Sample records for cover maps obtained

  1. Computer-aided analysis of Skylab scanner data for land use mapping, forestry and water resource applications

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.

    1975-01-01

    Skylab data were obtained over a mountainous test site containing a complex association of cover types and rugged topography. The application of computer-aided analysis techniques to the multispectral scanner data produced a number of significant results. Techniques were developed to digitally overlay topographic data (elevation, slope, and aspect) onto the S-192 MSS data to provide a method for increasing the effectiveness and accuracy of computer-aided analysis techniques for cover type mapping. The S-192 MSS data were analyzed using computer techniques developed at Laboratory for Applications of Remote Sensing (LARS), Purdue University. Land use maps, forest cover type maps, snow cover maps, and area tabulations were obtained and evaluated. These results compared very well with information obtained by conventional techniques. Analysis of the spectral characteristics of Skylab data has conclusively proven the value of the middle infrared portion of the spectrum (about 1.3-3.0 micrometers), a wavelength region not previously available in multispectral satellite data.

  2. Computer generated maps from digital satellite data - A case study in Florida

    NASA Technical Reports Server (NTRS)

    Arvanitis, L. G.; Reich, R. M.; Newburne, R.

    1981-01-01

    Ground cover maps are important tools to a wide array of users. Over the past three decades, much progress has been made in supplementing planimetric and topographic maps with ground cover details obtained from aerial photographs. The present investigation evaluates the feasibility of using computer maps of ground cover from satellite input tapes. Attention is given to the selection of test sites, a satellite data processing system, a multispectral image analyzer, general purpose computer-generated maps, the preliminary evaluation of computer maps, a test for areal correspondence, the preparation of overlays and acreage estimation of land cover types on the Landsat computer maps. There is every indication to suggest that digital multispectral image processing systems based on Landsat input data will play an increasingly important role in pattern recognition and mapping land cover in the years to come.

  3. Urban Land Cover/use Change Detection Using High Resolution SPOT 5 and SPOT 6 Images and Urban Atlas Nomenclature

    NASA Astrophysics Data System (ADS)

    Akay, S. S.; Sertel, E.

    2016-06-01

    Urban land cover/use changes like urbanization and urban sprawl have been impacting the urban ecosystems significantly therefore determination of urban land cover/use changes is an important task to understand trends and status of urban ecosystems, to support urban planning and to aid decision-making for urban-based projects. High resolution satellite images could be used to accurately, periodically and quickly map urban land cover/use and their changes by time. This paper aims to determine urban land cover/use changes in Gaziantep city centre between 2010 and 2105 using object based images analysis and high resolution SPOT 5 and SPOT 6 images. 2.5 m SPOT 5 image obtained in 5th of June 2010 and 1.5 m SPOT 6 image obtained in 7th of July 2015 were used in this research to precisely determine land changes in five-year period. In addition to satellite images, various ancillary data namely Normalized Difference Vegetation Index (NDVI), Difference Water Index (NDWI) maps, cadastral maps, OpenStreetMaps, road maps and Land Cover maps, were integrated into the classification process to produce high accuracy urban land cover/use maps for these two years. Both images were geometrically corrected to fulfil the 1/10,000 scale geometric accuracy. Decision tree based object oriented classification was applied to identify twenty different urban land cover/use classes defined in European Urban Atlas project. Not only satellite images and satellite image-derived indices but also different thematic maps were integrated into decision tree analysis to create rule sets for accurate mapping of each class. Rule sets of each satellite image for the object based classification involves spectral, spatial and geometric parameter to automatically produce urban map of the city centre region. Total area of each class per related year and their changes in five-year period were determined and change trend in terms of class transformation were presented. Classification accuracy assessment was conducted by creating a confusion matrix to illustrate the thematic accuracy of each class.

