however, this does not control for any confounding effects on the results if covariate × environment interactions are present. We carried out simulation studies to evaluate the robustness to the covariate × environment confounder for meta-regression and joint meta-analysis, which are two commonly used meta-analysis methods for testing the gene × environment interaction or the genetic main effect and interaction jointly. Here we show that meta-regression is robust to the covariate × environment confounder while joint meta-analysis is subject to the confounding effect with inflated type I error rates. Given vast sample sizes employed in genome-wide gene × environment interaction studies, non-significant covariate × environment interactions at the study level could substantially elevate the type I error rate at the consortium level. When covariate × environment confounders are present, type I errors can be controlled in joint meta-analysis by including the covariate × environment terms in the analysis at the study level. Alternatively, meta-regression can be applied, which is robust to potential covariate × environment confounders. PMID:28362796
Performance Analysis of Local Ensemble Kalman Filter
NASA Astrophysics Data System (ADS)
Tong, Xin T.
2018-03-01
Ensemble Kalman filter (EnKF) is an important data assimilation method for high-dimensional geophysical systems. Efficient implementation of EnKF in practice often involves the localization technique, which updates each component using only information within a local radius. This paper rigorously analyzes the local EnKF (LEnKF) for linear systems and shows that the filter error can be dominated by the ensemble covariance, as long as (1) the sample size exceeds the logarithmic of state dimension and a constant that depends only on the local radius; (2) the forecast covariance matrix admits a stable localized structure. In particular, this indicates that with small system and observation noises, the filter error will be accurate in long time even if the initialization is not. The analysis also reveals an intrinsic inconsistency caused by the localization technique, and a stable localized structure is necessary to control this inconsistency. While this structure is usually taken for granted for the operation of LEnKF, it can also be rigorously proved for linear systems with sparse local observations and weak local interactions. These theoretical results are also validated by numerical implementation of LEnKF on a simple stochastic turbulence in two dynamical regimes.
ERIC Educational Resources Information Center
Levy, Roy
2010-01-01
SEMModComp, a software package for conducting likelihood ratio tests for mean and covariance structure modeling is described. The package is written in R and freely available for download or on request.
ERIC Educational Resources Information Center
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M.; Beretvas, S. Natasha; Van den Noortgate, Wim
2016-01-01
The impact of misspecifying covariance matrices at the second and third levels of the three-level model is evaluated. Results indicate that ignoring existing covariance has no effect on the treatment effect estimate. In addition, the between-case variance estimates are unbiased when covariance is either modeled or ignored. If the research interest…
NASA Astrophysics Data System (ADS)
Zhaunerchyk, V.; Frasinski, L. J.; Eland, J. H. D.; Feifel, R.
2014-05-01
Multidimensional covariance analysis and its validity for correlation of processes leading to multiple products are investigated from a theoretical point of view. The need to correct for false correlations induced by experimental parameters which fluctuate from shot to shot, such as the intensity of self-amplified spontaneous emission x-ray free-electron laser pulses, is emphasized. Threefold covariance analysis based on simple extension of the two-variable formulation is shown to be valid for variables exhibiting Poisson statistics. In this case, false correlations arising from fluctuations in an unstable experimental parameter that scale linearly with signals can be eliminated by threefold partial covariance analysis, as defined here. Fourfold covariance based on the same simple extension is found to be invalid in general. Where fluctuations in an unstable parameter induce nonlinear signal variations, a technique of contingent covariance analysis is proposed here to suppress false correlations. In this paper we also show a method to eliminate false correlations associated with fluctuations of several unstable experimental parameters.
Chang, Jinyuan; Zhou, Wen; Zhou, Wen-Xin; Wang, Lan
2017-03-01
Comparing large covariance matrices has important applications in modern genomics, where scientists are often interested in understanding whether relationships (e.g., dependencies or co-regulations) among a large number of genes vary between different biological states. We propose a computationally fast procedure for testing the equality of two large covariance matrices when the dimensions of the covariance matrices are much larger than the sample sizes. A distinguishing feature of the new procedure is that it imposes no structural assumptions on the unknown covariance matrices. Hence, the test is robust with respect to various complex dependence structures that frequently arise in genomics. We prove that the proposed procedure is asymptotically valid under weak moment conditions. As an interesting application, we derive a new gene clustering algorithm which shares the same nice property of avoiding restrictive structural assumptions for high-dimensional genomics data. Using an asthma gene expression dataset, we illustrate how the new test helps compare the covariance matrices of the genes across different gene sets/pathways between the disease group and the control group, and how the gene clustering algorithm provides new insights on the way gene clustering patterns differ between the two groups. The proposed methods have been implemented in an R-package HDtest and are available on CRAN. © 2016, The International Biometric Society.
Disruption of structural covariance networks for language in autism is modulated by verbal ability.
Sharda, Megha; Khundrakpam, Budhachandra S; Evans, Alan C; Singh, Nandini C
2016-03-01
The presence of widespread speech and language deficits is a core feature of autism spectrum disorders (ASD). These impairments have often been attributed to altered connections between brain regions. Recent developments in anatomical correlation-based approaches to map structural covariance offer an effective way of studying such connections in vivo. In this study, we employed such a structural covariance network (SCN)-based approach to investigate the integrity of anatomical networks in fronto-temporal brain regions of twenty children with ASD compared to an age and gender-matched control group of twenty-two children. Our findings reflected large-scale disruption of inter and intrahemispheric covariance in left frontal SCNs in the ASD group compared to controls, but no differences in right fronto-temporal SCNs. Interhemispheric covariance in left-seeded networks was further found to be modulated by verbal ability of the participants irrespective of autism diagnosis, suggesting that language function might be related to the strength of interhemispheric structural covariance between frontal regions. Additionally, regional cortical thickening was observed in right frontal and left posterior regions, which was predicted by decreasing symptom severity and increasing verbal ability in ASD. These findings unify reports of regional differences in cortical morphology in ASD. They also suggest that reduced left hemisphere asymmetry and increased frontal growth may not only reflect neurodevelopmental aberrations but also compensatory mechanisms.
Model Comparison of Nonlinear Structural Equation Models with Fixed Covariates.
ERIC Educational Resources Information Center
Lee, Sik-Yum; Song, Xin-Yuan
2003-01-01
Proposed a new nonlinear structural equation model with fixed covariates to deal with some complicated substantive theory and developed a Bayesian path sampling procedure for model comparison. Illustrated the approach with an illustrative example using data from an international study. (SLD)
Thomson, James R; Kimmerer, Wim J; Brown, Larry R; Newman, Ken B; Mac Nally, Ralph; Bennett, William A; Feyrer, Frederick; Fleishman, Erica
2010-07-01
We examined trends in abundance of four pelagic fish species (delta smelt, longfin smelt, striped bass, and threadfin shad) in the upper San Francisco Estuary, California, USA, over 40 years using Bayesian change point models. Change point models identify times of abrupt or unusual changes in absolute abundance (step changes) or in rates of change in abundance (trend changes). We coupled Bayesian model selection with linear regression splines to identify biotic or abiotic covariates with the strongest associations with abundances of each species. We then refitted change point models conditional on the selected covariates to explore whether those covariates could explain statistical trends or change points in species abundances. We also fitted a multispecies change point model that identified change points common to all species. All models included hierarchical structures to model data uncertainties, including observation errors and missing covariate values. There were step declines in abundances of all four species in the early 2000s, with a likely common decline in 2002. Abiotic variables, including water clarity, position of the 2 per thousand isohaline (X2), and the volume of freshwater exported from the estuary, explained some variation in species' abundances over the time series, but no selected covariates could explain statistically the post-2000 change points for any species.
Li, Dan; Wang, Xia; Dey, Dipak K
2016-09-01
Our present work proposes a new survival model in a Bayesian context to analyze right-censored survival data for populations with a surviving fraction, assuming that the log failure time follows a generalized extreme value distribution. Many applications require a more flexible modeling of covariate information than a simple linear or parametric form for all covariate effects. It is also necessary to include the spatial variation in the model, since it is sometimes unexplained by the covariates considered in the analysis. Therefore, the nonlinear covariate effects and the spatial effects are incorporated into the systematic component of our model. Gaussian processes (GPs) provide a natural framework for modeling potentially nonlinear relationship and have recently become extremely powerful in nonlinear regression. Our proposed model adopts a semiparametric Bayesian approach by imposing a GP prior on the nonlinear structure of continuous covariate. With the consideration of data availability and computational complexity, the conditionally autoregressive distribution is placed on the region-specific frailties to handle spatial correlation. The flexibility and gains of our proposed model are illustrated through analyses of simulated data examples as well as a dataset involving a colon cancer clinical trial from the state of Iowa. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lebigre, Christophe; Arcese, Peter; Reid, Jane M
2013-07-01
Age-specific variances and covariances in reproductive success shape the total variance in lifetime reproductive success (LRS), age-specific opportunities for selection, and population demographic variance and effective size. Age-specific (co)variances in reproductive success achieved through different reproductive routes must therefore be quantified to predict population, phenotypic and evolutionary dynamics in age-structured populations. While numerous studies have quantified age-specific variation in mean reproductive success, age-specific variances and covariances in reproductive success, and the contributions of different reproductive routes to these (co)variances, have not been comprehensively quantified in natural populations. We applied 'additive' and 'independent' methods of variance decomposition to complete data describing apparent (social) and realised (genetic) age-specific reproductive success across 11 cohorts of socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia). We thereby quantified age-specific (co)variances in male within-pair and extra-pair reproductive success (WPRS and EPRS) and the contributions of these (co)variances to the total variances in age-specific reproductive success and LRS. 'Additive' decomposition showed that within-age and among-age (co)variances in WPRS across males aged 2-4 years contributed most to the total variance in LRS. Age-specific (co)variances in EPRS contributed relatively little. However, extra-pair reproduction altered age-specific variances in reproductive success relative to the social mating system, and hence altered the relative contributions of age-specific reproductive success to the total variance in LRS. 'Independent' decomposition showed that the (co)variances in age-specific WPRS, EPRS and total reproductive success, and the resulting opportunities for selection, varied substantially across males that survived to each age. Furthermore, extra-pair reproduction increased the variance in age-specific reproductive success relative to the social mating system to a degree that increased across successive age classes. This comprehensive decomposition of the total variances in age-specific reproductive success and LRS into age-specific (co)variances attributable to two reproductive routes showed that within-age and among-age covariances contributed substantially to the total variance and that extra-pair reproduction can alter the (co)variance structure of age-specific reproductive success. Such covariances and impacts should consequently be integrated into theoretical assessments of demographic and evolutionary processes in age-structured populations. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Analysis of longitudinal data from animals with missing values using SPSS.
Duricki, Denise A; Soleman, Sara; Moon, Lawrence D F
2016-06-01
Testing of therapies for disease or injury often involves the analysis of longitudinal data from animals. Modern analytical methods have advantages over conventional methods (particularly when some data are missing), yet they are not used widely by preclinical researchers. Here we provide an easy-to-use protocol for the analysis of longitudinal data from animals, and we present a click-by-click guide for performing suitable analyses using the statistical package IBM SPSS Statistics software (SPSS). We guide readers through the analysis of a real-life data set obtained when testing a therapy for brain injury (stroke) in elderly rats. If a few data points are missing, as in this example data set (for example, because of animal dropout), repeated-measures analysis of covariance may fail to detect a treatment effect. An alternative analysis method, such as the use of linear models (with various covariance structures), and analysis using restricted maximum likelihood estimation (to include all available data) can be used to better detect treatment effects. This protocol takes 2 h to carry out.
NASA Astrophysics Data System (ADS)
Friedrich, Oliver; Eifler, Tim
2018-01-01
Computing the inverse covariance matrix (or precision matrix) of large data vectors is crucial in weak lensing (and multiprobe) analyses of the large-scale structure of the Universe. Analytically computed covariances are noise-free and hence straightforward to invert; however, the model approximations might be insufficient for the statistical precision of future cosmological data. Estimating covariances from numerical simulations improves on these approximations, but the sample covariance estimator is inherently noisy, which introduces uncertainties in the error bars on cosmological parameters and also additional scatter in their best-fitting values. For future surveys, reducing both effects to an acceptable level requires an unfeasibly large number of simulations. In this paper we describe a way to expand the precision matrix around a covariance model and show how to estimate the leading order terms of this expansion from simulations. This is especially powerful if the covariance matrix is the sum of two contributions, C = A+B, where A is well understood analytically and can be turned off in simulations (e.g. shape noise for cosmic shear) to yield a direct estimate of B. We test our method in mock experiments resembling tomographic weak lensing data vectors from the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST). For DES we find that 400 N-body simulations are sufficient to achieve negligible statistical uncertainties on parameter constraints. For LSST this is achieved with 2400 simulations. The standard covariance estimator would require >105 simulations to reach a similar precision. We extend our analysis to a DES multiprobe case finding a similar performance.
The convergence of maturational change and structural covariance in human cortical networks.
Alexander-Bloch, Aaron; Raznahan, Armin; Bullmore, Ed; Giedd, Jay
2013-02-13
Large-scale covariance of cortical thickness or volume in distributed brain regions has been consistently reported by human neuroimaging studies. The mechanism of this population covariance of regional cortical anatomy has been hypothetically related to synchronized maturational changes in anatomically connected neuronal populations. Brain regions that grow together, i.e., increase or decrease in volume at the same rate over the course of years in the same individual, are thus expected to demonstrate strong structural covariance or anatomical connectivity across individuals. To test this prediction, we used a structural MRI dataset on healthy young people (N = 108; aged 9-22 years at enrollment), comprising 3-6 longitudinal scans on each participant over 6-12 years of follow-up. At each of 360 regional nodes, and for each participant, we estimated the following: (1) the cortical thickness in the median scan and (2) the linear rate of change in cortical thickness over years of serial scanning. We constructed structural and maturational association matrices and networks from these measurements. Both structural and maturational networks shared similar global and nodal topological properties, as well as mesoscopic features including a modular community structure, a relatively small number of highly connected hub regions, and a bias toward short distance connections. Using resting-state functional magnetic resonance imaging data on a subset of the sample (N = 32), we also demonstrated that functional connectivity and network organization was somewhat predictable by structural/maturational networks but demonstrated a stronger bias toward short distance connections and greater topological segregation. Brain structural covariance networks are likely to reflect synchronized developmental change in distributed cortical regions.
A Statistical Test for Comparing Nonnested Covariance Structure Models.
ERIC Educational Resources Information Center
Levy, Roy; Hancock, Gregory R.
While statistical procedures are well known for comparing hierarchically related (nested) covariance structure models, statistical tests for comparing nonhierarchically related (nonnested) models have proven more elusive. While isolated attempts have been made, none exists within the commonly used maximum likelihood estimation framework, thereby…
Wang, Xuetong; Yu, Yang; Zhao, Weina; Li, Qiongling; Li, Xinwei; Li, Shuyu; Yin, Changhao; Han, Ying
2018-01-01
The hippocampus plays important roles in memory processing. However, the hippocampus is not a homogeneous structure, which consists of several subfields. The hippocampal subfields are differently affected by many neurodegenerative diseases, especially mild cognitive impairment (MCI). Amnestic mild cognitive impairment (aMCI) and subcortical vascular mild cognitive impairment (svMCI) are the two subtypes of MCI. aMCI is characterized by episodic memory loss, and svMCI is characterized by extensive white matter hyperintensities and multiple lacunar infarctions on magnetic resonance imaging. The primary cognitive impairment in svMCI is executive function, attention, and semantic memory. Some variations or disconnections within specific large-scale brain networks have been observed in aMCI and svMCI patients. The aim of this study was to investigate abnormalities in structural covariance networks (SCNs) between hippocampal subfields and the whole cerebral cortex in aMCI and svMCI patients, and whether these abnormalities are different between the two groups. Automated segmentation of hippocampal subfields was performed with FreeSurfer 5.3, and we selected five hippocampal subfields as the seeds of SCN analysis: CA1, CA2/3, CA4/dentate gyrus (DG), subiculum, and presubiculum. SCNs were constructed based on these hippocampal subfield seeds for each group. Significant correlations between hippocampal subfields, fusiform gyrus (FFG), and entorhinal cortex (ERC) in gray matter volume were found in each group. We also compared the differences in the strength of structural covariance between any two groups. In the aMCI group, compared to the normal controls (NC) group, we observed an increased association between the left CA1/CA4/DG/subiculum and the left temporal pole. Additionally, the hippocampal subfields (bilateral CA1, left CA2/3) significantly covaried with the orbitofrontal cortex in the svMCI group compared to the NC group. In the aMCI group compared to the svMCI group, we observed decreased association between hippocampal subfields and the right FFG, while we also observed an increased association between the bilateral subiculum/presubiculum and bilateral ERC. These findings provide new evidence that there is altered whole-brain structural covariance of the hippocampal subfields in svMCI and aMCI patients and provide insights to the pathological mechanisms of different MCI subtypes.
Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective
NASA Technical Reports Server (NTRS)
Gutell, R. R.; Larsen, N.; Woese, C. R.
1994-01-01
The 16S and 23S rRNA higher-order structures inferred from comparative analysis are now quite refined. The models presented here differ from their immediate predecessors only in minor detail. Thus, it is safe to assert that all of the standard secondary-structure elements in (prokaryotic) rRNAs have been identified, with approximately 90% of the individual base pairs in each molecule having independent comparative support, and that at least some of the tertiary interactions have been revealed. It is interesting to compare the rRNAs in this respect with tRNA, whose higher-order structure is known in detail from its crystal structure (36) (Table 2). It can be seen that rRNAs have as great a fraction of their sequence in established secondary-structure elements as does tRNA. However, the fact that the former show a much lower fraction of identified tertiary interactions and a greater fraction of unpaired nucleotides than the latter implies that many of the rRNA tertiary interactions remain to be located. (Alternatively, the ribosome might involve protein-rRNA rather than intramolecular rRNA interactions to stabilize three-dimensional structure.) Experimental studies on rRNA are consistent to a first approximation with the structures proposed here, confirming the basic assumption of comparative analysis, i.e., that bases whose compositions strictly covary are physically interacting. In the exhaustive study of Moazed et al. (45) on protection of the bases in the small-subunit rRNA against chemical modification, the vast majority of bases inferred to pair by covariation are found to be protected from chemical modification, both in isolated small-subunit rRNA and in the 30S subunit. The majority of the tertiary interactions are reflected in the chemical protection data as well (45). On the other hand, many of the bases not shown as paired in Fig. 1 are accessible to chemical attack (45). However, in this case a sizeable fraction of them are also protected against chemical modification (in the isolated rRNA), which suggests that considerable higher-order structure remains to be found (although all of it may not involve base-base interactions and so may not be detectable by comparative analysis). The agreement between the higher-order structure of the small-subunit rRNA and protection against chemical modification is not perfect, however; some bases shown to covary canonically are accessible to chemical modification (45).(ABSTRACT TRUNCATED AT 400 WORDS).
NASA Astrophysics Data System (ADS)
Ali, Mohamed H.; Rakib, Fazle; Al-Saad, Khalid; Al-Saady, Rafif; Lyng, Fiona M.; Goormaghtigh, Erik
2018-07-01
Breast cancer is the second most common cancer after lung cancer. So far, in clinical practice, most cancer parameters originating from histopathology rely on the visualization by a pathologist of microscopic structures observed in stained tissue sections, including immunohistochemistry markers. Fourier transform infrared spectroscopy (FTIR) spectroscopy provides a biochemical fingerprint of a biopsy sample and, together with advanced data analysis techniques, can accurately classify cell types. Yet, one of the challenges when dealing with FTIR imaging is the slow recording of the data. One cm2 tissue section requires several hours of image recording. We show in the present paper that 2D covariance analysis singles out only a few wavenumbers where both variance and covariance are large. Simple models could be built using 4 wavenumbers to identify the 4 main cell types present in breast cancer tissue sections. Decision trees provide particularly simple models to reach discrimination between the 4 cell types. The robustness of these simple decision-tree models were challenged with FTIR spectral data obtained using different recording conditions. One test set was recorded by transflection on tissue sections in the presence of paraffin while the training set was obtained on dewaxed tissue sections by transmission. Furthermore, the test set was collected with a different brand of FTIR microscope and a different pixel size. Despite the different recording conditions, separating extracellular matrix (ECM) from carcinoma spectra was 100% successful, underlying the robustness of this univariate model and the utility of covariance analysis for revealing efficient wavenumbers. We suggest that 2D covariance maps using the full spectral range could be most useful to select the interesting wavenumbers and achieve very fast data acquisition on quantum cascade laser infrared imaging microscopes.
Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.
Xie, Yanmei; Zhang, Biao
2017-04-20
Missing covariate data occurs often in regression analysis, which frequently arises in the health and social sciences as well as in survey sampling. We study methods for the analysis of a nonignorable covariate-missing data problem in an assumed conditional mean function when some covariates are completely observed but other covariates are missing for some subjects. We adopt the semiparametric perspective of Bartlett et al. (Improving upon the efficiency of complete case analysis when covariates are MNAR. Biostatistics 2014;15:719-30) on regression analyses with nonignorable missing covariates, in which they have introduced the use of two working models, the working probability model of missingness and the working conditional score model. In this paper, we study an empirical likelihood approach to nonignorable covariate-missing data problems with the objective of effectively utilizing the two working models in the analysis of covariate-missing data. We propose a unified approach to constructing a system of unbiased estimating equations, where there are more equations than unknown parameters of interest. One useful feature of these unbiased estimating equations is that they naturally incorporate the incomplete data into the data analysis, making it possible to seek efficient estimation of the parameter of interest even when the working regression function is not specified to be the optimal regression function. We apply the general methodology of empirical likelihood to optimally combine these unbiased estimating equations. We propose three maximum empirical likelihood estimators of the underlying regression parameters and compare their efficiencies with other existing competitors. We present a simulation study to compare the finite-sample performance of various methods with respect to bias, efficiency, and robustness to model misspecification. The proposed empirical likelihood method is also illustrated by an analysis of a data set from the US National Health and Nutrition Examination Survey (NHANES).
On the analysis of very small samples of Gaussian repeated measurements: an alternative approach.
Westgate, Philip M; Burchett, Woodrow W
2017-03-15
The analysis of very small samples of Gaussian repeated measurements can be challenging. First, due to a very small number of independent subjects contributing outcomes over time, statistical power can be quite small. Second, nuisance covariance parameters must be appropriately accounted for in the analysis in order to maintain the nominal test size. However, available statistical strategies that ensure valid statistical inference may lack power, whereas more powerful methods may have the potential for inflated test sizes. Therefore, we explore an alternative approach to the analysis of very small samples of Gaussian repeated measurements, with the goal of maintaining valid inference while also improving statistical power relative to other valid methods. This approach uses generalized estimating equations with a bias-corrected empirical covariance matrix that accounts for all small-sample aspects of nuisance correlation parameter estimation in order to maintain valid inference. Furthermore, the approach utilizes correlation selection strategies with the goal of choosing the working structure that will result in the greatest power. In our study, we show that when accurate modeling of the nuisance correlation structure impacts the efficiency of regression parameter estimation, this method can improve power relative to existing methods that yield valid inference. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Zhong, Fan; Li, Jensen; Liu, Hui; Zhu, Shining
2018-06-01
General relativity uses curved space-time to describe accelerating frames. The movement of particles in different curved space-times can be regarded as equivalent physical processes based on the covariant transformation between different frames. In this Letter, we use one-dimensional curved metamaterials to mimic accelerating particles in curved space-times. The different curved shapes of structures are used to mimic different accelerating frames. The different geometric phases along the structure are used to mimic different movements in the frame. Using the covariant principle of general relativity, we can obtain equivalent nanostructures based on space-time transformations, such as the Lorentz transformation and conformal transformation. In this way, many covariant structures can be found that produce the same surface plasmon fields when excited by spin photons. A new kind of accelerating beam, the Rindler beam, is obtained based on the Rindler metric in gravity. Very large effective indices can be obtained in such systems based on geometric-phase gradient. This general covariant design method can be extended to many other optical media.
Gender Invariance of Family, School, and Peer Influence on Volunteerism Scale
ERIC Educational Resources Information Center
Law, Ben; Shek, Daniel; Ma, Cecilia
2015-01-01
Objective: This article examines the measurement invariance of "Family, School, and Peer Influence on Volunteerism Scale" (FSPV) across genders using the mean and covariance structure analysis approach. Method: A total of 2,845 Chinese high school adolescents aged 11 to 15 years completed the FSPV scale. Results: Results of the…
Sex Differences in Adults' Motivation to Achieve
ERIC Educational Resources Information Center
van der Sluis, Sophie; Vinkhuyzen, Anna A. E.; Boomsma, Dorret I.; Posthuma, Danielle
2010-01-01
Achievement motivation is considered a prerequisite for success in academic as well as non-academic settings. We studied sex differences in academic and general achievement motivation in an adult sample of 338 men and 497 women (ages 18-70 years). Multi-group covariance and means structure analysis (MG-CMSA) for ordered categorical data was used…
A model of service quality perceptions and health care consumer behavior.
O'Connor, S J; Shewchuk, R M; Bowers, M R
1991-01-01
Analysis of covariance structures (LISREL) was used to examine the influence of consumer held perceptions of service quality on consumer satisfaction and intentions to return. Results indicate that service quality is a significant predictor of consumer satisfaction which, in turn, predicts intention to return. Health care marketing implications are discussed.
Sexual Violence in the Backlands: Toward a Macro-Level Understanding of Rural Sex Crimes.
Braithwaite, Jeremy
2015-10-01
This research focuses on structural covariates of sex crimes in rural communities (using urban and urbanizing communities as comparison groups), with particular analysis on exploring how the magnitude and direction of such covariates differ with respect to type of sex crime. Using 2000 sex crime data from the National Incident-Based Reporting System (NIBRS) for the population of reporting U.S. cities, negative binomial and logistic regression procedures were used to explore the relationship between resource disadvantage, local investment, and economic inequality and sex crime subtypes. For sex crimes that occurred almost exclusively in the home, urban and urbanizing community rates were largely influenced by resource disadvantage and local investment, while these measures did not reach significance for explaining rural rates. Conversely, local investment was a significant predictor of sex crimes that occurred outside the home in rural communities. This research indicates that a structural analysis of sexual victimization (widely absent from the scientific literature) does yield significant findings and that disaggregation of crime into subtypes allows for a more detailed differentiation between urban and rural communities. © The Author(s) 2014.
Correcting for Measurement Error in Time-Varying Covariates in Marginal Structural Models.
Kyle, Ryan P; Moodie, Erica E M; Klein, Marina B; Abrahamowicz, Michał
2016-08-01
Unbiased estimation of causal parameters from marginal structural models (MSMs) requires a fundamental assumption of no unmeasured confounding. Unfortunately, the time-varying covariates used to obtain inverse probability weights are often error-prone. Although substantial measurement error in important confounders is known to undermine control of confounders in conventional unweighted regression models, this issue has received comparatively limited attention in the MSM literature. Here we propose a novel application of the simulation-extrapolation (SIMEX) procedure to address measurement error in time-varying covariates, and we compare 2 approaches. The direct approach to SIMEX-based correction targets outcome model parameters, while the indirect approach corrects the weights estimated using the exposure model. We assess the performance of the proposed methods in simulations under different clinically plausible assumptions. The simulations demonstrate that measurement errors in time-dependent covariates may induce substantial bias in MSM estimators of causal effects of time-varying exposures, and that both proposed SIMEX approaches yield practically unbiased estimates in scenarios featuring low-to-moderate degrees of error. We illustrate the proposed approach in a simple analysis of the relationship between sustained virological response and liver fibrosis progression among persons infected with hepatitis C virus, while accounting for measurement error in γ-glutamyltransferase, using data collected in the Canadian Co-infection Cohort Study from 2003 to 2014. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Binder, Harald; Sauerbrei, Willi; Royston, Patrick
2013-06-15
In observational studies, many continuous or categorical covariates may be related to an outcome. Various spline-based procedures or the multivariable fractional polynomial (MFP) procedure can be used to identify important variables and functional forms for continuous covariates. This is the main aim of an explanatory model, as opposed to a model only for prediction. The type of analysis often guides the complexity of the final model. Spline-based procedures and MFP have tuning parameters for choosing the required complexity. To compare model selection approaches, we perform a simulation study in the linear regression context based on a data structure intended to reflect realistic biomedical data. We vary the sample size, variance explained and complexity parameters for model selection. We consider 15 variables. A sample size of 200 (1000) and R(2) = 0.2 (0.8) is the scenario with the smallest (largest) amount of information. For assessing performance, we consider prediction error, correct and incorrect inclusion of covariates, qualitative measures for judging selected functional forms and further novel criteria. From limited information, a suitable explanatory model cannot be obtained. Prediction performance from all types of models is similar. With a medium amount of information, MFP performs better than splines on several criteria. MFP better recovers simpler functions, whereas splines better recover more complex functions. For a large amount of information and no local structure, MFP and the spline procedures often select similar explanatory models. Copyright © 2012 John Wiley & Sons, Ltd.
Bias-Corrected Estimation of Noncentrality Parameters of Covariance Structure Models
ERIC Educational Resources Information Center
Raykov, Tenko
2005-01-01
A bias-corrected estimator of noncentrality parameters of covariance structure models is discussed. The approach represents an application of the bootstrap methodology for purposes of bias correction, and utilizes the relation between average of resample conventional noncentrality parameter estimates and their sample counterpart. The…
Xu, Xu Steven; Yuan, Min; Yang, Haitao; Feng, Yan; Xu, Jinfeng; Pinheiro, Jose
2017-01-01
Covariate analysis based on population pharmacokinetics (PPK) is used to identify clinically relevant factors. The likelihood ratio test (LRT) based on nonlinear mixed effect model fits is currently recommended for covariate identification, whereas individual empirical Bayesian estimates (EBEs) are considered unreliable due to the presence of shrinkage. The objectives of this research were to investigate the type I error for LRT and EBE approaches, to confirm the similarity of power between the LRT and EBE approaches from a previous report and to explore the influence of shrinkage on LRT and EBE inferences. Using an oral one-compartment PK model with a single covariate impacting on clearance, we conducted a wide range of simulations according to a two-way factorial design. The results revealed that the EBE-based regression not only provided almost identical power for detecting a covariate effect, but also controlled the false positive rate better than the LRT approach. Shrinkage of EBEs is likely not the root cause for decrease in power or inflated false positive rate although the size of the covariate effect tends to be underestimated at high shrinkage. In summary, contrary to the current recommendations, EBEs may be a better choice for statistical tests in PPK covariate analysis compared to LRT. We proposed a three-step covariate modeling approach for population PK analysis to utilize the advantages of EBEs while overcoming their shortcomings, which allows not only markedly reducing the run time for population PK analysis, but also providing more accurate covariate tests.
Punzo, Antonio; Ingrassia, Salvatore; Maruotti, Antonello
2018-04-22
A time-varying latent variable model is proposed to jointly analyze multivariate mixed-support longitudinal data. The proposal can be viewed as an extension of hidden Markov regression models with fixed covariates (HMRMFCs), which is the state of the art for modelling longitudinal data, with a special focus on the underlying clustering structure. HMRMFCs are inadequate for applications in which a clustering structure can be identified in the distribution of the covariates, as the clustering is independent from the covariates distribution. Here, hidden Markov regression models with random covariates are introduced by explicitly specifying state-specific distributions for the covariates, with the aim of improving the recovering of the clusters in the data with respect to a fixed covariates paradigm. The hidden Markov regression models with random covariates class is defined focusing on the exponential family, in a generalized linear model framework. Model identifiability conditions are sketched, an expectation-maximization algorithm is outlined for parameter estimation, and various implementation and operational issues are discussed. Properties of the estimators of the regression coefficients, as well as of the hidden path parameters, are evaluated through simulation experiments and compared with those of HMRMFCs. The method is applied to physical activity data. Copyright © 2018 John Wiley & Sons, Ltd.
Quantitative methods to direct exploration based on hydrogeologic information
Graettinger, A.J.; Lee, J.; Reeves, H.W.; Dethan, D.
2006-01-01
Quantitatively Directed Exploration (QDE) approaches based on information such as model sensitivity, input data covariance and model output covariance are presented. Seven approaches for directing exploration are developed, applied, and evaluated on a synthetic hydrogeologic site. The QDE approaches evaluate input information uncertainty, subsurface model sensitivity and, most importantly, output covariance to identify the next location to sample. Spatial input parameter values and covariances are calculated with the multivariate conditional probability calculation from a limited number of samples. A variogram structure is used during data extrapolation to describe the spatial continuity, or correlation, of subsurface information. Model sensitivity can be determined by perturbing input data and evaluating output response or, as in this work, sensitivities can be programmed directly into an analysis model. Output covariance is calculated by the First-Order Second Moment (FOSM) method, which combines the covariance of input information with model sensitivity. A groundwater flow example, modeled in MODFLOW-2000, is chosen to demonstrate the seven QDE approaches. MODFLOW-2000 is used to obtain the piezometric head and the model sensitivity simultaneously. The seven QDE approaches are evaluated based on the accuracy of the modeled piezometric head after information from a QDE sample is added. For the synthetic site used in this study, the QDE approach that identifies the location of hydraulic conductivity that contributes the most to the overall piezometric head variance proved to be the best method to quantitatively direct exploration. ?? IWA Publishing 2006.
Structural covariance and cortical reorganisation in schizophrenia: a MRI-based morphometric study.
Palaniyappan, Lena; Hodgson, Olha; Balain, Vijender; Iwabuchi, Sarina; Gowland, Penny; Liddle, Peter
2018-05-06
In patients with schizophrenia, distributed abnormalities are observed in grey matter volume. A recent hypothesis posits that these distributed changes are indicative of a plastic reorganisation process occurring in response to a functional defect in neuronal information transmission. We investigated the structural covariance across various brain regions in early-stage schizophrenia to determine if indeed the observed patterns of volumetric loss conform to a coordinated pattern of structural reorganisation. Structural magnetic resonance imaging scans were obtained from 40 healthy adults and 41 age, gender and parental socioeconomic status matched patients with schizophrenia. Volumes of grey matter tissue were estimated at the regional level across 90 atlas-based parcellations. Group-level structural covariance was studied using a graph theoretical framework. Patients had distributed reduction in grey matter volume, with high degree of localised covariance (clustering) compared with controls. Patients with schizophrenia had reduced centrality of anterior cingulate and insula but increased centrality of the fusiform cortex, compared with controls. Simulating targeted removal of highly central nodes resulted in significant loss of the overall covariance patterns in patients compared with controls. Regional volumetric deficits in schizophrenia are not a result of random, mutually independent processes. Our observations support the occurrence of a spatially interconnected reorganisation with the systematic de-escalation of conventional 'hub' regions. This raises the question of whether the morphological architecture in schizophrenia is primed for compensatory functions, albeit with a high risk of inefficiency.
Handling Correlations between Covariates and Random Slopes in Multilevel Models
ERIC Educational Resources Information Center
Bates, Michael David; Castellano, Katherine E.; Rabe-Hesketh, Sophia; Skrondal, Anders
2014-01-01
This article discusses estimation of multilevel/hierarchical linear models that include cluster-level random intercepts and random slopes. Viewing the models as structural, the random intercepts and slopes represent the effects of omitted cluster-level covariates that may be correlated with included covariates. The resulting correlations between…
The use of a covariate reduces experimental error in nutrient digestion studies in growing pigs
USDA-ARS?s Scientific Manuscript database
Covariance analysis limits error, the degree of nuisance variation, and overparameterizing factors to accurately measure treatment effects. Data dealing with growth, carcass composition, and genetics often utilize covariates in data analysis. In contrast, nutritional studies typically do not. The ob...
Analysis of capture-recapture models with individual covariates using data augmentation
Royle, J. Andrew
2009-01-01
I consider the analysis of capture-recapture models with individual covariates that influence detection probability. Bayesian analysis of the joint likelihood is carried out using a flexible data augmentation scheme that facilitates analysis by Markov chain Monte Carlo methods, and a simple and straightforward implementation in freely available software. This approach is applied to a study of meadow voles (Microtus pennsylvanicus) in which auxiliary data on a continuous covariate (body mass) are recorded, and it is thought that detection probability is related to body mass. In a second example, the model is applied to an aerial waterfowl survey in which a double-observer protocol is used. The fundamental unit of observation is the cluster of individual birds, and the size of the cluster (a discrete covariate) is used as a covariate on detection probability.
A generalized spatiotemporal covariance model for stationary background in analysis of MEG data.
Plis, S M; Schmidt, D M; Jun, S C; Ranken, D M
2006-01-01
Using a noise covariance model based on a single Kronecker product of spatial and temporal covariance in the spatiotemporal analysis of MEG data was demonstrated to provide improvement in the results over that of the commonly used diagonal noise covariance model. In this paper we present a model that is a generalization of all of the above models. It describes models based on a single Kronecker product of spatial and temporal covariance as well as more complicated multi-pair models together with any intermediate form expressed as a sum of Kronecker products of spatial component matrices of reduced rank and their corresponding temporal covariance matrices. The model provides a framework for controlling the tradeoff between the described complexity of the background and computational demand for the analysis using this model. Ways to estimate the value of the parameter controlling this tradeoff are also discussed.
Covariance and the hierarchy of frame bundles
NASA Technical Reports Server (NTRS)
Estabrook, Frank B.
