A covariate-adjustment regression model approach to noninferiority margin definition.
Nie, Lei; Soon, Guoxing
2010-05-10
To maintain the interpretability of the effect of experimental treatment (EXP) obtained from a noninferiority trial, current statistical approaches often require the constancy assumption. This assumption typically requires that the control treatment effect in the population of the active control trial is the same as its effect presented in the population of the historical trial. To prevent constancy assumption violation, clinical trial sponsors were recommended to make sure that the design of the active control trial is as close to the design of the historical trial as possible. However, these rigorous requirements are rarely fulfilled in practice. The inevitable discrepancies between the historical trial and the active control trial have led to debates on many controversial issues. Without support from a well-developed quantitative method to determine the impact of the discrepancies on the constancy assumption violation, a correct judgment seems difficult. In this paper, we present a covariate-adjustment generalized linear regression model approach to achieve two goals: (1) to quantify the impact of population difference between the historical trial and the active control trial on the degree of constancy assumption violation and (2) to redefine the active control treatment effect in the active control trial population if the quantification suggests an unacceptable violation. Through achieving goal (1), we examine whether or not a population difference leads to an unacceptable violation. Through achieving goal (2), we redefine the noninferiority margin if the violation is unacceptable. This approach allows us to correctly determine the effect of EXP in the noninferiority trial population when constancy assumption is violated due to the population difference. We illustrate the covariate-adjustment approach through a case study.
Huo, Yuankai; Aboud, Katherine; Kang, Hakmook; Cutting, Laurie E.; Landman, Bennett A.
2016-01-01
Understanding brain volumetry is essential to understand neurodevelopment and disease. Historically, age-related changes have been studied in detail for specific age ranges (e.g., early childhood, teen, young adults, elderly, etc.) or more sparsely sampled for wider considerations of lifetime aging. Recent advancements in data sharing and robust processing have made available considerable quantities of brain images from normal, healthy volunteers. However, existing analysis approaches have had difficulty addressing (1) complex volumetric developments on the large cohort across the life time (e.g., beyond cubic age trends), (2) accounting for confound effects, and (3) maintaining an analysis framework consistent with the general linear model (GLM) approach pervasive in neuroscience. To address these challenges, we propose to use covariate-adjusted restricted cubic spline (C-RCS) regression within a multi-site cross-sectional framework. This model allows for flexible consideration of non-linear age-associated patterns while accounting for traditional covariates and interaction effects. As a demonstration of this approach on lifetime brain aging, we derive normative volumetric trajectories and 95% confidence intervals from 5111 healthy patients from 64 sites while accounting for confounding sex, intracranial volume and field strength effects. The volumetric results are shown to be consistent with traditional studies that have explored more limited age ranges using single-site analyses. This work represents the first integration of C-RCS with neuroimaging and the derivation of structural covariance networks (SCNs) from a large study of multi-site, cross-sectional data. PMID:28191550
Huo, Yuankai; Aboud, Katherine; Kang, Hakmook; Cutting, Laurie E; Landman, Bennett A
2016-10-01
Understanding brain volumetry is essential to understand neurodevelopment and disease. Historically, age-related changes have been studied in detail for specific age ranges (e.g., early childhood, teen, young adults, elderly, etc.) or more sparsely sampled for wider considerations of lifetime aging. Recent advancements in data sharing and robust processing have made available considerable quantities of brain images from normal, healthy volunteers. However, existing analysis approaches have had difficulty addressing (1) complex volumetric developments on the large cohort across the life time (e.g., beyond cubic age trends), (2) accounting for confound effects, and (3) maintaining an analysis framework consistent with the general linear model (GLM) approach pervasive in neuroscience. To address these challenges, we propose to use covariate-adjusted restricted cubic spline (C-RCS) regression within a multi-site cross-sectional framework. This model allows for flexible consideration of non-linear age-associated patterns while accounting for traditional covariates and interaction effects. As a demonstration of this approach on lifetime brain aging, we derive normative volumetric trajectories and 95% confidence intervals from 5111 healthy patients from 64 sites while accounting for confounding sex, intracranial volume and field strength effects. The volumetric results are shown to be consistent with traditional studies that have explored more limited age ranges using single-site analyses. This work represents the first integration of C-RCS with neuroimaging and the derivation of structural covariance networks (SCNs) from a large study of multi-site, cross-sectional data.
HE, PENG; ERIKSSON, FRANK; SCHEIKE, THOMAS H.; ZHANG, MEI-JIE
2015-01-01
With competing risks data, one often needs to assess the treatment and covariate effects on the cumulative incidence function. Fine and Gray proposed a proportional hazards regression model for the subdistribution of a competing risk with the assumption that the censoring distribution and the covariates are independent. Covariate-dependent censoring sometimes occurs in medical studies. In this paper, we study the proportional hazards regression model for the subdistribution of a competing risk with proper adjustments for covariate-dependent censoring. We consider a covariate-adjusted weight function by fitting the Cox model for the censoring distribution and using the predictive probability for each individual. Our simulation study shows that the covariate-adjusted weight estimator is basically unbiased when the censoring time depends on the covariates, and the covariate-adjusted weight approach works well for the variance estimator as well. We illustrate our methods with bone marrow transplant data from the Center for International Blood and Marrow Transplant Research (CIBMTR). Here cancer relapse and death in complete remission are two competing risks. PMID:27034534
Combining biomarkers for classification with covariate adjustment.
Kim, Soyoung; Huang, Ying
2017-03-09
Combining multiple markers can improve classification accuracy compared with using a single marker. In practice, covariates associated with markers or disease outcome can affect the performance of a biomarker or biomarker combination in the population. The covariate-adjusted receiver operating characteristic (ROC) curve has been proposed as a tool to tease out the covariate effect in the evaluation of a single marker; this curve characterizes the classification accuracy solely because of the marker of interest. However, research on the effect of covariates on the performance of marker combinations and on how to adjust for the covariate effect when combining markers is still lacking. In this article, we examine the effect of covariates on classification performance of linear marker combinations and propose to adjust for covariates in combining markers by maximizing the nonparametric estimate of the area under the covariate-adjusted ROC curve. The proposed method provides a way to estimate the best linear biomarker combination that is robust to risk model assumptions underlying alternative regression-model-based methods. The proposed estimator is shown to be consistent and asymptotically normally distributed. We conduct simulations to evaluate the performance of our estimator in cohort and case/control designs and compare several different weighting strategies during estimation with respect to efficiency. Our estimator is also compared with alternative regression-model-based estimators or estimators that maximize the empirical area under the ROC curve, with respect to bias and efficiency. We apply the proposed method to a biomarker study from an human immunodeficiency virus vaccine trial. Copyright © 2017 John Wiley & Sons, Ltd.
ROC analysis in biomarker combination with covariate adjustment.
Liu, Danping; Zhou, Xiao-Hua
2013-07-01
Receiver operating characteristic (ROC) analysis is often used to find the optimal combination of biomarkers. When the subject level covariates affect the magnitude and/or accuracy of the biomarkers, the combination rule should take into account of the covariate adjustment. The authors propose two new biomarker combination methods that make use of the covariate information. The first method is to maximize the area under the covariate-adjusted ROC curve (AAUC). To overcome the limitations of the AAUC measure, the authors further proposed the area under covariate-standardized ROC curve (SAUC), which is an extension of the covariate-specific ROC curve. With a series of simulation studies, the proposed optimal AAUC and SAUC methods are compared with the optimal AUC method that ignores the covariates. The biomarker combination methods are illustrated by an example from Alzheimer's disease research. The simulation results indicate that the optimal AAUC combination performs well in the current study population. The optimal SAUC method is flexible to choose any reference populations, and allows the results to be generalized to different populations. The proposed optimal AAUC and SAUC approaches successfully address the covariate adjustment problem in estimating the optimal marker combination. The optimal SAUC method is preferred for practical use, because the biomarker combination rule can be easily evaluated for different population of interest. Published by Elsevier Inc.
A New Robust Method for Nonlinear Regression.
Tabatabai, M A; Kengwoung-Keumo, J J; Eby, W M; Bae, S; Manne, U; Fouad, M; Singh, K P
When outliers are present, the least squares method of nonlinear regression performs poorly. The main purpose of this paper is to provide a robust alternative technique to the Ordinary Least Squares nonlinear regression method. This new robust nonlinear regression method can provide accurate parameter estimates when outliers and/or influential observations are present. Real and simulated data for drug concentration and tumor size-metastasis are used to assess the performance of this new estimator. Monte Carlo simulations are performed to evaluate the robustness of our new method in comparison with the Ordinary Least Squares method. In simulated data with outliers, this new estimator of regression parameters seems to outperform the Ordinary Least Squares with respect to bias, mean squared errors, and mean estimated parameters. Two algorithms have been proposed. Additionally and for the sake of computational ease and illustration, a Mathematica program has been provided in the Appendix. The accuracy of our robust technique is superior to that of the Ordinary Least Squares. The robustness and simplicity of computations make this new technique more appropriate and useful tool for the analysis of nonlinear regressions.
An evaluation of bias in propensity score-adjusted non-linear regression models.
Wan, Fei; Mitra, Nandita
2016-04-19
Propensity score methods are commonly used to adjust for observed confounding when estimating the conditional treatment effect in observational studies. One popular method, covariate adjustment of the propensity score in a regression model, has been empirically shown to be biased in non-linear models. However, no compelling underlying theoretical reason has been presented. We propose a new framework to investigate bias and consistency of propensity score-adjusted treatment effects in non-linear models that uses a simple geometric approach to forge a link between the consistency of the propensity score estimator and the collapsibility of non-linear models. Under this framework, we demonstrate that adjustment of the propensity score in an outcome model results in the decomposition of observed covariates into the propensity score and a remainder term. Omission of this remainder term from a non-collapsible regression model leads to biased estimates of the conditional odds ratio and conditional hazard ratio, but not for the conditional rate ratio. We further show, via simulation studies, that the bias in these propensity score-adjusted estimators increases with larger treatment effect size, larger covariate effects, and increasing dissimilarity between the coefficients of the covariates in the treatment model versus the outcome model.
A method for nonlinear exponential regression analysis
NASA Technical Reports Server (NTRS)
Junkin, B. G.
1971-01-01
A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.
Inverse probability weighting for covariate adjustment in randomized studies.
Shen, Changyu; Li, Xiaochun; Li, Lingling
2014-02-20
Covariate adjustment in randomized clinical trials has the potential benefit of precision gain. It also has the potential pitfall of reduced objectivity as it opens the possibility of selecting a 'favorable' model that yields strong treatment benefit estimate. Although there is a large volume of statistical literature targeting on the first aspect, realistic solutions to enforce objective inference and improve precision are rare. As a typical randomized trial needs to accommodate many implementation issues beyond statistical considerations, maintaining the objectivity is at least as important as precision gain if not more, particularly from the perspective of the regulatory agencies. In this article, we propose a two-stage estimation procedure based on inverse probability weighting to achieve better precision without compromising objectivity. The procedure is designed in a way such that the covariate adjustment is performed before seeing the outcome, effectively reducing the possibility of selecting a 'favorable' model that yields a strong intervention effect. Both theoretical and numerical properties of the estimation procedure are presented. Application of the proposed method to a real data example is presented.
Covariate-Adjusted Precision Matrix Estimation with an Application in Genetical Genomics
Cai, T. Tony; Li, Hongzhe; Liu, Weidong; Xie, Jichun
2017-01-01
Summary Motivated by analysis of genetical genomics data, we introduce a sparse high dimensional multivariate regression model for studying conditional independence relationships among a set of genes adjusting for possible genetic effects. The precision matrix in the model specifies a covariate-adjusted Gaussian graph, which presents the conditional dependence structure of gene expression after the confounding genetic effects on gene expression are taken into account. We present a covariate-adjusted precision matrix estimation method using a constrained ℓ1 minimization, which can be easily implemented by linear programming. Asymptotic convergence rates in various matrix norms and sign consistency are established for the estimators of the regression coefficients and the precision matrix, allowing both the number of genes and the number of the genetic variants to diverge. Simulation shows that the proposed method results in significant improvements in both precision matrix estimation and graphical structure selection when compared to the standard Gaussian graphical model assuming constant means. The proposed method is also applied to analyze a yeast genetical genomics data for the identification of the gene network among a set of genes in the mitogen-activated protein kinase pathway.
Learning Inverse Rig Mappings by Nonlinear Regression.
Holden, Daniel; Saito, Jun; Komura, Taku
2016-11-11
We present a framework to design inverse rig-functions - functions that map low level representations of a character's pose such as joint positions or surface geometry to the representation used by animators called the animation rig. Animators design scenes using an animation rig, a framework widely adopted in animation production which allows animators to design character poses and geometry via intuitive parameters and interfaces. Yet most state-of-the-art computer animation techniques control characters through raw, low level representations such as joint angles, joint positions, or vertex coordinates. This difference often stops the adoption of state-of-the-art techniques in animation production. Our framework solves this issue by learning a mapping between the low level representations of the pose and the animation rig. We use nonlinear regression techniques, learning from example animation sequences designed by the animators. When new motions are provided in the skeleton space, the learned mapping is used to estimate the rig controls that reproduce such a motion. We introduce two nonlinear functions for producing such a mapping: Gaussian process regression and feedforward neural networks. The appropriate solution depends on the nature of the rig and the amount of data available for training. We show our framework applied to various examples including articulated biped characters, quadruped characters, facial animation rigs, and deformable characters. With our system, animators have the freedom to apply any motion synthesis algorithm to arbitrary rigging and animation pipelines for immediate editing. This greatly improves the productivity of 3D animation, while retaining the flexibility and creativity of artistic input.
The Effect of Aggregation in Nonlinear Regression.
1984-04-01
This truncation is the source of the nonlinearity in the model (1.1). Physically, the intercept a represents baseload con- sumption, such as for...BIAS b FOR 75 AGGREGATE DATA SETS FIT TO THE ENERGY MODEL Bias Smoothing Error Standard Error A A Parameter e b = E(8 - 63) e - e s.e.(e BASELOAD a...s.e. ) e BASELOAD a -0.037 -0.30 1.35 (Th/cu-d) HEAT RATE 6 0.0033 0.44 0.224 (Th/cu-OFd) REFERENCE TEMPERATURE T -0.28 -0.25 64.1 (OF) NORMALIZED
Cardiovascular Response Identification Based on Nonlinear Support Vector Regression
NASA Astrophysics Data System (ADS)
Wang, Lu; Su, Steven W.; Chan, Gregory S. H.; Celler, Branko G.; Cheng, Teddy M.; Savkin, Andrey V.
This study experimentally investigates the relationships between central cardiovascular variables and oxygen uptake based on nonlinear analysis and modeling. Ten healthy subjects were studied using cycle-ergometry exercise tests with constant workloads ranging from 25 Watt to 125 Watt. Breath by breath gas exchange, heart rate, cardiac output, stroke volume and blood pressure were measured at each stage. The modeling results proved that the nonlinear modeling method (Support Vector Regression) outperforms traditional regression method (reducing Estimation Error between 59% and 80%, reducing Testing Error between 53% and 72%) and is the ideal approach in the modeling of physiological data, especially with small training data set.
Sample Size for Confidence Interval of Covariate-Adjusted Mean Difference
ERIC Educational Resources Information Center
Liu, Xiaofeng Steven
2010-01-01
This article provides a way to determine adequate sample size for the confidence interval of covariate-adjusted mean difference in randomized experiments. The standard error of adjusted mean difference depends on covariate variance and balance, which are two unknown quantities at the stage of planning sample size. If covariate observations are…
ERIC Educational Resources Information Center
Safarkhani, Maryam; Moerbeek, Mirjam
2013-01-01
In a randomized controlled trial, a decision needs to be made about the total number of subjects for adequate statistical power. One way to increase the power of a trial is by including a predictive covariate in the model. In this article, the effects of various covariate adjustment strategies on increasing the power is studied for discrete-time…
ERIC Educational Resources Information Center
Nimon, Kim; Henson, Robin K.
2015-01-01
The authors empirically examined whether the validity of a residualized dependent variable after covariance adjustment is comparable to that of the original variable of interest. When variance of a dependent variable is removed as a result of one or more covariates, the residual variance may not reflect the same meaning. Using the pretest-posttest…
ERIC Educational Resources Information Center
Safarkhani, Maryam; Moerbeek, Mirjam
2013-01-01
In a randomized controlled trial, a decision needs to be made about the total number of subjects for adequate statistical power. One way to increase the power of a trial is by including a predictive covariate in the model. In this article, the effects of various covariate adjustment strategies on increasing the power is studied for discrete-time…
Sample Size for Confidence Interval of Covariate-Adjusted Mean Difference
ERIC Educational Resources Information Center
Liu, Xiaofeng Steven
2010-01-01
This article provides a way to determine adequate sample size for the confidence interval of covariate-adjusted mean difference in randomized experiments. The standard error of adjusted mean difference depends on covariate variance and balance, which are two unknown quantities at the stage of planning sample size. If covariate observations are…
Elze, Markus C; Gregson, John; Baber, Usman; Williamson, Elizabeth; Sartori, Samantha; Mehran, Roxana; Nichols, Melissa; Stone, Gregg W; Pocock, Stuart J
2017-01-24
Propensity scores (PS) are an increasingly popular method to adjust for confounding in observational studies. Propensity score methods have theoretical advantages over conventional covariate adjustment, but their relative performance in real-word scenarios is poorly characterized. We used datasets from 4 large-scale cardiovascular observational studies (PROMETHEUS, ADAPT-DES [the Assessment of Dual AntiPlatelet Therapy with Drug-Eluting Stents], THIN [The Health Improvement Network], and CHARM [Candesartan in Heart Failure-Assessment of Reduction in Mortality and Morbidity]) to compare the performance of conventional covariate adjustment with 4 common PS methods: matching, stratification, inverse probability weighting, and use of PS as a covariate. We found that stratification performed poorly with few outcome events, and inverse probability weighting gave imprecise estimates of treatment effect and undue influence to a small number of observations when substantial confounding was present. Covariate adjustment and matching performed well in all of our examples, although matching tended to give less precise estimates in some cases. PS methods are not necessarily superior to conventional covariate adjustment, and care should be taken to select the most suitable method. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Nimon, Kim; Henson, Robin K.
2015-01-01
The authors empirically examined whether the validity of a residualized dependent variable after covariance adjustment is comparable to that of the original variable of interest. When variance of a dependent variable is removed as a result of one or more covariates, the residual variance may not reflect the same meaning. Using the pretest-posttest…
Kernel Partial Least Squares for Nonlinear Regression and Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.
Hussey, Michael A; Koch, Gary G; Preisser, John S; Saville, Benjamin R
2016-01-01
Time-to-event or dichotomous outcomes in randomized clinical trials often have analyses using the Cox proportional hazards model or conditional logistic regression, respectively, to obtain covariate-adjusted log hazard (or odds) ratios. Nonparametric Randomization-Based Analysis of Covariance (NPANCOVA) can be applied to unadjusted log hazard (or odds) ratios estimated from a model containing treatment as the only explanatory variable. These adjusted estimates are stratified population-averaged treatment effects and only require a valid randomization to the two treatment groups and avoid key modeling assumptions (e.g., proportional hazards in the case of a Cox model) for the adjustment variables. The methodology has application in the regulatory environment where such assumptions cannot be verified a priori. Application of the methodology is illustrated through three examples on real data from two randomized trials.
An Excel Solver Exercise to Introduce Nonlinear Regression
ERIC Educational Resources Information Center
Pinder, Jonathan P.
2013-01-01
Business students taking business analytics courses that have significant predictive modeling components, such as marketing research, data mining, forecasting, and advanced financial modeling, are introduced to nonlinear regression using application software that is a "black box" to the students. Thus, although correct models are…
An Excel Solver Exercise to Introduce Nonlinear Regression
ERIC Educational Resources Information Center
Pinder, Jonathan P.
2013-01-01
Business students taking business analytics courses that have significant predictive modeling components, such as marketing research, data mining, forecasting, and advanced financial modeling, are introduced to nonlinear regression using application software that is a "black box" to the students. Thus, although correct models are…
Symmetric Nonlinear Regression. Research Report. ETS RR-07-13
ERIC Educational Resources Information Center
Antal, Tamás
2007-01-01
An estimation tool for symmetric univariate nonlinear regression is presented. The method is based on introducing a nontrivial set of affine coordinates for diffeomorphisms of the real line. The main ingredient making the computations possible is the Connes-Moscovici Hopf algebra of these affine coordinates.
Semiparametric maximum likelihood for nonlinear regression with measurement errors.
Suh, Eun-Young; Schafer, Daniel W
2002-06-01
This article demonstrates semiparametric maximum likelihood estimation of a nonlinear growth model for fish lengths using imprecisely measured ages. Data on the species corvina reina, found in the Gulf of Nicoya, Costa Rica, consist of lengths and imprecise ages for 168 fish and precise ages for a subset of 16 fish. The statistical problem may therefore be classified as nonlinear errors-in-variables regression with internal validation data. Inferential techniques are based on ideas extracted from several previous works on semiparametric maximum likelihood for errors-in-variables problems. The illustration of the example clarifies practical aspects of the associated computational, inferential, and data analytic techniques.
Covariate-Adjusted Linear Mixed Effects Model with an Application to Longitudinal Data
Nguyen, Danh V.; Şentürk, Damla; Carroll, Raymond J.
2009-01-01
Linear mixed effects (LME) models are useful for longitudinal data/repeated measurements. We propose a new class of covariate-adjusted LME models for longitudinal data that nonparametrically adjusts for a normalizing covariate. The proposed approach involves fitting a parametric LME model to the data after adjusting for the nonparametric effects of a baseline confounding covariate. In particular, the effect of the observable covariate on the response and predictors of the LME model is modeled nonparametrically via smooth unknown functions. In addition to covariate-adjusted estimation of fixed/population parameters and random effects, an estimation procedure for the variance components is also developed. Numerical properties of the proposed estimators are investigated with simulation studies. The consistency and convergence rates of the proposed estimators are also established. An application to a longitudinal data set on calcium absorption, accounting for baseline distortion from body mass index, illustrates the proposed methodology. PMID:19266053
Janes, Holly; Pepe, Margaret S
2009-06-01
Recent scientific and technological innovations have produced an abundance of potential markers that are being investigated for their use in disease screening and diagnosis. In evaluating these markers, it is often necessary to account for covariates associated with the marker of interest. Covariates may include subject characteristics, expertise of the test operator, test procedures or aspects of specimen handling. In this paper, we propose the covariate-adjusted receiver operating characteristic curve, a measure of covariate-adjusted classification accuracy. Nonparametric and semiparametric estimators are proposed, asymptotic distribution theory is provided and finite sample performance is investigated. For illustration we characterize the age-adjusted discriminatory accuracy of prostate-specific antigen as a biomarker for prostate cancer.
Adaptive Modeling: An Approach for Incorporating Nonlinearity in Regression Analyses.
Knafl, George J; Barakat, Lamia P; Hanlon, Alexandra L; Hardie, Thomas; Knafl, Kathleen A; Li, Yimei; Deatrick, Janet A
2017-02-01
Although regression relationships commonly are treated as linear, this often is not the case. An adaptive approach is described for identifying nonlinear relationships based on power transforms of predictor (or independent) variables and for assessing whether or not relationships are distinctly nonlinear. It is also possible to model adaptively both means and variances of continuous outcome (or dependent) variables and to adaptively power transform positive-valued continuous outcomes, along with their predictors. Example analyses are provided of data from parents in a nursing study on emotional-health-related quality of life for childhood brain tumor survivors as a function of the effort to manage the survivors' condition. These analyses demonstrate that relationships, including moderation relationships, can be distinctly nonlinear, that conclusions about means can be affected by accounting for non-constant variances, and that outcome transformation along with predictor transformation can provide distinct improvements and can resolve skewness problems.© 2017 Wiley Periodicals, Inc.
Detecting influential observations in nonlinear regression modeling of groundwater flow
Yager, R.M.
1998-01-01
Nonlinear regression is used to estimate optimal parameter values in models of groundwater flow to ensure that differences between predicted and observed heads and flows do not result from nonoptimal parameter values. Parameter estimates can be affected, however, by observations that disproportionately influence the regression, such as outliers that exert undue leverage on the objective function. Certain statistics developed for linear regression can be used to detect influential observations in nonlinear regression if the models are approximately linear. This paper discusses the application of Cook's D, which measures the effect of omitting a single observation on a set of estimated parameter values, and the statistical parameter DFBETAS, which quantifies the influence of an observation on each parameter. The influence statistics were used to (1) identify the influential observations in the calibration of a three-dimensional, groundwater flow model of a fractured-rock aquifer through nonlinear regression, and (2) quantify the effect of omitting influential observations on the set of estimated parameter values. Comparison of the spatial distribution of Cook's D with plots of model sensitivity shows that influential observations correspond to areas where the model heads are most sensitive to certain parameters, and where predicted groundwater flow rates are largest. Five of the six discharge observations were identified as influential, indicating that reliable measurements of groundwater flow rates are valuable data in model calibration. DFBETAS are computed and examined for an alternative model of the aquifer system to identify a parameterization error in the model design that resulted in overestimation of the effect of anisotropy on horizontal hydraulic conductivity.
Effects of model sensitivity and nonlinearity on nonlinear regression of ground water flow
Yager, R.M.
2004-01-01
Nonlinear regression is increasingly applied to the calibration of hydrologic models through the use of perturbation methods to compute the Jacobian or sensitivity matrix required by the Gauss-Newton optimization method. Sensitivities obtained by perturbation methods can be less accurate than those obtained by direct differentiation, however, and concern has arisen that the optimal parameter values and the associated parameter covariance matrix computed by perturbation could also be less accurate. Sensitivities computed by both perturbation and direct differentiation were applied in nonlinear regression calibration of seven ground water flow models. The two methods gave virtually identical optimum parameter values and covariances for the three models that were relatively linear and two of the models that were relatively nonlinear, but gave widely differing results for two other nonlinear models. The perturbation method performed better than direct differentiation in some regressions with the nonlinear models, apparently because approximate sensitivities computed for an interval yielded better search directions than did more accurately computed sensitivities for a point. The method selected to avoid overshooting minima on the error surface when updating parameter values with the Gauss-Newton procedure appears for nonlinear models to be more important than the method of sensitivity calculation in controlling regression convergence.
A nonlinear regression model-based predictive control algorithm.
Dubay, R; Abu-Ayyad, M; Hernandez, J M
2009-04-01
This paper presents a unique approach for designing a nonlinear regression model-based predictive controller (NRPC) for single-input-single-output (SISO) and multi-input-multi-output (MIMO) processes that are common in industrial applications. The innovation of this strategy is that the controller structure allows nonlinear open-loop modeling to be conducted while closed-loop control is executed every sampling instant. Consequently, the system matrix is regenerated every sampling instant using a continuous function providing a more accurate prediction of the plant. Computer simulations are carried out on nonlinear plants, demonstrating that the new approach is easily implemented and provides tight control. Also, the proposed algorithm is implemented on two real time SISO applications; a DC motor, a plastic injection molding machine and a nonlinear MIMO thermal system comprising three temperature zones to be controlled with interacting effects. The experimental closed-loop responses of the proposed algorithm were compared to a multi-model dynamic matrix controller (MPC) with improved results for various set point trajectories. Good disturbance rejection was attained, resulting in improved tracking of multi-set point profiles in comparison to multi-model MPC.
Development and Application of Nonlinear Land-Use Regression Models
NASA Astrophysics Data System (ADS)
Champendal, Alexandre; Kanevski, Mikhail; Huguenot, Pierre-Emmanuel
2014-05-01
The problem of air pollution modelling in urban zones is of great importance both from scientific and applied points of view. At present there are several fundamental approaches either based on science-based modelling (air pollution dispersion) or on the application of space-time geostatistical methods (e.g. family of kriging models or conditional stochastic simulations). Recently, there were important developments in so-called Land Use Regression (LUR) models. These models take into account geospatial information (e.g. traffic network, sources of pollution, average traffic, population census, land use, etc.) at different scales, for example, using buffering operations. Usually the dimension of the input space (number of independent variables) is within the range of (10-100). It was shown that LUR models have some potential to model complex and highly variable patterns of air pollution in urban zones. Most of LUR models currently used are linear models. In the present research the nonlinear LUR models are developed and applied for Geneva city. Mainly two nonlinear data-driven models were elaborated: multilayer perceptron and random forest. An important part of the research deals also with a comprehensive exploratory data analysis using statistical, geostatistical and time series tools. Unsupervised self-organizing maps were applied to better understand space-time patterns of the pollution. The real data case study deals with spatial-temporal air pollution data of Geneva (2002-2011). Nitrogen dioxide (NO2) has caught our attention. It has effects on human health and on plants; NO2 contributes to the phenomenon of acid rain. The negative effects of nitrogen dioxides on plants are the reduction of the growth, production and pesticide resistance. And finally, the effects on materials: nitrogen dioxide increases the corrosion. The data used for this study consist of a set of 106 NO2 passive sensors. 80 were used to build the models and the remaining 36 have constituted
Ding, Bo; Fang, Huajing
2017-03-31
This paper is concerned with the fault prediction for the nonlinear stochastic system with incipient faults. Based on the particle filter and the reasonable assumption about the incipient faults, the modified fault estimation algorithm is proposed, and the system state is estimated simultaneously. According to the modified fault estimation, an intuitive fault detection strategy is introduced. Once each of the incipient fault is detected, the parameters of which are identified by a nonlinear regression method. Then, based on the estimated parameters, the future fault signal can be predicted. Finally, the effectiveness of the proposed method is verified by the simulations of the Three-tank system.
Piecewise nonlinear regression: a statistical look at lamp performance
NASA Astrophysics Data System (ADS)
Halverson, Galen D.; Hamilton, M. Guyene
1996-09-01
Ultraviolet (UV) thickness measurement equipment has little room for variation when determining ultra thin films which are 70 angstroms or less. High lamp performance is critical for measurement validity. A quality conscious semiconductor must have data to verify a vendor claim of 'The lamp performance will perform with no degradation for up to (xxx) hours of normal operation.' In this article we review a real case where data was collected and examined to answer important questions about lamp performance in UV measurement equipment. How long could a lamp be used before performance degraded enough to necessitate a lamp replacement? This article will illustrate how we used standards and actual measurements to collect data for this study. Plots are included showing actual collected data followed by a discussion of alternative methods for statistical examination of the data. This discussion will include an illustration of an original and useful statistical approach for determining the point in time when degradation is noticeable. The method for examining data begins with a well known but not too frequency used concept known as piecewise linear regression with a fixed point of join. Then we enhance the method by turning the join point into a variable that is 'floated' using an iterative non-linear regression approach.
Asymptotically Normal and Efficient Estimation of Covariate-Adjusted Gaussian Graphical Model
Chen, Mengjie; Ren, Zhao; Zhao, Hongyu; Zhou, Harrison
2015-01-01
A tuning-free procedure is proposed to estimate the covariate-adjusted Gaussian graphical model. For each finite subgraph, this estimator is asymptotically normal and efficient. As a consequence, a confidence interval can be obtained for each edge. The procedure enjoys easy implementation and efficient computation through parallel estimation on subgraphs or edges. We further apply the asymptotic normality result to perform support recovery through edge-wise adaptive thresholding. This support recovery procedure is called ANTAC, standing for Asymptotically Normal estimation with Thresholding after Adjusting Covariates. ANTAC outperforms other methodologies in the literature in a range of simulation studies. We apply ANTAC to identify gene-gene interactions using an eQTL dataset. Our result achieves better interpretability and accuracy in comparison with CAMPE. PMID:27499564
A note on the empirical likelihood confidence band for hazards ratio with covariate adjustment.
Zhu, Shihong; Yang, Yifan; Zhou, Mai
2015-09-01
In medical studies comparing two treatments in the presence of censored data, the stratified Cox model is an important tool that has the ability to flexibly handle non-proportional hazards while allowing parsimonious covariate adjustment. In order to capture the cumulative treatment effect, the ratio of the treatment specific cumulative baseline hazards is often used as a measure of the treatment effect. Pointwise and simultaneous confidence bands associated with the estimated ratio provide a global picture of how the treatment effect evolves over time. Recently, Dong and Matthews (2012, Biometrics 68, 408-418) proposed to construct a pointwise confidence interval for the ratio using a plug-in type empirical likelihood approach. However, their result on the limiting distribution of the empirical likelihood ratio is generally incorrect and the resulting confidence interval is asymptotically undercovering. In this article, we derive the correct limiting distribution for the likelihood ratio statistic. We also present simulation studies to demonstrate the effectiveness of our approach.
The Allometry of Coarse Root Biomass: Log-Transformed Linear Regression or Nonlinear Regression?
Lai, Jiangshan; Yang, Bo; Lin, Dunmei; Kerkhoff, Andrew J.; Ma, Keping
2013-01-01
Precise estimation of root biomass is important for understanding carbon stocks and dynamics in forests. Traditionally, biomass estimates are based on allometric scaling relationships between stem diameter and coarse root biomass calculated using linear regression (LR) on log-transformed data. Recently, it has been suggested that nonlinear regression (NLR) is a preferable fitting method for scaling relationships. But while this claim has been contested on both theoretical and empirical grounds, and statistical methods have been developed to aid in choosing between the two methods in particular cases, few studies have examined the ramifications of erroneously applying NLR. Here, we use direct measurements of 159 trees belonging to three locally dominant species in east China to compare the LR and NLR models of diameter-root biomass allometry. We then contrast model predictions by estimating stand coarse root biomass based on census data from the nearby 24-ha Gutianshan forest plot and by testing the ability of the models to predict known root biomass values measured on multiple tropical species at the Pasoh Forest Reserve in Malaysia. Based on likelihood estimates for model error distributions, as well as the accuracy of extrapolative predictions, we find that LR on log-transformed data is superior to NLR for fitting diameter-root biomass scaling models. More importantly, inappropriately using NLR leads to grossly inaccurate stand biomass estimates, especially for stands dominated by smaller trees. PMID:24116197
A Stable and Efficient Algorithm for Nonlinear Orthogonal Distance Regression.
1985-12-01
problem as total least squares. Britt .- and Luecke [BriL73] consider the nonlinear case as well as the nonlinear implicit case and present an...REFERENCES (Bar74] Bard, Y. (1974), Nonlinear Parameter Estimation, Academic Press, New York. [BriL73] Britt , H. I., and R. H. Luecke (1973),"The
Alton, Gillian D; Pearl, David L; Bateman, Ken G; McNab, Bruce; Berke, Olaf
2013-11-18
Abattoir condemnation data show promise as a rich source of data for syndromic surveillance of both animal and zoonotic diseases. However, inherent characteristics of abattoir condemnation data can bias results from space-time cluster detection methods for disease surveillance, and may need to be accounted for using various adjustment methods. The objective of this study was to compare the space-time scan statistics with different abilities to control for covariates and to assess their suitability for food animal syndromic surveillance. Four space-time scan statistic models were used including: animal class adjusted Poisson, space-time permutation, multi-level model adjusted Poisson, and a weighted normal scan statistic using model residuals. The scan statistics were applied to monthly bovine pneumonic lung and "parasitic liver" condemnation data from Ontario provincial abattoirs from 2001-2007. The number and space-time characteristics of identified clusters often varied between space-time scan tests for both "parasitic liver" and pneumonic lung condemnation data. While there were some similarities between isolated clusters in space, time and/or space-time, overall the results from space-time scan statistics differed substantially depending on the covariate adjustment approach used. Variability in results among methods suggests that caution should be used in selecting space-time scan methods for abattoir surveillance. Furthermore, validation of different approaches with simulated or real outbreaks is required before conclusive decisions can be made concerning the best approach for conducting surveillance with these data.
Shi, Ran
2016-01-01
Human brains perform tasks via complex functional networks consisting of separated brain regions. A popular approach to characterize brain functional networks in fMRI studies is independent component analysis (ICA), which is a powerful method to reconstruct latent source signals from their linear mixtures. In many fMRI studies, an important goal is to investigate how brain functional networks change according to specific clinical and demographic variabilities. Existing ICA methods, however, cannot directly incorporate covariate effects in ICA decomposition. Heuristic post-ICA analysis to address this need can be inaccurate and inefficient. In this paper, we propose a hierarchical covariate-adjusted ICA (hc-ICA) model that provides a formal statistical framework for estimating covariate effects and testing differences between brain functional networks. Our method provides a more reliable and powerful statistical tool for evaluating group differences in brain functional networks while appropriately controlling for potential confounding factors. We present an analytically tractable EM algorithm to obtain maximum likelihood estimates of our model. We also develop a subspace-based approximate EM that runs significantly faster while retaining high accuracy. To test the differences in functional networks, we introduce a voxel-wise approximate inference procedure which eliminates the need of computationally expensive covariance matrix estimation and inversion. We demonstrate the advantages of our methods over the existing method via simulation studies. We apply our method to an fMRI study to investigate differences in brain functional networks associated with post-traumatic stress disorder (PTSD).
Biswas, Atanu; Park, Eunsik; Bhattacharya, Rahul
2012-08-01
Response-adaptive designs have become popular for allocation of the entering patients among two or more competing treatments in a phase III clinical trial. Although there are a lot of designs for binary treatment responses, the number of designs involving covariates is very small. Sometimes the patients give repeated responses. The only available response-adaptive allocation design for repeated binary responses is the urn design by Biswas and Dewanji [Biswas A and Dewanji AA. Randomized longitudinal play-the-winner design for repeated binary data. ANZJS 2004; 46: 675-684; Biswas A and Dewanji A. Inference for a RPW-type clinical trial with repeated monitoring for the treatment of rheumatoid arthritis. Biometr J 2004; 46: 769-779.], although it does not take care of the covariates of the patients in the allocation design. In this article, a covariate-adjusted response-adaptive randomisation procedure is developed using the log-odds ratio within the Bayesian framework for longitudinal binary responses. The small sample performance of the proposed allocation procedure is assessed through a simulation study. The proposed procedure is illustrated using some real data set.
ERIC Educational Resources Information Center
Petscher, Yaacov; Schatschneider, Christopher
2011-01-01
Research by Huck and McLean (1975) demonstrated that the covariance-adjusted score is more powerful than the simple difference score, yet recent reviews indicate researchers are equally likely to use either score type in two-wave randomized experimental designs. A Monte Carlo simulation was conducted to examine the conditions under which the…
Motulsky, Harvey J; Brown, Ronald E
2006-01-01
Background Nonlinear regression, like linear regression, assumes that the scatter of data around the ideal curve follows a Gaussian or normal distribution. This assumption leads to the familiar goal of regression: to minimize the sum of the squares of the vertical or Y-value distances between the points and the curve. Outliers can dominate the sum-of-the-squares calculation, and lead to misleading results. However, we know of no practical method for routinely identifying outliers when fitting curves with nonlinear regression. Results We describe a new method for identifying outliers when fitting data with nonlinear regression. We first fit the data using a robust form of nonlinear regression, based on the assumption that scatter follows a Lorentzian distribution. We devised a new adaptive method that gradually becomes more robust as the method proceeds. To define outliers, we adapted the false discovery rate approach to handling multiple comparisons. We then remove the outliers, and analyze the data using ordinary least-squares regression. Because the method combines robust regression and outlier removal, we call it the ROUT method. When analyzing simulated data, where all scatter is Gaussian, our method detects (falsely) one or more outlier in only about 1–3% of experiments. When analyzing data contaminated with one or several outliers, the ROUT method performs well at outlier identification, with an average False Discovery Rate less than 1%. Conclusion Our method, which combines a new method of robust nonlinear regression with a new method of outlier identification, identifies outliers from nonlinear curve fits with reasonable power and few false positives. PMID:16526949
Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment
ERIC Educational Resources Information Center
Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos
2013-01-01
In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…
Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment
ERIC Educational Resources Information Center
Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos
2013-01-01
In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…
2013-01-01
Background Abattoir condemnation data show promise as a rich source of data for syndromic surveillance of both animal and zoonotic diseases. However, inherent characteristics of abattoir condemnation data can bias results from space-time cluster detection methods for disease surveillance, and may need to be accounted for using various adjustment methods. The objective of this study was to compare the space-time scan statistics with different abilities to control for covariates and to assess their suitability for food animal syndromic surveillance. Four space-time scan statistic models were used including: animal class adjusted Poisson, space-time permutation, multi-level model adjusted Poisson, and a weighted normal scan statistic using model residuals. The scan statistics were applied to monthly bovine pneumonic lung and “parasitic liver” condemnation data from Ontario provincial abattoirs from 2001–2007. Results The number and space-time characteristics of identified clusters often varied between space-time scan tests for both “parasitic liver” and pneumonic lung condemnation data. While there were some similarities between isolated clusters in space, time and/or space-time, overall the results from space-time scan statistics differed substantially depending on the covariate adjustment approach used. Conclusions Variability in results among methods suggests that caution should be used in selecting space-time scan methods for abattoir surveillance. Furthermore, validation of different approaches with simulated or real outbreaks is required before conclusive decisions can be made concerning the best approach for conducting surveillance with these data. PMID:24246040
Extraction of rules from artificial neural networks for nonlinear regression.
Setiono, R; Leow, Wee Kheng; Zurada, J M
2002-01-01
Neural networks (NNs) have been successfully applied to solve a variety of application problems including classification and function approximation. They are especially useful as function approximators because they do not require prior knowledge of the input data distribution and they have been shown to be universal approximators. In many applications, it is desirable to extract knowledge that can explain how Me problems are solved by the networks. Most existing approaches have focused on extracting symbolic rules for classification. Few methods have been devised to extract rules from trained NNs for regression. This article presents an approach for extracting rules from trained NNs for regression. Each rule in the extracted rule set corresponds to a subregion of the input space and a linear function involving the relevant input attributes of the data approximates the network output for all data samples in this subregion. Extensive experimental results on 32 benchmark data sets demonstrate the effectiveness of the proposed approach in generating accurate regression rules.
Singh, Kunwar P; Gupta, Shikha; Rai, Premanjali
2014-05-01
Kernel function-based regression models were constructed and applied to a nonlinear hydro-chemical dataset pertaining to surface water for predicting the dissolved oxygen levels. Initial features were selected using nonlinear approach. Nonlinearity in the data was tested using BDS statistics, which revealed the data with nonlinear structure. Kernel ridge regression, kernel principal component regression, kernel partial least squares regression, and support vector regression models were developed using the Gaussian kernel function and their generalization and predictive abilities were compared in terms of several statistical parameters. Model parameters were optimized using the cross-validation procedure. The proposed kernel regression methods successfully captured the nonlinear features of the original data by transforming it to a high dimensional feature space using the kernel function. Performance of all the kernel-based modeling methods used here were comparable both in terms of predictive and generalization abilities. Values of the performance criteria parameters suggested for the adequacy of the constructed models to fit the nonlinear data and their good predictive capabilities.
Testing nonlinear regression parameters under heteroscedastic, normally distributed errors.
Kimura, D K
1990-09-01
Likelihood ratio tests for parameters estimated assuming normally distributed errors are examined under a variety of homoscedastic and heteroscedastic variance assumptions. It is assumed that gamma ij, the jth observation from the ith population, is distributed as N[mu(chi ij, beta i), (sigma i mu(chi ij, beta i)theta i)2]. By varying sigma 2i and theta i, this model contains the most obvious examples of homoscedastic and heteroscedastic variability. Under this model, the null hypothesis of equal beta i's can easily be tested using the likelihood ratio criterion. Also considered is the two-sample chi-square statistic, chi 2t = U'S-1 U, where U is the difference vector of nonlinear least squares parameter estimates and S is an estimate of the covariance matrix of U. Monte Carlo simulation using the von Bertalanffy growth curve as an example is used to evaluate several test statistics for Type I error rates under different sampling assumptions.
Song, Rui; Kosorok, Michael R; Cai, Jianwen
2008-09-01
Recurrent events data are frequently encountered in clinical trials. This article develops robust covariate-adjusted log-rank statistics applied to recurrent events data with arbitrary numbers of events under independent censoring and the corresponding sample size formula. The proposed log-rank tests are robust with respect to different data-generating processes and are adjusted for predictive covariates. It reduces to the Kong and Slud (1997, Biometrika 84, 847-862) setting in the case of a single event. The sample size formula is derived based on the asymptotic normality of the covariate-adjusted log-rank statistics under certain local alternatives and a working model for baseline covariates in the recurrent event data context. When the effect size is small and the baseline covariates do not contain significant information about event times, it reduces to the same form as that of Schoenfeld (1983, Biometrics 39, 499-503) for cases of a single event or independent event times within a subject. We carry out simulations to study the control of type I error and the comparison of powers between several methods in finite samples. The proposed sample size formula is illustrated using data from an rhDNase study.
Song, Rui; Kosorok, Michael R.; Cai, Jianwen
2009-01-01
Summary Recurrent events data are frequently encountered in clinical trials. This article develops robust covariate-adjusted log-rank statistics applied to recurrent events data with arbitrary numbers of events under independent censoring and the corresponding sample size formula. The proposed log-rank tests are robust with respect to different data-generating processes and are adjusted for predictive covariates. It reduces to the Kong and Slud (1997, Biometrika 84, 847–862) setting in the case of a single event. The sample size formula is derived based on the asymptotic normality of the covariate-adjusted log-rank statistics under certain local alternatives and a working model for baseline covariates in the recurrent event data context. When the effect size is small and the baseline covariates do not contain significant information about event times, it reduces to the same form as that of Schoenfeld (1983, Biometrics 39, 499–503) for cases of a single event or independent event times within a subject. We carry out simulations to study the control of type I error and the comparison of powers between several methods in finite samples. The proposed sample size formula is illustrated using data from an rhDNase study. PMID:18162107
Doubly Robust-Type Estimation for Covariate Adjustment in Latent Variable Modeling
ERIC Educational Resources Information Center
Hoshino, Takahiro
2007-01-01
Due to the difficulty in achieving a random assignment, a quasi-experimental or observational study design is frequently used in the behavioral and social sciences. If a nonrandom assignment depends on the covariates, multiple group structural equation modeling, that includes the regression function of the dependent variables on the covariates…
A comparison of fitting growth models with a genetic algorithm and nonlinear regression.
Roush, W B; Branton, S L
2005-03-01
A genetic algorithm (GA), an optimization procedure based on the theory of evolution, was compared with nonlinear regression for the ability of the 2 algorithms to fit the coefficients of poultry growth models. It was hypothesized that the nonlinear approach of using GA to define the parameters of growth equations would better fit the growth equations than the use of nonlinear regression. Two sets of growth data from the literature, consisting of male broiler BW grown for 168 and 170 d, were used in the study. The growth data were fit to 2 forms of the logistic model, the Gompertz, the Gompertz-Laird, and the saturated kinetic models using the SAS nonlinear algorithm (NLIN) procedure and a GA. There were no statistical differences for the comparison of the residuals (the difference between observed and predicted BWs) of growth models fit by a GA or nonlinear regression. The plotted residuals for the nonlinear regression and GA-determined growth values confirmed observations of others that the residuals have oscillations resembling sine waves that are not represented by the growth models. It was found that GA could successfully determine the coefficients of growth equations. A disadvantage of slowness in converging to the solution was found for the GA. The advantage of GA over traditional nonlinear regression is that only ranges need be specified for the parameters of the growth equations, whereas estimates of the coefficients need to be determined, and in some programs the derivatives of the growth equations need to be identified. Depending on the goal of the research, solving multivariable complex functions with an algorithm that considers several solutions at the same time in an evolutionary mode can be considered an advantage especially where there is a chance for the solution to converge on a local optimum when a global optimum is desired. It was concluded that the fitting of the growth equations was not so much a problem with the fitting methodology as it is
Hartmann, Armin; Van Der Kooij, Anita J; Zeeck, Almut
2009-07-01
In explorative regression studies, linear models are often applied without questioning the linearity of the relations between the predictor variables and the dependent variable, or linear relations are taken as an approximation. In this study, the method of regression with optimal scaling transformations is demonstrated. This method does not require predefined nonlinear functions and results in easy-to-interpret transformations that will show the form of the relations. The method is illustrated using data from a German multicenter project on the indication criteria for inpatient or day clinic psychotherapy treatment. The indication criteria to include in the regression model were selected with the Lasso, which is a tool for predictor selection that overcomes the disadvantages of stepwise regression methods. The resulting prediction model indicates that treatment status is (approximately) linearly related to some criteria and nonlinearly related to others.