  4. Changes in the methodology used in the production of the Spanish CORINE: Uncertainty analysis of the new maps

    NASA Astrophysics Data System (ADS)

    García-Álvarez, David; Camacho Olmedo, María Teresa

    2017-12-01

    Since 2012 CORINE has been obtained in Spain from the generalization of a more detailed land cover map (SIOSE). This methodological change has meant the production of a new CORINE map, which is different from the existing ones. To analyze how different the new maps are from the previous ones, as well as the advantages and disadvantages of the new methodology, we carried out a comparison of the CORINE obtained from both methods (traditional and generalization) for the year 2006. The new CORINE is more detailed and it is more coherent with the rest of Spanish Land Use Land Cover (LULC) maps. However, problems have been encountered with regard to the meaning of its classes, the fragmentation of patches and the complexity of its perimeters.

  5. Error and Uncertainty in the Accuracy Assessment of Land Cover Maps

    NASA Astrophysics Data System (ADS)

    Sarmento, Pedro Alexandre Reis

    Traditionally the accuracy assessment of land cover maps is performed through the comparison of these maps with a reference database, which is intended to represent the "real" land cover, being this comparison reported with the thematic accuracy measures through confusion matrixes. Although, these reference databases are also a representation of reality, containing errors due to the human uncertainty in the assignment of the land cover class that best characterizes a certain area, causing bias in the thematic accuracy measures that are reported to the end users of these maps. The main goal of this dissertation is to develop a methodology that allows the integration of human uncertainty present in reference databases in the accuracy assessment of land cover maps, and analyse the impacts that uncertainty may have in the thematic accuracy measures reported to the end users of land cover maps. The utility of the inclusion of human uncertainty in the accuracy assessment of land cover maps is investigated. Specifically we studied the utility of fuzzy sets theory, more precisely of fuzzy arithmetic, for a better understanding of human uncertainty associated to the elaboration of reference databases, and their impacts in the thematic accuracy measures that are derived from confusion matrixes. For this purpose linguistic values transformed in fuzzy intervals that address the uncertainty in the elaboration of reference databases were used to compute fuzzy confusion matrixes. The proposed methodology is illustrated using a case study in which the accuracy assessment of a land cover map for Continental Portugal derived from Medium Resolution Imaging Spectrometer (MERIS) is made. The obtained results demonstrate that the inclusion of human uncertainty in reference databases provides much more information about the quality of land cover maps, when compared with the traditional approach of accuracy assessment of land cover maps. None

  6. Automatic mapping of event landslides at basin scale in Taiwan using a Montecarlo approach and synthetic land cover fingerprints

    NASA Astrophysics Data System (ADS)

    Mondini, Alessandro C.; Chang, Kang-Tsung; Chiang, Shou-Hao; Schlögel, Romy; Notarnicola, Claudia; Saito, Hitoshi

    2017-12-01

    We propose a framework to systematically generate event landslide inventory maps from satellite images in southern Taiwan, where landslides are frequent and abundant. The spectral information is used to assess the pixel land cover class membership probability through a Maximum Likelihood classifier trained with randomly generated synthetic land cover spectral fingerprints, which are obtained from an independent training images dataset. Pixels are classified as landslides when the calculated landslide class membership probability, weighted by a susceptibility model, is higher than membership probabilities of other classes. We generated synthetic fingerprints from two FORMOSAT-2 images acquired in 2009 and tested the procedure on two other images, one in 2005 and the other in 2009. We also obtained two landslide maps through manual interpretation. The agreement between the two sets of inventories is given by the Cohen's k coefficients of 0.62 and 0.64, respectively. This procedure can now classify a new FORMOSAT-2 image automatically facilitating the production of landslide inventory maps.

  7. Mapping wetlands on beaver flowages with 35-mm photography

    USGS Publications Warehouse

    Kirby, R.E.

    1976-01-01

    Beaver flowages and associated wetlands on the Chippewa National Forest, north-central Minnesota, were photographed from the ground and from the open side window of a small high-wing monoplane. The 35-mm High Speed Ektachrome transparencies obtained were used to map the cover-type associations visible on the aerial photographs. Nearly vertical aerial photos were rectified by projecting the slides onto a base map consisting ofcontrol points located by plane-table survey. Maps were prepared by tracing the recognizable stands of vegetation in the rectified projection at the desired map scale. Final map scales ranging from 1:260 to 1:571 permitted identification and mapping of 26 cover-type associations on 10 study flowages in 1971. This cover-mapping technique was economical and substituted for detailed ground surveys. Comparative data from 10 flowages were collected serially throughout the entire open-water season. Although developed for analysis of waterfowl habitat, the technique has application to other areas of wildlife management and ecological investigation.