1987-01-01
This is an essay on the general concept of covariance, and its connection with the structure of the nested set of higher frame bundles over a differentiable manifold. Examples of covariant geometric objects include not only linear tensor fields, densities and forms, but affinity fields, sectors and sector forms, higher order frame fields, etc., often having nonlinear transformation rules and Lie derivatives. The intrinsic, or invariant, sets of forms that arise on frame bundles satisfy the graded Cartan-Maurer structure equations of an infinite Lie algebra. Reduction of these gives invariant structure equations for Lie pseudogroups, and for G-structures of various orders. Some new results are introduced for prolongation of structure equations, and for treatment of Riemannian geometry with higher-order moving frames. The use of invariant form equations for nonlinear field physics is implicitly advocated.
Performance analysis of structured gradient algorithm. [for adaptive beamforming linear arrays
NASA Technical Reports Server (NTRS)
Godara, Lal C.
1990-01-01
The structured gradient algorithm uses a structured estimate of the array correlation matrix (ACM) to estimate the gradient required for the constrained least-mean-square (LMS) algorithm. This structure reflects the structure of the exact array correlation matrix for an equispaced linear array and is obtained by spatial averaging of the elements of the noisy correlation matrix. In its standard form the LMS algorithm does not exploit the structure of the array correlation matrix. The gradient is estimated by multiplying the array output with the receiver outputs. An analysis of the two algorithms is presented to show that the covariance of the gradient estimated by the structured method is less sensitive to the look direction signal than that estimated by the standard method. The effect of the number of elements on the signal sensitivity of the two algorithms is studied.
A Statistical Analysis of Brain Morphology Using Wild Bootstrapping
Ibrahim, Joseph G.; Tang, Niansheng; Rowe, Daniel B.; Hao, Xuejun; Bansal, Ravi; Peterson, Bradley S.
2008-01-01
Methods for the analysis of brain morphology, including voxel-based morphology and surface-based morphometries, have been used to detect associations between brain structure and covariates of interest, such as diagnosis, severity of disease, age, IQ, and genotype. The statistical analysis of morphometric measures usually involves two statistical procedures: 1) invoking a statistical model at each voxel (or point) on the surface of the brain or brain subregion, followed by mapping test statistics (e.g., t test) or their associated p values at each of those voxels; 2) correction for the multiple statistical tests conducted across all voxels on the surface of the brain region under investigation. We propose the use of new statistical methods for each of these procedures. We first use a heteroscedastic linear model to test the associations between the morphological measures at each voxel on the surface of the specified subregion (e.g., cortical or subcortical surfaces) and the covariates of interest. Moreover, we develop a robust test procedure that is based on a resampling method, called wild bootstrapping. This procedure assesses the statistical significance of the associations between a measure of given brain structure and the covariates of interest. The value of this robust test procedure lies in its computationally simplicity and in its applicability to a wide range of imaging data, including data from both anatomical and functional magnetic resonance imaging (fMRI). Simulation studies demonstrate that this robust test procedure can accurately control the family-wise error rate. We demonstrate the application of this robust test procedure to the detection of statistically significant differences in the morphology of the hippocampus over time across gender groups in a large sample of healthy subjects. PMID:17649909
Do current cosmological observations rule out all covariant Galileons?
NASA Astrophysics Data System (ADS)
Peirone, Simone; Frusciante, Noemi; Hu, Bin; Raveri, Marco; Silvestri, Alessandra
2018-03-01
We revisit the cosmology of covariant Galileon gravity in view of the most recent cosmological data sets, including weak lensing. As a higher derivative theory, covariant Galileon models do not have a Λ CDM limit and predict a very different structure formation pattern compared with the standard Λ CDM scenario. Previous cosmological analyses suggest that this model is marginally disfavored, yet cannot be completely ruled out. In this work we use a more recent and extended combination of data, and we allow for more freedom in the cosmology, by including a massive neutrino sector with three different mass hierarchies. We use the Planck measurements of cosmic microwave background temperature and polarization; baryonic acoustic oscillations measurements by BOSS DR12; local measurements of H0; the joint light-curve analysis supernovae sample; and, for the first time, weak gravitational lensing from the KiDS Collaboration. We find, that in order to provide a reasonable fit, a nonzero neutrino mass is indeed necessary, but we do not report any sizable difference among the three neutrino hierarchies. Finally, the comparison of the Bayesian evidence to the Λ CDM one shows that in all the cases considered, covariant Galileon models are statistically ruled out by cosmological data.
NASA Astrophysics Data System (ADS)
Franke, Jasper G.; Werner, Johannes P.; Donner, Reik V.
2017-11-01
Obtaining reliable reconstructions of long-term atmospheric circulation changes in the North Atlantic region presents a persistent challenge to contemporary paleoclimate research, which has been addressed by a multitude of recent studies. In order to contribute a novel methodological aspect to this active field, we apply here evolving functional network analysis, a recently developed tool for studying temporal changes of the spatial co-variability structure of the Earth's climate system, to a set of Late Holocene paleoclimate proxy records covering the last two millennia. The emerging patterns obtained by our analysis are related to long-term changes in the dominant mode of atmospheric circulation in the region, the North Atlantic Oscillation (NAO). By comparing the time-dependent inter-regional linkage structures of the obtained functional paleoclimate network representations to a recent multi-centennial NAO reconstruction, we identify co-variability between southern Greenland, Svalbard, and Fennoscandia as being indicative of a positive NAO phase, while connections from Greenland and Fennoscandia to central Europe are more pronounced during negative NAO phases. By drawing upon this correspondence, we use some key parameters of the evolving network structure to obtain a qualitative reconstruction of the NAO long-term variability over the entire Common Era (last 2000 years) using a linear regression model trained upon the existing shorter reconstruction.
Bansal, Ravi; Hao, Xuejun; Peterson, Bradley S
2015-05-01
We hypothesize that coordinated functional activity within discrete neural circuits induces morphological organization and plasticity within those circuits. Identifying regions of morphological covariation that are independent of morphological covariation in other regions therefore may therefore allow us to identify discrete neural systems within the brain. Comparing the magnitude of these variations in individuals who have psychiatric disorders with the magnitude of variations in healthy controls may allow us to identify aberrant neural pathways in psychiatric illnesses. We measured surface morphological features by applying nonlinear, high-dimensional warping algorithms to manually defined brain regions. We transferred those measures onto the surface of a unit sphere via conformal mapping and then used spherical wavelets and their scaling coefficients to simplify the data structure representing these surface morphological features of each brain region. We used principal component analysis (PCA) to calculate covariation in these morphological measures, as represented by their scaling coefficients, across several brain regions. We then assessed whether brain subregions that covaried in morphology, as identified by large eigenvalues in the PCA, identified specific neural pathways of the brain. To do so, we spatially registered the subnuclei for each eigenvector into the coordinate space of a Diffusion Tensor Imaging dataset; we used these subnuclei as seed regions to track and compare fiber pathways with known fiber pathways identified in neuroanatomical atlases. We applied these procedures to anatomical MRI data in a cohort of 82 healthy participants (42 children, 18 males, age 10.5 ± 2.43 years; 40 adults, 22 males, age 32.42 ± 10.7 years) and 107 participants with Tourette's Syndrome (TS) (71 children, 59 males, age 11.19 ± 2.2 years; 36 adults, 21 males, age 37.34 ± 10.9 years). We evaluated the construct validity of the identified covariation in morphology using DTI data from a different set of 20 healthy adults (10 males, mean age 29.7 ± 7.7 years). The PCA identified portions of structures that covaried across the brain, the eigenvalues measuring the magnitude of the covariation in morphology along the respective eigenvectors. Our results showed that the eigenvectors, and the DTI fibers tracked from their associated brain regions, corresponded with known neural pathways in the brain. In addition, the eigenvectors that captured morphological covariation across regions, and the principal components along those eigenvectors, identified neural pathways with aberrant morphological features associated with TS. These findings suggest that covariations in brain morphology can identify aberrant neural pathways in specific neuropsychiatric disorders. Copyright © 2015. Published by Elsevier Inc.
Smoking and Cancers: Case-Robust Analysis of a Classic Data Set
ERIC Educational Resources Information Center
Bentler, Peter M.; Satorra, Albert; Yuan, Ke-Hai
2009-01-01
A typical structural equation model is intended to reproduce the means, variances, and correlations or covariances among a set of variables based on parameter estimates of a highly restricted model. It is not widely appreciated that the sample statistics being modeled can be quite sensitive to outliers and influential observations, leading to bias…
The Stability of Post Hoc Model Modifications in Covariance Structure Models.
ERIC Educational Resources Information Center
Hutchinson, Susan R.
The work of R. MacCallum et al. (1992) was extended by examining chance modifications through a Monte Carlo simulation. The stability of post hoc model modifications was examined under varying sample size, model complexity, and severity of misspecification using 2- and 4-factor oblique confirmatory factor analysis (CFA) models with four and eight…
Multisensor Parallel Largest Ellipsoid Distributed Data Fusion with Unknown Cross-Covariances
Liu, Baoyu; Zhan, Xingqun; Zhu, Zheng H.
2017-01-01
As the largest ellipsoid (LE) data fusion algorithm can only be applied to two-sensor system, in this contribution, parallel fusion structure is proposed to introduce the LE algorithm into a multisensor system with unknown cross-covariances, and three parallel fusion structures based on different estimate pairing methods are presented and analyzed. In order to assess the influence of fusion structure on fusion performance, two fusion performance assessment parameters are defined as Fusion Distance and Fusion Index. Moreover, the formula for calculating the upper bounds of actual fused error covariances of the presented multisensor LE fusers is also provided. Demonstrated with simulation examples, the Fusion Index indicates fuser’s actual fused accuracy and its sensitivity to the sensor orders, as well as its robustness to the accuracy of newly added sensors. Compared to the LE fuser with sequential structure, the LE fusers with proposed parallel structures not only significantly improve their properties in these aspects, but also embrace better performances in consistency and computation efficiency. The presented multisensor LE fusers generally have better accuracies than covariance intersection (CI) fusion algorithm and are consistent when the local estimates are weakly correlated. PMID:28661442
ERIC Educational Resources Information Center
Beretvas, S. Natasha; Furlow, Carolyn F.
2006-01-01
Meta-analytic structural equation modeling (MA-SEM) is increasingly being used to assess model-fit for variables' interrelations synthesized across studies. MA-SEM researchers have analyzed synthesized correlation matrices using structural equation modeling (SEM) estimation that is designed for covariance matrices. This can produce incorrect…
Coil-to-coil physiological noise correlations and their impact on fMRI time-series SNR
Triantafyllou, C.; Polimeni, J. R.; Keil, B.; Wald, L. L.
2017-01-01
Purpose Physiological nuisance fluctuations (“physiological noise”) are a major contribution to the time-series Signal to Noise Ratio (tSNR) of functional imaging. While thermal noise correlations between array coil elements have a well-characterized effect on the image Signal to Noise Ratio (SNR0), the element-to-element covariance matrix of the time-series fluctuations has not yet been analyzed. We examine this effect with a goal of ultimately improving the combination of multichannel array data. Theory and Methods We extend the theoretical relationship between tSNR and SNR0 to include a time-series noise covariance matrix Ψt, distinct from the thermal noise covariance matrix Ψ0, and compare its structure to Ψ0 and the signal coupling matrix SSH formed from the signal intensity vectors S. Results Inclusion of the measured time-series noise covariance matrix into the model relating tSNR and SNR0 improves the fit of experimental multichannel data and is shown to be distinct from Ψ0 or SSH. Conclusion Time-series noise covariances in array coils are found to differ from Ψ0 and more surprisingly, from the signal coupling matrix SSH. Correct characterization of the time-series noise has implications for the analysis of time-series data and for improving the coil element combination process. PMID:26756964
Covariance and correlation estimation in electron-density maps.
Altomare, Angela; Cuocci, Corrado; Giacovazzo, Carmelo; Moliterni, Anna; Rizzi, Rosanna
2012-03-01
Quite recently two papers have been published [Giacovazzo & Mazzone (2011). Acta Cryst. A67, 210-218; Giacovazzo et al. (2011). Acta Cryst. A67, 368-382] which calculate the variance in any point of an electron-density map at any stage of the phasing process. The main aim of the papers was to associate a standard deviation to each pixel of the map, in order to obtain a better estimate of the map reliability. This paper deals with the covariance estimate between points of an electron-density map in any space group, centrosymmetric or non-centrosymmetric, no matter the correlation between the model and target structures. The aim is as follows: to verify if the electron density in one point of the map is amplified or depressed as an effect of the electron density in one or more other points of the map. High values of the covariances are usually connected with undesired features of the map. The phases are the primitive random variables of our probabilistic model; the covariance changes with the quality of the model and therefore with the quality of the phases. The conclusive formulas show that the covariance is also influenced by the Patterson map. Uncertainty on measurements may influence the covariance, particularly in the final stages of the structure refinement; a general formula is obtained taking into account both phase and measurement uncertainty, valid at any stage of the crystal structure solution.
Pourcain, Beate St.; Smith, George Davey; York, Timothy P.; Evans, David M.
2014-01-01
Genome wide complex trait analysis (GCTA) is extended to include environmental effects of the maternal genotype on offspring phenotype (“maternal effects”, M-GCTA). The model includes parameters for the direct effects of the offspring genotype, maternal effects and the covariance between direct and maternal effects. Analysis of simulated data, conducted in OpenMx, confirmed that model parameters could be recovered by full information maximum likelihood (FIML) and evaluated the biases that arise in conventional GCTA when indirect genetic effects are ignored. Estimates derived from FIML in OpenMx showed very close agreement to those obtained by restricted maximum likelihood using the published algorithm for GCTA. The method was also applied to illustrative perinatal phenotypes from ∼4,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children. The relative merits of extended GCTA in contrast to quantitative genetic approaches based on analyzing the phenotypic covariance structure of kinships are considered. PMID:25060210
Multilevel sparse functional principal component analysis.
Di, Chongzhi; Crainiceanu, Ciprian M; Jank, Wolfgang S
2014-01-29
We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions.
Stigma in the mental health workplace: perceptions of peer employees and clinicians.
Stromwall, Layne K; Holley, Lynn C; Bashor, Kathy E
2011-08-01
Informed by a structural theory of workplace discrimination, mental health system employees' perceptions of mental health workplace stigma and discrimination against service recipients and peer employees were investigated. Fifty-one peer employees and 52 licensed behavioral health clinicians participated in an online survey. Independent variables were employee status (peer or clinician), gender, ethnicity, years of mental health employment, age, and workplace social inclusion of peer employees. Analysis of covariance on workplace discrimination against service recipients revealed that peer employees perceived more discrimination than clinicians and whites perceived more discrimination than employees of color (corrected model F = 9.743 [16, 87], P = .000, partial ŋ (2) = .644). Analysis of covariance on workplace discrimination against peer employees revealed that peer employees perceived more discrimination than clinicians (F = 4.593, [6, 97], P = .000, partial ŋ (2) = .223).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.L.
The last decade has been a period of rapid development in the implementation of covariance-matrix methodology in nuclear data research. This paper offers some perspective on the progress which has been made, on some of the unresolved problems, and on the potential yet to be realized. These discussions address a variety of issues related to the development of nuclear data. Topics examined are: the importance of designing and conducting experiments so that error information is conveniently generated; the procedures for identifying error sources and quantifying their magnitudes and correlations; the combination of errors; the importance of consistent and well-characterized measurementmore » standards; the role of covariances in data parameterization (fitting); the estimation of covariances for values calculated from mathematical models; the identification of abnormalities in covariance matrices and the analysis of their consequences; the problems encountered in representing covariance information in evaluated files; the role of covariances in the weighting of diverse data sets; the comparison of various evaluations; the influence of primary-data covariance in the analysis of covariances for derived quantities (sensitivity); and the role of covariances in the merging of the diverse nuclear data information. 226 refs., 2 tabs.« less
Jaman, Ajmery; Latif, Mahbub A H M; Bari, Wasimul; Wahed, Abdus S
2016-05-20
In generalized estimating equations (GEE), the correlation between the repeated observations on a subject is specified with a working correlation matrix. Correct specification of the working correlation structure ensures efficient estimators of the regression coefficients. Among the criteria used, in practice, for selecting working correlation structure, Rotnitzky-Jewell, Quasi Information Criterion (QIC) and Correlation Information Criterion (CIC) are based on the fact that if the assumed working correlation structure is correct then the model-based (naive) and the sandwich (robust) covariance estimators of the regression coefficient estimators should be close to each other. The sandwich covariance estimator, used in defining the Rotnitzky-Jewell, QIC and CIC criteria, is biased downward and has a larger variability than the corresponding model-based covariance estimator. Motivated by this fact, a new criterion is proposed in this paper based on the bias-corrected sandwich covariance estimator for selecting an appropriate working correlation structure in GEE. A comparison of the proposed and the competing criteria is shown using simulation studies with correlated binary responses. The results revealed that the proposed criterion generally performs better than the competing criteria. An example of selecting the appropriate working correlation structure has also been shown using the data from Madras Schizophrenia Study. Copyright © 2015 John Wiley & Sons, Ltd.
Geerligs, Linda; Cam-Can; Henson, Richard N
2016-07-15
Studies of brain-wide functional connectivity or structural covariance typically use measures like the Pearson correlation coefficient, applied to data that have been averaged across voxels within regions of interest (ROIs). However, averaging across voxels may result in biased connectivity estimates when there is inhomogeneity within those ROIs, e.g., sub-regions that exhibit different patterns of functional connectivity or structural covariance. Here, we propose a new measure based on "distance correlation"; a test of multivariate dependence of high dimensional vectors, which allows for both linear and non-linear dependencies. We used simulations to show how distance correlation out-performs Pearson correlation in the face of inhomogeneous ROIs. To evaluate this new measure on real data, we use resting-state fMRI scans and T1 structural scans from 2 sessions on each of 214 participants from the Cambridge Centre for Ageing & Neuroscience (Cam-CAN) project. Pearson correlation and distance correlation showed similar average connectivity patterns, for both functional connectivity and structural covariance. Nevertheless, distance correlation was shown to be 1) more reliable across sessions, 2) more similar across participants, and 3) more robust to different sets of ROIs. Moreover, we found that the similarity between functional connectivity and structural covariance estimates was higher for distance correlation compared to Pearson correlation. We also explored the relative effects of different preprocessing options and motion artefacts on functional connectivity. Because distance correlation is easy to implement and fast to compute, it is a promising alternative to Pearson correlations for investigating ROI-based brain-wide connectivity patterns, for functional as well as structural data. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
SEMIPARAMETRIC QUANTILE REGRESSION WITH HIGH-DIMENSIONAL COVARIATES
Zhu, Liping; Huang, Mian; Li, Runze
2012-01-01
This paper is concerned with quantile regression for a semiparametric regression model, in which both the conditional mean and conditional variance function of the response given the covariates admit a single-index structure. This semiparametric regression model enables us to reduce the dimension of the covariates and simultaneously retains the flexibility of nonparametric regression. Under mild conditions, we show that the simple linear quantile regression offers a consistent estimate of the index parameter vector. This is a surprising and interesting result because the single-index model is possibly misspecified under the linear quantile regression. With a root-n consistent estimate of the index vector, one may employ a local polynomial regression technique to estimate the conditional quantile function. This procedure is computationally efficient, which is very appealing in high-dimensional data analysis. We show that the resulting estimator of the quantile function performs asymptotically as efficiently as if the true value of the index vector were known. The methodologies are demonstrated through comprehensive simulation studies and an application to a real dataset. PMID:24501536
Covariate Imbalance and Adjustment for Logistic Regression Analysis of Clinical Trial Data
Ciolino, Jody D.; Martin, Reneé H.; Zhao, Wenle; Jauch, Edward C.; Hill, Michael D.; Palesch, Yuko Y.
2014-01-01
In logistic regression analysis for binary clinical trial data, adjusted treatment effect estimates are often not equivalent to unadjusted estimates in the presence of influential covariates. This paper uses simulation to quantify the benefit of covariate adjustment in logistic regression. However, International Conference on Harmonization guidelines suggest that covariate adjustment be pre-specified. Unplanned adjusted analyses should be considered secondary. Results suggest that that if adjustment is not possible or unplanned in a logistic setting, balance in continuous covariates can alleviate some (but never all) of the shortcomings of unadjusted analyses. The case of log binomial regression is also explored. PMID:24138438
2014-01-01
Background This study aimed to clarify how community mental healthcare systems can be improved. Methods We included 79 schizophrenic patients, aged 20 to 80 years, residing in the Tokyo metropolitan area who regularly visited rehabilitation facilities offering assistance to psychiatric patients and were receiving treatment on an outpatient basis. No subjects had severe cognitive disorders or were taking medication with side effects that could prevent the completion of questionnaires. Questionnaires included items related to quality of life, self-efficacy, self-esteem, psychosis based on the Behavior and Symptom Identification Scale, health locus of control, and socio-demographic factors. We performed multiple linear regression analysis with quality of life as the dependent variable and, based on covariance structural analysis, evaluated the goodness of fit of the resulting structural equations models. Results Self-efficacy, self-esteem, and degree of psychosis significantly impacted quality of life. Marital status, age, and types of medications also influenced quality of life. Multiple linear regression analysis revealed psychiatric symptoms (Behavior and Symptom Identification Scale-32 [daily living and role functioning] (Beta = −0.537, p < 0.001) and self-efficacy (Beta = 0.249, p < 0.05) to be predictors of total quality of life score. Based on covariance structural analysis, the resulting model was found to exhibit reasonable goodness of fit. Conclusions Self-efficacy had an especially strong and direct impact on QOL. Therefore, it is important to provide more positive feedback to patients, provide social skills training based on cognitive behavioral therapy, and engage patients in role playing to improve self-efficacy and self-concept. PMID:25101143
Covariance Based Pre-Filters and Screening Criteria for Conjunction Analysis
NASA Astrophysics Data System (ADS)
George, E., Chan, K.
2012-09-01
Several relationships are developed relating object size, initial covariance and range at closest approach to probability of collision. These relationships address the following questions: - Given the objects' initial covariance and combined hard body size, what is the maximum possible value of the probability of collision (Pc)? - Given the objects' initial covariance, what is the maximum combined hard body radius for which the probability of collision does not exceed the tolerance limit? - Given the objects' initial covariance and the combined hard body radius, what is the minimum miss distance for which the probability of collision does not exceed the tolerance limit? - Given the objects' initial covariance and the miss distance, what is the maximum combined hard body radius for which the probability of collision does not exceed the tolerance limit? The first relationship above allows the elimination of object pairs from conjunction analysis (CA) on the basis of the initial covariance and hard-body sizes of the objects. The application of this pre-filter to present day catalogs with estimated covariance results in the elimination of approximately 35% of object pairs as unable to ever conjunct with a probability of collision exceeding 1x10-6. Because Pc is directly proportional to object size and inversely proportional to covariance size, this pre-filter will have a significantly larger impact on future catalogs, which are expected to contain a much larger fraction of small debris tracked only by a limited subset of available sensors. This relationship also provides a mathematically rigorous basis for eliminating objects from analysis entirely based on element set age or quality - a practice commonly done by rough rules of thumb today. Further, these relations can be used to determine the required geometric screening radius for all objects. This analysis reveals the screening volumes for small objects are much larger than needed, while the screening volumes for pairs of large objects may be inadequate. These relationships may also form the basis of an important metric for catalog maintenance by defining the maximum allowable covariance size for effective conjunction analysis. The application of these techniques promises to greatly improve the efficiency and completeness of conjunction analysis.
Fukumoto, Risa; Kawai, Makoto; Minai, Kosuke; Ogawa, Kazuo; Yoshida, Jun; Inoue, Yasunori; Morimoto, Satoshi; Tanaka, Toshikazu; Nagoshi, Tomohisa; Ogawa, Takayuki; Yoshimura, Michihiro
2017-01-01
It is conceivable that contemporary valvular heart disease (VHD) is affected largely by an age-dependent atherosclerotic process, which is similar to that observed in coronary artery disease (CAD). However, a comorbid condition of VHD and CAD has not been precisely examined. The first objective of this study was to examine a possible comorbid condition. Provided that there is no comorbidity, the second objective was to search for the possible reasons by using conventional risk factors and plasma B-type natriuretic peptide (BNP) because BNP has a potentiality to suppress atherosclerotic development. The study population consisted of 3,457 patients consecutively admitted to our institution. The possible comorbid condition of VHD and CAD and the factors that influence the comorbidity were examined by covariance structure analysis and multivariate analysis. The distribution of the patients with VHD and those with CAD in the histograms showed that the incidence of VHD and the severity of CAD rose with seniority in appearance. The real statistical analysis was planned by covariance structure analysis. The current path model revealed that aging was associated with VHD and CAD severity (P < 0.001 for each); however, as a notable result, there was an inverse association regarding the comorbid condition between VHD and CAD (Correlation coefficient [β]: -0.121, P < 0.001). As the second objective, to clarify the factors leading to this inverse association, the contribution of conventional risk factors, such as age, gender, hypertension, smoking, diabetes, obesity and dyslipidemia, to VHD and CAD were examined by multivariate analysis. However, these factors did not exert an opposing effect on VHD and CAD, and the inverse association defied explanation. Since different pathological mechanisms may contribute to the formation of VHD and CAD, a differentially proposed path model using plasma BNP revealed that an increase in plasma BNP being drawn by VHD suppressed the progression of CAD (β: -0.465, P < 0.001). The incidence of VHD and CAD showed a significant conflicting relationship. This result supported the likely presence of unknown diverse mechanisms on top of the common cascade of atherosclerosis. Among them, the continuous elevation of plasma BNP due to VHD might be one of the explicable factors suppressing the progression of CAD.
Structural covariance in the hallucinating brain: a voxel-based morphometry study
Modinos, Gemma; Vercammen, Ans; Mechelli, Andrea; Knegtering, Henderikus; McGuire, Philip K.; Aleman, André
2009-01-01
Background Neuroimaging studies have indicated that a number of cortical regions express altered patterns of structural covariance in schizophrenia. The relation between these alterations and specific psychotic symptoms is yet to be investigated. We used voxel-based morphometry to examine regional grey matter volumes and structural covariance associated with severity of auditory verbal hallucinations. Methods We applied optimized voxel-based morphometry to volumetric magnetic resonance imaging data from 26 patients with medication-resistant auditory verbal hallucinations (AVHs); statistical inferences were made at p < 0.05 after correction for multiple comparisons. Results Grey matter volume in the left inferior frontal gyrus was positively correlated with severity of AVHs. Hallucination severity influenced the pattern of structural covariance between this region and the left superior/middle temporal gyri, the right inferior frontal gyrus and hippocampus, and the insula bilaterally. Limitations The results are based on self-reported severity of auditory hallucinations. Complementing with a clinician-based instrument could have made the findings more compelling. Future studies would benefit from including a measure to control for other symptoms that may covary with AVHs and for the effects of antipsychotic medication. Conclusion The results revealed that overall severity of AVHs modulated cortical intercorrelations between frontotemporal regions involved in language production and verbal monitoring, supporting the critical role of this network in the pathophysiology of hallucinations. PMID:19949723
Lee, Kyu Ha; Tadesse, Mahlet G; Baccarelli, Andrea A; Schwartz, Joel; Coull, Brent A
2017-03-01
The analysis of multiple outcomes is becoming increasingly common in modern biomedical studies. It is well-known that joint statistical models for multiple outcomes are more flexible and more powerful than fitting a separate model for each outcome; they yield more powerful tests of exposure or treatment effects by taking into account the dependence among outcomes and pooling evidence across outcomes. It is, however, unlikely that all outcomes are related to the same subset of covariates. Therefore, there is interest in identifying exposures or treatments associated with particular outcomes, which we term outcome-specific variable selection. In this work, we propose a variable selection approach for multivariate normal responses that incorporates not only information on the mean model, but also information on the variance-covariance structure of the outcomes. The approach effectively leverages evidence from all correlated outcomes to estimate the effect of a particular covariate on a given outcome. To implement this strategy, we develop a Bayesian method that builds a multivariate prior for the variable selection indicators based on the variance-covariance of the outcomes. We show via simulation that the proposed variable selection strategy can boost power to detect subtle effects without increasing the probability of false discoveries. We apply the approach to the Normative Aging Study (NAS) epigenetic data and identify a subset of five genes in the asthma pathway for which gene-specific DNA methylations are associated with exposures to either black carbon, a marker of traffic pollution, or sulfate, a marker of particles generated by power plants. © 2016, The International Biometric Society.
NASA Technical Reports Server (NTRS)
Morgera, S. D.; Cooper, D. B.
1976-01-01
The experimental observation that a surprisingly small sample size vis-a-vis dimension is needed to achieve good signal-to-interference ratio (SIR) performance with an adaptive predetection filter is explained. The adaptive filter requires estimates as obtained by a recursive stochastic algorithm of the inverse of the filter input data covariance matrix. The SIR performance with sample size is compared for the situations where the covariance matrix estimates are of unstructured (generalized) form and of structured (finite Toeplitz) form; the latter case is consistent with weak stationarity of the input data stochastic process.
ERIC Educational Resources Information Center
Cai, Li; Lee, Taehun
2009-01-01
We apply the Supplemented EM algorithm (Meng & Rubin, 1991) to address a chronic problem with the "two-stage" fitting of covariance structure models in the presence of ignorable missing data: the lack of an asymptotically chi-square distributed goodness-of-fit statistic. We show that the Supplemented EM algorithm provides a…
ERIC Educational Resources Information Center
Liu, Junhui
2012-01-01
The current study investigated how between-subject and within-subject variance-covariance structures affected the detection of a finite mixture of unobserved subpopulations and parameter recovery of growth mixture models in the context of linear mixed-effects models. A simulation study was conducted to evaluate the impact of variance-covariance…
Interval Estimation of Revision Effect on Scale Reliability via Covariance Structure Modeling
ERIC Educational Resources Information Center
Raykov, Tenko
2009-01-01
A didactic discussion of a procedure for interval estimation of change in scale reliability due to revision is provided, which is developed within the framework of covariance structure modeling. The method yields ranges of plausible values for the population gain or loss in reliability of unidimensional composites, which results from deletion or…
True covariance simulation of the EUVE update filter
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, R. R.
1989-01-01
A covariance analysis of the performance and sensitivity of the attitude determination Extended Kalman Filter (EKF) used by the On Board Computer (OBC) of the Extreme Ultra Violet Explorer (EUVE) spacecraft is presented. The linearized dynamics and measurement equations of the error states are derived which constitute the truth model describing the real behavior of the systems involved. The design model used by the OBC EKF is then obtained by reducing the order of the truth model. The covariance matrix of the EKF which uses the reduced order model is not the correct covariance of the EKF estimation error. A true covariance analysis has to be carried out in order to evaluate the correct accuracy of the OBC generated estimates. The results of such analysis are presented which indicate both the performance and the sensitivity of the OBC EKF.
On computations of variance, covariance and correlation for interval data
NASA Astrophysics Data System (ADS)
Kishida, Masako
2017-02-01
In many practical situations, the data on which statistical analysis is to be performed is only known with interval uncertainty. Different combinations of values from the interval data usually lead to different values of variance, covariance, and correlation. Hence, it is desirable to compute the endpoints of possible values of these statistics. This problem is, however, NP-hard in general. This paper shows that the problem of computing the endpoints of possible values of these statistics can be rewritten as the problem of computing skewed structured singular values ν, for which there exist feasible (polynomial-time) algorithms that compute reasonably tight bounds in most practical cases. This allows one to find tight intervals of the aforementioned statistics for interval data.
Development and validation of a nutrition knowledge questionnaire for a Canadian population.
Bradette-Laplante, Maude; Carbonneau, Élise; Provencher, Véronique; Bégin, Catherine; Robitaille, Julie; Desroches, Sophie; Vohl, Marie-Claude; Corneau, Louise; Lemieux, Simone
2017-05-01
The present study aimed to develop and validate a nutrition knowledge questionnaire in a sample of French Canadians from the province of Quebec, taking into account dietary guidelines. A thirty-eight-item questionnaire was developed by the research team and evaluated for content validity by an expert panel, and then administered to respondents. Face validity and construct validity were measured in a pre-test. Exploratory factor analysis and covariance structure analysis were performed to verify the structure of the questionnaire and identify problematic items. Internal consistency and test-retest reliability were evaluated through a validation study. Online survey. Six nutrition and psychology experts, fifteen registered dietitians (RD) and 180 lay people participated. Content validity evaluation resulted in the removal of two items and reformulation of one item. Following face validity, one item was reformulated. Construct validity was found to be adequate, with higher scores for RD v. non-RD (21·5 (sd 2·1) v. 15·7 (sd 3·0) out of 24, P<0·001). Exploratory factor analysis revealed that the questionnaire contained only one factor. Covariance structure analysis led to removal of sixteen items. Internal consistency for the overall questionnaire was adequate (Cronbach's α=0·73). Assessment of test-retest reliability resulted in significant associations for the total knowledge score (r=0·59, P<0·001). This nutrition knowledge questionnaire was found to be a suitable instrument which can be used to measure levels of nutrition knowledge in a Canadian population. It could also serve as a model for the development of similar instruments in other populations.
Business strategy and financial structure: an empirical analysis of acute care hospitals.
Ginn, G O; Young, G J; Beekun, R I
1995-01-01
This study investigated the relationship between business strategy and financial structure in the U.S. hospital industry. We studied two dimensions of financial structure--liquidity and leverage. Liquidity was assessed by the acid ratio, and leverage was assessed using the equity funding ratio. Drawing from managerial, finance, and resource dependence perspectives, we developed and tested hypotheses about the relationship between Miles and Snow strategy types and financial structure. Relevant contextual financial and organizational variables were controlled for statistically through the Multivariate Analysis of Covariance technique. The relationship between business strategy and financial structure was found to be significant. Among the Miles and Snow strategy types, defenders were found to have relatively high liquidity and low leverage. Prospectors typically had low liquidity and high leverage. Implications for financial planning, competitive assessment, and reimbursement policy are discussed.
ERIC Educational Resources Information Center
Kwok, Oi-man; West, Stephen G.; Green, Samuel B.
2007-01-01
This Monte Carlo study examined the impact of misspecifying the [big sum] matrix in longitudinal data analysis under both the multilevel model and mixed model frameworks. Under the multilevel model approach, under-specification and general-misspecification of the [big sum] matrix usually resulted in overestimation of the variances of the random…
ERIC Educational Resources Information Center
Yuan, Ke-Hai
2008-01-01
In the literature of mean and covariance structure analysis, noncentral chi-square distribution is commonly used to describe the behavior of the likelihood ratio (LR) statistic under alternative hypothesis. Due to the inaccessibility of the rather technical literature for the distribution of the LR statistic, it is widely believed that the…
Proceedings of the international conference on cybernetics and societ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
This book presents the papers given at a conference on artificial intelligence, expert systems and knowledge bases. Topics considered at the conference included automating expert system development, modeling expert systems, causal maps, data covariances, robot vision, image processing, multiprocessors, parallel processing, VLSI structures, man-machine systems, human factors engineering, cognitive decision analysis, natural language, computerized control systems, and cybernetics.
G. Starr; C. L. Staudhammer; H. W. Loescher; R. Mitchell; A. Whelan; J. K. Hiers; J. J. O’Brien
2015-01-01
Frequency and intensity of fire determines the structure and regulates the function of savanna ecosystems worldwide, yet our understanding of prescribed fire impacts on carbon in these systems is rudimentary. We combined eddy covariance (EC) techniques and fuel consumption plots to examine the short-term response of longleaf pine forest carbon dynamics to one...
Precomputing Process Noise Covariance for Onboard Sequential Filters
NASA Technical Reports Server (NTRS)
Olson, Corwin G.; Russell, Ryan P.; Carpenter, J. Russell
2017-01-01
Process noise is often used in estimation filters to account for unmodeled and mismodeled accelerations in the dynamics. The process noise covariance acts to inflate the state covariance over propagation intervals, increasing the uncertainty in the state. In scenarios where the acceleration errors change significantly over time, the standard process noise covariance approach can fail to provide effective representation of the state and its uncertainty. Consider covariance analysis techniques provide a method to precompute a process noise covariance profile along a reference trajectory using known model parameter uncertainties. The process noise covariance profile allows significantly improved state estimation and uncertainty representation over the traditional formulation. As a result, estimation performance on par with the consider filter is achieved for trajectories near the reference trajectory without the additional computational cost of the consider filter. The new formulation also has the potential to significantly reduce the trial-and-error tuning currently required of navigation analysts. A linear estimation problem as described in several previous consider covariance analysis studies is used to demonstrate the effectiveness of the precomputed process noise covariance, as well as a nonlinear descent scenario at the asteroid Bennu with optical navigation.
Precomputing Process Noise Covariance for Onboard Sequential Filters
NASA Technical Reports Server (NTRS)
Olson, Corwin G.; Russell, Ryan P.; Carpenter, J. Russell
2017-01-01
Process noise is often used in estimation filters to account for unmodeled and mismodeled accelerations in the dynamics. The process noise covariance acts to inflate the state covariance over propagation intervals, increasing the uncertainty in the state. In scenarios where the acceleration errors change significantly over time, the standard process noise covariance approach can fail to provide effective representation of the state and its uncertainty. Consider covariance analysis techniques provide a method to precompute a process noise covariance profile along a reference trajectory, using known model parameter uncertainties. The process noise covariance profile allows significantly improved state estimation and uncertainty representation over the traditional formulation. As a result, estimation performance on par with the consider filter is achieved for trajectories near the reference trajectory without the additional computational cost of the consider filter. The new formulation also has the potential to significantly reduce the trial-and-error tuning currently required of navigation analysts. A linear estimation problem as described in several previous consider covariance analysis publications is used to demonstrate the effectiveness of the precomputed process noise covariance, as well as a nonlinear descent scenario at the asteroid Bennu with optical navigation.