Estimating Litter Decomposition Rate in Single-Pool Models Using Nonlinear Beta Regression
Laliberté, Etienne; Adair, E. Carol; Hobbie, Sarah E.
2012-01-01
Litter decomposition rate (k) is typically estimated from proportional litter mass loss data using models that assume constant, normally distributed errors. However, such data often show non-normal errors with reduced variance near bounds (0 or 1), potentially leading to biased k estimates. We compared the performance of nonlinear regression using the beta distribution, which is well-suited to bounded data and this type of heteroscedasticity, to standard nonlinear regression (normal errors) on simulated and real litter decomposition data. Although the beta model often provided better fits to the simulated data (based on the corrected Akaike Information Criterion, AICc), standard nonlinear regression was robust to violation of homoscedasticity and gave equally or more accurate k estimates as nonlinear beta regression. Our simulation results also suggest that k estimates will be most accurate when study length captures mid to late stage decomposition (50–80% mass loss) and the number of measurements through time is ≥5. Regression method and data transformation choices had the smallest impact on k estimates during mid and late stage decomposition. Estimates of k were more variable among methods and generally less accurate during early and end stage decomposition. With real data, neither model was predominately best; in most cases the models were indistinguishable based on AICc, and gave similar k estimates. However, when decomposition rates were high, normal and beta model k estimates often diverged substantially. Therefore, we recommend a pragmatic approach where both models are compared and the best is selected for a given data set. Alternatively, both models may be used via model averaging to develop weighted parameter estimates. We provide code to perform nonlinear beta regression with freely available software. PMID:23049771
USDA-ARS?s Scientific Manuscript database
Parametric non-linear regression (PNR) techniques commonly are used to develop weed seedling emergence models. Such techniques, however, require statistical assumptions that are difficult to meet. To examine and overcome these limitations, we compared PNR with a nonparametric estimation technique. F...
NASA Astrophysics Data System (ADS)
Drzewiecki, Wojciech
2016-12-01
In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models.
Sulthana, Ayesha; Latha, K C; Imran, Mohammad; Rathan, Ramya; Sridhar, R; Balasubramanian, S
2014-01-01
Fuzzy principal component regression (FPCR) is proposed to model the non-linear process of sewage treatment plant (STP) data matrix. The dimension reduction of voluminous data was done by principal component analysis (PCA). The PCA score values were partitioned by fuzzy-c-means (FCM) clustering, and a Takagi-Sugeno-Kang (TSK) fuzzy model was built based on the FCM functions. The FPCR approach was used to predict the reduction in chemical oxygen demand (COD) and biological oxygen demand (BOD) of treated wastewater of Vidyaranyapuram STP with respect to the relations modeled between fuzzy partitioned PCA scores and target output. The designed FPCR model showed the ability to capture the behavior of non-linear processes of STP. The predicted values of reduction in COD and BOD were analyzed by performing the linear regression analysis. The predicted values for COD and BOD reduction showed positive correlation with the observed data.
Lim, Changwon
2015-03-30
Nonlinear regression is often used to evaluate the toxicity of a chemical or a drug by fitting data from a dose-response study. Toxicologists and pharmacologists may draw a conclusion about whether a chemical is toxic by testing the significance of the estimated parameters. However, sometimes the null hypothesis cannot be rejected even though the fit is quite good. One possible reason for such cases is that the estimated standard errors of the parameter estimates are extremely large. In this paper, we propose robust ridge regression estimation procedures for nonlinear models to solve this problem. The asymptotic properties of the proposed estimators are investigated; in particular, their mean squared errors are derived. The performances of the proposed estimators are compared with several standard estimators using simulation studies. The proposed methodology is also illustrated using high throughput screening assay data obtained from the National Toxicology Program. Copyright © 2014 John Wiley & Sons, Ltd.
1991-03-01
Adjusted Estimators for Variance 1Redutilol in Computer Simutlation by Riichiardl L. R’ r March, 1991 D~issertation Advisor: Peter A.W. Lewis Approved for...OF NONLINEAR CONTROLS AND REGRESSION-ADJUSTED ESTIMATORS FOR VARIANCE REDUCTION IN COMPUTER SIMULATION 12. Personal Author(s) Richard L. Ressler 13a...necessary and identify by block number) This dissertation develops new techniques for variance reduction in computer simulation. It demonstrates that
A comparison of several methods of solving nonlinear regression groundwater flow problems.
Cooley, R.L.
1985-01-01
Computational efficiency and computer memory requirements for four methods of minimizing functions were compared for four test nonlinear-regression steady state groundwater flow problems. The fastest methods were the Marquardt and quasi-linearization methods, which required almost identical computer times and numbers of iterations; the next fastest was the quasi-Newton method, and last was the Fletcher-Reeves method, which did not converge in 100 iterations for two of the problems.-from Author
A regularization corrected score method for nonlinear regression models with covariate error.
Zucker, David M; Gorfine, Malka; Li, Yi; Tadesse, Mahlet G; Spiegelman, Donna
2013-03-01
Many regression analyses involve explanatory variables that are measured with error, and failing to account for this error is well known to lead to biased point and interval estimates of the regression coefficients. We present here a new general method for adjusting for covariate error. Our method consists of an approximate version of the Stefanski-Nakamura corrected score approach, using the method of regularization to obtain an approximate solution of the relevant integral equation. We develop the theory in the setting of classical likelihood models; this setting covers, for example, linear regression, nonlinear regression, logistic regression, and Poisson regression. The method is extremely general in terms of the types of measurement error models covered, and is a functional method in the sense of not involving assumptions on the distribution of the true covariate. We discuss the theoretical properties of the method and present simulation results in the logistic regression setting (univariate and multivariate). For illustration, we apply the method to data from the Harvard Nurses' Health Study concerning the relationship between physical activity and breast cancer mortality in the period following a diagnosis of breast cancer.
A Nonlinear Causality Estimator Based on Non-Parametric Multiplicative Regression
Nicolaou, Nicoletta; Constandinou, Timothy G.
2016-01-01
Causal prediction has become a popular tool for neuroscience applications, as it allows the study of relationships between different brain areas during rest, cognitive tasks or brain disorders. We propose a nonparametric approach for the estimation of nonlinear causal prediction for multivariate time series. In the proposed estimator, CNPMR, Autoregressive modeling is replaced by Nonparametric Multiplicative Regression (NPMR). NPMR quantifies interactions between a response variable (effect) and a set of predictor variables (cause); here, we modified NPMR for model prediction. We also demonstrate how a particular measure, the sensitivity Q, could be used to reveal the structure of the underlying causal relationships. We apply CNPMR on artificial data with known ground truth (5 datasets), as well as physiological data (2 datasets). CNPMR correctly identifies both linear and nonlinear causal connections that are present in the artificial data, as well as physiologically relevant connectivity in the real data, and does not seem to be affected by filtering. The Sensitivity measure also provides useful information about the latent connectivity.The proposed estimator addresses many of the limitations of linear Granger causality and other nonlinear causality estimators. CNPMR is compared with pairwise and conditional Granger causality (linear) and Kernel-Granger causality (nonlinear). The proposed estimator can be applied to pairwise or multivariate estimations without any modifications to the main method. Its nonpametric nature, its ability to capture nonlinear relationships and its robustness to filtering make it appealing for a number of applications. PMID:27378901
A Nonlinear Causality Estimator Based on Non-Parametric Multiplicative Regression.
Nicolaou, Nicoletta; Constandinou, Timothy G
2016-01-01
Causal prediction has become a popular tool for neuroscience applications, as it allows the study of relationships between different brain areas during rest, cognitive tasks or brain disorders. We propose a nonparametric approach for the estimation of nonlinear causal prediction for multivariate time series. In the proposed estimator, C NPMR , Autoregressive modeling is replaced by Nonparametric Multiplicative Regression (NPMR). NPMR quantifies interactions between a response variable (effect) and a set of predictor variables (cause); here, we modified NPMR for model prediction. We also demonstrate how a particular measure, the sensitivity Q, could be used to reveal the structure of the underlying causal relationships. We apply C NPMR on artificial data with known ground truth (5 datasets), as well as physiological data (2 datasets). C NPMR correctly identifies both linear and nonlinear causal connections that are present in the artificial data, as well as physiologically relevant connectivity in the real data, and does not seem to be affected by filtering. The Sensitivity measure also provides useful information about the latent connectivity.The proposed estimator addresses many of the limitations of linear Granger causality and other nonlinear causality estimators. C NPMR is compared with pairwise and conditional Granger causality (linear) and Kernel-Granger causality (nonlinear). The proposed estimator can be applied to pairwise or multivariate estimations without any modifications to the main method. Its nonpametric nature, its ability to capture nonlinear relationships and its robustness to filtering make it appealing for a number of applications.
Multilayer perceptron for robust nonlinear interval regression analysis using genetic algorithms.
Hu, Yi-Chung
2014-01-01
On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets.
Harlim, John; Mahdi, Adam; Majda, Andrew J.
2014-01-15
A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partial noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model.
Scarneciu, Camelia C.; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D.; Varciu, Mihai S.; Andreescu, Oana; Scarneciu, Ioan
2017-01-01
Objectives: This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. Methods: The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). Results: From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. Conclusions: The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is
Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan
2017-01-01
This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second
CANFIS: A non-linear regression procedure to produce statistical air-quality forecast models
Burrows, W.R.; Montpetit, J.; Pudykiewicz, J.
1997-12-31
Statistical models for forecasts of environmental variables can provide a good trade-off between significance and precision in return for substantial saving of computer execution time. Recent non-linear regression techniques give significantly increased accuracy compared to traditional linear regression methods. Two are Classification and Regression Trees (CART) and the Neuro-Fuzzy Inference System (NFIS). Both can model predict and distributions, including the tails, with much better accuracy than linear regression. Given a learning data set of matched predict and predictors, CART regression produces a non-linear, tree-based, piecewise-continuous model of the predict and data. Its variance-minimizing procedure optimizes the task of predictor selection, often greatly reducing initial data dimensionality. NFIS reduces dimensionality by a procedure known as subtractive clustering but it does not of itself eliminate predictors. Over-lapping coverage in predictor space is enhanced by NFIS with a Gaussian membership function for each cluster component. Coefficients for a continuous response model based on the fuzzified cluster centers are obtained by a least-squares estimation procedure. CANFIS is a two-stage data-modeling technique that combines the strength of CART to optimize the process of selecting predictors from a large pool of potential predictors with the modeling strength of NFIS. A CANFIS model requires negligible computer time to run. CANFIS models for ground-level O{sub 3}, particulates, and other pollutants will be produced for each of about 100 Canadian sites. The air-quality models will run twice daily using a small number of predictors isolated from a large pool of upstream and local Lagrangian potential predictors.
Aboveground biomass and carbon stocks modelling using non-linear regression model
NASA Astrophysics Data System (ADS)
Ain Mohd Zaki, Nurul; Abd Latif, Zulkiflee; Nazip Suratman, Mohd; Zainee Zainal, Mohd
2016-06-01
Aboveground biomass (AGB) is an important source of uncertainty in the carbon estimation for the tropical forest due to the variation biodiversity of species and the complex structure of tropical rain forest. Nevertheless, the tropical rainforest holds the most extensive forest in the world with the vast diversity of tree with layered canopies. With the usage of optical sensor integrate with empirical models is a common way to assess the AGB. Using the regression, the linkage between remote sensing and a biophysical parameter of the forest may be made. Therefore, this paper exemplifies the accuracy of non-linear regression equation of quadratic function to estimate the AGB and carbon stocks for the tropical lowland Dipterocarp forest of Ayer Hitam forest reserve, Selangor. The main aim of this investigation is to obtain the relationship between biophysical parameter field plots with the remotely-sensed data using nonlinear regression model. The result showed that there is a good relationship between crown projection area (CPA) and carbon stocks (CS) with Pearson Correlation (p < 0.01), the coefficient of correlation (r) is 0.671. The study concluded that the integration of Worldview-3 imagery with the canopy height model (CHM) raster based LiDAR were useful in order to quantify the AGB and carbon stocks for a larger sample area of the lowland Dipterocarp forest.
Robust Nonlinear Regression: A Greedy Approach Employing Kernels With Application to Image Denoising
NASA Astrophysics Data System (ADS)
Papageorgiou, George; Bouboulis, Pantelis; Theodoridis, Sergios
2017-08-01
We consider the task of robust non-linear regression in the presence of both inlier noise and outliers. Assuming that the unknown non-linear function belongs to a Reproducing Kernel Hilbert Space (RKHS), our goal is to estimate the set of the associated unknown parameters. Due to the presence of outliers, common techniques such as the Kernel Ridge Regression (KRR) or the Support Vector Regression (SVR) turn out to be inadequate. Instead, we employ sparse modeling arguments to explicitly model and estimate the outliers, adopting a greedy approach. The proposed robust scheme, i.e., Kernel Greedy Algorithm for Robust Denoising (KGARD), is inspired by the classical Orthogonal Matching Pursuit (OMP) algorithm. Specifically, the proposed method alternates between a KRR task and an OMP-like selection step. Theoretical results concerning the identification of the outliers are provided. Moreover, KGARD is compared against other cutting edge methods, where its performance is evaluated via a set of experiments with various types of noise. Finally, the proposed robust estimation framework is applied to the task of image denoising, and its enhanced performance in the presence of outliers is demonstrated.
Confidence intervals for a crop yield-loss function in nonlinear regression
Lee, E.H.; Tingey, D.T.; Hogsett, W.E.
1990-01-01
Quantifying the relationship between chronic pollutant exposure and the ensuring biological response requires consideration of nonlinear functions that are flexible enough to generate a wide range of response curves. The linear approximation interval estimates for ozone-induced relative crop yield loss are sensitive to parameter curvature effects in nonlinear regression. The adequacy of Wald's confidence interval for proportional response is studied using the nonlinearity measures proposed by Bates and Watts (1980), Cook and Goldberg (1986), and Clarke (1987a b) and the profile t plots of Bates and Watts (1988). Numerical examples comparing Wald's, likelihood ratio, the bootstrap, and Clarke's adjusted 95% confidence intervals for relative crop yield loss are presented for a number of ozone exposure studies conducted by the National Crop Loss Assessment Network (NCLAN) program. At ambient levels of ozone concentration, the effects of nonlinearity were significant and invalidated the adequacy of Wald's confidence interval. Depending upon the severity of the curvature effects, an alternative interval (i.e., Clarke's adjustment to Wald's interval or the likelihood ratio interval) for proportional yield loss should be considered.
Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling.
Kawashima, Issaku; Kumano, Hiroaki
2017-01-01
Mind-wandering (MW), task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG) variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR) to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.
Describing Adequacy of cure with maximum hardness ratios and non-linear regression.
Bouschlicher, Murray; Berning, Kristen; Qian, Fang
2008-01-01
Knoop Hardness (KH) ratios (HR) > or = 80% are commonly used as criteria for the adequate cure of a composite. These per-specimen HRs can be misleading, as both numerator and denominator may increase concurrently, prior to reaching an asymptotic, top-surface maximum hardness value (H(MAX)). Extended cure times were used to establish H(MAX) and descriptive statistics, and non-linear regression analysis were used to describe the relationship between exposure duration and HR and predict the time required for HR-H(MAX) = 80%. Composite samples 2.00 x 5.00 mm diameter (n = 5/grp) were cured for 10 seconds, 20 seconds, 40 seconds, 60 seconds, 90 seconds, 120 seconds, 180 seconds and 240 seconds in a 2-composite x 2-light curing unit design. A microhybrid (Point 4, P4) or microfill resin (Heliomolar, HM) composite was cured with a QTH or LED light curing unit and then stored in the dark for 24 hours prior to KH testing. Non-linear regression was calculated with: H = (H(MAX)-c)(1-e(-kt)) +c, H(MAX) = maximum hardness (a theoretical asymptotic value), c = constant (t = 0), k = rate constant and t = exposure duration describes the relationship between radiant exposure (irradiance x time) and HRs. Exposure durations for HR-H(MAX) = 80% were calculated. Two-sample t-tests for pairwise comparisons evaluated relative performance of the light curing units for similar surface x composite x exposure (10-90s). A good measure of goodness-of-fit of the non-linear regression, r2, ranged from 0.68-0.95. (mean = 0.82). Microhybrid (P4) exposure to achieve HR-H(MAX = 80% was 21 seconds for QTH and 34 seconds for the LED light curing unit. Corresponding values for microfill (HM) were 71 and 74 seconds, respectively. P4 HR-H(MAX) of LED vs QTH was statistically similar for 10 to 40 seconds, while HM HR-H(MAX) of LED was significantly lower than QTH for 10 to 40 seconds. It was concluded that redefined hardness ratios based on maximum hardness used in conjunction with non-linear regression
NASA Astrophysics Data System (ADS)
Deglint, Jason; Kazemzadeh, Farnoud; Wong, Alexander; Clausi, David A.
2015-09-01
One method to acquire multispectral images is to sequentially capture a series of images where each image contains information from a different bandwidth of light. Another method is to use a series of beamsplitters and dichroic filters to guide different bandwidths of light onto different cameras. However, these methods are very time consuming and expensive and perform poorly in dynamic scenes or when observing transient phenomena. An alternative strategy to capturing multispectral data is to infer this data using sparse spectral reflectance measurements captured using an imaging device with overlapping bandpass filters, such as a consumer digital camera using a Bayer filter pattern. Currently the only method of inferring dense reflectance spectra is the Wiener adaptive filter, which makes Gaussian assumptions about the data. However, these assumptions may not always hold true for all data. We propose a new technique to infer dense reflectance spectra from sparse spectral measurements through the use of a non-linear regression model. The non-linear regression model used in this technique is the random forest model, which is an ensemble of decision trees and trained via the spectral characterization of the optical imaging system and spectral data pair generation. This model is then evaluated by spectrally characterizing different patches on the Macbeth color chart, as well as by reconstructing inferred multispectral images. Results show that the proposed technique can produce inferred dense reflectance spectra that correlate well with the true dense reflectance spectra, which illustrates the merits of the technique.
NASA Astrophysics Data System (ADS)
Kang, Yujung; Lee, Jungsul; Kwon, Kihwan; Choi, Chulhee
2010-02-01
The purpose of this study is to examine the peripheral tissue perfusion rates by time-series analysis of distribution and elimination kinetics of a clinically proven NIR fluorescence probe, indocyanine green (ICG). We developed a new method, dynamic ICG perfusion imaging technique to evaluate peripheral tissue perfusion that employs planar imaging with a CCD digital imaging system and time-series analysis of the spatiotemporal dynamics (150s) of intravenously injected ICG by using nonlinear regression and differential evolution methods. Six parameters (α, β, s, d, m; parameters which depend on an arterial input function (AIF) into a lower extremity and p; perfusion rates in the lower extremity) were estimated by the nonlinear regression modeling method. We have confirmed the validity of our new method by applying the method to a normal control and a patient with peripheral arterial occlusion disease (PAOD). PAOD patient showed a unique AIF curve pattern, which was caused by collateral blood flow bypassing the occluded major artery. The lower extremity tissue perfusion rate of the PAOD patient was estimated as about 35% of those of normal values. These results indicate that ICG perfusion imaging method is sensitive enough to diagnose PAOD and capable of diagnosing functional arterial diseases.
Comparison of nonlinear and spline regression models for describing mule duck growth curves.
Vitezica, Z G; Marie-Etancelin, C; Bernadet, M D; Fernandez, X; Robert-Granie, C
2010-08-01
This study compared models for growth (BW) before overfeeding period for male mule duck data from 7 families of a QTL experimental design. Four nonlinear models (Gompertz, logistic, Richards, and Weibull) and a spline linear regression model were used. This study compared fixed and mixed effects models to analyze growth. The Akaike information criterion was used to evaluate these alternative models. Among the nonlinear models, the mixed effects Weibull model had the best overall fit. Two parameters, the asymptotic weight and the inflexion point age, were considered random variables associated with individuals in the mixed models. In our study, asymptotic weight had a greater effect in Akaike's information criterion reduction than inflexion point age. In this data set, the between-ducks variability was mostly explained by asymptotic BW. Comparing fixed with mixed effects models, the residual SD was reduced in about 55% in the latter, pointing out the improvement in the accuracy of estimated parameters. The mixed effects spline regression model was the second best model. Given the piecewise nature of growth, this model is able to capture different growth patterns, even with data collected beyond the asymptotic BW.
NASA Astrophysics Data System (ADS)
Sirenko, M. A.; Tarasenko, P. F.; Pushkarev, M. I.
2017-01-01
One of the most noticeable features of sign-based statistical procedures is an opportunity to build an exact test for simple hypothesis testing of parameters in a regression model. In this article, we expanded a sing-based approach to the nonlinear case with dependent noise. The examined model is a multi-quantile regression, which makes it possible to test hypothesis not only of regression parameters, but of noise parameters as well.
Sim, K S; Norhisham, S
2016-11-01
A new method based on nonlinear least squares regression (NLLSR) is formulated to estimate signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images. The estimation of SNR value based on NLLSR method is compared with the three existing methods of nearest neighbourhood, first-order interpolation and the combination of both nearest neighbourhood and first-order interpolation. Samples of SEM images with different textures, contrasts and edges were used to test the performance of NLLSR method in estimating the SNR values of the SEM images. It is shown that the NLLSR method is able to produce better estimation accuracy as compared to the other three existing methods. According to the SNR results obtained from the experiment, the NLLSR method is able to produce approximately less than 1% of SNR error difference as compared to the other three existing methods. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Modeling nonlinear relationships in ERP data using mixed-effects regression with R examples.
Tremblay, Antoine; Newman, Aaron J
2015-01-01
In the analysis of psychological and psychophysiological data, the relationship between two variables is often assumed to be a straight line. This may be due to the prevalence of the general linear model in data analysis in these fields, which makes this assumption implicitly. However, there are many problems for which this assumption does not hold. In this paper, we show that, in the analysis of event-related potential (ERP) data, the assumption of linearity comes at a cost and may significantly affect the inferences drawn from the data. We demonstrate why the assumption of linearity should be relaxed and how to model nonlinear relationships between ERP amplitudes and predictor variables within the familiar framework of generalized linear models, using regression splines and mixed-effects modeling.
Nonlinear regression modeling of nutrient loads in streams: A Bayesian approach
Qian, S.S.; Reckhow, K.H.; Zhai, J.; McMahon, G.
2005-01-01
A Bayesian nonlinear regression modeling method is introduced and compared with the least squares method for modeling nutrient loads in stream networks. The objective of the study is to better model spatial correlation in river basin hydrology and land use for improving the model as a forecasting tool. The Bayesian modeling approach is introduced in three steps, each with a more complicated model and data error structure. The approach is illustrated using a data set from three large river basins in eastern North Carolina. Results indicate that the Bayesian model better accounts for model and data uncertainties than does the conventional least squares approach. Applications of the Bayesian models for ambient water quality standards compliance and TMDL assessment are discussed. Copyright 2005 by the American Geophysical Union.
1982-09-01
empirical data from several different targets by the use of dummy variables. Then the equation becomes: Y = P + P2 X1 + P3 X2 + P4 X3 + + PnX + where X2...practical cases greatly overrides the disadvantage of giving up an additional degree of freedom for each dummy variable added. Nonlinear Regression Model -- P...N O cc00 c00 0Utm ON 00tZ c 00cc000c c0 cccw 0w 000 00 00 0 0 00 Om -O uml =0 tOO’ Wo MoMtom I= 00 c00 0? ow 0 In *t0 00 0 0 0 0 0 0 0 0 0CN000000
Gsteiger, S; Bretz, F; Liu, W
2011-07-01
Many applications in biostatistics rely on nonlinear regression models, such as, for example, population pharmacokinetic and pharmacodynamic modeling, or modeling approaches for dose-response characterization and dose selection. Such models are often expressed as nonlinear mixed-effects models, which are implemented in all major statistical software packages. Inference on the model curve can be based on the estimated parameters, from which pointwise confidence intervals for the mean profile at any single point in the covariate region (time, dose, etc.) can be derived. These pointwise confidence intervals, however, should not be used for simultaneous inferences beyond that single covariate value. If assessment over the entire covariate region is required, the joint coverage probability by using the combined pointwise confidence intervals is likely to be less than the nominal coverage probability. In this paper we consider simultaneous confidence bands for the mean profile over the covariate region of interest and propose two large-sample methods for their construction. The first method is based on the Schwarz inequality and an asymptotic χ(2) distribution. The second method relies on simulating from a multivariate normal distribution. We illustrate the methods with the pharmacokinetics of theophylline. In addition, we report the results of an extensive simulation study to investigate the operating characteristics of the two construction methods. Finally, we present extensions to construct simultaneous confidence bands for the difference of two models and to assess equivalence between two models in biosimilarity applications.
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws.
Xiao, Xiao; White, Ethan P; Hooten, Mevin B; Durham, Susan L
2011-10-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain.
Árnadóttir, Í.; Gíslason, M. K.; Carraro, U.
2016-01-01
Muscle degeneration has been consistently identified as an independent risk factor for high mortality in both aging populations and individuals suffering from neuromuscular pathology or injury. While there is much extant literature on its quantification and correlation to comorbidities, a quantitative gold standard for analyses in this regard remains undefined. Herein, we hypothesize that rigorously quantifying entire radiodensitometric distributions elicits more muscle quality information than average values reported in extant methods. This study reports the development and utility of a nonlinear trimodal regression analysis method utilized on radiodensitometric distributions of upper leg muscles from CT scans of a healthy young adult, a healthy elderly subject, and a spinal cord injury patient. The method was then employed with a THA cohort to assess pre- and postsurgical differences in their healthy and operative legs. Results from the initial representative models elicited high degrees of correlation to HU distributions, and regression parameters highlighted physiologically evident differences between subjects. Furthermore, results from the THA cohort echoed physiological justification and indicated significant improvements in muscle quality in both legs following surgery. Altogether, these results highlight the utility of novel parameters from entire HU distributions that could provide insight into the optimal quantification of muscle degeneration. PMID:28115982
NASA Astrophysics Data System (ADS)
Li, Guofa; Huang, Wei; Zheng, Hao; Zhang, Baoqing
2016-02-01
The spectral ratio method (SRM) is widely used to estimate quality factor Q via the linear regression of seismic attenuation under the assumption of a constant Q. However, the estimate error will be introduced when this assumption is violated. For the frequency-dependent Q described by a power-law function, we derived the analytical expression of estimate error as a function of the power-law exponent γ and the ratio of the bandwidth to the central frequency σ . Based on the theoretical analysis, we found that the estimate errors are mainly dominated by the exponent γ , and less affected by the ratio σ . This phenomenon implies that the accuracy of the Q estimate can hardly be improved by adjusting the width and range of the frequency band. Hence, we proposed a two-parameter regression method to estimate the frequency-dependent Q from the nonlinear seismic attenuation. The proposed method was tested using the direct waves acquired by a near-surface cross-hole survey, and its reliability was evaluated in comparison with the result of SRM.
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws
Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L.
2011-01-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain. ?? 2011 by the Ecological Society of America.
A Nonlinear Adaptive Beamforming Algorithm Based on Least Squares Support Vector Regression
Wang, Lutao; Jin, Gang; Li, Zhengzhou; Xu, Hongbin
2012-01-01
To overcome the performance degradation in the presence of steering vector mismatches, strict restrictions on the number of available snapshots, and numerous interferences, a novel beamforming approach based on nonlinear least-square support vector regression machine (LS-SVR) is derived in this paper. In this approach, the conventional linearly constrained minimum variance cost function used by minimum variance distortionless response (MVDR) beamformer is replaced by a squared-loss function to increase robustness in complex scenarios and provide additional control over the sidelobe level. Gaussian kernels are also used to obtain better generalization capacity. This novel approach has two highlights, one is a recursive regression procedure to estimate the weight vectors on real-time, the other is a sparse model with novelty criterion to reduce the final size of the beamformer. The analysis and simulation tests show that the proposed approach offers better noise suppression capability and achieve near optimal signal-to-interference-and-noise ratio (SINR) with a low computational burden, as compared to other recently proposed robust beamforming techniques.
Coelho, Lúcia H G; Gutz, Ivano G R
2006-03-15
A chemometric method for analysis of conductometric titration data was introduced to extend its applicability to lower concentrations and more complex acid-base systems. Auxiliary pH measurements were made during the titration to assist the calculation of the distribution of protonable species on base of known or guessed equilibrium constants. Conductivity values of each ionized or ionizable species possibly present in the sample were introduced in a general equation where the only unknown parameters were the total concentrations of (conjugated) bases and of strong electrolytes not involved in acid-base equilibria. All these concentrations were adjusted by a multiparametric nonlinear regression (NLR) method, based on the Levenberg-Marquardt algorithm. This first conductometric titration method with NLR analysis (CT-NLR) was successfully applied to simulated conductometric titration data and to synthetic samples with multiple components at concentrations as low as those found in rainwater (approximately 10 micromol L(-1)). It was possible to resolve and quantify mixtures containing a strong acid, formic acid, acetic acid, ammonium ion, bicarbonate and inert electrolyte with accuracy of 5% or better.
De Mello, Fernanda; Oliveira, Carlos A L; Ribeiro, Ricardo P; Resende, Emiko K; Povh, Jayme A; Fornari, Darci C; Barreto, Rogério V; McManus, Concepta; Streit, Danilo
2015-01-01
Was evaluated the pattern of growth among females and males of tambaqui by Gompertz nonlinear regression model. Five traits of economic importance were measured on 145 animals during the three years, totaling 981 morphometric data analyzed. Different curves were adjusted between males and females for body weight, height and head length and only one curve was adjusted to the width and body length. The asymptotic weight (a) and relative growth rate to maturity (k) were different between sexes in animals with ± 5 kg; slaughter weight practiced by a specific niche market, very profitable. However, there was no difference between males and females up to ± 2 kg; slaughter weight established to supply the bigger consumer market. Females showed weight greater than males (± 280 g), which are more suitable for fish farming purposes defined for the niche market to larger animals. In general, males had lower maximum growth rate (8.66 g / day) than females (9.34 g / day), however, reached faster than females, 476 and 486 days growth rate, respectively. The height and length body are the traits that contributed most to the weight at 516 days (P <0.001).
Xue, Hongqi; Wu, Yichao; Wu, Hulin
2013-01-01
In many regression problems, the relations between the covariates and the response may be nonlinear. Motivated by the application of reconstructing a gene regulatory network, we consider a sparse high-dimensional additive model with the additive components being some known nonlinear functions with unknown parameters. To identify the subset of important covariates, we propose a new method for simultaneous variable selection and parameter estimation by iteratively combining a large-scale variable screening (the nonlinear independence screening, NLIS) and a moderate-scale model selection (the nonnegative garrote, NNG) for the nonlinear additive regressions. We have shown that the NLIS procedure possesses the sure screening property and it is able to handle problems with non-polynomial dimensionality; and for finite dimension problems, the NNG for the nonlinear additive regressions has selection consistency for the unimportant covariates and also estimation consistency for the parameter estimates of the important covariates. The proposed method is applied to simulated data and a real data example for identifying gene regulations to illustrate its numerical performance. PMID:25170239
USDA-ARS?s Scientific Manuscript database
Non-linear regression techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks present interesting and alternative features for such modeling purposes. In this work, a univariate hydrothermal-time based Weibull m...
ERIC Educational Resources Information Center
Strang, Kenneth David
2009-01-01
This paper discusses how a seldom-used statistical procedure, recursive regression (RR), can numerically and graphically illustrate data-driven nonlinear relationships and interaction of variables. This routine falls into the family of exploratory techniques, yet a few interesting features make it a valuable compliment to factor analysis and…
Burger, Divan Aristo; Schall, Robert
2015-01-01
Trials of the early bactericidal activity (EBA) of tuberculosis (TB) treatments assess the decline, during the first few days to weeks of treatment, in colony forming unit (CFU) count of Mycobacterium tuberculosis in the sputum of patients with smear-microscopy-positive pulmonary TB. Profiles over time of CFU data have conventionally been modeled using linear, bilinear, or bi-exponential regression. We propose a new biphasic nonlinear regression model for CFU data that comprises linear and bilinear regression models as special cases and is more flexible than bi-exponential regression models. A Bayesian nonlinear mixed-effects (NLME) regression model is fitted jointly to the data of all patients from a trial, and statistical inference about the mean EBA of TB treatments is based on the Bayesian NLME regression model. The posterior predictive distribution of relevant slope parameters of the Bayesian NLME regression model provides insight into the nature of the EBA of TB treatments; specifically, the posterior predictive distribution allows one to judge whether treatments are associated with monolinear or bilinear decline of log(CFU) count, and whether CFU count initially decreases fast, followed by a slower rate of decrease, or vice versa. PMID:25322214
Yobbi, D.K.
2000-01-01
A nonlinear least-squares regression technique for estimation of ground-water flow model parameters was applied to an existing model of the regional aquifer system underlying west-central Florida. The regression technique minimizes the differences between measured and simulated water levels. Regression statistics, including parameter sensitivities and correlations, were calculated for reported parameter values in the existing model. Optimal parameter values for selected hydrologic variables of interest are estimated by nonlinear regression. Optimal estimates of parameter values are about 140 times greater than and about 0.01 times less than reported values. Independently estimating all parameters by nonlinear regression was impossible, given the existing zonation structure and number of observations, because of parameter insensitivity and correlation. Although the model yields parameter values similar to those estimated by other methods and reproduces the measured water levels reasonably accurately, a simpler parameter structure should be considered. Some possible ways of improving model calibration are to: (1) modify the defined parameter-zonation structure by omitting and/or combining parameters to be estimated; (2) carefully eliminate observation data based on evidence that they are likely to be biased; (3) collect additional water-level data; (4) assign values to insensitive parameters, and (5) estimate the most sensitive parameters first, then, using the optimized values for these parameters, estimate the entire data set.
Naumann, H D; Tedeschi, L O; Fonseca, M A
2015-11-01
Methane (CH) is a potent greenhouse gas that is normally produced by microbial fermentation in the rumen and released to the environment mainly during eructation. Prediction of ruminal CH production is important for ruminant nutrition, especially for the determination of ME intake to assess the amount of total GE available for metabolism by an animal. Equations have been developed to predict ruminal CH production based on dietary constituents, but none have considered condensed tannins (CT), which are known to impact CH production by ruminants. The objective was to develop an equation to predict ruminal CH, accounting for CT effects. Methane production data were acquired from 48-h in vitro fermentation of a diverse group of warm-season perennial forage legumes containing different concentrations of CT over the course of 3 yr ( = 113). The following nonlinear exponential decay regression equation was developed: CH₄ = 113.6 × exp (-0.1751 x CT) - 2.18), [corrected] in which CH is expressed in grams per kilogram of fermentable organic matter and CT is in percentage of the DM. This equation predicted that CH production could be reduced by approximately 50% when CT is 3.9% DM. This equation is likely more accurate when screening CT-containing forages for their potential ability to mitigate in vitro CH production by ruminants when the CT concentration is greater than 3% DM. Therefore, despite the degree of variability in ruminal CH production, this equation could be used as a tool for screening CT-containing forages for their potential to inhibit ruminal CH. Future research should focus on the development of predictive equations when other potential reducers of ruminal CH are used in conjunction with CT.
Kleinman, Lawrence C; Norton, Edward C
2009-01-01
Objective To develop and validate a general method (called regression risk analysis) to estimate adjusted risk measures from logistic and other nonlinear multiple regression models. We show how to estimate standard errors for these estimates. These measures could supplant various approximations (e.g., adjusted odds ratio [AOR]) that may diverge, especially when outcomes are common. Study Design Regression risk analysis estimates were compared with internal standards as well as with Mantel–Haenszel estimates, Poisson and log-binomial regressions, and a widely used (but flawed) equation to calculate adjusted risk ratios (ARR) from AOR. Data Collection Data sets produced using Monte Carlo simulations. Principal Findings Regression risk analysis accurately estimates ARR and differences directly from multiple regression models, even when confounders are continuous, distributions are skewed, outcomes are common, and effect size is large. It is statistically sound and intuitive, and has properties favoring it over other methods in many cases. Conclusions Regression risk analysis should be the new standard for presenting findings from multiple regression analysis of dichotomous outcomes for cross-sectional, cohort, and population-based case–control studies, particularly when outcomes are common or effect size is large. PMID:18793213
NASA Astrophysics Data System (ADS)
Lu, Lin; Chang, Yunlong; Li, Yingmin; He, Youyou
2013-05-01
A transverse magnetic field was introduced to the arc plasma in the process of welding stainless steel tubes by high-speed Tungsten Inert Gas Arc Welding (TIG for short) without filler wire. The influence of external magnetic field on welding quality was investigated. 9 sets of parameters were designed by the means of orthogonal experiment. The welding joint tensile strength and form factor of weld were regarded as the main standards of welding quality. A binary quadratic nonlinear regression equation was established with the conditions of magnetic induction and flow rate of Ar gas. The residual standard deviation was calculated to adjust the accuracy of regression model. The results showed that, the regression model was correct and effective in calculating the tensile strength and aspect ratio of weld. Two 3D regression models were designed respectively, and then the impact law of magnetic induction on welding quality was researched.
Karadag, Dogan; Koc, Yunus; Turan, Mustafa; Ozturk, Mustafa
2007-06-01
Ammonium ion exchange from aqueous solution using clinoptilolite zeolite was investigated at laboratory scale. Batch experimental studies were conducted to evaluate the effect of various parameters such as pH, zeolite dosage, contact time, initial ammonium concentration and temperature. Freundlich and Langmuir isotherm models and pseudo-second-order model were fitted to experimental data. Linear and non-linear regression methods were compared to determine the best fitting of isotherm and kinetic model to experimental data. The rate limiting mechanism of ammonium uptake by zeolite was determined as chemical exchange. Non-linear regression has better performance for analyzing experimental data and Freundlich model was better than Langmuir to represent equilibrium data.
Comparison of Linear and Non-Linear Regression Models to Estimate Leaf Area Index of Dryland Shrubs.
NASA Astrophysics Data System (ADS)
Dashti, H.; Glenn, N. F.; Ilangakoon, N. T.; Mitchell, J.; Dhakal, S.; Spaete, L.
2015-12-01
Leaf area index (LAI) is a key parameter in global ecosystem studies. LAI is considered a forcing variable in land surface processing models since ecosystem dynamics are highly correlated to LAI. In response to environmental limitations, plants in semiarid ecosystems have smaller leaf area, making accurate estimation of LAI by remote sensing a challenging issue. Optical remote sensing (400-2500 nm) techniques to estimate LAI are based either on radiative transfer models (RTMs) or statistical approaches. Considering the complex radiation field of dry ecosystems, simple 1-D RTMs lead to poor results, and on the other hand, inversion of more complex 3-D RTMs is a demanding task which requires the specification of many variables. A good alternative to physical approaches is using methods based on statistics. Similar to many natural phenomena, there is a non-linear relationship between LAI and top of canopy electromagnetic waves reflected to optical sensors. Non-linear regression models can better capture this relationship. However, considering the problem of a few numbers of observations in comparison to the feature space (n
non-linear regression techniques were investigated to estimate LAI. Our study area is located in southwestern Idaho, Great Basin. Sagebrush (Artemisia tridentata spp) serves a critical role in maintaining the structure of this ecosystem. Using a leaf area meter (Accupar LP-80), LAI values were measured in the field. Linear Partial Least Square regression and non-linear, tree based Random Forest regression have been implemented to estimate the LAI of sagebrush from hyperspectral data (AVIRIS-ng) collected in late summer 2014. Cross validation of results indicate that PLS can provide comparable results to Random Forest.
Estimating nonlinear selection gradients using quadratic regression coefficients: double or nothing?
Stinchcombe, John R; Agrawal, Aneil F; Hohenlohe, Paul A; Arnold, Stevan J; Blows, Mark W
2008-09-01
The use of regression analysis has been instrumental in allowing evolutionary biologists to estimate the strength and mode of natural selection. Although directional and correlational selection gradients are equal to their corresponding regression coefficients, quadratic regression coefficients must be doubled to estimate stabilizing/disruptive selection gradients. Based on a sample of 33 papers published in Evolution between 2002 and 2007, at least 78% of papers have not doubled quadratic regression coefficients, leading to an appreciable underestimate of the strength of stabilizing and disruptive selection. Proper treatment of quadratic regression coefficients is necessary for estimation of fitness surfaces and contour plots, canonical analysis of the gamma matrix, and modeling the evolution of populations on an adaptive landscape.
Huang, Yangxin; Chen, Jiaqing; Qiu, Huahai
2016-12-09
Quantile regression (QR) models have recently received increasing attention in longitudinal studies where measurements of the same individuals are taken repeatedly over time. When continuous (longitudinal) responses follow a distribution that is quite different from a normal distribution, usual mean regression (MR)-based linear models may fail to produce efficient estimators, whereas QR-based linear models may perform satisfactorily. To the best of our knowledge, there have been very few studies on QR-based nonlinear models for longitudinal data in comparison to MR-based nonlinear models. In this article, we study QR-based nonlinear mixed-effects (NLME) joint models for longitudinal data with non-central location and outliers and/or heavy tails in response, and non-normality and measurement errors in covariate under Bayesian framework. The proposed QR-based modeling method is compared with an MR-based one by an AIDS clinical dataset and through simulation studies. The proposed QR joint modeling approach can be not only applied to AIDS clinical studies, but also may have general applications in other fields as long as relevant technical specifications are met.
Feng, Xin; Winters, Jack M
2011-01-01
Individualizing a neurorehabilitation training protocol requires understanding the performance of subjects with various capabilities under different task settings. We use multivariate regression to evaluate the performance of subjects with stroke-induced hemiparesis in trajectory tracking tasks using a force-reflecting joystick. A nonlinear effect was consistently shown in both dimensions of force field strength and impairment level for selected kinematic performance measures, with greatest sensitivity at lower force fields. This suggests that the form of a force field may play a different "role" for subjects with various impairment levels, and confirms that to achieve optimized therapeutic benefit, it is necessary to personalize interfaces.
Zou, Kelly H.; O’Malley, A. James
2005-01-01
Receiver operating characteristic (ROC) analysis is a useful evaluative method of diagnostic accuracy. A Bayesian hierarchical nonlinear regression model for ROC analysis was developed. A validation analysis of diagnostic accuracy was conducted using prospective multi-center clinical trial prostate cancer biopsy data collected from three participating centers. The gold standard was based on radical prostatectomy to determine local and advanced disease. To evaluate the diagnostic performance of PSA level at fixed levels of Gleason score, a normality transformation was applied to the outcome data. A hierarchical regression analysis incorporating the effects of cluster (clinical center) and cancer risk (low, intermediate, and high) was performed, and the area under the ROC curve (AUC) was estimated. PMID:16161801
Using nonlinear quantile regression to estimate the self-thinning boundary curve
Quang V. Cao; Thomas J. Dean
2015-01-01
The relationship between tree size (quadratic mean diameter) and tree density (number of trees per unit area) has been a topic of research and discussion for many decades. Starting with Reineke in 1933, the maximum size-density relationship, on a log-log scale, has been assumed to be linear. Several techniques, including linear quantile regression, have been employed...
Tiedeman, C.R.; Kernodle, J.M.; McAda, D.P.
1998-01-01
This report documents the application of nonlinear-regression methods to a numerical model of ground-water flow in the Albuquerque Basin, New Mexico. In the Albuquerque Basin, ground water is the primary source for most water uses. Ground-water withdrawal has steadily increased since the 1940's, resulting in large declines in water levels in the Albuquerque area. A ground-water flow model was developed in 1994 and revised and updated in 1995 for the purpose of managing basin ground- water resources. In the work presented here, nonlinear-regression methods were applied to a modified version of the previous flow model. Goals of this work were to use regression methods to calibrate the model with each of six different configurations of the basin subsurface and to assess and compare optimal parameter estimates, model fit, and model error among the resulting calibrations. The Albuquerque Basin is one in a series of north trending structural basins within the Rio Grande Rift, a region of Cenozoic crustal extension. Mountains, uplifts, and fault zones bound the basin, and rock units within the basin include pre-Santa Fe Group deposits, Tertiary Santa Fe Group basin fill, and post-Santa Fe Group volcanics and sediments. The Santa Fe Group is greater than 14,000 feet (ft) thick in the central part of the basin. During deposition of the Santa Fe Group, crustal extension resulted in development of north trending normal faults with vertical displacements of as much as 30,000 ft. Ground-water flow in the Albuquerque Basin occurs primarily in the Santa Fe Group and post-Santa Fe Group deposits. Water flows between the ground-water system and surface-water bodies in the inner valley of the basin, where the Rio Grande, a network of interconnected canals and drains, and Cochiti Reservoir are located. Recharge to the ground-water flow system occurs as infiltration of precipitation along mountain fronts and infiltration of stream water along tributaries to the Rio Grande; subsurface
ROBFIT: A Code for the Analysis of Histogram Spectra with Nonlinear Regression and Robust Estimation
1990-05-04
spectra 33 4.2 Overview of SMSQ the minimization algorithm 35 4.3 The X2 predictor 37 4.3.1 Non-linear Newton-Raphson minimization 39 4.3.2 Accelerated...wish to pirate certain parts of the code. The minimization routine SMSQ, for example, can be used outside ROBFIT as a general minimization algorithm...At the knots, cubic splines have the property that they are continuous in themselves and their first and second derivatives. In our usage , a spectrum
De la Cruz, Rolando; Meza, Cristian; Arribas-Gil, Ana; Carroll, Raymond J.
2016-01-01
Joint models for a wide class of response variables and longitudinal measurements consist on a mixed-effects model to fit longitudinal trajectories whose random effects enter as covariates in a generalized linear model for the primary response. They provide a useful way to assess association between these two kinds of data, which in clinical studies are often collected jointly on a series of individuals and may help understanding, for instance, the mechanisms of recovery of a certain disease or the efficacy of a given therapy. When a nonlinear mixed-effects model is used to fit the longitudinal trajectories, the existing estimation strategies based on likelihood approximations have been shown to exhibit some computational efficiency problems (De la Cruz et al., 2011). In this article we consider a Bayesian estimation procedure for the joint model with a nonlinear mixed-effects model for the longitudinal data and a generalized linear model for the primary response. The proposed prior structure allows for the implementation of an MCMC sampler. Moreover, we consider that the errors in the longitudinal model may be correlated. We apply our method to the analysis of hormone levels measured at the early stages of pregnancy that can be used to predict normal versus abnormal pregnancy outcomes. We also conduct a simulation study to assess the importance of modelling correlated errors and quantify the consequences of model misspecification. PMID:27274601
NASA Astrophysics Data System (ADS)
Yadav, Manish; Singh, Nitin Kumar
2017-08-01
A comparison of the linear and non-linear regression method in selecting the optimum isotherm among three most commonly used adsorption isotherms (Langmuir, Freundlich, and Redlich-Peterson) was made to the experimental data of fluoride (F) sorption onto Bio-F at a solution temperature of 30 ± 1 °C. The coefficient of correlation (r2 ) was used to select the best theoretical isotherm among the investigated ones. A total of four Langmuir linear equations were discussed and out of which linear form of most popular Langmuir-1 and Langmuir-2 showed the higher coefficient of determination (0.976 and 0.989) as compared to other Langmuir linear equations. Freundlich and Redlich-Peterson isotherms showed a better fit to the experimental data in linear least-square method, while in non-linear method Redlich-Peterson isotherm equations showed the best fit to the tested data set. The present study showed that the non-linear method could be a better way to obtain the isotherm parameters and represent the most suitable isotherm. Redlich-Peterson isotherm was found to be the best representative (r2 = 0.999) for this sorption system. It is also observed that the values of β are not close to unity, which means the isotherms are approaching the Freundlich but not the Langmuir isotherm.