ERIC Educational Resources Information Center
Spearing, Debra; Woehlke, Paula
To assess the effect on discriminant analysis in terms of correct classification into two groups, the following parameters were systematically altered using Monte Carlo techniques: sample sizes; proportions of one group to the other; number of independent variables; and covariance matrices. The pairing of the off diagonals (or covariances) with…
Meta-STEPP: subpopulation treatment effect pattern plot for individual patient data meta-analysis.
Wang, Xin Victoria; Cole, Bernard; Bonetti, Marco; Gelber, Richard D
2016-09-20
We have developed a method, called Meta-STEPP (subpopulation treatment effect pattern plot for meta-analysis), to explore treatment effect heterogeneity across covariate values in the meta-analysis setting for time-to-event data when the covariate of interest is continuous. Meta-STEPP forms overlapping subpopulations from individual patient data containing similar numbers of events with increasing covariate values, estimates subpopulation treatment effects using standard fixed-effects meta-analysis methodology, displays the estimated subpopulation treatment effect as a function of the covariate values, and provides a statistical test to detect possibly complex treatment-covariate interactions. Simulation studies show that this test has adequate type-I error rate recovery as well as power when reasonable window sizes are chosen. When applied to eight breast cancer trials, Meta-STEPP suggests that chemotherapy is less effective for tumors with high estrogen receptor expression compared with those with low expression. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Application of copulas to improve covariance estimation for partial least squares.
D'Angelo, Gina M; Weissfeld, Lisa A
2013-02-20
Dimension reduction techniques, such as partial least squares, are useful for computing summary measures and examining relationships in complex settings. Partial least squares requires an estimate of the covariance matrix as a first step in the analysis, making this estimate critical to the results. In addition, the covariance matrix also forms the basis for other techniques in multivariate analysis, such as principal component analysis and independent component analysis. This paper has been motivated by an example from an imaging study in Alzheimer's disease where there is complete separation between Alzheimer's and control subjects for one of the imaging modalities. This separation occurs in one block of variables and does not occur with the second block of variables resulting in inaccurate estimates of the covariance. We propose the use of a copula to obtain estimates of the covariance in this setting, where one set of variables comes from a mixture distribution. Simulation studies show that the proposed estimator is an improvement over the standard estimators of covariance. We illustrate the methods from the motivating example from a study in the area of Alzheimer's disease. Copyright © 2012 John Wiley & Sons, Ltd.
Structural covariance mapping delineates medial and medio-lateral temporal networks in déjà vu.
Shaw, Daniel Joel; Mareček, Radek; Brázdil, Milan
2016-12-01
Déjà vu (DV) is an eerie phenomenon experienced frequently as an aura of temporal lobe epilepsy, but also reported commonly by healthy individuals. The former pathological manifestation appears to result from aberrant neural activity among brain structures within the medial temporal lobes. Recent studies also implicate medial temporal brain structures in the non-pathological experience of DV, but as one element of a diffuse neuroanatomical correlate; it remains to be seen if neural activity among the medial temporal lobes also underlies this benign manifestation. The present study set out to investigate this. Due to its unpredictable and infrequent occurrence, however, non-pathological DV does not lend itself easily to functional neuroimaging. Instead, we draw on research showing that brain structure covaries among regions that interact frequently as nodes of functional networks. Specifically, we assessed whether grey-matter covariance among structures implicated in non-pathological DV differs according to the frequency with which the phenomenon is experienced. This revealed two diverging patterns of structural covariation: Among the first, comprised primarily of medial temporal structures and the caudate, grey-matter volume becomes more positively correlated with higher frequency of DV experience. The second pattern encompasses medial and lateral temporal structures, among which greater DV frequency is associated with more negatively correlated grey matter. Using a meta-analytic method of co-activation mapping, we demonstrate a higher probability of functional interactions among brain structures constituting the former pattern, particularly during memory-related processes. Our findings suggest that altered neural signalling within memory-related medial temporal brain structures underlies both pathological and non-pathological DV.
Eliciting Systematic Rule Use in Covariation Judgment [the Early Years].
ERIC Educational Resources Information Center
Shaklee, Harriet; Paszek, Donald
Related research suggests that children may show some simple understanding of event covariations by the early elementary school years. The present experiments use a rule analysis methodology to investigate covariation judgments of children in this age range. In Experiment 1, children in second, third and fourth grade judged covariations on 12…
Covariance Structure Models for Gene Expression Microarray Data
ERIC Educational Resources Information Center
Xie, Jun; Bentler, Peter M.
2003-01-01
Covariance structure models are applied to gene expression data using a factor model, a path model, and their combination. The factor model is based on a few factors that capture most of the expression information. A common factor of a group of genes may represent a common protein factor for the transcript of the co-expressed genes, and hence, it…
Tremblay, Marlène; Crim, Stacy M; Cole, Dana J; Hoekstra, Robert M; Henao, Olga L; Döpfer, Dörte
2017-10-01
The Foodborne Diseases Active Surveillance Network (FoodNet) is currently using a negative binomial (NB) regression model to estimate temporal changes in the incidence of Campylobacter infection. FoodNet active surveillance in 483 counties collected data on 40,212 Campylobacter cases between years 2004 and 2011. We explored models that disaggregated these data to allow us to account for demographic, geographic, and seasonal factors when examining changes in incidence of Campylobacter infection. We hypothesized that modeling structural zeros and including demographic variables would increase the fit of FoodNet's Campylobacter incidence regression models. Five different models were compared: NB without demographic covariates, NB with demographic covariates, hurdle NB with covariates in the count component only, hurdle NB with covariates in both zero and count components, and zero-inflated NB with covariates in the count component only. Of the models evaluated, the nonzero-augmented NB model with demographic variables provided the best fit. Results suggest that even though zero inflation was not present at this level, individualizing the level of aggregation and using different model structures and predictors per site might be required to correctly distinguish between structural and observational zeros and account for risk factors that vary geographically.
MIMICKING COUNTERFACTUAL OUTCOMES TO ESTIMATE CAUSAL EFFECTS.
Lok, Judith J
2017-04-01
In observational studies, treatment may be adapted to covariates at several times without a fixed protocol, in continuous time. Treatment influences covariates, which influence treatment, which influences covariates, and so on. Then even time-dependent Cox-models cannot be used to estimate the net treatment effect. Structural nested models have been applied in this setting. Structural nested models are based on counterfactuals: the outcome a person would have had had treatment been withheld after a certain time. Previous work on continuous-time structural nested models assumes that counterfactuals depend deterministically on observed data, while conjecturing that this assumption can be relaxed. This article proves that one can mimic counterfactuals by constructing random variables, solutions to a differential equation, that have the same distribution as the counterfactuals, even given past observed data. These "mimicking" variables can be used to estimate the parameters of structural nested models without assuming the treatment effect to be deterministic.
A probabilistic framework to infer brain functional connectivity from anatomical connections.
Deligianni, Fani; Varoquaux, Gael; Thirion, Bertrand; Robinson, Emma; Sharp, David J; Edwards, A David; Rueckert, Daniel
2011-01-01
We present a novel probabilistic framework to learn across several subjects a mapping from brain anatomical connectivity to functional connectivity, i.e. the covariance structure of brain activity. This prediction problem must be formulated as a structured-output learning task, as the predicted parameters are strongly correlated. We introduce a model selection framework based on cross-validation with a parametrization-independent loss function suitable to the manifold of covariance matrices. Our model is based on constraining the conditional independence structure of functional activity by the anatomical connectivity. Subsequently, we learn a linear predictor of a stationary multivariate autoregressive model. This natural parameterization of functional connectivity also enforces the positive-definiteness of the predicted covariance and thus matches the structure of the output space. Our results show that functional connectivity can be explained by anatomical connectivity on a rigorous statistical basis, and that a proper model of functional connectivity is essential to assess this link.
Chen, Gang; Adleman, Nancy E.; Saad, Ziad S.; Leibenluft, Ellen; Cox, RobertW.
2014-01-01
All neuroimaging packages can handle group analysis with t-tests or general linear modeling (GLM). However, they are quite hamstrung when there are multiple within-subject factors or when quantitative covariates are involved in the presence of a within-subject factor. In addition, sphericity is typically assumed for the variance–covariance structure when there are more than two levels in a within-subject factor. To overcome such limitations in the traditional AN(C)OVA and GLM, we adopt a multivariate modeling (MVM) approach to analyzing neuroimaging data at the group level with the following advantages: a) there is no limit on the number of factors as long as sample sizes are deemed appropriate; b) quantitative covariates can be analyzed together with within- subject factors; c) when a within-subject factor is involved, three testing methodologies are provided: traditional univariate testing (UVT)with sphericity assumption (UVT-UC) and with correction when the assumption is violated (UVT-SC), and within-subject multivariate testing (MVT-WS); d) to correct for sphericity violation at the voxel level, we propose a hybrid testing (HT) approach that achieves equal or higher power via combining traditional sphericity correction methods (Greenhouse–Geisser and Huynh–Feldt) with MVT-WS. PMID:24954281
Variations of cosmic large-scale structure covariance matrices across parameter space
NASA Astrophysics Data System (ADS)
Reischke, Robert; Kiessling, Alina; Schäfer, Björn Malte
2017-03-01
The likelihood function for cosmological parameters, given by e.g. weak lensing shear measurements, depends on contributions to the covariance induced by the non-linear evolution of the cosmic web. As highly non-linear clustering to date has only been described by numerical N-body simulations in a reliable and sufficiently precise way, the necessary computational costs for estimating those covariances at different points in parameter space are tremendous. In this work, we describe the change of the matter covariance and the weak lensing covariance matrix as a function of cosmological parameters by constructing a suitable basis, where we model the contribution to the covariance from non-linear structure formation using Eulerian perturbation theory at third order. We show that our formalism is capable of dealing with large matrices and reproduces expected degeneracies and scaling with cosmological parameters in a reliable way. Comparing our analytical results to numerical simulations, we find that the method describes the variation of the covariance matrix found in the SUNGLASS weak lensing simulation pipeline within the errors at one-loop and tree-level for the spectrum and the trispectrum, respectively, for multipoles up to ℓ ≤ 1300. We show that it is possible to optimize the sampling of parameter space where numerical simulations should be carried out by minimizing interpolation errors and propose a corresponding method to distribute points in parameter space in an economical way.
Allegrini, Franco; Braga, Jez W B; Moreira, Alessandro C O; Olivieri, Alejandro C
2018-06-29
A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS). Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaiser, Olga; Martius, Olivia; Horenko, Illia
2017-04-01
Regression based Generalized Pareto Distribution (GPD) models are often used to describe the dynamics of hydrological threshold excesses relying on the explicit availability of all of the relevant covariates. But, in real application the complete set of relevant covariates might be not available. In this context, it was shown that under weak assumptions the influence coming from systematically missing covariates can be reflected by a nonstationary and nonhomogenous dynamics. We present a data-driven, semiparametric and an adaptive approach for spatio-temporal regression based clustering of threshold excesses in a presence of systematically missing covariates. The nonstationary and nonhomogenous behavior of threshold excesses is describes by a set of local stationary GPD models, where the parameters are expressed as regression models, and a non-parametric spatio-temporal hidden switching process. Exploiting nonparametric Finite Element time-series analysis Methodology (FEM) with Bounded Variation of the model parameters (BV) for resolving the spatio-temporal switching process, the approach goes beyond strong a priori assumptions made is standard latent class models like Mixture Models and Hidden Markov Models. Additionally, the presented FEM-BV-GPD provides a pragmatic description of the corresponding spatial dependence structure by grouping together all locations that exhibit similar behavior of the switching process. The performance of the framework is demonstrated on daily accumulated precipitation series over 17 different locations in Switzerland from 1981 till 2013 - showing that the introduced approach allows for a better description of the historical data.
Triantafyllou, Christina; Polimeni, Jonathan R; Keil, Boris; Wald, Lawrence L
2016-12-01
Physiological nuisance fluctuations ("physiological noise") are a major contribution to the time-series signal-to-noise ratio (tSNR) of functional imaging. While thermal noise correlations between array coil elements have a well-characterized effect on the image Signal to Noise Ratio (SNR 0 ), the element-to-element covariance matrix of the time-series fluctuations has not yet been analyzed. We examine this effect with a goal of ultimately improving the combination of multichannel array data. We extend the theoretical relationship between tSNR and SNR 0 to include a time-series noise covariance matrix Ψ t , distinct from the thermal noise covariance matrix Ψ 0 , and compare its structure to Ψ 0 and the signal coupling matrix SS H formed from the signal intensity vectors S. Inclusion of the measured time-series noise covariance matrix into the model relating tSNR and SNR 0 improves the fit of experimental multichannel data and is shown to be distinct from Ψ 0 or SS H . Time-series noise covariances in array coils are found to differ from Ψ 0 and more surprisingly, from the signal coupling matrix SS H . Correct characterization of the time-series noise has implications for the analysis of time-series data and for improving the coil element combination process. Magn Reson Med 76:1708-1719, 2016. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Sherer, Eric A; Sale, Mark E; Pollock, Bruce G; Belani, Chandra P; Egorin, Merrill J; Ivy, Percy S; Lieberman, Jeffrey A; Manuck, Stephen B; Marder, Stephen R; Muldoon, Matthew F; Scher, Howard I; Solit, David B; Bies, Robert R
2012-08-01
A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q₁ = 4.9 % and q₃ = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data.
Shimizu, Hiroshi; Daibo, Ikuo
2008-02-01
A hierarchical data analysis was conducted using data from couples to examine how self-reports of interactions between partners in romantic relationships predict the quality of the relationships. Whereas the social exchange theory has elucidated the quality of relationships from the individual level of subjectivity, this study focused on the structure of interactions between the partners (i.e., the frequency, strength, and diversity) through a process of inter-subjectivity at the couple level. A multilevel covariance structure analysis of 194 university students involved in romantic relationships revealed that the quality of relationships was mainly related to the strength and the diversity of interactions at the couple level, rather than the strength of interactions at the individual level. These results indicate that the inter-subjective process in romantic relationships may primarily explain the quality of relationships.
Covariant diagrams for one-loop matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhengkang
Here, we present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed "covariant diagrams." The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We also show how such derivation canmore » be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.« less
Covariant diagrams for one-loop matching
Zhang, Zhengkang
2017-05-30
Here, we present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed "covariant diagrams." The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We also show how such derivation canmore » be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.« less
Imaging structural covariance in the development of intelligence.
Khundrakpam, Budhachandra S; Lewis, John D; Reid, Andrew; Karama, Sherif; Zhao, Lu; Chouinard-Decorte, Francois; Evans, Alan C
2017-01-01
Verbal and non-verbal intelligence in children is highly correlated, and thus, it has been difficult to differentiate their neural substrates. Nevertheless, recent studies have shown that verbal and non-verbal intelligence can be dissociated and focal cortical regions corresponding to each have been demonstrated. However, the pattern of structural covariance corresponding to verbal and non-verbal intelligence remains unexplored. In this study, we used 586 longitudinal anatomical MRI scans of subjects aged 6-18 years, who had concurrent intelligence quotient (IQ) testing on the Wechsler Abbreviated Scale of Intelligence. Structural covariance networks (SCNs) were constructed using interregional correlations in cortical thickness for low-IQ (Performance IQ=100±8, Verbal IQ=100±7) and high-IQ (PIQ=121±8, VIQ=120±9) groups. From low- to high-VIQ group, we observed constrained patterns of anatomical coupling among cortical regions, complemented by observations of higher global efficiency and modularity, and lower local efficiency in high-VIQ group, suggesting a shift towards a more optimal topological organization. Analysis of nodal topological properties (regional efficiency and participation coefficient) revealed greater involvement of left-hemispheric language related regions including inferior frontal and superior temporal gyri for high-VIQ group. From low- to high-PIQ group, we did not observe significant differences in anatomical coupling patterns, global and nodal topological properties. Our findings indicate that people with higher verbal intelligence have structural brain differences from people with lower verbal intelligence - not only in localized cortical regions, but also in the patterns of anatomical coupling among widely distributed cortical regions, possibly resulting to a system-level reorganization that might lead to a more efficient organization in high-VIQ group. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Corrected score estimation in the proportional hazards model with misclassified discrete covariates
Zucker, David M.; Spiegelman, Donna
2013-01-01
SUMMARY We consider Cox proportional hazards regression when the covariate vector includes error-prone discrete covariates along with error-free covariates, which may be discrete or continuous. The misclassification in the discrete error-prone covariates is allowed to be of any specified form. Building on the work of Nakamura and his colleagues, we present a corrected score method for this setting. The method can handle all three major study designs (internal validation design, external validation design, and replicate measures design), both functional and structural error models, and time-dependent covariates satisfying a certain ‘localized error’ condition. We derive the asymptotic properties of the method and indicate how to adjust the covariance matrix of the regression coefficient estimates to account for estimation of the misclassification matrix. We present the results of a finite-sample simulation study under Weibull survival with a single binary covariate having known misclassification rates. The performance of the method described here was similar to that of related methods we have examined in previous works. Specifically, our new estimator performed as well as or, in a few cases, better than the full Weibull maximum likelihood estimator. We also present simulation results for our method for the case where the misclassification probabilities are estimated from an external replicate measures study. Our method generally performed well in these simulations. The new estimator has a broader range of applicability than many other estimators proposed in the literature, including those described in our own earlier work, in that it can handle time-dependent covariates with an arbitrary misclassification structure. We illustrate the method on data from a study of the relationship between dietary calcium intake and distal colon cancer. PMID:18219700
Retrospective Binary-Trait Association Test Elucidates Genetic Architecture of Crohn Disease
Jiang, Duo; Zhong, Sheng; McPeek, Mary Sara
2016-01-01
In genetic association testing, failure to properly control for population structure can lead to severely inflated type 1 error and power loss. Meanwhile, adjustment for relevant covariates is often desirable and sometimes necessary to protect against spurious association and to improve power. Many recent methods to account for population structure and covariates are based on linear mixed models (LMMs), which are primarily designed for quantitative traits. For binary traits, however, LMM is a misspecified model and can lead to deteriorated performance. We propose CARAT, a binary-trait association testing approach based on a mixed-effects quasi-likelihood framework, which exploits the dichotomous nature of the trait and achieves computational efficiency through estimating equations. We show in simulation studies that CARAT consistently outperforms existing methods and maintains high power in a wide range of population structure settings and trait models. Furthermore, CARAT is based on a retrospective approach, which is robust to misspecification of the phenotype model. We apply our approach to a genome-wide analysis of Crohn disease, in which we replicate association with 17 previously identified regions. Moreover, our analysis on 5p13.1, an extensively reported region of association, shows evidence for the presence of multiple independent association signals in the region. This example shows how CARAT can leverage known disease risk factors to shed light on the genetic architecture of complex traits. PMID:26833331
RNA structural constraints in the evolution of the influenza A virus genome NP segment
Gultyaev, Alexander P; Tsyganov-Bodounov, Anton; Spronken, Monique IJ; van der Kooij, Sander; Fouchier, Ron AM; Olsthoorn, René CL
2014-01-01
Conserved RNA secondary structures were predicted in the nucleoprotein (NP) segment of the influenza A virus genome using comparative sequence and structure analysis. A number of structural elements exhibiting nucleotide covariations were identified over the whole segment length, including protein-coding regions. Calculations of mutual information values at the paired nucleotide positions demonstrate that these structures impose considerable constraints on the virus genome evolution. Functional importance of a pseudoknot structure, predicted in the NP packaging signal region, was confirmed by plaque assays of the mutant viruses with disrupted structure and those with restored folding using compensatory substitutions. Possible functions of the conserved RNA folding patterns in the influenza A virus genome are discussed. PMID:25180940
Massive data compression for parameter-dependent covariance matrices
NASA Astrophysics Data System (ADS)
Heavens, Alan F.; Sellentin, Elena; de Mijolla, Damien; Vianello, Alvise
2017-12-01
We show how the massive data compression algorithm MOPED can be used to reduce, by orders of magnitude, the number of simulated data sets which are required to estimate the covariance matrix required for the analysis of Gaussian-distributed data. This is relevant when the covariance matrix cannot be calculated directly. The compression is especially valuable when the covariance matrix varies with the model parameters. In this case, it may be prohibitively expensive to run enough simulations to estimate the full covariance matrix throughout the parameter space. This compression may be particularly valuable for the next generation of weak lensing surveys, such as proposed for Euclid and Large Synoptic Survey Telescope, for which the number of summary data (such as band power or shear correlation estimates) is very large, ∼104, due to the large number of tomographic redshift bins which the data will be divided into. In the pessimistic case where the covariance matrix is estimated separately for all points in an Monte Carlo Markov Chain analysis, this may require an unfeasible 109 simulations. We show here that MOPED can reduce this number by a factor of 1000, or a factor of ∼106 if some regularity in the covariance matrix is assumed, reducing the number of simulations required to a manageable 103, making an otherwise intractable analysis feasible.
Chen, Gang; Adleman, Nancy E; Saad, Ziad S; Leibenluft, Ellen; Cox, Robert W
2014-10-01
All neuroimaging packages can handle group analysis with t-tests or general linear modeling (GLM). However, they are quite hamstrung when there are multiple within-subject factors or when quantitative covariates are involved in the presence of a within-subject factor. In addition, sphericity is typically assumed for the variance-covariance structure when there are more than two levels in a within-subject factor. To overcome such limitations in the traditional AN(C)OVA and GLM, we adopt a multivariate modeling (MVM) approach to analyzing neuroimaging data at the group level with the following advantages: a) there is no limit on the number of factors as long as sample sizes are deemed appropriate; b) quantitative covariates can be analyzed together with within-subject factors; c) when a within-subject factor is involved, three testing methodologies are provided: traditional univariate testing (UVT) with sphericity assumption (UVT-UC) and with correction when the assumption is violated (UVT-SC), and within-subject multivariate testing (MVT-WS); d) to correct for sphericity violation at the voxel level, we propose a hybrid testing (HT) approach that achieves equal or higher power via combining traditional sphericity correction methods (Greenhouse-Geisser and Huynh-Feldt) with MVT-WS. To validate the MVM methodology, we performed simulations to assess the controllability for false positives and power achievement. A real FMRI dataset was analyzed to demonstrate the capability of the MVM approach. The methodology has been implemented into an open source program 3dMVM in AFNI, and all the statistical tests can be performed through symbolic coding with variable names instead of the tedious process of dummy coding. Our data indicates that the severity of sphericity violation varies substantially across brain regions. The differences among various modeling methodologies were addressed through direct comparisons between the MVM approach and some of the GLM implementations in the field, and the following two issues were raised: a) the improper formulation of test statistics in some univariate GLM implementations when a within-subject factor is involved in a data structure with two or more factors, and b) the unjustified presumption of uniform sphericity violation and the practice of estimating the variance-covariance structure through pooling across brain regions. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Desai, A. R.; Bolstad, P. V.; Moorcroft, P. R.; Davis, K. J.
2005-12-01
The interplay between land use change, forest management and land cover variability complicates the ability to characterize regional scale (10-1000 km) exchange of carbon dioxide between the land surface and atmosphere in heterogeneous landscapes. An attempt was made to observe and model these factors and their influence on the regional carbon cycle across the upper Midwest USA. A high density of eddy-covariance carbon flux, micrometeorology, carbon dioxide mixing ratio, stand-scale biometry and canopy component flux observations have been occurring in this area as part of the Chequamegon Ecosystem-Atmosphere Study. Observations limited to sampling only dominant stands and coarse-resolution biogeochemical models limited to biome-scale parameterization neither accurately capture the variability of carbon fluxes measured by the network of eddy covariance towers nor match the regional-scale carbon flux inferred from very tall tower eddy covariance measurements and multi-site upscaling. Analysis of plot level biometric data, U.S. Forest Service Forest Inventory Analysis data and high-resolution land cover data around the tall tower revealed significant variations in vegetation type, stand age, canopy stocking and structure. Wetlands, clearcuts and recent natural disturbances occur in characteristic small non-uniformly distributed patches that aggregate to form more than 30% of the landscape. The Ecosystem Demography model, a dynamic ecosystem model that incorporates vegetation heterogeneity, canopy structure, stand age, disturbance, land use change and forest management, was parameterized with regional biometric data and meteorology, historical records of land management and high-resolution satellite land cover maps. The model will be used to examine the significance of past land use change, natural disturbance history and current forest management in explaining landscape structure and regional carbon fluxes observed in the region today.
ERIC Educational Resources Information Center
Taylor, Matthew J.; Merritt, Stephanie M.; Austin, Chammie C.
2013-01-01
A model of negative affect and alcohol use was replicated on a sample of African-American high school students. Participants (N = 5,086) were randomly selected from a previously collected data set and consisted of 2,253 males and 2,833 females residing in both rural and urban locations. Multivariate analysis of covariance and structural equation…
ERIC Educational Resources Information Center
Gonzalez-Roma, Vicente; Tomas, Ines; Ferreres, Doris; Hernandez, Ana
2005-01-01
The aims of this study were to investigate whether the 6 items of the Physical Appearance Scale (Marsh, Richards, Johnson, Roche, & Tremayne, 1994) show differential item functioning (DIF) across gender groups of adolescents, and to show how this can be done using the multigroup mean and covariance structure (MG-MACS) analysis model. Two samples…
ERIC Educational Resources Information Center
Cook, Thomas D.; Steiner, Peter M.; Pohl, Steffi
2009-01-01
This study uses within-study comparisons to assess the relative importance of covariate choice, unreliability in the measurement of these covariates, and whether regression or various forms of propensity score analysis are used to analyze the outcome data. Two of the within-study comparisons are of the four-arm type, and many more are of the…
Davies, Christopher E; Glonek, Gary Fv; Giles, Lynne C
2017-08-01
One purpose of a longitudinal study is to gain a better understanding of how an outcome of interest changes among a given population over time. In what follows, a trajectory will be taken to mean the series of measurements of the outcome variable for an individual. Group-based trajectory modelling methods seek to identify subgroups of trajectories within a population, such that trajectories that are grouped together are more similar to each other than to trajectories in distinct groups. Group-based trajectory models generally assume a certain structure in the covariances between measurements, for example conditional independence, homogeneous variance between groups or stationary variance over time. Violations of these assumptions could be expected to result in poor model performance. We used simulation to investigate the effect of covariance misspecification on misclassification of trajectories in commonly used models under a range of scenarios. To do this we defined a measure of performance relative to the ideal Bayesian correct classification rate. We found that the more complex models generally performed better over a range of scenarios. In particular, incorrectly specified covariance matrices could significantly bias the results but using models with a correct but more complicated than necessary covariance matrix incurred little cost.
Parcellation of the human orbitofrontal cortex based on gray matter volume covariance.
Liu, Huaigui; Qin, Wen; Qi, Haotian; Jiang, Tianzi; Yu, Chunshui
2015-02-01
The human orbitofrontal cortex (OFC) is an enigmatic brain region that cannot be parcellated reliably using diffusional and functional magnetic resonance imaging (fMRI) because there is signal dropout that results from an inherent defect in imaging techniques. We hypothesise that the OFC can be reliably parcellated into subregions based on gray matter volume (GMV) covariance patterns that are derived from artefact-free structural images. A total of 321 healthy young subjects were examined by high-resolution structural MRI. The OFC was parcellated into subregions-based GMV covariance patterns; and then sex and laterality differences in GMV covariance pattern of each OFC subregion were compared. The human OFC was parcellated into the anterior (OFCa), medial (OFCm), posterior (OFCp), intermediate (OFCi), and lateral (OFCl) subregions. This parcellation scheme was validated by the same analyses of the left OFC and the bilateral OFCs in male and female subjects. Both visual observation and quantitative comparisons indicated a unique GMV covariance pattern for each OFC subregion. These OFC subregions mainly covaried with the prefrontal and temporal cortices, cingulate cortex and amygdala. In addition, GMV correlations of most OFC subregions were similar across sex and laterality except for significant laterality difference in the OFCl. The right OFCl had stronger GMV correlation with the right inferior frontal cortex. Using high-resolution structural images, we established a reliable parcellation scheme for the human OFC, which may provide an in vivo guide for subregion-level studies of this region and improve our understanding of the human OFC at subregional levels. © 2014 Wiley Periodicals, Inc.
Generalized Linear Covariance Analysis
NASA Technical Reports Server (NTRS)
Carpenter, James R.; Markley, F. Landis
2014-01-01
This talk presents a comprehensive approach to filter modeling for generalized covariance analysis of both batch least-squares and sequential estimators. We review and extend in two directions the results of prior work that allowed for partitioning of the state space into solve-for'' and consider'' parameters, accounted for differences between the formal values and the true values of the measurement noise, process noise, and textita priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator's epoch time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the variance sandpile'' and the sensitivity mosaic,'' and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.
HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS.
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2011-01-01
The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied.
The structural, connectomic and network covariance of the human brain.
Irimia, Andrei; Van Horn, John D
2013-02-01
Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing. Published by Elsevier Inc.
A complete graphical criterion for the adjustment formula in mediation analysis.
Shpitser, Ilya; VanderWeele, Tyler J
2011-03-04
Various assumptions have been used in the literature to identify natural direct and indirect effects in mediation analysis. These effects are of interest because they allow for effect decomposition of a total effect into a direct and indirect effect even in the presence of interactions or non-linear models. In this paper, we consider the relation and interpretation of various identification assumptions in terms of causal diagrams interpreted as a set of non-parametric structural equations. We show that for such causal diagrams, two sets of assumptions for identification that have been described in the literature are in fact equivalent in the sense that if either set of assumptions holds for all models inducing a particular causal diagram, then the other set of assumptions will also hold for all models inducing that diagram. We moreover build on prior work concerning a complete graphical identification criterion for covariate adjustment for total effects to provide a complete graphical criterion for using covariate adjustment to identify natural direct and indirect effects. Finally, we show that this criterion is equivalent to the two sets of independence assumptions used previously for mediation analysis.
Assessment of Infrared Sounder Radiometric Noise from Analysis of Spectral Residuals
NASA Astrophysics Data System (ADS)
Dufour, E.; Klonecki, A.; Standfuss, C.; Tournier, B.; Serio, C.; Masiello, G.; Tjemkes, S.; Stuhlmann, R.
2016-08-01
For the preparation and performance monitoring of the future generation of hyperspectral InfraRed sounders dedicated to the precise vertical profiling of the atmospheric state, such as the Meteosat Third Generation hyperspectral InfraRed Sounder, a reliable assessment of the instrument radiometric error covariance matrix is needed.Ideally, an inflight estimation of the radiometrric noise is recommended as certain sources of noise can be driven by the spectral signature of the observed Earth/ atmosphere radiance. Also, unknown correlated noise sources, generally related to incomplete knowledge of the instrument state, can be present, so a caracterisation of the noise spectral correlation is also neeed.A methodology, relying on the analysis of post-retreival spectral residuals, is designed and implemented to derive in-flight the covariance matrix on the basis of Earth scenes measurements. This methodology is successfully demonstrated using IASI observations as MTG-IRS proxy data and made it possible to highlight anticipated correlation structures explained by apodization and micro-vibration effects (ghost). This analysis is corroborated by a parallel estimation based on an IASI black body measurement dataset and the results of an independent micro-vibration model.
Siren, J; Ovaskainen, O; Merilä, J
2017-10-01
The genetic variance-covariance matrix (G) is a quantity of central importance in evolutionary biology due to its influence on the rate and direction of multivariate evolution. However, the predictive power of empirically estimated G-matrices is limited for two reasons. First, phenotypes are high-dimensional, whereas traditional statistical methods are tuned to estimate and analyse low-dimensional matrices. Second, the stability of G to environmental effects and over time remains poorly understood. Using Bayesian sparse factor analysis (BSFG) designed to estimate high-dimensional G-matrices, we analysed levels variation and covariation in 10,527 expressed genes in a large (n = 563) half-sib breeding design of three-spined sticklebacks subject to two temperature treatments. We found significant differences in the structure of G between the treatments: heritabilities and evolvabilities were higher in the warm than in the low-temperature treatment, suggesting more and faster opportunity to evolve in warm (stressful) conditions. Furthermore, comparison of G and its phenotypic equivalent P revealed the latter is a poor substitute of the former. Most strikingly, the results suggest that the expected impact of G on evolvability-as well as the similarity among G-matrices-may depend strongly on the number of traits included into analyses. In our results, the inclusion of only few traits in the analyses leads to underestimation in the differences between the G-matrices and their predicted impacts on evolution. While the results highlight the challenges involved in estimating G, they also illustrate that by enabling the estimation of large G-matrices, the BSFG method can improve predicted evolutionary responses to selection. © 2017 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Yang, Shu-Chih; Rienecker, Michele; Keppenne, Christian
2010-01-01
This study investigates the impact of four different ocean analyses on coupled forecasts of the 2006 El Nino event. Forecasts initialized in June 2006 using ocean analyses from an assimilation that uses flow-dependent background error covariances are compared with those using static error covariances that are not flow dependent. The flow-dependent error covariances reflect the error structures related to the background ENSO instability and are generated by the coupled breeding method. The ocean analyses used in this study result from the assimilation of temperature and salinity, with the salinity data available from Argo floats. Of the analyses, the one using information from the coupled bred vectors (BV) replicates the observed equatorial long wave propagation best and exhibits more warming features leading to the 2006 El Nino event. The forecasts initialized from the BV-based analysis agree best with the observations in terms of the growth of the warm anomaly through two warming phases. This better performance is related to the impact of the salinity analysis on the state evolution in the equatorial thermocline. The early warming is traced back to salinity differences in the upper ocean of the equatorial central Pacific, while the second warming, corresponding to the mature phase, is associated with the effect of the salinity assimilation on the depth of the thermocline in the western equatorial Pacific. The series of forecast experiments conducted here show that the structure of the salinity in the initial conditions is important to the forecasts of the extension of the warm pool and the evolution of the 2006 El Ni o event.
FADTTS: functional analysis of diffusion tensor tract statistics.
Zhu, Hongtu; Kong, Linglong; Li, Runze; Styner, Martin; Gerig, Guido; Lin, Weili; Gilmore, John H
2011-06-01
The aim of this paper is to present a functional analysis of a diffusion tensor tract statistics (FADTTS) pipeline for delineating the association between multiple diffusion properties along major white matter fiber bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these white matter tract properties in various diffusion tensor imaging studies. The FADTTS integrates five statistical tools: (i) a multivariate varying coefficient model for allowing the varying coefficient functions in terms of arc length to characterize the varying associations between fiber bundle diffusion properties and a set of covariates, (ii) a weighted least squares estimation of the varying coefficient functions, (iii) a functional principal component analysis to delineate the structure of the variability in fiber bundle diffusion properties, (iv) a global test statistic to test hypotheses of interest, and (v) a simultaneous confidence band to quantify the uncertainty in the estimated coefficient functions. Simulated data are used to evaluate the finite sample performance of FADTTS. We apply FADTTS to investigate the development of white matter diffusivities along the splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of neurodevelopment. FADTTS can be used to facilitate the understanding of normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles. The advantages of FADTTS compared with the other existing approaches are that they are capable of modeling the structured inter-subject variability, testing the joint effects, and constructing their simultaneous confidence bands. However, FADTTS is not crucial for estimation and reduces to the functional analysis method for the single measure. Copyright © 2011 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Dolan, Conor V.; Colom, Roberto; Abad, Francisco J.; Wicherts, Jelte M.; Hessen, David J.; van de Sluis, Sophie
2006-01-01
We investigated sex effects and the effects of educational attainment (EA) on the covariance structure of the WAIS-III in a subsample of the Spanish standardization data. We fitted both first order common factor models and second order common factor models. The latter include general intelligence ("g") as a second order common factor.…
Risk-Stratified Imputation in Survival Analysis
Kennedy, Richard E.; Adragni, Kofi P.; Tiwari, Hemant K.; Voeks, Jenifer H.; Brott, Thomas G.; Howard, George
2013-01-01
Background Censoring that is dependent on covariates associated with survival can arise in randomized trials due to changes in recruitment and eligibility criteria to minimize withdrawals, potentially leading to biased treatment effect estimates. Imputation approaches have been proposed to address censoring in survival analysis; and while these approaches may provide unbiased estimates of treatment effects, imputation of a large number of outcomes may over- or underestimate the associated variance based on the imputation pool selected. Purpose We propose an improved method, risk-stratified imputation, as an alternative to address withdrawal related to the risk of events in the context of time-to-event analyses. Methods Our algorithm performs imputation from a pool of replacement subjects with similar values of both treatment and covariate(s) of interest, that is, from a risk-stratified sample. This stratification prior to imputation addresses the requirement of time-to-event analysis that censored observations are representative of all other observations in the risk group with similar exposure variables. We compared our risk-stratified imputation to case deletion and bootstrap imputation in a simulated dataset in which the covariate of interest (study withdrawal) was related to treatment. A motivating example from a recent clinical trial is also presented to demonstrate the utility of our method. Results In our simulations, risk-stratified imputation gives estimates of treatment effect comparable to bootstrap and auxiliary variable imputation while avoiding inaccuracies of the latter two in estimating the associated variance. Similar results were obtained in analysis of clinical trial data. Limitations Risk-stratified imputation has little advantage over other imputation methods when covariates of interest are not related to treatment, although its performance is superior when covariates are related to treatment. Risk-stratified imputation is intended for categorical covariates, and may be sensitive to the width of the matching window if continuous covariates are used. Conclusions The use of the risk-stratified imputation should facilitate the analysis of many clinical trials, in which one group has a higher withdrawal rate that is related to treatment. PMID:23818434
Survival analysis with functional covariates for partial follow-up studies.
Fang, Hong-Bin; Wu, Tong Tong; Rapoport, Aaron P; Tan, Ming
2016-12-01
Predictive or prognostic analysis plays an increasingly important role in the era of personalized medicine to identify subsets of patients whom the treatment may benefit the most. Although various time-dependent covariate models are available, such models require that covariates be followed in the whole follow-up period. This article studies a new class of functional survival models where the covariates are only monitored in a time interval that is shorter than the whole follow-up period. This paper is motivated by the analysis of a longitudinal study on advanced myeloma patients who received stem cell transplants and T cell infusions after the transplants. The absolute lymphocyte cell counts were collected serially during hospitalization. Those patients are still followed up if they are alive after hospitalization, while their absolute lymphocyte cell counts cannot be measured after that. Another complication is that absolute lymphocyte cell counts are sparsely and irregularly measured. The conventional method using Cox model with time-varying covariates is not applicable because of the different lengths of observation periods. Analysis based on each single observation obviously underutilizes available information and, more seriously, may yield misleading results. This so-called partial follow-up study design represents increasingly common predictive modeling problem where we have serial multiple biomarkers up to a certain time point, which is shorter than the total length of follow-up. We therefore propose a solution to the partial follow-up design. The new method combines functional principal components analysis and survival analysis with selection of those functional covariates. It also has the advantage of handling sparse and irregularly measured longitudinal observations of covariates and measurement errors. Our analysis based on functional principal components reveals that it is the patterns of the trajectories of absolute lymphocyte cell counts, instead of the actual counts, that affect patient's disease-free survival time. © The Author(s) 2014.
Bayesian hierarchical model for large-scale covariance matrix estimation.
Zhu, Dongxiao; Hero, Alfred O
2007-12-01
Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.
von Cramon-Taubadel, Noreen; Schroeder, Lauren
2016-10-01
Estimation of the variance-covariance (V/CV) structure of fragmentary bioarchaeological populations requires the use of proxy extant V/CV parameters. However, it is currently unclear whether extant human populations exhibit equivalent V/CV structures. Random skewers (RS) and hierarchical analyses of common principal components (CPC) were applied to a modern human cranial dataset. Cranial V/CV similarity was assessed globally for samples of individual populations (jackknifed method) and for pairwise population sample contrasts. The results were examined in light of potential explanatory factors for covariance difference, such as geographic region, among-group distance, and sample size. RS analyses showed that population samples exhibited highly correlated multivariate responses to selection, and that differences in RS results were primarily a consequence of differences in sample size. The CPC method yielded mixed results, depending upon the statistical criterion used to evaluate the hierarchy. The hypothesis-testing (step-up) approach was deemed problematic due to sensitivity to low statistical power and elevated Type I errors. In contrast, the model-fitting (lowest AIC) approach suggested that V/CV matrices were proportional and/or shared a large number of CPCs. Pairwise population sample CPC results were correlated with cranial distance, suggesting that population history explains some of the variability in V/CV structure among groups. The results indicate that patterns of covariance in human craniometric samples are broadly similar but not identical. These findings have important implications for choosing extant covariance matrices to use as proxy V/CV parameters in evolutionary analyses of past populations. © 2016 Wiley Periodicals, Inc.
On robust parameter estimation in brain-computer interfacing
NASA Astrophysics Data System (ADS)
Samek, Wojciech; Nakajima, Shinichi; Kawanabe, Motoaki; Müller, Klaus-Robert
2017-12-01
Objective. The reliable estimation of parameters such as mean or covariance matrix from noisy and high-dimensional observations is a prerequisite for successful application of signal processing and machine learning algorithms in brain-computer interfacing (BCI). This challenging task becomes significantly more difficult if the data set contains outliers, e.g. due to subject movements, eye blinks or loose electrodes, as they may heavily bias the estimation and the subsequent statistical analysis. Although various robust estimators have been developed to tackle the outlier problem, they ignore important structural information in the data and thus may not be optimal. Typical structural elements in BCI data are the trials consisting of a few hundred EEG samples and indicating the start and end of a task. Approach. This work discusses the parameter estimation problem in BCI and introduces a novel hierarchical view on robustness which naturally comprises different types of outlierness occurring in structured data. Furthermore, the class of minimum divergence estimators is reviewed and a robust mean and covariance estimator for structured data is derived and evaluated with simulations and on a benchmark data set. Main results. The results show that state-of-the-art BCI algorithms benefit from robustly estimated parameters. Significance. Since parameter estimation is an integral part of various machine learning algorithms, the presented techniques are applicable to many problems beyond BCI.
AFCI-2.0 Library of Neutron Cross Section Covariances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman, M.; Herman,M.; Oblozinsky,P.
2011-06-26
Neutron cross section covariance library has been under development by BNL-LANL collaborative effort over the last three years. The primary purpose of the library is to provide covariances for the Advanced Fuel Cycle Initiative (AFCI) data adjustment project, which is focusing on the needs of fast advanced burner reactors. The covariances refer to central values given in the 2006 release of the U.S. neutron evaluated library ENDF/B-VII. The preliminary version (AFCI-2.0beta) has been completed in October 2010 and made available to the users for comments. In the final 2.0 release, covariances for a few materials were updated, in particular newmore » LANL evaluations for {sup 238,240}Pu and {sup 241}Am were adopted. BNL was responsible for covariances for structural materials and fission products, management of the library and coordination of the work, while LANL was in charge of covariances for light nuclei and for actinides.« less
Directional selection effects on patterns of phenotypic (co)variation in wild populations
Patton, J. L.; Hubbe, A.; Marroig, G.
2016-01-01
Phenotypic (co)variation is a prerequisite for evolutionary change, and understanding how (co)variation evolves is of crucial importance to the biological sciences. Theoretical models predict that under directional selection, phenotypic (co)variation should evolve in step with the underlying adaptive landscape, increasing the degree of correlation among co-selected traits as well as the amount of genetic variance in the direction of selection. Whether either of these outcomes occurs in natural populations is an open question and thus an important gap in evolutionary theory. Here, we documented changes in the phenotypic (co)variation structure in two separate natural populations in each of two chipmunk species (Tamias alpinus and T. speciosus) undergoing directional selection. In populations where selection was strongest (those of T. alpinus), we observed changes, at least for one population, in phenotypic (co)variation that matched theoretical expectations, namely an increase of both phenotypic integration and (co)variance in the direction of selection and a re-alignment of the major axis of variation with the selection gradient. PMID:27881744
Multiple Imputation of a Randomly Censored Covariate Improves Logistic Regression Analysis.
Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A
2016-01-01
Randomly censored covariates arise frequently in epidemiologic studies. The most commonly used methods, including complete case and single imputation or substitution, suffer from inefficiency and bias. They make strong parametric assumptions or they consider limit of detection censoring only. We employ multiple imputation, in conjunction with semi-parametric modeling of the censored covariate, to overcome these shortcomings and to facilitate robust estimation. We develop a multiple imputation approach for randomly censored covariates within the framework of a logistic regression model. We use the non-parametric estimate of the covariate distribution or the semiparametric Cox model estimate in the presence of additional covariates in the model. We evaluate this procedure in simulations, and compare its operating characteristics to those from the complete case analysis and a survival regression approach. We apply the procedures to an Alzheimer's study of the association between amyloid positivity and maternal age of onset of dementia. Multiple imputation achieves lower standard errors and higher power than the complete case approach under heavy and moderate censoring and is comparable under light censoring. The survival regression approach achieves the highest power among all procedures, but does not produce interpretable estimates of association. Multiple imputation offers a favorable alternative to complete case analysis and ad hoc substitution methods in the presence of randomly censored covariates within the framework of logistic regression.
Schneider, Bruce A.; Avivi-Reich, Meital; Mozuraitis, Mindaugas
2015-01-01
A number of statistical textbooks recommend using an analysis of covariance (ANCOVA) to control for the effects of extraneous factors that might influence the dependent measure of interest. However, it is not generally recognized that serious problems of interpretation can arise when the design contains comparisons of participants sampled from different populations (classification designs). Designs that include a comparison of younger and older adults, or a comparison of musicians and non-musicians are examples of classification designs. In such cases, estimates of differences among groups can be contaminated by differences in the covariate population means across groups. A second problem of interpretation will arise if the experimenter fails to center the covariate measures (subtracting the mean covariate score from each covariate score) whenever the design contains within-subject factors. Unless the covariate measures on the participants are centered, estimates of within-subject factors are distorted, and significant increases in Type I error rates, and/or losses in power can occur when evaluating the effects of within-subject factors. This paper: (1) alerts potential users of ANCOVA of the need to center the covariate measures when the design contains within-subject factors, and (2) indicates how they can avoid biases when one cannot assume that the expected value of the covariate measure is the same for all of the groups in a classification design. PMID:25954230
Westgate, Philip M.
2016-01-01
When generalized estimating equations (GEE) incorporate an unstructured working correlation matrix, the variances of regression parameter estimates can inflate due to the estimation of the correlation parameters. In previous work, an approximation for this inflation that results in a corrected version of the sandwich formula for the covariance matrix of regression parameter estimates was derived. Use of this correction for correlation structure selection also reduces the over-selection of the unstructured working correlation matrix. In this manuscript, we conduct a simulation study to demonstrate that an increase in variances of regression parameter estimates can occur when GEE incorporates structured working correlation matrices as well. Correspondingly, we show the ability of the corrected version of the sandwich formula to improve the validity of inference and correlation structure selection. We also study the relative influences of two popular corrections to a different source of bias in the empirical sandwich covariance estimator. PMID:27818539
Westgate, Philip M
2016-01-01
When generalized estimating equations (GEE) incorporate an unstructured working correlation matrix, the variances of regression parameter estimates can inflate due to the estimation of the correlation parameters. In previous work, an approximation for this inflation that results in a corrected version of the sandwich formula for the covariance matrix of regression parameter estimates was derived. Use of this correction for correlation structure selection also reduces the over-selection of the unstructured working correlation matrix. In this manuscript, we conduct a simulation study to demonstrate that an increase in variances of regression parameter estimates can occur when GEE incorporates structured working correlation matrices as well. Correspondingly, we show the ability of the corrected version of the sandwich formula to improve the validity of inference and correlation structure selection. We also study the relative influences of two popular corrections to a different source of bias in the empirical sandwich covariance estimator.
Jamniczky, Heather A; Barry, Tegan N; Rogers, Sean M
2015-07-01
The tight fit between form and function in organisms suggests the influence of adaptive evolution in biomechanics; however, the prevalence of adaptive traits, the mechanisms by which they arise and the corresponding responses to selection are subjects of extensive debate. We used three-dimensional microcomputed tomography and geometric morphometrics to characterize the structure of phenotypic covariance within the G. aculeatus trophic apparatus and its supporting structures in wild and controlled crosses of fish from two different localities. Our results reveal that while the structure of phenotypic covariance is conserved in marine and freshwater forms, it may be disrupted in the progeny of artificial crosses or during rapid adaptive divergence events. We discuss these results within the context of integrating covariance structure with quantitative genetics, toward establishing predictive links between genes, development, biomechanics, and the environment. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Remediating Non-Positive Definite State Covariances for Collision Probability Estimation
NASA Technical Reports Server (NTRS)
Hall, Doyle T.; Hejduk, Matthew D.; Johnson, Lauren C.
2017-01-01
The NASA Conjunction Assessment Risk Analysis team estimates the probability of collision (Pc) for a set of Earth-orbiting satellites. The Pc estimation software processes satellite position+velocity states and their associated covariance matri-ces. On occasion, the software encounters non-positive definite (NPD) state co-variances, which can adversely affect or prevent the Pc estimation process. Inter-polation inaccuracies appear to account for the majority of such covariances, alt-hough other mechanisms contribute also. This paper investigates the origin of NPD state covariance matrices, three different methods for remediating these co-variances when and if necessary, and the associated effects on the Pc estimation process.
HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2012-01-01
The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied. PMID:22661790
Kupek, Emil
2002-01-01
Background Frequent use of self-reports for investigating recent and past behavior in medical research requires statistical techniques capable of analyzing complex sources of bias associated with this methodology. In particular, although decreasing accuracy of recalling more distant past events is commonplace, the bias due to differential in memory errors resulting from it has rarely been modeled statistically. Methods Covariance structure analysis was used to estimate the recall error of self-reported number of sexual partners for past periods of varying duration and its implication for the bias. Results Results indicated increasing levels of inaccuracy for reports about more distant past. Considerable positive bias was found for a small fraction of respondents who reported ten or more partners in the last year, last two years and last five years. This is consistent with the effect of heteroscedastic random error where the majority of partners had been acquired in the more distant past and therefore were recalled less accurately than the partners acquired more recently to the time of interviewing. Conclusions Memory errors of this type depend on the salience of the events recalled and are likely to be present in many areas of health research based on self-reported behavior. PMID:12435276
Chou, C P; Bentler, P M; Satorra, A
1991-11-01
Research studying robustness of maximum likelihood (ML) statistics in covariance structure analysis has concluded that test statistics and standard errors are biased under severe non-normality. An estimation procedure known as asymptotic distribution free (ADF), making no distributional assumption, has been suggested to avoid these biases. Corrections to the normal theory statistics to yield more adequate performance have also been proposed. This study compares the performance of a scaled test statistic and robust standard errors for two models under several non-normal conditions and also compares these with the results from ML and ADF methods. Both ML and ADF test statistics performed rather well in one model and considerably worse in the other. In general, the scaled test statistic seemed to behave better than the ML test statistic and the ADF statistic performed the worst. The robust and ADF standard errors yielded more appropriate estimates of sampling variability than the ML standard errors, which were usually downward biased, in both models under most of the non-normal conditions. ML test statistics and standard errors were found to be quite robust to the violation of the normality assumption when data had either symmetric and platykurtic distributions, or non-symmetric and zero kurtotic distributions.
Structural Covariance Networks in Children with Autism or ADHD
Romero-Garcia, R.; Mak, E.; Bullmore, E. T.; Baron-Cohen, S.
2017-01-01
Abstract Background While autism and attention-deficit/hyperactivity disorder (ADHD) are considered distinct conditions from a diagnostic perspective, clinically they share some phenotypic features and have high comorbidity. Regardless, most studies have focused on only one condition, with considerable heterogeneity in their results. Taking a dual-condition approach might help elucidate shared and distinct neural characteristics. Method Graph theory was used to analyse topological properties of structural covariance networks across both conditions and relative to a neurotypical (NT; n = 87) group using data from the ABIDE (autism; n = 62) and ADHD-200 datasets (ADHD; n = 69). Regional cortical thickness was used to construct the structural covariance networks. This was analysed in a theoretical framework examining potential differences in long and short-range connectivity, with a specific focus on relation between central graph measures and cortical thickness. Results We found convergence between autism and ADHD, where both conditions show an overall decrease in CT covariance with increased Euclidean distance between centroids compared with a NT population. The 2 conditions also show divergence. Namely, there is less modular overlap between the 2 conditions than there is between each condition and the NT group. The ADHD group also showed reduced cortical thickness and lower degree in hub regions than the autism group. Lastly, the ADHD group also showed reduced wiring costs compared with the autism groups. Conclusions Our results indicate a need for taking an integrated approach when considering highly comorbid conditions such as autism and ADHD. Furthermore, autism and ADHD both showed alterations in the relation between inter-regional covariance and centroid distance, where both groups show a steeper decline in covariance as a function of distance. The 2 groups also diverge on modular organization, cortical thickness of hub regions and wiring cost of the covariance network. Thus, on some network features the groups are distinct, yet on others there is convergence. PMID:28633299
Structural Covariance Networks in Children with Autism or ADHD.
Bethlehem, R A I; Romero-Garcia, R; Mak, E; Bullmore, E T; Baron-Cohen, S
2017-08-01
While autism and attention-deficit/hyperactivity disorder (ADHD) are considered distinct conditions from a diagnostic perspective, clinically they share some phenotypic features and have high comorbidity. Regardless, most studies have focused on only one condition, with considerable heterogeneity in their results. Taking a dual-condition approach might help elucidate shared and distinct neural characteristics. Graph theory was used to analyse topological properties of structural covariance networks across both conditions and relative to a neurotypical (NT; n = 87) group using data from the ABIDE (autism; n = 62) and ADHD-200 datasets (ADHD; n = 69). Regional cortical thickness was used to construct the structural covariance networks. This was analysed in a theoretical framework examining potential differences in long and short-range connectivity, with a specific focus on relation between central graph measures and cortical thickness. We found convergence between autism and ADHD, where both conditions show an overall decrease in CT covariance with increased Euclidean distance between centroids compared with a NT population. The 2 conditions also show divergence. Namely, there is less modular overlap between the 2 conditions than there is between each condition and the NT group. The ADHD group also showed reduced cortical thickness and lower degree in hub regions than the autism group. Lastly, the ADHD group also showed reduced wiring costs compared with the autism groups. Our results indicate a need for taking an integrated approach when considering highly comorbid conditions such as autism and ADHD. Furthermore, autism and ADHD both showed alterations in the relation between inter-regional covariance and centroid distance, where both groups show a steeper decline in covariance as a function of distance. The 2 groups also diverge on modular organization, cortical thickness of hub regions and wiring cost of the covariance network. Thus, on some network features the groups are distinct, yet on others there is convergence. © The Author 2017. Published by Oxford University Press.
Abnormalities in Structural Covariance of Cortical Gyrification in Parkinson's Disease.
Xu, Jinping; Zhang, Jiuquan; Zhang, Jinlei; Wang, Yue; Zhang, Yanling; Wang, Jian; Li, Guanglin; Hu, Qingmao; Zhang, Yuanchao
2017-01-01
Although abnormal cortical morphology and connectivity between brain regions (structural covariance) have been reported in Parkinson's disease (PD), the topological organizations of large-scale structural brain networks are still poorly understood. In this study, we investigated large-scale structural brain networks in a sample of 37 PD patients and 34 healthy controls (HC) by assessing the structural covariance of cortical gyrification with local gyrification index (lGI). We demonstrated prominent small-world properties of the structural brain networks for both groups. Compared with the HC group, PD patients showed significantly increased integrated characteristic path length and integrated clustering coefficient, as well as decreased integrated global efficiency in structural brain networks. Distinct distributions of hub regions were identified between the two groups, showing more hub regions in the frontal cortex in PD patients. Moreover, the modular analyses revealed significantly decreased integrated regional efficiency in lateral Fronto-Insula-Temporal module, and increased integrated regional efficiency in Parieto-Temporal module in the PD group as compared to the HC group. In summary, our study demonstrated altered topological properties of structural networks at a global, regional and modular level in PD patients. These findings suggests that the structural networks of PD patients have a suboptimal topological organization, resulting in less effective integration of information between brain regions.
A seismic coherency method using spectral amplitudes
NASA Astrophysics Data System (ADS)
Sui, Jing-Kun; Zheng, Xiao-Dong; Li, Yan-Dong
2015-09-01
Seismic coherence is used to detect discontinuities in underground media. However, strata with steeply dipping structures often produce false low coherence estimates and thus incorrect discontinuity characterization results. It is important to eliminate or reduce the effect of dipping on coherence estimates. To solve this problem, time-domain dip scanning is typically used to improve estimation of coherence in areas with steeply dipping structures. However, the accuracy of the time-domain estimation of dip is limited by the sampling interval. In contrast, the spectrum amplitude is not affected by the time delays in adjacent seismic traces caused by dipping structures. We propose a coherency algorithm that uses the spectral amplitudes of seismic traces within a predefined analysis window to construct the covariance matrix. The coherency estimates with the proposed algorithm is defined as the ratio between the dominant eigenvalue and the sum of all eigenvalues of the constructed covariance matrix. Thus, we eliminate the effect of dipping structures on coherency estimates. In addition, because different frequency bands of spectral amplitudes are used to estimate coherency, the proposed algorithm has multiscale features. Low frequencies are effective for characterizing large-scale faults, whereas high frequencies are better in characterizing small-scale faults. Application to synthetic and real seismic data show that the proposed algorithm can eliminate the effect of dip and produce better coherence estimates than conventional coherency algorithms in areas with steeply dipping structures.
Measuring continuous baseline covariate imbalances in clinical trial data
Ciolino, Jody D.; Martin, Renee’ H.; Zhao, Wenle; Hill, Michael D.; Jauch, Edward C.; Palesch, Yuko Y.
2014-01-01
This paper presents and compares several methods of measuring continuous baseline covariate imbalance in clinical trial data. Simulations illustrate that though the t-test is an inappropriate method of assessing continuous baseline covariate imbalance, the test statistic itself is a robust measure in capturing imbalance in continuous covariate distributions. Guidelines to assess effects of imbalance on bias, type I error rate, and power for hypothesis test for treatment effect on continuous outcomes are presented, and the benefit of covariate-adjusted analysis (ANCOVA) is also illustrated. PMID:21865270
NASA Astrophysics Data System (ADS)
Freire, J.; González-Gurriarán, E.; Olaso, I.
1992-12-01
Geostatistical methodology was used to analyse spatial structure and distribution of the epibenthic crustaceans Munida intermedia and M. sarsi within sets of data which had been collected during three survey cruises carried out on the Galician continental shelf (1983 and 1984). This study investigates the feasibility of using geostatistics for data collected according to traditional methods and of enhancing such methodology. The experimental variograms were calculated (pooled variance minus spatial covariance between samples taken one pair at a time vs. distance) and fitted to a 'spherical' model. The spatial structure model was used to estimate the abundance and distribution of the populations studied using the technique of kriging. The species display spatial structures, which are well marked during high density periods and in some areas (especially northern shelf). Geostatistical analysis allows identification of the density gradients in space as well as the patch grain along the continental shelf of 16-25 km diameter for M. intermedia and 12-20 km for M. sarsi. Patches of both species have a consistent location throughout the different cruises. As in other geographical areas, M. intermedia and M. sarsi usually appear at depths ranging from 200 to 500 m, with the highest densities in the continental shelf area located between Fisterra and Estaca de Bares. Althouh sampling was not originally designed specifically for geostatistics, this assay provides a measurement of spatial covariance, and shows variograms with variable structure depending on population density and geographical area. These ideas are useful in improving the design of future sampling cruises.
ERIC Educational Resources Information Center
And Others; Werts, Charles E.
1979-01-01
It is shown how partial covariance, part and partial correlation, and regression weights can be estimated and tested for significance by means of a factor analytic model. Comparable partial covariance, correlations, and regression weights have identical significance tests. (Author)
Yap, John Stephen; Fan, Jianqing; Wu, Rongling
2009-12-01
Estimation of the covariance structure of longitudinal processes is a fundamental prerequisite for the practical deployment of functional mapping designed to study the genetic regulation and network of quantitative variation in dynamic complex traits. We present a nonparametric approach for estimating the covariance structure of a quantitative trait measured repeatedly at a series of time points. Specifically, we adopt Huang et al.'s (2006, Biometrika 93, 85-98) approach of invoking the modified Cholesky decomposition and converting the problem into modeling a sequence of regressions of responses. A regularized covariance estimator is obtained using a normal penalized likelihood with an L(2) penalty. This approach, embedded within a mixture likelihood framework, leads to enhanced accuracy, precision, and flexibility of functional mapping while preserving its biological relevance. Simulation studies are performed to reveal the statistical properties and advantages of the proposed method. A real example from a mouse genome project is analyzed to illustrate the utilization of the methodology. The new method will provide a useful tool for genome-wide scanning for the existence and distribution of quantitative trait loci underlying a dynamic trait important to agriculture, biology, and health sciences.
Phenotypic Covariation and Morphological Diversification in the Ruminant Skull.
Haber, Annat
2016-05-01
Differences among clades in their diversification patterns result from a combination of extrinsic and intrinsic factors. In this study, I examined the role of intrinsic factors in the morphological diversification of ruminants, in general, and in the differences between bovids and cervids, in particular. Using skull morphology, which embodies many of the adaptations that distinguish bovids and cervids, I examined 132 of the 200 extant ruminant species. As a proxy for intrinsic constraints, I quantified different aspects of the phenotypic covariation structure within species and compared them with the among-species divergence patterns, using phylogenetic comparative methods. My results show that for most species, divergence is well aligned with their phenotypic covariance matrix and that those that are better aligned have diverged further away from their ancestor. Bovids have dispersed into a wider range of directions in morphospace than cervids, and their overall disparity is higher. This difference is best explained by the lower eccentricity of bovids' within-species covariance matrices. These results are consistent with the role of intrinsic constraints in determining amount, range, and direction of dispersion and demonstrate that intrinsic constraints can influence macroevolutionary patterns even as the covariance structure evolves.
Welch, Allison M; Smith, Michael J; Gerhardt, H Carl
2014-06-01
Genetic variation in sexual displays is crucial for an evolutionary response to sexual selection, but can be eroded by strong selection. Identifying the magnitude and sources of additive genetic variance underlying sexually selected traits is thus an important issue in evolutionary biology. We conducted a quantitative genetics experiment with gray treefrogs (Hyla versicolor) to investigate genetic variances and covariances among features of the male advertisement call. Two energetically expensive traits showed significant genetic variation: call duration, expressed as number of pulses per call, and call rate, represented by its inverse, call period. These two properties also showed significant genetic covariance, consistent with an energetic constraint to call production. Combining the genetic variance-covariance matrix with previous estimates of directional sexual selection imposed by female preferences predicts a limited increase in call duration but no change in call rate despite significant selection on both traits. In addition to constraints imposed by the genetic covariance structure, an evolutionary response to sexual selection may also be limited by high energetic costs of long-duration calls and by preferences that act most strongly against very short-duration calls. Meanwhile, the persistence of these preferences could be explained by costs of mating with males with especially unattractive calls. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Cornette, Raphaël; Baylac, Michel; Souter, Thibaud; Herrel, Anthony
2013-01-01
Morpho-functional patterns are important drivers of phenotypic diversity given their importance in a fitness-related context. Although modularity of the mandible and skull has been studied extensively in mammals, few studies have explored shape co-variation between these two structures. Despite being developmentally independent, the skull and mandible form a functionally integrated unit. In the present paper we use 3D surface geometric morphometric methods allowing us to explore the form of both skull and mandible in its 3D complexity using the greater white-toothed shrew as a model. This approach allows an accurate 3D description of zones devoid of anatomical landmarks that are functionally important. Two-block partial least-squares approaches were used to describe the co-variation of form between skull and mandible. Moreover, a 3D biomechanical model was used to explore the functional consequences of the observed patterns of co-variation. Our results show the efficiency of the method in investigations of complex morpho-functional patterns. Indeed, the description of shape co-variation between the skull and the mandible highlighted the location and the intensity of their functional relationships through the jaw adductor muscles linking these two structures. Our results also demonstrated that shape co-variation in form between the skull and mandible has direct functional consequences on the recruitment of muscles during biting. PMID:23964811
Bartz, Daniel; Hatrick, Kerr; Hesse, Christian W; Müller, Klaus-Robert; Lemm, Steven
2013-01-01
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation.
Bartz, Daniel; Hatrick, Kerr; Hesse, Christian W.; Müller, Klaus-Robert; Lemm, Steven
2013-01-01
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation. PMID:23844016
Fast and accurate estimation of the covariance between pairwise maximum likelihood distances.
Gil, Manuel
2014-01-01
Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error.
Fast and accurate estimation of the covariance between pairwise maximum likelihood distances
2014-01-01
Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error. PMID:25279263
Tangen, C M; Koch, G G
1999-03-01
In the randomized clinical trial setting, controlling for covariates is expected to produce variance reduction for the treatment parameter estimate and to adjust for random imbalances of covariates between the treatment groups. However, for the logistic regression model, variance reduction is not obviously obtained. This can lead to concerns about the assumptions of the logistic model. We introduce a complementary nonparametric method for covariate adjustment. It provides results that are usually compatible with expectations for analysis of covariance. The only assumptions required are based on randomization and sampling arguments. The resulting treatment parameter is a (unconditional) population average log-odds ratio that has been adjusted for random imbalance of covariates. Data from a randomized clinical trial are used to compare results from the traditional maximum likelihood logistic method with those from the nonparametric logistic method. We examine treatment parameter estimates, corresponding standard errors, and significance levels in models with and without covariate adjustment. In addition, we discuss differences between unconditional population average treatment parameters and conditional subpopulation average treatment parameters. Additional features of the nonparametric method, including stratified (multicenter) and multivariate (multivisit) analyses, are illustrated. Extensions of this methodology to the proportional odds model are also made.
Dwyer, John M; Laughlin, Daniel C
2017-07-01
Trade-offs maintain diversity and structure communities along environmental gradients. Theory indicates that if covariance among functional traits sets a limit on the number of viable trait combinations in a given environment, then communities with strong multidimensional trait constraints should exhibit low species diversity. We tested this prediction in winter annual plant assemblages along an aridity gradient using multilevel structural equation modelling. Univariate and multivariate functional diversity measures were poorly explained by aridity, and were surprisingly poor predictors of community richness. By contrast, the covariance between maximum height and seed mass strengthened along the aridity gradient, and was strongly associated with richness declines. Community richness had a positive effect on local neighbourhood richness, indicating that climate effects on trait covariance indirectly influence diversity at local scales. We present clear empirical evidence that declines in species richness along gradients of environmental stress can be due to increasing constraints on multidimensional phenotypes. © 2017 John Wiley & Sons Ltd/CNRS.
Fong, Ted C T; Ho, Rainbow T H
2015-01-01
The aim of this study was to reexamine the dimensionality of the widely used 9-item Utrecht Work Engagement Scale using the maximum likelihood (ML) approach and Bayesian structural equation modeling (BSEM) approach. Three measurement models (1-factor, 3-factor, and bi-factor models) were evaluated in two split samples of 1,112 health-care workers using confirmatory factor analysis and BSEM, which specified small-variance informative priors for cross-loadings and residual covariances. Model fit and comparisons were evaluated by posterior predictive p-value (PPP), deviance information criterion, and Bayesian information criterion (BIC). None of the three ML-based models showed an adequate fit to the data. The use of informative priors for cross-loadings did not improve the PPP for the models. The 1-factor BSEM model with approximately zero residual covariances displayed a good fit (PPP>0.10) to both samples and a substantially lower BIC than its 3-factor and bi-factor counterparts. The BSEM results demonstrate empirical support for the 1-factor model as a parsimonious and reasonable representation of work engagement.
Nguyen, Tuong-Vi; Lew, Jimin; Albaugh, Matthew D; Botteron, Kelly N; Hudziak, James J; Fonov, Vladimir S; Collins, D Louis; Ducharme, Simon; McCracken, James T
2017-02-01
Testosterone is thought to play a crucial role in mediating sexual differentiation of brain structures. Examinations of the cognitive effects of testosterone have also shown beneficial and potentially sex-specific effects on executive function and mnemonic processes. Yet these findings remain limited by an incomplete understanding of the critical timing and brain regions most affected by testosterone, the lack of documented links between testosterone-related structural brain changes and cognition, and the difficulty in distinguishing the effects of testosterone from those of related sex steroids such as of estradiol and dehydroepiandrosterone (DHEA). Here we examined associations between testosterone, cortico-hippocampal structural covariance, executive function (Behavior Rating Inventory of Executive Function) and verbal memory (California Verbal Learning Test-Children's Version), in a longitudinal sample of typically developing children and adolescents 6-22 yo, controlling for the effects of estradiol, DHEA, pubertal stage, collection time, age, handedness, and total brain volume. We found prefrontal-hippocampal covariance to vary as a function of testosterone levels, but only in boys. Boys also showed a specific association between positive prefrontal-hippocampal covariance (as seen at higher testosterone levels) and lower performance on specific components of executive function (monitoring the action process and flexibly shifting between actions). We also found the association between testosterone and a specific aspect of executive function (monitoring) to be significantly mediated by prefrontal-hippocampal structural covariance. There were no significant associations between testosterone-related cortico-hippocampal covariance and verbal memory. Taken together, these findings highlight the developmental importance of testosterone in supporting sexual differentiation of the brain and sex-specific executive function. Copyright © 2016 Elsevier Ltd. All rights reserved.
Minimum number of measurements for evaluating soursop (Annona muricata L.) yield.
Sánchez, C F B; Teodoro, P E; Londoño, S; Silva, L A; Peixoto, L A; Bhering, L L
2017-05-31
Repeatability studies on fruit species are of great importance to identify the minimum number of measurements necessary to accurately select superior genotypes. This study aimed to identify the most efficient method to estimate the repeatability coefficient (r) and predict the minimum number of measurements needed for a more accurate evaluation of soursop (Annona muricata L.) genotypes based on fruit yield. Sixteen measurements of fruit yield from 71 soursop genotypes were carried out between 2000 and 2016. In order to estimate r with the best accuracy, four procedures were used: analysis of variance, principal component analysis based on the correlation matrix, principal component analysis based on the phenotypic variance and covariance matrix, and structural analysis based on the correlation matrix. The minimum number of measurements needed to predict the actual value of individuals was estimated. Principal component analysis using the phenotypic variance and covariance matrix provided the most accurate estimates of both r and the number of measurements required for accurate evaluation of fruit yield in soursop. Our results indicate that selection of soursop genotypes with high fruit yield can be performed based on the third and fourth measurements in the early years and/or based on the eighth and ninth measurements at more advanced stages.
Antidepressant treatment and suicide attempts and self-inflicted injury in children and adolescents.
Gibbons, Robert D; Coca Perraillon, Marcelo; Hur, Kwan; Conti, Rena M; Valuck, Robert J; Brent, David A
2015-02-01
In the 2004, FDA placed a black box warning on antidepressants for risk of suicidal thoughts and behavior in children and adolescents. The purpose of this paper is to examine the risk of suicide attempt and self-inflicted injury in depressed children ages 5-17 treated with antidepressants in two large observational datasets taking account time-varying confounding. We analyzed two large US medical claims databases (MarketScan and LifeLink) containing 221,028 youth (ages 5-17) with new episodes of depression, with and without antidepressant treatment during the period of 2004-2009. Subjects were followed for up to 180 days. Marginal structural models were used to adjust for time-dependent confounding. For both datasets, significantly increased risk of suicide attempts and self-inflicted injury were seen during antidepressant treatment episodes in the unadjusted and simple covariate adjusted analyses. Marginal structural models revealed that the majority of the association is produced by dynamic confounding in the treatment selection process; estimated odds ratios were close to 1.0 consistent with the unadjusted and simple covariate adjusted association being a product of chance alone. Our analysis suggests antidepressant treatment selection is a product of both static and dynamic patient characteristics. Lack of adjustment for treatment selection based on dynamic patient characteristics can lead to the appearance of an association between antidepressant treatment and suicide attempts and self-inflicted injury among youths in unadjusted and simple covariate adjusted analyses. Marginal structural models can be used to adjust for static and dynamic treatment selection processes such as that likely encountered in observational studies of associations between antidepressant treatment selection, suicide and related behaviors in youth. Copyright © 2014 John Wiley & Sons, Ltd.
Almécija, Sergio; Orr, Caley M; Tocheri, Matthew W; Patel, Biren A; Jungers, William L
2015-01-01
Three-dimensional geometric morphometrics (3DGM) is a powerful tool for capturing and visualizing the "pure" shape of complex structures. However, these shape differences are sometimes difficult to interpret from a functional viewpoint, unless specific approaches (mostly based on biomechanical modeling) are employed. Here, we use 3DGM to explore the complex shape variation of the hamate, the disto-ulnar wrist bone, in anthropoid primates. Major trends of shape variation are explored using principal components analysis along with analyses of shape and size covariation. We also evaluate the phylogenetic patterning of hamate shape by plotting an anthropoid phylogenetic tree onto the shape space (i.e., phylomorphospace) and test against complete absence of phylogenetic signal using posterior permutation. Finally, the covariation of hamate shape and locomotor categories is explored by means of 2-block partial least squares (PLS) using shape coordinates and a matrix of data on arboreal locomotor behavior. Our results show that 3DGM is a valuable and versatile tool for characterizing the shape of complex structures such as wrist bones in anthropoids. For the hamate, a significant phylogenetic pattern is found in both hamate shape and size, indicating that closely related taxa are typically the most similar in hamate form. Our allometric analyses show that major differences in hamate shape among taxa are not a direct consequence of differences in hamate size. Finally, our PLS indicates a significant covariation of hamate shape and different types of arboreal locomotion, highlighting the relevance of this approach in future 3DGM studies seeking to capture a functional signal from complex biological structures. © 2014 Wiley Periodicals, Inc.
Huang, Li-Shan; Myers, Gary J.; Davidson, Philip W.; Cox, Christopher; Xiao, Fenyuan; Thurston, Sally W.; Cernichiari, Elsa; Shamlaye, Conrad F.; Sloane-Reeves, Jean; Georger, Lesley; Clarkson, Thomas W.