NASA Astrophysics Data System (ADS)
Shortridge, J.; Guikema, S.; Zaitchik, B. F.
2015-12-01
In the past decade, machine-learning methods for empirical rainfall-runoff modeling have seen extensive development. However, the majority of research has focused on a small number of methods, such as artificial neural networks, while not considering other approaches for non-parametric regression that have been developed in recent years. These methods may be able to achieve comparable predictive accuracy to ANN's and more easily provide physical insights into the system of interest through evaluation of covariate influence. Additionally, these methods could provide a straightforward, computationally efficient way of evaluating climate change impacts in basins where data to support physical hydrologic models is limited. In this paper, we use multiple regression and machine-learning approaches to predict monthly streamflow in five highly-seasonal rivers in the highlands of Ethiopia. We find that generalized additive models, random forests, and cubist models achieve better predictive accuracy than ANNs in many basins assessed and are also able to outperform physical models developed for the same region. We discuss some challenges that could hinder the use of such models for climate impact assessment, such as biases resulting from model formulation and prediction under extreme climate conditions, and suggest methods for preventing and addressing these challenges. Finally, we demonstrate how predictor variable influence can be assessed to provide insights into the physical functioning of data-sparse watersheds.
An Optimization-Based Method for Feature Ranking in Nonlinear Regression Problems.
Bravi, Luca; Piccialli, Veronica; Sciandrone, Marco
2016-02-03
In this paper, we consider the feature ranking problem, where, given a set of training instances, the task is to associate a score with the features in order to assess their relevance. Feature ranking is a very important tool for decision support systems, and may be used as an auxiliary step of feature selection to reduce the high dimensionality of real-world data. We focus on regression problems by assuming that the process underlying the generated data can be approximated by a continuous function (for instance, a feedforward neural network). We formally state the notion of relevance of a feature by introducing a minimum zero-norm inversion problem of a neural network, which is a nonsmooth, constrained optimization problem. We employ a concave approximation of the zero-norm function, and we define a smooth, global optimization problem to be solved in order to assess the relevance of the features. We present the new feature ranking method based on the solution of instances of the global optimization problem depending on the available training data. Computational experiments on both artificial and real data sets are performed, and point out that the proposed feature ranking method is a valid alternative to existing methods in terms of effectiveness. The obtained results also show that the method is costly in terms of CPU time, and this may be a limitation in the solution of large-dimensional problems.
Stevens, F. J.; Bobrovnik, S. A.; Biosciences Division; Palladin Inst. Biochemistry
2007-12-01
Physiological responses of the adaptive immune system are polyclonal in nature whether induced by a naturally occurring infection, by vaccination to prevent infection or, in the case of animals, by challenge with antigen to generate reagents of research or commercial significance. The composition of the polyclonal responses is distinct to each individual or animal and changes over time. Differences exist in the affinities of the constituents and their relative proportion of the responsive population. In addition, some of the antibodies bind to different sites on the antigen, whereas other pairs of antibodies are sterically restricted from concurrent interaction with the antigen. Even if generation of a monoclonal antibody is the ultimate goal of a project, the quality of the resulting reagent is ultimately related to the characteristics of the initial immune response. It is probably impossible to quantitatively parse the composition of a polyclonal response to antigen. However, molecular regression allows further parameterization of a polyclonal antiserum in the context of certain simplifying assumptions. The antiserum is described as consisting of two competing populations of high- and low-affinity and unknown relative proportions. This simple model allows the quantitative determination of representative affinities and proportions. These parameters may be of use in evaluating responses to vaccines, to evaluating continuity of antibody production whether in vaccine recipients or animals used for the production of antisera, or in optimizing selection of donors for the production of monoclonal antibodies.
Smith, Nathaniel J.; Kutas, Marta
2014-01-01
A companion paper introduced the rERP framework, which re-casts traditional ERP averaging as a special case of a more flexible regression-based approach to estimating ERP waveforms. Here, we build on this foundation, showing how rERP analysis can also handle the estimation of non-linear effects (a generalization of both the well-known approach of dichotomizing continuous covariates, and also of the ERP image technique), and can disentangle overlapping ERPs to temporally adjacent stimuli. We then consider how the use of rERPs impacts on other parts of the EEG analysis pipeline, including baselining, filtering, significance testing, and artifact rejection, and provide practical recommendations. Free software implementing these techniques is available. PMID:25195691
Neal, M J; White, R D
1978-01-01
1. The uptake of labelled L-glutamate by the isolated rat retina was measured over a large range of external concentrations (1 micron to 1 mM). 2. The results obtained from measurements of the initial velocity of L-glutamate uptake at different concentrations did not follow simple hyperbolic kinetics. 3. The error structure of replicate velocity measurements was examined and found to be normally distributed and heteroscedastic. 4. Descriptive models were fitted directly to data, weighted by the invariance, using non-linear regression analysis. 5. The most suitable suitable descriptive model consisted of a saturable hyperbola (Vm = 285 n-mole.(g wet wt.)-1.min-1, Km = 252 micron) and a linear term (b = 0.45 min-1). PMID:650545
O'Reilly, S; Riveros, M C
1994-01-01
A second degree equation fitted by nonlinear regression for the analysis of the pH effect on enzyme activity is proposed for diprotic enzyme systems. This method allows the calculation of two molecular dissociation constants (KE1 and KE2 for the free enzyme, KES1 and KES2 for the ES complex) and the pH independent parameters (Vmax and Vmax/Km). The method is validated by bibliographic (alpha-chymotrypsin) and experimental data (almond beta-D-glucosidase). No significant differences were found between present data and those previously reported in the literature using similar experimental conditions. This method works using comparatively few [H+] concentration values within a narrow pH range, preferentially around the optimum, being adequate for diprotic systems with close pKa values.
NASA Astrophysics Data System (ADS)
Hussain, Mirza Zahid; Li, Fuguo; Wang, Jing; Yuan, Zhanwei; Li, Pan; Wu, Tao
2015-07-01
The present study comprises the determination of constitutive relationship for thermo-mechanical processing of INCONEL 718 through double multivariate nonlinear regression, a newly developed approach which not only considers the effect of strain, strain rate, and temperature on flow stress but also explains the interaction effect of these thermo-mechanical parameters on flow behavior of the alloy. Hot isothermal compression experiments were performed on Gleeble-3500 thermo-mechanical testing machine in the temperature range of 1153 to 1333 K within the strain rate range of 0.001 to 10 s-1. The deformation behavior of INCONEL 718 is analyzed and summarized by establishing the high temperature deformation constitutive equation. The calculated correlation coefficient ( R) and average absolute relative error ( AARE) underline the precision of proposed constitutive model.
Alhotan, R A; Vedenov, D V; Pesti, G M
2016-10-04
The use of non-linear regression models in the analysis of biological data has led to advances in poultry nutrition. Spline or broken-line nonlinear regression models are commonly used to estimate nutritional requirements. One particular application of broken-line models is estimating the maximum safe level (MSL) of feed ingredients beyond which the ingredients become toxic, resulting in reduced performance. The objectives of this study were to evaluate the effectiveness of broken-line models (broken-line linear or BLL; and broken-line quadratic or BLQ) in estimating the MSL; to identify the most efficient design of feeding trials by finding the optimal number of ingredient levels and replications; and to re-estimate the MSL of various test ingredients reported in the nutrition literature for comparison purposes. The Maximum Ingredient level Optimization Workbook (MIOW) was developed to simulate a series of experiments and estimate the MSL and the corresponding descriptive statistics (SD, SE, CI, and R(2)). The results showed that the broken-line models provided good estimates of the MSL (small SE and high R(2)) with the BLL model producing higher MSL values as compared to the BLQ model. Increasing the number of experimental replications or ingredient levels (independently of each other) reduced the SE of the MSL with diminishing returns. The SE of the MSL was reduced with increasing the size (total pens) of the simulated experiments by increasing either the number of replications or levels or both. The evaluation of MSLs reported in the existing literature revealed that the multiple range procedure used to determine the MSL in several reports can both overestimate and underestimate the MSL compared to the results obtained by the broken-line models. The results suggest that the broken-line linear models can be used in lieu of the multiple range test to estimate the MSL of feed ingredients along with the corresponding descriptive statistics, such as the SE of the
Brown, A M
2001-06-01
The objective of this present study was to introduce a simple, easily understood method for carrying out non-linear regression analysis based on user input functions. While it is relatively straightforward to fit data with simple functions such as linear or logarithmic functions, fitting data with more complicated non-linear functions is more difficult. Commercial specialist programmes are available that will carry out this analysis, but these programmes are expensive and are not intuitive to learn. An alternative method described here is to use the SOLVER function of the ubiquitous spreadsheet programme Microsoft Excel, which employs an iterative least squares fitting routine to produce the optimal goodness of fit between data and function. The intent of this paper is to lead the reader through an easily understood step-by-step guide to implementing this method, which can be applied to any function in the form y=f(x), and is well suited to fast, reliable analysis of data in all fields of biology.
NASA Astrophysics Data System (ADS)
Arida, Maya Ahmad
In 1972 sustainable development concept existed and during The years it became one of the most important solution to save natural resources and energy, but now with rising energy costs and increasing awareness of the effect of global warming, the development of building energy saving methods and models become apparently more necessary for sustainable future. According to U.S. Energy Information Administration EIA (EIA), today buildings in the U.S. consume 72 percent of electricity produced, and use 55 percent of U.S. natural gas. Buildings account for about 40 percent of the energy consumed in the United States, more than industry and transportation. Of this energy, heating and cooling systems use about 55 percent. If energy-use trends continue, buildings will become the largest consumer of global energy by 2025. This thesis proposes procedures and analysis techniques for building energy system and optimization methods using time series auto regression artificial neural networks. The model predicts whole building energy consumptions as a function of four input variables, dry bulb and wet bulb outdoor air temperatures, hour of day and type of day. The proposed model and the optimization process are tested using data collected from an existing building located in Greensboro, NC. The testing results show that the model can capture very well the system performance, and The optimization method was also developed to automate the process of finding the best model structure that can produce the best accurate prediction against the actual data. The results show that the developed model can provide results sufficiently accurate for its use in various energy efficiency and saving estimation applications.
Arambasić, M B; Ristanović, D; Djordjević, A
2002-01-01
The dependance of the content and microbiological activity of Chloramphenicol (active substance) at dissolution on time and on pH, as well as that of the content and microbiological activity of Chloramphenicol (250 mg capsules) at release, on time, in in-vitro conditions, was determined using linear and non-linear (polynomial and generalized dilution) regressions. Based on the square error value, the dependance of the content and microbiological activity of Chloramphenicol (active substance) at dissolution on time and different pH values, as well as the dependance of the content and microbiological activity of Chloramphenicol (capsules) at release on time were best described by polynomial function. The comparison of the content and microbiological activity of Chloramphenicol (active substance) at dissolution at different pH values, as well as of Chloramphenicol (capsules) at release showed the significant correlation between these parameters (r = 0.999, P < 0.001). The comparision of the content, on one hand, and microbiological activity of Chloramphenicol (active substance), on the other, at dissolution at different pH values, as a function of time, was done using a modified method of one-way analysis of variance for linear regression comparisons. Based on the value of Fischer's coefficient (F), there is a statistically very significant difference between the contents and between the microbiological activities of chloramphenicol (active substance) at dissolution and different pH as a function of time (P < 0.005).
Poullis, Michael
2014-11-01
EuroSCORE II, despite improving on the original EuroSCORE system, has not solved all the calibration and predictability issues. Recursive, non-linear and mixed recursive and non-linear regression analysis were assessed with regard to sensitivity, specificity and predictability of the original EuroSCORE and EuroSCORE II systems. The original logistic EuroSCORE, EuroSCORE II and recursive, non-linear and mixed recursive and non-linear regression analyses of these risk models were assessed via receiver operator characteristic curves (ROC) and Hosmer-Lemeshow statistic analysis with regard to the accuracy of predicting in-hospital mortality. Analysis was performed for isolated coronary artery bypass grafts (CABGs) (n = 2913), aortic valve replacement (AVR) (n = 814), mitral valve surgery (n = 340), combined AVR and CABG (n = 517), aortic (n = 350), miscellaneous cases (n = 642), and combinations of the above cases (n = 5576). The original EuroSCORE had an ROC below 0.7 for isolated AVR and combined AVR and CABG. None of the methods described increased the ROC above 0.7. The EuroSCORE II risk model had an ROC below 0.7 for isolated AVR only. Recursive regression, non-linear regression, and mixed recursive and non-linear regression all increased the ROC above 0.7 for isolated AVR. The original EuroSCORE had a Hosmer-Lemeshow statistic that was above 0.05 for all patients and the subgroups analysed. All of the techniques markedly increased the Hosmer-Lemeshow statistic. The EuroSCORE II risk model had a Hosmer-Lemeshow statistic that was significant for all patients (P < 0.0001), and very close to significant for isolated CABG (P = 0.05) and for isolated AVR (P = 0.06). Non-linear regression failed to improve on the original Hosmer-Lemeshow statistic. The mixed recursive and non-linear regression using the EuroSCORE II risk model was the only model that produced an ROC of 0.7 or above for all patients and procedures and had a Hosmer-Lemeshow statistic that was highly non
Bias associated with using the estimated propensity score as a regression covariate.
Hade, Erinn M; Lu, Bo
2014-01-15
The use of propensity score methods to adjust for selection bias in observational studies has become increasingly popular in public health and medical research. A substantial portion of studies using propensity score adjustment treat the propensity score as a conventional regression predictor. Through a Monte Carlo simulation study, Austin and colleagues. investigated the bias associated with treatment effect estimation when the propensity score is used as a covariate in nonlinear regression models, such as logistic regression and Cox proportional hazards models. We show that the bias exists even in a linear regression model when the estimated propensity score is used and derive the explicit form of the bias. We also conduct an extensive simulation study to compare the performance of such covariate adjustment with propensity score stratification, propensity score matching, inverse probability of treatment weighted method, and nonparametric functional estimation using splines. The simulation scenarios are designed to reflect real data analysis practice. Instead of specifying a known parametric propensity score model, we generate the data by considering various degrees of overlap of the covariate distributions between treated and control groups. Propensity score matching excels when the treated group is contained within a larger control pool, while the model-based adjustment may have an edge when treated and control groups do not have too much overlap. Overall, adjusting for the propensity score through stratification or matching followed by regression or using splines, appears to be a good practical strategy.
Ellinger, Sabine; Reusch, Andreas; Stehle, Peter; Helfrich, Hans-Peter
2012-06-01
Four meta-analyses of randomized controlled trials (RCTs) based on the classical random-effects model showed that cocoa consumption can reduce systolic blood pressure (SBP) and diastolic blood pressure (DBP). Because epicatechin is suggested to be responsible for the treatment effect, changes in blood pressure should depend on the dose of ingested epicatechin, which may explain the between-study differences. The objective was to quantify the effect of epicatechin ingested via cocoa products on changes in SBP and DBP. A nonlinear meta-regression model was chosen to investigate the impact of the epicatechin dose on changes in SBP and DBP. A Bayesian approach using Markov chain Monte Carlo methods was applied for an appropriate treatment of the nonlinearity. Data from 16 RCTs on SBP and 15 RCTs on DBP were included. The dose of epicatechin ingested via cocoa products influenced the changes in SBP and DBP. The asymptotic limit for the reduction was estimated at -4.6 mm Hg (95% CI: -5.4, -3.9 mm Hg) for SBP and at -2.1 mm Hg (95% CI: -2.7, -1.6 mm Hg) for DBP. An intake of 25 mg epicatechin/d led to a mean reduction of -4.1 mm Hg (95% CI: -4.6, -3.6 mm Hg) in SBP and of -2.0 mm Hg (95% CI: -2.4, -1.5 mm Hg) in DBP. Blood pressure reduction by consumption of cocoa products depends on the dose of ingested epicatechin, which explains most of the between-study differences in classical meta-analyses. Similar effects may be achieved by consumption of other foods that are also rich in epicatechin.
Ncibi, Mohamed Chaker
2008-05-01
In any single component isotherm study, determining the best-fitting model is a key analysis to mathematically describe the involved sorption system and, therefore, to explore the related theoretical assumptions. Hence, several error calculation functions have been widely used to estimate the error deviations between experimental and theoretically predicted equilibrium adsorption values (Q(e,exp)vs.Q(e,theo) as X- and Y-axis, respectively), including the average relative error deviation, the Marquardt's percent standard error deviation, the hybrid fractional error function, the sum of the squares of the errors, the correlation coefficient and the residuals. In this study, five other statistical functions are analysed to investigate their applicability as suitable tools to evaluate isotherm model fitness, namely the Pearson correlation coefficient, the coefficient of determination, the Chi-square test, the F-test and the Student's T-test, using the commonly-used functions as references. The adsorption of textile dye onto Posidonia oceanica seagrass fibres was carried out, as study case, in batch mode at 20 degrees C. Besides, and in order to get an overall approach of the possible utilization of these statistical functions within the studied item, the examination was realized for both linear and non-linear regression analysis. The related results showed that, among the five studied statistical tools, the chi(2) and Student's T-tests were suitable to determine the best-fitting isotherm model for the case of linear modelling approach. On the other hand, dealing with the non-linear analysis, despite the Student's T-test, all the other functions gave satisfactorily results, by agreeing the commonly-used error functions calculation.
NASA Astrophysics Data System (ADS)
Alves, Larissa A.; de Castro, Arthur H.; de Mendonça, Fernanda G.; de Mesquita, João P.
2016-05-01
The oxygenated functional groups present on the surface of carbon dots with an average size of 2.7 ± 0.5 nm were characterized by a variety of techniques. In particular, we discussed the fit data of potentiometric titration curves using a nonlinear regression method based on the Levenberg-Marquardt algorithm. The results obtained by statistical treatment of the titration curve data showed that the best fit was obtained considering the presence of five Brønsted-Lowry acids on the surface of the carbon dots with constant ionization characteristics of carboxylic acids, cyclic ester, phenolic and pyrone-like groups. The total number of oxygenated acid groups obtained was 5 mmol g-1, with approximately 65% (∼2.9 mmol g-1) originating from groups with pKa < 6. The methodology showed good reproducibility and stability with standard deviations below 5%. The nature of the groups was independent of small variations in experimental conditions, i.e. the mass of carbon dots titrated and initial concentration of HCl solution. Finally, we believe that the methodology used here, together with other characterization techniques, is a simple, fast and powerful tool to characterize the complex acid-base properties of these so interesting and intriguing nanoparticles.
Svendsen, Carina; Skov, Thomas; van den Berg, Frans W J
2016-07-22
Fluorescence spectroscopy is a sensitive and selective technique, which can be of great value in bioprocesses to provide online, real-time measures of chemical compounds. Although fluorescence spectroscopy is a widely studied method, not much attention has been given to issues concerning intensity variations in the fluorescence landscapes due to pH fluctuations. This study elucidates how pH fluctuations cause intensity changes in fluorescence measurements and thereby decreases the quality of the subsequent quantification. A photo-degradation process of riboflavin was investigated by fluorescence spectroscopy and used as a model system. A two-step modeling approach, combining weighted PARAllel FACtor analysis (PARAFAC) with weighted non-linear regression of the known reaction kinetics, is suggested as a way of handling the fluorescence intensity shifts caused by the pH changes. The suggested strategy makes it possible to compensate for uncertainties in the shifted data and thereby obtain more reliable concentration profiles for the chemical compounds and kinetic parameters of the reaction.
Brown, Angus M
2006-04-01
The objective of this present study was to demonstrate a method for fitting complex electrophysiological data with multiple functions using the SOLVER add-in of the ubiquitous spreadsheet Microsoft Excel. SOLVER minimizes the difference between the sum of the squares of the data to be fit and the function(s) describing the data using an iterative generalized reduced gradient method. While it is a straightforward procedure to fit data with linear functions, and we have previously demonstrated a method of non-linear regression analysis of experimental data based upon a single function, it is more complex to fit data with multiple functions, usually requiring specialized expensive computer software. In this paper we describe an easily understood program for fitting experimentally acquired data, in this case the stimulus-evoked compound action potential from the mouse optic nerve, with multiple Gaussian functions. The program is flexible and can be applied to describe data with a wide variety of user-input functions.
Chen, Quansheng; Ding, Jiao; Cai, Jianrong; Zhao, Jiewen
2012-11-15
Total acid content (TAC) is an important index in assessing vinegar quality. This work attempted to determine TAC in vinegar using near infrared spectroscopy. We systematically studied variable selection and nonlinear regression in calibrating regression models. First, the efficient spectra intervals were selected by synergy interval PLS (Si-PLS); then, two nonlinear regression tools, which were extreme learning machine (ELM) and back propagation artificial neural network (BP-ANN), were attempted. Experiments showed that the model based on ELM and Si-PLS (Si-ELM) was superior to others, and the optimum results were achieved as follows: the root mean square error of prediction (RMSEP) was 0.2486 g/100mL, and the correlation coefficient (R(p)) was 0.9712 in the prediction set. This work demonstrated that the TAC in vinegar could be rapidly measured by NIR spectroscopy and Si-ELM algorithm showed its superiority in model calibration.
Godsland, Ian F; Agbaje, Olorunsola F; Hovorka, Roman
2006-07-01
Minimal model analysis of intravenous glucose tolerance test (IVGTT) glucose and insulin concentrations offers a validated approach to measuring insulin sensitivity, but model identification is not always successful. Improvements may be achieved by using alternative settings in the modeling process, although results may differ according to setting, and care must be exercised in combining results. IVGTT data (12 samples, regular test) from 533 men without diabetes was modeled by the traditional nonlinear regression (NLR) approach, using five different permutations of settings. Results were evaluated with reference to the more robust Bayesian hierarchical (BH) approach to model identification and to the proportion of variance they explained in known correlates of insulin sensitivity (age, BMI, blood pressure, fasting glucose and insulin, serum triglyceride, HDL cholesterol, and uric acid concentration). BH analysis was successful in all cases. With NLR analysis, between 17 and 35 IVGTTs were associated with parameter coefficients of variation (PCVs) for minimal model parameters S(I) (insulin sensitivity) and S(G) (glucose effectiveness) of >100%. Systematic use of each different approach in combination reduced this number to five. Mean (interquartile range) S(I)(NLR) was then 3.14 (2.29-4.63) min(-1).mU(-1).l x 10(-4) and 2.56 (1.74-3.83) min(-1).mU(-1).l x 10(-4) for S(I)(BH) (correlation 0.86, P < 0.0001). S(I)(NLR) explained, on average, 10.6% of the variance in known correlates of insulin sensitivity, whereas S(I)(BH) explained 8.5%. In a large body of data, which BH analysis demonstrated could be fully identified, use of alternative modeling settings in NLR analysis could substantially reduce the number of analyses with PCVs >100%. S(I)(NLR) compared favorably with S(I)(BH) in the proportion of variance explained in known correlates of insulin sensitivity.
NASA Astrophysics Data System (ADS)
Lin, Yiqiu
2007-12-01
Ozone forecast models using nonlinear regression (NLR) have been successfully applied to daily ozone forecast for seven metro areas in Kentucky, including Ashland, Bowling Green, Covington, Lexington, Louisville, Owensboro, and Paducah. In this study, the updated 2005 NLR ozone forecast models for these metro areas were evaluated on both the calibration data sets and independent data sets. These NLR ozone forecast models explained at least 72% of the variance of the daily peak ozone. Using the models to predict the ozone concentrations during the 2005 ozone season, the metro area mean absolute errors (MAEs) of the model hindcasts ranged from 5.90 ppb to 7.20 ppb. For the model raw forecasts, the metro area MAEs ranged from 7.90 ppb to 9.80 ppb. Based on previously developed NLR ozone forecast models for those areas, Takagi-Sugeno fuzzy system models were developed for the seven metro areas. The fuzzy "c-means" clustering technique coupled with an optimal output predefuzzification approach (least square method) was used to train the Takagi-Sugeno fuzzy system. Two types of fuzzy models, basic fuzzy and NLR-fuzzy system models, were developed. The basic fuzzy and NLR-fuzzy models exhibited essentially equivalent performance to the existing NLR models on 2004 ozone season hindcasts and forecasts. Both types of fuzzy models had, on average, slightly lower metro area averaged MAEs than the NLR models. Among the seven Kentucky metro areas Ashland, Covington, and Louisville are currently designated nonattainment areas for both ground level O 3 and PM2.5. In this study, summer PM2.5 forecast models were developed for providing daily average PM2.5 forecasts for the seven metro areas. The performance of the PM2.5 forecast models was generally not as good as that of the ozone forecast models. For the summer 2004 model hindcasts, the metro-area average MAE was 5.33 mug/m 3. Exploratory research was conducted to find the relationship between the winter PM2.5 concentrations and
Meloun, Milan; Bordovská, Sylva; Galla, Lubomír
2007-11-30
The mixed dissociation constants of four non-steroidal anti-inflammatory drugs (NSAIDs) ibuprofen, diclofenac sodium, flurbiprofen and ketoprofen at various ionic strengths I of range 0.003-0.155, and at temperatures of 25 degrees C and 37 degrees C, were determined with the use of two different multiwavelength and multivariate treatments of spectral data, SPECFIT/32 and SQUAD(84) nonlinear regression analyses and INDICES factor analysis. The factor analysis in the INDICES program predicts the correct number of components, and even the presence of minor ones, when the data quality is high and the instrumental error is known. The thermodynamic dissociation constant pK(a)(T) was estimated by nonlinear regression of (pK(a), I) data at 25 degrees C and 37 degrees C. Goodness-of-fit tests for various regression diagnostics enabled the reliability of the parameter estimates found to be proven. PALLAS, MARVIN, SPARC, ACD/pK(a) and Pharma Algorithms predict pK(a) being based on the structural formulae of drug compounds in agreement with the experimental value. The best agreement seems to be between the ACD/pK(a) program and experimentally found values and with SPARC. PALLAS and MARVIN predicted pK(a,pred) values with larger bias errors in comparison with the experimental value for all four drugs.
Kumar, K Vasanth; Porkodi, K; Rocha, F
2008-01-15
A comparison of linear and non-linear regression method in selecting the optimum isotherm was made to the experimental equilibrium data of basic red 9 sorption by activated carbon. The r(2) was used to select the best fit linear theoretical isotherm. In the case of non-linear regression method, six error functions namely coefficient of determination (r(2)), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), the average relative error (ARE), sum of the errors squared (ERRSQ) and sum of the absolute errors (EABS) were used to predict the parameters involved in the two and three parameter isotherms and also to predict the optimum isotherm. Non-linear regression was found to be a better way to obtain the parameters involved in the isotherms and also the optimum isotherm. For two parameter isotherm, MPSD was found to be the best error function in minimizing the error distribution between the experimental equilibrium data and predicted isotherms. In the case of three parameter isotherm, r(2) was found to be the best error function to minimize the error distribution structure between experimental equilibrium data and theoretical isotherms. The present study showed that the size of the error function alone is not a deciding factor to choose the optimum isotherm. In addition to the size of error function, the theory behind the predicted isotherm should be verified with the help of experimental data while selecting the optimum isotherm. A coefficient of non-determination, K(2) was explained and was found to be very useful in identifying the best error function while selecting the optimum isotherm.
Kumar, K Vasanth; Porkodi, K; Rocha, F
2008-03-01
A comparison of linear and non-linear regression method in selecting the optimum isotherm was made to the experimental equilibrium data of methylene blue sorption by activated carbon. The r2 was used to select the best fit linear theoretical isotherm. In the case of non-linear regression method, six error functions, namely coefficient of determination (r2), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), average relative error (ARE), sum of the errors squared (ERRSQ) and sum of the absolute errors (EABS) were used to predict the parameters involved in the two and three parameter isotherms and also to predict the optimum isotherm. For two parameter isotherm, MPSD was found to be the best error function in minimizing the error distribution between the experimental equilibrium data and predicted isotherms. In the case of three parameter isotherm, r2 was found to be the best error function to minimize the error distribution structure between experimental equilibrium data and theoretical isotherms. The present study showed that the size of the error function alone is not a deciding factor to choose the optimum isotherm. In addition to the size of error function, the theory behind the predicted isotherm should be verified with the help of experimental data while selecting the optimum isotherm. A coefficient of non-determination, K2 was explained and was found to be very useful in identifying the best error function while selecting the optimum isotherm.
Jansat, J M; Lastra, C F; Mariño, E L
1998-06-01
The influence of different weighting methods in non-linear regression analysis was evaluated in the pharmacokinetics of carebastine after a single intravenous dose of 10 mg in 8 healthy volunteers. Plasma concentrations were measured by HPLC using an on-line solid-phase extraction method and automated injection. The analytical method was fully validated and the function of the analytical error subsequently determined. The parametric approach was performed using different weighting methods, including the homoscedastic method (W = 1) and heteroscedastic methods using weights of 1/C, 1/C2, and the inverse of the concentration variance calculated through the analytical error function (1/V), and the results were statistically evaluated according to the normal distribution. Statistically significant differences were observed in the representative parameters of the disposition kinetics of carebastine. The use of a multiple comparison test for statistical analysis of all differences among group means indicated that differences were generated between the homoscedastic method (W = 1) and the heteroscedastic methods (1/C, 1/C2, and 1/V). The results obtained in the present study confirmed the utility of the analytical error function as a weighting method in non-linear regression analysis and reinforced the importance of the correct choice of weights to avoid the estimation of imprecise or erroneous pharmacokinetic parameters.
Huang, Yangxin; Chen, Jiaqing
2016-12-30
This article explores Bayesian joint models for a quantile of longitudinal response, mismeasured covariate and event time outcome with an attempt to (i) characterize the entire conditional distribution of the response variable based on quantile regression that may be more robust to outliers and misspecification of error distribution; (ii) tailor accuracy from measurement error, evaluate non-ignorable missing observations, and adjust departures from normality in covariate; and (iii) overcome shortages of confidence in specifying a time-to-event model. When statistical inference is carried out for a longitudinal data set with non-central location, non-linearity, non-normality, measurement error, and missing values as well as event time with being interval censored, it is important to account for the simultaneous treatment of these data features in order to obtain more reliable and robust inferential results. Toward this end, we develop Bayesian joint modeling approach to simultaneously estimating all parameters in the three models: quantile regression-based nonlinear mixed-effects model for response using asymmetric Laplace distribution, linear mixed-effects model with skew-t distribution for mismeasured covariate in the presence of informative missingness and accelerated failure time model with unspecified nonparametric distribution for event time. We apply the proposed modeling approach to analyzing an AIDS clinical data set and conduct simulation studies to assess the performance of the proposed joint models and method. Copyright © 2016 John Wiley & Sons, Ltd.
Yu, Lijing; Zhou, Lingling; Tan, Li; Jiang, Hongbo; Wang, Ying; Wei, Sheng; Nie, Shaofa
2014-01-01
Outbreaks of hand-foot-mouth disease (HFMD) have been reported for many times in Asia during the last decades. This emerging disease has drawn worldwide attention and vigilance. Nowadays, the prevention and control of HFMD has become an imperative issue in China. Early detection and response will be helpful before it happening, using modern information technology during the epidemic. In this paper, a hybrid model combining seasonal auto-regressive integrated moving average (ARIMA) model and nonlinear auto-regressive neural network (NARNN) is proposed to predict the expected incidence cases from December 2012 to May 2013, using the retrospective observations obtained from China Information System for Disease Control and Prevention from January 2008 to November 2012. The best-fitted hybrid model was combined with seasonal ARIMA [Formula: see text] and NARNN with 15 hidden units and 5 delays. The hybrid model makes the good forecasting performance and estimates the expected incidence cases from December 2012 to May 2013, which are respectively -965.03, -1879.58, 4138.26, 1858.17, 4061.86 and 6163.16 with an obviously increasing trend. The model proposed in this paper can predict the incidence trend of HFMD effectively, which could be helpful to policy makers. The usefulness of expected cases of HFMD perform not only in detecting outbreaks or providing probability statements, but also in providing decision makers with a probable trend of the variability of future observations that contains both historical and recent information.
Tan, Li; Jiang, Hongbo; Wang, Ying; Wei, Sheng; Nie, Shaofa
2014-01-01
Background Outbreaks of hand-foot-mouth disease (HFMD) have been reported for many times in Asia during the last decades. This emerging disease has drawn worldwide attention and vigilance. Nowadays, the prevention and control of HFMD has become an imperative issue in China. Early detection and response will be helpful before it happening, using modern information technology during the epidemic. Method In this paper, a hybrid model combining seasonal auto-regressive integrated moving average (ARIMA) model and nonlinear auto-regressive neural network (NARNN) is proposed to predict the expected incidence cases from December 2012 to May 2013, using the retrospective observations obtained from China Information System for Disease Control and Prevention from January 2008 to November 2012. Results The best-fitted hybrid model was combined with seasonal ARIMA and NARNN with 15 hidden units and 5 delays. The hybrid model makes the good forecasting performance and estimates the expected incidence cases from December 2012 to May 2013, which are respectively −965.03, −1879.58, 4138.26, 1858.17, 4061.86 and 6163.16 with an obviously increasing trend. Conclusion The model proposed in this paper can predict the incidence trend of HFMD effectively, which could be helpful to policy makers. The usefulness of expected cases of HFMD perform not only in detecting outbreaks or providing probability statements, but also in providing decision makers with a probable trend of the variability of future observations that contains both historical and recent information. PMID:24893000
Lambert, Ronald J W; Mytilinaios, Ioannis; Maitland, Luke; Brown, Angus M
2012-08-01
This study describes a method to obtain parameter confidence intervals from the fitting of non-linear functions to experimental data, using the SOLVER and Analysis ToolPaK Add-In of the Microsoft Excel spreadsheet. Previously we have shown that Excel can fit complex multiple functions to biological data, obtaining values equivalent to those returned by more specialized statistical or mathematical software. However, a disadvantage of using the Excel method was the inability to return confidence intervals for the computed parameters or the correlations between them. Using a simple Monte-Carlo procedure within the Excel spreadsheet (without recourse to programming), SOLVER can provide parameter estimates (up to 200 at a time) for multiple 'virtual' data sets, from which the required confidence intervals and correlation coefficients can be obtained. The general utility of the method is exemplified by applying it to the analysis of the growth of Listeria monocytogenes, the growth inhibition of Pseudomonas aeruginosa by chlorhexidine and the further analysis of the electrophysiological data from the compound action potential of the rodent optic nerve.
Zou, G Y; Donner, Allan
2013-12-01
The Poisson regression model using a sandwich variance estimator has become a viable alternative to the logistic regression model for the analysis of prospective studies with independent binary outcomes. The primary advantage of this approach is that it readily provides covariate-adjusted risk ratios and associated standard errors. In this article, the model is extended to studies with correlated binary outcomes as arise in longitudinal or cluster randomization studies. The key step involves a cluster-level grouping strategy for the computation of the middle term in the sandwich estimator. For a single binary exposure variable without covariate adjustment, this approach results in risk ratio estimates and standard errors that are identical to those found in the survey sampling literature. Simulation results suggest that it is reliable for studies with correlated binary data, provided the total number of clusters is at least 50. Data from observational and cluster randomized studies are used to illustrate the methods.
NASA Astrophysics Data System (ADS)
Huttunen, Jani; Kokkola, Harri; Mielonen, Tero; Esa Juhani Mononen, Mika; Lipponen, Antti; Reunanen, Juha; Vilhelm Lindfors, Anders; Mikkonen, Santtu; Erkki Juhani Lehtinen, Kari; Kouremeti, Natalia; Bais, Alkiviadis; Niska, Harri; Arola, Antti
2016-07-01
In order to have a good estimate of the current forcing by anthropogenic aerosols, knowledge on past aerosol levels is needed. Aerosol optical depth (AOD) is a good measure for aerosol loading. However, dedicated measurements of AOD are only available from the 1990s onward. One option to lengthen the AOD time series beyond the 1990s is to retrieve AOD from surface solar radiation (SSR) measurements taken with pyranometers. In this work, we have evaluated several inversion methods designed for this task. We compared a look-up table method based on radiative transfer modelling, a non-linear regression method and four machine learning methods (Gaussian process, neural network, random forest and support vector machine) with AOD observations carried out with a sun photometer at an Aerosol Robotic Network (AERONET) site in Thessaloniki, Greece. Our results show that most of the machine learning methods produce AOD estimates comparable to the look-up table and non-linear regression methods. All of the applied methods produced AOD values that corresponded well to the AERONET observations with the lowest correlation coefficient value being 0.87 for the random forest method. While many of the methods tended to slightly overestimate low AODs and underestimate high AODs, neural network and support vector machine showed overall better correspondence for the whole AOD range. The differences in producing both ends of the AOD range seem to be caused by differences in the aerosol composition. High AODs were in most cases those with high water vapour content which might affect the aerosol single scattering albedo (SSA) through uptake of water into aerosols. Our study indicates that machine learning methods benefit from the fact that they do not constrain the aerosol SSA in the retrieval, whereas the LUT method assumes a constant value for it. This would also mean that machine learning methods could have potential in reproducing AOD from SSR even though SSA would have changed during
NASA Astrophysics Data System (ADS)
Ramoelo, A.; Skidmore, A. K.; Cho, M. A.; Mathieu, R.; Heitkönig, I. M. A.; Dudeni-Tlhone, N.; Schlerf, M.; Prins, H. H. T.
2013-08-01
Grass nitrogen (N) and phosphorus (P) concentrations are direct indicators of rangeland quality and provide imperative information for sound management of wildlife and livestock. It is challenging to estimate grass N and P concentrations using remote sensing in the savanna ecosystems. These areas are diverse and heterogeneous in soil and plant moisture, soil nutrients, grazing pressures, and human activities. The objective of the study is to test the performance of non-linear partial least squares regression (PLSR) for predicting grass N and P concentrations through integrating in situ hyperspectral remote sensing and environmental variables (climatic, edaphic and topographic). Data were collected along a land use gradient in the greater Kruger National Park region. The data consisted of: (i) in situ-measured hyperspectral spectra, (ii) environmental variables and measured grass N and P concentrations. The hyperspectral variables included published starch, N and protein spectral absorption features, red edge position, narrow-band indices such as simple ratio (SR) and normalized difference vegetation index (NDVI). The results of the non-linear PLSR were compared to those of conventional linear PLSR. Using non-linear PLSR, integrating in situ hyperspectral and environmental variables yielded the highest grass N and P estimation accuracy (R2 = 0.81, root mean square error (RMSE) = 0.08, and R2 = 0.80, RMSE = 0.03, respectively) as compared to using remote sensing variables only, and conventional PLSR. The study demonstrates the importance of an integrated modeling approach for estimating grass quality which is a crucial effort towards effective management and planning of protected and communal savanna ecosystems.
Biyanto, Totok R.
2016-06-03
Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO{sub 2} emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.
NASA Astrophysics Data System (ADS)
Biyanto, Totok R.
2016-06-01
Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO2 emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.
Dikaios, Nikolaos; Atkinson, David; Tudisca, Chiara; Purpura, Pierpaolo; Forster, Martin; Ahmed, Hashim; Beale, Timothy; Emberton, Mark; Punwani, Shonit
2017-03-01
The aim of this work is to compare Bayesian Inference for nonlinear models with commonly used traditional non-linear regression (NR) algorithms for estimating tracer kinetics in Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI). The algorithms are compared in terms of accuracy, and reproducibility under different initialization settings. Further it is investigated how a more robust estimation of tracer kinetics affects cancer diagnosis. The derived tracer kinetics from the Bayesian algorithm were validated against traditional NR algorithms (i.e. Levenberg-Marquardt, simplex) in terms of accuracy on a digital DCE phantom and in terms of goodness-of-fit (Kolmogorov-Smirnov test) on ROI-based concentration time courses from two different patient cohorts. The first cohort consisted of 76 men, 20 of whom had significant peripheral zone prostate cancer (any cancer-core-length (CCL) with Gleason>3+3 or any-grade with CCL>=4mm) following transperineal template prostate mapping biopsy. The second cohort consisted of 9 healthy volunteers and 24 patients with head and neck squamous cell carcinoma. The diagnostic ability of the derived tracer kinetics was assessed with receiver operating characteristic area under curve (ROC AUC) analysis. The Bayesian algorithm accurately recovered the ground-truth tracer kinetics for the digital DCE phantom consistently improving the Structural Similarity Index (SSIM) across the 50 different initializations compared to NR. For optimized initialization, Bayesian did not improve significantly the fitting accuracy on both patient cohorts, and it only significantly improved the ve ROC AUC on the HN population from ROC AUC=0.56 for the simplex to ROC AUC=0.76. For both cohorts, the values and the diagnostic ability of tracer kinetic parameters estimated with the Bayesian algorithm weren't affected by their initialization. To conclude, the Bayesian algorithm led to a more accurate and reproducible quantification of tracer kinetic
Nonlinear Regression Methods for Estimation
2005-09-01
accuracy when the geometric dilution of precision ( GDOP ) causes collinearity, which in turn brings about poor position estimates. The main goal is...measurements are needed to wash-out the 168 measurement noise. Furthermore, the measurement arrangement’s geometry ( GDOP ) strongly impacts the achievable...Newton algorithm, 61 geometric dilution of precision, see GDOP initial parameter estimate, 91 iterative least squares, see ILS Kalman filtering, 10
Liu, Tong-Zu; Xu, Chang; Rota, Matteo; Cai, Hui; Zhang, Chao; Shi, Ming-Jun; Yuan, Rui-Xia; Weng, Hong; Meng, Xiang-Yu; Kwong, Joey S W; Sun, Xin
2017-04-01
Approximately 27-37% of the general population experience prolonged sleep duration and 12-16% report shortened sleep duration. However, prolonged or shortened sleep duration may be associated with serious health problems. A comprehensive, flexible, non-linear meta-regression with restricted cubic spline (RCS) was used to investigate the dose-response relationship between sleep duration and all-cause mortality in adults. Medline (Ovid), Embase, EBSCOhost-PsycINFO, and EBSCOhost-CINAHL Plus databases, reference lists of relevant review articles, and included studies were searched up to Nov. 29, 2015. Prospective cohort studies investigating the association between sleep duration and all-cause mortality in adults with at least three categories of sleep duration were eligible for inclusion. We eventually included in our study 40 cohort studies enrolling 2,200,425 participants with 271,507 deaths. A J-shaped association between sleep duration and all-cause mortality was present: compared with 7 h of sleep (reference for 24-h sleep duration), both shortened and prolonged sleep durations were associated with increased risk of all-cause mortality (4 h: relative risk [RR] = 1.05; 95% confidence interval [CI] = 1.02-1.07; 5 h: RR = 1.06; 95% CI = 1.03-1.09; 6 h: RR = 1.04; 95% CI = 1.03-1.06; 8 h: RR = 1.03; 95% CI = 1.02-1.05; 9 h: RR = 1.13; 95% CI = 1.10-1.16; 10 h: RR = 1.25; 95% CI = 1.22-1.28; 11 h: RR = 1.38; 95% CI = 1.33-1.44; n = 29; P < 0.01 for non-linear test). With regard to the night-sleep duration, prolonged night-sleep duration was associated with increased all-cause mortality (8 h: RR = 1.01; 95% CI = 0.99-1.02; 9 h: RR = 1.08; 95% CI = 1.05-1.11; 10 h: RR = 1.24; 95% CI = 1.21-1.28; n = 13; P < 0.01 for non-linear test). Subgroup analysis showed females with short sleep duration a day (<7 h) were at high risk of all-cause mortality (4 h: RR = 1.07; 95% CI = 1.02-1.13; 5 h: RR = 1.08; 95
Hill, Mary Catherine
1992-01-01
This report documents a new version of the U.S. Geological Survey modular, three-dimensional, finite-difference, ground-water flow model (MODFLOW) which, with the new Parameter-Estimation Package that also is documented in this report, can be used to estimate parameters by nonlinear regression. The new version of MODFLOW is called MODFLOWP (pronounced MOD-FLOW*P), and functions nearly identically to MODFLOW when the ParameterEstimation Package is not used. Parameters are estimated by minimizing a weighted least-squares objective function by the modified Gauss-Newton method or by a conjugate-direction method. Parameters used to calculate the following MODFLOW model inputs can be estimated: Transmissivity and storage coefficient of confined layers; hydraulic conductivity and specific yield of unconfined layers; vertical leakance; vertical anisotropy (used to calculate vertical leakance); horizontal anisotropy; hydraulic conductance of the River, Streamflow-Routing, General-Head Boundary, and Drain Packages; areal recharge rates; maximum evapotranspiration; pumpage rates; and the hydraulic head at constant-head boundaries. Any spatial variation in parameters can be defined by the user. Data used to estimate parameters can include existing independent estimates of parameter values, observed hydraulic heads or temporal changes in hydraulic heads, and observed gains and losses along head-dependent boundaries (such as streams). Model output includes statistics for analyzing the parameter estimates and the model; these statistics can be used to quantify the reliability of the resulting model, to suggest changes in model construction, and to compare results of models constructed in different ways.
Shuguang Liua; Pamela Anderson; Guoyi Zhoud; Boone Kauffman; Flint Hughes; David Schimel; Vicente Watson; Joseph. Tosi
2008-01-01
Objectively assessing the performance of a model and deriving model parameter values from observations are critical and challenging in landscape to regional modeling. In this paper, we applied a nonlinear inversion technique to calibrate the ecosystem model CENTURY against carbon (C) and nitrogen (N) stock measurements collected from 39 mature tropical forest sites in...
Tomlinson, Sean
2016-04-01
The calculation and comparison of physiological characteristics of thermoregulation has provided insight into patterns of ecology and evolution for over half a century. Thermoregulation has typically been explored using linear techniques; I explore the application of non-linear scaling to more accurately calculate and compare characteristics and thresholds of thermoregulation, including the basal metabolic rate (BMR), peak metabolic rate (PMR) and the lower (Tlc) and upper (Tuc) critical limits to the thermo-neutral zone (TNZ) for Australian rodents. An exponentially-modified logistic function accurately characterised the response of metabolic rate to ambient temperature, while evaporative water loss was accurately characterised by a Michaelis-Menten function. When these functions were used to resolve unique parameters for the nine species studied here, the estimates of BMR and TNZ were consistent with the previously published estimates. The approach resolved differences in rates of metabolism and water loss between subfamilies of Australian rodents that haven't been quantified before. I suggest that non-linear scaling is not only more effective than the established segmented linear techniques, but also is more objective. This approach may allow broader and more flexible comparison of characteristics of thermoregulation, but it needs testing with a broader array of taxa than those used here.
NASA Astrophysics Data System (ADS)
Grégoire, G.
2014-12-01
The logistic regression originally is intended to explain the relationship between the probability of an event and a set of covariables. The model's coefficients can be interpreted via the odds and odds ratio, which are presented in introduction of the chapter. The observations are possibly got individually, then we speak of binary logistic regression. When they are grouped, the logistic regression is said binomial. In our presentation we mainly focus on the binary case. For statistical inference the main tool is the maximum likelihood methodology: we present the Wald, Rao and likelihoods ratio results and their use to compare nested models. The problems we intend to deal with are essentially the same as in multiple linear regression: testing global effect, individual effect, selection of variables to build a model, measure of the fitness of the model, prediction of new values… . The methods are demonstrated on data sets using R. Finally we briefly consider the binomial case and the situation where we are interested in several events, that is the polytomous (multinomial) logistic regression and the particular case of ordinal logistic regression.
Schmid, Matthias; Wickler, Florian; Maloney, Kelly O.; Mitchell, Richard; Fenske, Nora; Mayr, Andreas
2013-01-01
Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1). Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures. PMID:23626706
Liu, S.; Anderson, P.; Zhou, G.; Kauffman, B.; Hughes, F.; Schimel, D.; Watson, Vicente; Tosi, Joseph
2008-01-01
Objectively assessing the performance of a model and deriving model parameter values from observations are critical and challenging in landscape to regional modeling. In this paper, we applied a nonlinear inversion technique to calibrate the ecosystem model CENTURY against carbon (C) and nitrogen (N) stock measurements collected from 39 mature tropical forest sites in seven life zones in Costa Rica. Net primary productivity from the Moderate-Resolution Imaging Spectroradiometer (MODIS), C and N stocks in aboveground live biomass, litter, coarse woody debris (CWD), and in soils were used to calibrate the model. To investigate the resolution of available observations on the number of adjustable parameters, inversion was performed using nine setups of adjustable parameters. Statistics including observation sensitivity, parameter correlation coefficient, parameter sensitivity, and parameter confidence limits were used to evaluate the information content of observations, resolution of model parameters, and overall model performance. Results indicated that soil organic carbon content, soil nitrogen content, and total aboveground biomass carbon had the highest information contents, while measurements of carbon in litter and nitrogen in CWD contributed little to the parameter estimation processes. The available information could resolve the values of 2-4 parameters. Adjusting just one parameter resulted in under-fitting and unacceptable model performance, while adjusting five parameters simultaneously led to over-fitting. Results further indicated that the MODIS NPP values were compressed as compared with the spatial variability of net primary production (NPP) values inferred from inverse modeling. Using inverse modeling to infer NPP and other sensitive model parameters from C and N stock observations provides an opportunity to utilize data collected by national to regional forest inventory systems to reduce the uncertainties in the carbon cycle and generate valuable
Lee, Paul H.
2016-01-01
Healthy adults are advised to perform at least 150 min of moderate-intensity physical activity weekly, but this advice is based on studies using self-reports of questionable validity. This study examined the dose-response relationship of accelerometer-measured physical activity and sedentary behaviors on all-cause mortality using segmented Cox regression to empirically determine the break-points of the dose-response relationship. Data from 7006 adult participants aged 18 or above in the National Health and Nutrition Examination Survey waves 2003–2004 and 2005–2006 were included in the analysis and linked with death certificate data using a probabilistic matching approach in the National Death Index through December 31, 2011. Physical activity and sedentary behavior were measured using ActiGraph model 7164 accelerometer over the right hip for 7 consecutive days. Each minute with accelerometer count <100; 1952–5724; and ≥5725 were classified as sedentary, moderate-intensity physical activity, and vigorous-intensity physical activity, respectively. Segmented Cox regression was used to estimate the hazard ratio (HR) of time spent in sedentary behaviors, moderate-intensity physical activity, and vigorous-intensity physical activity and all-cause mortality, adjusted for demographic characteristics, health behaviors, and health conditions. Data were analyzed in 2016. During 47,119 person-year of follow-up, 608 deaths occurred. Each additional hour per day of sedentary behaviors was associated with a HR of 1.15 (95% CI 1.01, 1.31) among participants who spend at least 10.9 h per day on sedentary behaviors, and each additional minute per day spent on moderate-intensity physical activity was associated with a HR of 0.94 (95% CI 0.91, 0.96) among participants with daily moderate-intensity physical activity ≤14.1 min. Associations of moderate physical activity and sedentary behaviors on all-cause mortality were independent of each other. To conclude, evidence from
Meloun, Milan; Bordovská, Sylva; Vrána, Ales
2007-02-19
The mixed dissociation constants of four anticancer drugs--camptothecine, 7-ethyl-10-hydroxycamptothecine, 10-hydroxycamptothecine and 7-ethylcamptothecine, including diprotic and triprotic molecules at various ionic strengths I of range 0.01 and 0.4, and at temperatures of 25 and 37 degrees C--were determined with the use of two different multiwavelength and multivariate treatments of spectral data, SPECFIT32 and SQUAD(84) nonlinear regression analyses and INDICES factor analysis. A proposed strategy for dissociation constants determination is presented on the acid-base equilibria of camptothecine. Indices of precise modifications of the factor analysis in the program INDICES predict the correct number of components, and even the presence of minor ones, when the data quality is high and the instrumental error is known. The thermodynamic dissociation constant pK(a)(T) was estimated by nonlinear regression of {pK(a), I} data at 25 and 37 degrees C: for camptothecine pK(a,1)(T)=2.90(7) and 3.02(8), pK(a,2)(T)=10.18(30) and 10.23(8); for 7-ethyl-10-hydroxycamptothecine, pK(a,1)(T)=3.11(2) and 2.46(6), pK(a,2)(T)=8.91(4) and 8.74(3), pK(a,3)(T)=9.70(3) and 9.47(8); for 10-hydroxycamptothecine pK(a,1)(T)=2.93(4) and 2.84(5), pK(a,2)(T)=8.93(2) and 8.92(2), pK(a,3)(T)=9.45(10) and 9.98(4); and for 7-ethylcamptothecine pK(a,1)(T)=3.10(4) and 3.30(16), pK(a,2)(T)=9.94(9) and 10.98(18). Goodness-of-fit tests for various regression diagnostics enabled the reliability of the parameter estimates found to be proven. Pallas and Marvin predict pK(a) being based on the structural formulae of drug compounds in agreement with the experimental value.
Linden, Ariel; Adams, John L
2012-04-01
The regression discontinuity (RD) design is considered to be the closest to a randomized trial that can be applied in non-experimental settings. The design relies on a cut-off point on a continuous baseline variable to assign individuals to treatment. The individuals just to the right and left of the cut-off are assumed to be exchangeable - as in a randomized trial. Any observed discontinuity in the relationship between the assignment variable and outcome is therefore considered evidence of a treatment effect. In this paper, we describe key advances in the RD design over the past decade and illustrate their implementation using data from a health management intervention. We then introduce the propensity score-based weighting technique as a complement to the RD design to correct for imbalances in baseline characteristics between treated and non-treated groups that may bias RD results. We find that the weighting strategy outperforms standard regression covariate adjustment in the present data. One clear advantage of the weighting technique over regression covariate adjustment is that we can directly inspect the degree to which balance was achieved. Because of its relative simplicity and tremendous utility, the RD design (either alone or combined with propensity score weighting adjustment) should be considered as an alternative approach to evaluate health management program effectiveness when using observational data.
Steganalysis using logistic regression
NASA Astrophysics Data System (ADS)
Lubenko, Ivans; Ker, Andrew D.
2011-02-01
We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets.
Covariate-adjusted confidence interval for the intraclass correlation coefficient.
Shoukri, Mohamed M; Donner, Allan; El-Dali, Abdelmoneim
2013-09-01
A crucial step in designing a new study is to estimate the required sample size. For a design involving cluster sampling, the appropriate sample size depends on the so-called design effect, which is a function of the average cluster size and the intracluster correlation coefficient (ICC). It is well-known that under the framework of hierarchical and generalized linear models, a reduction in residual error may be achieved by including risk factors as covariates. In this paper we show that the covariate design, indicating whether the covariates are measured at the cluster level or at the within-cluster subject level affects the estimation of the ICC, and hence the design effect. Therefore, the distinction between these two types of covariates should be made at the design stage. In this paper we use the nested-bootstrap method to assess the accuracy of the estimated ICC for continuous and binary response variables under different covariate structures. The codes of two SAS macros are made available by the authors for interested readers to facilitate the construction of confidence intervals for the ICC. Moreover, using Monte Carlo simulations we evaluate the relative efficiency of the estimators and evaluate the accuracy of the coverage probabilities of a 95% confidence interval on the population ICC. The methodology is illustrated using a published data set of blood pressure measurements taken on family members. © 2013. Published by Elsevier Inc. All rights reserved.
Additivity of nonlinear biomass equations
Bernard R. Parresol
2001-01-01
Two procedures that guarantee the property of additivity among the components of tree biomass and total tree biomass utilizing nonlinear functions are developed. Procedure 1 is a simple combination approach, and procedure 2 is based on nonlinear joint-generalized regression (nonlinear seemingly unrelated regressions) with parameter restrictions. Statistical theory is...
NON-LINEAR REGRESSION WITH MINIMAL ASSUMPTIONS
there will have to be a long t rm decline in the price of capital, a long term increase in the wage rate and a constant interest rate but lower than the...output by raising k may lead to a negative interest - rate which may cause a const nt inflation in an expanded model which contains a financial structure.
Measures of Nonlinearity for Segmented Regression Models,
1983-08-01
daily consumption is constant at the baseload level a as long as the average outdoor temperature T is above a reference temperature T, and increases In...discussed below in Section 5. For the energy model, we will consider estimation of the reference temperature T, baseload a, and heating rate by the method of
Inference for a Nonlinear Semimartingale Regression Model.
1987-11-01
increases. If K is left continuous and of bounded variation , then by integration by parts (see Dellacherie and Meyer (1982), Chapter VIII, (19.4)) for n...dt uniformly in z as n oo, where x- = .K 2(u) du. (c) Suppose A1-A3, B1, B2 hold, K is left continuous, of bounded variation and nwn - 00, nw 3 -3 0
Deriving the Regression Equation without Using Calculus
ERIC Educational Resources Information Center
Gordon, Sheldon P.; Gordon, Florence S.
2004-01-01
Probably the one "new" mathematical topic that is most responsible for modernizing courses in college algebra and precalculus over the last few years is the idea of fitting a function to a set of data in the sense of a least squares fit. Whether it be simple linear regression or nonlinear regression, this topic opens the door to applying the…
ERIC Educational Resources Information Center
Pedrini, D. T.; Pedrini, Bonnie C.
Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…
ERIC Educational Resources Information Center
Pedrini, D. T.; Pedrini, Bonnie C.
Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…
ERIC Educational Resources Information Center
Walton, Joseph M.; And Others
1978-01-01
Ridge regression is an approach to the problem of large standard errors of regression estimates of intercorrelated regressors. The effect of ridge regression on the estimated squared multiple correlation coefficient is discussed and illustrated. (JKS)
Regression modeling of ground-water flow
Cooley, R.L.; Naff, R.L.
1985-01-01
Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)
Tharrington, Arnold N.
2015-09-09
The NCCS Regression Test Harness is a software package that provides a framework to perform regression and acceptance testing on NCCS High Performance Computers. The package is written in Python and has only the dependency of a Subversion repository to store the regression tests.
Tharrington, Arnold N.
2015-09-09
The NCCS Regression Test Harness is a software package that provides a framework to perform regression and acceptance testing on NCCS High Performance Computers. The package is written in Python and has only the dependency of a Subversion repository to store the regression tests.
Regressive systemic sclerosis.
Black, C; Dieppe, P; Huskisson, T; Hart, F D
1986-01-01
Systemic sclerosis is a disease which usually progresses or reaches a plateau with persistence of symptoms and signs. Regression is extremely unusual. Four cases of established scleroderma are described in which regression is well documented. The significance of this observation and possible mechanisms of disease regression are discussed. Images PMID:3718012
Unitary Response Regression Models
ERIC Educational Resources Information Center
Lipovetsky, S.
2007-01-01
The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…
Unitary Response Regression Models
ERIC Educational Resources Information Center
Lipovetsky, S.
2007-01-01
The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…
Ehrsam, Eric; Kallini, Joseph R.; Lebas, Damien; Modiano, Philippe; Cotten, Hervé
2016-01-01
Fully regressive melanoma is a phenomenon in which the primary cutaneous melanoma becomes completely replaced by fibrotic components as a result of host immune response. Although 10 to 35 percent of cases of cutaneous melanomas may partially regress, fully regressive melanoma is very rare; only 47 cases have been reported in the literature to date. AH of the cases of fully regressive melanoma reported in the literature were diagnosed in conjunction with metastasis on a patient. The authors describe a case of fully regressive melanoma without any metastases at the time of its diagnosis. Characteristic findings on dermoscopy, as well as the absence of melanoma on final biopsy, confirmed the diagnosis. PMID:27672418
Improved Regression Calibration
ERIC Educational Resources Information Center
Skrondal, Anders; Kuha, Jouni
2012-01-01
The likelihood for generalized linear models with covariate measurement error cannot in general be expressed in closed form, which makes maximum likelihood estimation taxing. A popular alternative is regression calibration which is computationally efficient at the cost of inconsistent estimation. We propose an improved regression calibration…
Gerber, Samuel; Rübel, Oliver; Bremer, Peer-Timo; Pascucci, Valerio; Whitaker, Ross T.
2012-01-01
This paper introduces a novel partition-based regression approach that incorporates topological information. Partition-based regression typically introduce a quality-of-fit-driven decomposition of the domain. The emphasis in this work is on a topologically meaningful segmentation. Thus, the proposed regression approach is based on a segmentation induced by a discrete approximation of the Morse-Smale complex. This yields a segmentation with partitions corresponding to regions of the function with a single minimum and maximum that are often well approximated by a linear model. This approach yields regression models that are amenable to interpretation and have good predictive capacity. Typically, regression estimates are quantified by their geometrical accuracy. For the proposed regression, an important aspect is the quality of the segmentation itself. Thus, this paper introduces a new criterion that measures the topological accuracy of the estimate. The topological accuracy provides a complementary measure to the classical geometrical error measures and is very sensitive to over-fitting. The Morse-Smale regression is compared to state-of-the-art approaches in terms of geometry and topology and yields comparable or improved fits in many cases. Finally, a detailed study on climate-simulation data demonstrates the application of the Morse-Smale regression. Supplementary materials are available online and contain an implementation of the proposed approach in the R package msr, an analysis and simulations on the stability of the Morse-Smale complex approximation and additional tables for the climate-simulation study. PMID:23687424
Gerber, Samuel; Rubel, Oliver; Bremer, Peer -Timo; Pascucci, Valerio; Whitaker, Ross T.
2012-01-19
This paper introduces a novel partition-based regression approach that incorporates topological information. Partition-based regression typically introduces a quality-of-fit-driven decomposition of the domain. The emphasis in this work is on a topologically meaningful segmentation. Thus, the proposed regression approach is based on a segmentation induced by a discrete approximation of the Morse–Smale complex. This yields a segmentation with partitions corresponding to regions of the function with a single minimum and maximum that are often well approximated by a linear model. This approach yields regression models that are amenable to interpretation and have good predictive capacity. Typically, regression estimates are quantified by their geometrical accuracy. For the proposed regression, an important aspect is the quality of the segmentation itself. Thus, this article introduces a new criterion that measures the topological accuracy of the estimate. The topological accuracy provides a complementary measure to the classical geometrical error measures and is very sensitive to overfitting. The Morse–Smale regression is compared to state-of-the-art approaches in terms of geometry and topology and yields comparable or improved fits in many cases. Finally, a detailed study on climate-simulation data demonstrates the application of the Morse–Smale regression. Supplementary Materials are available online and contain an implementation of the proposed approach in the R package msr, an analysis and simulations on the stability of the Morse–Smale complex approximation, and additional tables for the climate-simulation study.
Identity, Regression and Development.
ERIC Educational Resources Information Center
Kroger, Jane
1996-01-01
Seeks to review varied meanings regression has held within psychoanalytic and developmental literatures; focus on the forms, frequencies, and functions of regression when examining data from two structural developmental models addressing dimensions of normative adolescent identity development; and consider precipitants for different forms of…
Khan, Iftekhar; Morris, Stephen
2014-11-12
The performance of the Beta Binomial (BB) model is compared with several existing models for mapping the EORTC QLQ-C30 (QLQ-C30) on to the EQ-5D-3L using data from lung cancer trials. Data from 2 separate non small cell lung cancer clinical trials (TOPICAL and SOCCAR) are used to develop and validate the BB model. Comparisons with Linear, TOBIT, Quantile, Quadratic and CLAD models are carried out. The mean prediction error, R(2), proportion predicted outside the valid range, clinical interpretation of coefficients, model fit and estimation of Quality Adjusted Life Years (QALY) are reported and compared. Monte-Carlo simulation is also used. The Beta-Binomial regression model performed 'best' among all models. For TOPICAL and SOCCAR trials, respectively, residual mean square error (RMSE) was 0.09 and 0.11; R(2) was 0.75 and 0.71; observed vs. predicted means were 0.612 vs. 0.608 and 0.750 vs. 0.749. Mean difference in QALY's (observed vs. predicted) were 0.051 vs. 0.053 and 0.164 vs. 0.162 for TOPICAL and SOCCAR respectively. Models tested on independent data show simulated 95% confidence from the BB model containing the observed mean more often (77% and 59% for TOPICAL and SOCCAR respectively) compared to the other models. All algorithms over-predict at poorer health states but the BB model was relatively better, particularly for the SOCCAR data. The BB model may offer superior predictive properties amongst mapping algorithms considered and may be more useful when predicting EQ-5D-3L at poorer health states. We recommend the algorithm derived from the TOPICAL data due to better predictive properties and less uncertainty.
Cortazar, E; Usobiaga, A; Fernández, L A; de, Diego A; Madariaga, J M
2002-02-01
A MATHEMATICA package, 'CONDU.M', has been developed to find the polynomial in concentration and temperature which best fits conductimetric data of the type (kappa, c, T) or (kappa, c1, c2, T) of electrolyte solutions (kappa: specific conductivity; ci: concentration of component i; T: temperature). In addition, an interface, 'TKONDU', has been written in the TCL/Tk language to facilitate the use of CONDU.M by an operator not familiarised with MATHEMATICA. All this software is available on line (UPV/EHU, 2001). 'CONDU.M' has been programmed to: (i) select the optimum grade in c1 and/or c2; (ii) compare models with linear or quadratic terms in temperature; (iii) calculate the set of adjustable parameters which best fits data; (iv) simplify the model by elimination of 'a priori' included adjustable parameters which after the regression analysis result in low statistical significance; (v) facilitate the location of outlier data by graphical analysis of the residuals; and (vi) provide quantitative statistical information on the quality of the fit, allowing a critical comparison among different models. Due to the multiple options offered the software allows testing different conductivity models in a short time, even if a large set of conductivity data is being considered simultaneously. Then, the user can choose the best model making use of the graphical and statistical information provided in the output file. Although the program has been initially designed to treat conductimetric data, it can be also applied for processing data with similar structure, e.g. (P, c, T) or (P, c1, c2, T), being P any appropriate transport, physical or thermodynamic property.
Boyd, R.W. . Inst. of Optics)
1992-01-01
Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics.
Jupiter, Daniel C
2012-01-01
In this first of a series of statistical methodology commentaries for the clinician, we discuss the use of multivariate linear regression. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
George: Gaussian Process regression
NASA Astrophysics Data System (ADS)
Foreman-Mackey, Daniel
2015-11-01
George is a fast and flexible library, implemented in C++ with Python bindings, for Gaussian Process regression useful for accounting for correlated noise in astronomical datasets, including those for transiting exoplanet discovery and characterization and stellar population modeling.
Understanding poisson regression.
Hayat, Matthew J; Higgins, Melinda
2014-04-01
Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes.
NASA Astrophysics Data System (ADS)
Grégoire, G.
2014-12-01
This chapter deals with the multiple linear regression. That is we investigate the situation where the mean of a variable depends linearly on a set of covariables. The noise is supposed to be gaussian. We develop the least squared method to get the parameter estimators and estimates of their precisions. This leads to design confidence intervals, prediction intervals, global tests, individual tests and more generally tests of submodels defined by linear constraints. Methods for model's choice and variables selection, measures of the quality of the fit, residuals study, diagnostic methods are presented. Finally identification of departures from the model's assumptions and the way to deal with these problems are addressed. A real data set is used to illustrate the methodology with software R. Note that this chapter is intended to serve as a guide for other regression methods, like logistic regression or AFT models and Cox regression.
1989-06-15
following surprising situation. Namely associated with the integrable nonlinear Schrodinger equations are standard numerical schemes which exhibit at...36. An Initial Boundary Value Problem for the Nonlinear Schrodinger Equations , A.S. Fokas, Physica D March 1989. 37. Evolution Theory, Periodic... gravity waves and wave excitation phenomena related to moving pressure distributions; numerical approximation and computation; nonlinear optics; and
NASA Astrophysics Data System (ADS)
Geniet, F.; Leon, J.
2003-05-01
A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.
[Understanding logistic regression].
El Sanharawi, M; Naudet, F
2013-10-01
Logistic regression is one of the most common multivariate analysis models utilized in epidemiology. It allows the measurement of the association between the occurrence of an event (qualitative dependent variable) and factors susceptible to influence it (explicative variables). The choice of explicative variables that should be included in the logistic regression model is based on prior knowledge of the disease physiopathology and the statistical association between the variable and the event, as measured by the odds ratio. The main steps for the procedure, the conditions of application, and the essential tools for its interpretation are discussed concisely. We also discuss the importance of the choice of variables that must be included and retained in the regression model in order to avoid the omission of important confounding factors. Finally, by way of illustration, we provide an example from the literature, which should help the reader test his or her knowledge.
Practical Session: Logistic Regression
NASA Astrophysics Data System (ADS)
Clausel, M.; Grégoire, G.
2014-12-01
An exercise is proposed to illustrate the logistic regression. One investigates the different risk factors in the apparition of coronary heart disease. It has been proposed in Chapter 5 of the book of D.G. Kleinbaum and M. Klein, "Logistic Regression", Statistics for Biology and Health, Springer Science Business Media, LLC (2010) and also by D. Chessel and A.B. Dufour in Lyon 1 (see Sect. 6 of http://pbil.univ-lyon1.fr/R/pdf/tdr341.pdf). This example is based on data given in the file evans.txt coming from http://www.sph.emory.edu/dkleinb/logreg3.htm#data.
Metamorphic Geodesic Regression
Hong, Yi; Joshi, Sarang; Sanchez, Mar; Styner, Martin; Niethammer, Marc
2013-01-01
We propose a metamorphic geodesic regression approach approximating spatial transformations for image time-series while simultaneously accounting for intensity changes. Such changes occur for example in magnetic resonance imaging (MRI) studies of the developing brain due to myelination. To simplify computations we propose an approximate metamorphic geodesic regression formulation that only requires pairwise computations of image metamorphoses. The approximated solution is an appropriately weighted average of initial momenta. To obtain initial momenta reliably, we develop a shooting method for image metamorphosis. PMID:23286131
Modern Regression Discontinuity Analysis
ERIC Educational Resources Information Center
Bloom, Howard S.
2012-01-01
This article provides a detailed discussion of the theory and practice of modern regression discontinuity (RD) analysis for estimating the effects of interventions or treatments. Part 1 briefly chronicles the history of RD analysis and summarizes its past applications. Part 2 explains how in theory an RD analysis can identify an average effect of…
Explorations in Statistics: Regression
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2011-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This seventh installment of "Explorations in Statistics" explores regression, a technique that estimates the nature of the relationship between two things for which we may only surmise a mechanistic or predictive…
Explorations in Statistics: Regression
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2011-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This seventh installment of "Explorations in Statistics" explores regression, a technique that estimates the nature of the relationship between two things for which we may only surmise a mechanistic or predictive…
Multiple linear regression analysis
NASA Technical Reports Server (NTRS)
Edwards, T. R.
1980-01-01
Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.
Multiple linear regression analysis
NASA Technical Reports Server (NTRS)
Edwards, T. R.
1980-01-01
Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.
Modern Regression Discontinuity Analysis
ERIC Educational Resources Information Center
Bloom, Howard S.
2012-01-01
This article provides a detailed discussion of the theory and practice of modern regression discontinuity (RD) analysis for estimating the effects of interventions or treatments. Part 1 briefly chronicles the history of RD analysis and summarizes its past applications. Part 2 explains how in theory an RD analysis can identify an average effect of…
Ridge Regression: A Regression Procedure for Analyzing correlated Independent Variables
ERIC Educational Resources Information Center
Rakow, Ernest A.
1978-01-01
Ridge regression is a technique used to ameliorate the problem of highly correlated independent variables in multiple regression analysis. This paper explains the fundamentals of ridge regression and illustrates its use. (JKS)
Ridge Regression Signal Processing
NASA Technical Reports Server (NTRS)
Kuhl, Mark R.
1990-01-01
The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.
A Nonlinear Regression Procedure for Evoked Potential Data Analysis.
1985-06-01
XBAR+X (I) YBAR - YBAR +V (I) CONTINUE XBAR=XBAR/N VBAR= YBAR /N A-0. B-O. DO 10 I=19N C-X(I)-XBAR A=A+ Y (I)*C -36- B=B+C**2 *10 CONTINUE BSLP=A/B BI NT=YDAR...and duration of the latency effect following impact, the following exponential model was proposed: y = B + St + h(t)D + h(t)Aexp(t/T) + £(t) (1) where... y is the value of the shift in latency with respect to the preimpact baseline average evoked potential (AEP
Kramer, S.
1996-12-31
In many real-world domains the task of machine learning algorithms is to learn a theory for predicting numerical values. In particular several standard test domains used in Inductive Logic Programming (ILP) are concerned with predicting numerical values from examples and relational and mostly non-determinate background knowledge. However, so far no ILP algorithm except one can predict numbers and cope with nondeterminate background knowledge. (The only exception is a covering algorithm called FORS.) In this paper we present Structural Regression Trees (SRT), a new algorithm which can be applied to the above class of problems. SRT integrates the statistical method of regression trees into ILP. It constructs a tree containing a literal (an atomic formula or its negation) or a conjunction of literals in each node, and assigns a numerical value to each leaf. SRT provides more comprehensible results than purely statistical methods, and can be applied to a class of problems most other ILP systems cannot handle. Experiments in several real-world domains demonstrate that the approach is competitive with existing methods, indicating that the advantages are not at the expense of predictive accuracy.
Semiparametric regression in capture-recapture modeling.
Gimenez, O; Crainiceanu, C; Barbraud, C; Jenouvrier, S; Morgan, B J T
2006-09-01
Capture-recapture models were developed to estimate survival using data arising from marking and monitoring wild animals over time. Variation in survival may be explained by incorporating relevant covariates. We propose nonparametric and semiparametric regression methods for estimating survival in capture-recapture models. A fully Bayesian approach using Markov chain Monte Carlo simulations was employed to estimate the model parameters. The work is illustrated by a study of Snow petrels, in which survival probabilities are expressed as nonlinear functions of a climate covariate, using data from a 40-year study on marked individuals, nesting at Petrels Island, Terre Adélie.
Calculating a Stepwise Ridge Regression.
ERIC Educational Resources Information Center
Morris, John D.
1986-01-01
Although methods for using ordinary least squares regression computer programs to calculate a ridge regression are available, the calculation of a stepwise ridge regression requires a special purpose algorithm and computer program. The correct stepwise ridge regression procedure is given, and a parallel FORTRAN computer program is described.…
Orthogonal Regression: A Teaching Perspective
ERIC Educational Resources Information Center
Carr, James R.
2012-01-01
A well-known approach to linear least squares regression is that which involves minimizing the sum of squared orthogonal projections of data points onto the best fit line. This form of regression is known as orthogonal regression, and the linear model that it yields is known as the major axis. A similar method, reduced major axis regression, is…
Orthogonal Regression: A Teaching Perspective
ERIC Educational Resources Information Center
Carr, James R.
2012-01-01
A well-known approach to linear least squares regression is that which involves minimizing the sum of squared orthogonal projections of data points onto the best fit line. This form of regression is known as orthogonal regression, and the linear model that it yields is known as the major axis. A similar method, reduced major axis regression, is…
Modified Regression Correlation Coefficient for Poisson Regression Model
NASA Astrophysics Data System (ADS)
Kaengthong, Nattacha; Domthong, Uthumporn
2017-09-01
This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).
NASA Technical Reports Server (NTRS)
Kuhl, Mark R.
1990-01-01
Current navigation requirements depend on a geometric dilution of precision (GDOP) criterion. As long as the GDOP stays below a specific value, navigation requirements are met. The GDOP will exceed the specified value when the measurement geometry becomes too collinear. A new signal processing technique, called Ridge Regression Processing, can reduce the effects of nearly collinear measurement geometry; thereby reducing the inflation of the measurement errors. It is shown that the Ridge signal processor gives a consistently better mean squared error (MSE) in position than the Ordinary Least Mean Squares (OLS) estimator. The applicability of this technique is currently being investigated to improve the following areas: receiver autonomous integrity monitoring (RAIM), coverage requirements, availability requirements, and precision approaches.
Regression Segmentation for M³ Spinal Images.
Wang, Zhijie; Zhen, Xiantong; Tay, KengYeow; Osman, Said; Romano, Walter; Li, Shuo
2015-08-01
Clinical routine often requires to analyze spinal images of multiple anatomic structures in multiple anatomic planes from multiple imaging modalities (M(3)). Unfortunately, existing methods for segmenting spinal images are still limited to one specific structure, in one specific plane or from one specific modality (S(3)). In this paper, we propose a novel approach, Regression Segmentation, that is for the first time able to segment M(3) spinal images in one single unified framework. This approach formulates the segmentation task innovatively as a boundary regression problem: modeling a highly nonlinear mapping function from substantially diverse M(3) images directly to desired object boundaries. Leveraging the advancement of sparse kernel machines, regression segmentation is fulfilled by a multi-dimensional support vector regressor (MSVR) which operates in an implicit, high dimensional feature space where M(3) diversity and specificity can be systematically categorized, extracted, and handled. The proposed regression segmentation approach was thoroughly tested on images from 113 clinical subjects including both disc and vertebral structures, in both sagittal and axial planes, and from both MRI and CT modalities. The overall result reaches a high dice similarity index (DSI) 0.912 and a low boundary distance (BD) 0.928 mm. With our unified and expendable framework, an efficient clinical tool for M(3) spinal image segmentation can be easily achieved, and will substantially benefit the diagnosis and treatment of spinal diseases.
ERIC Educational Resources Information Center
Forster, Fred
Statistical methods are described for diagnosing and treating three important problems in covariate tests of significance: curvilinearity, covariable effectiveness, and treatment-covariable interaction. Six major assumptions, prerequisites for covariate procedure, are discussed in detail: (1) normal distribution, (2) homogeneity of variances, (3)…
ERIC Educational Resources Information Center
Furtwengler, Scott R.
2015-01-01
The present study sought to determine the extent to which participation in a post-secondary honors program affected academic achievement. Archival data were collected on three cohorts of high-achieving students at a large public university. Propensity scores were calculated on factors predicting participation in honors and used as the covariate.…
Shan, Na; Xu, Ping-Feng
2016-11-01
In randomized trials with noncompliance, causal effects cannot be identified without strong assumptions. Therefore, several authors have considered bounds on the causal effects. Applying an idea of VanderWeele (), Chiba () gave bounds on the average causal effects in randomized trials with noncompliance using the information on the randomized assignment, the treatment received and the outcome under monotonicity assumptions about covariates. But he did not consider any observed covariates. If there are some observed covariates such as age, gender, and race in a trial, we propose new bounds using the observed covariate information under some monotonicity assumptions similar to those of VanderWeele and Chiba. And we compare the three bounds in a real example. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Neumann, Anke; Billionnet, Cécile
2016-06-01
In observational studies without random assignment of the treatment, the unadjusted comparison between treatment groups may be misleading due to confounding. One method to adjust for measured confounders is inverse probability of treatment weighting. This method can also be used in the analysis of time to event data with competing risks. Competing risks arise if for some individuals the event of interest is precluded by a different type of event occurring before, or if only the earliest of several times to event, corresponding to different event types, is observed or is of interest. In the presence of competing risks, time to event data are often characterized by cumulative incidence functions, one for each event type of interest. We describe the use of inverse probability of treatment weighting to create adjusted cumulative incidence functions. This method is equivalent to direct standardization when the weight model is saturated. No assumptions about the form of the cumulative incidence functions are required. The method allows studying associations between treatment and the different types of event under study, while focusing on the earliest event only. We present a SAS macro implementing this method and we provide a worked example. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Furtwengler, Scott R.
2015-01-01
The present study sought to determine the extent to which participation in a post-secondary honors program affected academic achievement. Archival data were collected on three cohorts of high-achieving students at a large public university. Propensity scores were calculated on factors predicting participation in honors and used as the covariate.…
Covariate-adjusted borrowing of historical control data in randomized clinical trials.
Han, Baoguang; Zhan, Jia; John Zhong, Z; Liu, Dawei; Lindborg, Stacy
2017-07-01
The borrowing of historical control data can be an efficient way to improve the treatment effect estimate of the current control group in a randomized clinical trial. When the historical and current control data are consistent, the borrowing of historical data can increase power and reduce Type I error rate. However, when these 2 sources of data are inconsistent, it may result in a combination of biased estimates, reduced power, and inflation of Type I error rate. In some situations, inconsistency between historical and current control data may be caused by a systematic variation in the measured baseline prognostic factors, which can be appropriately addressed through statistical modeling. In this paper, we propose a Bayesian hierarchical model that can incorporate patient-level baseline covariates to enhance the appropriateness of the exchangeability assumption between current and historical control data. The performance of the proposed method is shown through simulation studies, and its application to a clinical trial design for amyotrophic lateral sclerosis is described. The proposed method is developed for scenarios involving multiple imbalanced prognostic factors and thus has meaningful implications for clinical trials evaluating new treatments for heterogeneous diseases such as amyotrophic lateral sclerosis. Copyright © 2017 John Wiley & Sons, Ltd.
Forward model nonlinearity versus inverse model nonlinearity
Mehl, S.
2007-01-01
The issue of concern is the impact of forward model nonlinearity on the nonlinearity of the inverse model. The question posed is, "Does increased nonlinearity in the head solution (forward model) always result in increased nonlinearity in the inverse solution (estimation of hydraulic conductivity)?" It is shown that the two nonlinearities are separate, and it is not universally true that increased forward model nonlinearity increases inverse model nonlinearity. ?? 2007 National Ground Water Association.
In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio
2012-12-01
The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.
NASA Astrophysics Data System (ADS)
In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio
2012-12-01
The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.
Logarithmic Transformations in Regression: Do You Transform Back Correctly?
ERIC Educational Resources Information Center
Dambolena, Ismael G.; Eriksen, Steven E.; Kopcso, David P.
2009-01-01
The logarithmic transformation is often used in regression analysis for a variety of purposes such as the linearization of a nonlinear relationship between two or more variables. We have noticed that when this transformation is applied to the response variable, the computation of the point estimate of the conditional mean of the original response…
Modeling maximum daily temperature using a varying coefficient regression model
Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith
2014-01-01
Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...
Logarithmic Transformations in Regression: Do You Transform Back Correctly?
ERIC Educational Resources Information Center
Dambolena, Ismael G.; Eriksen, Steven E.; Kopcso, David P.
2009-01-01
The logarithmic transformation is often used in regression analysis for a variety of purposes such as the linearization of a nonlinear relationship between two or more variables. We have noticed that when this transformation is applied to the response variable, the computation of the point estimate of the conditional mean of the original response…
Estimating monotonic rates from biological data using local linear regression.
Olito, Colin; White, Craig R; Marshall, Dustin J; Barneche, Diego R
2017-03-01
Accessing many fundamental questions in biology begins with empirical estimation of simple monotonic rates of underlying biological processes. Across a variety of disciplines, ranging from physiology to biogeochemistry, these rates are routinely estimated from non-linear and noisy time series data using linear regression and ad hoc manual truncation of non-linearities. Here, we introduce the R package LoLinR, a flexible toolkit to implement local linear regression techniques to objectively and reproducibly estimate monotonic biological rates from non-linear time series data, and demonstrate possible applications using metabolic rate data. LoLinR provides methods to easily and reliably estimate monotonic rates from time series data in a way that is statistically robust, facilitates reproducible research and is applicable to a wide variety of research disciplines in the biological sciences. © 2017. Published by The Company of Biologists Ltd.
Hortelano, M; Palencia, J; García, J; Reig, C; Herrera, M; Romero, M D; Cuadrado, P
1998-10-01
The regression caudal syndrome includes a spectrum of malformations which vary from the symptomless coccygeal agenesis until thoracic vertebrae and sacrococcygeal agenesis with severe neurological deficit; it is associated sometimes with malformations in other organs and systems. We present a case of partial agenesis of sacro and coccix with neuromuscular, sphincter and orthopedist alterations. A 4-year-old patient consults because of walk alterations, with daytime and nocturnal enuresis and urinary incontinence, constipation/encopresis and rectal prolapse. Familiar and personnel precedents are uninteresting. She began to walk at normal age, referring only rectal prolapse with constipation from nursing and urinary tract infections and encopresis when she was 3 years old, with normal complementary explorations (digestive and nephrourologyc). She presents in lumbosacral X-rays four lumbar vertebrae, a dysplasic sacro and absence of coccix. Hypoplasy of sacro with bilateral stenosis of the pelvis and coxa vara in both femurs are seen in the lumbar CT. In RMI is observed agenesis of sacro and coccix vertebrae. There are a wide variety of sacrococcygeal agenesis, which are classified by Renshaw and modified by Pang. As etiologics factors we find the gestational diabetes, in addition to genetic factors. The clinic exploration guides us toward a flaccid paraparesia/areflexia, with orthopaedist alterations, sometimes of artrogripotyc type. With image techniques (X-rays, CT, MRI) we can accomplish the diagnosis and we can discard or demonstrate associated medullary anomalies. We concluded that in all patient with alterations of walk and/or lack of sphincters control we should explore the lumbosacral region searching for medulodiysplasic or vertebral alterations.
Recursive Algorithm For Linear Regression
NASA Technical Reports Server (NTRS)
Varanasi, S. V.
1988-01-01
Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.
Ali, M Sanni; Groenwold, Rolf H H; Belitser, Svetlana V; Souverein, Patrick C; Martín, Elisa; Gatto, Nicolle M; Huerta, Consuelo; Gardarsdottir, Helga; Roes, Kit C B; Hoes, Arno W; de Boer, Antonius; Klungel, Olaf H
2016-03-01
Observational studies including time-varying treatments are prone to confounding. We compared time-varying Cox regression analysis, propensity score (PS) methods, and marginal structural models (MSMs) in a study of antidepressant [selective serotonin reuptake inhibitors (SSRIs)] use and the risk of hip fracture. A cohort of patients with a first prescription for antidepressants (SSRI or tricyclic antidepressants) was extracted from the Dutch Mondriaan and Spanish Base de datos para la Investigación Farmacoepidemiológica en Atención Primaria (BIFAP) general practice databases for the period 2001-2009. The net (total) effect of SSRI versus no SSRI on the risk of hip fracture was estimated using time-varying Cox regression, stratification and covariate adjustment using the PS, and MSM. In MSM, censoring was accounted for by inverse probability of censoring weights. The crude hazard ratio (HR) of SSRI use versus no SSRI use on hip fracture was 1.75 (95%CI: 1.12, 2.72) in Mondriaan and 2.09 (1.89, 2.32) in BIFAP. After confounding adjustment using time-varying Cox regression, stratification, and covariate adjustment using the PS, HRs increased in Mondriaan [2.59 (1.63, 4.12), 2.64 (1.63, 4.25), and 2.82 (1.63, 4.25), respectively] and decreased in BIFAP [1.56 (1.40, 1.73), 1.54 (1.39, 1.71), and 1.61 (1.45, 1.78), respectively]. MSMs with stabilized weights yielded HR 2.15 (1.30, 3.55) in Mondriaan and 1.63 (1.28, 2.07) in BIFAP when accounting for censoring and 2.13 (1.32, 3.45) in Mondriaan and 1.66 (1.30, 2.12) in BIFAP without accounting for censoring. In this empirical study, differences between the different methods to control for time-dependent confounding were small. The observed differences in treatment effect estimates between the databases are likely attributable to different confounding information in the datasets, illustrating that adequate information on (time-varying) confounding is crucial to prevent bias. Copyright © 2016 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Seider, Warren D.; Ungar, Lyle H.
1987-01-01
Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…
NASA Astrophysics Data System (ADS)
Kevorkian, J.
This report discusses research in the area of slowly varying nonlinear oscillatory systems. Some of the topics discussed are as follows: adiabatic invariants and transient resonance in very slowly varying Hamiltonian systems; sustained resonance in very slowly varying Hamiltonian systems; free-electron lasers with very slow wiggler taper; and bursting oscillators.
ERIC Educational Resources Information Center
Seider, Warren D.; Ungar, Lyle H.
1987-01-01
Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…
Lees, Mackenzie C.; Merani, Shaheed; Tauh, Keerit; Khadaroo, Rachel G.
2015-01-01
Background Older adults (≥ 65 yr) are the fastest growing population and are presenting in increasing numbers for acute surgical care. Emergency surgery is frequently life threatening for older patients. Our objective was to identify predictors of mortality and poor outcome among elderly patients undergoing emergency general surgery. Methods We conducted a retrospective cohort study of patients aged 65–80 years undergoing emergency general surgery between 2009 and 2010 at a tertiary care centre. Demographics, comorbidities, in-hospital complications, mortality and disposition characteristics of patients were collected. Logistic regression analysis was used to identify covariate-adjusted predictors of in-hospital mortality and discharge of patients home. Results Our analysis included 257 patients with a mean age of 72 years; 52% were men. In-hospital mortality was 12%. Mortality was associated with patients who had higher American Society of Anesthesiologists (ASA) class (odds ratio [OR] 3.85, 95% confidence interval [CI] 1.43–10.33, p = 0.008) and in-hospital complications (OR 1.93, 95% CI 1.32–2.83, p = 0.001). Nearly two-thirds of patients discharged home were younger (OR 0.92, 95% CI 0.85–0.99, p = 0.036), had lower ASA class (OR 0.45, 95% CI 0.27–0.74, p = 0.002) and fewer in-hospital complications (OR 0.69, 95% CI 0.53–0.90, p = 0.007). Conclusion American Society of Anesthesiologists class and in-hospital complications are perioperative predictors of mortality and disposition in the older surgical population. Understanding the predictors of poor outcome and the importance of preventing in-hospital complications in older patients will have important clinical utility in terms of preoperative counselling, improving health care and discharging patients home. PMID:26204143
Linear regression in astronomy. I
NASA Technical Reports Server (NTRS)
Isobe, Takashi; Feigelson, Eric D.; Akritas, Michael G.; Babu, Gutti Jogesh
1990-01-01
Five methods for obtaining linear regression fits to bivariate data with unknown or insignificant measurement errors are discussed: ordinary least-squares (OLS) regression of Y on X, OLS regression of X on Y, the bisector of the two OLS lines, orthogonal regression, and 'reduced major-axis' regression. These methods have been used by various researchers in observational astronomy, most importantly in cosmic distance scale applications. Formulas for calculating the slope and intercept coefficients and their uncertainties are given for all the methods, including a new general form of the OLS variance estimates. The accuracy of the formulas was confirmed using numerical simulations. The applicability of the procedures is discussed with respect to their mathematical properties, the nature of the astronomical data under consideration, and the scientific purpose of the regression. It is found that, for problems needing symmetrical treatment of the variables, the OLS bisector performs significantly better than orthogonal or reduced major-axis regression.
Zhao, Ni; Chen, Jun; Carroll, Ian M.; Ringel-Kulka, Tamar; Epstein, Michael P.; Zhou, Hua; Zhou, Jin J.; Ringel, Yehuda; Li, Hongzhe; Wu, Michael C.
2015-01-01
High-throughput sequencing technology has enabled population-based studies of the role of the human microbiome in disease etiology and exposure response. Distance-based analysis is a popular strategy for evaluating the overall association between microbiome diversity and outcome, wherein the phylogenetic distance between individuals’ microbiome profiles is computed and tested for association via permutation. Despite their practical popularity, distance-based approaches suffer from important challenges, especially in selecting the best distance and extending the methods to alternative outcomes, such as survival outcomes. We propose the microbiome regression-based kernel association test (MiRKAT), which directly regresses the outcome on the microbiome profiles via the semi-parametric kernel machine regression framework. MiRKAT allows for easy covariate adjustment and extension to alternative outcomes while non-parametrically modeling the microbiome through a kernel that incorporates phylogenetic distance. It uses a variance-component score statistic to test for the association with analytical p value calculation. The model also allows simultaneous examination of multiple distances, alleviating the problem of choosing the best distance. Our simulations demonstrated that MiRKAT provides correctly controlled type I error and adequate power in detecting overall association. “Optimal” MiRKAT, which considers multiple candidate distances, is robust in that it suffers from little power loss in comparison to when the best distance is used and can achieve tremendous power gain in comparison to when a poor distance is chosen. Finally, we applied MiRKAT to real microbiome datasets to show that microbial communities are associated with smoking and with fecal protease levels after confounders are controlled for. PMID:25957468
Evaluating differential effects using regression interactions and regression mixture models
Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung
2015-01-01
Research increasingly emphasizes understanding differential effects. This paper focuses on understanding regression mixture models, a relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their formulation, and their assumptions are compared using Monte Carlo simulations and real data analysis. The capabilities of regression mixture models are described and specific issues to be addressed when conducting regression mixtures are proposed. The paper aims to clarify the role that regression mixtures can take in the estimation of differential effects and increase awareness of the benefits and potential pitfalls of this approach. Regression mixture models are shown to be a potentially effective exploratory method for finding differential effects when these effects can be defined by a small number of classes of respondents who share a typical relationship between a predictor and an outcome. It is also shown that the comparison between regression mixture models and interactions becomes substantially more complex as the number of classes increases. It is argued that regression interactions are well suited for direct tests of specific hypotheses about differential effects and regression mixtures provide a useful approach for exploring effect heterogeneity given adequate samples and study design. PMID:26556903
USDA-ARS?s Scientific Manuscript database
Advanced mathematical models have the potential to capture the complex metabolic and physiological processes that result in heat production, or energy expenditure (EE). Multivariate adaptive regression splines (MARS), is a nonparametric method that estimates complex nonlinear relationships by a seri...
Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition
Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on ...
Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition
Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on ...
Quantile regression for climate data
NASA Astrophysics Data System (ADS)
Marasinghe, Dilhani Shalika
Quantile regression is a developing statistical tool which is used to explain the relationship between response and predictor variables. This thesis describes two examples of climatology using quantile regression.Our main goal is to estimate derivatives of a conditional mean and/or conditional quantile function. We introduce a method to handle autocorrelation in the framework of quantile regression and used it with the temperature data. Also we explain some properties of the tornado data which is non-normally distributed. Even though quantile regression provides a more comprehensive view, when talking about residuals with the normality and the constant variance assumption, we would prefer least square regression for our temperature analysis. When dealing with the non-normality and non constant variance assumption, quantile regression is a better candidate for the estimation of the derivative.
Linear regression in astronomy. II
NASA Technical Reports Server (NTRS)
Feigelson, Eric D.; Babu, Gutti J.
1992-01-01
A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.