2007-01-01
Studies of the association between prenatal methylmercury exposure from maternal fish consumption during pregnancy and neurodevelopmental test scores in the Seychelles Child Development Study have found no consistent pattern of associations through age nine years. The analyses for the most recent nine-year data examined the population effects of prenatal exposure, but did not address the possibility of non-homogeneous susceptibility. This paper presents a regression tree approach: covariate effects are treated nonlinearly and non-additively and non-homogeneous effects of prenatal methylmercury exposure are permitted among the covariate clusters identified by the regression tree. The approach allows us to address whether children in the lower or higher ends of the developmental spectrum differ in susceptibility to subtle exposure effects. Of twenty-one endpoints available at age nine years, we chose the Weschler Full Scale IQ and its associated covariates to construct the regression tree. The prenatal mercury effect in each of the nine resulting clusters was assessed linearly and non-homogeneously. In addition we reanalyzed five other nine-year endpoints that in the linear analysis has a two-tailed p-value <0.2 for the effect of prenatal exposure. In this analysis, motor proficiency and activity level improved significantly with increasing MeHg for 53% of the children who had an average home environment. Motor proficiency significantly decreased with increasing prenatal MeHg exposure in 7% of the children whose home environment was below average. The regression tree results support previous analyses of outcomes in this cohort. However, this analysis raises the intriguing possibility that an effect may be non-homogeneous among children with different backgrounds and IQ levels. PMID:17942158
Huang, Li-Shan; Myers, Gary J; Davidson, Philip W; Cox, Christopher; Xiao, Fenyuan; Thurston, Sally W; Cernichiari, Elsa; Shamlaye, Conrad F; Sloane-Reeves, Jean; Georger, Lesley; Clarkson, Thomas W
2007-11-01
Studies of the association between prenatal methylmercury exposure from maternal fish consumption during pregnancy and neurodevelopmental test scores in the Seychelles Child Development Study have found no consistent pattern of associations through age 9 years. The analyses for the most recent 9-year data examined the population effects of prenatal exposure, but did not address the possibility of non-homogeneous susceptibility. This paper presents a regression tree approach: covariate effects are treated non-linearly and non-additively and non-homogeneous effects of prenatal methylmercury exposure are permitted among the covariate clusters identified by the regression tree. The approach allows us to address whether children in the lower or higher ends of the developmental spectrum differ in susceptibility to subtle exposure effects. Of 21 endpoints available at age 9 years, we chose the Weschler Full Scale IQ and its associated covariates to construct the regression tree. The prenatal mercury effect in each of the nine resulting clusters was assessed linearly and non-homogeneously. In addition we reanalyzed five other 9-year endpoints that in the linear analysis had a two-tailed p-value <0.2 for the effect of prenatal exposure. In this analysis, motor proficiency and activity level improved significantly with increasing MeHg for 53% of the children who had an average home environment. Motor proficiency significantly decreased with increasing prenatal MeHg exposure in 7% of the children whose home environment was below average. The regression tree results support previous analyses of outcomes in this cohort. However, this analysis raises the intriguing possibility that an effect may be non-homogeneous among children with different backgrounds and IQ levels.
Population Pharmacokinetic Model of Doxycycline Plasma Concentrations Using Pooled Study Data
Wojciechowski, Jessica; Mudge, Stuart; Upton, Richard N.; Foster, David J. R.
2017-01-01
ABSTRACT The literature presently lacks a population pharmacokinetic analysis of doxycycline. This study aimed to develop a population pharmacokinetic model of doxycycline plasma concentrations that could be used to assess the power of bioequivalence between Doryx delayed-release tablets and Doryx MPC. Doxycycline pharmacokinetic data were available from eight phase 1 clinical trials following single/multiple doses of conventional-release doxycycline capsules, Doryx delayed-release tablets, and Doryx MPC under fed and fasted conditions. A population pharmacokinetic model was developed in a stepwise manner using NONMEM, version 7.3. The final covariate model was developed according to a forward inclusion (P < 0.01) and then backward deletion (P < 0.001) procedure. The final model was a two-compartment model with two-transit absorption compartments. Structural covariates in the base model included formulation effects on relative bioavailability (F), absorption lag (ALAG), and the transit absorption rate (KTR) under the fed status. An absorption delay (lag) for the fed status (FTLAG2 = 0.203 h) was also included in the model as a structural covariate. The fed status was observed to decrease F by 10.5%, and the effect of female sex was a 14.4% increase in clearance. The manuscript presents the first population pharmacokinetic model of doxycycline plasma concentrations following oral doxycycline administration. The model was used to assess the power of bioequivalence between Doryx delayed-release tablets and Doryx MPC, and it could potentially be used to critically examine and optimize doxycycline dose regimens. PMID:28052851
Population Pharmacokinetic Model of Doxycycline Plasma Concentrations Using Pooled Study Data.
Hopkins, Ashley M; Wojciechowski, Jessica; Abuhelwa, Ahmad Y; Mudge, Stuart; Upton, Richard N; Foster, David J R
2017-03-01
The literature presently lacks a population pharmacokinetic analysis of doxycycline. This study aimed to develop a population pharmacokinetic model of doxycycline plasma concentrations that could be used to assess the power of bioequivalence between Doryx delayed-release tablets and Doryx MPC. Doxycycline pharmacokinetic data were available from eight phase 1 clinical trials following single/multiple doses of conventional-release doxycycline capsules, Doryx delayed-release tablets, and Doryx MPC under fed and fasted conditions. A population pharmacokinetic model was developed in a stepwise manner using NONMEM, version 7.3. The final covariate model was developed according to a forward inclusion ( P < 0.01) and then backward deletion ( P < 0.001) procedure. The final model was a two-compartment model with two-transit absorption compartments. Structural covariates in the base model included formulation effects on relative bioavailability ( F ), absorption lag (ALAG), and the transit absorption rate (KTR) under the fed status. An absorption delay (lag) for the fed status (FTLAG2 = 0.203 h) was also included in the model as a structural covariate. The fed status was observed to decrease F by 10.5%, and the effect of female sex was a 14.4% increase in clearance. The manuscript presents the first population pharmacokinetic model of doxycycline plasma concentrations following oral doxycycline administration. The model was used to assess the power of bioequivalence between Doryx delayed-release tablets and Doryx MPC, and it could potentially be used to critically examine and optimize doxycycline dose regimens. Copyright © 2017 American Society for Microbiology.
New symmetries and ghost structure of covariant string theories
NASA Astrophysics Data System (ADS)
Neveu, A.; Nicolai, H.; West, P.
1986-02-01
It is shown that there exists an infinite set of new symmetries of the previously given covariant string formulations. These symmetries have themselves an infinite set of hidden local symmetries and so on. A new physically equivalent further extended string action is given in which the infinite set of symmetries is most easily displayed. A quantization involving gauge fixing and ghosts of the various covariant string actions is given. permanent address: Kings College, Mathematics Department, London WC2R 2LS, UK.
Optimal Mass Transport for Statistical Estimation, Image Analysis, Information Geometry, and Control
2017-01-10
Metric Uncertainty for Spectral Estimation based on Nevanlinna-Pick Interpolation, (with J. Karlsson) Intern. Symp. on the Math . Theory of Networks and...Systems, Melbourne 2012. 22. Geometric tools for the estimation of structured covariances, (with L. Ning, X. Jiang) Intern. Symposium on the Math . Theory...estimation and the reversibility of stochastic processes, (with Y. Chen, J. Karlsson) Proc. Int. Symp. on Math . Theory of Networks and Syst., July
Service Member Suicide and Readiness: An Analysis
2017-05-25
Young Adults,” Journal of Abnormal Psychology 118 (2009): 634-46. 180 L. C. Hawkley et al., “From Social Structural Factors to Perceptions of...Suicidality Relate Even When Everything but the Kitchen Sink is Covaried.” Journal of Abnormal Psychology 114, no. 2 (May 2005): 291-303. Joiner, Thomas E...Adults.” Journal of Abnormal Psychology 118, no. 3 (2009): 634-46. Joint Publication (JP) 1-02, Department of Defense Dictionary of Military and
Bayesian Factor Analysis When Only a Sample Covariance Matrix Is Available
ERIC Educational Resources Information Center
Hayashi, Kentaro; Arav, Marina
2006-01-01
In traditional factor analysis, the variance-covariance matrix or the correlation matrix has often been a form of inputting data. In contrast, in Bayesian factor analysis, the entire data set is typically required to compute the posterior estimates, such as Bayes factor loadings and Bayes unique variances. We propose a simple method for computing…
Space shuttle navigation analysis. Volume 2: Baseline system navigation
NASA Technical Reports Server (NTRS)
Jones, H. L.; Luders, G.; Matchett, G. A.; Rains, R. G.
1980-01-01
Studies related to the baseline navigation system for the orbiter are presented. The baseline navigation system studies include a covariance analysis of the Inertial Measurement Unit calibration and alignment procedures, postflight IMU error recovery for the approach and landing phases, on-orbit calibration of IMU instrument biases, and a covariance analysis of entry and prelaunch navigation system performance.
ERIC Educational Resources Information Center
Noell, George H.
2004-01-01
A preliminary set of analyses was conducted linking students to courses and courses to teachers based upon data collected by the Louisiana Department of Education's Divisions of Planning, Analysis, and Information Resources and Student Standards and Assessments. An analysis of covariance, a weighted analysis of covariance, and a hierarchical…
Conditional Covariance Theory and Detect for Polytomous Items
ERIC Educational Resources Information Center
Zhang, Jinming
2007-01-01
This paper extends the theory of conditional covariances to polytomous items. It has been proven that under some mild conditions, commonly assumed in the analysis of response data, the conditional covariance of two items, dichotomously or polytomously scored, given an appropriately chosen composite is positive if, and only if, the two items…
ERIC Educational Resources Information Center
Li, Ming; Harring, Jeffrey R.
2017-01-01
Researchers continue to be interested in efficient, accurate methods of estimating coefficients of covariates in mixture modeling. Including covariates related to the latent class analysis not only may improve the ability of the mixture model to clearly differentiate between subjects but also makes interpretation of latent group membership more…
Yoneoka, Daisuke; Henmi, Masayuki
2017-06-01
Recently, the number of regression models has dramatically increased in several academic fields. However, within the context of meta-analysis, synthesis methods for such models have not been developed in a commensurate trend. One of the difficulties hindering the development is the disparity in sets of covariates among literature models. If the sets of covariates differ across models, interpretation of coefficients will differ, thereby making it difficult to synthesize them. Moreover, previous synthesis methods for regression models, such as multivariate meta-analysis, often have problems because covariance matrix of coefficients (i.e. within-study correlations) or individual patient data are not necessarily available. This study, therefore, proposes a brief explanation regarding a method to synthesize linear regression models under different covariate sets by using a generalized least squares method involving bias correction terms. Especially, we also propose an approach to recover (at most) threecorrelations of covariates, which is required for the calculation of the bias term without individual patient data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Directional selection effects on patterns of phenotypic (co)variation in wild populations.
Assis, A P A; Patton, J L; Hubbe, A; Marroig, G
2016-11-30
Phenotypic (co)variation is a prerequisite for evolutionary change, and understanding how (co)variation evolves is of crucial importance to the biological sciences. Theoretical models predict that under directional selection, phenotypic (co)variation should evolve in step with the underlying adaptive landscape, increasing the degree of correlation among co-selected traits as well as the amount of genetic variance in the direction of selection. Whether either of these outcomes occurs in natural populations is an open question and thus an important gap in evolutionary theory. Here, we documented changes in the phenotypic (co)variation structure in two separate natural populations in each of two chipmunk species (Tamias alpinus and T. speciosus) undergoing directional selection. In populations where selection was strongest (those of T. alpinus), we observed changes, at least for one population, in phenotypic (co)variation that matched theoretical expectations, namely an increase of both phenotypic integration and (co)variance in the direction of selection and a re-alignment of the major axis of variation with the selection gradient. © 2016 The Author(s).
Geographic analysis of shigellosis in Vietnam.
Kim, Deok Ryun; Ali, Mohammad; Thiem, Vu Dinh; Park, Jin-Kyung; von Seidlein, Lorenz; Clemens, John
2008-12-01
Geographic and ecological analysis may provide investigators useful ecological information for the control of shigellosis. This paper provides distribution of individual Shigella species in space, and ecological covariates for shigellosis in Nha Trang, Vietnam. Data on shigellosis in neighborhoods were used to identify ecological covariates. A Bayesian hierarchical model was used to obtain joint posterior distribution of model parameters and to construct smoothed risk maps for shigellosis. Neighborhoods with a high proportion of worshippers of traditional religion, close proximity to hospital, or close proximity to the river had increased risk for shigellosis. The ecological covariates associated with Shigella flexneri differed from the covariates for Shigella sonnei. In contrast the spatial distribution of the two species was similar. The disease maps can help identify high-risk areas of shigellosis that can be targeted for interventions. This approach may be useful for the selection of populations and the analysis of vaccine trials.
Analysis of filter tuning techniques for sequential orbit determination
NASA Technical Reports Server (NTRS)
Lee, T.; Yee, C.; Oza, D.
1995-01-01
This paper examines filter tuning techniques for a sequential orbit determination (OD) covariance analysis. Recently, there has been a renewed interest in sequential OD, primarily due to the successful flight qualification of the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) using Doppler data extracted onboard the Extreme Ultraviolet Explorer (EUVE) spacecraft. TONS computes highly accurate orbit solutions onboard the spacecraft in realtime using a sequential filter. As the result of the successful TONS-EUVE flight qualification experiment, the Earth Observing System (EOS) AM-1 Project has selected TONS as the prime navigation system. In addition, sequential OD methods can be used successfully for ground OD. Whether data are processed onboard or on the ground, a sequential OD procedure is generally favored over a batch technique when a realtime automated OD system is desired. Recently, OD covariance analyses were performed for the TONS-EUVE and TONS-EOS missions using the sequential processing options of the Orbit Determination Error Analysis System (ODEAS). ODEAS is the primary covariance analysis system used by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD). The results of these analyses revealed a high sensitivity of the OD solutions to the state process noise filter tuning parameters. The covariance analysis results show that the state estimate error contributions from measurement-related error sources, especially those due to the random noise and satellite-to-satellite ionospheric refraction correction errors, increase rapidly as the state process noise increases. These results prompted an in-depth investigation of the role of the filter tuning parameters in sequential OD covariance analysis. This paper analyzes how the spacecraft state estimate errors due to dynamic and measurement-related error sources are affected by the process noise level used. This information is then used to establish guidelines for determining optimal filter tuning parameters in a given sequential OD scenario for both covariance analysis and actual OD. Comparisons are also made with corresponding definitive OD results available from the TONS-EUVE analysis.
Whole-body patterns of the range of joint motion in young adults: masculine type and feminine type.
Moromizato, Keiichi; Kimura, Ryosuke; Fukase, Hitoshi; Yamaguchi, Kyoko; Ishida, Hajime
2016-10-01
Understanding the whole-body patterns of joint flexibility and their related biological and physical factors contributes not only to clinical assessments but also to the fields of human factors and ergonomics. In this study, ranges of motion (ROMs) at limb and trunk joints of young adults were analysed to understand covariation patterns of different joint motions and to identify factors associated with the variation in ROM. Seventy-eight healthy volunteers (42 males and 36 females) living on Okinawa Island, Japan, were recruited. Passive ROM was measured at multiple joints through the whole body (31 measurements) including the left and right side limbs and trunk. Comparisons between males and females, dominant and non-dominant sides, and antagonistic motions indicated that body structures influence ROMs. In principal component analysis (PCA) on the ROM data, the first principal component (PC1) represented the sex difference and a similar covariation pattern appeared in the analysis within each sex. Multiple regression analysis showed that this component was associated with sex, age, body fat %, iliospinale height, and leg extension strength. The present study identified that there is a spectrum of "masculine" and "feminine" types in the whole-body patterns of joint flexibility. This study also suggested that body proportion and composition, muscle mass and strength, and possibly skeletal structures partly explain such patterns. These results would be important to understand individual variation in susceptibility to joint injuries and diseases and in one's suitable and effective postures and motions.
Marginalized zero-inflated Poisson models with missing covariates.
Benecha, Habtamu K; Preisser, John S; Divaris, Kimon; Herring, Amy H; Das, Kalyan
2018-05-11
Unlike zero-inflated Poisson regression, marginalized zero-inflated Poisson (MZIP) models for counts with excess zeros provide estimates with direct interpretations for the overall effects of covariates on the marginal mean. In the presence of missing covariates, MZIP and many other count data models are ordinarily fitted using complete case analysis methods due to lack of appropriate statistical methods and software. This article presents an estimation method for MZIP models with missing covariates. The method, which is applicable to other missing data problems, is illustrated and compared with complete case analysis by using simulations and dental data on the caries preventive effects of a school-based fluoride mouthrinse program. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Some Properties of Estimated Scale Invariant Covariance Structures.
ERIC Educational Resources Information Center
Dijkstra, T. K.
1990-01-01
An example of scale invariance is provided via the LISREL model that is subject only to classical normalizations and zero constraints on the parameters. Scale invariance implies that the estimated covariance matrix must satisfy certain equations, and the nature of these equations depends on the fitting function used. (TJH)
Are your covariates under control? How normalization can re-introduce covariate effects.
Pain, Oliver; Dudbridge, Frank; Ronald, Angelica
2018-04-30
Many statistical tests rely on the assumption that the residuals of a model are normally distributed. Rank-based inverse normal transformation (INT) of the dependent variable is one of the most popular approaches to satisfy the normality assumption. When covariates are included in the analysis, a common approach is to first adjust for the covariates and then normalize the residuals. This study investigated the effect of regressing covariates against the dependent variable and then applying rank-based INT to the residuals. The correlation between the dependent variable and covariates at each stage of processing was assessed. An alternative approach was tested in which rank-based INT was applied to the dependent variable before regressing covariates. Analyses based on both simulated and real data examples demonstrated that applying rank-based INT to the dependent variable residuals after regressing out covariates re-introduces a linear correlation between the dependent variable and covariates, increasing type-I errors and reducing power. On the other hand, when rank-based INT was applied prior to controlling for covariate effects, residuals were normally distributed and linearly uncorrelated with covariates. This latter approach is therefore recommended in situations were normality of the dependent variable is required.
Gómez-Cabello, Alba; González-Agüero, Alejandro; Morales, Silvia; Ara, Ignacio; Casajús, José A; Vicente-Rodríguez, Germán
2014-03-01
We aimed to clarify whether a short-term whole body vibration training has a beneficial effect on bone mass and structure in elderly men and women. Randomised controlled trial. A total of 49 non-institutionalised elderly (20 men and 29 women) volunteered to participate in the study. Participants who met the inclusion criteria were randomly assigned to one of the study groups (whole body vibration or control). A total of 24 elderly trained squat positioned on a vibration platform 3 times per week for 11 weeks. Bone-related variables were assessed by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. Two-way repeated measures one-way analysis of variance (group by time) was used to determine the effects of the intervention on the bone-related variables and also to determinate the changes within group throughout the intervention period. Analysis of covariance was used to test the differences between groups for bone-related variables in pre- and post-training assessments and in the percentage of change between groups. All analysis were carried out including age, height, subtotal lean mass and daily calcium intake as covariates. 11 weeks of whole body vibration training led to no changes in none of the bone mineral content and bone mineral density parameters measured by dual-energy X-ray absorptiometry through the skeleton. At the tibia, total, trabecular and cortical volumetric bone mineral density decreased significantly in the whole body vibration group (all P<0.05). A short-term whole body vibration therapy is not enough to cause any changes on bone mineral content or bone mineral density and it only produces a slight variation on bone structure among elderly people. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Kinoshita, Koji; Kawai, Makoto; Minai, Kosuke; Ogawa, Kazuo; Inoue, Yasunori; Yoshimura, Michihiro
2016-07-15
Plasma B-type natriuretic peptide (BNP) levels may vary widely among patients with similar stages of heart failure, in whom obesity might be the only factor reducing plasma BNP levels. We investigated the effect of obesity and body mass index (BMI) on plasma BNP levels using serial measurements before and after treatment (pre- and post-BNP and pre- and post-BMI) in patients with acute heart failure. Multiple regression analysis and covariance structure analysis were performed to study the interactions between clinical factors in 372 patients. The pre-BMI was shown as a combination index of obesity and fluid accumulation, whereas the post-BMI was a conventional index of obesity. There was a significant inverse correlation between BMI and BNP in each condition before and after treatment for heart failure. The direct significant associations of the log pre-BNP with the log post-BNP (β: 0.387), the post-BMI (β: -0.043), and the pre-BMI (β: 0.030) were analyzed by using structural equation modeling. The post-BMI was inversely correlated, but importantly, the pre-BMI was positively correlated, with the log pre-BNP, because the pre-BMI probably entailed an element of fluid accumulation. There were few patients with extremely high levels of pre-BNP among those with high post-BMI, due to suppressed secretion of BNP. The low plasma BNP levels in true obesity patients with acute heart failure are of concern, because plasma BNP cannot increase in such patients. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Covariance Matrix Estimation for Massive MIMO
NASA Astrophysics Data System (ADS)
Upadhya, Karthik; Vorobyov, Sergiy A.
2018-04-01
We propose a novel pilot structure for covariance matrix estimation in massive multiple-input multiple-output (MIMO) systems in which each user transmits two pilot sequences, with the second pilot sequence multiplied by a random phase-shift. The covariance matrix of a particular user is obtained by computing the sample cross-correlation of the channel estimates obtained from the two pilot sequences. This approach relaxes the requirement that all the users transmit their uplink pilots over the same set of symbols. We derive expressions for the achievable rate and the mean-squared error of the covariance matrix estimate when the proposed method is used with staggered pilots. The performance of the proposed method is compared with existing methods through simulations.
Stable Estimation of a Covariance Matrix Guided by Nuclear Norm Penalties
Chi, Eric C.; Lange, Kenneth
2014-01-01
Estimation of a covariance matrix or its inverse plays a central role in many statistical methods. For these methods to work reliably, estimated matrices must not only be invertible but also well-conditioned. The current paper introduces a novel prior to ensure a well-conditioned maximum a posteriori (MAP) covariance estimate. The prior shrinks the sample covariance estimator towards a stable target and leads to a MAP estimator that is consistent and asymptotically efficient. Thus, the MAP estimator gracefully transitions towards the sample covariance matrix as the number of samples grows relative to the number of covariates. The utility of the MAP estimator is demonstrated in two standard applications – discriminant analysis and EM clustering – in this sampling regime. PMID:25143662
Parametric Covariance Model for Horizon-Based Optical Navigation
NASA Technical Reports Server (NTRS)
Hikes, Jacob; Liounis, Andrew J.; Christian, John A.
2016-01-01
This Note presents an entirely parametric version of the covariance for horizon-based optical navigation measurements. The covariance can be written as a function of only the spacecraft position, two sensor design parameters, the illumination direction, the size of the observed planet, the size of the lit arc to be used, and the total number of observed horizon points. As a result, one may now more clearly understand the sensitivity of horizon-based optical navigation performance as a function of these key design parameters, which is insight that was obscured in previous (and nonparametric) versions of the covariance. Finally, the new parametric covariance is shown to agree with both the nonparametric analytic covariance and results from a Monte Carlo analysis.
Dehesh, Tania; Zare, Najaf; Ayatollahi, Seyyed Mohammad Taghi
2015-01-01
Univariate meta-analysis (UM) procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS) method as a multivariate meta-analysis approach. We evaluated the efficiency of four new approaches including zero correlation (ZC), common correlation (CC), estimated correlation (EC), and multivariate multilevel correlation (MMC) on the estimation bias, mean square error (MSE), and 95% probability coverage of the confidence interval (CI) in the synthesis of Cox proportional hazard models coefficients in a simulation study. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.
Furbish, David; Schmeeckle, Mark; Schumer, Rina; Fathel, Siobhan
2016-01-01
We describe the most likely forms of the probability distributions of bed load particle velocities, accelerations, hop distances, and travel times, in a manner that formally appeals to inferential statistics while honoring mechanical and kinematic constraints imposed by equilibrium transport conditions. The analysis is based on E. Jaynes's elaboration of the implications of the similarity between the Gibbs entropy in statistical mechanics and the Shannon entropy in information theory. By maximizing the information entropy of a distribution subject to known constraints on its moments, our choice of the form of the distribution is unbiased. The analysis suggests that particle velocities and travel times are exponentially distributed and that particle accelerations follow a Laplace distribution with zero mean. Particle hop distances, viewed alone, ought to be distributed exponentially. However, the covariance between hop distances and travel times precludes this result. Instead, the covariance structure suggests that hop distances follow a Weibull distribution. These distributions are consistent with high-resolution measurements obtained from high-speed imaging of bed load particle motions. The analysis brings us closer to choosing distributions based on our mechanical insight.
Hossain, Ahmed; Beyene, Joseph
2014-01-01
This article compares baseline, average, and longitudinal data analysis methods for identifying genetic variants in genome-wide association study using the Genetic Analysis Workshop 18 data. We apply methods that include (a) linear mixed models with baseline measures, (b) random intercept linear mixed models with mean measures outcome, and (c) random intercept linear mixed models with longitudinal measurements. In the linear mixed models, covariates are included as fixed effects, whereas relatedness among individuals is incorporated as the variance-covariance structure of the random effect for the individuals. The overall strategy of applying linear mixed models decorrelate the data is based on Aulchenko et al.'s GRAMMAR. By analyzing systolic and diastolic blood pressure, which are used separately as outcomes, we compare the 3 methods in identifying a known genetic variant that is associated with blood pressure from chromosome 3 and simulated phenotype data. We also analyze the real phenotype data to illustrate the methods. We conclude that the linear mixed model with longitudinal measurements of diastolic blood pressure is the most accurate at identifying the known single-nucleotide polymorphism among the methods, but linear mixed models with baseline measures perform best with systolic blood pressure as the outcome.
WAIS-IV subtest covariance structure: conceptual and statistical considerations.
Ward, L Charles; Bergman, Maria A; Hebert, Katina R
2012-06-01
D. Wechsler (2008b) reported confirmatory factor analyses (CFAs) with standardization data (ages 16-69 years) for 10 core and 5 supplemental subtests from the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV). Analyses of the 15 subtests supported 4 hypothesized oblique factors (Verbal Comprehension, Working Memory, Perceptual Reasoning, and Processing Speed) but also revealed unexplained covariance between Block Design and Visual Puzzles (Perceptual Reasoning subtests). That covariance was not included in the final models. Instead, a path was added from Working Memory to Figure Weights (Perceptual Reasoning subtest) to improve fit and achieve a desired factor pattern. The present research with the same data (N = 1,800) showed that the path from Working Memory to Figure Weights increases the association between Working Memory and Matrix Reasoning. Specifying both paths improves model fit and largely eliminates unexplained covariance between Block Design and Visual Puzzles but with the undesirable consequence that Figure Weights and Matrix Reasoning are equally determined by Perceptual Reasoning and Working Memory. An alternative 4-factor model was proposed that explained theory-implied covariance between Block Design and Visual Puzzles and between Arithmetic and Figure Weights while maintaining compatibility with WAIS-IV Index structure. The proposed model compared favorably with a 5-factor model based on Cattell-Horn-Carroll theory. The present findings emphasize that covariance model comparisons should involve considerations of conceptual coherence and theoretical adherence in addition to statistical fit. (c) 2012 APA, all rights reserved
Kustatscher, Georg; Grabowski, Piotr; Rappsilber, Juri
2016-02-01
Subcellular localization is an important aspect of protein function, but the protein composition of many intracellular compartments is poorly characterized. For example, many nuclear bodies are challenging to isolate biochemically and thus remain inaccessible to proteomics. Here, we explore covariation in proteomics data as an alternative route to subcellular proteomes. Rather than targeting a structure of interest biochemically, we target it by machine learning. This becomes possible by taking data obtained for one organelle and searching it for traces of another organelle. As an extreme example and proof-of-concept we predict mitochondrial proteins based on their covariation in published interphase chromatin data. We detect about ⅓ of the known mitochondrial proteins in our chromatin data, presumably most as contaminants. However, these proteins are not present at random. We show covariation of mitochondrial proteins in chromatin proteomics data. We then exploit this covariation by multiclassifier combinatorial proteomics to define a list of mitochondrial proteins. This list agrees well with different databases on mitochondrial composition. This benchmark test raises the possibility that, in principle, covariation proteomics may also be applicable to structures for which no biochemical isolation procedures are available. © 2015 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jahng, Seungmin; Wood, Phillip K.
2017-01-01
Intensive longitudinal studies, such as ecological momentary assessment studies using electronic diaries, are gaining popularity across many areas of psychology. Multilevel models (MLMs) are most widely used analytical tools for intensive longitudinal data (ILD). Although ILD often have individually distinct patterns of serial correlation of measures over time, inferences of the fixed effects, and random components in MLMs are made under the assumption that all variance and autocovariance components are homogenous across individuals. In the present study, we introduced a multilevel model with Cholesky transformation to model ILD with individually heterogeneous covariance structure. In addition, the performance of the transformation method and the effects of misspecification of heterogeneous covariance structure were investigated through a Monte Carlo simulation. We found that, if individually heterogeneous covariances are incorrectly assumed as homogenous independent or homogenous autoregressive, MLMs produce highly biased estimates of the variance of random intercepts and the standard errors of the fixed intercept and the fixed effect of a level 2 covariate when the average autocorrelation is high. For intensive longitudinal data with individual specific residual covariance, the suggested transformation method showed lower bias in those estimates than the misspecified models when the number of repeated observations within individuals is 50 or more. PMID:28286490
Visualization of RNA structure models within the Integrative Genomics Viewer.
Busan, Steven; Weeks, Kevin M
2017-07-01
Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis of long, structurally heterogeneous RNAs. In addition, structure models are often advantageously interpreted in the context of other experimental data and gene annotation information, for which few tools currently exist. We have developed a module within the widely used and well supported open-source Integrative Genomics Viewer (IGV) that allows visualization of SHAPE and other chemical probing data, including raw reactivities, data-driven structural entropies, and data-constrained base-pair secondary structure models, in context with linear genomic data tracks. We illustrate the usefulness of visualizing RNA structure in the IGV by exploring structure models for a large viral RNA genome, comparing bacterial mRNA structure in cells with its structure under cell- and protein-free conditions, and comparing a noncoding RNA structure modeled using SHAPE data with a base-pairing model inferred through sequence covariation analysis. © 2017 Busan and Weeks; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Bromaghin, Jeffrey F.; McDonald, Trent L.; Amstrup, Steven C.
2013-01-01
Mark-recapture models are extensively used in quantitative population ecology, providing estimates of population vital rates, such as survival, that are difficult to obtain using other methods. Vital rates are commonly modeled as functions of explanatory covariates, adding considerable flexibility to mark-recapture models, but also increasing the subjectivity and complexity of the modeling process. Consequently, model selection and the evaluation of covariate structure remain critical aspects of mark-recapture modeling. The difficulties involved in model selection are compounded in Cormack-Jolly- Seber models because they are composed of separate sub-models for survival and recapture probabilities, which are conceptualized independently even though their parameters are not statistically independent. The construction of models as combinations of sub-models, together with multiple potential covariates, can lead to a large model set. Although desirable, estimation of the parameters of all models may not be feasible. Strategies to search a model space and base inference on a subset of all models exist and enjoy widespread use. However, even though the methods used to search a model space can be expected to influence parameter estimation, the assessment of covariate importance, and therefore the ecological interpretation of the modeling results, the performance of these strategies has received limited investigation. We present a new strategy for searching the space of a candidate set of Cormack-Jolly-Seber models and explore its performance relative to existing strategies using computer simulation. The new strategy provides an improved assessment of the importance of covariates and covariate combinations used to model survival and recapture probabilities, while requiring only a modest increase in the number of models on which inference is based in comparison to existing techniques.
ERIC Educational Resources Information Center
Prevost, A. Toby; Mason, Dan; Griffin, Simon; Kinmonth, Ann-Louise; Sutton, Stephen; Spiegelhalter, David
2007-01-01
Practical meta-analysis of correlation matrices generally ignores covariances (and hence correlations) between correlation estimates. The authors consider various methods for allowing for covariances, including generalized least squares, maximum marginal likelihood, and Bayesian approaches, illustrated using a 6-dimensional response in a series of…
A LISREL Model for the Analysis of Repeated Measures with a Patterned Covariance Matrix.
ERIC Educational Resources Information Center
Rovine, Michael J.; Molenaar, Peter C. M.
1998-01-01
Presents a LISREL model for the estimation of the repeated measures analysis of variance (ANOVA) with a patterned covariance matrix. The model is demonstrated for a 5 x 2 (Time x Group) ANOVA in which the data are assumed to be serially correlated. Similarities with the Statistical Analysis System PROC MIXED model are discussed. (SLD)
Conditional Covariance Theory and DETECT for Polytomous Items. Research Report. ETS RR-04-50
ERIC Educational Resources Information Center
Zhang, Jinming
2004-01-01
This paper extends the theory of conditional covariances to polytomous items. It has been mathematically proven that under some mild conditions, commonly assumed in the analysis of response data, the conditional covariance of two items, dichotomously or polytomously scored, is positive if the two items are dimensionally homogeneous and negative…
ERIC Educational Resources Information Center
Beauducel, Andre
2007-01-01
It was investigated whether commonly used factor score estimates lead to the same reproduced covariance matrix of observed variables. This was achieved by means of Schonemann and Steiger's (1976) regression component analysis, since it is possible to compute the reproduced covariance matrices of the regression components corresponding to different…
NASA Astrophysics Data System (ADS)
Islamiyati, A.; Fatmawati; Chamidah, N.
2018-03-01
The correlation assumption of the longitudinal data with bi-response occurs on the measurement between the subjects of observation and the response. It causes the auto-correlation of error, and this can be overcome by using a covariance matrix. In this article, we estimate the covariance matrix based on the penalized spline regression model. Penalized spline involves knot points and smoothing parameters simultaneously in controlling the smoothness of the curve. Based on our simulation study, the estimated regression model of the weighted penalized spline with covariance matrix gives a smaller error value compared to the error of the model without covariance matrix.
Covariant balance laws in continua with microstructure
NASA Astrophysics Data System (ADS)
Yavari, Arash; Marsden, Jerrold E.
2009-02-01
The purpose of this paper is to extend the Green-Naghdi-Rivlin balance of energy method to continua with microstructure. The key idea is to replace the group of Galilean transformations with the group of diffeomorphisms of the ambient space. A key advantage is that one obtains in a natural way all the needed balance laws on both the macro and micro levels along with two Doyle-Erickson formulas. We model a structured continuum as a triplet of Riemannian manifolds: a material manifold, the ambient space manifold of material particles and a director field manifold. The Green-Naghdi-Rivlin theorem and its extensions for structured continua are critically reviewed. We show that when the ambient space is Euclidean and when the microstructure manifold is the tangent space of the ambient space manifold, postulating a single balance of energy law and its invariance under time-dependent isometries of the ambient space, one obtains conservation of mass, balances of linear and angular momenta but not a separate balance of linear momentum. We develop a covariant elasticity theory for structured continua by postulating that energy balance is invariant under time-dependent spatial diffeomorphisms of the ambient space, which in this case is the product of two Riemannian manifolds. We then introduce two types of constrained continua in which microstructure manifold is linked to the reference and ambient space manifolds. In the case when at every material point, the microstructure manifold is the tangent space of the ambient space manifold at the image of the material point, we show that the assumption of covariance leads to balances of linear and angular momenta with contributions from both forces and micro-forces along with two Doyle-Ericksen formulas. We show that generalized covariance leads to two balances of linear momentum and a single coupled balance of angular momentum. Using this theory, we covariantly obtain the balance laws for two specific examples, namely elastic solids with distributed voids and mixtures. Finally, the Lagrangian field theory of structured elasticity is revisited and a connection is made between covariance and Noether's theorem.
GRAVSAT/GEOPAUSE covariance analysis including geopotential aliasing
NASA Technical Reports Server (NTRS)
Koch, D. W.
1975-01-01
A conventional covariance analysis for the GRAVSAT/GEOPAUSE mission is described in which the uncertainties of approximately 200 parameters, including the geopotential coefficients to degree and order 12, are estimated over three different tracking intervals. The estimated orbital uncertainties for both GRAVSAT and GEOPAUSE reach levels more accurate than presently available. The adjusted measurement bias errors approach the mission goal. Survey errors in the low centimeter range are achieved after ten days of tracking. The ability of the mission to obtain accuracies of geopotential terms to (12, 12) one to two orders of magnitude superior to present accuracy levels is clearly shown. A unique feature of this report is that the aliasing structure of this (12, 12) field is examined. It is shown that uncertainties for unadjusted terms to (12, 12) still exert a degrading effect upon the adjusted error of an arbitrarily selected term of lower degree and order. Finally, the distribution of the aliasing from the unestimated uncertainty of a particular high degree and order geopotential term upon the errors of all remaining adjusted terms is listed in detail.
On predicting monitoring system effectiveness
NASA Astrophysics Data System (ADS)
Cappello, Carlo; Sigurdardottir, Dorotea; Glisic, Branko; Zonta, Daniele; Pozzi, Matteo
2015-03-01
While the objective of structural design is to achieve stability with an appropriate level of reliability, the design of systems for structural health monitoring is performed to identify a configuration that enables acquisition of data with an appropriate level of accuracy in order to understand the performance of a structure or its condition state. However, a rational standardized approach for monitoring system design is not fully available. Hence, when engineers design a monitoring system, their approach is often heuristic with performance evaluation based on experience, rather than on quantitative analysis. In this contribution, we propose a probabilistic model for the estimation of monitoring system effectiveness based on information available in prior condition, i.e. before acquiring empirical data. The presented model is developed considering the analogy between structural design and monitoring system design. We assume that the effectiveness can be evaluated based on the prediction of the posterior variance or covariance matrix of the state parameters, which we assume to be defined in a continuous space. Since the empirical measurements are not available in prior condition, the estimation of the posterior variance or covariance matrix is performed considering the measurements as a stochastic variable. Moreover, the model takes into account the effects of nuisance parameters, which are stochastic parameters that affect the observations but cannot be estimated using monitoring data. Finally, we present an application of the proposed model to a real structure. The results show how the model enables engineers to predict whether a sensor configuration satisfies the required performance.
The Statistics and Mathematics of High Dimension Low Sample Size Asymptotics.