1975-07-01
agree to say four places by successive choices of finer subdivisions of the grid. The accuracy obtained by this method Is rot quite unexpected—see for...iltering, " R~v . Francais d’ ~•_!o:n~ti~, ~. l ’J73 , 3-54. ( 2L ; H. S . U•JLy , "Pedliza tion of nonlinear filters," ~!:Q~-·-~..c!.5E£...... .Q
Evaluating Differential Effects Using Regression Interactions and Regression Mixture Models
ERIC Educational Resources Information Center
Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung
2015-01-01
Research increasingly emphasizes understanding differential effects. This article focuses on understanding regression mixture models, which are relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their…
Evaluating Differential Effects Using Regression Interactions and Regression Mixture Models
ERIC Educational Resources Information Center
Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung
2015-01-01
Research increasingly emphasizes understanding differential effects. This article focuses on understanding regression mixture models, which are relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their…
Error bounds in cascading regressions
Karlinger, M.R.; Troutman, B.M.
1985-01-01
Cascading regressions is a technique for predicting a value of a dependent variable when no paired measurements exist to perform a standard regression analysis. Biases in coefficients of a cascaded-regression line as well as error variance of points about the line are functions of the correlation coefficient between dependent and independent variables. Although this correlation cannot be computed because of the lack of paired data, bounds can be placed on errors through the required properties of the correlation coefficient. The potential meansquared error of a cascaded-regression prediction can be large, as illustrated through an example using geomorphologic data. ?? 1985 Plenum Publishing Corporation.
Precision Efficacy Analysis for Regression.
ERIC Educational Resources Information Center
Brooks, Gordon P.
When multiple linear regression is used to develop a prediction model, sample size must be large enough to ensure stable coefficients. If the derivation sample size is inadequate, the model may not predict well for future subjects. The precision efficacy analysis for regression (PEAR) method uses a cross- validity approach to select sample sizes…
Logistic Regression: Concept and Application
ERIC Educational Resources Information Center
Cokluk, Omay
2010-01-01
The main focus of logistic regression analysis is classification of individuals in different groups. The aim of the present study is to explain basic concepts and processes of binary logistic regression analysis intended to determine the combination of independent variables which best explain the membership in certain groups called dichotomous…
Fungible weights in logistic regression.
Jones, Jeff A; Waller, Niels G
2016-06-01
In this article we develop methods for assessing parameter sensitivity in logistic regression models. To set the stage for this work, we first review Waller's (2008) equations for computing fungible weights in linear regression. Next, we describe 2 methods for computing fungible weights in logistic regression. To demonstrate the utility of these methods, we compute fungible logistic regression weights using data from the Centers for Disease Control and Prevention's (2010) Youth Risk Behavior Surveillance Survey, and we illustrate how these alternate weights can be used to evaluate parameter sensitivity. To make our work accessible to the research community, we provide R code (R Core Team, 2015) that will generate both kinds of fungible logistic regression weights. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Exploring function estimators as an alternative to regression in psychology.
Walker, Ian; Milne, Sarah
2005-02-01
Most forms of regression analysis make assumptions about the relationships between the variables being modeled. As a consequence, it can be difficult to know which form of analysis is most appropriate for a given data set. In this article, we explore the idea that function estimators might provide a better alternative in many situations. Function estimators discover the best function to link dependent and independent variables, no matter what form this takes. Four studies demonstrate that one type of function estimator (a neural network) not only performs the same tasks as linear regression and nonlinear regression, but often performs these tasks better and with more flexibility. Moreover, neural networks allow a useful secondary analysis in which useful groups of people can be identified. We recommend that function estimators be used in preference to regression-based techniques for many analyses. The Matlab script used to write this article may be downloaded from www.psychonomic.org/archive/.
Rank regression: an alternative regression approach for data with outliers.
Chen, Tian; Tang, Wan; Lu, Ying; Tu, Xin
2014-10-01
Linear regression models are widely used in mental health and related health services research. However, the classic linear regression analysis assumes that the data are normally distributed, an assumption that is not met by the data obtained in many studies. One method of dealing with this problem is to use semi-parametric models, which do not require that the data be normally distributed. But semi-parametric models are quite sensitive to outlying observations, so the generated estimates are unreliable when study data includes outliers. In this situation, some researchers trim the extreme values prior to conducting the analysis, but the ad-hoc rules used for data trimming are based on subjective criteria so different methods of adjustment can yield different results. Rank regression provides a more objective approach to dealing with non-normal data that includes outliers. This paper uses simulated and real data to illustrate this useful regression approach for dealing with outliers and compares it to the results generated using classical regression models and semi-parametric regression models.
Practical Session: Simple Linear Regression
NASA Astrophysics Data System (ADS)
Clausel, M.; Grégoire, G.
2014-12-01
Two exercises are proposed to illustrate the simple linear regression. The first one is based on the famous Galton's data set on heredity. We use the lm R command and get coefficients estimates, standard error of the error, R2, residuals …In the second example, devoted to data related to the vapor tension of mercury, we fit a simple linear regression, predict values, and anticipate on multiple linear regression. This pratical session is an excerpt from practical exercises proposed by A. Dalalyan at EPNC (see Exercises 1 and 2 of http://certis.enpc.fr/~dalalyan/Download/TP_ENPC_4.pdf).
Splines for diffeomorphic image regression.
Singh, Nikhil; Niethammer, Marc
2014-01-01
This paper develops a method for splines on diffeomorphisms for image regression. In contrast to previously proposed methods to capture image changes over time, such as geodesic regression, the method can capture more complex spatio-temporal deformations. In particular, it is a first step towards capturing periodic motions for example of the heart or the lung. Starting from a variational formulation of splines the proposed approach allows for the use of temporal control points to control spline behavior. This necessitates the development of a shooting formulation for splines. Experimental results are shown for synthetic and real data. The performance of the method is compared to geodesic regression.
Abstract Expression Grammar Symbolic Regression
NASA Astrophysics Data System (ADS)
Korns, Michael F.
This chapter examines the use of Abstract Expression Grammars to perform the entire Symbolic Regression process without the use of Genetic Programming per se. The techniques explored produce a symbolic regression engine which has absolutely no bloat, which allows total user control of the search space and output formulas, which is faster, and more accurate than the engines produced in our previous papers using Genetic Programming. The genome is an all vector structure with four chromosomes plus additional epigenetic and constraint vectors, allowing total user control of the search space and the final output formulas. A combination of specialized compiler techniques, genetic algorithms, particle swarm, aged layered populations, plus discrete and continuous differential evolution are used to produce an improved symbolic regression sytem. Nine base test cases, from the literature, are used to test the improvement in speed and accuracy. The improved results indicate that these techniques move us a big step closer toward future industrial strength symbolic regression systems.
Multiple Regression and Its Discontents
ERIC Educational Resources Information Center
Snell, Joel C.; Marsh, Mitchell
2012-01-01
Multiple regression is part of a larger statistical strategy originated by Gauss. The authors raise questions about the theory and suggest some changes that would make room for Mandelbrot and Serendipity.
Time-warped geodesic regression.
Hong, Yi; Singh, Nikhil; Kwitt, Roland; Niethammer, Marc
2014-01-01
We consider geodesic regression with parametric time-warps. This allows for example, to capture saturation effects as typically observed during brain development or degeneration. While highly-flexible models to analyze time-varying image and shape data based on generalizations of splines and polynomials have been proposed recently, they come at the cost of substantially more complex inference. Our focus in this paper is therefore to keep the model and its inference as simple as possible while allowing to capture expected biological variation. We demonstrate that by augmenting geodesic regression with parametric time-warp functions, we can achieve comparable flexibility to more complex models while retaining model simplicity. In addition, the time-warp parameters provide useful information of underlying anatomical changes as demonstrated for the analysis of corpora callosa and rat calvariae. We exemplify our strategy for shape regression on the Grassmann manifold, but note that the method is generally applicable for time-warped geodesic regression.
Time-Warped Geodesic Regression
Hong, Yi; Singh, Nikhil; Kwitt, Roland; Niethammer, Marc
2016-01-01
We consider geodesic regression with parametric time-warps. This allows, for example, to capture saturation effects as typically observed during brain development or degeneration. While highly-flexible models to analyze time-varying image and shape data based on generalizations of splines and polynomials have been proposed recently, they come at the cost of substantially more complex inference. Our focus in this paper is therefore to keep the model and its inference as simple as possible while allowing to capture expected biological variation. We demonstrate that by augmenting geodesic regression with parametric time-warp functions, we can achieve comparable flexibility to more complex models while retaining model simplicity. In addition, the time-warp parameters provide useful information of underlying anatomical changes as demonstrated for the analysis of corpora callosa and rat calvariae. We exemplify our strategy for shape regression on the Grassmann manifold, but note that the method is generally applicable for time-warped geodesic regression. PMID:25485368
Multiple Regression and Its Discontents
ERIC Educational Resources Information Center
Snell, Joel C.; Marsh, Mitchell
2012-01-01
Multiple regression is part of a larger statistical strategy originated by Gauss. The authors raise questions about the theory and suggest some changes that would make room for Mandelbrot and Serendipity.
Regression with Differential Equation Models
1976-04-01
Perturbation methods are used in the control program and QUASH for I ease of programming. For information regarding this theory, see Refer- ence 5, Doiron ...Nonlinear Multipoint Boundary Value Problem. For the series Applied Mathematics and Computation. Addison Wesly Publishing Company. 5) Childs, Bart, Doiron
Wrong Signs in Regression Coefficients
NASA Technical Reports Server (NTRS)
McGee, Holly
1999-01-01
When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.
Wrong Signs in Regression Coefficients
NASA Technical Reports Server (NTRS)
McGee, Holly
1999-01-01
When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.
New Nonlinear Multigrid Analysis
NASA Technical Reports Server (NTRS)
Xie, Dexuan
1996-01-01
The nonlinear multigrid is an efficient algorithm for solving the system of nonlinear equations arising from the numerical discretization of nonlinear elliptic boundary problems. In this paper, we present a new nonlinear multigrid analysis as an extension of the linear multigrid theory presented by Bramble. In particular, we prove the convergence of the nonlinear V-cycle method for a class of mildly nonlinear second order elliptic boundary value problems which do not have full elliptic regularity.
XRA image segmentation using regression
NASA Astrophysics Data System (ADS)
Jin, Jesse S.
1996-04-01
Segmentation is an important step in image analysis. Thresholding is one of the most important approaches. There are several difficulties in segmentation, such as automatic selecting threshold, dealing with intensity distortion and noise removal. We have developed an adaptive segmentation scheme by applying the Central Limit Theorem in regression. A Gaussian regression is used to separate the distribution of background from foreground in a single peak histogram. The separation will help to automatically determine the threshold. A small 3 by 3 widow is applied and the modal of the local histogram is used to overcome noise. Thresholding is based on local weighting, where regression is used again for parameter estimation. A connectivity test is applied to the final results to remove impulse noise. We have applied the algorithm to x-ray angiogram images to extract brain arteries. The algorithm works well for single peak distribution where there is no valley in the histogram. The regression provides a method to apply knowledge in clustering. Extending regression for multiple-level segmentation needs further investigation.
Interpretation of Standardized Regression Coefficients in Multiple Regression.
ERIC Educational Resources Information Center
Thayer, Jerome D.
The extent to which standardized regression coefficients (beta values) can be used to determine the importance of a variable in an equation was explored. The beta value and the part correlation coefficient--also called the semi-partial correlation coefficient and reported in squared form as the incremental "r squared"--were compared for…
Interquantile Shrinkage in Regression Models
Jiang, Liewen; Wang, Huixia Judy; Bondell, Howard D.
2012-01-01
Conventional analysis using quantile regression typically focuses on fitting the regression model at different quantiles separately. However, in situations where the quantile coefficients share some common feature, joint modeling of multiple quantiles to accommodate the commonality often leads to more efficient estimation. One example of common features is that a predictor may have a constant effect over one region of quantile levels but varying effects in other regions. To automatically perform estimation and detection of the interquantile commonality, we develop two penalization methods. When the quantile slope coefficients indeed do not change across quantile levels, the proposed methods will shrink the slopes towards constant and thus improve the estimation efficiency. We establish the oracle properties of the two proposed penalization methods. Through numerical investigations, we demonstrate that the proposed methods lead to estimations with competitive or higher efficiency than the standard quantile regression estimation in finite samples. Supplemental materials for the article are available online. PMID:24363546
Survival Data and Regression Models
NASA Astrophysics Data System (ADS)
Grégoire, G.
2014-12-01
We start this chapter by introducing some basic elements for the analysis of censored survival data. Then we focus on right censored data and develop two types of regression models. The first one concerns the so-called accelerated failure time models (AFT), which are parametric models where a function of a parameter depends linearly on the covariables. The second one is a semiparametric model, where the covariables enter in a multiplicative form in the expression of the hazard rate function. The main statistical tool for analysing these regression models is the maximum likelihood methodology and, in spite we recall some essential results about the ML theory, we refer to the chapter "Logistic Regression" for a more detailed presentation.
Regressive evolution in Astyanax cavefish.
Jeffery, William R
2009-01-01
A diverse group of animals, including members of most major phyla, have adapted to life in the perpetual darkness of caves. These animals are united by the convergence of two regressive phenotypes, loss of eyes and pigmentation. The mechanisms of regressive evolution are poorly understood. The teleost Astyanax mexicanus is of special significance in studies of regressive evolution in cave animals. This species includes an ancestral surface dwelling form and many con-specific cave-dwelling forms, some of which have evolved their recessive phenotypes independently. Recent advances in Astyanax development and genetics have provided new information about how eyes and pigment are lost during cavefish evolution; namely, they have revealed some of the molecular and cellular mechanisms involved in trait modification, the number and identity of the underlying genes and mutations, the molecular basis of parallel evolution, and the evolutionary forces driving adaptation to the cave environment.
Logistic regression for circular data
NASA Astrophysics Data System (ADS)
Al-Daffaie, Kadhem; Khan, Shahjahan
2017-05-01
This paper considers the relationship between a binary response and a circular predictor. It develops the logistic regression model by employing the linear-circular regression approach. The maximum likelihood method is used to estimate the parameters. The Newton-Raphson numerical method is used to find the estimated values of the parameters. A data set from weather records of Toowoomba city is analysed by the proposed methods. Moreover, a simulation study is considered. The R software is used for all computations and simulations.
Kernel regression for fMRI pattern prediction
Chu, Carlton; Ni, Yizhao; Tan, Geoffrey; Saunders, Craig J.; Ashburner, John
2011-01-01
This paper introduces two kernel-based regression schemes to decode or predict brain states from functional brain scans as part of the Pittsburgh Brain Activity Interpretation Competition (PBAIC) 2007, in which our team was awarded first place. Our procedure involved image realignment, spatial smoothing, detrending of low-frequency drifts, and application of multivariate linear and non-linear kernel regression methods: namely kernel ridge regression (KRR) and relevance vector regression (RVR). RVR is based on a Bayesian framework, which automatically determines a sparse solution through maximization of marginal likelihood. KRR is the dual-form formulation of ridge regression, which solves regression problems with high dimensional data in a computationally efficient way. Feature selection based on prior knowledge about human brain function was also used. Post-processing by constrained deconvolution and re-convolution was used to furnish the prediction. This paper also contains a detailed description of how prior knowledge was used to fine tune predictions of specific “feature ratings,” which we believe is one of the key factors in our prediction accuracy. The impact of pre-processing was also evaluated, demonstrating that different pre-processing may lead to significantly different accuracies. Although the original work was aimed at the PBAIC, many techniques described in this paper can be generally applied to any fMRI decoding works to increase the prediction accuracy. PMID:20348000
Quantile Regression with Censored Data
ERIC Educational Resources Information Center
Lin, Guixian
2009-01-01
The Cox proportional hazards model and the accelerated failure time model are frequently used in survival data analysis. They are powerful, yet have limitation due to their model assumptions. Quantile regression offers a semiparametric approach to model data with possible heterogeneity. It is particularly powerful for censored responses, where the…
Multiple Regression: A Leisurely Primer.
ERIC Educational Resources Information Center
Daniel, Larry G.; Onwuegbuzie, Anthony J.
Multiple regression is a useful statistical technique when the researcher is considering situations in which variables of interest are theorized to be multiply caused. It may also be useful in those situations in which the researchers is interested in studies of predictability of phenomena of interest. This paper provides an introduction to…
Weighting Regressions by Propensity Scores
ERIC Educational Resources Information Center
Freedman, David A.; Berk, Richard A.
2008-01-01
Regressions can be weighted by propensity scores in order to reduce bias. However, weighting is likely to increase random error in the estimates, and to bias the estimated standard errors downward, even when selection mechanisms are well understood. Moreover, in some cases, weighting will increase the bias in estimated causal parameters. If…
Quantile Regression with Censored Data
ERIC Educational Resources Information Center
Lin, Guixian
2009-01-01
The Cox proportional hazards model and the accelerated failure time model are frequently used in survival data analysis. They are powerful, yet have limitation due to their model assumptions. Quantile regression offers a semiparametric approach to model data with possible heterogeneity. It is particularly powerful for censored responses, where the…
Correlation Weights in Multiple Regression
ERIC Educational Resources Information Center
Waller, Niels G.; Jones, Jeff A.
2010-01-01
A general theory on the use of correlation weights in linear prediction has yet to be proposed. In this paper we take initial steps in developing such a theory by describing the conditions under which correlation weights perform well in population regression models. Using OLS weights as a comparison, we define cases in which the two weighting…
Cactus: An Introduction to Regression
ERIC Educational Resources Information Center
Hyde, Hartley
2008-01-01
When the author first used "VisiCalc," the author thought it a very useful tool when he had the formulas. But how could he design a spreadsheet if there was no known formula for the quantities he was trying to predict? A few months later, the author relates he learned to use multiple linear regression software and suddenly it all clicked into…
Ridge Regression for Interactive Models.
ERIC Educational Resources Information Center
Tate, Richard L.
1988-01-01
An exploratory study of the value of ridge regression for interactive models is reported. Assuming that the linear terms in a simple interactive model are centered to eliminate non-essential multicollinearity, a variety of common models, representing both ordinal and disordinal interactions, are shown to have "orientations" that are…
Batra, Manu; Shah, Aasim Farooq; Rajput, Prashant; Shah, Ishrat Aasim
2016-01-01
Dental caries among children has been described as a pandemic disease with a multifactorial nature. Various sociodemographic factors and oral hygiene practices are commonly tested for their influence on dental caries. In recent years, a recent statistical model that allows for covariate adjustment has been developed and is commonly referred zero-inflated negative binomial (ZINB) models. To compare the fit of the two models, the conventional linear regression (LR) model and ZINB model to assess the risk factors associated with dental caries. A cross-sectional survey was conducted on 1138 12-year-old school children in Moradabad Town, Uttar Pradesh during months of February-August 2014. Selected participants were interviewed using a questionnaire. Dental caries was assessed by recording decayed, missing, or filled teeth (DMFT) index. To assess the risk factor associated with dental caries in children, two approaches have been applied - LR model and ZINB model. The prevalence of caries-free subjects was 24.1%, and mean DMFT was 3.4 ± 1.8. In LR model, all the variables were statistically significant. Whereas in ZINB model, negative binomial part showed place of residence, father's education level, tooth brushing frequency, and dental visit statistically significant implying that the degree of being caries-free (DMFT = 0) increases for group of children who are living in urban, whose father is university pass out, who brushes twice a day and if have ever visited a dentist. The current study report that the LR model is a poorly fitted model and may lead to spurious conclusions whereas ZINB model has shown better goodness of fit (Akaike information criterion values - LR: 3.94; ZINB: 2.39) and can be preferred if high variance and number of an excess of zeroes are present.
Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors
Woodard, Dawn B.; Crainiceanu, Ciprian; Ruppert, David
2013-01-01
We propose a new method for regression using a parsimonious and scientifically interpretable representation of functional predictors. Our approach is designed for data that exhibit features such as spikes, dips, and plateaus whose frequency, location, size, and shape varies stochastically across subjects. We propose Bayesian inference of the joint functional and exposure models, and give a method for efficient computation. We contrast our approach with existing state-of-the-art methods for regression with functional predictors, and show that our method is more effective and efficient for data that include features occurring at varying locations. We apply our methodology to a large and complex dataset from the Sleep Heart Health Study, to quantify the association between sleep characteristics and health outcomes. Software and technical appendices are provided in online supplemental materials. PMID:24293988
Filtering by nonlinear systems.
Campos Cantón, E; González Salas, J S; Urías, J
2008-12-01
Synchronization of nonlinear systems forced by external signals is formalized as the response of a nonlinear filter. Sufficient conditions for a nonlinear system to behave as a filter are given. Some examples of generalized chaos synchronization are shown to actually be special cases of nonlinear filtering.
Regression Verification Using Impact Summaries
NASA Technical Reports Server (NTRS)
Backes, John; Person, Suzette J.; Rungta, Neha; Thachuk, Oksana
2013-01-01
Regression verification techniques are used to prove equivalence of syntactically similar programs. Checking equivalence of large programs, however, can be computationally expensive. Existing regression verification techniques rely on abstraction and decomposition techniques to reduce the computational effort of checking equivalence of the entire program. These techniques are sound but not complete. In this work, we propose a novel approach to improve scalability of regression verification by classifying the program behaviors generated during symbolic execution as either impacted or unimpacted. Our technique uses a combination of static analysis and symbolic execution to generate summaries of impacted program behaviors. The impact summaries are then checked for equivalence using an o-the-shelf decision procedure. We prove that our approach is both sound and complete for sequential programs, with respect to the depth bound of symbolic execution. Our evaluation on a set of sequential C artifacts shows that reducing the size of the summaries can help reduce the cost of software equivalence checking. Various reduction, abstraction, and compositional techniques have been developed to help scale software verification techniques to industrial-sized systems. Although such techniques have greatly increased the size and complexity of systems that can be checked, analysis of large software systems remains costly. Regression analysis techniques, e.g., regression testing [16], regression model checking [22], and regression verification [19], restrict the scope of the analysis by leveraging the differences between program versions. These techniques are based on the idea that if code is checked early in development, then subsequent versions can be checked against a prior (checked) version, leveraging the results of the previous analysis to reduce analysis cost of the current version. Regression verification addresses the problem of proving equivalence of closely related program
RADTI: regression analyses of diffusion tensor images
NASA Astrophysics Data System (ADS)
Li, Yimei; Zhu, Hongtu; Chen, Yasheng; Ibrahim, Joseph G.; An, Hongyu; Lin, Weili; Hall, Colin; Shen, Dinggang
2009-02-01
Diffusion tensor image (DTI) is a powerful tool for quantitatively assessing the integrity of anatomical connectivity in white matter in clinical populations. The prevalent methods for group-level analysis of DTI are statistical analyses of invariant measures (e.g., fractional anisotropy) and principal directions across groups. The invariant measures and principal directions, however, do not capture all information in full diffusion tensor, which can decrease the statistical power of DTI in detecting subtle changes of white matters. Thus, it is very desirable to develop new statistical methods for analyzing full diffusion tensors. In this paper, we develop a set of toolbox, called RADTI, for the analysis of the full diffusion tensors as responses and establish their association with a set of covariates. The key idea is to use the recent development of log-Euclidean metric and then transform diffusion tensors in a nonlinear space into their matrix logarithms in a Euclidean space. Our regression model is a semiparametric model, which avoids any specific parametric assumptions. We develop an estimation procedure and a test procedure based on score statistics and a resampling method to simultaneously assess the statistical significance of linear hypotheses across a large region of interest. Monte Carlo simulations are used to examine the finite sample performance of the test procedure for controlling the family-wise error rate. We apply our methods to the detection of statistical significance of diagnostic and age effects on the integrity of white matter in a diffusion tensor study of human immunodeficiency virus.
Boosted Regression Tree Models to Explain Watershed ...
Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on the Index of Biotic Integrity (IBI), were also analyzed. Seasonal BRT models at two spatial scales (watershed and riparian buffered area [RBA]) for nitrite-nitrate (NO2-NO3), total Kjeldahl nitrogen, and total phosphorus (TP) and annual models for the IBI score were developed. Two primary factors — location within the watershed (i.e., geographic position, stream order, and distance to a downstream confluence) and percentage of urban land cover (both scales) — emerged as important predictor variables. Latitude and longitude interacted with other factors to explain the variability in summer NO2-NO3 concentrations and IBI scores. BRT results also suggested that location might be associated with indicators of sources (e.g., land cover), runoff potential (e.g., soil and topographic factors), and processes not easily represented by spatial data indicators. Runoff indicators (e.g., Hydrological Soil Group D and Topographic Wetness Indices) explained a substantial portion of the variability in nutrient concentrations as did point sources for TP in the summer months. The results from our BRT approach can help prioritize areas for nutrient management in mixed-use and heavily impacted watershed
Interactive natural image segmentation via spline regression.
Xiang, Shiming; Nie, Feiping; Zhang, Chunxia; Zhang, Changshui
2009-07-01
This paper presents an interactive algorithm for segmentation of natural images. The task is formulated as a problem of spline regression, in which the spline is derived in Sobolev space and has a form of a combination of linear and Green's functions. Besides its nonlinear representation capability, one advantage of this spline in usage is that, once it has been constructed, no parameters need to be tuned to data. We define this spline on the user specified foreground and background pixels, and solve its parameters (the combination coefficients of functions) from a group of linear equations. To speed up spline construction, K-means clustering algorithm is employed to cluster the user specified pixels. By taking the cluster centers as representatives, this spline can be easily constructed. The foreground object is finally cut out from its background via spline interpolation. The computational complexity of the proposed algorithm is linear in the number of the pixels to be segmented. Experiments on diverse natural images, with comparison to existing algorithms, illustrate the validity of our method.
PM10 forecasting using clusterwise regression
NASA Astrophysics Data System (ADS)
Poggi, Jean-Michel; Portier, Bruno
2011-12-01
In this paper, we are interested in the statistical forecasting of the daily mean PM10 concentration. Hourly concentrations of PM10 have been measured in the city of Rouen, in Haute-Normandie, France. Located at northwest of Paris, near the south side of Manche sea and heavily industrialised. We consider three monitoring stations reflecting the diversity of situations: an urban background station, a traffic station and an industrial station near the cereal harbour of Rouen. We have focused our attention on data for the months that register higher values, from December to March, on years 2004-2009. The models are obtained from the winter days of the four seasons 2004/2005 to 2007/2008 (training data) and then the forecasting performance is evaluated on the winter days of the season 2008/2009 (test data). We show that it is possible to accurately forecast the daily mean concentration by fitting a function of meteorological predictors and the average concentration measured on the previous day. The values of observed meteorological variables are used for fitting the models and are also considered for the test data. We have compared the forecasts produced by three different methods: persistence, generalized additive nonlinear models and clusterwise linear regression models. This last method gives very impressive results and the end of the paper tries to analyze the reasons of such a good behavior.
Interaction Models for Functional Regression
USSET, JOSEPH; STAICU, ANA-MARIA; MAITY, ARNAB
2015-01-01
A functional regression model with a scalar response and multiple functional predictors is proposed that accommodates two-way interactions in addition to their main effects. The proposed estimation procedure models the main effects using penalized regression splines, and the interaction effect by a tensor product basis. Extensions to generalized linear models and data observed on sparse grids or with measurement error are presented. A hypothesis testing procedure for the functional interaction effect is described. The proposed method can be easily implemented through existing software. Numerical studies show that fitting an additive model in the presence of interaction leads to both poor estimation performance and lost prediction power, while fitting an interaction model where there is in fact no interaction leads to negligible losses. The methodology is illustrated on the AneuRisk65 study data. PMID:26744549
Astronomical Methods for Nonparametric Regression
NASA Astrophysics Data System (ADS)
Steinhardt, Charles L.; Jermyn, Adam
2017-01-01
I will discuss commonly used techniques for nonparametric regression in astronomy. We find that several of them, particularly running averages and running medians, are generically biased, asymmetric between dependent and independent variables, and perform poorly in recovering the underlying function, even when errors are present only in one variable. We then examine less-commonly used techniques such as Multivariate Adaptive Regressive Splines and Boosted Trees and find them superior in bias, asymmetry, and variance both theoretically and in practice under a wide range of numerical benchmarks. In this context the chief advantage of the common techniques is runtime, which even for large datasets is now measured in microseconds compared with milliseconds for the more statistically robust techniques. This points to a tradeoff between bias, variance, and computational resources which in recent years has shifted heavily in favor of the more advanced methods, primarily driven by Moore's Law. Along these lines, we also propose a new algorithm which has better overall statistical properties than all techniques examined thus far, at the cost of significantly worse runtime, in addition to providing guidance on choosing the nonparametric regression technique most suitable to any specific problem. We then examine the more general problem of errors in both variables and provide a new algorithm which performs well in most cases and lacks the clear asymmetry of existing non-parametric methods, which fail to account for errors in both variables.
Sridhar, Upasana Manimegalai; Govindarajan, Anand; Rhinehart, R Russell
2016-01-01
This work reveals the applicability of a relatively new optimization technique, Leapfrogging, for both nonlinear regression modeling and a methodology for nonlinear model-predictive control. Both are relatively simple, yet effective. The application on a nonlinear, pilot-scale, shell-and-tube heat exchanger reveals practicability of the techniques.
Deep Wavelet Scattering for Quantum Energy Regression
NASA Astrophysics Data System (ADS)
Hirn, Matthew
Physical functionals are usually computed as solutions of variational problems or from solutions of partial differential equations, which may require huge computations for complex systems. Quantum chemistry calculations of ground state molecular energies is such an example. Indeed, if x is a quantum molecular state, then the ground state energy E0 (x) is the minimum eigenvalue solution of the time independent Schrödinger Equation, which is computationally intensive for large systems. Machine learning algorithms do not simulate the physical system but estimate solutions by interpolating values provided by a training set of known examples {(xi ,E0 (xi) } i <= n . However, precise interpolations may require a number of examples that is exponential in the system dimension, and are thus intractable. This curse of dimensionality may be circumvented by computing interpolations in smaller approximation spaces, which take advantage of physical invariants. Linear regressions of E0 over a dictionary Φ ={ϕk } k compute an approximation E 0 as: E 0 (x) =∑kwkϕk (x) , where the weights {wk } k are selected to minimize the error between E0 and E 0 on the training set. The key to such a regression approach then lies in the design of the dictionary Φ. It must be intricate enough to capture the essential variability of E0 (x) over the molecular states x of interest, while simple enough so that evaluation of Φ (x) is significantly less intensive than a direct quantum mechanical computation (or approximation) of E0 (x) . In this talk we present a novel dictionary Φ for the regression of quantum mechanical energies based on the scattering transform of an intermediate, approximate electron density representation ρx of the state x. The scattering transform has the architecture of a deep convolutional network, composed of an alternating sequence of linear filters and nonlinear maps. Whereas in many deep learning tasks the linear filters are learned from the training data, here
Non-crossing weighted kernel quantile regression with right censored data.
Bang, Sungwan; Eo, Soo-Heang; Cho, Yong Mee; Jhun, Myoungshic; Cho, HyungJun
2016-01-01
Regarding survival data analysis in regression modeling, multiple conditional quantiles are useful summary statistics to assess covariate effects on survival times. In this study, we consider an estimation problem of multiple nonlinear quantile functions with right censored survival data. To account for censoring in estimating a nonlinear quantile function, weighted kernel quantile regression (WKQR) has been developed by using the kernel trick and inverse-censoring-probability weights. However, the individually estimated quantile functions based on the WKQR often cross each other and consequently violate the basic properties of quantiles. To avoid this problem of quantile crossing, we propose the non-crossing weighted kernel quantile regression (NWKQR), which estimates multiple nonlinear conditional quantile functions simultaneously by enforcing the non-crossing constraints on kernel coefficients. The numerical results are presented to demonstrate the competitive performance of the proposed NWKQR over the WKQR.
Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate
NASA Astrophysics Data System (ADS)
Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno
2017-03-01
This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four (4) statistical regression models (two linear and two nonlinear) are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2) of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.
Construction of the flow rate nomogram using polynomial regression.
Hosmane, B; Maurath, C; McConnell, M
1993-04-01
The urinary flow rates of normal individuals depend on the initial bladder volume in a non-linear fashion (J. Urol. 109 (1973) 874). A flow rate nomogram was developed by Siroky, Olsson and Krane, (J. Vol. 122 (1979) 665), taking the non-linear relationship into account, as an aid in the interpretation of urinary flow rate data. The use of a flow rate nomogram is to differentiate normal from obstructed individuals and is useful in the post operative follow-up of urinary outflow obstruction. It has been shown (J. Urol. 123 (1980) 123) that the flow rate nomogram is an objective measure of the efficacy of medical or surgical therapy. Instead of manually reading nomogram values from the flow rate nomogram, an algorithm is developed using polynomial regression to fit the flow rate nomograms and hence compute nomogram values directly from the fitted nomogram equations.
Regression analysis of cytopathological data
Whittemore, A.S.; McLarty, J.W.; Fortson, N.; Anderson, K.
1982-12-01
Epithelial cells from the human body are frequently labelled according to one of several ordered levels of abnormality, ranging from normal to malignant. The label of the most abnormal cell in a specimen determines the score for the specimen. This paper presents a model for the regression of specimen scores against continuous and discrete variables, as in host exposure to carcinogens. Application to data and tests for adequacy of model fit are illustrated using sputum specimens obtained from a cohort of former asbestos workers.
Du, Hongying; Watzl, June; Wang, Jie; Zhang, Xiaoyun; Yao, Xiaojun; Hu, Zhide
2008-07-01
The relationship between the logarithm of retention indices (log k(IAM)) of 55 diverse drugs in immobilized artificial membrane (IAM) chromatography and molecular structure descriptors was established by linear and non-linear modeling methods--Projection Pursuit Regression (PPR) and lazy learning method-Local Lazy Regression (LLR). The descriptors calculated from the molecular structures by the software CODESSA and a widely accepted property parameter ClogP were used to represent the characteristics of the compounds. The best multi-linear regression (BMLR) method in the CODESSA was used to select the most important molecular descriptors from a large set of descriptors and to develop the linear and non-linear quantitative structure retention relationship (QSRR) models. By comparing these different methods, the LLR model gave the best predictive results for the drugs studied in the present work with the square of correlation coefficient (R(2)) of 0.9540, 0.9305; root mean square error (RMSE) of 0.2418, 0.3949; for the training set and test set, respectively. It was proved that the LLR method was a promising method for QSRR modeling with good predictive capability for the retention indices of drugs in immobilized artificial membrane chromatography, and could be used in other similar chromatography research fields.
Regression analysis of non-contact acousto-thermal signature data
NASA Astrophysics Data System (ADS)
Criner, Amanda; Schehl, Norman
2016-05-01
The non-contact acousto-thermal signature (NCATS) is a nondestructive evaluation technique with potential to detect fatigue in materials such as noisy titanium and polymer matrix composites. The underlying physical mechanisms and properties may be determined by parameter estimation via nonlinear regression. The nonlinear regression analysis formulation, including the underlying models, is discussed. Several models and associated data analyses are given along with the assumptions implicit in the underlying model. The results are anomalous. These anomalous results are evaluated with respect to the accuracy of the implicit assumptions.
Henrard, S; Speybroeck, N; Hermans, C
2015-11-01
Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.
Quantum algorithm for linear regression
NASA Astrophysics Data System (ADS)
Wang, Guoming
2017-07-01
We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.
Multiatlas Segmentation as Nonparametric Regression
Awate, Suyash P.; Whitaker, Ross T.
2015-01-01
This paper proposes a novel theoretical framework to model and analyze the statistical characteristics of a wide range of segmentation methods that incorporate a database of label maps or atlases; such methods are termed as label fusion or multiatlas segmentation. We model these multiatlas segmentation problems as nonparametric regression problems in the high-dimensional space of image patches. We analyze the nonparametric estimator’s convergence behavior that characterizes expected segmentation error as a function of the size of the multiatlas database. We show that this error has an analytic form involving several parameters that are fundamental to the specific segmentation problem (determined by the chosen anatomical structure, imaging modality, registration algorithm, and label-fusion algorithm). We describe how to estimate these parameters and show that several human anatomical structures exhibit the trends modeled analytically. We use these parameter estimates to optimize the regression estimator. We show that the expected error for large database sizes is well predicted by models learned on small databases. Thus, a few expert segmentations can help predict the database sizes required to keep the expected error below a specified tolerance level. Such cost-benefit analysis is crucial for deploying clinical multiatlas segmentation systems. PMID:24802528
Multiatlas segmentation as nonparametric regression.
Awate, Suyash P; Whitaker, Ross T
2014-09-01
This paper proposes a novel theoretical framework to model and analyze the statistical characteristics of a wide range of segmentation methods that incorporate a database of label maps or atlases; such methods are termed as label fusion or multiatlas segmentation. We model these multiatlas segmentation problems as nonparametric regression problems in the high-dimensional space of image patches. We analyze the nonparametric estimator's convergence behavior that characterizes expected segmentation error as a function of the size of the multiatlas database. We show that this error has an analytic form involving several parameters that are fundamental to the specific segmentation problem (determined by the chosen anatomical structure, imaging modality, registration algorithm, and label-fusion algorithm). We describe how to estimate these parameters and show that several human anatomical structures exhibit the trends modeled analytically. We use these parameter estimates to optimize the regression estimator. We show that the expected error for large database sizes is well predicted by models learned on small databases. Thus, a few expert segmentations can help predict the database sizes required to keep the expected error below a specified tolerance level. Such cost-benefit analysis is crucial for deploying clinical multiatlas segmentation systems.
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-01-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-12-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.
Nonlinear Hysteretic Torsional Waves.
Cabaret, J; Béquin, P; Theocharis, G; Andreev, V; Gusev, V E; Tournat, V
2015-07-31
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.
Nonlinear Hysteretic Torsional Waves
NASA Astrophysics Data System (ADS)
Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.
2015-07-01
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.
2009-11-18
in a trim condition is a typical problem of output regulation near an equilibrium setting, tailless or nearly tailless aircraft , such as UCAV’s...control to produce significant nonlinear excursions. Taking advantage of these nonequilibrium nonlinearities in tailless aircraft also promises to...will also have multiple nonlinear axes and a smaller domain of stability than conventional aircraft , involving nonlinear trajectories which cannot be
Transductive Regression for Data With Latent Dependence Structure.
Gornitz, Nico; Lima, Luiz Alberto; Varella, Luiz Eduardo; Muller, Klaus-Robert; Nakajima, Shinichi
2017-05-18
Analyzing data with latent spatial and/or temporal structure is a challenge for machine learning. In this paper, we propose a novel nonlinear model for studying data with latent dependence structure. It successfully combines the concepts of Markov random fields, transductive learning, and regression, making heavy use of the notion of joint feature maps. Our transductive conditional random field regression model is able to infer the latent states by combining limited labeled data of high precision with unlabeled data containing measurement uncertainty. In this manner, we can propagate accurate information and greatly reduce uncertainty. We demonstrate the usefulness of our novel framework on generated time series data with the known temporal structure and successfully validate it on synthetic as well as real-world offshore data with the spatial structure from the oil industry to predict rock porosities from acoustic impedance data.
Robust and efficient estimation with weighted composite quantile regression
NASA Astrophysics Data System (ADS)
Jiang, Xuejun; Li, Jingzhi; Xia, Tian; Yan, Wanfeng
2016-09-01
In this paper we introduce a weighted composite quantile regression (CQR) estimation approach and study its application in nonlinear models such as exponential models and ARCH-type models. The weighted CQR is augmented by using a data-driven weighting scheme. With the error distribution unspecified, the proposed estimators share robustness from quantile regression and achieve nearly the same efficiency as the oracle maximum likelihood estimator (MLE) for a variety of error distributions including the normal, mixed-normal, Student's t, Cauchy distributions, etc. We also suggest an algorithm for the fast implementation of the proposed methodology. Simulations are carried out to compare the performance of different estimators, and the proposed approach is used to analyze the daily S&P 500 Composite index, which verifies the effectiveness and efficiency of our theoretical results.
Monte Carlo methods for nonparametric regression with heteroscedastic measurement error.
McIntyre, Julie; Johnson, Brent A; Rappaport, Stephen M
2017-09-15
Nonparametric regression is a fundamental problem in statistics but challenging when the independent variable is measured with error. Among the first approaches was an extension of deconvoluting kernel density estimators for homescedastic measurement error. The main contribution of this article is to propose a new simulation-based nonparametric regression estimator for the heteroscedastic measurement error case. Similar to some earlier proposals, our estimator is built on principles underlying deconvoluting kernel density estimators. However, the proposed estimation procedure uses Monte Carlo methods for estimating nonlinear functions of a normal mean, which is different than any previous estimator. We show that the estimator has desirable operating characteristics in both large and small samples and apply the method to a study of benzene exposure in Chinese factory workers. © 2017, The International Biometric Society.
Fund trend prediction based on least squares support vector regression
NASA Astrophysics Data System (ADS)
Bao, Yilan
2011-12-01
It is well-known that accurate prediction of fund trend is very important to get high profits from fund market. In the paper, least squares support vector regression (LSSVR) is adopted to predict fund trend. LSSVR higher the non-linear prediction ability than other prediction methods .The trading price of fund "kexun" from 2007-3-1 to 2007-3-30 is used as our experimental data, and the trading price from 2007-3-26 to 2007-3-30 is used as the testing data. The forecasting results of BP neural network and least squares support vector regression are given. The experimental results show that the forecasting values of LSSVR are nearer to actual values that those of BP neural network.
Adaptive support vector regression for UAV flight control.
Shin, Jongho; Jin Kim, H; Kim, Youdan
2011-01-01
This paper explores an application of support vector regression for adaptive control of an unmanned aerial vehicle (UAV). Unlike neural networks, support vector regression (SVR) generates global solutions, because SVR basically solves quadratic programming (QP) problems. With this advantage, the input-output feedback-linearized inverse dynamic model and the compensation term for the inversion error are identified off-line, which we call I-SVR (inversion SVR) and C-SVR (compensation SVR), respectively. In order to compensate for the inversion error and the unexpected uncertainty, an online adaptation algorithm for the C-SVR is proposed. Then, the stability of the overall error dynamics is analyzed by the uniformly ultimately bounded property in the nonlinear system theory. In order to validate the effectiveness of the proposed adaptive controller, numerical simulations are performed on the UAV model. Copyright © 2010 Elsevier Ltd. All rights reserved.
Topography-Based Keratoconus Regression.
Kymionis, George D; Tsoulnaras, Konstantinos I; Grentzelos, Michael A; Shehadeh, Mohammad M; Klados, Nektarios E; Karavitaki, Alexandra A; Kankariya, Vardhaman P; Pallikaris, Ioannis G
2013-10-01
To report 3 cases of keratoconic patients who had progressive corneal topographic flattening during a 2-year follow-up period. Case series. Three patients with bilateral keratoconus, each operated for advanced keratoconus in one of their eyes, were observed for possible progression of the disorder for a period of 2 years. During the 2-year follow-up period, topographic examination showed progressive corneal flattening in the nonoperated eye. Mean keratometry decreased in all patients, whereas topography showed significant flattening at the apex of the cone. Best-spectacle-corrected visual acuity increased in one of the patients, whereas the others had stable uncorrected and best-spectacle-corrected visual acuity during the follow-up period. All patients had positive family medical history for diabetes mellitus, but none of them was diabetic. This is the first report of topography-based keratoconus regression during a 2-year follow-up period.
Practical Session: Multiple Linear Regression
NASA Astrophysics Data System (ADS)
Clausel, M.; Grégoire, G.
2014-12-01
Three exercises are proposed to illustrate the simple linear regression. In the first one investigates the influence of several factors on atmospheric pollution. It has been proposed by D. Chessel and A.B. Dufour in Lyon 1 (see Sect. 6 of http://pbil.univ-lyon1.fr/R/pdf/tdr33.pdf) and is based on data coming from 20 cities of U.S. Exercise 2 is an introduction to model selection whereas Exercise 3 provides a first example of analysis of variance. Exercises 2 and 3 have been proposed by A. Dalalyan at ENPC (see Exercises 2 and 3 of http://certis.enpc.fr/~dalalyan/Download/TP_ENPC_5.pdf).
Recognition of caudal regression syndrome.
Boulas, Mari M
2009-04-01
Caudal regression syndrome, also referred to as caudal dysplasia and sacral agenesis syndrome, is a rare congenital malformation characterized by varying degrees of developmental failure early in gestation. It involves the lower extremities, the lumbar and coccygeal vertebrae, and corresponding segments of the spinal cord. This is a rare disorder, and true pathogenesis is unclear. The etiology is thought to be related to maternal diabetes, genetic predisposition, and vascular hypoperfusion, but no true causative factor has been determined. Fetal diagnostic tools allow for early recognition of the syndrome, and careful examination of the newborn is essential to determine the extent of the disorder. Associated organ system dysfunction depends on the severity of the disease. Related defects are structural, and systematic problems including respiratory, cardiac, gastrointestinal, urinary, orthopedic, and neurologic can be present in varying degrees of severity and in different combinations. A multidisciplinary approach to management is crucial. Because the primary pathology is irreversible, treatment is only supportive.
Linear regression models for solvent accessibility prediction in proteins.
Wagner, Michael; Adamczak, Rafał; Porollo, Aleksey; Meller, Jarosław
2005-04-01
The relative solvent accessibility (RSA) of an amino acid residue in a protein structure is a real number that represents the solvent exposed surface area of this residue in relative terms. The problem of predicting the RSA from the primary amino acid sequence can therefore be cast as a regression problem. Nevertheless, RSA prediction has so far typically been cast as a classification problem. Consequently, various machine learning techniques have been used within the classification framework to predict whether a given amino acid exceeds some (arbitrary) RSA threshold and would thus be predicted to be "exposed," as opposed to "buried." We have recently developed novel methods for RSA prediction using nonlinear regression techniques which provide accurate estimates of the real-valued RSA and outperform classification-based approaches with respect to commonly used two-class projections. However, while their performance seems to provide a significant improvement over previously published approaches, these Neural Network (NN) based methods are computationally expensive to train and involve several thousand parameters. In this work, we develop alternative regression models for RSA prediction which are computationally much less expensive, involve orders-of-magnitude fewer parameters, and are still competitive in terms of prediction quality. In particular, we investigate several regression models for RSA prediction using linear L1-support vector regression (SVR) approaches as well as standard linear least squares (LS) regression. Using rigorously derived validation sets of protein structures and extensive cross-validation analysis, we compare the performance of the SVR with that of LS regression and NN-based methods. In particular, we show that the flexibility of the SVR (as encoded by metaparameters such as the error insensitivity and the error penalization terms) can be very beneficial to optimize the prediction accuracy for buried residues. We conclude that the simple
Lumbar herniated disc: spontaneous regression
Yüksel, Kasım Zafer
2017-01-01
Background Low back pain is a frequent condition that results in substantial disability and causes admission of patients to neurosurgery clinics. To evaluate and present the therapeutic outcomes in lumbar disc hernia (LDH) patients treated by means of a conservative approach, consisting of bed rest and medical therapy. Methods This retrospective cohort was carried out in the neurosurgery departments of hospitals in Kahramanmaraş city and 23 patients diagnosed with LDH at the levels of L3−L4, L4−L5 or L5−S1 were enrolled. Results The average age was 38.4 ± 8.0 and the chief complaint was low back pain and sciatica radiating to one or both lower extremities. Conservative treatment was administered. Neurological examination findings, durations of treatment and intervals until symptomatic recovery were recorded. Laségue tests and neurosensory examination revealed that mild neurological deficits existed in 16 of our patients. Previously, 5 patients had received physiotherapy and 7 patients had been on medical treatment. The number of patients with LDH at the level of L3−L4, L4−L5, and L5−S1 were 1, 13, and 9, respectively. All patients reported that they had benefit from medical treatment and bed rest, and radiologic improvement was observed simultaneously on MRI scans. The average duration until symptomatic recovery and/or regression of LDH symptoms was 13.6 ± 5.4 months (range: 5−22). Conclusions It should be kept in mind that lumbar disc hernias could regress with medical treatment and rest without surgery, and there should be an awareness that these patients could recover radiologically. This condition must be taken into account during decision making for surgical intervention in LDH patients devoid of indications for emergent surgery. PMID:28119770
Streamflow forecasting using functional regression
NASA Astrophysics Data System (ADS)
Masselot, Pierre; Dabo-Niang, Sophie; Chebana, Fateh; Ouarda, Taha B. M. J.
2016-07-01
Streamflow, as a natural phenomenon, is continuous in time and so are the meteorological variables which influence its variability. In practice, it can be of interest to forecast the whole flow curve instead of points (daily or hourly). To this end, this paper introduces the functional linear models and adapts it to hydrological forecasting. More precisely, functional linear models are regression models based on curves instead of single values. They allow to consider the whole process instead of a limited number of time points or features. We apply these models to analyse the flow volume and the whole streamflow curve during a given period by using precipitations curves. The functional model is shown to lead to encouraging results. The potential of functional linear models to detect special features that would have been hard to see otherwise is pointed out. The functional model is also compared to the artificial neural network approach and the advantages and disadvantages of both models are discussed. Finally, future research directions involving the functional model in hydrology are presented.
Survival analysis and Cox regression.
Benítez-Parejo, N; Rodríguez del Águila, M M; Pérez-Vicente, S
2011-01-01
The data provided by clinical trials are often expressed in terms of survival. The analysis of survival comprises a series of statistical analytical techniques in which the measurements analysed represent the time elapsed between a given exposure and the outcome of a certain event. Despite the name of these techniques, the outcome in question does not necessarily have to be either survival or death, and may be healing versus no healing, relief versus pain, complication versus no complication, relapse versus no relapse, etc. The present article describes the analysis of survival from both a descriptive perspective, based on the Kaplan-Meier estimation method, and in terms of bivariate comparisons using the log-rank statistic. Likewise, a description is provided of the Cox regression models for the study of risk factors or covariables associated to the probability of survival. These models are defined in both simple and multiple forms, and a description is provided of how they are calculated and how the postulates for application are checked - accompanied by illustrating examples with the shareware application R.
Estimating equivalence with quantile regression
Cade, B.S.
2011-01-01
Equivalence testing and corresponding confidence interval estimates are used to provide more enlightened statistical statements about parameter estimates by relating them to intervals of effect sizes deemed to be of scientific or practical importance rather than just to an effect size of zero. Equivalence tests and confidence interval estimates are based on a null hypothesis that a parameter estimate is either outside (inequivalence hypothesis) or inside (equivalence hypothesis) an equivalence region, depending on the question of interest and assignment of risk. The former approach, often referred to as bioequivalence testing, is often used in regulatory settings because it reverses the burden of proof compared to a standard test of significance, following a precautionary principle for environmental protection. Unfortunately, many applications of equivalence testing focus on establishing average equivalence by estimating differences in means of distributions that do not have homogeneous variances. I discuss how to compare equivalence across quantiles of distributions using confidence intervals on quantile regression estimates that detect differences in heterogeneous distributions missed by focusing on means. I used one-tailed confidence intervals based on inequivalence hypotheses in a two-group treatment-control design for estimating bioequivalence of arsenic concentrations in soils at an old ammunition testing site and bioequivalence of vegetation biomass at a reclaimed mining site. Two-tailed confidence intervals based both on inequivalence and equivalence hypotheses were used to examine quantile equivalence for negligible trends over time for a continuous exponential model of amphibian abundance. ?? 2011 by the Ecological Society of America.
Modeling maximum daily temperature using a varying coefficient regression model
NASA Astrophysics Data System (ADS)
Li, Han; Deng, Xinwei; Kim, Dong-Yun; Smith, Eric P.
2014-04-01
Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature. A good predictive model for daily maximum temperature is required because daily maximum temperature is an important measure for predicting survival of temperature sensitive fish. To appropriately model the strong relationship between water and air temperatures at a daily time step, it is important to incorporate information related to the time of the year into the modeling. In this work, a time-varying coefficient model is used to study the relationship between air temperature and water temperature. The time-varying coefficient model enables dynamic modeling of the relationship, and can be used to understand how the air-water temperature relationship varies over time. The proposed model is applied to 10 streams in Maryland, West Virginia, Virginia, North Carolina, and Georgia using daily maximum temperatures. It provides a better fit and better predictions than those produced by a simple linear regression model or a nonlinear logistic model.
Principal component regression analysis with SPSS.
Liu, R X; Kuang, J; Gong, Q; Hou, X L
2003-06-01
The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.
ERIC Educational Resources Information Center
Echternacht, Gary; Swinton, Spencer
Title I evaluations using the RMC Model C design depend for their interpretation on the assumption that the regression of posttest on pretest is linear across the cut score level when there is no treatment; but there are many instances where nonlinearities may occur. If one applies the analysis of covariance, or model C analysis, large errors may…
Nonlinear regime-switching state-space (RSSS) models.
Chow, Sy-Miin; Zhang, Guangjian
2013-10-01
Nonlinear dynamic factor analysis models extend standard linear dynamic factor analysis models by allowing time series processes to be nonlinear at the latent level (e.g., involving interaction between two latent processes). In practice, it is often of interest to identify the phases--namely, latent "regimes" or classes--during which a system is characterized by distinctly different dynamics. We propose a new class of models, termed nonlinear regime-switching state-space (RSSS) models, which subsumes regime-switching nonlinear dynamic factor analysis models as a special case. In nonlinear RSSS models, the change processes within regimes, represented using a state-space model, are allowed to be nonlinear. An estimation procedure obtained by combining the extended Kalman filter and the Kim filter is proposed as a way to estimate nonlinear RSSS models. We illustrate the utility of nonlinear RSSS models by fitting a nonlinear dynamic factor analysis model with regime-specific cross-regression parameters to a set of experience sampling affect data. The parallels between nonlinear RSSS models and other well-known discrete change models in the literature are discussed briefly.
Determination of airplane model structure from flight data by using modified stepwise regression
NASA Technical Reports Server (NTRS)
Klein, V.; Batterson, J. G.; Murphy, P. C.
1981-01-01
The linear and stepwise regressions are briefly introduced, then the problem of determining airplane model structure is addressed. The MSR was constructed to force a linear model for the aerodynamic coefficient first, then add significant nonlinear terms and delete nonsignificant terms from the model. In addition to the statistical criteria in the stepwise regression, the prediction sum of squares (PRESS) criterion and the analysis of residuals were examined for the selection of an adequate model. The procedure is used in examples with simulated and real flight data. It is shown that the MSR performs better than the ordinary stepwise regression and that the technique can also be applied to the large amplitude maneuvers.
2010-01-01
Objectives To evaluate the use and reporting of adjusted analysis in randomised controlled trials (RCTs) and compare the quality of reporting before and after the revision of the CONSORT Statement in 2001. Design Comparison of two cross sectional samples of published articles. Data Sources Journal articles indexed on PubMed in December 2000 and December 2006. Study Selection Parallel group RCTs with a full publication carried out in humans and published in English Main outcome measures Proportion of articles reported adjusted analysis; use of adjusted analysis; the reason for adjustment; the method of adjustment and the reporting of adjusted analysis results in the main text and abstract. Results In both cohorts, 25% of studies reported adjusted analysis (84/355 in 2000 vs 113/422 in 2006). Compared with articles reporting only unadjusted analyses, articles that reported adjusted analyses were more likely to specify primary outcomes, involve multiple centers, perform stratified randomization, be published in general medical journals, and recruit larger sample sizes. In both years a minority of articles explained why and how covariates were selected for adjustment (20% to 30%). Almost all articles specified the statistical methods used for adjustment (99% in 2000 vs 100% in 2006) but only 5% and 10%, respectively, reported both adjusted and unadjusted results as recommended in the CONSORT guidelines. Conclusion There was no evidence of change in the reporting of adjusted analysis results five years after the revision of the CONSORT Statement and only a few articles adhered fully to the CONSORT recommendations. PMID:20482769
Yu, Ly-Mee; Chan, An-Wen; Hopewell, Sally; Deeks, Jonathan J; Altman, Douglas G
2010-05-18
To evaluate the use and reporting of adjusted analysis in randomised controlled trials (RCTs) and compare the quality of reporting before and after the revision of the CONSORT Statement in 2001. Comparison of two cross sectional samples of published articles. Journal articles indexed on PubMed in December 2000 and December 2006. Parallel group RCTs with a full publication carried out in humans and published in English Proportion of articles reported adjusted analysis; use of adjusted analysis; the reason for adjustment; the method of adjustment and the reporting of adjusted analysis results in the main text and abstract. In both cohorts, 25% of studies reported adjusted analysis (84/355 in 2000 vs 113/422 in 2006). Compared with articles reporting only unadjusted analyses, articles that reported adjusted analyses were more likely to specify primary outcomes, involve multiple centers, perform stratified randomization, be published in general medical journals, and recruit larger sample sizes. In both years a minority of articles explained why and how covariates were selected for adjustment (20% to 30%). Almost all articles specified the statistical methods used for adjustment (99% in 2000 vs 100% in 2006) but only 5% and 10%, respectively, reported both adjusted and unadjusted results as recommended in the CONSORT guidelines. There was no evidence of change in the reporting of adjusted analysis results five years after the revision of the CONSORT Statement and only a few articles adhered fully to the CONSORT recommendations.
Genetics Home Reference: caudal regression syndrome
... of a genetic condition? Genetic and Rare Diseases Information Center Frequency Caudal regression syndrome is estimated to occur in 1 to ... parts of the skeleton, gastrointestinal system, and genitourinary ... caudal regression syndrome results from the presence of an abnormal ...
Common pitfalls in statistical analysis: Logistic regression.
Ranganathan, Priya; Pramesh, C S; Aggarwal, Rakesh
2017-01-01
Logistic regression analysis is a statistical technique to evaluate the relationship between various predictor variables (either categorical or continuous) and an outcome which is binary (dichotomous). In this article, we discuss logistic regression analysis and the limitations of this technique.
Semiparametric regression during 2003–2007*
Ruppert, David; Wand, M.P.; Carroll, Raymond J.
2010-01-01
Semiparametric regression is a fusion between parametric regression and nonparametric regression that integrates low-rank penalized splines, mixed model and hierarchical Bayesian methodology – thus allowing more streamlined handling of longitudinal and spatial correlation. We review progress in the field over the five-year period between 2003 and 2007. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application. PMID:20305800
Regression Analysis by Example. 5th Edition
ERIC Educational Resources Information Center
Chatterjee, Samprit; Hadi, Ali S.
2012-01-01
Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…
Synthesizing Regression Results: A Factored Likelihood Method
ERIC Educational Resources Information Center
Wu, Meng-Jia; Becker, Betsy Jane
2013-01-01
Regression methods are widely used by researchers in many fields, yet methods for synthesizing regression results are scarce. This study proposes using a factored likelihood method, originally developed to handle missing data, to appropriately synthesize regression models involving different predictors. This method uses the correlations reported…
Regression Analysis by Example. 5th Edition
ERIC Educational Resources Information Center
Chatterjee, Samprit; Hadi, Ali S.
2012-01-01
Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…
Developmental Regression in Autism Spectrum Disorders
ERIC Educational Resources Information Center
Rogers, Sally J.
2004-01-01
The occurrence of developmental regression in autism is one of the more puzzling features of this disorder. Although several studies have documented the validity of parental reports of regression using home videos, accumulating data suggest that most children who demonstrate regression also demonstrated previous, subtle, developmental differences.…
Standards for Standardized Logistic Regression Coefficients
ERIC Educational Resources Information Center
Menard, Scott
2011-01-01
Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…
Standards for Standardized Logistic Regression Coefficients
ERIC Educational Resources Information Center
Menard, Scott
2011-01-01
Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…
Bayesian Unimodal Density Regression for Causal Inference
ERIC Educational Resources Information Center
Karabatsos, George; Walker, Stephen G.
2011-01-01
Karabatsos and Walker (2011) introduced a new Bayesian nonparametric (BNP) regression model. Through analyses of real and simulated data, they showed that the BNP regression model outperforms other parametric and nonparametric regression models of common use, in terms of predictive accuracy of the outcome (dependent) variable. The other,…
Synthesizing Regression Results: A Factored Likelihood Method
ERIC Educational Resources Information Center
Wu, Meng-Jia; Becker, Betsy Jane
2013-01-01
Regression methods are widely used by researchers in many fields, yet methods for synthesizing regression results are scarce. This study proposes using a factored likelihood method, originally developed to handle missing data, to appropriately synthesize regression models involving different predictors. This method uses the correlations reported…
Nonlinear rotordynamics analysis
NASA Technical Reports Server (NTRS)
Day, W. B.
1985-01-01
The special nonlinearities of the Jeffcott equations in rotordynamics are examined. The immediate application of this analysis is directed toward understanding the excessive vibrations recorded in the LOX pump of the SSME during hot firing ground testing. Deadband, side force and rubbing are three possible sources of inducing nonlinearity in the Jeffcott equations. The present analysis initially reduces these problems to the same mathematical description. A special frequency, named the nonlinear natural frequency is defined and used to develop the solutions of the nonlinear Jeffcott equations as asympotic expansions. This nonlinear natural frequency which is the ratio of the cross-stiffness and the damping, plays a major role in determining response frequencies. Numerical solutions are included for comparison with the analysis. Also, nonlinear frequency-response tables are made for a typical range of values.
Time series regression model for infectious disease and weather.
Imai, Chisato; Armstrong, Ben; Chalabi, Zaid; Mangtani, Punam; Hashizume, Masahiro
2015-10-01
Time series regression has been developed and long used to evaluate the short-term associations of air pollution and weather with mortality or morbidity of non-infectious diseases. The application of the regression approaches from this tradition to infectious diseases, however, is less well explored and raises some new issues. We discuss and present potential solutions for five issues often arising in such analyses: changes in immune population, strong autocorrelations, a wide range of plausible lag structures and association patterns, seasonality adjustments, and large overdispersion. The potential approaches are illustrated with datasets of cholera cases and rainfall from Bangladesh and influenza and temperature in Tokyo. Though this article focuses on the application of the traditional time series regression to infectious diseases and weather factors, we also briefly introduce alternative approaches, including mathematical modeling, wavelet analysis, and autoregressive integrated moving average (ARIMA) models. Modifications proposed to standard time series regression practice include using sums of past cases as proxies for the immune population, and using the logarithm of lagged disease counts to control autocorrelation due to true contagion, both of which are motivated from "susceptible-infectious-recovered" (SIR) models. The complexity of lag structures and association patterns can often be informed by biological mechanisms and explored by using distributed lag non-linear models. For overdispersed models, alternative distribution models such as quasi-Poisson and negative binomial should be considered. Time series regression can be used to investigate dependence of infectious diseases on weather, but may need modifying to allow for features specific to this context. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ionescu, Tudor C.; Scherpen, Jacquelien M. A.
We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain linearization results that correspond to the notion of a cross Gramian for symmetric linear systems. Furthermore, first steps towards relations with the singular value functions of the nonlinear Hankel operator are studied and yield promising results.
Principles of Nonlinear Optics
1989-11-01
Holography 74 6.2 Semiclassical Analysis 77 7. The Nonlinear Schrodinger Equation and Soliton Propagation 81 8. Conclusion Ancession For 86 ETis -GRA...is analyzed through the nonlinear Schrodinger equation , which is first heuristically derived. The distortionless pulses arising out of a balance...Eq. (71) has the same form as the nonlinear Schrodinger equation (2], (4], [17], (20], which is used to explain soliton propagation through fibers (21
1992-07-07
mrtegrating the original governing differential equation. 2. A. H. Nayfeh, " Parametric Identification of Nonlinear Dynamic Systems," Computers...Structures, Vol. 20. No. 1-3. 1985, pp. 487-493. A parametric identification technique that exploits nonlinear resonances and comparisons of the behavior of...617-631. Presentations 1. A. H. Vn’.yfeh, " Parametric Identification of Nonlinear Dynamic Systems," Symposium on Advances and Trends in Structures
NASA Astrophysics Data System (ADS)
Gaponov-Grekhov, Andrei V.; Rabinovich, Mikhail I.; Engelbrecht, Jüri
Since 1972 the Schools on Nonlinear Physics in Gorky have been a meeting place for Soviet Scientists working in this field. Since 1989 the proceedings appear in English. They present a good cross section of nonlinear physics in the USSR. This third volume emerged from material presented at the 1989 School. It contains sections dealing with nonlinear problems in physics and astrophysics, quantum and solid state physics, dynamical chaos and self-organization.
Organic nonlinear optical materials
NASA Technical Reports Server (NTRS)
Umegaki, S.
1987-01-01
Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.
Nonlinear magnetic metamaterials.
Shadrivov, Ilya V; Kozyrev, Alexander B; van der Weide, Daniel W; Kivshar, Yuri S
2008-12-08
We study experimentally nonlinear tunable magnetic metamaterials operating at microwave frequencies. We fabricate the nonlinear metamaterial composed of double split-ring resonators where a varactor diode is introduced into each resonator so that the magnetic resonance can be tuned dynamically by varying the input power. We demonstrate that at higher powers the transmission of the metamaterial becomes power-dependent and, as a result, such metamaterial can demonstrate various nonlinear properties. In particular, we study experimentally the power-dependent shift of the transmission band and demonstrate nonlinearity-induced enhancement (or suppression) of wave transmission.
Nonlinearity-reduced interferometer
NASA Astrophysics Data System (ADS)
Wu, Chien-ming
2007-12-01
Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. It results from many causes such as the frequency mixing, polarization mixing, polarization-frequency mixing, and the ghost reflections. An interferometer having accuracy in displacement measurement of less than one-nanometer is necessary in nanometrology. To meet the requirement, the periodic nonlinearity should be less than deep sub-nanometer. In this paper, a nonlinearity-reduced interferometry has been proposed. Both the linear- and straightness-interferometer were tested. The developed interferometer demonstrated of a residual nonlinearity less than 25 pm.
[Application of spline-based Cox regression on analyzing data from follow-up studies].
Dong, Ying; Yu, Jin-ming; Hu, Da-yi
2012-09-01
With R, this study involved the application of the spline-based Cox regression to analyze data related to follow-up studies when the two basic assumptions of Cox proportional hazards regression were not satisfactory. Results showed that most of the continuous covariates contributed nonlinearly to mortality risk while the effects of three covariates were time-dependent. After considering multiple covariates in spline-based Cox regression, when the ankle brachial index (ABI) decreased by 0.1, the hazard ratio (HR) for all-cause death was 1.071. The spline-based Cox regression method could be applied to analyze the data related to follow-up studies when the assumptions of Cox proportional hazards regression were violated.
Comparative analysis of regression and artificial neural network models for wind speed prediction
NASA Astrophysics Data System (ADS)
Bilgili, Mehmet; Sahin, Besir
2010-11-01
In this study, wind speed was modeled by linear regression (LR), nonlinear regression (NLR) and artificial neural network (ANN) methods. A three-layer feedforward artificial neural network structure was constructed and a backpropagation algorithm was used for the training of ANNs. To get a successful simulation, firstly, the correlation coefficients between all of the meteorological variables (wind speed, ambient temperature, atmospheric pressure, relative humidity and rainfall) were calculated taking two variables in turn for each calculation. All independent variables were added to the simple regression model. Then, the method of stepwise multiple regression was applied for the selection of the “best” regression equation (model). Thus, the best independent variables were selected for the LR and NLR models and also used in the input layer of the ANN. The results obtained by all methods were compared to each other. Finally, the ANN method was found to provide better performance than the LR and NLR methods.
Developmental regression in autism spectrum disorder.
Al Backer, Nouf Backer
2015-01-01
The occurrence of developmental regression in autism spectrum disorder (ASD) is one of the most puzzling phenomena of this disorder. A little is known about the nature and mechanism of developmental regression in ASD. About one-third of young children with ASD lose some skills during the preschool period, usually speech, but sometimes also nonverbal communication, social or play skills are also affected. There is a lot of evidence suggesting that most children who demonstrate regression also had previous, subtle, developmental differences. It is difficult to predict the prognosis of autistic children with developmental regression. It seems that the earlier development of social, language, and attachment behaviors followed by regression does not predict the later recovery of skills or better developmental outcomes. The underlying mechanisms that lead to regression in autism are unknown. The role of subclinical epilepsy in the developmental regression of children with autism remains unclear.
Local Composite Quantile Regression Smoothing for Harris Recurrent Markov Processes
Li, Degui; Li, Runze
2016-01-01
In this paper, we study the local polynomial composite quantile regression (CQR) smoothing method for the nonlinear and nonparametric models under the Harris recurrent Markov chain framework. The local polynomial CQR regression method is a robust alternative to the widely-used local polynomial method, and has been well studied in stationary time series. In this paper, we relax the stationarity restriction on the model, and allow that the regressors are generated by a general Harris recurrent Markov process which includes both the stationary (positive recurrent) and nonstationary (null recurrent) cases. Under some mild conditions, we establish the asymptotic theory for the proposed local polynomial CQR estimator of the mean regression function, and show that the convergence rate for the estimator in nonstationary case is slower than that in stationary case. Furthermore, a weighted type local polynomial CQR estimator is provided to improve the estimation efficiency, and a data-driven bandwidth selection is introduced to choose the optimal bandwidth involved in the nonparametric estimators. Finally, we give some numerical studies to examine the finite sample performance of the developed methodology and theory. PMID:27667894
Semi-supervised classification via local spline regression.
Xiang, Shiming; Nie, Feiping; Zhang, Changshui
2010-11-01
This paper presents local spline regression for semi-supervised classification. The core idea in our approach is to introduce splines developed in Sobolev space to map the data points directly to be class labels. The spline is composed of polynomials and Green's functions. It is smooth, nonlinear, and able to interpolate the scattered data points with high accuracy. Specifically, in each neighborhood, an optimal spline is estimated via regularized least squares regression. With this spline, each of the neighboring data points is mapped to be a class label. Then, the regularized loss is evaluated and further formulated in terms of class label vector. Finally, all of the losses evaluated in local neighborhoods are accumulated together to measure the global consistency on the labeled and unlabeled data. To achieve the goal of semi-supervised classification, an objective function is constructed by combining together the global loss of the local spline regressions and the squared errors of the class labels of the labeled data. In this way, a transductive classification algorithm is developed in which a globally optimal classification can be finally obtained. In the semi-supervised learning setting, the proposed algorithm is analyzed and addressed into the Laplacian regularization framework. Comparative classification experiments on many public data sets and applications to interactive image segmentation and image matting illustrate the validity of our method.
Batch Mode Active Learning for Regression With Expected Model Change.
Cai, Wenbin; Zhang, Muhan; Zhang, Ya
2016-04-20
While active learning (AL) has been widely studied for classification problems, limited efforts have been done on AL for regression. In this paper, we introduce a new AL framework for regression, expected model change maximization (EMCM), which aims at choosing the unlabeled data instances that result in the maximum change of the current model once labeled. The model change is quantified as the difference between the current model parameters and the updated parameters after the inclusion of the newly selected examples. In light of the stochastic gradient descent learning rule, we approximate the change as the gradient of the loss function with respect to each single candidate instance. Under the EMCM framework, we propose novel AL algorithms for the linear and nonlinear regression models. In addition, by simulating the behavior of the sequential AL policy when applied for k iterations, we further extend the algorithms to batch mode AL to simultaneously choose a set of k most informative instances at each query time. Extensive experimental results on both UCI and StatLib benchmark data sets have demonstrated that the proposed algorithms are highly effective and efficient.
Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers
Konorov, S.O.; Akimov, D.A.; Ivanov, A.A.; Petrov, A.N.; Alfimov, M.V.; Yakimanskii, A.V.; Smirnov, N.N.; Ivanova, V.N.; Kudryavtsev, V.V.; Podshivalov, A.A.; Sokolova, I.M.; Zheltikov, A.M.
2005-07-15
The polarization properties of second harmonic and sum-frequency signals generated by femtosecond laser pulses in films of polymers containing covalent groups of an azobenzothiazole chromophore polarized by an external electric field are investigated. It is shown that the methods of polarization nonlinear optics make it possible to determine the structure of oriented molecular dipoles and reveal important properties of the motion of collectivized {pi}electrons in organic molecules with strong optical nonlinearities. The polarization measurements show that the tensor of quadratic nonlinear optical susceptibility of chromophore fragments oriented by an external field in macromolecules of the noted azopolymers has a degenerate form. This is indicative of a predominantly one-dimensional character of motion of collectivized {pi} electrons along an extended group of atoms in such molecules.
NASA Astrophysics Data System (ADS)
Billings, S. A.
1988-03-01
Time and frequency domain identification methods for nonlinear systems are reviewed. Parametric methods, prediction error methods, structure detection, model validation, and experiment design are discussed. Identification of a liquid level system, a heat exchanger, and a turbocharge automotive diesel engine are illustrated. Rational models are introduced. Spectral analysis for nonlinear systems is treated. Recursive estimation is mentioned.
Nonlinear Optics and Applications
NASA Technical Reports Server (NTRS)
Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)
2007-01-01
Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.
Lasers for nonlinear microscopy.
Wise, Frank
2013-03-01
Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.
NASA Technical Reports Server (NTRS)
Sheen, Jyh-Jong; Bishop, Robert H.
1992-01-01
The feedback linearization technique is applied to the problem of spacecraft attitude control and momentum management with control moment gyros (CMGs). The feedback linearization consists of a coordinate transformation, which transforms the system to a companion form, and a nonlinear feedback control law to cancel the nonlinear dynamics resulting in a linear equivalent model. Pole placement techniques are then used to place the closed-loop poles. The coordinate transformation proposed here evolves from three output functions of relative degree four, three, and two, respectively. The nonlinear feedback control law is presented. Stability in a neighborhood of a controllable torque equilibrium attitude (TEA) is guaranteed and this fact is demonstrated by the simulation results. An investigation of the nonlinear control law shows that singularities exist in the state space outside the neighborhood of the controllable TEA. The nonlinear control law is simplified by a standard linearization technique and it is shown that the linearized nonlinear controller provides a natural way to select control gains for the multiple-input, multiple-output system. Simulation results using the linearized nonlinear controller show good performance relative to the nonlinear controller in the neighborhood of the TEA.
NASA Technical Reports Server (NTRS)
Menon, P. K. A.; Badgett, M. E.; Walker, R. A.
1992-01-01
Trajectory-control laws based on singular-perturbation theory and nonlinear dynamical modeling. Nonlinear maneuver autopilot commands flight-test trajectories of F-15 airplane. Underlying theory of controller enables separation of variables processed in fast and slow control loops, reducing amount of computation required.
Eaton, D F
1991-07-19
The current state of materials development in nonlinear optics is summarized, and the promise of these materials is critically evaluated. Properties and important materials constants of current commercial materials and of new, promising, inorganic and organic molecular and polymeric materials with potential in second- and third-order nonlinear optical applications are presented.
Estimating nonlinear interdependences in dynamical systems using cellular nonlinear networks
NASA Astrophysics Data System (ADS)
Krug, Dieter; Osterhage, Hannes; Elger, Christian E.; Lehnertz, Klaus
2007-10-01
We propose a method for estimating nonlinear interdependences between time series using cellular nonlinear networks. Our approach is based on the nonlinear dynamics of interacting nonlinear elements. We apply it to time series of coupled nonlinear model systems and to electroencephalographic time series from an epilepsy patient, and we show that an accurate approximation of symmetric and asymmetric realizations of a nonlinear interdependence measure can be achieved, thus allowing one to detect the strength and direction of couplings.
He, Fei; Billings, Stephen A; Wei, Hua-Liang; Sarrigiannis, Ptolemaios G
2014-03-30
Frequency domain Granger causality measures have been proposed and widely applied in analyzing rhythmic neurophysiological and biomedical signals. Almost all these measures are based on linear time domain regression models, and therefore can only detect linear causal effects in the frequency domain. A frequency domain causality measure, the partial directed coherence, is explicitly linked with the frequency response function concept of linear systems. By modeling the nonlinear relationships between time series using nonlinear models and employing corresponding frequency-domain analysis techniques (i.e., generalized frequency response functions), a new nonlinear partial directed coherence method is derived. The advantages of the new method are illustrated via a numerical example of a nonlinear physical system and an application to electroencephalogram signals from a patient with childhood absence epilepsy. The new method detects both linear and nonlinear casual effects between bivariate signals in the frequency domain, while the existing measures can only detect linear effects. The proposed new method has important advantages over the classical linear measures, because detecting nonlinear dependencies has become more and more important in characterizing functional couplings in neuronal and biological systems. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Whitney, Paul
1987-01-01
A technique for identifying nonlinear systems was introduced, beginning with a single input-single output system. Assuming the system is initially at rest, the first kernel (first convolution integral in the continuous case or first convolution sum in the discrete case) was calculated. A controllable and observable linear realization was then obtained in a particular canonical form. The actual nonlinear system was probed with an appropriate input (or inputs) and the output (or outputs) determined. For the linear system, the input was computed that produces the same output. In the difference between the inputs to the nonlinear and linear systems, basic information was found about the nonlinear system. There is an interesting class of nonlinear systems for which this type of identification scheme should prove to be accurate.
Zheng, Wei; Liu, Xiao; Hanbicki, Aubrey T.; Jonker, Berend T.; Lüpke, Gunter
2015-10-19
Nonlinear magneto-plasmonics (NMP) describes systems where nonlinear optics, magnetics and plasmonics are all involved. In such systems, nonlinear magneto-optical Kerr effect (nonlinear MOKE) plays an important role as a characterization method, and Surface Plasmons (SPs) work as catalyst to induce many new effects. Magnetization-induced second-harmonic generation (MSHG) is the major nonlinear magneto-optical process involved. The new effects include enhanced MSHG, controlled and enhanced magnetic contrast, etc. Nanostructures such as thin films, nanoparticles, nanogratings, and nanoarrays are critical for the excitation of SPs, which makes NMP an interdisciplinary research field in nanoscience and nanotechnology. In this review article, we organize recent work in this field into two categories: surface plasmon polaritons (SPPs) representing propagating surface plasmons, and localized surface plasmons (LSPs), also called particle plasmons. We review the structures, experiments, findings, and the applications of NMP from various groups.
Zheng, Wei; Liu, Xiao; Hanbicki, Aubrey T.; ...
2015-10-19
Nonlinear magneto-plasmonics (NMP) describes systems where nonlinear optics, magnetics and plasmonics are all involved. In such systems, nonlinear magneto-optical Kerr effect (nonlinear MOKE) plays an important role as a characterization method, and Surface Plasmons (SPs) work as catalyst to induce many new effects. Magnetization-induced second-harmonic generation (MSHG) is the major nonlinear magneto-optical process involved. The new effects include enhanced MSHG, controlled and enhanced magnetic contrast, etc. Nanostructures such as thin films, nanoparticles, nanogratings, and nanoarrays are critical for the excitation of SPs, which makes NMP an interdisciplinary research field in nanoscience and nanotechnology. In this review article, we organize recentmore » work in this field into two categories: surface plasmon polaritons (SPPs) representing propagating surface plasmons, and localized surface plasmons (LSPs), also called particle plasmons. We review the structures, experiments, findings, and the applications of NMP from various groups.« less
No Longer Confidential: Estimating the Confidence of Individual Regression Predictions
Briesemeister, Sebastian; Rahnenführer, Jörg; Kohlbacher, Oliver
2012-01-01
Quantitative predictions in computational life sciences are often based on regression models. The advent of machine learning has led to highly accurate regression models that have gained widespread acceptance. While there are statistical methods available to estimate the global performance of regression models on a test or training dataset, it is often not clear how well this performance transfers to other datasets or how reliable an individual prediction is–a fact that often reduces a user’s trust into a computational method. In analogy to the concept of an experimental error, we sketch how estimators for individual prediction errors can be used to provide confidence intervals for individual predictions. Two novel statistical methods, named CONFINE and CONFIVE, can estimate the reliability of an individual prediction based on the local properties of nearby training data. The methods can be applied equally to linear and non-linear regression methods with very little computational overhead. We compare our confidence estimators with other existing confidence and applicability domain estimators on two biologically relevant problems (MHC–peptide binding prediction and quantitative structure-activity relationship (QSAR)). Our results suggest that the proposed confidence estimators perform comparable to or better than previously proposed estimation methods. Given a sufficient amount of training data, the estimators exhibit error estimates of high quality. In addition, we observed that the quality of estimated confidence intervals is predictable. We discuss how confidence estimation is influenced by noise, the number of features, and the dataset size. Estimating the confidence in individual prediction in terms of error intervals represents an important step from plain, non-informative predictions towards transparent and interpretable predictions that will help to improve the acceptance of computational methods in the biological community. PMID:23166592
Regression calibration with heteroscedastic error variance.
Spiegelman, Donna; Logan, Roger; Grove, Douglas
2011-01-01
The problem of covariate measurement error with heteroscedastic measurement error variance is considered. Standard regression calibration assumes that the measurement error has a homoscedastic measurement error variance. An estimator is proposed to correct regression coefficients for covariate measurement error with heteroscedastic variance. Point and interval estimates are derived. Validation data containing the gold standard must be available. This estimator is a closed-form correction of the uncorrected primary regression coefficients, which may be of logistic or Cox proportional hazards model form, and is closely related to the version of regression calibration developed by Rosner et al. (1990). The primary regression model can include multiple covariates measured without error. The use of these estimators is illustrated in two data sets, one taken from occupational epidemiology (the ACE study) and one taken from nutritional epidemiology (the Nurses' Health Study). In both cases, although there was evidence of moderate heteroscedasticity, there was little difference in estimation or inference using this new procedure compared to standard regression calibration. It is shown theoretically that unless the relative risk is large or measurement error severe, standard regression calibration approximations will typically be adequate, even with moderate heteroscedasticity in the measurement error model variance. In a detailed simulation study, standard regression calibration performed either as well as or better than the new estimator. When the disease is rare and the errors normally distributed, or when measurement error is moderate, standard regression calibration remains the method of choice.
[From clinical judgment to linear regression model.
Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O
2013-01-01
When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R(2)) indicates the importance of independent variables in the outcome.
Process modeling with the regression network.
van der Walt, T; Barnard, E; van Deventer, J
1995-01-01
A new connectionist network topology called the regression network is proposed. The structural and underlying mathematical features of the regression network are investigated. Emphasis is placed on the intricacies of the optimization process for the regression network and some measures to alleviate these difficulties of optimization are proposed and investigated. The ability of the regression network algorithm to perform either nonparametric or parametric optimization, as well as a combination of both, is also highlighted. It is further shown how the regression network can be used to model systems which are poorly understood on the basis of sparse data. A semi-empirical regression network model is developed for a metallurgical processing operation (a hydrocyclone classifier) by building mechanistic knowledge into the connectionist structure of the regression network model. Poorly understood aspects of the process are provided for by use of nonparametric regions within the structure of the semi-empirical connectionist model. The performance of the regression network model is compared to the corresponding generalization performance results obtained by some other nonparametric regression techniques.
Quantile regression applied to spectral distance decay
Rocchini, D.; Cade, B.S.
2008-01-01
Remotely sensed imagery has long been recognized as a powerful support for characterizing and estimating biodiversity. Spectral distance among sites has proven to be a powerful approach for detecting species composition variability. Regression analysis of species similarity versus spectral distance allows us to quantitatively estimate the amount of turnover in species composition with respect to spectral and ecological variability. In classical regression analysis, the residual sum of squares is minimized for the mean of the dependent variable distribution. However, many ecological data sets are characterized by a high number of zeroes that add noise to the regression model. Quantile regressions can be used to evaluate trend in the upper quantiles rather than a mean trend across the whole distribution of the dependent variable. In this letter, we used ordinary least squares (OLS) and quantile regressions to estimate the decay of species similarity versus spectral distance. The achieved decay rates were statistically nonzero (p < 0.01), considering both OLS and quantile regressions. Nonetheless, the OLS regression estimate of the mean decay rate was only half the decay rate indicated by the upper quantiles. Moreover, the intercept value, representing the similarity reached when the spectral distance approaches zero, was very low compared with the intercepts of the upper quantiles, which detected high species similarity when habitats are more similar. In this letter, we demonstrated the power of using quantile regressions applied to spectral distance decay to reveal species diversity patterns otherwise lost or underestimated by OLS regression. ?? 2008 IEEE.
Geodesic least squares regression on information manifolds
Verdoolaege, Geert
2014-12-05
We present a novel regression method targeted at situations with significant uncertainty on both the dependent and independent variables or with non-Gaussian distribution models. Unlike the classic regression model, the conditional distribution of the response variable suggested by the data need not be the same as the modeled distribution. Instead they are matched by minimizing the Rao geodesic distance between them. This yields a more flexible regression method that is less constrained by the assumptions imposed through the regression model. As an example, we demonstrate the improved resistance of our method against some flawed model assumptions and we apply this to scaling laws in magnetic confinement fusion.
ERIC Educational Resources Information Center
Bulcock, J. W.
The problem of model estimation when the data are collinear was examined. Though the ridge regression (RR) outperforms ordinary least squares (OLS) regression in the presence of acute multicollinearity, it is not a problem free technique for reducing the variance of the estimates. It is a stochastic procedure when it should be nonstochastic and it…
Ren, Shijin
2003-01-01
Response surface models based on multiple linear regression had previously been developed for the toxicity of aromatic chemicals to Tetrahymena pyriformis. However, a nonlinear relationship between toxicity and one of the molecular descriptors in the response surface model was observed. In this study, response surface models were established using six nonlinear modeling methods to handle the nonlinearity exhibited in the aromatic chemicals data set. All models were validated using the method of cross-validation, and prediction accuracy was tested on an external data set. Results showed that response surface models based on locally weighted regression scatter plot smoothing (LOESS), multivariate adaptive regression splines (MARS), neural networks (NN), and projection pursuit regression (PPR) provided satisfactory power of model fitting and prediction and had similar applicabilities. The response surface models based on nonlinear methods were difficult to interpret and conservative in discriminating toxicity mechanisms.
Symplectic geometry spectrum regression for prediction of noisy time series
NASA Astrophysics Data System (ADS)
Xie, Hong-Bo; Dokos, Socrates; Sivakumar, Bellie; Mengersen, Kerrie
2016-05-01
We present the symplectic geometry spectrum regression (SGSR) technique as well as a regularized method based on SGSR for prediction of nonlinear time series. The main tool of analysis is the symplectic geometry spectrum analysis, which decomposes a time series into the sum of a small number of independent and interpretable components. The key to successful regularization is to damp higher order symplectic geometry spectrum components. The effectiveness of SGSR and its superiority over local approximation using ordinary least squares are demonstrated through prediction of two noisy synthetic chaotic time series (Lorenz and Rössler series), and then tested for prediction of three real-world data sets (Mississippi River flow data and electromyographic and mechanomyographic signal recorded from human body).
Zweig, George
2016-05-01
An earlier paper characterizing the linear mechanical response of the organ of Corti [J. Acoust. Soc. Am. 138, 1102-1121 (2015)] is extended to the nonlinear domain. Assuming the existence of nonlinear oscillators nonlocally coupled through the pressure they help create, the oscillator equations are derived and examined when the stimuli are modulated tones and clicks. The nonlinearities are constrained by the requirements of oscillator stability and the invariance of zero crossings in the click response to changes in click amplitude. The nonlinear oscillator equations for tones are solved in terms of the fluid pressure that drives them, and its time derivative, presumably a proxy for forces created by outer hair cells. The pressure equation is reduced to quadrature, the integrand depending on the oscillators' responses. The resulting nonlocally coupled nonlinear equations for the pressure, and oscillator amplitudes and phases, are solved numerically in terms of the fluid pressure at the stapes. Methods for determining the nonlinear damping directly from measurements are described. Once the oscillators have been characterized from their tone and click responses, the mechanical response of the cochlea to natural sounds may be computed numerically. Signal processing inspired by cochlear mechanics opens up a new area of nonlocal nonlinear time-frequency analysis.
Metamaterials with conformational nonlinearity
Lapine, Mikhail; Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.
2011-01-01
Within a decade of fruitful development, metamaterials became a prominent area of research, bridging theoretical and applied electrodynamics, electrical engineering and material science. Being man-made structures, metamaterials offer a particularly useful playground to develop interdisciplinary concepts. Here we demonstrate a novel principle in metamaterial assembly which integrates electromagnetic, mechanical, and thermal responses within their elements. Through these mechanisms, the conformation of the meta-molecules changes, providing a dual mechanism for nonlinearity and offering nonlinear chirality. Our proposal opens a wide road towards further developments of nonlinear metamaterials and photonic structures, adding extra flexibility to their design and control. PMID:22355655
Large Scale Nonlinear Programming.
1978-06-15
KEY WORDS (Conhinu. as, t.n.t.. aid. if nic••iary aid ld.ntify by block n,a,b.r) L. In,~~~ IP!CIE LARGE SCALE OPTIMIZATION APPLICATIONS OF NONLINEAR ... NONLINEAR PROGRAMMING by Garth P. McCormick 1. Introduction The general mathematical programming ( optimization ) problem can be stated in the following form...because the difficulty in solving a general nonlinear optimization problem has a~ much to do with the nature of the functions involved as it does with the
Nonlinear ordinary difference equations
NASA Technical Reports Server (NTRS)
Caughey, T. K.
1979-01-01
Future space vehicles will be relatively large and flexible, and active control will be necessary to maintain geometrical configuration. While the stresses and strains in these space vehicles are not expected to be excessively large, their cumulative effects will cause significant geometrical nonlinearities to appear in the equations of motion, in addition to the nonlinearities caused by material properties. Since the only effective tool for the analysis of such large complex structures is the digital computer, it will be necessary to gain a better understanding of the nonlinear ordinary difference equations which result from the time discretization of the semidiscrete equations of motion for such structures.
Regression Analysis and the Sociological Imagination
ERIC Educational Resources Information Center
De Maio, Fernando
2014-01-01
Regression analysis is an important aspect of most introductory statistics courses in sociology but is often presented in contexts divorced from the central concerns that bring students into the discipline. Consequently, we present five lesson ideas that emerge from a regression analysis of income inequality and mortality in the USA and Canada.
Developmental regression in autism spectrum disorders.
Rogers, Sally J
2004-01-01
The occurrence of developmental regression in autism is one of the more puzzling features of this disorder. Although several studies have documented the validity of parental reports of regression using home videos, accumulating data suggest that most children who demonstrate regression also demonstrated previous, subtle, developmental differences. Counter to clinical intuition, the earlier development of social, language, and attachment behaviors followed by regression does not seem to support later recovery of skills or better developmental outcomes compared to children who never had speech or typical social responsivity. In fact, this regressive group may have somewhat greater developmental impairment than the nonregressive group, though the two groups do not appear to present different behavioral phenotypes. Although autism is not the only condition in which regression occurs, it appears to be the most frequent condition. Other disorders that demonstrate an early regression with no known etiology include total blindness from birth and childhood disintegrative disorder, both of which demonstrate behavioral relations to autism. In addition, two biological conditions with known etiologies also involve regression with some behaviors resembling autism behavioral phenotype: Rett syndrome (a genetic disorder; see Glaze, this issue) and Landau-Kleffner syndrome (see McVicar and Shinnar, this issue), which involves a seizure disorder.
Three-Dimensional Modeling in Linear Regression.
ERIC Educational Resources Information Center
Herman, James D.
Linear regression examines the relationship between one or more independent (predictor) variables and a dependent variable. By using a particular formula, regression determines the weights needed to minimize the error term for a given set of predictors. With one predictor variable, the relationship between the predictor and the dependent variable…
Principles of Quantile Regression and an Application
ERIC Educational Resources Information Center
Chen, Fang; Chalhoub-Deville, Micheline
2014-01-01
Newer statistical procedures are typically introduced to help address the limitations of those already in practice or to deal with emerging research needs. Quantile regression (QR) is introduced in this paper as a relatively new methodology, which is intended to overcome some of the limitations of least squares mean regression (LMR). QR is more…
Common pitfalls in statistical analysis: Logistic regression
Ranganathan, Priya; Pramesh, C. S.; Aggarwal, Rakesh
2017-01-01
Logistic regression analysis is a statistical technique to evaluate the relationship between various predictor variables (either categorical or continuous) and an outcome which is binary (dichotomous). In this article, we discuss logistic regression analysis and the limitations of this technique. PMID:28828311
Incremental Net Effects in Multiple Regression
ERIC Educational Resources Information Center
Lipovetsky, Stan; Conklin, Michael
2005-01-01
A regular problem in regression analysis is estimating the comparative importance of the predictors in the model. This work considers the 'net effects', or shares of the predictors in the coefficient of the multiple determination, which is a widely used characteristic of the quality of a regression model. Estimation of the net effects can be a…
Suppression Situations in Multiple Linear Regression
ERIC Educational Resources Information Center
Shieh, Gwowen
2006-01-01
This article proposes alternative expressions for the two most prevailing definitions of suppression without resorting to the standardized regression modeling. The formulation provides a simple basis for the examination of their relationship. For the two-predictor regression, the author demonstrates that the previous results in the literature are…
Suppression Situations in Multiple Linear Regression
ERIC Educational Resources Information Center
Shieh, Gwowen
2006-01-01
This article proposes alternative expressions for the two most prevailing definitions of suppression without resorting to the standardized regression modeling. The formulation provides a simple basis for the examination of their relationship. For the two-predictor regression, the author demonstrates that the previous results in the literature are…
Stepwise versus Hierarchical Regression: Pros and Cons
ERIC Educational Resources Information Center
Lewis, Mitzi
2007-01-01
Multiple regression is commonly used in social and behavioral data analysis. In multiple regression contexts, researchers are very often interested in determining the "best" predictors in the analysis. This focus may stem from a need to identify those predictors that are supportive of theory. Alternatively, the researcher may simply be interested…
Regression Analysis: Legal Applications in Institutional Research
ERIC Educational Resources Information Center
Frizell, Julie A.; Shippen, Benjamin S., Jr.; Luna, Andrew L.
2008-01-01
This article reviews multiple regression analysis, describes how its results should be interpreted, and instructs institutional researchers on how to conduct such analyses using an example focused on faculty pay equity between men and women. The use of multiple regression analysis will be presented as a method with which to compare salaries of…
Regression Analysis and the Sociological Imagination
ERIC Educational Resources Information Center
De Maio, Fernando
2014-01-01
Regression analysis is an important aspect of most introductory statistics courses in sociology but is often presented in contexts divorced from the central concerns that bring students into the discipline. Consequently, we present five lesson ideas that emerge from a regression analysis of income inequality and mortality in the USA and Canada.
Dealing with Outliers: Robust, Resistant Regression
ERIC Educational Resources Information Center
Glasser, Leslie
2007-01-01
Least-squares linear regression is the best of statistics and it is the worst of statistics. The reasons for this paradoxical claim, arising from possible inapplicability of the method and the excessive influence of "outliers", are discussed and substitute regression methods based on median selection, which is both robust and resistant, are…
Regression Analysis: Legal Applications in Institutional Research
ERIC Educational Resources Information Center
Frizell, Julie A.; Shippen, Benjamin S., Jr.; Luna, Andrew L.