Shen, Dan; Shen, Haipeng; Zhu, Hongtu; Marron, J S
2016-10-01
The aim of this paper is to establish several deep theoretical properties of principal component analysis for multiple-component spike covariance models. Our new results reveal an asymptotic conical structure in critical sample eigendirections under the spike models with distinguishable (or indistinguishable) eigenvalues, when the sample size and/or the number of variables (or dimension) tend to infinity. The consistency of the sample eigenvectors relative to their population counterparts is determined by the ratio between the dimension and the product of the sample size with the spike size. When this ratio converges to a nonzero constant, the sample eigenvector converges to a cone, with a certain angle to its corresponding population eigenvector. In the High Dimension, Low Sample Size case, the angle between the sample eigenvector and its population counterpart converges to a limiting distribution. Several generalizations of the multi-spike covariance models are also explored, and additional theoretical results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmiotti, Giuseppe; Salvatores, Massimo
2014-04-01
The Working Party on International Nuclear Data Evaluation Cooperation (WPEC) of the Nuclear Science Committee under the Nuclear Energy Agency (NEA/OECD) established a Subgroup (called “Subgroup 33”) in 2009 on “Methods and issues for the combined use of integral experiments and covariance data.” The first stage was devoted to producing the description of different adjustment methodologies and assessing their merits. A detailed document related to this first stage has been issued. Nine leading organizations (often with a long and recognized expertise in the field) have contributed: ANL, CEA, INL, IPPE, JAEA, JSI, NRG, IRSN and ORNL. In the second stagemore » a practical benchmark exercise was defined in order to test the reliability of the nuclear data adjustment methodology. A comparison of the results obtained by the participants and major lessons learned in the exercise are discussed in the present paper that summarizes individual contributions which often include several original developments not reported separately. The paper provides the analysis of the most important results of the adjustment of the main nuclear data of 11 major isotopes in a 33-group energy structure. This benchmark exercise was based on a set of 20 well defined integral parameters from 7 fast assembly experiments. The exercise showed that using a common shared set of integral experiments but different starting evaluated libraries and/or different covariance matrices, there is a good convergence of trends for adjustments. Moreover, a significant reduction of the original uncertainties is often observed. Using the a–posteriori covariance data, there is a strong reduction of the uncertainties of integral parameters for reference reactor designs, mainly due to the new correlations in the a–posteriori covariance matrix. Furthermore, criteria have been proposed and applied to verify the consistency of differential and integral data used in the adjustment. Finally, recommendations are given for an appropriate use of sensitivity analysis methods and indications for future work are provided.« less
Tommasini, Steven M; Hu, Bin; Nadeau, Joseph H; Jepsen, Karl J
2009-04-01
Conventional approaches to identifying quantitative trait loci (QTLs) regulating bone mass and fragility are limited because they examine cortical and trabecular traits independently. Prior work examining long bones from young adult mice and humans indicated that skeletal traits are functionally related and that compensatory interactions among morphological and compositional traits are critical for establishing mechanical function. However, it is not known whether trait covariation (i.e., phenotypic integration) also is important for establishing mechanical function in more complex, corticocancellous structures. Covariation among trabecular, cortical, and compositional bone traits was examined in the context of mechanical functionality for L(4) vertebral bodies across a panel of 16-wk-old female AXB/BXA recombinant inbred (RI) mouse strains. The unique pattern of randomization of the A/J and C57BL/6J (B6) genome among the RI panel provides a powerful tool that can be used to measure the tendency for different traits to covary and to study the biology of complex traits. We tested the hypothesis that genetic variants affecting vertebral size and mass are buffered by changes in the relative amounts of cortical and trabecular bone and overall mineralization. Despite inheriting random sets of A/J and B6 genomes, the RI strains inherited nonrandom sets of cortical and trabecular bone traits. Path analysis, which is a multivariate analysis that shows how multiple traits covary simultaneously when confounding variables like body size are taken into consideration, showed that RI strains that tended to have smaller vertebrae relative to body size achieved mechanical functionality by increasing mineralization and the relative amounts of cortical and trabecular bone. The interdependence among corticocancellous traits in the vertebral body indicated that variation in trabecular bone traits among inbred mouse strains, which is often thought to arise from genetic factors, is also determined in part by the adaptive response to variation in traits describing the cortical shell. The covariation among corticocancellous traits has important implications for genetic analyses and for interpreting the response of bone to genetic and environmental perturbations.
The Impact of Conditional Scores on the Performance of DETECT.
ERIC Educational Resources Information Center
Zhang, Yanwei Oliver; Yu, Feng; Nandakumar, Ratna
DETECT is a nonparametric, conditional covariance-based procedure to identify dimensional structure and the degree of multidimensionality of test data. The ability composite or conditional score used to estimate conditional covariance plays a significant role in the performance of DETECT. The number correct score of all items in the test (T) and…
Baldi, F; Alencar, M M; Albuquerque, L G
2010-12-01
The objective of this work was to estimate covariance functions using random regression models on B-splines functions of animal age, for weights from birth to adult age in Canchim cattle. Data comprised 49,011 records on 2435 females. The model of analysis included fixed effects of contemporary groups, age of dam as quadratic covariable and the population mean trend taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were modelled through a step function with four classes. The direct and maternal additive genetic effects, and animal and maternal permanent environmental effects were included as random effects in the model. A total of seventeen analyses, considering linear, quadratic and cubic B-splines functions and up to seven knots, were carried out. B-spline functions of the same order were considered for all random effects. Random regression models on B-splines functions were compared to a random regression model on Legendre polynomials and with a multitrait model. Results from different models of analyses were compared using the REML form of the Akaike Information criterion and Schwarz' Bayesian Information criterion. In addition, the variance components and genetic parameters estimated for each random regression model were also used as criteria to choose the most adequate model to describe the covariance structure of the data. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most adequate to describe the covariance structure of the data. Random regression models using B-spline functions as base functions fitted the data better than Legendre polynomials, especially at mature ages, but higher number of parameters need to be estimated with B-splines functions. © 2010 Blackwell Verlag GmbH.
System identification for modeling for control of flexible structures
NASA Technical Reports Server (NTRS)
Mettler, Edward; Milman, Mark
1986-01-01
The major components of a design and operational flight strategy for flexible structure control systems are presented. In this strategy an initial distributed parameter control design is developed and implemented from available ground test data and on-orbit identification using sophisticated modeling and synthesis techniques. The reliability of this high performance controller is directly linked to the accuracy of the parameters on which the design is based. Because uncertainties inevitably grow without system monitoring, maintaining the control system requires an active on-line system identification function to supply parameter updates and covariance information. Control laws can then be modified to improve performance when the error envelopes are decreased. In terms of system safety and stability the covariance information is of equal importance as the parameter values themselves. If the on-line system ID function detects an increase in parameter error covariances, then corresponding adjustments must be made in the control laws to increase robustness. If the error covariances exceed some threshold, an autonomous calibration sequence could be initiated to restore the error enveloped to an acceptable level.
Hamiltonian approach to GR - Part 1: covariant theory of classical gravity
NASA Astrophysics Data System (ADS)
Cremaschini, Claudio; Tessarotto, Massimo
2017-05-01
A challenging issue in General Relativity concerns the determination of the manifestly covariant continuum Hamiltonian structure underlying the Einstein field equations and the related formulation of the corresponding covariant Hamilton-Jacobi theory. The task is achieved by adopting a synchronous variational principle requiring distinction between the prescribed deterministic metric tensor \\widehat{g}(r)≡ { \\widehat{g}_{μ ν }(r)} solution of the Einstein field equations which determines the geometry of the background space-time and suitable variational fields x≡ { g,π } obeying an appropriate set of continuum Hamilton equations, referred to here as GR-Hamilton equations. It is shown that a prerequisite for reaching such a goal is that of casting the same equations in evolutionary form by means of a Lagrangian parametrization for a suitably reduced canonical state. As a result, the corresponding Hamilton-Jacobi theory is established in manifestly covariant form. Physical implications of the theory are discussed. These include the investigation of the structural stability of the GR-Hamilton equations with respect to vacuum solutions of the Einstein equations, assuming that wave-like perturbations are governed by the canonical evolution equations.
Triangular covariance factorizations for. Ph.D. Thesis. - Calif. Univ.
NASA Technical Reports Server (NTRS)
Thornton, C. L.
1976-01-01
An improved computational form of the discrete Kalman filter is derived using an upper triangular factorization of the error covariance matrix. The covariance P is factored such that P = UDUT where U is unit upper triangular and D is diagonal. Recursions are developed for propagating the U-D covariance factors together with the corresponding state estimate. The resulting algorithm, referred to as the U-D filter, combines the superior numerical precision of square root filtering techniques with an efficiency comparable to that of Kalman's original formula. Moreover, this method is easily implemented and involves no more computer storage than the Kalman algorithm. These characteristics make the U-D method an attractive realtime filtering technique. A new covariance error analysis technique is obtained from an extension of the U-D filter equations. This evaluation method is flexible and efficient and may provide significantly improved numerical results. Cost comparisons show that for a large class of problems the U-D evaluation algorithm is noticeably less expensive than conventional error analysis methods.
Predicting ecosystem vulnerability to biodiversity loss from community composition.
Heilpern, Sebastian A; Weeks, Brian C; Naeem, Shahid
2018-05-01
Ecosystems vary widely in their responses to biodiversity change, with some losing function dramatically while others are highly resilient. However, generalizations about how species- and community-level properties determine these divergent ecosystem responses have been elusive because potential sources of variation (e.g., trophic structure, compensation, functional trait diversity) are rarely evaluated in conjunction. Ecosystem vulnerability, or the likely change in ecosystem function following biodiversity change, is influenced by two types of species traits: response traits that determine species' individual sensitivities to environmental change, and effect traits that determine a species' contribution to ecosystem function. Here we extend the response-effect trait framework to quantify ecosystem vulnerability and show how trophic structure, within-trait variance, and among-trait covariance affect ecosystem vulnerability by linking extinction order and functional compensation. Using in silico trait-based simulations we found that ecosystem vulnerability increased when response and effect traits positively covaried, but this increase was attenuated by decreasing trait variance. Contrary to expectations, in these communities, both functional diversity and trophic structure increased ecosystem vulnerability. In contrast, ecosystem functions were resilient when response and effect traits covaried negatively, and variance had a positive effect on resiliency. Our results suggest that although biodiversity loss is often associated with decreases in ecosystem functions, such effects are conditional on trophic structure, and the variation within and covariation among response and effect traits. Taken together, these three factors can predict when ecosystems are poised to lose or gain function with ongoing biodiversity change. © 2018 by the Ecological Society of America.
Quantitative analysis of hypertrophic myocardium using diffusion tensor magnetic resonance imaging
Tran, Nicholas; Giannakidis, Archontis; Gullberg, Grant T.; Seo, Youngho
2016-01-01
Abstract. Systemic hypertension is a causative factor in left ventricular hypertrophy (LVH). This study is motivated by the potential to reverse or manage the dysfunction associated with structural remodeling of the myocardium in this pathology. Using diffusion tensor magnetic resonance imaging, we present an analysis of myocardial fiber and laminar sheet orientation in ex vivo hypertrophic (6 SHR) and normal (5 WKY) rat hearts using the covariance of the diffusion tensor. First, an atlas of normal cardiac microstructure was formed using the WKY b0 images. Then, the SHR and WKY b0 hearts were registered to the atlas. The acquired deformation fields were applied to the SHR and WKY heart tensor fields followed by the preservation of principal direction (PPD) reorientation strategy. A mean tensor field was then formed from the registered WKY tensor images. Calculating the covariance of the registered tensor images about this mean for each heart, the hypertrophic myocardium exhibited significantly increased myocardial fiber derangement (p=0.017) with a mean dispersion of 38.7 deg, and an increased dispersion of the laminar sheet normal (p=0.030) of 54.8 deg compared with 34.8 deg and 51.8 deg, respectively, in the normal hearts. Results demonstrate significantly altered myocardial fiber and laminar sheet structure in rats with hypertensive LVH. PMID:27872872
Chao, Wang; Shuang, Li; Tao, Li; Shanfa, Yu; Junming, Dai
2017-01-01
This study aimed to detect the mediation effect of over-commitment between occupational stress, insomnia, and well-being; and the moderating role of gender, age and job position are also to be analyzed. One thousand six hundred eighteen valid samples were recruited from electronic manufacturing service industry in Hunan Province, China. All the data were collected by selfrated questionnaires after written consent. This paper introduced Effort-Reward- Insomnia-Well-being model, and it was fitted and validated through the structural equation model analysis. The results of single factor correlation analysis indicated that the coefficients between most of the items and dimensions presented statistical significance. The final fitting model had satisfactory global goodness of fit (CMIN/DF=3.99, AGFI=0.926, NNFI=0.950, IFI=0.956, RMSEA=0.043). Both of the measurement model and structural model had acceptable path loadings. Effort associated with insomnia indirectly and related to well-being directly and indirectly; reward could have either directly associated with insomnia and well-being, or indirectly related to them through over-commitment. Covariates as gender, age and position made differences on the association between occupational stress and health outcomes. Over-commitment had the ability to mediate the relationships between effort, reward, and health outcomes, and mediation effect varied from different working conditions and outcomes under different covariates.
Modeling Nonstationarity in Space and Time
2017-01-01
Summary We propose to model a spatio-temporal random field that has nonstationary covariance structure in both space and time domains by applying the concept of the dimension expansion method in Bornn et al. (2012). Simulations are conducted for both separable and nonseparable space-time covariance models, and the model is also illustrated with a streamflow dataset. Both simulation and data analyses show that modeling nonstationarity in both space and time can improve the predictive performance over stationary covariance models or models that are nonstationary in space but stationary in time. PMID:28134977
Modeling nonstationarity in space and time.
Shand, Lyndsay; Li, Bo
2017-09-01
We propose to model a spatio-temporal random field that has nonstationary covariance structure in both space and time domains by applying the concept of the dimension expansion method in Bornn et al. (2012). Simulations are conducted for both separable and nonseparable space-time covariance models, and the model is also illustrated with a streamflow dataset. Both simulation and data analyses show that modeling nonstationarity in both space and time can improve the predictive performance over stationary covariance models or models that are nonstationary in space but stationary in time. © 2017, The International Biometric Society.
Information matrix estimation procedures for cognitive diagnostic models.
Liu, Yanlou; Xin, Tao; Andersson, Björn; Tian, Wei
2018-03-06
Two new methods to estimate the asymptotic covariance matrix for marginal maximum likelihood estimation of cognitive diagnosis models (CDMs), the inverse of the observed information matrix and the sandwich-type estimator, are introduced. Unlike several previous covariance matrix estimators, the new methods take into account both the item and structural parameters. The relationships between the observed information matrix, the empirical cross-product information matrix, the sandwich-type covariance matrix and the two approaches proposed by de la Torre (2009, J. Educ. Behav. Stat., 34, 115) are discussed. Simulation results show that, for a correctly specified CDM and Q-matrix or with a slightly misspecified probability model, the observed information matrix and the sandwich-type covariance matrix exhibit good performance with respect to providing consistent standard errors of item parameter estimates. However, with substantial model misspecification only the sandwich-type covariance matrix exhibits robust performance. © 2018 The British Psychological Society.
2013-01-01
Background Falls among the elderly are a major public health concern. Therefore, the possibility of a modeling technique which could better estimate fall probability is both timely and needed. Using biomedical, pharmacological and demographic variables as predictors, latent class analysis (LCA) is demonstrated as a tool for the prediction of falls among community dwelling elderly. Methods Using a retrospective data-set a two-step LCA modeling approach was employed. First, we looked for the optimal number of latent classes for the seven medical indicators, along with the patients’ prescription medication and three covariates (age, gender, and number of medications). Second, the appropriate latent class structure, with the covariates, were modeled on the distal outcome (fall/no fall). The default estimator was maximum likelihood with robust standard errors. The Pearson chi-square, likelihood ratio chi-square, BIC, Lo-Mendell-Rubin Adjusted Likelihood Ratio test and the bootstrap likelihood ratio test were used for model comparisons. Results A review of the model fit indices with covariates shows that a six-class solution was preferred. The predictive probability for latent classes ranged from 84% to 97%. Entropy, a measure of classification accuracy, was good at 90%. Specific prescription medications were found to strongly influence group membership. Conclusions In conclusion the LCA method was effective at finding relevant subgroups within a heterogenous at-risk population for falling. This study demonstrated that LCA offers researchers a valuable tool to model medical data. PMID:23705639
A mesoscale hybrid data assimilation system based on the JMA nonhydrostatic model
NASA Astrophysics Data System (ADS)
Ito, K.; Kunii, M.; Kawabata, T. T.; Saito, K. K.; Duc, L. L.
2015-12-01
This work evaluates the potential of a hybrid ensemble Kalman filter and four-dimensional variational (4D-Var) data assimilation system for predicting severe weather events from a deterministic point of view. This hybrid system is an adjoint-based 4D-Var system using a background error covariance matrix constructed from the mixture of a so-called NMC method and perturbations in a local ensemble transform Kalman filter data assimilation system, both of which are based on the Japan Meteorological Agency nonhydrostatic model. To construct the background error covariance matrix, we investigated two types of schemes. One is a spatial localization scheme and the other is neighboring ensemble approach, which regards the result at a horizontally spatially shifted point in each ensemble member as that obtained from a different realization of ensemble simulation. An assimilation of a pseudo single-observation located to the north of a tropical cyclone (TC) yielded an analysis increment of wind and temperature physically consistent with what is expected for a mature TC in both hybrid systems, whereas an analysis increment in a 4D-Var system using a static background error covariance distorted a structure of the mature TC. Real data assimilation experiments applied to 4 TCs and 3 local heavy rainfall events showed that hybrid systems and EnKF provided better initial conditions than the NMC-based 4D-Var, both for predicting the intensity and track forecast of TCs and for the location and amount of local heavy rainfall events.
Static sampling of dynamic processes - a paradox?
NASA Astrophysics Data System (ADS)
Mälicke, Mirko; Neuper, Malte; Jackisch, Conrad; Hassler, Sibylle; Zehe, Erwin
2017-04-01
Environmental systems monitoring aims at its core at the detection of spatio-temporal patterns of processes and system states, which is a pre-requisite for understanding and explaining their baffling heterogeneity. Most observation networks rely on distributed point sampling of states and fluxes of interest, which is combined with proxy-variables from either remote sensing or near surface geophysics. The cardinal question on the appropriate experimental design of such a monitoring network has up to now been answered in many different ways. Suggested approaches range from sampling in a dense regular grid using for the so-called green machine, transects along typical catenas, clustering of several observations sensors in presumed functional units or HRUs, arrangements of those cluster along presumed lateral flow paths to last not least a nested, randomized stratified arrangement of sensors or samples. Common to all these approaches is that they provide a rather static spatial sampling, while state variables and their spatial covariance structure dynamically change in time. It is hence of key interest how much of our still incomplete understanding stems from inappropriate sampling and how much needs to be attributed to an inappropriate analysis of spatial data sets. We suggest that it is much more promising to analyze the spatial variability of processes, for instance changes in soil moisture values, than to investigate the spatial variability of soil moisture states themselves. This is because wetting of the soil, reflected in a soil moisture increase, is causes by a totally different meteorological driver - rainfall - than drying of the soil. We hence propose that the rising and the falling limbs of soil moisture time series belong essentially to different ensembles, as they are influenced by different drivers. Positive and negative temporal changes in soil moisture need, hence, to be analyzed separately. We test this idea using the CAOS data set as a benchmark. Specifically, we expect the covariance structure of the positive temporal changes of soil moisture to be dominated by the spatial structure of rain- and through-fall and saturated hydraulic conductivity. The covariance in temporarily decreasing soil moisture during radiation driven conditions is expect to be dominated by the spatial structure of retention properties and plant transpiration. An analysis of soil moisture changes has furthermore the advantage that those are free from systematic measurement errors.
ERIC Educational Resources Information Center
Lazar, Ann A.; Zerbe, Gary O.
2011-01-01
Researchers often compare the relationship between an outcome and covariate for two or more groups by evaluating whether the fitted regression curves differ significantly. When they do, researchers need to determine the "significance region," or the values of the covariate where the curves significantly differ. In analysis of covariance (ANCOVA),…
Scale covariant gravitation. V - Kinetic theory. VI - Stellar structure and evolution
NASA Technical Reports Server (NTRS)
Hsieh, S.-H.; Canuto, V. M.
1981-01-01
A scale covariant kinetic theory for particles and photons is developed. The mathematical framework of the theory is given by the tangent bundle of a Weyl manifold. The Liouville equation is derived, and solutions to corresponding equilibrium distributions are presented and shown to yield thermodynamic results identical to the ones obtained previously. The scale covariant theory is then used to derive results of interest to stellar structure and evolution. A radiative transfer equation is derived that can be used to study stellar evolution with a variable gravitational constant. In addition, it is shown that the sun's absolute luminosity scales as L approximately equal to GM/kappa, where kappa is the stellar opacity. Finally, a formula is derived for the age of globular clusters as a function of the gravitational constant using a previously derived expression for the absolute luminosity.
Lorentz covariance of loop quantum gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rovelli, Carlo; Speziale, Simone
2011-05-15
The kinematics of loop gravity can be given a manifestly Lorentz-covariant formulation: the conventional SU(2)-spin-network Hilbert space can be mapped to a space K of SL(2,C) functions, where Lorentz covariance is manifest. K can be described in terms of a certain subset of the projected spin networks studied by Livine, Alexandrov and Dupuis. It is formed by SL(2,C) functions completely determined by their restriction on SU(2). These are square-integrable in the SU(2) scalar product, but not in the SL(2,C) one. Thus, SU(2)-spin-network states can be represented by Lorentz-covariant SL(2,C) functions, as two-component photons can be described in the Lorentz-covariant Gupta-Bleulermore » formalism. As shown by Wolfgang Wieland in a related paper, this manifestly Lorentz-covariant formulation can also be directly obtained from canonical quantization. We show that the spinfoam dynamics of loop quantum gravity is locally SL(2,C)-invariant in the bulk, and yields states that are precisely in K on the boundary. This clarifies how the SL(2,C) spinfoam formalism yields an SU(2) theory on the boundary. These structures define a tidy Lorentz-covariant formalism for loop gravity.« less
Covariance specification and estimation to improve top-down Green House Gas emission estimates
NASA Astrophysics Data System (ADS)
Ghosh, S.; Lopez-Coto, I.; Prasad, K.; Whetstone, J. R.
2015-12-01
The National Institute of Standards and Technology (NIST) operates the North-East Corridor (NEC) project and the Indianapolis Flux Experiment (INFLUX) in order to develop measurement methods to quantify sources of Greenhouse Gas (GHG) emissions as well as their uncertainties in urban domains using a top down inversion method. Top down inversion updates prior knowledge using observations in a Bayesian way. One primary consideration in a Bayesian inversion framework is the covariance structure of (1) the emission prior residuals and (2) the observation residuals (i.e. the difference between observations and model predicted observations). These covariance matrices are respectively referred to as the prior covariance matrix and the model-data mismatch covariance matrix. It is known that the choice of these covariances can have large effect on estimates. The main objective of this work is to determine the impact of different covariance models on inversion estimates and their associated uncertainties in urban domains. We use a pseudo-data Bayesian inversion framework using footprints (i.e. sensitivities of tower measurements of GHGs to surface emissions) and emission priors (based on Hestia project to quantify fossil-fuel emissions) to estimate posterior emissions using different covariance schemes. The posterior emission estimates and uncertainties are compared to the hypothetical truth. We find that, if we correctly specify spatial variability and spatio-temporal variability in prior and model-data mismatch covariances respectively, then we can compute more accurate posterior estimates. We discuss few covariance models to introduce space-time interacting mismatches along with estimation of the involved parameters. We then compare several candidate prior spatial covariance models from the Matern covariance class and estimate their parameters with specified mismatches. We find that best-fitted prior covariances are not always best in recovering the truth. To achieve accuracy, we perform a sensitivity study to further tune covariance parameters. Finally, we introduce a shrinkage based sample covariance estimation technique for both prior and mismatch covariances. This technique allows us to achieve similar accuracy nonparametrically in a more efficient and automated way.
Alternative bi-Hamiltonian structures for WDVV equations of associativity
NASA Astrophysics Data System (ADS)
Kalayci, J.; Nutku, Y.
1998-01-01
The WDVV equations of associativity in two-dimensional topological field theory are completely integrable third-order Monge-Ampère equations which admit bi-Hamiltonian structure. The time variable plays a distinguished role in the discussion of Hamiltonian structure, whereas in the theory of WDVV equations none of the independent variables merits such a distinction. WDVV equations admit very different alternative Hamiltonian structures under different possible choices of the time variable, but all these various Hamiltonian formulations can be brought together in the framework of the covariant theory of symplectic structure. They can be identified as different components of the covariant Witten-Zuckerman symplectic 2-form current density where a variational formulation of the WDVV equation that leads to the Hamiltonian operator through the Dirac bracket is available.
Selmer, Randi; Haglund, Bengt; Furu, Kari; Andersen, Morten; Nørgaard, Mette; Zoëga, Helga; Kieler, Helle
2016-10-01
Compare analyses of a pooled data set on the individual level with aggregate meta-analysis in a multi-database study. We reanalysed data on 2.3 million births in a Nordic register based cohort study. We compared estimated odds ratios (OR) for the effect of selective serotonin reuptake inhibitors (SSRI) and venlafaxine use in pregnancy on any cardiovascular birth defect and the rare outcome right ventricular outflow tract obstructions (RVOTO). Common covariates included maternal age, calendar year, birth order, maternal diabetes, and co-medication. Additional covariates were added in analyses with country-optimized adjustment. Country adjusted OR (95%CI) for any cardiovascular birth defect in the individual-based pooled analysis was 1.27 (1.17-1.39), 1.17 (1.07-1.27) adjusted for common covariates and 1.15 (1.05-1.26) adjusted for all covariates. In fixed effects meta-analyses pooled OR was 1.29 (1.19-1.41) based on crude country specific ORs, 1.19 (1.09-1.29) adjusted for common covariates, and 1.16 (1.06-1.27) for country-optimized adjustment. In a random effects model the adjusted OR was 1.07 (0.87-1.32). For RVOTO, OR was 1.48 (1.15-1.89) adjusted for all covariates in the pooled data set, and 1.53 (1.19-1.96) after country-optimized adjustment. Country-specific adjusted analyses at the substance level were not possible for RVOTO. Results of fixed effects meta-analysis and individual-based analyses of a pooled dataset were similar in this study on the association of SSRI/venlafaxine and cardiovascular birth defects. Country-optimized adjustment attenuated the estimates more than adjustment for common covariates only. When data are sparse pooled data on the individual level are needed for adjusted analyses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
A comparison of the capital structures of nonprofit and proprietary health care organizations.
Trussel, John
2012-01-01
The relative amount of debt used by an organization is an important determination of the organization's likelihood of financial problems and its cost of capital. This study addresses whether or not there are any differences between proprietary and nonprofit health care organizations in terms of capital structure. Controlling for profitability, risk, growth, and size, analysis of covariance is used to determine whether or not proprietary and nonprofit health care organizations use the same amount of leverage in their capital structures. The results indicate that there is no difference in the amount of leverage between the two institutional types. Although nonprofit and proprietary organizations have unique financing mechanisms, these differences do not impact the relative amount of debt and equity in their capital structures.
COVARIANCE ESTIMATION USING CONJUGATE GRADIENT FOR 3D CLASSIFICATION IN CRYO-EM.
Andén, Joakim; Katsevich, Eugene; Singer, Amit
2015-04-01
Classifying structural variability in noisy projections of biological macromolecules is a central problem in Cryo-EM. In this work, we build on a previous method for estimating the covariance matrix of the three-dimensional structure present in the molecules being imaged. Our proposed method allows for incorporation of contrast transfer function and non-uniform distribution of viewing angles, making it more suitable for real-world data. We evaluate its performance on a synthetic dataset and an experimental dataset obtained by imaging a 70S ribosome complex.
An intrinsic and exterior form of the Bianchi identities
NASA Astrophysics Data System (ADS)
Do, Thoan; Prince, Geoff
2017-09-01
We give an elegant formulation of the structure equations (of Cartan) and the Bianchi identities in terms of exterior calculus without reference to a particular basis and without the exterior covariant derivative. This approach allows both structure equations and the Bianchi identities to be expressed in terms of forms of arbitrary degree. We demonstrate the relationship with both the conventional vector version of the Bianchi identities and to the exterior covariant derivative approach. Contact manifolds, codimension one foliations and the Cartan form of classical mechanics are studied as examples of its flexibility and utility.
Do gamblers eat more salt? Testing a latent trait model of covariance in consumption
Goodwin, Belinda C.; Browne, Matthew; Rockloff, Matthew; Donaldson, Phillip
2015-01-01
A diverse class of stimuli, including certain foods, substances, media, and economic behaviours, may be described as ‘reward-oriented’ in that they provide immediate reinforcement with little initial investment. Neurophysiological and personality concepts, including dopaminergic dysfunction, reward sensitivity and rash impulsivity, each predict the existence of a latent behavioural trait that leads to increased consumption of all stimuli in this class. Whilst bivariate relationships (co-morbidities) are often reported in the literature, to our knowledge, a multivariate investigation of this possible trait has not been done. We surveyed 1,194 participants (550 male) on their typical weekly consumption of 11 types of reward-oriented stimuli, including fast food, salt, caffeine, television, gambling products, and illicit drugs. Confirmatory factor analysis was used to compare models in a 3×3 structure, based on the definition of a single latent factor (none, fixed loadings, or estimated loadings), and assumed residual covariance structure (none, a-priori / literature based, or post-hoc / data-driven). The inclusion of a single latent behavioural ‘consumption’ factor significantly improved model fit in all cases. Also confirming theoretical predictions, estimated factor loadings on reward-oriented indicators were uniformly positive, regardless of assumptions regarding residual covariances. Additionally, the latent trait was found to be negatively correlated with the non-reward-oriented indicators of fruit and vegetable consumption. The findings support the notion of a single behavioural trait leading to increased consumption of reward-oriented stimuli across multiple modalities. We discuss implications regarding the concentration of negative lifestyle-related health behaviours. PMID:26551907
Do gamblers eat more salt? Testing a latent trait model of covariance in consumption.
Goodwin, Belinda C; Browne, Matthew; Rockloff, Matthew; Donaldson, Phillip
2015-09-01
A diverse class of stimuli, including certain foods, substances, media, and economic behaviours, may be described as 'reward-oriented' in that they provide immediate reinforcement with little initial investment. Neurophysiological and personality concepts, including dopaminergic dysfunction, reward sensitivity and rash impulsivity, each predict the existence of a latent behavioural trait that leads to increased consumption of all stimuli in this class. Whilst bivariate relationships (co-morbidities) are often reported in the literature, to our knowledge, a multivariate investigation of this possible trait has not been done. We surveyed 1,194 participants (550 male) on their typical weekly consumption of 11 types of reward-oriented stimuli, including fast food, salt, caffeine, television, gambling products, and illicit drugs. Confirmatory factor analysis was used to compare models in a 3×3 structure, based on the definition of a single latent factor (none, fixed loadings, or estimated loadings), and assumed residual covariance structure (none, a-priori / literature based, or post-hoc / data-driven). The inclusion of a single latent behavioural 'consumption' factor significantly improved model fit in all cases. Also confirming theoretical predictions, estimated factor loadings on reward-oriented indicators were uniformly positive, regardless of assumptions regarding residual covariances. Additionally, the latent trait was found to be negatively correlated with the non-reward-oriented indicators of fruit and vegetable consumption. The findings support the notion of a single behavioural trait leading to increased consumption of reward-oriented stimuli across multiple modalities. We discuss implications regarding the concentration of negative lifestyle-related health behaviours.
Non-linear matter power spectrum covariance matrix errors and cosmological parameter uncertainties
NASA Astrophysics Data System (ADS)
Blot, L.; Corasaniti, P. S.; Amendola, L.; Kitching, T. D.
2016-06-01
The covariance of the matter power spectrum is a key element of the analysis of galaxy clustering data. Independent realizations of observational measurements can be used to sample the covariance, nevertheless statistical sampling errors will propagate into the cosmological parameter inference potentially limiting the capabilities of the upcoming generation of galaxy surveys. The impact of these errors as function of the number of realizations has been previously evaluated for Gaussian distributed data. However, non-linearities in the late-time clustering of matter cause departures from Gaussian statistics. Here, we address the impact of non-Gaussian errors on the sample covariance and precision matrix errors using a large ensemble of N-body simulations. In the range of modes where finite volume effects are negligible (0.1 ≲ k [h Mpc-1] ≲ 1.2), we find deviations of the variance of the sample covariance with respect to Gaussian predictions above ˜10 per cent at k > 0.3 h Mpc-1. Over the entire range these reduce to about ˜5 per cent for the precision matrix. Finally, we perform a Fisher analysis to estimate the effect of covariance errors on the cosmological parameter constraints. In particular, assuming Euclid-like survey characteristics we find that a number of independent realizations larger than 5000 is necessary to reduce the contribution of sampling errors to the cosmological parameter uncertainties at subpercent level. We also show that restricting the analysis to large scales k ≲ 0.2 h Mpc-1 results in a considerable loss in constraining power, while using the linear covariance to include smaller scales leads to an underestimation of the errors on the cosmological parameters.
Cox, R M; Costello, R A; Camber, B E; McGlothlin, J W
2017-07-01
Darwin viewed the ornamentation of females as an indirect consequence of sexual selection on males and the transmission of male phenotypes to females via the 'laws of inheritance'. Although a number of studies have supported this view by demonstrating substantial between-sex genetic covariance for ornament expression, the majority of this work has focused on avian plumage. Moreover, few studies have considered the genetic basis of ornaments from a multivariate perspective, which may be crucial for understanding the evolution of sex differences in general, and of complex ornaments in particular. Here, we provide a multivariate, quantitative-genetic analysis of a sexually dimorphic ornament that has figured prominently in studies of sexual selection: the brightly coloured dewlap of Anolis lizards. Using data from a paternal half-sibling breeding experiment in brown anoles (Anolis sagrei), we show that multiple aspects of dewlap size and colour exhibit significant heritability and a genetic variance-covariance structure (G) that is broadly similar in males (G m ) and females (G f ). Whereas sexually monomorphic aspects of the dewlap, such as hue, exhibit significant between-sex genetic correlations (r mf ), sexually dimorphic features, such as area and brightness, exhibit reduced r mf values that do not differ from zero. Using a modified random skewers analysis, we show that the between-sex genetic variance-covariance matrix (B) should not strongly constrain the independent responses of males and females to sexually antagonistic selection. Our microevolutionary analysis is in broad agreement with macroevolutionary perspectives indicating considerable scope for the independent evolution of coloration and ornamentation in males and females. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Second-moment budgets in cloud topped boundary layers: A large-eddy simulation study
NASA Astrophysics Data System (ADS)
Heinze, Rieke; Mironov, Dmitrii; Raasch, Siegfried
2015-06-01
A detailed analysis of second-order moment budgets for cloud topped boundary layers (CTBLs) is performed using high-resolution large-eddy simulation (LES). Two CTBLs are simulated—one with trade wind shallow cumuli, and the other with nocturnal marine stratocumuli. Approximations to the ensemble-mean budgets of the Reynolds-stress components, of the fluxes of two quasi-conservative scalars, and of the scalar variances and covariance are computed by averaging the LES data over horizontal planes and over several hundred time steps. Importantly, the subgrid scale contributions to the budget terms are accounted for. Analysis of the LES-based second-moment budgets reveals, among other things, a paramount importance of the pressure scrambling terms in the Reynolds-stress and scalar-flux budgets. The pressure-strain correlation tends to evenly redistribute kinetic energy between the components, leading to the growth of horizontal-velocity variances at the expense of the vertical-velocity variance which is produced by buoyancy over most of both CTBLs. The pressure gradient-scalar covariances are the major sink terms in the budgets of scalar fluxes. The third-order transport proves to be of secondary importance in the scalar-flux budgets. However, it plays a key role in maintaining budgets of TKE and of the scalar variances and covariance. Results from the second-moment budget analysis suggest that the accuracy of description of the CTBL structure within the second-order closure framework strongly depends on the fidelity of parameterizations of the pressure scrambling terms in the flux budgets and of the third-order transport terms in the variance budgets. This article was corrected on 26 JUN 2015. See the end of the full text for details.
Covariation of Peptide Abundances Accurately Reflects Protein Concentration Differences*
Pirmoradian, Mohammad
2017-01-01
Most implementations of mass spectrometry-based proteomics involve enzymatic digestion of proteins, expanding the analysis to multiple proteolytic peptides for each protein. Currently, there is no consensus of how to summarize peptides' abundances to protein concentrations, and such efforts are complicated by the fact that error control normally is applied to the identification process, and do not directly control errors linking peptide abundance measures to protein concentration. Peptides resulting from suboptimal digestion or being partially modified are not representative of the protein concentration. Without a mechanism to remove such unrepresentative peptides, their abundance adversely impacts the estimation of their protein's concentration. Here, we present a relative quantification approach, Diffacto, that applies factor analysis to extract the covariation of peptides' abundances. The method enables a weighted geometrical average summarization and automatic elimination of incoherent peptides. We demonstrate, based on a set of controlled label-free experiments using standard mixtures of proteins, that the covariation structure extracted by the factor analysis accurately reflects protein concentrations. In the 1% peptide-spectrum match-level FDR data set, as many as 11% of the peptides have abundance differences incoherent with the other peptides attributed to the same protein. If not controlled, such contradicting peptide abundance have a severe impact on protein quantifications. When adding the quantities of each protein's three most abundant peptides, we note as many as 14% of the proteins being estimated as having a negative correlation with their actual concentration differences between samples. Diffacto reduced the amount of such obviously incorrectly quantified proteins to 1.6%. Furthermore, by analyzing clinical data sets from two breast cancer studies, our method revealed the persistent proteomic signatures linked to three subtypes of breast cancer. We conclude that Diffacto can facilitate the interpretation and enhance the utility of most types of proteomics data. PMID:28302922
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sartori, E.; Roussin, R.W.