2008-01-01
This article reviews multiple regression analysis, describes how its results should be interpreted, and instructs institutional researchers on how to conduct such analyses using an example focused on faculty pay equity between men and women. The use of multiple regression analysis will be presented as a method with which to compare salaries of…
A Practical Guide to Regression Discontinuity
ERIC Educational Resources Information Center
Jacob, Robin; Zhu, Pei; Somers, Marie-Andrée; Bloom, Howard
2012-01-01
Regression discontinuity (RD) analysis is a rigorous nonexperimental approach that can be used to estimate program impacts in situations in which candidates are selected for treatment based on whether their value for a numeric rating exceeds a designated threshold or cut-point. Over the last two decades, the regression discontinuity approach has…
Implementing Variable Selection Techniques in Regression.
ERIC Educational Resources Information Center
Thayer, Jerome D.
Variable selection techniques in stepwise regression analysis are discussed. In stepwise regression, variables are added or deleted from a model in sequence to produce a final "good" or "best" predictive model. Stepwise computer programs are discussed and four different variable selection strategies are described. These…
Understanding logistic regression analysis through example.
Ely, J W; Dawson, J D; Mehr, D R; Burns, T L
1996-02-01
Logistic regression is a valuable statistical tool that is often used in primary care research. When researchers explore the association between a possible risk factor and a disease, they attempt to control the effects of extraneous factors (confounders) that can obscure the true association. Using logistic regression, researchers can simultaneously control for the effects of multiple confounders. When investigators use logistic regression, they make subjective decisions about which factors to include in the analysis and in the final predictive model. Critical readers must understand basic concepts of logistic regression and potential problems with its use before they can accurately interpret study results. This article uses a familiar example to explain the principles of logistic regression to make it understandable to nonstatisticians.
Should metacognition be measured by logistic regression?
Rausch, Manuel; Zehetleitner, Michael
2017-03-01
Are logistic regression slopes suitable to quantify metacognitive sensitivity, i.e. the efficiency with which subjective reports differentiate between correct and incorrect task responses? We analytically show that logistic regression slopes are independent from rating criteria in one specific model of metacognition, which assumes (i) that rating decisions are based on sensory evidence generated independently of the sensory evidence used for primary task responses and (ii) that the distributions of evidence are logistic. Given a hierarchical model of metacognition, logistic regression slopes depend on rating criteria. According to all considered models, regression slopes depend on the primary task criterion. A reanalysis of previous data revealed that massive numbers of trials are required to distinguish between hierarchical and independent models with tolerable accuracy. It is argued that researchers who wish to use logistic regression as measure of metacognitive sensitivity need to control the primary task criterion and rating criteria.
Atherosclerotic plaque regression: fact or fiction?
Shanmugam, Nesan; Román-Rego, Ana; Ong, Peter; Kaski, Juan Carlos
2010-08-01
Coronary artery disease is the major cause of death in the western world. The formation and rapid progression of atheromatous plaques can lead to serious cardiovascular events in patients with atherosclerosis. The better understanding, in recent years, of the mechanisms leading to atheromatous plaque growth and disruption and the availability of powerful HMG CoA-reductase inhibitors (statins) has permitted the consideration of plaque regression as a realistic therapeutic goal. This article reviews the existing evidence underpinning current therapeutic strategies aimed at achieving atherosclerotic plaque regression. In this review we also discuss imaging modalities for the assessment of plaque regression, predictors of regression and whether plaque regression is associated with a survival benefit.
Extracting regression rules from neural networks.
Saito, Kazumi; Nakano, Ryohei
2002-12-01
This paper proposes a new framework and method for extracting regression rules from neural networks trained with multivariate data containing both nominal and numeric variables. Each regression rule is expressed as a pair of a logical formula on the conditional part over nominal variables and a polynomial equation on the action part over numeric variables. The proposed extraction method first generates one such regression rule for each training sample, then utilizes the kappa-means algorithm to generate a much smaller set of rules having more general conditions, where the number of distinct polynomial equations is determined through cross-validation. Finally, this method invokes decision-tree induction to form logical formulae of nominal conditions as conditional parts of final regression rules. Experiments using four data sets show that our method works well in extracting quite accurate and interesting regression rules.
Radman, Andreja; Gredičak, Matija; Kopriva, Ivica; Jerić, Ivanka
2011-01-01
Predicting antitumor activity of compounds using regression models trained on a small number of compounds with measured biological activity is an ill-posed inverse problem. Yet, it occurs very often within the academic community. To counteract, up to some extent, overfitting problems caused by a small training data, we propose to use consensus of six regression models for prediction of biological activity of virtual library of compounds. The QSAR descriptors of 22 compounds related to the opioid growth factor (OGF, Tyr-Gly-Gly-Phe-Met) with known antitumor activity were used to train regression models: the feed-forward artificial neural network, the k-nearest neighbor, sparseness constrained linear regression, the linear and nonlinear (with polynomial and Gaussian kernel) support vector machine. Regression models were applied on a virtual library of 429 compounds that resulted in six lists with candidate compounds ranked by predicted antitumor activity. The highly ranked candidate compounds were synthesized, characterized and tested for an antiproliferative activity. Some of prepared peptides showed more pronounced activity compared with the native OGF; however, they were less active than highly ranked compounds selected previously by the radial basis function support vector machine (RBF SVM) regression model. The ill-posedness of the related inverse problem causes unstable behavior of trained regression models on test data. These results point to high complexity of prediction based on the regression models trained on a small data sample. PMID:22272081
Influence of storm magnitude and watershed size on runoff nonlinearity
NASA Astrophysics Data System (ADS)
Lee, Kwan Tun; Huang, Jen-Kuo
2016-06-01
The inherent nonlinear characteristics of the watershed runoff process related to storm magnitude and watershed size are discussed in detail in this study. The first type of nonlinearity is referred to rainfall-runoff dynamic process and the second type is with respect to a Power-law relation between peak discharge and upstream drainage area. The dynamic nonlinearity induced by storm magnitude was first demonstrated by inspecting rainfall-runoff records at three watersheds in Taiwan. Then the derivation of the watershed unit hydrograph (UH) using two linear hydrological models shows that the peak discharge and time to peak discharge that characterize the shape of UH vary event-to-event. Hence, the intention of deriving a unique and universal UH for all rainfall-runoff simulation cases is questionable. In contrast, the UHs by the other two adopted nonlinear hydrological models were responsive to rainfall intensity without relying on linear proportion principle, and are excellent in presenting dynamic nonlinearity. Based on the two-segment regression, the scaling nonlinearity between peak discharge and drainage area was investigated by analyzing the variation of Power-law exponent. The results demonstrate that the scaling nonlinearity is particularly significant for a watershed having larger area and subjecting to a small-size of storm. For three study watersheds, a large tributary that contributes relatively great drainage area or inflow is found to cause a transition break in scaling relationship and convert the scaling relationship from linearity to nonlinearity.
Almost efficient estimation of relative risk regression
Fitzmaurice, Garrett M.; Lipsitz, Stuart R.; Arriaga, Alex; Sinha, Debajyoti; Greenberg, Caprice; Gawande, Atul A.
2014-01-01
Relative risks (RRs) are often considered the preferred measures of association in prospective studies, especially when the binary outcome of interest is common. In particular, many researchers regard RRs to be more intuitively interpretable than odds ratios. Although RR regression is a special case of generalized linear models, specifically with a log link function for the binomial (or Bernoulli) outcome, the resulting log-binomial regression does not respect the natural parameter constraints. Because log-binomial regression does not ensure that predicted probabilities are mapped to the [0,1] range, maximum likelihood (ML) estimation is often subject to numerical instability that leads to convergence problems. To circumvent these problems, a number of alternative approaches for estimating RR regression parameters have been proposed. One approach that has been widely studied is the use of Poisson regression estimating equations. The estimating equations for Poisson regression yield consistent, albeit inefficient, estimators of the RR regression parameters. We consider the relative efficiency of the Poisson regression estimator and develop an alternative, almost efficient estimator for the RR regression parameters. The proposed method uses near-optimal weights based on a Maclaurin series (Taylor series expanded around zero) approximation to the true Bernoulli or binomial weight function. This yields an almost efficient estimator while avoiding convergence problems. We examine the asymptotic relative efficiency of the proposed estimator for an increase in the number of terms in the series. Using simulations, we demonstrate the potential for convergence problems with standard ML estimation of the log-binomial regression model and illustrate how this is overcome using the proposed estimator. We apply the proposed estimator to a study of predictors of pre-operative use of beta blockers among patients undergoing colorectal surgery after diagnosis of colon cancer. PMID
Ahn, Jae Joon; Kim, Young Min; Yoo, Keunje; Park, Joonhong; Oh, Kyong Joo
2012-11-01
For groundwater conservation and management, it is important to accurately assess groundwater pollution vulnerability. This study proposed an integrated model using ridge regression and a genetic algorithm (GA) to effectively select the major hydro-geological parameters influencing groundwater pollution vulnerability in an aquifer. The GA-Ridge regression method determined that depth to water, net recharge, topography, and the impact of vadose zone media were the hydro-geological parameters that influenced trichloroethene pollution vulnerability in a Korean aquifer. When using these selected hydro-geological parameters, the accuracy was improved for various statistical nonlinear and artificial intelligence (AI) techniques, such as multinomial logistic regression, decision trees, artificial neural networks, and case-based reasoning. These results provide a proof of concept that the GA-Ridge regression is effective at determining influential hydro-geological parameters for the pollution vulnerability of an aquifer, and in turn, improves the AI performance in assessing groundwater pollution vulnerability.
NASA Astrophysics Data System (ADS)
Cannon, Alex J.
2011-09-01
The qrnn package for R implements the quantile regression neural network, which is an artificial neural network extension of linear quantile regression. The model formulation follows from previous work on the estimation of censored regression quantiles. The result is a nonparametric, nonlinear model suitable for making probabilistic predictions of mixed discrete-continuous variables like precipitation amounts, wind speeds, or pollutant concentrations, as well as continuous variables. A differentiable approximation to the quantile regression error function is adopted so that gradient-based optimization algorithms can be used to estimate model parameters. Weight penalty and bootstrap aggregation methods are used to avoid overfitting. For convenience, functions for quantile-based probability density, cumulative distribution, and inverse cumulative distribution functions are also provided. Package functions are demonstrated on a simple precipitation downscaling task.
Nonlinear Dynamics in Cardiology
Krogh-Madsen, Trine; Christini, David J.
2013-01-01
The dynamics of many cardiac arrhythmias, as well as the nature of transitions between different heart rhythms, have long been considered evidence of nonlinear phenomena playing a direct role in cardiac arrhythmogenesis. In most types of cardiac disease, the pathology develops slowly and gradually, often over many years. In contrast, arrhythmias often occur suddenly. In nonlinear systems, sudden changes in qualitative dynamics can, counter-intuitively, result from a gradual change in a system parameter –this is known as a bifurcation. Here, we review how nonlinearities in cardiac electrophysiology influence normal and abnormal rhythms and how bifurcations change the dynamics. In particular, we focus on the many recent developments in computational modeling at the cellular level focused on intracellular calcium dynamics. We discuss two areas where recent experimental and modeling work have suggested the importance of nonlinearities in calcium dynamics: repolarization alternans and pacemaker cell automaticity. PMID:22524390
NASA Technical Reports Server (NTRS)
1984-01-01
Nonlinear structural analysis techniques for engine structures and components are addressed. The finite element method and boundary element method are discussed in terms of stress and structural analyses of shells, plates, and laminates.
Nonlinear optomechanical pressure
NASA Astrophysics Data System (ADS)
Conti, Claudio; Boyd, Robert
2014-03-01
A transparent material exhibits ultrafast optical nonlinearity and is subject to optical pressure if irradiated by a laser beam. However, the effect of nonlinearity on optical pressure is often overlooked, even if a nonlinear optical pressure may be potentially employed in many applications, such as optical manipulation, biophysics, cavity optomechanics, quantum optics, and optical tractors, and is relevant in fundamental problems such as the Abraham-Minkoswky dilemma or the Casimir effect. Here, we show that an ultrafast nonlinear polarization gives indeed a contribution to the optical pressure that also is negative in certain spectral ranges; the theoretical analysis is confirmed by first-principles simulations. An order-of-magnitude estimate shows that the effect can be observable by measuring the deflection of a membrane made by graphene.
Nonlinear Simulation of the Tooth Enamel Spectrum for EPR Dosimetry
NASA Astrophysics Data System (ADS)
Kirillov, V. A.; Dubovsky, S. V.
2016-07-01
Software was developed where initial EPR spectra of tooth enamel were deconvoluted based on nonlinear simulation, line shapes and signal amplitudes in the model initial spectrum were calculated, the regression coefficient was evaluated, and individual spectra were summed. Software validation demonstrated that doses calculated using it agreed excellently with the applied radiation doses and the doses reconstructed by the method of additive doses.
Perturbed nonlinear differential equations
NASA Technical Reports Server (NTRS)
Proctor, T. G.
1974-01-01
For perturbed nonlinear systems, a norm, other than the supremum norm, is introduced on some spaces of continuous functions. This makes possible the study of new types of behavior. A study is presented on a perturbed nonlinear differential equation defined on a half line, and the existence of a family of solutions with special boundedness properties is established. The ideas developed are applied to the study of integral manifolds, and examples are given.
Adaptive and Nonlinear Control
1992-02-29
in [22], we also applied the concept of zero dynamics to the problem of exact linearization of a nonlinear control system by dynamic feedback. Exact ...nonlinear systems, although it was well-known that the conditions for exact linearization are very stringent and consequently do not apply to a broad...29th IEEE Conference n Decision and Control, Invited Paper delivered by Dr. Gilliam. Exact Linearization of Zero Dynamics, 29th IEEE Conference on
Pulsed nonlinear Rayleigh waves
Knight, E.Y.; Hamilton, M.F.; Zabolotskaya, E.A. )
1994-11-01
Pulsed, plane, nonlinear Rayleigh waves in isotropic solids are investigated with numerical solutions of the coupled spectral equations derived by Zabolotskaya [J. Acoust. Soc. Am. [bold 91], 2569 (1992)]. Calculations of waveform evolution are presented as functions of distance from the source and depth within the solid. For the case of weak nonlinearity (characteristic absorption length on the order of the shock formation distance), self-demodulation of tone bursts is investigated. Self-demodulation refers to the nonlinear generation of a low-frequency waveform by a high-frequency pulse. Comparisons are made with the analogous process in fluids. Whereas demodulated Rayleigh and acoustic waveforms have similar shapes, the demodulated Rayleigh waveforms have substantially smaller relative amplitudes. The difference in amplitude is due to the frequency dependence of the nonlinearity coefficient matrix for Rayleigh waves. For the case of strong nonlinearity, shock formation is investigated in a variety of transient waveforms. Via comparison with acoustic waveform evolution in fluids, precursors generated by certain Rayleigh waveforms are identified as consequences of nonlocal nonlinearity. [Work supported by DOE, ONR, and NSF.
NASA Astrophysics Data System (ADS)
Yang, Qianli; Pitkow, Xaq
2015-03-01
Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.
Nonlinear systems in medicine.
Higgins, John P.
2002-01-01
Many achievements in medicine have come from applying linear theory to problems. Most current methods of data analysis use linear models, which are based on proportionality between two variables and/or relationships described by linear differential equations. However, nonlinear behavior commonly occurs within human systems due to their complex dynamic nature; this cannot be described adequately by linear models. Nonlinear thinking has grown among physiologists and physicians over the past century, and non-linear system theories are beginning to be applied to assist in interpreting, explaining, and predicting biological phenomena. Chaos theory describes elements manifesting behavior that is extremely sensitive to initial conditions, does not repeat itself and yet is deterministic. Complexity theory goes one step beyond chaos and is attempting to explain complex behavior that emerges within dynamic nonlinear systems. Nonlinear modeling still has not been able to explain all of the complexity present in human systems, and further models still need to be refined and developed. However, nonlinear modeling is helping to explain some system behaviors that linear systems cannot and thus will augment our understanding of the nature of complex dynamic systems within the human body in health and in disease states. PMID:14580107
Pescara benchmarks: nonlinear identification
NASA Astrophysics Data System (ADS)
Gandino, E.; Garibaldi, L.; Marchesiello, S.
2011-07-01
Recent nonlinear methods are suitable for identifying large systems with lumped nonlinearities, but in practice most structural nonlinearities are distributed and an ideal nonlinear identification method should cater for them as well. In order to extend the current NSI method to be applied also on realistic large engineering structures, a modal counterpart of the method is proposed in this paper. The modal NSI technique is applied on one of the reinforced concrete beams that have been tested in Pescara, under the project titled "Monitoring and diagnostics of railway bridges by means of the analysis of the dynamic response due to train crossing", financed by Italian Ministry of Research. The beam showed a softening nonlinear behaviour, so that the nonlinearity concerning the first mode is characterized and its force contribution is quantified. Moreover, estimates for the modal parameters are obtained and the model is validated by comparing the measured and the reconstructed output. The identified estimates are also used to accurately predict the behaviour of the same beam, when subject to different initial conditions.
Investigating bias in squared regression structure coefficients.
Nimon, Kim F; Zientek, Linda R; Thompson, Bruce
2015-01-01
The importance of structure coefficients and analogs of regression weights for analysis within the general linear model (GLM) has been well-documented. The purpose of this study was to investigate bias in squared structure coefficients in the context of multiple regression and to determine if a formula that had been shown to correct for bias in squared Pearson correlation coefficients and coefficients of determination could be used to correct for bias in squared regression structure coefficients. Using data from a Monte Carlo simulation, this study found that squared regression structure coefficients corrected with Pratt's formula produced less biased estimates and might be more accurate and stable estimates of population squared regression structure coefficients than estimates with no such corrections. While our findings are in line with prior literature that identified multicollinearity as a predictor of bias in squared regression structure coefficients but not coefficients of determination, the findings from this study are unique in that the level of predictive power, number of predictors, and sample size were also observed to contribute bias in squared regression structure coefficients.
Investigating bias in squared regression structure coefficients
Nimon, Kim F.; Zientek, Linda R.; Thompson, Bruce
2015-01-01
The importance of structure coefficients and analogs of regression weights for analysis within the general linear model (GLM) has been well-documented. The purpose of this study was to investigate bias in squared structure coefficients in the context of multiple regression and to determine if a formula that had been shown to correct for bias in squared Pearson correlation coefficients and coefficients of determination could be used to correct for bias in squared regression structure coefficients. Using data from a Monte Carlo simulation, this study found that squared regression structure coefficients corrected with Pratt's formula produced less biased estimates and might be more accurate and stable estimates of population squared regression structure coefficients than estimates with no such corrections. While our findings are in line with prior literature that identified multicollinearity as a predictor of bias in squared regression structure coefficients but not coefficients of determination, the findings from this study are unique in that the level of predictive power, number of predictors, and sample size were also observed to contribute bias in squared regression structure coefficients. PMID:26217273
Trends in Mean and Variability of Hydrologic Series Using Regression
NASA Astrophysics Data System (ADS)
Read, L.; Vogel, R.; Lacombe, G.
2013-12-01
Concern for design and prediction under nonstationarity has led to research into trend detection and development of nonstationary probabilistic models. This work introduces a method for using least squares regression to test for trends in the mean and variance, which can be an appropriate tool for water managers and decision makers. Regression has the advantages of (1) ease of application, (2) application for both nonlinear and linear trends, (3) graphic visualization of trends, (4) analytically estimating the power of the trend, and (5) analytically estimating the prediction intervals related to trend extrapolation. Though this general method can be applied for a variety of hydrologic variables, we present a case based on annual maximum flows from the Mekong basin. We outline a generalized method for hypothesis testing and modeling trends for a log normal variable. We also document development of a nonstationary model to assess the impact of trends in both the mean and variance on the future magnitude and frequency of floods in the Mekong basin.
Relative risk regression analysis of epidemiologic data.
Prentice, R L
1985-11-01
Relative risk regression methods are described. These methods provide a unified approach to a range of data analysis problems in environmental risk assessment and in the study of disease risk factors more generally. Relative risk regression methods are most readily viewed as an outgrowth of Cox's regression and life model. They can also be viewed as a regression generalization of more classical epidemiologic procedures, such as that due to Mantel and Haenszel. In the context of an epidemiologic cohort study, relative risk regression methods extend conventional survival data methods and binary response (e.g., logistic) regression models by taking explicit account of the time to disease occurrence while allowing arbitrary baseline disease rates, general censorship, and time-varying risk factors. This latter feature is particularly relevant to many environmental risk assessment problems wherein one wishes to relate disease rates at a particular point in time to aspects of a preceding risk factor history. Relative risk regression methods also adapt readily to time-matched case-control studies and to certain less standard designs. The uses of relative risk regression methods are illustrated and the state of development of these procedures is discussed. It is argued that asymptotic partial likelihood estimation techniques are now well developed in the important special case in which the disease rates of interest have interpretations as counting process intensity functions. Estimation of relative risks processes corresponding to disease rates falling outside this class has, however, received limited attention. The general area of relative risk regression model criticism has, as yet, not been thoroughly studied, though a number of statistical groups are studying such features as tests of fit, residuals, diagnostics and graphical procedures. Most such studies have been restricted to exponential form relative risks as have simulation studies of relative risk estimation
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Kuo, C. Y.
1979-01-01
The objective of this paper is to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. An investigation of the signal-response equations is conducted and the concept is tested by application to actual remote sensing data from a laboratory experiment performed under controlled conditions. Investigation of the signal-response equations shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined.
Alley, William M.
1986-01-01
Problems involving the combined use of contaminant transport models and nonlinear optimization schemes can be very expensive to solve. This paper explores the use of transport models with ordinary regression and regression on ranks to develop approximate response functions of concentrations at critical locations as a function of pumping and recharge at decision wells. These response functions combined with other constraints can often be solved very easily and may suggest reasonable starting points for combined simulation-management modeling or even relatively efficient operating schemes in themselves.
Regression of altitude-produced cardiac hypertrophy.
NASA Technical Reports Server (NTRS)
Sizemore, D. A.; Mcintyre, T. W.; Van Liere, E. J.; Wilson , M. F.
1973-01-01
The rate of regression of cardiac hypertrophy with time has been determined in adult male albino rats. The hypertrophy was induced by intermittent exposure to simulated high altitude. The percentage hypertrophy was much greater (46%) in the right ventricle than in the left (16%). The regression could be adequately fitted to a single exponential function with a half-time of 6.73 plus or minus 0.71 days (90% CI). There was no significant difference in the rates of regression for the two ventricles.
Semiparametric Regression in Size-Biased Sampling
Chen, Ying Qing
2009-01-01
Summary Size-biased sampling arises when a positive-valued outcome variable is sampled with selection probability proportional to its size. In this article, we propose a semiparametric linear regression model to analyze size-biased outcomes. In our proposed model, the regression parameters of the covariates are of major interest, while the distribution of random errors is unspecified. Under the proposed model, we discover that the regression parameters are invariant regardless of size-biased sampling. Following this invariance property, we develop a simple estimation procedure for inferences. Our proposed methods are evaluated in simulation studies and applied to two real data analyses. PMID:19432792
Regressive language in severe head injury.
Thomsen, I V; Skinhoj, E
1976-09-01
In a follow-up study of 50 patients with severe head injuries three patients had echolalia. One patient with initially global aphasia had echolalia for some weeks when he started talking. Another patient with severe diffuse brain damage, dementia, and emotional regression had echolalia. The dysfunction was considered a detour performance. In the third patient echolalia and palilalia were details in a total pattern of regression lasting for months. The patient, who had extensive frontal atrophy secondary to a very severe head trauma, presented an extreme state of regression returning to a foetal-body pattern and behaving like a baby.
Regression of altitude-produced cardiac hypertrophy.
NASA Technical Reports Server (NTRS)
Sizemore, D. A.; Mcintyre, T. W.; Van Liere, E. J.; Wilson , M. F.
1973-01-01
The rate of regression of cardiac hypertrophy with time has been determined in adult male albino rats. The hypertrophy was induced by intermittent exposure to simulated high altitude. The percentage hypertrophy was much greater (46%) in the right ventricle than in the left (16%). The regression could be adequately fitted to a single exponential function with a half-time of 6.73 plus or minus 0.71 days (90% CI). There was no significant difference in the rates of regression for the two ventricles.
50 years of nonlinear acoustics
NASA Astrophysics Data System (ADS)
Naugolnykh, K.
2008-06-01
Episodes of nonlinear acoustics history related to several topics are discussed. Nonlinear evolution of finite amplitude wave, its distortion and weak shock wave formation, nonlinear absorption of the high intensity wave. Nonlinear wave propagation in a randomly inhomogeneous media, interaction of noises and regular signals. Nonlinear sound wave interactions. Parametric transmitting and receiving array theoretical models, experimental test and applications in ocean and atmospheric sounding. Parametric acoustic array in oceanic waveguids. High-intensity focused ultrasound propagation in a inhomogeneous fluid and tissue, nonlinear mechanism of heating by high-intensity focused ultrasound, which is important for ultrasound thermal therapy. Intense acoustic pulses generation, cavitation, laser generated nonlinear pulses.
Nonlinear GARCH model and 1 / f noise
NASA Astrophysics Data System (ADS)
Kononovicius, A.; Ruseckas, J.
2015-06-01
Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the 1 /fβ form, including 1 / f noise.
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Kuo, C. Y.
1979-01-01
The paper attempts to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. It is reported that investigation of the signal response shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined. Laboratory data are used to demonstrate that the technique is applicable to water mixtures which contain constituents with both linear and nonlinear radiance gradients. Finally, it is concluded that instrument noise, ground-truth placement, and time lapse between remote sensor overpass and water sample operations are serious barriers to successful use of the technique.
NASA Astrophysics Data System (ADS)
Lu, Dan; Ye, Ming; Hill, Mary C.
2012-09-01
Confidence intervals based on classical regression theories augmented to include prior information and credible intervals based on Bayesian theories are conceptually different ways to quantify parametric and predictive uncertainties. Because both confidence and credible intervals are used in environmental modeling, we seek to understand their differences and similarities. This is of interest in part because calculating confidence intervals typically requires tens to thousands of model runs, while Bayesian credible intervals typically require tens of thousands to millions of model runs. Given multi-Gaussian distributed observation errors, our theoretical analysis shows that, for linear or linearized-nonlinear models, confidence and credible intervals are always numerically identical when consistent prior information is used. For nonlinear models, nonlinear confidence and credible intervals can be numerically identical if parameter confidence regions defined using the approximate likelihood method and parameter credible regions estimated using Markov chain Monte Carlo realizations are numerically identical and predictions are a smooth, monotonic function of the parameters. Both occur if intrinsic model nonlinearity is small. While the conditions of Gaussian errors and small intrinsic model nonlinearity are violated by many environmental models, heuristic tests using analytical and numerical models suggest that linear and nonlinear confidence intervals can be useful approximations of uncertainty even under significantly nonideal conditions. In the context of epistemic model error for a complex synthetic nonlinear groundwater problem, the linear and nonlinear confidence and credible intervals for individual models performed similarly enough to indicate that the computationally frugal confidence intervals can be useful in many circumstances. Experiences with these groundwater models are expected to be broadly applicable to many environmental models. We suggest that for
USDA-ARS?s Scientific Manuscript database
In precision agriculture regression has been used widely to quality the relationship between soil attributes and other environmental variables. However, spatial correlation existing in soil samples usually makes the regression model suboptimal. In this study, a regression-kriging method was attemp...
NASA Astrophysics Data System (ADS)
Darnah
2016-04-01
Poisson regression has been used if the response variable is count data that based on the Poisson distribution. The Poisson distribution assumed equal dispersion. In fact, a situation where count data are over dispersion or under dispersion so that Poisson regression inappropriate because it may underestimate the standard errors and overstate the significance of the regression parameters, and consequently, giving misleading inference about the regression parameters. This paper suggests the generalized Poisson regression model to handling over dispersion and under dispersion on the Poisson regression model. The Poisson regression model and generalized Poisson regression model will be applied the number of filariasis cases in East Java. Based regression Poisson model the factors influence of filariasis are the percentage of families who don't behave clean and healthy living and the percentage of families who don't have a healthy house. The Poisson regression model occurs over dispersion so that we using generalized Poisson regression. The best generalized Poisson regression model showing the factor influence of filariasis is percentage of families who don't have healthy house. Interpretation of result the model is each additional 1 percentage of families who don't have healthy house will add 1 people filariasis patient.
Daniels, Bryan C.; Nemenman, Ilya
2015-01-01
The nonlinearity of dynamics in systems biology makes it hard to infer them from experimental data. Simple linear models are computationally efficient, but cannot incorporate these important nonlinearities. An adaptive method based on the S-system formalism, which is a sensible representation of nonlinear mass-action kinetics typically found in cellular dynamics, maintains the efficiency of linear regression. We combine this approach with adaptive model selection to obtain efficient and parsimonious representations of cellular dynamics. The approach is tested by inferring the dynamics of yeast glycolysis from simulated data. With little computing time, it produces dynamical models with high predictive power and with structural complexity adapted to the difficulty of the inference problem. PMID:25806510
TWSVR: Regression via Twin Support Vector Machine.
Khemchandani, Reshma; Goyal, Keshav; Chandra, Suresh
2016-02-01
Taking motivation from Twin Support Vector Machine (TWSVM) formulation, Peng (2010) attempted to propose Twin Support Vector Regression (TSVR) where the regressor is obtained via solving a pair of quadratic programming problems (QPPs). In this paper we argue that TSVR formulation is not in the true spirit of TWSVM. Further, taking motivation from Bi and Bennett (2003), we propose an alternative approach to find a formulation for Twin Support Vector Regression (TWSVR) which is in the true spirit of TWSVM. We show that our proposed TWSVR can be derived from TWSVM for an appropriately constructed classification problem. To check the efficacy of our proposed TWSVR we compare its performance with TSVR and classical Support Vector Regression(SVR) on various regression datasets.
Bayesian Comparison of Two Regression Lines.
ERIC Educational Resources Information Center
Tsutakawa, Robert K.
1978-01-01
A Bayesian solution is presented for the Johnson-Neyman problem (whether or not the distance between two regression lines is statistically significant over a finite interval of the independent variable). (Author/CTM)
Spontaneous Regression of an Incidental Spinal Meningioma.
Yilmaz, Ali; Kizilay, Zahir; Sair, Ahmet; Avcil, Mucahit; Ozkul, Ayca
2016-03-15
The regression of meningioma has been reported in literature before. In spite of the fact that the regression may be involved by hemorrhage, calcification or some drugs withdrawal, it is rarely observed spontaneously. We report a 17 year old man with a cervical meningioma which was incidentally detected. In his cervical MRI an extradural, cranio-caudal contrast enchanced lesion at C2-C3 levels of the cervical spinal cord was detected. Despite the slight compression towards the spinal cord, he had no symptoms and refused any kind of surgical approach. The meningioma was followed by control MRI and it spontaneously regressed within six months. There were no signs of hemorrhage or calcification. Although it is a rare condition, the clinicians should consider that meningiomas especially incidentally diagnosed may be regressed spontaneously.
An introduction to multilevel regression models.
Austin, P C; Goel, V; van Walraven, C
2001-01-01
Data in health research are frequently structured hierarchically. For example, data may consist of patients nested within physicians, who in turn may be nested in hospitals or geographic regions. Fitting regression models that ignore the hierarchical structure of the data can lead to false inferences being drawn from the data. Implementing a statistical analysis that takes into account the hierarchical structure of the data requires special methodologies. In this paper, we introduce the concept of hierarchically structured data, and present an introduction to hierarchical regression models. We then compare the performance of a traditional regression model with that of a hierarchical regression model on a dataset relating test utilization at the annual health exam with patient and physician characteristics. In comparing the resultant models, we see that false inferences can be drawn by ignoring the structure of the data.
Multiple Instance Regression with Structured Data
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; Lane, Terran; Roper, Alex
2008-01-01
This slide presentation reviews the use of multiple instance regression with structured data from multiple and related data sets. It applies the concept to a practical problem, that of estimating crop yield using remote sensed country wide weekly observations.
Weighted regression analysis and interval estimators
Donald W. Seegrist
1974-01-01
A method for deriving the weighted least squares estimators for the parameters of a multiple regression model. Confidence intervals for expected values, and prediction intervals for the means of future samples are given.
A new bivariate negative binomial regression model
NASA Astrophysics Data System (ADS)
Faroughi, Pouya; Ismail, Noriszura
2014-12-01
This paper introduces a new form of bivariate negative binomial (BNB-1) regression which can be fitted to bivariate and correlated count data with covariates. The BNB regression discussed in this study can be fitted to bivariate and overdispersed count data with positive, zero or negative correlations. The joint p.m.f. of the BNB1 distribution is derived from the product of two negative binomial marginals with a multiplicative factor parameter. Several testing methods were used to check overdispersion and goodness-of-fit of the model. Application of BNB-1 regression is illustrated on Malaysian motor insurance dataset. The results indicated that BNB-1 regression has better fit than bivariate Poisson and BNB-2 models with regards to Akaike information criterion.
Some Simple Computational Formulas for Multiple Regression
ERIC Educational Resources Information Center
Aiken, Lewis R., Jr.
1974-01-01
Short-cut formulas are presented for direct computation of the beta weights, the standard errors of the beta weights, and the multiple correlation coefficient for multiple regression problems involving three independent variables and one dependent variable. (Author)
Polarization and fiber nonlinearities
NASA Astrophysics Data System (ADS)
Lin, Qiang
This thesis is devoted to a thorough investigation of various nonlinear phenomena in optical fibers over a variety of length, time, and power scales. It presents a unified theoretical description of fiber nonlinearities, their applications, existing problems, and possible solutions, particularly focusing on the polarization dependence of nonlinearities. The thesis begins with an investigation of quantum-correlated photon pair generation in the extremely low-power regime, and fundamental quantum noise properties of dual-pump parametric amplfiers in the very high gain regime. It then focuses on two experimental demonstrations of applications based on four-wave mixing: an ultrafast all-optical switching scheme with the capability of multi-band wavelength casting, and a subpicosecond parametric oscillator with broadband tunability. The thesis next deals with the theoretical and experimental investigation of a novel phenomenon of vector soliton fission during supercontinuum generation in a tapered fiber in the femtosecond regime. The vectorial nature of Raman scattering is discussed next. In particular, I propose a vector form of the Raman response function to descibe accurately the Raman-related phenomena during ultrashort pulse propagation inside optical fibers. The thesis also presents a unified theory to describe nonlinearities in long fibers with random birefringence and polarization-mode dispersion. It focuses on the statistical nature of the interactions between random polarization-mode disperion and various nonlinear effects like stimulated Raman scattering, cross-phase modulation, four-wave mixing, and self-phase modulation. In particular, I quantify their impacts on various nonlinear photonic functionalities such as Raman amplification, nonlinear optical switching, parametric amplfication, wavelength conversion, soliton stability, etc.
Various approaches and tools exist to estimate local and regional PM_{2.5} impacts from a single emissions source, ranging from simple screening techniques to Gaussian based dispersion models and complex grid-based Eulerian photochemical transport models. These approache...
ERIC Educational Resources Information Center
Culpepper, Steven Andrew
2010-01-01
Statistical prediction remains an important tool for decisions in a variety of disciplines. An equally important issue is identifying factors that contribute to more or less accurate predictions. The time series literature includes well developed methods for studying predictability and volatility over time. This article develops…
ERIC Educational Resources Information Center
Culpepper, Steven Andrew
2010-01-01
Statistical prediction remains an important tool for decisions in a variety of disciplines. An equally important issue is identifying factors that contribute to more or less accurate predictions. The time series literature includes well developed methods for studying predictability and volatility over time. This article develops…
Discriminative Elastic-Net Regularized Linear Regression.
Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen
2017-03-01
In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.
The Geometry of Enhancement in Multiple Regression
ERIC Educational Resources Information Center
Waller, Niels G.
2011-01-01
In linear multiple regression, "enhancement" is said to occur when R[superscript 2] = b[prime]r greater than r[prime]r, where b is a p x 1 vector of standardized regression coefficients and r is a p x 1 vector of correlations between a criterion y and a set of standardized regressors, x. When p = 1 then b [is congruent to] r and…
Marginal longitudinal semiparametric regression via penalized splines
Kadiri, M. Al; Carroll, R.J.; Wand, M.P.
2010-01-01
We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achieve quick and effective implementation. Illustrations are provided for nonparametric regression and additive models. PMID:21037941
Fuzzy multiple linear regression: A computational approach
NASA Technical Reports Server (NTRS)
Juang, C. H.; Huang, X. H.; Fleming, J. W.
1992-01-01
This paper presents a new computational approach for performing fuzzy regression. In contrast to Bardossy's approach, the new approach, while dealing with fuzzy variables, closely follows the conventional regression technique. In this approach, treatment of fuzzy input is more 'computational' than 'symbolic.' The following sections first outline the formulation of the new approach, then deal with the implementation and computational scheme, and this is followed by examples to illustrate the new procedure.
The Geometry of Enhancement in Multiple Regression
ERIC Educational Resources Information Center
Waller, Niels G.
2011-01-01
In linear multiple regression, "enhancement" is said to occur when R[superscript 2] = b[prime]r greater than r[prime]r, where b is a p x 1 vector of standardized regression coefficients and r is a p x 1 vector of correlations between a criterion y and a set of standardized regressors, x. When p = 1 then b [is congruent to] r and…
Photonic Nonlinear Transient Computing with Multiple-Delay Wavelength Dynamics
NASA Astrophysics Data System (ADS)
Martinenghi, Romain; Rybalko, Sergei; Jacquot, Maxime; Chembo, Yanne K.; Larger, Laurent
2012-06-01
We report on the experimental demonstration of a hybrid optoelectronic neuromorphic computer based on a complex nonlinear wavelength dynamics including multiple delayed feedbacks with randomly defined weights. This neuromorphic approach is based on a new paradigm of a brain-inspired computational unit, intrinsically differing from Turing machines. This recent paradigm consists in expanding the input information to be processed into a higher dimensional phase space, through the nonlinear transient response of a complex dynamics excited by the input information. The computed output is then extracted via a linear separation of the transient trajectory in the complex phase space. The hyperplane separation is derived from a learning phase consisting of the resolution of a regression problem. The processing capability originates from the nonlinear transient, resulting in nonlinear transient computing. The computational performance is successfully evaluated on a standard benchmark test, namely, a spoken digit recognition task.
The Changing Nonlinear Relationship between Income and Terrorism
Enders, Walter; Hoover, Gary A.
2014-01-01
This article reinvestigates the relationship between real per capita gross domestic product (GDP) and terrorism. We devise a terrorism Lorenz curve to show that domestic and transnational terrorist attacks are each more concentrated in middle-income countries, thereby suggesting a nonlinear income–terrorism relationship. Moreover, this point of concentration shifted to lower income countries after the rising influence of the religious fundamentalist and nationalist/separatist terrorists in the early 1990s. For transnational terrorist attacks, this shift characterized not only the attack venue but also the perpetrators’ nationality. The article then uses nonlinear smooth transition regressions to establish the relationship between real per capita GDP and terrorism for eight alternative terrorism samples, accounting for venue, perpetrators’ nationality, terrorism type, and the period. Our nonlinear estimates are shown to be favored over estimates using linear or quadratic income determinants of terrorism. These nonlinear estimates are robust to additional controls. PMID:28579636
The Changing Nonlinear Relationship between Income and Terrorism.
Enders, Walter; Hoover, Gary A; Sandler, Todd
2016-03-01
This article reinvestigates the relationship between real per capita gross domestic product (GDP) and terrorism. We devise a terrorism Lorenz curve to show that domestic and transnational terrorist attacks are each more concentrated in middle-income countries, thereby suggesting a nonlinear income-terrorism relationship. Moreover, this point of concentration shifted to lower income countries after the rising influence of the religious fundamentalist and nationalist/separatist terrorists in the early 1990s. For transnational terrorist attacks, this shift characterized not only the attack venue but also the perpetrators' nationality. The article then uses nonlinear smooth transition regressions to establish the relationship between real per capita GDP and terrorism for eight alternative terrorism samples, accounting for venue, perpetrators' nationality, terrorism type, and the period. Our nonlinear estimates are shown to be favored over estimates using linear or quadratic income determinants of terrorism. These nonlinear estimates are robust to additional controls.
Adaptive prior weighting in generalized regression.
Held, Leonhard; Sauter, Rafael
2017-03-01
The prior distribution is a key ingredient in Bayesian inference. Prior information on regression coefficients may come from different sources and may or may not be in conflict with the observed data. Various methods have been proposed to quantify a potential prior-data conflict, such as Box's p-value. However, there are no clear recommendations how to react to possible prior-data conflict in generalized regression models. To address this deficiency, we propose to adaptively weight a prespecified multivariate normal prior distribution on the regression coefficients. To this end, we relate empirical Bayes estimates of prior weight to Box's p-value and propose alternative fully Bayesian approaches. Prior weighting can be done for the joint prior distribution of the regression coefficients or-under prior independence-separately for prespecified blocks of regression coefficients. We outline how the proposed methodology can be implemented using integrated nested Laplace approximations (INLA) and illustrate the applicability with a Bayesian logistic regression model for data from a cross-sectional study. We also provide a simulation study that shows excellent performance of our approach in the case of prior misspecification in terms of root mean squared error and coverage. Supplementary Materials give details on software implementation and code and another application to binary longitudinal data from a randomized clinical trial using a Bayesian generalized linear mixed model. © 2016, The International Biometric Society.
[Iris movement mediates pupillary membrane regression].
Morizane, Yuki
2007-11-01
In the course of mammalian lens development, a transient capillary meshwork called as the pupillary membrane (PM) forms. It is located in the pupil area to nourish the anterior surface of the lens, and then regresses to clear the optical path. Although the involvement of the apoptotic process has been reported in PM regression, the initiating factor remains unknown. We initially found that regression of the PM coincided with the development of iris motility, and that iris movement caused cessation and resumption of blood flow within the PM. Therefore, we investigated whether the development of the capacity of the iris to constrict and dilate can function as an essential signal that induces apoptosis in the PM. Continuous inhibition of iris movement with mydriatic agents suppressed apoptosis of the PM and resulted in the persistence of PM in rats. The distribution of apoptotic cells in the regressing PM was diffuse and showed no apparent localization. These results indicated that iris movement induced regression of the PM by changing the blood flow within it. This study suggests the importance of the physiological interactions between tissues-in this case, the iris and the PM-as a signal to advance vascular regression during organ development.
Dermoscopy of fully regressive cutaneous melanoma.
Bories, N; Dalle, S; Debarbieux, S; Balme, B; Ronger-Savlé, S; Thomas, L
2008-06-01
Metastatic melanoma of unknown origin is a difficult challenge diagnostically and therapeutically. Diagnosis of the putative primary lesion is difficult. This difficulty increases when the primary lesion has undergone complete regression. To define the dermoscopic features of fully regressed melanoma. A single-institution, register-based study of an unselected consecutive series of seven cases of metastatic melanoma in the lymph nodes with no known or visible primary lesion was carried out. Skin examination included dermoscopy; when a suspicious area was found, observed dermoscopic features were recorded and a biopsy was performed. Diagnosis of completely regressive cutaneous melanoma was based on clinical-pathological correlation according to widely accepted criteria. Seven dermoscopic features were associated with completely regressive melanoma: scar-like depigmentation (100%); pink coloration of the background (100%); linear-irregular vessels (86%); globular pattern of the vessels (43%); remnants of pigmentation (86%), either macular (43%) or with a peppering aspect (43%); and white lighter transverse bands (43%). The last feature was only observed with polarized light dermoscopy devices. Dermoscopy more accurately distinguishes the vascular, pigmentary and scarring changes of fully regressive melanoma. We believe that dermoscopy should be included in the search for a regressive primary lesion in case of metastatic melanoma of unknown origin.
Multiple-Instance Regression with Structured Data
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; Lane, Terran; Roper, Alex
2008-01-01
We present a multiple-instance regression algorithm that models internal bag structure to identify the items most relevant to the bag labels. Multiple-instance regression (MIR) operates on a set of bags with real-valued labels, each containing a set of unlabeled items, in which the relevance of each item to its bag label is unknown. The goal is to predict the labels of new bags from their contents. Unlike previous MIR methods, MI-ClusterRegress can operate on bags that are structured in that they contain items drawn from a number of distinct (but unknown) distributions. MI-ClusterRegress simultaneously learns a model of the bag's internal structure, the relevance of each item, and a regression model that accurately predicts labels for new bags. We evaluated this approach on the challenging MIR problem of crop yield prediction from remote sensing data. MI-ClusterRegress provided predictions that were more accurate than those obtained with non-multiple-instance approaches or MIR methods that do not model the bag structure.
Multiple-Instance Regression with Structured Data
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; Lane, Terran; Roper, Alex
2008-01-01
We present a multiple-instance regression algorithm that models internal bag structure to identify the items most relevant to the bag labels. Multiple-instance regression (MIR) operates on a set of bags with real-valued labels, each containing a set of unlabeled items, in which the relevance of each item to its bag label is unknown. The goal is to predict the labels of new bags from their contents. Unlike previous MIR methods, MI-ClusterRegress can operate on bags that are structured in that they contain items drawn from a number of distinct (but unknown) distributions. MI-ClusterRegress simultaneously learns a model of the bag's internal structure, the relevance of each item, and a regression model that accurately predicts labels for new bags. We evaluated this approach on the challenging MIR problem of crop yield prediction from remote sensing data. MI-ClusterRegress provided predictions that were more accurate than those obtained with non-multiple-instance approaches or MIR methods that do not model the bag structure.
Retrieving Seawater Turbidity from Landsat-TM Data by Regressions and Artificial Neural Network
NASA Astrophysics Data System (ADS)
Gan, T.; Kalinga, O.; Ohgushi, K.
2001-12-01
By subtracting Lowtran 7's estimated Rayleigh scattered and aerosol scattered radiance from Landsat-TM's measured radiance, the radiance reflected at the sea surface (RW) of Ariake Sea was estimated. Then the RW averaged from 4 x 4 windows of pixels centered at 33 sampling sites of Ariake Sea were calibrated against the observed Secchi disk depth (SDD) using linear and nonlinear regression, and an artificial neural network (ANN) algorithm called MCPN. Results show that multi-date calibration (RW) data mainly based on the visible channels of Landsat-TM predict more accurate and dependable SDD than single-date RW data at the validation stage. Between the three classes of retrieval algorithms tested, nonlinear regression (NLR) likely more closely (though not perfectly) describe the SDD/RW relationship than the linear regression (LR). However, the inherent non-linearity and inter-connectivity of an ANN such as the MCPN, together with its ability to learn and generalize information from complex or poorly understood systems, enable it to even better represent the SDD/RW relationship than the NLR. This study confirms the feasibility of retrieving SDD (or turbidity/ suspended sediments) from Landsat-TM data. On the basis of the validation results, it seems that the calibrated MCPN and possibly NLR are temporally portable within the Ariake Sea. Lastly, the coefficient of efficiency is a more stringent and likely a more accurate statistical measure than the popular, coefficient of determination, R2.
The Current and Future Use of Ridge Regression for Prediction in Quantitative Genetics
de Vlaming, Ronald; Groenen, Patrick J. F.