This paper presents a brief review of computer codes concerned with checking, plotting, processing and using of covariances of neutron cross-section data. It concentrates on those available from the computer code information centers of the United States and the OECD/Nuclear Energy Agency. Emphasis will be placed also on codes using covariances for specific applications such as uncertainty analysis, data adjustment and data consistency analysis. Recent evaluations contain neutron cross section covariance information for all isotopes of major importance for technological applications of nuclear energy. It is therefore important that the available software tools needed for taking advantage of this informationmore » are widely known as hey permit the determination of better safety margins and allow the optimization of more economic, I designs of nuclear energy systems.« less
Effect of correlation on covariate selection in linear and nonlinear mixed effect models.
Bonate, Peter L
2017-01-01
The effect of correlation among covariates on covariate selection was examined with linear and nonlinear mixed effect models. Demographic covariates were extracted from the National Health and Nutrition Examination Survey III database. Concentration-time profiles were Monte Carlo simulated where only one covariate affected apparent oral clearance (CL/F). A series of univariate covariate population pharmacokinetic models was fit to the data and compared with the reduced model without covariate. The "best" covariate was identified using either the likelihood ratio test statistic or AIC. Weight and body surface area (calculated using Gehan and George equation, 1970) were highly correlated (r = 0.98). Body surface area was often selected as a better covariate than weight, sometimes as high as 1 in 5 times, when weight was the covariate used in the data generating mechanism. In a second simulation, parent drug concentration and three metabolites were simulated from a thorough QT study and used as covariates in a series of univariate linear mixed effects models of ddQTc interval prolongation. The covariate with the largest significant LRT statistic was deemed the "best" predictor. When the metabolite was formation-rate limited and only parent concentrations affected ddQTc intervals the metabolite was chosen as a better predictor as often as 1 in 5 times depending on the slope of the relationship between parent concentrations and ddQTc intervals. A correlated covariate can be chosen as being a better predictor than another covariate in a linear or nonlinear population analysis by sheer correlation These results explain why for the same drug different covariates may be identified in different analyses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Zero-inflated count models for longitudinal measurements with heterogeneous random effects.
Zhu, Huirong; Luo, Sheng; DeSantis, Stacia M
2017-08-01
Longitudinal zero-inflated count data arise frequently in substance use research when assessing the effects of behavioral and pharmacological interventions. Zero-inflated count models (e.g. zero-inflated Poisson or zero-inflated negative binomial) with random effects have been developed to analyze this type of data. In random effects zero-inflated count models, the random effects covariance matrix is typically assumed to be homogeneous (constant across subjects). However, in many situations this matrix may be heterogeneous (differ by measured covariates). In this paper, we extend zero-inflated count models to account for random effects heterogeneity by modeling their variance as a function of covariates. We show via simulation that ignoring intervention and covariate-specific heterogeneity can produce biased estimates of covariate and random effect estimates. Moreover, those biased estimates can be rectified by correctly modeling the random effects covariance structure. The methodological development is motivated by and applied to the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) study, the largest clinical trial of alcohol dependence performed in United States with 1383 individuals.
Definition of Contravariant Velocity Components
NASA Technical Reports Server (NTRS)
Hung, Ching-moa; Kwak, Dochan (Technical Monitor)
2002-01-01
In this paper we have reviewed the basics of tensor analysis in an attempt to clarify some misconceptions regarding contravariant and covariant vector components as used in fluid dynamics. We have indicated that contravariant components are components of a given vector expressed as a unique combination of the covariant base vector system and, vice versa, that the covariant components are components of a vector expressed with the contravariant base vector system. Mathematically, expressing a vector with a combination of base vector is a decomposition process for a specific base vector system. Hence, the contravariant velocity components are decomposed components of velocity vector along the directions of coordinate lines, with respect to the covariant base vector system. However, the contravariant (and covariant) components are not physical quantities. Their magnitudes and dimensions are controlled by their corresponding covariant (and contravariant) base vectors.
Lefort-Besnard, Jérémy; Bassett, Danielle S; Smallwood, Jonathan; Margulies, Daniel S; Derntl, Birgit; Gruber, Oliver; Aleman, Andre; Jardri, Renaud; Varoquaux, Gaël; Thirion, Bertrand; Eickhoff, Simon B; Bzdok, Danilo
2018-02-01
Schizophrenia is a devastating mental disease with an apparent disruption in the highly associative default mode network (DMN). Interplay between this canonical network and others probably contributes to goal-directed behavior so its disturbance is a candidate neural fingerprint underlying schizophrenia psychopathology. Previous research has reported both hyperconnectivity and hypoconnectivity within the DMN, and both increased and decreased DMN coupling with the multimodal saliency network (SN) and dorsal attention network (DAN). This study systematically revisited network disruption in patients with schizophrenia using data-derived network atlases and multivariate pattern-learning algorithms in a multisite dataset (n = 325). Resting-state fluctuations in unconstrained brain states were used to estimate functional connectivity, and local volume differences between individuals were used to estimate structural co-occurrence within and between the DMN, SN, and DAN. In brain structure and function, sparse inverse covariance estimates of network coupling were used to characterize healthy participants and patients with schizophrenia, and to identify statistically significant group differences. Evidence did not confirm that the backbone of the DMN was the primary driver of brain dysfunction in schizophrenia. Instead, functional and structural aberrations were frequently located outside of the DMN core, such as in the anterior temporoparietal junction and precuneus. Additionally, functional covariation analyses highlighted dysfunctional DMN-DAN coupling, while structural covariation results highlighted aberrant DMN-SN coupling. Our findings reframe the role of the DMN core and its relation to canonical networks in schizophrenia. We thus underline the importance of large-scale neural interactions as effective biomarkers and indicators of how to tailor psychiatric care to single patients. © 2017 Wiley Periodicals, Inc.
Treatment decisions based on scalar and functional baseline covariates.
Ciarleglio, Adam; Petkova, Eva; Ogden, R Todd; Tarpey, Thaddeus
2015-12-01
The amount and complexity of patient-level data being collected in randomized-controlled trials offer both opportunities and challenges for developing personalized rules for assigning treatment for a given disease or ailment. For example, trials examining treatments for major depressive disorder are not only collecting typical baseline data such as age, gender, or scores on various tests, but also data that measure the structure and function of the brain such as images from magnetic resonance imaging (MRI), functional MRI (fMRI), or electroencephalography (EEG). These latter types of data have an inherent structure and may be considered as functional data. We propose an approach that uses baseline covariates, both scalars and functions, to aid in the selection of an optimal treatment. In addition to providing information on which treatment should be selected for a new patient, the estimated regime has the potential to provide insight into the relationship between treatment response and the set of baseline covariates. Our approach can be viewed as an extension of "advantage learning" to include both scalar and functional covariates. We describe our method and how to implement it using existing software. Empirical performance of our method is evaluated with simulated data in a variety of settings and also applied to data arising from a study of patients with major depressive disorder from whom baseline scalar covariates as well as functional data from EEG are available. © 2015, The International Biometric Society.
Blumen, Helena M; Brown, Lucy L; Habeck, Christian; Allali, Gilles; Ayers, Emmeline; Beauchet, Olivier; Callisaya, Michele; Lipton, Richard B; Mathuranath, P S; Phan, Thanh G; Pradeep Kumar, V G; Srikanth, Velandai; Verghese, Joe
2018-04-09
Accelerated gait decline in aging is associated with many adverse outcomes, including an increased risk for falls, cognitive decline, and dementia. Yet, the brain structures associated with gait speed, and how they relate to specific cognitive domains, are not well-understood. We examined structural brain correlates of gait speed, and how they relate to processing speed, executive function, and episodic memory in three non-demented and community-dwelling older adult cohorts (Overall N = 352), using voxel-based morphometry and multivariate covariance-based statistics. In all three cohorts, we identified gray matter volume covariance patterns associated with gait speed that included brain stem, precuneus, fusiform, motor, supplementary motor, and prefrontal (particularly ventrolateral prefrontal) cortex regions. Greater expression of these gray matter volume covariance patterns linked to gait speed were associated with better processing speed in all three cohorts, and with better executive function in one cohort. These gray matter covariance patterns linked to gait speed were not associated with episodic memory in any of the cohorts. These findings suggest that gait speed, processing speed (and to some extent executive functions) rely on shared neural systems that are subject to age-related and dementia-related change. The implications of these findings are discussed within the context of the development of interventions to compensate for age-related gait and cognitive decline.
NASA Technical Reports Server (NTRS)
Tangborn, Andrew; Auger, Ludovic
2003-01-01
A suboptimal Kalman filter system which evolves error covariances in terms of a truncated set of wavelet coefficients has been developed for the assimilation of chemical tracer observations of CH4. This scheme projects the discretized covariance propagation equations and covariance matrix onto an orthogonal set of compactly supported wavelets. Wavelet representation is localized in both location and scale, which allows for efficient representation of the inherently anisotropic structure of the error covariances. The truncation is carried out in such a way that the resolution of the error covariance is reduced only in the zonal direction, where gradients are smaller. Assimilation experiments which last 24 days, and used different degrees of truncation were carried out. These reduced the covariance size by 90, 97 and 99 % and the computational cost of covariance propagation by 80, 93 and 96 % respectively. The difference in both error covariance and the tracer field between the truncated and full systems over this period were found to be not growing in the first case, and growing relatively slowly in the later two cases. The largest errors in the tracer fields were found to occur in regions of largest zonal gradients in the constituent field. This results indicate that propagation of error covariances for a global two-dimensional data assimilation system are currently feasible. Recommendations for further reduction in computational cost are made with the goal of extending this technique to three-dimensional global assimilation systems.
Robust information propagation through noisy neural circuits
Pouget, Alexandre
2017-01-01
Sensory neurons give highly variable responses to stimulation, which can limit the amount of stimulus information available to downstream circuits. Much work has investigated the factors that affect the amount of information encoded in these population responses, leading to insights about the role of covariability among neurons, tuning curve shape, etc. However, the informativeness of neural responses is not the only relevant feature of population codes; of potentially equal importance is how robustly that information propagates to downstream structures. For instance, to quantify the retina’s performance, one must consider not only the informativeness of the optic nerve responses, but also the amount of information that survives the spike-generating nonlinearity and noise corruption in the next stage of processing, the lateral geniculate nucleus. Our study identifies the set of covariance structures for the upstream cells that optimize the ability of information to propagate through noisy, nonlinear circuits. Within this optimal family are covariances with “differential correlations”, which are known to reduce the information encoded in neural population activities. Thus, covariance structures that maximize information in neural population codes, and those that maximize the ability of this information to propagate, can be very different. Moreover, redundancy is neither necessary nor sufficient to make population codes robust against corruption by noise: redundant codes can be very fragile, and synergistic codes can—in some cases—optimize robustness against noise. PMID:28419098
Phenotypic covariance at species’ borders
2013-01-01
Background Understanding the evolution of species limits is important in ecology, evolution, and conservation biology. Despite its likely importance in the evolution of these limits, little is known about phenotypic covariance in geographically marginal populations, and the degree to which it constrains, or facilitates, responses to selection. We investigated phenotypic covariance in morphological traits at species’ borders by comparing phenotypic covariance matrices (P), including the degree of shared structure, the distribution of strengths of pair-wise correlations between traits, the degree of morphological integration of traits, and the ranks of matricies, between central and marginal populations of three species-pairs of coral reef fishes. Results Greater structural differences in P were observed between populations close to range margins and conspecific populations toward range centres, than between pairs of conspecific populations that were both more centrally located within their ranges. Approximately 80% of all pair-wise trait correlations within populations were greater in the north, but these differences were unrelated to the position of the sampled population with respect to the geographic range of the species. Conclusions Neither the degree of morphological integration, nor ranks of P, indicated greater evolutionary constraint at range edges. Characteristics of P observed here provide no support for constraint contributing to the formation of these species’ borders, but may instead reflect structural change in P caused by selection or drift, and their potential to evolve in the future. PMID:23714580
Phenotypic covariance at species' borders.
Caley, M Julian; Cripps, Edward; Game, Edward T
2013-05-28
Understanding the evolution of species limits is important in ecology, evolution, and conservation biology. Despite its likely importance in the evolution of these limits, little is known about phenotypic covariance in geographically marginal populations, and the degree to which it constrains, or facilitates, responses to selection. We investigated phenotypic covariance in morphological traits at species' borders by comparing phenotypic covariance matrices (P), including the degree of shared structure, the distribution of strengths of pair-wise correlations between traits, the degree of morphological integration of traits, and the ranks of matricies, between central and marginal populations of three species-pairs of coral reef fishes. Greater structural differences in P were observed between populations close to range margins and conspecific populations toward range centres, than between pairs of conspecific populations that were both more centrally located within their ranges. Approximately 80% of all pair-wise trait correlations within populations were greater in the north, but these differences were unrelated to the position of the sampled population with respect to the geographic range of the species. Neither the degree of morphological integration, nor ranks of P, indicated greater evolutionary constraint at range edges. Characteristics of P observed here provide no support for constraint contributing to the formation of these species' borders, but may instead reflect structural change in P caused by selection or drift, and their potential to evolve in the future.
Principal shapes and squeezed limits in the effective field theory of large scale structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertolini, Daniele; Solon, Mikhail P., E-mail: dbertolini@lbl.gov, E-mail: mpsolon@lbl.gov
2016-11-01
We apply an orthogonalization procedure on the effective field theory of large scale structure (EFT of LSS) shapes, relevant for the angle-averaged bispectrum and non-Gaussian covariance of the matter power spectrum at one loop. Assuming natural-sized EFT parameters, this identifies a linear combination of EFT shapes—referred to as the principal shape—that gives the dominant contribution for the whole kinematic plane, with subdominant combinations suppressed by a few orders of magnitude. For the covariance, our orthogonal transformation is in excellent agreement with a principal component analysis applied to available data. Additionally we find that, for both observables, the coefficients of themore » principal shapes are well approximated by the EFT coefficients appearing in the squeezed limit, and are thus measurable from power spectrum response functions. Employing data from N-body simulations for the growth-only response, we measure the single EFT coefficient describing the angle-averaged bispectrum with Ο (10%) precision. These methods of shape orthogonalization and measurement of coefficients from response functions are valuable tools for developing the EFT of LSS framework, and can be applied to more general observables.« less
ERIC Educational Resources Information Center
Thompson, Bruce
The relationship between analysis of variance (ANOVA) methods and their analogs (analysis of covariance and multiple analyses of variance and covariance--collectively referred to as OVA methods) and the more general analytic case is explored. A small heuristic data set is used, with a hypothetical sample of 20 subjects, randomly assigned to five…
Benefits of Using Planned Comparisons Rather Than Post Hoc Tests: A Brief Review with Examples.
ERIC Educational Resources Information Center
DuRapau, Theresa M.
The rationale behind analysis of variance (including analysis of covariance and multiple analyses of variance and covariance) methods is reviewed, and unplanned and planned methods of evaluating differences between means are briefly described. Two advantages of using planned or a priori tests over unplanned or post hoc tests are presented. In…
An optimal strategy for functional mapping of dynamic trait loci.
Jin, Tianbo; Li, Jiahan; Guo, Ying; Zhou, Xiaojing; Yang, Runqing; Wu, Rongling
2010-02-01
As an emerging powerful approach for mapping quantitative trait loci (QTLs) responsible for dynamic traits, functional mapping models the time-dependent mean vector with biologically meaningful equations and are likely to generate biologically relevant and interpretable results. Given the autocorrelation nature of a dynamic trait, functional mapping needs the implementation of the models for the structure of the covariance matrix. In this article, we have provided a comprehensive set of approaches for modelling the covariance structure and incorporated each of these approaches into the framework of functional mapping. The Bayesian information criterion (BIC) values are used as a model selection criterion to choose the optimal combination of the submodels for the mean vector and covariance structure. In an example for leaf age growth from a rice molecular genetic project, the best submodel combination was found between the Gaussian model for the correlation structure, power equation of order 1 for the variance and the power curve for the mean vector. Under this combination, several significant QTLs for leaf age growth trajectories were detected on different chromosomes. Our model can be well used to study the genetic architecture of dynamic traits of agricultural values.
Joel Shaw, Daniel; Mareček, Radek; Grosbras, Marie-Helene; Leonard, Gabriel; Bruce Pike, G.
2016-01-01
Our ability to process complex social cues presented by faces improves during adolescence. Using multivariate analyses of neuroimaging data collected longitudinally from a sample of 38 adolescents (17 males) when they were 10, 11.5, 13 and 15 years old, we tested the possibility that there exists parallel variations in the structural and functional development of neural systems supporting face processing. By combining measures of task-related functional connectivity and brain morphology, we reveal that both the structural covariance and functional connectivity among ‘distal’ nodes of the face-processing network engaged by ambiguous faces increase during this age range. Furthermore, we show that the trajectory of increasing functional connectivity between the distal nodes occurs in tandem with the development of their structural covariance. This demonstrates a tight coupling between functional and structural maturation within the face-processing network. Finally, we demonstrate that increased functional connectivity is associated with age-related improvements of face-processing performance, particularly in females. We suggest that our findings reflect greater integration among distal elements of the neural systems supporting the processing of facial expressions. This, in turn, might facilitate an enhanced extraction of social information from faces during a time when greater importance is placed on social interactions. PMID:26772669
Vossoughi, Mehrdad; Ayatollahi, S M T; Towhidi, Mina; Ketabchi, Farzaneh
2012-03-22
The summary measure approach (SMA) is sometimes the only applicable tool for the analysis of repeated measurements in medical research, especially when the number of measurements is relatively large. This study aimed to describe techniques based on summary measures for the analysis of linear trend repeated measures data and then to compare performances of SMA, linear mixed model (LMM), and unstructured multivariate approach (UMA). Practical guidelines based on the least squares regression slope and mean of response over time for each subject were provided to test time, group, and interaction effects. Through Monte Carlo simulation studies, the efficacy of SMA vs. LMM and traditional UMA, under different types of covariance structures, was illustrated. All the methods were also employed to analyze two real data examples. Based on the simulation and example results, it was found that the SMA completely dominated the traditional UMA and performed convincingly close to the best-fitting LMM in testing all the effects. However, the LMM was not often robust and led to non-sensible results when the covariance structure for errors was misspecified. The results emphasized discarding the UMA which often yielded extremely conservative inferences as to such data. It was shown that summary measure is a simple, safe and powerful approach in which the loss of efficiency compared to the best-fitting LMM was generally negligible. The SMA is recommended as the first choice to reliably analyze the linear trend data with a moderate to large number of measurements and/or small to moderate sample sizes.
Independent component analysis of DTI data reveals white matter covariances in Alzheimer's disease
NASA Astrophysics Data System (ADS)
Ouyang, Xin; Sun, Xiaoyu; Guo, Ting; Sun, Qiaoyue; Chen, Kewei; Yao, Li; Wu, Xia; Guo, Xiaojuan
2014-03-01
Alzheimer's disease (AD) is a progressive neurodegenerative disease with the clinical symptom of the continuous deterioration of cognitive and memory functions. Multiple diffusion tensor imaging (DTI) indices such as fractional anisotropy (FA) and mean diffusivity (MD) can successfully explain the white matter damages in AD patients. However, most studies focused on the univariate measures (voxel-based analysis) to examine the differences between AD patients and normal controls (NCs). In this investigation, we applied a multivariate independent component analysis (ICA) to investigate the white matter covariances based on FA measurement from DTI data in 35 AD patients and 45 NCs from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We found that six independent components (ICs) showed significant FA reductions in white matter covariances in AD compared with NC, including the genu and splenium of corpus callosum (IC-1 and IC-2), middle temporal gyral of temporal lobe (IC-3), sub-gyral of frontal lobe (IC-4 and IC-5) and sub-gyral of parietal lobe (IC-6). Our findings revealed covariant white matter loss in AD patients and suggest that the unsupervised data-driven ICA method is effective to explore the changes of FA in AD. This study assists us in understanding the mechanism of white matter covariant reductions in the development of AD.
Soneson, Charlotte; Lilljebjörn, Henrik; Fioretos, Thoas; Fontes, Magnus
2010-04-15
With the rapid development of new genetic measurement methods, several types of genetic alterations can be quantified in a high-throughput manner. While the initial focus has been on investigating each data set separately, there is an increasing interest in studying the correlation structure between two or more data sets. Multivariate methods based on Canonical Correlation Analysis (CCA) have been proposed for integrating paired genetic data sets. The high dimensionality of microarray data imposes computational difficulties, which have been addressed for instance by studying the covariance structure of the data, or by reducing the number of variables prior to applying the CCA. In this work, we propose a new method for analyzing high-dimensional paired genetic data sets, which mainly emphasizes the correlation structure and still permits efficient application to very large data sets. The method is implemented by translating a regularized CCA to its dual form, where the computational complexity depends mainly on the number of samples instead of the number of variables. The optimal regularization parameters are chosen by cross-validation. We apply the regularized dual CCA, as well as a classical CCA preceded by a dimension-reducing Principal Components Analysis (PCA), to a paired data set of gene expression changes and copy number alterations in leukemia. Using the correlation-maximizing methods, regularized dual CCA and PCA+CCA, we show that without pre-selection of known disease-relevant genes, and without using information about clinical class membership, an exploratory analysis singles out two patient groups, corresponding to well-known leukemia subtypes. Furthermore, the variables showing the highest relevance to the extracted features agree with previous biological knowledge concerning copy number alterations and gene expression changes in these subtypes. Finally, the correlation-maximizing methods are shown to yield results which are more biologically interpretable than those resulting from a covariance-maximizing method, and provide different insight compared to when each variable set is studied separately using PCA. We conclude that regularized dual CCA as well as PCA+CCA are useful methods for exploratory analysis of paired genetic data sets, and can be efficiently implemented also when the number of variables is very large.
NASA Astrophysics Data System (ADS)
Wan, Tao; Naoe, Takashi; Futakawa, Masatoshi
2016-01-01
A double-wall structure mercury target will be installed at the high-power pulsed spallation neutron source in the Japan Proton Accelerator Research Complex (J-PARC). Cavitation damage on the inner wall is an important factor governing the lifetime of the target-vessel. To monitor the structural integrity of the target vessel, displacement velocity at a point on the outer surface of the target vessel is measured using a laser Doppler vibrometer (LDV). The measured signals can be used for evaluating the damage inside the target vessel because of cyclic loading and cavitation bubble collapse caused by pulsed-beam induced pressure waves. The wavelet differential analysis (WDA) was applied to reveal the effects of the damage on vibrational cycling. To reduce the effects of noise superimposed on the vibration signals on the WDA results, analysis of variance (ANOVA) and analysis of covariance (ANCOVA), statistical methods were applied. Results from laboratory experiments, numerical simulation results with random noise added, and target vessel field data were analyzed by the WDA and the statistical methods. The analyses demonstrated that the established in-situ diagnostic technique can be used to effectively evaluate the structural response of the target vessel.
Filipiak, Katarzyna; Klein, Daniel; Roy, Anuradha
2017-01-01
The problem of testing the separability of a covariance matrix against an unstructured variance-covariance matrix is studied in the context of multivariate repeated measures data using Rao's score test (RST). The RST statistic is developed with the first component of the separable structure as a first-order autoregressive (AR(1)) correlation matrix or an unstructured (UN) covariance matrix under the assumption of multivariate normality. It is shown that the distribution of the RST statistic under the null hypothesis of any separability does not depend on the true values of the mean or the unstructured components of the separable structure. A significant advantage of the RST is that it can be performed for small samples, even smaller than the dimension of the data, where the likelihood ratio test (LRT) cannot be used, and it outperforms the standard LRT in a number of contexts. Monte Carlo simulations are then used to study the comparative behavior of the null distribution of the RST statistic, as well as that of the LRT statistic, in terms of sample size considerations, and for the estimation of the empirical percentiles. Our findings are compared with existing results where the first component of the separable structure is a compound symmetry (CS) correlation matrix. It is also shown by simulations that the empirical null distribution of the RST statistic converges faster than the empirical null distribution of the LRT statistic to the limiting χ 2 distribution. The tests are implemented on a real dataset from medical studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shen, Chung-Wei; Chen, Yi-Hau
2015-10-01
Missing observations and covariate measurement error commonly arise in longitudinal data. However, existing methods for model selection in marginal regression analysis of longitudinal data fail to address the potential bias resulting from these issues. To tackle this problem, we propose a new model selection criterion, the Generalized Longitudinal Information Criterion, which is based on an approximately unbiased estimator for the expected quadratic error of a considered marginal model accounting for both data missingness and covariate measurement error. The simulation results reveal that the proposed method performs quite well in the presence of missing data and covariate measurement error. On the contrary, the naive procedures without taking care of such complexity in data may perform quite poorly. The proposed method is applied to data from the Taiwan Longitudinal Study on Aging to assess the relationship of depression with health and social status in the elderly, accommodating measurement error in the covariate as well as missing observations. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
On analyzing ordinal data when responses and covariates are both missing at random.
Rana, Subrata; Roy, Surupa; Das, Kalyan
2016-08-01
In many occasions, particularly in biomedical studies, data are unavailable for some responses and covariates. This leads to biased inference in the analysis when a substantial proportion of responses or a covariate or both are missing. Except a few situations, methods for missing data have earlier been considered either for missing response or for missing covariates, but comparatively little attention has been directed to account for both missing responses and missing covariates, which is partly attributable to complexity in modeling and computation. This seems to be important as the precise impact of substantial missing data depends on the association between two missing data processes as well. The real difficulty arises when the responses are ordinal by nature. We develop a joint model to take into account simultaneously the association between the ordinal response variable and covariates and also that between the missing data indicators. Such a complex model has been analyzed here by using the Markov chain Monte Carlo approach and also by the Monte Carlo relative likelihood approach. Their performance on estimating the model parameters in finite samples have been looked into. We illustrate the application of these two methods using data from an orthodontic study. Analysis of such data provides some interesting information on human habit. © The Author(s) 2013.
Covariate-free and Covariate-dependent Reliability.
Bentler, Peter M
2016-12-01
Classical test theory reliability coefficients are said to be population specific. Reliability generalization, a meta-analysis method, is the main procedure for evaluating the stability of reliability coefficients across populations. A new approach is developed to evaluate the degree of invariance of reliability coefficients to population characteristics. Factor or common variance of a reliability measure is partitioned into parts that are, and are not, influenced by control variables, resulting in a partition of reliability into a covariate-dependent and a covariate-free part. The approach can be implemented in a single sample and can be applied to a variety of reliability coefficients.
Jin, Huifeng; Cheng, Haojie; Chen, Wei; Sheng, Xiaoming; Levy, Mark A; Brown, Mark J; Tian, Junqiang
2018-05-01
The single nucleotide polymorphism of the gene 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T (or rs1801133) is the most established genetic factor that increases plasma total homocysteine (tHcy) and consequently results in hyperhomocysteinemia. Yet, given the limited penetrance of this genetic variant, it is necessary to individually predict the risk of hyperhomocysteinemia for an rs1801133 carrier. We hypothesized that variability in this genetic risk is largely due to the presence of factors (covariates) that serve as effect modifiers, confounders, or both, such as folic acid (FA) intake, and aimed to assess this risk in the complex context of these covariates. We systematically extracted from published studies the data on tHcy, rs1801133, and any previously reported rs1801133 covariates. The resulting metadata set was first used to analyze the covariates' modifying effect by meta-regression and other statistical means. Subsequently, we controlled for this modifying effect by genotype-stratifying tHcy data and analyzed the variability in the risk resulting from the confounding of covariates. The data set contains data on 36 rs1801133 covariates that were collected from 114,799 participants and 256 qualified studies, among which 6 covariates (sex, age, race, FA intake, smoking, and alcohol consumption) are the most frequently informed and therefore included for statistical analysis. The effect of rs1801133 on tHcy exhibits significant variability that can be attributed to effect modification as well as confounding by these covariates. Via statistical modeling, we predicted the covariate-dependent risk of tHcy elevation and hyperhomocysteinemia in a systematic manner. We showed an evidence-based approach that globally assesses the covariate-dependent effect of rs1801133 on tHcy. The results should assist clinicians in interpreting the rs1801133 data from genetic testing for their patients. Such information is also important for the public, who increasingly receive genetic data from commercial services without interpretation of its clinical relevance. This study was registered at Research Registry with the registration number reviewregistry328.
Might "Unique" Factors Be "Common"? On the Possibility of Indeterminate Common-Unique Covariances
ERIC Educational Resources Information Center
Grayson, Dave
2006-01-01
The present paper shows that the usual factor analytic structured data dispersion matrix lambda psi lambda' + delta can readily arise from a set of scores y = lambda eta + epsilon, shere the "common" (eta) and "unique" (epsilon) factors have nonzero covariance: gamma = Cov epsilon,eta) is not equal to 0. Implications of this finding are discussed…
Quark Mass Functions and Pion Structure in the Covariant Spectator Theory
Biernat, Elmar P.; Gross, Franz; Pena, Teresa; ...
2018-05-24
The Covariant Spectator Theory is applied to the description of quarks and the pion. The dressed quark mass function is calculated dynamically in Minkowski space and used in the calculation of the pion electromagnetic form factor. The effects of the mass function on the pion form factor and the different quark-pole contributions to the triangle diagram then are analyzed.
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Schupp, Peter; Vysoký, Jan
2014-06-01
We generalize noncommutative gauge theory using Nambu-Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg-Witten map. We construct a covariant Nambu-Poisson gauge theory action, give its first order expansion in the Nambu-Poisson tensor and relate it to a Nambu-Poisson matrix model.
Quark Mass Functions and Pion Structure in the Covariant Spectator Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biernat, Elmar P.; Gross, Franz; Pena, Teresa
The Covariant Spectator Theory is applied to the description of quarks and the pion. The dressed quark mass function is calculated dynamically in Minkowski space and used in the calculation of the pion electromagnetic form factor. The effects of the mass function on the pion form factor and the different quark-pole contributions to the triangle diagram then are analyzed.
NASA Astrophysics Data System (ADS)
Rose, Michael Benjamin
A novel trajectory and attitude control and navigation analysis tool for powered ascent is developed. The tool is capable of rapid trade-space analysis and is designed to ultimately reduce turnaround time for launch vehicle design, mission planning, and redesign work. It is streamlined to quickly determine trajectory and attitude control dispersions, propellant dispersions, orbit insertion dispersions, and navigation errors and their sensitivities to sensor errors, actuator execution uncertainties, and random disturbances. The tool is developed by applying both Monte Carlo and linear covariance analysis techniques to a closed-loop, launch vehicle guidance, navigation, and control (GN&C) system. The nonlinear dynamics and flight GN&C software models of a closed-loop, six-degree-of-freedom (6-DOF), Monte Carlo simulation are formulated and developed. The nominal reference trajectory (NRT) for the proposed lunar ascent trajectory is defined and generated. The Monte Carlo truth models and GN&C algorithms are linearized about the NRT, the linear covariance equations are formulated, and the linear covariance simulation is developed. The performance of the launch vehicle GN&C system is evaluated using both Monte Carlo and linear covariance techniques and their trajectory and attitude control dispersion, propellant dispersion, orbit insertion dispersion, and navigation error results are validated and compared. Statistical results from linear covariance analysis are generally within 10% of Monte Carlo results, and in most cases the differences are less than 5%. This is an excellent result given the many complex nonlinearities that are embedded in the ascent GN&C problem. Moreover, the real value of this tool lies in its speed, where the linear covariance simulation is 1036.62 times faster than the Monte Carlo simulation. Although the application and results presented are for a lunar, single-stage-to-orbit (SSTO), ascent vehicle, the tools, techniques, and mathematical formulations that are discussed are applicable to ascent on Earth or other planets as well as other rocket-powered systems such as sounding rockets and ballistic missiles.
MISTIC2: comprehensive server to study coevolution in protein families.
Colell, Eloy A; Iserte, Javier A; Simonetti, Franco L; Marino-Buslje, Cristina
2018-06-14
Correlated mutations between residue pairs in evolutionarily related proteins arise from constraints needed to maintain a functional and stable protein. Identifying these inter-related positions narrows down the search for structurally or functionally important sites. MISTIC is a server designed to assist users to calculate covariation in protein families and provide them with an interactive tool to visualize the results. Here, we present MISTIC2, an update to the previous server, that allows to calculate four covariation methods (MIp, mfDCA, plmDCA and gaussianDCA). The results visualization framework has been reworked for improved performance, compatibility and user experience. It includes a circos representation of the information contained in the alignment, an interactive covariation network, a 3D structure viewer and a sequence logo. Others components provide additional information such as residue annotations, a roc curve for assessing contact prediction, data tables and different ways of filtering the data and exporting figures. Comparison of different methods is easily done and scores combination is also possible. A newly implemented web service allows users to access MISTIC2 programmatically using an API to calculate covariation and retrieve results. MISTIC2 is available at: https://mistic2.leloir.org.ar.
Adjoints and Low-rank Covariance Representation
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; Cohn, Stephen E.
2000-01-01
Quantitative measures of the uncertainty of Earth System estimates can be as important as the estimates themselves. Second moments of estimation errors are described by the covariance matrix, whose direct calculation is impractical when the number of degrees of freedom of the system state is large. Ensemble and reduced-state approaches to prediction and data assimilation replace full estimation error covariance matrices by low-rank approximations. The appropriateness of such approximations depends on the spectrum of the full error covariance matrix, whose calculation is also often impractical. Here we examine the situation where the error covariance is a linear transformation of a forcing error covariance. We use operator norms and adjoints to relate the appropriateness of low-rank representations to the conditioning of this transformation. The analysis is used to investigate low-rank representations of the steady-state response to random forcing of an idealized discrete-time dynamical system.
Alterations in Anatomical Covariance in the Prematurely Born
Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Vohr, Betty R.; Schneider, Karen C.; Papademetris, Xenophon; Constable, R. Todd; Ment, Laura R.
2017-01-01
Abstract Preterm (PT) birth results in long-term alterations in functional and structural connectivity, but the related changes in anatomical covariance are just beginning to be explored. To test the hypothesis that PT birth alters patterns of anatomical covariance, we investigated brain volumes of 25 PTs and 22 terms at young adulthood using magnetic resonance imaging. Using regional volumetrics, seed-based analyses, and whole brain graphs, we show that PT birth is associated with reduced volume in bilateral temporal and inferior frontal lobes, left caudate, left fusiform, and posterior cingulate for prematurely born subjects at young adulthood. Seed-based analyses demonstrate altered patterns of anatomical covariance for PTs compared with terms. PTs exhibit reduced covariance with R Brodmann area (BA) 47, Broca's area, and L BA 21, Wernicke's area, and white matter volume in the left prefrontal lobe, but increased covariance with R BA 47 and left cerebellum. Graph theory analyses demonstrate that measures of network complexity are significantly less robust in PTs compared with term controls. Volumes in regions showing group differences are significantly correlated with phonological awareness, the fundamental basis for reading acquisition, for the PTs. These data suggest both long-lasting and clinically significant alterations in the covariance in the PTs at young adulthood. PMID:26494796
Best (but oft-forgotten) practices: propensity score methods in clinical nutrition research.
Ali, M Sanni; Groenwold, Rolf Hh; Klungel, Olaf H
2016-08-01
In observational studies, treatment assignment is a nonrandom process and treatment groups may not be comparable in their baseline characteristics, a phenomenon known as confounding. Propensity score (PS) methods can be used to achieve comparability of treated and nontreated groups in terms of their observed covariates and, as such, control for confounding in estimating treatment effects. In this article, we provide a step-by-step guidance on how to use PS methods. For illustrative purposes, we used simulated data based on an observational study of the relation between oral nutritional supplementation and hospital length of stay. We focused on the key aspects of PS analysis, including covariate selection, PS estimation, covariate balance assessment, treatment effect estimation, and reporting. PS matching, stratification, covariate adjustment, and weighting are discussed. R codes and example data are provided to show the different steps in a PS analysis. © 2016 American Society for Nutrition.
Hattori, Masasi; Oaksford, Mike
2007-09-10
In this article, 41 models of covariation detection from 2 × 2 contingency tables were evaluated against past data in the literature and against data from new experiments. A new model was also included based on a limiting case of the normative phi-coefficient under an extreme rarity assumption, which has been shown to be an important factor in covariation detection (McKenzie & Mikkelsen, 2007) and data selection (Hattori, 2002; Oaksford & Chater, 1994, 2003). The results were supportive of the new model. To investigate its explanatory adequacy, a rational analysis using two computer simulations was conducted. These simulations revealed the environmental conditions and the memory restrictions under which the new model best approximates the normative model of covariation detection in these tasks. They thus demonstrated the adaptive rationality of the new model. 2007 Cognitive Science Society, Inc.
External Aiding Methods for IMU-Based Navigation
2016-11-26
Carlo simulation and particle filtering . This approach allows for the utilization of highly complex systems in a black box configuration with minimal...alternative method, which has the advantage of being less computationally demanding, is to use a Kalman filtering -based approach. The particular...Kalman filtering -based approach used here is known as linear covariance analysis. In linear covariance analysis, the nonlinear systems describing the
Analysis of Covariance: Is It the Appropriate Model to Study Change?