2015-01-01
In recent years, there has been a considerable amount of research on the use of regularization methods for inference and prediction in quantitative genetics. Such research mostly focuses on selection of markers and shrinkage of their effects. In this review paper, the use of ridge regression for prediction in quantitative genetics using single-nucleotide polymorphism data is discussed. In particular, we consider (i) the theoretical foundations of ridge regression, (ii) its link to commonly used methods in animal breeding, (iii) the computational feasibility, and (iv) the scope for constructing prediction models with nonlinear effects (e.g., dominance and epistasis). Based on a simulation study we gauge the current and future potential of ridge regression for prediction of human traits using genome-wide SNP data. We conclude that, for outcomes with a relatively simple genetic architecture, given current sample sizes in most cohorts (i.e., N < 10,000) the predictive accuracy of ridge regression is slightly higher than the classical genome-wide association study approach of repeated simple regression (i.e., one regression per SNP). However, both capture only a small proportion of the heritability. Nevertheless, we find evidence that for large-scale initiatives, such as biobanks, sample sizes can be achieved where ridge regression compared to the classical approach improves predictive accuracy substantially. PMID:26273586
The Current and Future Use of Ridge Regression for Prediction in Quantitative Genetics.
de Vlaming, Ronald; Groenen, Patrick J F
2015-01-01
In recent years, there has been a considerable amount of research on the use of regularization methods for inference and prediction in quantitative genetics. Such research mostly focuses on selection of markers and shrinkage of their effects. In this review paper, the use of ridge regression for prediction in quantitative genetics using single-nucleotide polymorphism data is discussed. In particular, we consider (i) the theoretical foundations of ridge regression, (ii) its link to commonly used methods in animal breeding, (iii) the computational feasibility, and (iv) the scope for constructing prediction models with nonlinear effects (e.g., dominance and epistasis). Based on a simulation study we gauge the current and future potential of ridge regression for prediction of human traits using genome-wide SNP data. We conclude that, for outcomes with a relatively simple genetic architecture, given current sample sizes in most cohorts (i.e., N < 10,000) the predictive accuracy of ridge regression is slightly higher than the classical genome-wide association study approach of repeated simple regression (i.e., one regression per SNP). However, both capture only a small proportion of the heritability. Nevertheless, we find evidence that for large-scale initiatives, such as biobanks, sample sizes can be achieved where ridge regression compared to the classical approach improves predictive accuracy substantially.
ERIC Educational Resources Information Center
Scheidt, Douglas M.
1995-01-01
Reviews three functions of the "Scientist" software package useful for the social sciences: nonlinear curve fitting, parameter estimation, and data/regression plotting. Social scientists are likely to find limitations and unfamiliar procedures in "Scientist". Its value lies in its visual presentation of data and regression curves and the…
Algebraic Nonlinear Collective Motion
NASA Astrophysics Data System (ADS)
Troupe, J.; Rosensteel, G.
1998-11-01
Finite-dimensional Lie algebras of vector fields determine geometrical collective models in quantum and classical physics. Every set of vector fields on Euclidean space that generates the Lie algebra sl(3, R) and contains the angular momentum algebra so(3) is determined. The subset of divergence-free sl(3, R) vector fields is proven to be indexed by a real numberΛ. TheΛ=0 solution is the linear representation that corresponds to the Riemann ellipsoidal model. The nonlinear group action on Euclidean space transforms a certain family of deformed droplets among themselves. For positiveΛ, the droplets have a neck that becomes more pronounced asΛincreases; for negativeΛ, the droplets contain a spherical bubble of radius |Λ|1/3. The nonlinear vector field algebra is extended to the nonlinear general collective motion algebra gcm(3) which includes the inertia tensor. The quantum algebraic models of nonlinear nuclear collective motion are given by irreducible unitary representations of the nonlinear gcm(3) Lie algebra. These representations model fissioning isotopes (Λ>0) and bubble and two-fluid nuclei (Λ<0).
A step-by-step regressed pediatric kidney depth formula validated by a reasonable index
Hongwei, Si; Yingmao, Chen; Li, Li; Guangyu, Ma; Liuhai, Shen; Zhifang, Wu; Mingzhe, Shao; Sijin, Li
2017-01-01
Abstract In predicting pediatric kidney depth, we are especially interested in that the errors of most estimates are within a narrow range. Therefore, this study was intended to use the proportion of estimates within a range of −5 to 5 mm (P5 mm) to evaluate the formulas and tried to regress a kidney depth formula for children. The enrolled children aged from 1 to 19 years were randomly sampled into group A and group B (75% and 25% of all recruits, respectively). Using data of the group A, the test formula was regressed by nonlinear regression and subsequently Passing & Bablok regression, and validated in group B. The Raynaud, Gordon, Tonnesen, Taylor, and the test formulas were evaluated in the 2 groups. Accuracy was evaluated by bias, absolute bias, and P5 mm; and precision was evaluated by correlation coefficient. In addition, root-mean square error was used as a mixed index for both accuracy and precision. Body weight, height, and age did not have significant differences between the 2 groups. In the nonlinear regression, coefficients of the formula (kidney depth = a × weight/height + b × age) from group A were in narrower 95% confidence intervals. After the Passing & Bablok regression, biases of left and right kidney estimates were significantly decreased. In the evaluation of formulas, the test formula was obviously better than other formulas mentioned above, and P5 mm for left and right kidneys was about 60%. Among children younger than 10 years, P5 mm was even more than 70% for left and right kidney depths. To predict pediatric kidney depth, accuracy and precision of a step-by-step regressed formula were better than the 4 “standard” formulas. PMID:28353617
NASA Astrophysics Data System (ADS)
Leble, Sergei B.
S.B. Leble's book deals with nonlinear waves and their propagation in metallic and dielectric waveguides and media with stratification. The underlying nonlinear evolution equations (NEEs) are derived giving also their solutions for specific situations. The reader will find new elements to the traditional approach. Various dispersion and relaxation laws for different guides are considered as well as the explicit form of projection operators, NEEs, quasi-solitons and of Darboux transforms. Special points relate to: 1. the development of a universal asymptotic method of deriving NEEs for guide propagation; 2. applications to the cases of stratified liquids, gases, solids and plasmas with various nonlinearities and dispersion laws; 3. connections between the basic problem and soliton- like solutions of the corresponding NEEs; 4. discussion of details of simple solutions in higher- order nonsingular perturbation theory.
Nonlinear optomechanics with graphene
NASA Astrophysics Data System (ADS)
Shaffer, Airlia; Patil, Yogesh Sharad; Cheung, Hil F. H.; Wang, Ke; Vengalattore, Mukund
2016-05-01
To date, studies of cavity optomechanics have been limited to exploiting the linear interactions between the light and mechanics. However, investigations of quantum signal transduction, quantum enhanced metrology and manybody physics with optomechanics each require strong, nonlinear interactions. Graphene nanomembranes are an exciting prospect for realizing such studies due to their inherently nonlinear nature and low mass. We fabricate large graphene nanomembranes and study their mechanical and optical properties. By using dark ground imaging techniques, we correlate their eigenmode shapes with the measured dissipation. We study their hysteretic response present even at low driving amplitudes, and their nonlinear dissipation. Finally, we discuss ongoing efforts to use these resonators for studies of quantum optomechanics and force sensing. This work is supported by the DARPA QuASAR program through a Grant from the ARO.
NASA Astrophysics Data System (ADS)
Berges, Jürgen; Schlichting, Sören
2013-01-01
We study the evolution of quantum fluctuations in the glasma, created immediately after the collision of heavy nuclei. We show how the presence of instabilities leads to an enhancement of nonlinear interactions among initially small fluctuations. The nonlinear dynamics leads to an enhanced growth of fluctuations in a large momentum region, exceeding by far the originally unstable band. We investigate the dependence on the coupling constant at weak coupling using classical statistical lattice simulations for SU(2) gauge theory and show how these nonlinearities can be analytically understood within the framework of two-particle irreducible effective action techniques. The dependence on the coupling constant is only logarithmic, in accordance with analytic expectations. Concerning the isotropization of bulk quantities, our results indicate that the system exhibits an order-one anisotropy on parametrically large time scales. Despite this fact, we find that gauge invariant pressure correlation functions seem to exhibit a power law behavior characteristic for wave turbulence.
Nonlinear anelasticity of magnesium
NASA Astrophysics Data System (ADS)
Aning, Alexander; Suzuki, Tetsuro; Wuttig, Manfred
1982-10-01
An approximate solution of the equation of motion of a nonlinear anelastic reed at or near resonance is presented. The steady state solution reproduces the well-known nonlinear resonances. The solution also predicts the existence of automodulations, i.e., self-excited modulations of the amplitude and phase at constant power of excitation of the reed. Numerical examples of such automodulations are presented for an antisymmetric deformation potential. Experimental studies of finite amplitude oscillations of a magnesium reed vibrating at 72 and 431 Hz at room temperature confirm the existence of automodulations. The experimental results can be semiquantitatively described in terms of the solution given. The assumption that finite deformation by twinning represents the essential nonlinearity leads to a self-consistent interpretation. The relaxation time of twinning is obtained from the analysis of the automodulation and is 22 msec in the sample investigated. It is proposed that point defects control the relaxation process.
Nonlinear optical Galton board
Navarrete-Benlloch, C.; Perez, A.; Roldan, Eugenio
2007-06-15
We generalize the concept of optical Galton board (OGB), first proposed by Bouwmeester et al. [Phys. Rev. A 61, 013410 (2000)], by introducing the possibility of nonlinear self-phase modulation on the wave function during the walker evolution. If the original Galton board illustrates classical diffusion, the OGB, which can be understood as a grid of Landau-Zener crossings, illustrates the influence of interference on diffusion, and is closely connected with the quantum walk. Our nonlinear generalization of the OGB shows new phenomena, the most striking of which is the formation of nondispersive pulses in the field distribution (solitonlike structures). These exhibit a variety of dynamical behaviors, including ballistic motion, dynamical localization, nonelastic collisions, and chaotic behavior, in the sense that the dynamics is very sensitive to the nonlinearity strength.
ERIC Educational Resources Information Center
Bloom, Allan M.; And Others
In response to the increasing importance of student performance in required classes, research was conducted to compare two prediction procedures, linear modeling using multiple regression and nonlinear modeling using AID3. Performance in the first college math course (College Mathematics, Calculus, or Business Calculus Matrices) was the dependent…
Nonlinear airship aeroelasticity
NASA Astrophysics Data System (ADS)
Bessert, N.; Frederich, O.
2005-12-01
The aeroelastic derivatives for today's aircraft are calculated in the concept phase using a standard procedure. This scheme has to be extended for large airships, due to various nonlinearities in structural and aerodynamic behaviour. In general, the structural model of an airship is physically as well as geometrically nonlinear. The main sources of nonlinearity are large deformations and the nonlinear material behaviour of membranes. The aerodynamic solution is also included in the nonlinear problem, because the deformed airship influences the surrounding flow. Due to these nonlinearities, the aeroelastic problem for airships can only be solved by an iterative procedure. As one possibility, the coupled aerodynamic and structural dynamic problem was handled using linked standard solvers. On the structural side, the Finite-Element program package ABAQUS was extended with an interface to the aerodynamic solver VSAERO. VSAERO is based on the aerodynamic panel method using potential flow theory. The equilibrium of the internal structural and the external aerodynamic forces leads to the structural response and a trimmed flight state for the specified flight conditions (e.g. speed, altitude). The application of small perturbations around a trimmed state produces reaction forces and moments. These constraint forces are then transferred into translational and rotational acceleration fields by performing an inertia relief analysis of the disturbed structural model. The change between the trimmed flight state and the disturbed one yields the respective aeroelastic derivatives. By including the calculated derivatives in the linearised equation of motion system, it is possible to judge the stability and controllability of the investigated airship.
Nonlinear interferometric vibrational imaging.
Marks, Daniel L; Boppart, Stephen A
2004-03-26
Coherent anti-Stokes Raman scattering (CARS) processes are "coherent," but the phase of the anti-Stokes radiation is lost by most incoherent spectroscopic CARS measurements. We propose a Raman microscopy imaging method called nonlinear interferometric vibrational imaging, which measures Raman spectra by obtaining the temporal anti-Stokes signal through nonlinear interferometry. With a more complete knowledge of the anti-Stokes signal, we show through simulations that a high-resolution Raman spectrum can be obtained of a molecule in a single pulse using broad band radiation. This could be useful for identifying the three-dimensional spatial distribution of molecular species in tissue.
2015-05-07
honeycomb lattices, M.J. Ablowitz and Y. Zhu, SIAM J. Appl. Math. 87 (2013) 19591979 11. Nonlinear Temporal-Spatial Surface Plasmon Polaritons , M. J. Ablowitz...temporal-spatial surface plasmon polaritons . Op- tics Communications, 330:49–55, 2014. 37 [39] M.C. Rechtsman, Y. Plotnik, J.M. Zeuner, , D. Song, Z...honeycomb lattices, M.J. Ablowitz and Y. Zhu, SIAM J. Appl. Math., Vol. 87 (2013) 1959-1979 11. Nonlinear Temporal-Spatial Surface Plasmon Polaritons
Nonlinear magnetohydrodynamic stability
NASA Technical Reports Server (NTRS)
Bauer, F.; Betancourt, O.; Garabedian, P.
1981-01-01
The computer code developed by Bauer et al. (1978) for the study of the magnetohydrodynamic equilibrium and stability of a plasma in toroidal geometry is extended so that the growth rates of instabilities may be estimated more accurately. The original code, which is based on the variational principle of ideal magnetohydrodynamics, is upgraded by the introduction of a nonlinear formula for the growth rate of an unstable mode which acts as a quantitative measure of instability that is important in estimating numerical errors. The revised code has been applied to the determination of the nonlinear saturation, ballooning modes and beta limits for tokamaks, stellarators and torsatrons.
1981-05-01
Systems, New York, Marcel Dekker, (to appear). 3. Desoer , C.A. and S.E. Kuh, Basic Circuit Theory, McGraw-Hill, New York, 1969, pp. 423-425. 130 NONLINEAR...DIAGNOSIS A 7*ssior For 1 MU3 CRA&T IY’IC TAB Ju-st i.cat IC- P.U A: CONTENTS Fault Diagnosis in Electronic Circuits , R. Saeks and R.-w. Liu...Vincentelli and R. Saeks .............. 61 Multitest Diagnosibility of Nonlinear Circuits and Systems, A. Sangiovanni-Vincentelli and R. Saeks
Nonlinear aerodynamic wing design
NASA Technical Reports Server (NTRS)
Bonner, Ellwood
1985-01-01
The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.
Problems of nonlinear deformation
NASA Astrophysics Data System (ADS)
Grigoliuk, E. I.; Shalashilin, V. I.
A method of continuing the solution is discussed with respect to a parameter for a certain class of nonlinear problems in solid mechanics. Modifications of the method are developed in order to implement a unified continuation process at regular and limit points in the set of solutions, with extensions to nonlinear boundary value problems. Algorithms are developed for solving large deflection problems of elastic arches and large axisymmetric deflection problems for shells of revolution. In particular, the algorithms are used for the analysis of large deflections of circular arches and toroidal shells. Examples of natural vibration and stability problems for parallelograms and trapezoidal membranes and panels are given.
Perturbed nonlinear differential equations
NASA Technical Reports Server (NTRS)
Proctor, T. G.
1972-01-01
The existence of a solution defined for all t and possessing a type of boundedness property is established for the perturbed nonlinear system y = f(t,y) + F(t,y). The unperturbed system x = f(t,x) has a dichotomy in which some solutions exist and are well behaved as t increases to infinity, and some solution exists and are well behaved as t decreases to minus infinity. A similar study is made for a perturbed nonlinear differential equation defined on a half line, R+, and the existence of a family of solutions with special boundedness properties is established. The ideas are applied to integral manifolds.
Maimistov, Andrei I
2010-11-13
The classic examples of optical phenomena resulting in the appearance of solitons are self-focusing, self-induced transparency, and parametric three-wave interaction. To date, the list of the fields of nonlinear optics and models where solitons play an important role has significantly expanded. Now long-lived or stable solitary waves are called solitons, including, for example, dissipative, gap, parametric, and topological solitons. This review considers nonlinear optics models giving rise to the appearance of solitons in a narrow sense: solitary waves corresponding to the solutions of completely integrable systems of equations basic for the models being discussed. (review)
Hu, Juju; Hu, Haijiang; Ji, Yinghua
2010-03-15
Periodic nonlinearity that ranges from tens of nanometers to a few nanometers in heterodyne interferometer limits its use in high accuracy measurement. A novel method is studied to detect the nonlinearity errors based on the electrical subdivision and the analysis method of statistical signal in heterodyne Michelson interferometer. Under the movement of micropositioning platform with the uniform velocity, the method can detect the nonlinearity errors by using the regression analysis and Jackknife estimation. Based on the analysis of the simulations, the method can estimate the influence of nonlinearity errors and other noises for the dimensions measurement in heterodyne Michelson interferometer.
Hyperglycemia impairs atherosclerosis regression in mice.
Gaudreault, Nathalie; Kumar, Nikit; Olivas, Victor R; Eberlé, Delphine; Stephens, Kyle; Raffai, Robert L
2013-12-01
Diabetic patients are known to be more susceptible to atherosclerosis and its associated cardiovascular complications. However, the effects of hyperglycemia on atherosclerosis regression remain unclear. We hypothesized that hyperglycemia impairs atherosclerosis regression by modulating the biological function of lesional macrophages. HypoE (Apoe(h/h)Mx1-Cre) mice express low levels of apolipoprotein E (apoE) and develop atherosclerosis when fed a high-fat diet. Atherosclerosis regression occurs in these mice upon plasma lipid lowering induced by a change in diet and the restoration of apoE expression. We examined the morphological characteristics of regressed lesions and assessed the biological function of lesional macrophages isolated with laser-capture microdissection in euglycemic and hyperglycemic HypoE mice. Hyperglycemia induced by streptozotocin treatment impaired lesion size reduction (36% versus 14%) and lipid loss (38% versus 26%) after the reversal of hyperlipidemia. However, decreases in lesional macrophage content and remodeling in both groups of mice were similar. Gene expression analysis revealed that hyperglycemia impaired cholesterol transport by modulating ATP-binding cassette A1, ATP-binding cassette G1, scavenger receptor class B family member (CD36), scavenger receptor class B1, and wound healing pathways in lesional macrophages during atherosclerosis regression. Hyperglycemia impairs both reduction in size and loss of lipids from atherosclerotic lesions upon plasma lipid lowering without significantly affecting the remodeling of the vascular wall.
Deletion Diagnostics for Alternating Logistic Regressions
Preisser, John S.; By, Kunthel; Perin, Jamie; Qaqish, Bahjat F.
2013-01-01
Deletion diagnostics are introduced for the regression analysis of clustered binary outcomes estimated with alternating logistic regressions, an implementation of generalized estimating equations (GEE) that estimates regression coefficients in a marginal mean model and in a model for the intracluster association given by the log odds ratio. The diagnostics are developed within an estimating equations framework that recasts the estimating functions for association parameters based upon conditional residuals into equivalent functions based upon marginal residuals. Extensions of earlier work on GEE diagnostics follow directly, including computational formulae for one-step deletion diagnostics that measure the influence of a cluster of observations on the estimated regression parameters and on the overall marginal mean or association model fit. The diagnostic formulae are evaluated with simulations studies and with an application concerning an assessment of factors associated with health maintenance visits in primary care medical practices. The application and the simulations demonstrate that the proposed cluster-deletion diagnostics for alternating logistic regressions are good approximations of their exact fully iterated counterparts. PMID:22777960
On regression adjustment for the propensity score.
Vansteelandt, S; Daniel, R M
2014-10-15
Propensity scores are widely adopted in observational research because they enable adjustment for high-dimensional confounders without requiring models for their association with the outcome of interest. The results of statistical analyses based on stratification, matching or inverse weighting by the propensity score are therefore less susceptible to model extrapolation than those based solely on outcome regression models. This is attractive because extrapolation in outcome regression models may be alarming, yet difficult to diagnose, when the exposed and unexposed individuals have very different covariate distributions. Standard regression adjustment for the propensity score forms an alternative to the aforementioned propensity score methods, but the benefits of this are less clear because it still involves modelling the outcome in addition to the propensity score. In this article, we develop novel insights into the properties of this adjustment method. We demonstrate that standard tests of the null hypothesis of no exposure effect (based on robust variance estimators), as well as particular standardised effects obtained from such adjusted regression models, are robust against misspecification of the outcome model when a propensity score model is correctly specified; they are thus not vulnerable to the aforementioned problem of extrapolation. We moreover propose efficient estimators for these standardised effects, which retain a useful causal interpretation even when the propensity score model is misspecified, provided the outcome regression model is correctly specified.
Symbolic Regression of Conditional Target Expressions
NASA Astrophysics Data System (ADS)
Korns, Michael F.
This chapter examines techniques for improving symbolic regression systems in cases where the target expression contains conditionals. In three previous papers we experimentedwith combining high performance techniques fromthe literature to produce a large scale, industrial strength, symbolic regression-classification system. Performance metrics across multiple problems show deterioration in accuracy for problems where the target expression contains conditionals. The techniques described herein are shown to improve accuracy on such conditional problems. Nine base test cases, from the literature, are used to test the improvement in accuracy. A previously published regression system combining standard genetic programming with abstract expression grammars, particle swarm optimization, differential evolution, context aware crossover and age-layered populations is tested on the nine base test cases. The regression system is enhanced with these additional techniques: pessimal vertical slicing, splicing of uncorrelated champions via abstract conditional expressions, and abstract mutation and crossover. The enhanced symbolic regression system is applied to the nine base test cases and an improvement in accuracy is observed.
MULTILINEAR TENSOR REGRESSION FOR LONGITUDINAL RELATIONAL DATA.
Hoff, Peter D
2015-09-01
A fundamental aspect of relational data, such as from a social network, is the possibility of dependence among the relations. In particular, the relations between members of one pair of nodes may have an effect on the relations between members of another pair. This article develops a type of regression model to estimate such effects in the context of longitudinal and multivariate relational data, or other data that can be represented in the form of a tensor. The model is based on a general multilinear tensor regression model, a special case of which is a tensor autoregression model in which the tensor of relations at one time point are parsimoniously regressed on relations from previous time points. This is done via a separable, or Kronecker-structured, regression parameter along with a separable covariance model. In the context of an analysis of longitudinal multivariate relational data, it is shown how the multilinear tensor regression model can represent patterns that often appear in relational and network data, such as reciprocity and transitivity.
A regression method for modelling geometric rates.
Bottai, Matteo
2015-09-18
The occurrence of an event of interest over time is often summarized by the incidence rate, defined as the average number of events per person-time. This type of rate applies to events that may occur repeatedly over time on any given subject, such as infections, and Poisson regression represents a natural regression method for modelling the effect of covariates on it. However, for events that can occur only once, such as death, the geometric rate may be a better summary measure. The geometric rate has long been utilized in demography for studying the growth of populations and in finance to compute compound interest on capital. This type of rate, however, is virtually unknown to medical research. This may be partly a consequence of the lack of a regression method for it. This paper describes a regression method for modelling the effect of covariates on the geometric rate. The described method is based on applying quantile regression to a transform of the time-to-event variable. The proposed method is used to analyze mortality in a randomized clinical trial and in an observational epidemiological study.
Regression models for estimating coseismic landslide displacement
Jibson, R.W.
2007-01-01
Newmark's sliding-block model is widely used to estimate coseismic slope performance. Early efforts to develop simple regression models to estimate Newmark displacement were based on analysis of the small number of strong-motion records then available. The current availability of a much larger set of strong-motion records dictates that these regression equations be updated. Regression equations were generated using data derived from a collection of 2270 strong-motion records from 30 worldwide earthquakes. The regression equations predict Newmark displacement in terms of (1) critical acceleration ratio, (2) critical acceleration ratio and earthquake magnitude, (3) Arias intensity and critical acceleration, and (4) Arias intensity and critical acceleration ratio. These equations are well constrained and fit the data well (71% < R2 < 88%), but they have standard deviations of about 0.5 log units, such that the range defined by the mean ?? one standard deviation spans about an order of magnitude. These regression models, therefore, are not recommended for use in site-specific design, but rather for regional-scale seismic landslide hazard mapping or for rapid preliminary screening of sites. ?? 2007 Elsevier B.V. All rights reserved.
Gaussian Process Regression for Uncertainty Estimation on Ecosystem Data
NASA Astrophysics Data System (ADS)
Menzer, O.; Moffat, A.; Lasslop, G.; Reichstein, M.
2011-12-01
The flow of carbon between terrestrial ecosystems and the atmosphere is mainly driven by nonlinear, complex and time-lagged processes. Understanding the associated ecosystem responses and climatic feedbacks is a key challenge regarding climate change questions such as increasing atmospheric CO2 levels. Usually, the underlying relationships are implemented in models as prescribed functions which interlink numerous meteorological, radiative and gas exchange variables. In contrast, supervised Machine Learning algorithms, such as Artificial Neural Networks or Gaussian Processes, allow for an insight into the relationships directly from a data perspective. Micrometeorological, high resolution measurements at flux towers of the FLUXNET observational network are an essential tool for obtaining quantifications of the ecosystem variables, as they continuously record e.g. CO2 exchange, solar radiation and air temperature. In order to facilitate the investigation of the interactions and feedbacks between these variables, several challenging data properties need to be taken into account: noisy, multidimensional and incomplete (Moffat, Accepted). The task of estimating uncertainties in such micrometeorological measurements can be addressed by Gaussian Processes (GPs), a modern nonparametric method for nonlinear regression. The GP approach has recently been shown to be a powerful modeling tool, regardless of the input dimensionality, the degree of nonlinearity and the noise level (Rasmussen and Williams, 2006). Heteroscedastic Gaussian Processes (HGPs) are a specialized GP method for data with a varying, inhomogeneous noise variance (Goldberg et al., 1998; Kersting et al., 2007), as usually observed in CO2 flux measurements (Richardson et al., 2006). Here, we showed by an evaluation of the HGP performance in several artificial experiments and a comparison to existing nonlinear regression methods, that their outstanding ability is to capture measurement noise levels, concurrently
Uncertainty quantification in DIC with Kriging regression
NASA Astrophysics Data System (ADS)
Wang, Dezhi; DiazDelaO, F. A.; Wang, Weizhuo; Lin, Xiaoshan; Patterson, Eann A.; Mottershead, John E.
2016-03-01
A Kriging regression model is developed as a post-processing technique for the treatment of measurement uncertainty in classical subset-based Digital Image Correlation (DIC). Regression is achieved by regularising the sample-point correlation matrix using a local, subset-based, assessment of the measurement error with assumed statistical normality and based on the Sum of Squared Differences (SSD) criterion. This leads to a Kriging-regression model in the form of a Gaussian process representing uncertainty on the Kriging estimate of the measured displacement field. The method is demonstrated using numerical and experimental examples. Kriging estimates of displacement fields are shown to be in excellent agreement with 'true' values for the numerical cases and in the experimental example uncertainty quantification is carried out using the Gaussian random process that forms part of the Kriging model. The root mean square error (RMSE) on the estimated displacements is produced and standard deviations on local strain estimates are determined.
Parametric modeling of quantile regression coefficient functions.
Frumento, Paolo; Bottai, Matteo
2016-03-01
Estimating the conditional quantiles of outcome variables of interest is frequent in many research areas, and quantile regression is foremost among the utilized methods. The coefficients of a quantile regression model depend on the order of the quantile being estimated. For example, the coefficients for the median are generally different from those of the 10th centile. In this article, we describe an approach to modeling the regression coefficients as parametric functions of the order of the quantile. This approach may have advantages in terms of parsimony, efficiency, and may expand the potential of statistical modeling. Goodness-of-fit measures and testing procedures are discussed, and the results of a simulation study are presented. We apply the method to analyze the data that motivated this work. The described method is implemented in the qrcm R package.
Computing aspects of power for multiple regression.
Dunlap, William P; Xin, Xue; Myers, Leann
2004-11-01
Rules of thumb for power in multiple regression research abound. Most such rules dictate the necessary sample size, but they are based only upon the number of predictor variables, usually ignoring other critical factors necessary to compute power accurately. Other guides to power in multiple regression typically use approximate rather than precise equations for the underlying distribution; entail complex preparatory computations; require interpolation with tabular presentation formats; run only under software such as Mathmatica or SAS that may not be immediately available to the user; or are sold to the user as parts of power computation packages. In contrast, the program we offer herein is immediately downloadable at no charge, runs under Windows, is interactive, self-explanatory, flexible to fit the user's own regression problems, and is as accurate as single precision computation ordinarily permits.
Influence diagnostics in meta-regression model.
Shi, Lei; Zuo, ShanShan; Yu, Dalei; Zhou, Xiaohua
2017-07-18
This paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results. Internal and external residual and leverage measure are defined. The local influence analysis based on case-weights perturbation scheme, responses perturbation scheme, covariate perturbation scheme, and within-variance perturbation scheme are explored. We introduce a method by simultaneous perturbing responses, covariate, and within-variance to obtain the local influence measure, which has an advantage of capable to compare the influence magnitude of influential studies from different perturbations. An example is used to illustrate the proposed methodology. Copyright © 2017 John Wiley & Sons, Ltd.
Guntrip's concept of the regressed ego.
Ehrlich, Robert
2009-01-01
This paper explores what is perhaps the most important contribution of Harry Guntrip to psychoanalysis: namely his concept of the "regressed ego." In the course of his psychoanalytic work, he found certain concepts to be problematic. Therefore, while he valued some of Freud's ideas, he challenged his emphasis upon the importance of the instincts. Guntrip then drew extensively on the more object relational approach of Fairbairn and Winnicott. Nevertheless, although Guntrip believed that all these figures described important dimensions of psychological experience, he felt that they failed to acknowledge that layer which he called the "regressed ego." In his analysis of the "regressed ego," Guntrip made a valuable contribution to psychoanalytic theory and practice. However, because he thought that with this idea he had discovered the underlying cause of most psychological disturbances, he engaged in a form of reductionism and therefore undermined the value of his observations about this layer of psychological experience.
Regulatory motif finding by logic regression.
Keles, Sündüz; van der Laan, Mark J; Vulpe, Chris
2004-11-01
Multiple transcription factors coordinately control transcriptional regulation of genes in eukaryotes. Although many computational methods consider the identification of individual transcription factor binding sites (TFBSs), very few focus on the interactions between these sites. We consider finding TFBSs and their context specific interactions using microarray gene expression data. We devise a hybrid approach called LogicMotif composed of a TFBS identification method combined with the new regression methodology logic regression. LogicMotif has two steps: First, potential binding sites are identified from transcription control regions of genes of interest. Various available methods can be used in this step when the genes of interest can be divided into groups such as up-and downregulated. For this step, we also develop a simple univariate regression and extension method MFURE to extract candidate TFBSs from a large number of genes in the availability of microarray gene expression data. MFURE provides an alternative method for this step when partitioning of the genes into disjoint groups is not preferred. This first step aims to identify individual sites within gene groups of interest or sites that are correlated with the gene expression outcome. In the second step, logic regression is used to build a predictive model of outcome of interest (either gene expression or up- and down-regulation) using these potential sites. This 2-fold approach creates a rich diverse set of potential binding sites in the first step and builds regression or classification models in the second step using logic regression that is particularly good at identifying complex interactions. LogicMotif is applied to two publicly available datasets. A genome-wide gene expression data set of Saccharomyces cerevisiae is used for validation. The regression models obtained are interpretable and the biological implications are in agreement with the known resuts. This analysis suggests that Logic
Pipe performance analysis with nonparametric regression
NASA Astrophysics Data System (ADS)
Liu, Zheng; Hu, Yafei; Wu, Wei
2011-04-01
Asbestos cement (AC) water mains were installed extensively in North America, Europe, and Australia during 1920s-1980s and subject to a high breakage rate in recent years in some utilities. It is essential to understand how the influential factors contribute to the degradation and failure of AC pipes. The historical failure data collected from twenty utilities are used in this study to explore the correlation between pipe condition and its working environment. In this paper, we applied four nonparametric regression methods to model the relationship between pipe failure represented by average break rates and influential variables including pipe age and internal and external working environmental parameters. The nonparametric regression models do not take a predetermined form but it needs information derived from data. The feasibility of using a nonparametric regression model for the condition assessment of AC pipes is investigated and understood.
Efficient Regressions via Optimally Combining Quantile Information*
Zhao, Zhibiao; Xiao, Zhijie
2014-01-01
We develop a generally applicable framework for constructing efficient estimators of regression models via quantile regressions. The proposed method is based on optimally combining information over multiple quantiles and can be applied to a broad range of parametric and nonparametric settings. When combining information over a fixed number of quantiles, we derive an upper bound on the distance between the efficiency of the proposed estimator and the Fisher information. As the number of quantiles increases, this upper bound decreases and the asymptotic variance of the proposed estimator approaches the Cramér-Rao lower bound under appropriate conditions. In the case of non-regular statistical estimation, the proposed estimator leads to super-efficient estimation. We illustrate the proposed method for several widely used regression models. Both asymptotic theory and Monte Carlo experiments show the superior performance over existing methods. PMID:25484481
A new method for robust mixture regression
YU, Chun; YAO, Weixin; CHEN, Kun
2017-01-01
Finite mixture regression models have been widely used for modelling mixed regression relationships arising from a clustered and thus heterogenous population. The classical normal mixture model, despite its simplicity and wide applicability, may fail in the presence of severe outliers. Using a sparse, case-specific, and scale-dependent mean-shift mixture model parameterization, we propose a robust mixture regression approach for simultaneously conducting outlier detection and robust parameter estimation. A penalized likelihood approach is adopted to induce sparsity among the mean-shift parameters so that the outliers are distinguished from the remainder of the data, and a generalized Expectation-Maximization (EM) algorithm is developed to perform stable and efficient computation. The proposed approach is shown to have strong connections with other robust methods including the trimmed likelihood method and M-estimation approaches. In contrast to several existing methods, the proposed methods show outstanding performance in our simulation studies. PMID:28579672
A new method for robust mixture regression.
Yu, Chun; Yao, Weixin; Chen, Kun
2017-03-01
Finite mixture regression models have been widely used for modelling mixed regression relationships arising from a clustered and thus heterogenous population. The classical normal mixture model, despite its simplicity and wide applicability, may fail in the presence of severe outliers. Using a sparse, case-specific, and scale-dependent mean-shift mixture model parameterization, we propose a robust mixture regression approach for simultaneously conducting outlier detection and robust parameter estimation. A penalized likelihood approach is adopted to induce sparsity among the mean-shift parameters so that the outliers are distinguished from the remainder of the data, and a generalized Expectation-Maximization (EM) algorithm is developed to perform stable and efficient computation. The proposed approach is shown to have strong connections with other robust methods including the trimmed likelihood method and M-estimation approaches. In contrast to several existing methods, the proposed methods show outstanding performance in our simulation studies.
A tutorial on Bayesian Normal linear regression
NASA Astrophysics Data System (ADS)
Klauenberg, Katy; Wübbeler, Gerd; Mickan, Bodo; Harris, Peter; Elster, Clemens
2015-12-01
Regression is a common task in metrology and often applied to calibrate instruments, evaluate inter-laboratory comparisons or determine fundamental constants, for example. Yet, a regression model cannot be uniquely formulated as a measurement function, and consequently the Guide to the Expression of Uncertainty in Measurement (GUM) and its supplements are not applicable directly. Bayesian inference, however, is well suited to regression tasks, and has the advantage of accounting for additional a priori information, which typically robustifies analyses. Furthermore, it is anticipated that future revisions of the GUM shall also embrace the Bayesian view. Guidance on Bayesian inference for regression tasks is largely lacking in metrology. For linear regression models with Gaussian measurement errors this tutorial gives explicit guidance. Divided into three steps, the tutorial first illustrates how a priori knowledge, which is available from previous experiments, can be translated into prior distributions from a specific class. These prior distributions have the advantage of yielding analytical, closed form results, thus avoiding the need to apply numerical methods such as Markov Chain Monte Carlo. Secondly, formulas for the posterior results are given, explained and illustrated, and software implementations are provided. In the third step, Bayesian tools are used to assess the assumptions behind the suggested approach. These three steps (prior elicitation, posterior calculation, and robustness to prior uncertainty and model adequacy) are critical to Bayesian inference. The general guidance given here for Normal linear regression tasks is accompanied by a simple, but real-world, metrological example. The calibration of a flow device serves as a running example and illustrates the three steps. It is shown that prior knowledge from previous calibrations of the same sonic nozzle enables robust predictions even for extrapolations.
Liu, Zhan-yu; Huang, Jing-feng; Shi, Jing-jing; Tao, Rong-xiang; Zhou, Wan; Zhang, Li-li
2007-01-01
Detecting plant health conditions plays a key role in farm pest management and crop protection. In this study, measurement of hyperspectral leaf reflectance in rice crop (Oryzasativa L.) was conducted on groups of healthy and infected leaves by the fungus Bipolaris oryzae (Helminthosporium oryzae Breda. de Hann) through the wavelength range from 350 to 2 500 nm. The percentage of leaf surface lesions was estimated and defined as the disease severity. Statistical methods like multiple stepwise regression, principal component analysis and partial least-square regression were utilized to calculate and estimate the disease severity of rice brown spot at the leaf level. Our results revealed that multiple stepwise linear regressions could efficiently estimate disease severity with three wavebands in seven steps. The root mean square errors (RMSEs) for training (n=210) and testing (n=53) dataset were 6.5% and 5.8%, respectively. Principal component analysis showed that the first principal component could explain approximately 80% of the variance of the original hyperspectral reflectance. The regression model with the first two principal components predicted a disease severity with RMSEs of 16.3% and 13.9% for the training and testing dataset, respectively. Partial least-square regression with seven extracted factors could most effectively predict disease severity compared with other statistical methods with RMSEs of 4.1% and 2.0% for the training and testing dataset, respectively. Our research demonstrates that it is feasible to estimate the disease severity of rice brown spot using hyperspectral reflectance data at the leaf level. PMID:17910117
The Lax-Onsager regression `theorem' revisited
NASA Astrophysics Data System (ADS)
Lax, Melvin
2000-05-01
It is stated by Ford and O'Connell in this festschrift issue and elsewhere that "there is no quantum regression theorem" although Lax "obtained a formula for correlation in a driven quantum system that has come to be called the quantum regression theorem". This produces a puzzle: "How can it be that a non-existent theorem gives correct results?" Clarification will be provided in this paper by a description of the Lax procedure, with a quantitative estimate of the error for a damped harmonic oscillator based on expressions published in the 1960's.
Salience Assignment for Multiple-Instance Regression
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; Lane, Terran
2007-01-01
We present a Multiple-Instance Learning (MIL) algorithm for determining the salience of each item in each bag with respect to the bag's real-valued label. We use an alternating-projections constrained optimization approach to simultaneously learn a regression model and estimate all salience values. We evaluate this algorithm on a significant real-world problem, crop yield modeling, and demonstrate that it provides more extensive, intuitive, and stable salience models than Primary-Instance Regression, which selects a single relevant item from each bag.
Salience Assignment for Multiple-Instance Regression
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; Lane, Terran
2007-01-01
We present a Multiple-Instance Learning (MIL) algorithm for determining the salience of each item in each bag with respect to the bag's real-valued label. We use an alternating-projections constrained optimization approach to simultaneously learn a regression model and estimate all salience values. We evaluate this algorithm on a significant real-world problem, crop yield modeling, and demonstrate that it provides more extensive, intuitive, and stable salience models than Primary-Instance Regression, which selects a single relevant item from each bag.
Removing Malmquist bias from linear regressions
NASA Technical Reports Server (NTRS)
Verter, Frances
1993-01-01
Malmquist bias is present in all astronomical surveys where sources are observed above an apparent brightness threshold. Those sources which can be detected at progressively larger distances are progressively more limited to the intrinsically luminous portion of the true distribution. This bias does not distort any of the measurements, but distorts the sample composition. We have developed the first treatment to correct for Malmquist bias in linear regressions of astronomical data. A demonstration of the corrected linear regression that is computed in four steps is presented.
Nonparametric Diagnostic Test for Conditional Logistic Regression
Goodman, Melody S.; Li, Yi
2012-01-01
The use of conditional logistic regression models to analyze matched case-control data has become standard in statistical analysis. However, methods to test the fit of these models has primarily focused on influential observations and the presence of outliers, while little attention has been given to the functional form of the covariates. In this paper we present methods to test the functional form of the covariates in the conditional logistic regression model, these methods are based on nonparametric smoothers. We assess the performance of the proposed methods via simulation studies and illustrate an example of their use on data from a community based intervention. PMID:23869287
Spontaneous skin regression and predictors of skin regression in Thai scleroderma patients.
Foocharoen, Chingching; Mahakkanukrauh, Ajanee; Suwannaroj, Siraphop; Nanagara, Ratanavadee
2011-09-01
Skin tightness is a major clinical manifestation of systemic sclerosis (SSc). Importantly for both clinicians and patients, spontaneous regression of the fibrosis process has been documented. The purpose of this study is to identify the incidence and related clinical characteristics of spontaneous regression among Thai SSc patients. A historical cohort with 4 years of follow-up was performed among SSc patients over 15 years of age diagnosed with SSc between January 1, 2005 and December 31, 2006 in Khon Kaen, Thailand. The start date was the date of the first symptom and the end date was the date of the skin score ≤2. To estimate the respective probability of regression and to assess the associated factors, the Kaplan-Meier method and Cox regression analysis was used. One hundred seventeen cases of SSc were included with a female to male ratio of 1.5:1. Thirteen patients (11.1%) experienced regression. The incidence rate of spontaneous skin regression was 0.31 per 100 person-months and the average duration of SSc at the time of regression was 35.9±15.6 months (range, 15.7-60 months). The factors that negatively correlated with regression were (a) diffuse cutaneous type, (b) Raynaud's phenomenon, (c) esophageal dysmotility, and (d) colchicine treatment at onset with a respective hazard ratio (HR) of 0.19, 0.19, 0.26, and 0.20. By contrast, the factor that positively correlated with regression was active alveolitis with cyclophosphamide therapy at onset with an HR of 4.23 (95% CI, 1.23-14.10). After regression analysis, only Raynaud's phenomenon at onset and diffuse cutaneous type had a significantly negative correlation to regression. A spontaneous regression of the skin fibrosis process was not uncommon among Thai SSc patients. The factors suggesting a poor predictor for cutaneous manifestation were Raynaud's phenomenon, diffuse cutaneous type while early cyclophosphamide therapy might be related to a better skin outcome.
Nonlinear Theory and Breakdown
NASA Technical Reports Server (NTRS)
Smith, Frank
2007-01-01
The main points of recent theoretical and computational studies on boundary-layer transition and turbulence are to be highlighted. The work is based on high Reynolds numbers and attention is drawn to nonlinear interactions, breakdowns and scales. The research focuses in particular on truly nonlinear theories, i.e. those for which the mean-flow profile is completely altered from its original state. There appear to be three such theories dealing with unsteady nonlinear pressure-displacement interactions (I), with vortex/wave interactions (II), and with Euler-scale flows (III). Specific recent findings noted for these three, and in quantitative agreement with experiments, are the following. Nonlinear finite-time break-ups occur in I, leading to sublayer eruption and vortex formation; here the theory agrees with experiments (Nishioka) regarding the first spike. II gives rise to finite-distance blowup of displacement thickness, then interaction and break-up as above; this theory agrees with experiments (Klebanoff, Nishioka) on the formation of three-dimensional streets. III leads to the prediction of turbulent boundary-layer micro-scale, displacement-and stress-sublayer-thicknesses.
Constructive Nonlinear Control
2003-09-30
made on difficult output feedback problem with a novel nonlinear observer design, achieving robustness to modeling errors. Explicit necessary and...sufficient conditions have been derived for coordinated passivation designs. A new maneuvering design has been developed. Further progress was made in MIMO adaptive control. We now briefly summarize our main results.
Generalized Nonlinear Yule Models
NASA Astrophysics Data System (ADS)
Lansky, Petr; Polito, Federico; Sacerdote, Laura
2016-11-01
With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.
Nonlinear plasmonic nanorulers.
Butet, Jérémy; Martin, Olivier J F
2014-05-27
The evaluation of distances as small as few nanometers using optical waves is a very challenging task that can pave the way for the development of new applications in biotechnology and nanotechnology. In this article, we propose a new measurement method based on the control of the nonlinear optical response of plasmonic nanostructures by means of Fano resonances. It is shown that Fano resonances resulting from the coupling between a bright mode and a dark mode at the fundamental wavelength enable unprecedented and direct manipulation of the nonlinear electromagnetic sources at the nanoscale. In the case of second harmonic generation from gold nanodolmens, the different nonlinear sources distributions induced by the different coupling regimes are clearly revealed in the far-field distribution. Hence, the configuration of the nanostructure can be accurately determined in 3-dimensions by recording the wave scattered at the second harmonic wavelength. Indeed, the conformation of the different elements building the system is encoded in the nonlinear far-field distribution, making second harmonic generation a promising tool for reading 3-dimension plasmonic nanorulers. Furthemore, it is shown that 3-dimension plasmonic nanorulers can be implemented with simpler geometries than in the linear regime while providing complete information on the structure conformation, including the top nanobar position and orientation.
Intramolecular and nonlinear dynamics
Davis, M.J.
1993-12-01
Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.
NASA Astrophysics Data System (ADS)
Zidan, M. D.; Arfan, A.; Allahham, A.
2017-03-01
Z-scan technique was used to investigate the nonlinear optical properties of Quinine and 1-(carboxymethyl)-6-methoxy-4-(3-(3-vinylpiperidin-4-yl) propanoyl) quinolin-1-ium chloride (Quinotoxine) salts. The two salts were characterized using UV-visible, FTIR and NMR measurements. The characterization spectra confirm the expected molecular structure of the prepared "Quinotoxine " salt. The z-scan measurements were performed with a CW Diode laser at 635 nm wavelength and 26 mW power. The nonlinear absorption coefficient (β), nonlinear refractive index (n2), the ground-state absorption cross sections (σg), the excited-state absorption cross sections (σex) and thermo-optic coefficient of the samples were determined. Our results reveal that the σex is higher than the σg indicating that the reverse saturable absorption (RSA) is the dominating mechanism for the observed absorption nonlinearities. The results suggest that this material should be considered as a promising candidate for future optical devices applications.
NASA Astrophysics Data System (ADS)
Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.
2017-09-01
Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.
Nonlinear phased array imaging
NASA Astrophysics Data System (ADS)
Croxford, Anthony J.; Cheng, Jingwei; Potter, Jack N.
2016-04-01
A technique is presented for imaging acoustic nonlinearity within a specimen using ultrasonic phased arrays. Acoustic nonlinearity is measured by evaluating the difference in energy of the transmission bandwidth within the diffuse field produced through different focusing modes. The two different modes being classical beam forming, where delays are applied to different element of a phased array to physically focus the energy at a single location (parallel firing) and focusing in post processing, whereby one element at a time is fired and a focused image produced in post processing (sequential firing). Although these two approaches are linearly equivalent the difference in physical displacement within the specimen leads to differences in nonlinear effects. These differences are localized to the areas where the amplitude is different, essentially confining the differences to the focal point. Direct measurement at the focal point are however difficult to make. In order to measure this the diffuse field is used. It is a statistical property of the diffuse field that it represents the total energy in the system. If the energy in the diffuse field for both the sequential and parallel firing case is measured then the difference between these, within the input signal bandwidth, is largely due to differences at the focal spot. This difference therefore gives a localized measurement of where energy is moving out of the transmission bandwidth due to nonlinear effects. This technique is used to image fatigue cracks and other damage types undetectable with conventional linear ultrasonic measurements.
Stochastic Nonlinear Aeroelasticity
2009-01-01
aeroelasticity. The work was divided into different project areas, including: accurate analysis of limit- cycle oscillations for simple aeroelastic systems...vehicles, limit-cycle oscillation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 44 19a. NAME OF...susceptible to nonlinear oscillations (for the purpose of avoiding dangerous oscillations ), and (2) multidisciplinary design optimization of flapping wing