ERIC Educational Resources Information Center
Marston, Paul T., Borich, Gary D.
The four main approaches to measuring treatment effects in schools; raw gain, residual gain, covariance, and true scores; were compared. A simulation study showed true score analysis produced a large number of Type-I errors. When corrected for this error, this method showed the least power of the four. This outcome was clearly the result of the…
FDG-PET findings in the Wernicke-Korsakoff syndrome.
Reed, Laurence J; Lasserson, Dan; Marsden, Paul; Stanhope, Nicola; Stevens, Tom; Bello, Fernando; Kingsley, Derek; Colchester, Alan; Kopelman, Michael D
2003-01-01
This study reports FDG-PET findings in Wernicke-Korsakoff patients. Twelve patients suffering amnesia arising from the Korsakoff syndrome were compared with 10 control subjects without alcohol-related disability. Subjects received [18F]-fluorodeoxyglucose (FDG-PET) imaging as well as neuropsychological assessment and high-resolution MR imaging with volumetric analysis. Volumetric MRI analysis had revealed thalamic and mamillary body atrophy in the patient group as well as frontal lobe atrophy with relative sparing of medial temporal lobe structures. Differences in regional metabolism were identified using complementary region of interest (ROI) and statistical parametric mapping (SPM) approaches employing either absolute methods or a reference region approach to increase statistical power. In general, we found relative hypermetabolism in white matter and hypometabolism in subcortical grey matter in Korsakoff patients. When FDG uptake ratios were examined with occipital lobe metabolism as covariate reference region, Korsakoff patients showed widespread bilateral white matter hypermetabolism on both SPM and ROI analysis. When white matter metabolism was the reference covariate; Korsakoff patients showed relative hypometabolism in the diencephalic grey matter, consistent with their known underlying neuropathology, and medial temporal and retrosplenial hypometabolism, interpreted as secondary metabolic effects within the diencephalic-limbic memory circuits. There was also evidence of a variable degree of more general frontotemporal neocortical hypometabolism on some, but not all, analyses.
Treating Sample Covariances for Use in Strongly Coupled Atmosphere-Ocean Data Assimilation
NASA Astrophysics Data System (ADS)
Smith, Polly J.; Lawless, Amos S.; Nichols, Nancy K.
2018-01-01
Strongly coupled data assimilation requires cross-domain forecast error covariances; information from ensembles can be used, but limited sampling means that ensemble derived error covariances are routinely rank deficient and/or ill-conditioned and marred by noise. Thus, they require modification before they can be incorporated into a standard assimilation framework. Here we compare methods for improving the rank and conditioning of multivariate sample error covariance matrices for coupled atmosphere-ocean data assimilation. The first method, reconditioning, alters the matrix eigenvalues directly; this preserves the correlation structures but does not remove sampling noise. We show that it is better to recondition the correlation matrix rather than the covariance matrix as this prevents small but dynamically important modes from being lost. The second method, model state-space localization via the Schur product, effectively removes sample noise but can dampen small cross-correlation signals. A combination that exploits the merits of each is found to offer an effective alternative.
Small vessel disease is linked to disrupted structural network covariance in Alzheimer's disease.
Nestor, Sean M; Mišić, Bratislav; Ramirez, Joel; Zhao, Jiali; Graham, Simon J; Verhoeff, Nicolaas P L G; Stuss, Donald T; Masellis, Mario; Black, Sandra E
2017-07-01
Cerebral small vessel disease (SVD) is thought to contribute to Alzheimer's disease (AD) through abnormalities in white matter networks. Gray matter (GM) hub covariance networks share only partial overlap with white matter connectivity, and their relationship with SVD has not been examined in AD. We developed a multivariate analytical pipeline to elucidate the cortical GM thickness systems that covary with major network hubs and assessed whether SVD and neurodegenerative pathologic markers were associated with attenuated covariance network integrity in mild AD and normal elderly control subjects. SVD burden was associated with reduced posterior cingulate corticocortical GM network integrity and subneocorticocortical hub network integrity in AD. These findings provide evidence that SVD is linked to the selective disruption of cortical hub GM networks in AD brains and point to the need to consider GM hub covariance networks when assessing network disruption in mixed disease. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghosh, S.; Lopez-Coto, I.; Prasad, K.; Karion, A.; Mueller, K.; Gourdji, S.; Martin, C.; Whetstone, J. R.
2017-12-01
The National Institute of Standards and Technology (NIST) supports the North-East Corridor Baltimore Washington (NEC-B/W) project and Indianapolis Flux Experiment (INFLUX) aiming to quantify sources of Greenhouse Gas (GHG) emissions as well as their uncertainties. These projects employ different flux estimation methods including top-down inversion approaches. The traditional Bayesian inversion method estimates emission distributions by updating prior information using atmospheric observations of Green House Gases (GHG) coupled to an atmospheric and dispersion model. The magnitude of the update is dependent upon the observed enhancement along with the assumed errors such as those associated with prior information and the atmospheric transport and dispersion model. These errors are specified within the inversion covariance matrices. The assumed structure and magnitude of the specified errors can have large impact on the emission estimates from the inversion. The main objective of this work is to build a data-adaptive model for these covariances matrices. We construct a synthetic data experiment using a Kalman Filter inversion framework (Lopez et al., 2017) employing different configurations of transport and dispersion model and an assumed prior. Unlike previous traditional Bayesian approaches, we estimate posterior emissions using regularized sample covariance matrices associated with prior errors to investigate whether the structure of the matrices help to better recover our hypothetical true emissions. To incorporate transport model error, we use ensemble of transport models combined with space-time analytical covariance to construct a covariance that accounts for errors in space and time. A Kalman Filter is then run using these covariances along with Maximum Likelihood Estimates (MLE) of the involved parameters. Preliminary results indicate that specifying sptio-temporally varying errors in the error covariances can improve the flux estimates and uncertainties. We also demonstrate that differences between the modeled and observed meteorology can be used to predict uncertainties associated with atmospheric transport and dispersion modeling which can help improve the skill of an inversion at urban scales.
Nasejje, Justine B; Mwambi, Henry
2017-09-07
Uganda just like any other Sub-Saharan African country, has a high under-five child mortality rate. To inform policy on intervention strategies, sound statistical methods are required to critically identify factors strongly associated with under-five child mortality rates. The Cox proportional hazards model has been a common choice in analysing data to understand factors strongly associated with high child mortality rates taking age as the time-to-event variable. However, due to its restrictive proportional hazards (PH) assumption, some covariates of interest which do not satisfy the assumption are often excluded in the analysis to avoid mis-specifying the model. Otherwise using covariates that clearly violate the assumption would mean invalid results. Survival trees and random survival forests are increasingly becoming popular in analysing survival data particularly in the case of large survey data and could be attractive alternatives to models with the restrictive PH assumption. In this article, we adopt random survival forests which have never been used in understanding factors affecting under-five child mortality rates in Uganda using Demographic and Health Survey data. Thus the first part of the analysis is based on the use of the classical Cox PH model and the second part of the analysis is based on the use of random survival forests in the presence of covariates that do not necessarily satisfy the PH assumption. Random survival forests and the Cox proportional hazards model agree that the sex of the household head, sex of the child, number of births in the past 1 year are strongly associated to under-five child mortality in Uganda given all the three covariates satisfy the PH assumption. Random survival forests further demonstrated that covariates that were originally excluded from the earlier analysis due to violation of the PH assumption were important in explaining under-five child mortality rates. These covariates include the number of children under the age of five in a household, number of births in the past 5 years, wealth index, total number of children ever born and the child's birth order. The results further indicated that the predictive performance for random survival forests built using covariates including those that violate the PH assumption was higher than that for random survival forests built using only covariates that satisfy the PH assumption. Random survival forests are appealing methods in analysing public health data to understand factors strongly associated with under-five child mortality rates especially in the presence of covariates that violate the proportional hazards assumption.
Evolutions of fluctuation modes and inner structures of global stock markets
NASA Astrophysics Data System (ADS)
Yan, Yan; Wang, Lei; Liu, Maoxin; Chen, Xiaosong
2016-09-01
The paper uses empirical data, including 42 globally main stock indices in the period 1996-2014, to systematically study the evolution of fluctuation modes and inner structures of global stock markets. The data are large in scale considering both time and space. A covariance matrix-based principle fluctuation mode analysis (PFMA) is used to explore the properties of the global stock markets. It has been ignored by previous studies that covariance matrix is more suitable than the correlation matrix to be the basis of PFMA. It is found that the principle fluctuation modes of global stock markets are in the same directions, and global stock markets are divided into three clusters, which are found to be closely related to the countries’ locations with exceptions of China, Russia and Czech Republic. A time-stable correlation network constructing method is proposed to solve the problem of high-level statistical uncertainty when the estimated periods are very short, and the complex dynamic network (CDN) is constructed to investigate the evolution of inner structures. The results show when the clusters emerge and how long the clusters exist. When the 2008 financial crisis broke out, the indices form one cluster. After these crises, only the European cluster still exists. These findings complement the previous studies, and can help investors and regulators to understand the global stock markets.
Super-sample covariance approximations and partial sky coverage
NASA Astrophysics Data System (ADS)
Lacasa, Fabien; Lima, Marcos; Aguena, Michel
2018-04-01
Super-sample covariance (SSC) is the dominant source of statistical error on large scale structure (LSS) observables for both current and future galaxy surveys. In this work, we concentrate on the SSC of cluster counts, also known as sample variance, which is particularly useful for the self-calibration of the cluster observable-mass relation; our approach can similarly be applied to other observables, such as galaxy clustering and lensing shear. We first examined the accuracy of two analytical approximations proposed in the literature for the flat sky limit, finding that they are accurate at the 15% and 30-35% level, respectively, for covariances of counts in the same redshift bin. We then developed a harmonic expansion formalism that allows for the prediction of SSC in an arbitrary survey mask geometry, such as large sky areas of current and future surveys. We show analytically and numerically that this formalism recovers the full sky and flat sky limits present in the literature. We then present an efficient numerical implementation of the formalism, which allows fast and easy runs of covariance predictions when the survey mask is modified. We applied our method to a mask that is broadly similar to the Dark Energy Survey footprint, finding a non-negligible negative cross-z covariance, i.e. redshift bins are anti-correlated. We also examined the case of data removal from holes due to, for example bright stars, quality cuts, or systematic removals, and find that this does not have noticeable effects on the structure of the SSC matrix, only rescaling its amplitude by the effective survey area. These advances enable analytical covariances of LSS observables to be computed for current and future galaxy surveys, which cover large areas of the sky where the flat sky approximation fails.
Space Trajectories Error Analysis (STEAP) Programs. Volume 1: Analytic manual, update
NASA Technical Reports Server (NTRS)
1971-01-01
Manual revisions are presented for the modified and expanded STEAP series. The STEAP 2 is composed of three independent but related programs: NOMAL for the generation of n-body nominal trajectories performing a number of deterministic guidance events; ERRAN for the linear error analysis and generalized covariance analysis along specific targeted trajectories; and SIMUL for testing the mathematical models used in the navigation and guidance process. The analytic manual provides general problem description, formulation, and solution and the detailed analysis of subroutines. The programmers' manual gives descriptions of the overall structure of the programs as well as the computational flow and analysis of the individual subroutines. The user's manual provides information on the input and output quantities of the programs. These are updates to N69-36472 and N69-36473.
Combining 1D and 2D linear discriminant analysis for palmprint recognition
NASA Astrophysics Data System (ADS)
Zhang, Jian; Ji, Hongbing; Wang, Lei; Lin, Lin
2011-11-01
In this paper, a novel feature extraction method for palmprint recognition termed as Two-dimensional Combined Discriminant Analysis (2DCDA) is proposed. By connecting the adjacent rows of a image sequentially, the obtained new covariance matrices contain the useful information among local geometry structures in the image, which is eliminated by 2DLDA. In this way, 2DCDA combines LDA and 2DLDA for a promising recognition accuracy, but the number of coefficients of its projection matrix is lower than that of other two-dimensional methods. Experimental results on the CASIA palmprint database demonstrate the effectiveness of the proposed method.
Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals.
Engemann, Denis A; Gramfort, Alexandre
2015-03-01
Magnetoencephalography and electroencephalography (M/EEG) measure non-invasively the weak electromagnetic fields induced by post-synaptic neural currents. The estimation of the spatial covariance of the signals recorded on M/EEG sensors is a building block of modern data analysis pipelines. Such covariance estimates are used in brain-computer interfaces (BCI) systems, in nearly all source localization methods for spatial whitening as well as for data covariance estimation in beamformers. The rationale for such models is that the signals can be modeled by a zero mean Gaussian distribution. While maximizing the Gaussian likelihood seems natural, it leads to a covariance estimate known as empirical covariance (EC). It turns out that the EC is a poor estimate of the true covariance when the number of samples is small. To address this issue the estimation needs to be regularized. The most common approach downweights off-diagonal coefficients, while more advanced regularization methods are based on shrinkage techniques or generative models with low rank assumptions: probabilistic PCA (PPCA) and factor analysis (FA). Using cross-validation all of these models can be tuned and compared based on Gaussian likelihood computed on unseen data. We investigated these models on simulations, one electroencephalography (EEG) dataset as well as magnetoencephalography (MEG) datasets from the most common MEG systems. First, our results demonstrate that different models can be the best, depending on the number of samples, heterogeneity of sensor types and noise properties. Second, we show that the models tuned by cross-validation are superior to models with hand-selected regularization. Hence, we propose an automated solution to the often overlooked problem of covariance estimation of M/EEG signals. The relevance of the procedure is demonstrated here for spatial whitening and source localization of MEG signals. Copyright © 2015 Elsevier Inc. All rights reserved.
Bayesian Covariate Selection in Mixed-Effects Models For Longitudinal Shape Analysis
Muralidharan, Prasanna; Fishbaugh, James; Kim, Eun Young; Johnson, Hans J.; Paulsen, Jane S.; Gerig, Guido; Fletcher, P. Thomas
2016-01-01
The goal of longitudinal shape analysis is to understand how anatomical shape changes over time, in response to biological processes, including growth, aging, or disease. In many imaging studies, it is also critical to understand how these shape changes are affected by other factors, such as sex, disease diagnosis, IQ, etc. Current approaches to longitudinal shape analysis have focused on modeling age-related shape changes, but have not included the ability to handle covariates. In this paper, we present a novel Bayesian mixed-effects shape model that incorporates simultaneous relationships between longitudinal shape data and multiple predictors or covariates to the model. Moreover, we place an Automatic Relevance Determination (ARD) prior on the parameters, that lets us automatically select which covariates are most relevant to the model based on observed data. We evaluate our proposed model and inference procedure on a longitudinal study of Huntington's disease from PREDICT-HD. We first show the utility of the ARD prior for model selection in a univariate modeling of striatal volume, and next we apply the full high-dimensional longitudinal shape model to putamen shapes. PMID:28090246
A simulation for gravity fine structure recovery from low-low GRAVSAT SST data
NASA Technical Reports Server (NTRS)
Estes, R. H.; Lancaster, E. R.
1976-01-01
Covariance error analysis techniques were applied to investigate estimation strategies for the low-low SST mission for accurate local recovery of gravitational fine structure, considering the aliasing effects of unsolved for parameters. A 5 degree by 5 degree surface density block representation of the high order geopotential was utilized with the drag-free low-low GRAVSAT configuration in a circular polar orbit at 250 km altitude. Recovery of local sets of density blocks from long data arcs was found not to be feasible due to strong aliasing effects. The error analysis for the recovery of local sets of density blocks using independent short data arcs demonstrated that the estimation strategy of simultaneously estimating a local set of blocks covered by data and two "buffer layers" of blocks not covered by data greatly reduced aliasing errors.
A hazards-model analysis of the covariates of infant and child mortality in Sri Lanka.
Trussell, J; Hammerslough, C
1983-02-01
The purpose of this paper is twofold: (a) to provide a complete self-contained exposition of estimating life tables with covariates through the use of hazards models, and (b) to illustrate this technique with a substantive analysis of child mortality in Sri Lanka, thereby demonstrating that World Fertility Survey data are a valuable source for the study of child mortality. We show that life tables with covariates can be easily estimated with standard computer packages designed for analysis of contingency tables. The substantive analysis confirms and supplements an earlier study of infant and child mortality in Sri Lanka by Meegama. Those factors found to be strongly associated with mortality are mother's and father's education, time period of birth, urban/rural/estate residence, ethnicity, sex, birth order, age of the mother at the birth, and type of toilet facility.
Covariance Manipulation for Conjunction Assessment
NASA Technical Reports Server (NTRS)
Hejduk, M. D.
2016-01-01
The manipulation of space object covariances to try to provide additional or improved information to conjunction risk assessment is not an uncommon practice. Types of manipulation include fabricating a covariance when it is missing or unreliable to force the probability of collision (Pc) to a maximum value ('PcMax'), scaling a covariance to try to improve its realism or see the effect of covariance volatility on the calculated Pc, and constructing the equivalent of an epoch covariance at a convenient future point in the event ('covariance forecasting'). In bringing these methods to bear for Conjunction Assessment (CA) operations, however, some do not remain fully consistent with best practices for conducting risk management, some seem to be of relatively low utility, and some require additional information before they can contribute fully to risk analysis. This study describes some basic principles of modern risk management (following the Kaplan construct) and then examines the PcMax and covariance forecasting paradigms for alignment with these principles; it then further examines the expected utility of these methods in the modern CA framework. Both paradigms are found to be not without utility, but only in situations that are somewhat carefully circumscribed.
The radiated noise from isotropic turbulence revisited
NASA Technical Reports Server (NTRS)
Lilley, Geoffrey M.
1993-01-01
The noise radiated from isotropic turbulence at low Mach numbers and high Reynolds numbers, as derived by Proudman (1952), was the first application of Lighthill's Theory of Aerodynamic Noise to a complete flow field. The theory presented by Proudman involves the assumption of the neglect of retarded time differences and so replaces the second-order retarded-time and space covariance of Lighthill's stress tensor, Tij, and in particular its second time derivative, by the equivalent simultaneous covariance. This assumption is a valid approximation in the derivation of the second partial derivative of Tij/derivative of t exp 2 covariance at low Mach numbers, but is not justified when that covariance is reduced to the sum of products of the time derivatives of equivalent second-order velocity covariances as required when Gaussian statistics are assumed. The present paper removes these assumptions and finds that although the changes in the analysis are substantial, the change in the numerical result for the total acoustic power is small. The present paper also considers an alternative analysis which does not neglect retarded times. It makes use of the Lighthill relationship, whereby the fourth-order Tij retarded-time covariance is evaluated from the square of similar second order covariance, which is assumed known. In this derivation, no statistical assumptions are involved. This result, using distributions for the second-order space-time velocity squared covariance based on the Direct Numerical Simulation (DNS) results of both Sarkar and Hussaini(1993) and Dubois(1993), is compared with the re-evaluation of Proudman's original model. These results are then compared with the sound power derived from a phenomenological model based on simple approximations to the retarded-time/space covariance of Txx. Finally, the recent numerical solutions of Sarkar and Hussaini(1993) for the acoustic power are compared with the results obtained from the analytic solutions.
Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biernat, Elmer P.; Pena, Maria Teresa; Ribiero, Jose' Emilio F.
2016-03-01
We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.
Narayan, Manjari; Allen, Genevera I.
2016-01-01
Many complex brain disorders, such as autism spectrum disorders, exhibit a wide range of symptoms and disability. To understand how brain communication is impaired in such conditions, functional connectivity studies seek to understand individual differences in brain network structure in terms of covariates that measure symptom severity. In practice, however, functional connectivity is not observed but estimated from complex and noisy neural activity measurements. Imperfect subject network estimates can compromise subsequent efforts to detect covariate effects on network structure. We address this problem in the case of Gaussian graphical models of functional connectivity, by proposing novel two-level models that treat both subject level networks and population level covariate effects as unknown parameters. To account for imperfectly estimated subject level networks when fitting these models, we propose two related approaches—R2 based on resampling and random effects test statistics, and R3 that additionally employs random adaptive penalization. Simulation studies using realistic graph structures reveal that R2 and R3 have superior statistical power to detect covariate effects compared to existing approaches, particularly when the number of within subject observations is comparable to the size of subject networks. Using our novel models and methods to study parts of the ABIDE dataset, we find evidence of hypoconnectivity associated with symptom severity in autism spectrum disorders, in frontoparietal and limbic systems as well as in anterior and posterior cingulate cortices. PMID:27147940
Tests of general relativity using Starprobe radio metric tracking data
NASA Technical Reports Server (NTRS)
Mease, K. D.; Anderson, J. D.; Wood, L. J.; White, L. K.
1982-01-01
The potential of a proposed spacecraft mission, called Starprobe, for testing general relativity and providing information on the interior structure and dynamics of the sun is investigated. Parametric, gravitational perturbation terms are derived which represent relativistic effects and effects due to spatial and temporal variations in the solar potential at a given radial distance. A covariance analysis based on Kalman filtering theory predicts the accuracies with which the free parameters in the perturbation terms can be estimated with radio metric tracking data through the process of trajectory reconstruction. It is concluded that Starprobe can contribute significant information on both the nature of gravitation and the structure and dynamics of the solar interior.
Some estimation formulae for continuous time-invariant linear systems
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Sidhu, G. S.
1975-01-01
In this brief paper we examine a Riccati equation decomposition due to Reid and Lainiotis and apply the result to the continuous time-invariant linear filtering problem. Exploitation of the time-invariant structure leads to integration-free covariance recursions which are of use in covariance analyses and in filter implementations. A super-linearly convergent iterative solution to the algebraic Riccati equation (ARE) is developed. The resulting algorithm, arranged in a square-root form, is thought to be numerically stable and competitive with other ARE solution methods. Certain covariance relations that are relevant to the fixed-point and fixed-lag smoothing problems are also discussed.
Franić, Sanja; Dolan, Conor V; Borsboom, Denny; Hudziak, James J; van Beijsterveldt, Catherina E M; Boomsma, Dorret I
2013-09-01
In the present article, we discuss the role that quantitative genetic methodology may play in assessing and understanding the dimensionality of psychological (psychometric) instruments. Specifically, we study the relationship between the observed covariance structures, on the one hand, and the underlying genetic and environmental influences giving rise to such structures, on the other. We note that this relationship may be such that it hampers obtaining a clear estimate of dimensionality using standard tools for dimensionality assessment alone. One situation in which dimensionality assessment may be impeded is that in which genetic and environmental influences, of which the observed covariance structure is a function, differ from each other in structure and dimensionality. We demonstrate that in such situations settling dimensionality issues may be problematic, and propose using quantitative genetic modeling to uncover the (possibly different) dimensionalities of the underlying genetic and environmental structures. We illustrate using simulations and an empirical example on childhood internalizing problems.
Perspective: Structural fluctuation of protein and Anfinsen's thermodynamic hypothesis
NASA Astrophysics Data System (ADS)
Hirata, Fumio; Sugita, Masatake; Yoshida, Masasuke; Akasaka, Kazuyuki
2018-01-01
The thermodynamics hypothesis, casually referred to as "Anfinsen's dogma," is described theoretically in terms of a concept of the structural fluctuation of protein or the first moment (average structure) and the second moment (variance and covariance) of the structural distribution. The new theoretical concept views the unfolding and refolding processes of protein as a shift of the structural distribution induced by a thermodynamic perturbation, with the variance-covariance matrix varying. Based on the theoretical concept, a method to characterize the mechanism of folding (or unfolding) is proposed. The transition state, if any, between two stable states is interpreted as a gap in the distribution, which is created due to an extensive reorganization of hydrogen bonds among back-bone atoms of protein and with water molecules in the course of conformational change. Further perspective to applying the theory to the computer-aided drug design, and to the material science, is briefly discussed.
A general regression framework for a secondary outcome in case-control studies.
Tchetgen Tchetgen, Eric J
2014-01-01
Modern case-control studies typically involve the collection of data on a large number of outcomes, often at considerable logistical and monetary expense. These data are of potentially great value to subsequent researchers, who, although not necessarily concerned with the disease that defined the case series in the original study, may want to use the available information for a regression analysis involving a secondary outcome. Because cases and controls are selected with unequal probability, regression analysis involving a secondary outcome generally must acknowledge the sampling design. In this paper, the author presents a new framework for the analysis of secondary outcomes in case-control studies. The approach is based on a careful re-parameterization of the conditional model for the secondary outcome given the case-control outcome and regression covariates, in terms of (a) the population regression of interest of the secondary outcome given covariates and (b) the population regression of the case-control outcome on covariates. The error distribution for the secondary outcome given covariates and case-control status is otherwise unrestricted. For a continuous outcome, the approach sometimes reduces to extending model (a) by including a residual of (b) as a covariate. However, the framework is general in the sense that models (a) and (b) can take any functional form, and the methodology allows for an identity, log or logit link function for model (a).
3D RNA and functional interactions from evolutionary couplings
Weinreb, Caleb; Riesselman, Adam; Ingraham, John B.; Gross, Torsten; Sander, Chris; Marks, Debora S.
2016-01-01
Summary Non-coding RNAs are ubiquitous, but the discovery of new RNA gene sequences far outpaces research on their structure and functional interactions. We mine the evolutionary sequence record to derive precise information about function and structure of RNAs and RNA-protein complexes. As in protein structure prediction, we use maximum entropy global probability models of sequence co-variation to infer evolutionarily constrained nucleotide-nucleotide interactions within RNA molecules, and nucleotide-amino acid interactions in RNA-protein complexes. The predicted contacts allow all-atom blinded 3D structure prediction at good accuracy for several known RNA structures and RNA-protein complexes. For unknown structures, we predict contacts in 160 non-coding RNA families. Beyond 3D structure prediction, evolutionary couplings help identify important functional interactions, e.g., at switch points in riboswitches and at a complex nucleation site in HIV. Aided by accelerating sequence accumulation, evolutionary coupling analysis can accelerate the discovery of functional interactions and 3D structures involving RNA. PMID:27087444
A simple metric to predict stream water quality from storm runoff in an urban watershed.
Easton, Zachary M; Sullivan, Patrick J; Walter, M Todd; Fuka, Daniel R; Petrovic, A Martin; Steenhuis, Tammo S
2010-01-01
The contribution of runoff from various land uses to stream channels in a watershed is often speculated and used to underpin many model predictions. However, these contributions, often based on little or no measurements in the watershed, fail to appropriately consider the influence of the hydrologic location of a particular landscape unit in relation to the stream network. A simple model was developed to predict storm runoff and the phosphorus (P) status of a perennial stream in an urban watershed in New York State using the covariance structure of runoff from different landscape units in the watershed to predict runoff in time. One hundred and twenty-seven storm events were divided into parameterization (n = 85) and forecasting (n = 42) data sets. Runoff, dissolved P (DP), and total P (TP) were measured at nine sites distributed among three land uses (high maintenance, unmaintained, wooded), three positions in the watershed (near the outlet, midwatershed, upper watershed), and in the stream at the watershed outlet. The autocorrelation among runoff and P concentrations from the watershed landscape units (n = 9) and the covariance between measurements from the landscape units and measurements from the stream were calculated and used to predict the stream response. Models, validated using leave-one-out cross-validation and a forecasting method, were able to correctly capture temporal trends in streamflow and stream P chemistry (Nash-Sutcliffe efficiencies, 0.49-0.88). The analysis suggests that the covariance structure was consistent for all models, indicating that the physical processes governing runoff and P loss from these landscape units were stationary in time and that landscapes located in hydraulically active areas have a direct hydraulic link to the stream. This methodology provides insight into the impact of various urban landscape units on stream water quantity and quality.
Measurement invariance via multigroup SEM: Issues and solutions with chi-square-difference tests.
Yuan, Ke-Hai; Chan, Wai
2016-09-01
Multigroup structural equation modeling (SEM) plays a key role in studying measurement invariance and in group comparison. When population covariance matrices are deemed not equal across groups, the next step to substantiate measurement invariance is to see whether the sample covariance matrices in all the groups can be adequately fitted by the same factor model, called configural invariance. After configural invariance is established, cross-group equalities of factor loadings, error variances, and factor variances-covariances are then examined in sequence. With mean structures, cross-group equalities of intercepts and factor means are also examined. The established rule is that if the statistic at the current model is not significant at the level of .05, one then moves on to testing the next more restricted model using a chi-square-difference statistic. This article argues that such an established rule is unable to control either Type I or Type II errors. Analysis, an example, and Monte Carlo results show why and how chi-square-difference tests are easily misused. The fundamental issue is that chi-square-difference tests are developed under the assumption that the base model is sufficiently close to the population, and a nonsignificant chi-square statistic tells little about how good the model is. To overcome this issue, this article further proposes that null hypothesis testing in multigroup SEM be replaced by equivalence testing, which allows researchers to effectively control the size of misspecification before moving on to testing a more restricted model. R code is also provided to facilitate the applications of equivalence testing for multigroup SEM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Leyrat, Clémence; Caille, Agnès; Foucher, Yohann; Giraudeau, Bruno
2016-01-22
Despite randomization, baseline imbalance and confounding bias may occur in cluster randomized trials (CRTs). Covariate imbalance may jeopardize the validity of statistical inferences if they occur on prognostic factors. Thus, the diagnosis of a such imbalance is essential to adjust statistical analysis if required. We developed a tool based on the c-statistic of the propensity score (PS) model to detect global baseline covariate imbalance in CRTs and assess the risk of confounding bias. We performed a simulation study to assess the performance of the proposed tool and applied this method to analyze the data from 2 published CRTs. The proposed method had good performance for large sample sizes (n =500 per arm) and when the number of unbalanced covariates was not too small as compared with the total number of baseline covariates (≥40% of unbalanced covariates). We also provide a strategy for pre selection of the covariates needed to be included in the PS model to enhance imbalance detection. The proposed tool could be useful in deciding whether covariate adjustment is required before performing statistical analyses of CRTs.
Shaw, Daniel Joel; Mareček, Radek; Grosbras, Marie-Helene; Leonard, Gabriel; Pike, G Bruce; Paus, Tomáš
2016-04-01
Our ability to process complex social cues presented by faces improves during adolescence. Using multivariate analyses of neuroimaging data collected longitudinally from a sample of 38 adolescents (17 males) when they were 10, 11.5, 13 and 15 years old, we tested the possibility that there exists parallel variations in the structural and functional development of neural systems supporting face processing. By combining measures of task-related functional connectivity and brain morphology, we reveal that both the structural covariance and functional connectivity among 'distal' nodes of the face-processing network engaged by ambiguous faces increase during this age range. Furthermore, we show that the trajectory of increasing functional connectivity between the distal nodes occurs in tandem with the development of their structural covariance. This demonstrates a tight coupling between functional and structural maturation within the face-processing network. Finally, we demonstrate that increased functional connectivity is associated with age-related improvements of face-processing performance, particularly in females. We suggest that our findings reflect greater integration among distal elements of the neural systems supporting the processing of facial expressions. This, in turn, might facilitate an enhanced extraction of social information from faces during a time when greater importance is placed on social interactions. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Regeneration cycle and the covariant Lyapunov vectors in a minimal wall turbulence.
Inubushi, Masanobu; Takehiro, Shin-ichi; Yamada, Michio
2015-08-01
Considering a wall turbulence as a chaotic dynamical system, we study regeneration cycles in a minimal wall turbulence from the viewpoint of orbital instability by employing the covariant Lyapunov analysis developed by [F. Ginelli et al. Phys. Rev. Lett. 99, 130601 (2007)]. We divide the regeneration cycle into two phases and characterize them with the local Lyapunov exponents and the covariant Lyapunov vectors of the Navier-Stokes turbulence. In particular, we show numerically that phase (i) is dominated by instabilities related to the sinuous mode and the streamwise vorticity, and there is no instability in phase (ii). Furthermore, we discuss a mechanism of the regeneration cycle, making use of an energy budget analysis.
NASA Technical Reports Server (NTRS)
1974-01-01
The feasibility is evaluated of an evolutionary development for use of a single-axis gimbal star tracker from prior two-axis gimbal star tracker based system applications. Detailed evaluation of the star tracker gimbal encoder is considered. A brief system description is given including the aspects of tracker evolution and encoder evaluation. System analysis includes evaluation of star availability and mounting constraints for the geosynchronous orbit application, and a covariance simulation analysis to evaluate performance potential. Star availability and covariance analysis digital computer programs are included.
Age-related changes in brain structural covariance networks.
Li, Xinwei; Pu, Fang; Fan, Yubo; Niu, Haijun; Li, Shuyu; Li, Deyu
2013-01-01
Previous neuroimaging studies have suggested that cerebral changes over normal aging are not simply characterized by regional alterations, but rather by the reorganization of cortical connectivity patterns. The investigation of structural covariance networks (SCNs) using voxel-based morphometry is an advanced approach to examining the pattern of covariance in gray matter (GM) volumes among different regions of the human cortex. To date, how the organization of critical SCNs change during normal aging remains largely unknown. In this study, we used an SCN mapping approach to investigate eight large-scale networks in 240 healthy participants aged 18-89 years. These participants were subdivided into young (18-23 years), middle aged (30-58 years), and older (61-89 years) subjects. Eight seed regions were chosen from widely reported functional intrinsic connectivity networks. The voxels showing significant positive associations with these seed regions were used to describe the topological organization of an SCN. All of these networks exhibited non-linear patterns in their spatial extent that were associated with normal aging. These networks, except the primary motor network, had a distributed topology in young participants, a sharply localized topology in middle aged participants, and were relatively stable in older participants. The structural covariance derived using the primary motor cortex was limited to the ipsilateral motor regions in the young and older participants, but included contralateral homologous regions in the middle aged participants. In addition, there were significant between-group differences in the structural networks associated with language-related speech and semantics processing, executive control, and the default-mode network (DMN). Taken together, the results of this study demonstrate age-related changes in the topological organization of SCNs, and provide insights into normal aging of the human brain.
Hierarchical multivariate covariance analysis of metabolic connectivity.
Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J
2014-12-01
Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI).
Shi, J Q; Wang, B; Will, E J; West, R M
2012-11-20
We propose a new semiparametric model for functional regression analysis, combining a parametric mixed-effects model with a nonparametric Gaussian process regression model, namely a mixed-effects Gaussian process functional regression model. The parametric component can provide explanatory information between the response and the covariates, whereas the nonparametric component can add nonlinearity. We can model the mean and covariance structures simultaneously, combining the information borrowed from other subjects with the information collected from each individual subject. We apply the model to dose-response curves that describe changes in the responses of subjects for differing levels of the dose of a drug or agent and have a wide application in many areas. We illustrate the method for the management of renal anaemia. An individual dose-response curve is improved when more information is included by this mechanism from the subject/patient over time, enabling a patient-specific treatment regime. Copyright © 2012 John Wiley & Sons, Ltd.
Choosing a DIVA: a comparison of emerging digital imagery vegetation analysis techniques
Jorgensen, Christopher F.; Stutzman, Ryan J.; Anderson, Lars C.; Decker, Suzanne E.; Powell, Larkin A.; Schacht, Walter H.; Fontaine, Joseph J.
2013-01-01
Question: What is the precision of five methods of measuring vegetation structure using ground-based digital imagery and processing techniques? Location: Lincoln, Nebraska, USA Methods: Vertical herbaceous cover was recorded using digital imagery techniques at two distinct locations in a mixed-grass prairie. The precision of five ground-based digital imagery vegetation analysis (DIVA) methods for measuring vegetation structure was tested using a split-split plot analysis of covariance. Variability within each DIVA technique was estimated using coefficient of variation of mean percentage cover. Results: Vertical herbaceous cover estimates differed among DIVA techniques. Additionally, environmental conditions affected the vertical vegetation obstruction estimates for certain digital imagery methods, while other techniques were more adept at handling various conditions. Overall, percentage vegetation cover values differed among techniques, but the precision of four of the five techniques was consistently high. Conclusions: DIVA procedures are sufficient for measuring various heights and densities of standing herbaceous cover. Moreover, digital imagery techniques can reduce measurement error associated with multiple observers' standing herbaceous cover estimates, allowing greater opportunity to detect patterns associated with vegetation structure.
Batson, Sarah; Sutton, Alex; Abrams, Keith
2016-01-01
Patients with atrial fibrillation are at a greater risk of stroke and therefore the main goal for treatment of patients with atrial fibrillation is to prevent stroke from occurring. There are a number of different stroke prevention treatments available to include warfarin and novel oral anticoagulants. Previous network meta-analyses of novel oral anticoagulants for stroke prevention in atrial fibrillation acknowledge the limitation of heterogeneity across the included trials but have not explored the impact of potentially important treatment modifying covariates. To explore potentially important treatment modifying covariates using network meta-regression analyses for stroke prevention in atrial fibrillation. We performed a network meta-analysis for the outcome of ischaemic stroke and conducted an exploratory regression analysis considering potentially important treatment modifying covariates. These covariates included the proportion of patients with a previous stroke, proportion of males, mean age, the duration of study follow-up and the patients underlying risk of ischaemic stroke. None of the covariates explored impacted relative treatment effects relative to placebo. Notably, the exploration of 'study follow-up' as a covariate supported the assumption that difference in trial durations is unimportant in this indication despite the variation across trials in the network. This study is limited by the quantity of data available. Further investigation is warranted, and, as justifying further trials may be difficult, it would be desirable to obtain individual patient level data (IPD) to facilitate an effort to relate treatment effects to IPD covariates in order to investigate heterogeneity. Observational data could also be examined to establish if there are potential trends elsewhere. The approach and methods presented have potentially wide applications within any indication as to highlight the potential benefit of extending decision problems to include additional comparators outside of those of primary interest to allow for the exploration of heterogeneity.