  8. A land-cover map for South and Southeast Asia derived from SPOT-VEGETATION data

    USGS Publications Warehouse

    Stibig, H.-J.; Belward, A.S.; Roy, P.S.; Rosalina-Wasrin, U.; Agrawal, S.; Joshi, P.K.; ,; Beuchle, R.; Fritz, S.; Mubareka, S.; Giri, C.

    2007-01-01

    Aim  Our aim was to produce a uniform ‘regional’ land-cover map of South and Southeast Asia based on ‘sub-regional’ mapping results generated in the context of the Global Land Cover 2000 project.Location  The ‘region’ of tropical and sub-tropical South and Southeast Asia stretches from the Himalayas and the southern border of China in the north, to Sri Lanka and Indonesia in the south, and from Pakistan in the west to the islands of New Guinea in the far east.Methods  The regional land-cover map is based on sub-regional digital mapping results derived from SPOT-VEGETATION satellite data for the years 1998–2000. Image processing, digital classification and thematic mapping were performed separately for the three sub-regions of South Asia, continental Southeast Asia, and insular Southeast Asia. Landsat TM images, field data and existing national maps served as references. We used the FAO (Food and Agriculture Organization) Land Cover Classification System (LCCS) for coding the sub-regional land-cover classes and for aggregating the latter to a uniform regional legend. A validation was performed based on a systematic grid of sample points, referring to visual interpretation from high-resolution Landsat imagery. Regional land-cover area estimates were obtained and compared with FAO statistics for the categories ‘forest’ and ‘cropland’.Results  The regional map displays 26 land-cover classes. The LCCS coding provided a standardized class description, independent from local class names; it also allowed us to maintain the link to the detailed sub-regional land-cover classes. The validation of the map displayed a mapping accuracy of 72% for the dominant classes of ‘forest’ and ‘cropland’; regional area estimates for these classes correspond reasonably well to existing regional statistics.Main conclusions  The land-cover map of South and Southeast Asia provides a synoptic view of the distribution of land cover of tropical and sub-tropical Asia, and it delivers reasonable thematic detail and quantitative estimates of the main land-cover proportions. The map may therefore serve for regional stratification or modelling of vegetation cover, but could also support the implementation of forest policies, watershed management or conservation strategies at regional scales.

  9. Mapping moderate-scale land-cover over very large geographic areas within a collaborative framework: A case study of the Southwest Regional Gap Analysis Project (SWReGAP)

    USGS Publications Warehouse

    Lowry, J.; Ramsey, R.D.; Thomas, K.; Schrupp, D.; Sajwaj, T.; Kirby, J.; Waller, E.; Schrader, S.; Falzarano, S.; Langs, L.; Manis, G.; Wallace, C.; Schulz, K.; Comer, P.; Pohs, K.; Rieth, W.; Velasquez, C.; Wolk, B.; Kepner, W.; Boykin, K.; O'Brien, L.; Bradford, D.; Thompson, B.; Prior-Magee, J.

    2007-01-01

    Land-cover mapping efforts within the USGS Gap Analysis Program have traditionally been state-centered; each state having the responsibility of implementing a project design for the geographic area within their state boundaries. The Southwest Regional Gap Analysis Project (SWReGAP) was the first formal GAP project designed at a regional, multi-state scale. The project area comprises the southwestern states of Arizona, Colorado, Nevada, New Mexico, and Utah. The land-cover map/dataset was generated using regionally consistent geospatial data (Landsat ETM+ imagery (1999-2001) and DEM derivatives), similar field data collection protocols, a standardized land-cover legend, and a common modeling approach (decision tree classifier). Partitioning of mapping responsibilities amongst the five collaborating states was organized around ecoregion-based "mapping zones". Over the course of 21/2 field seasons approximately 93,000 reference samples were collected directly, or obtained from other contemporary projects, for the land-cover modeling effort. The final map was made public in 2004 and contains 125 land-cover classes. An internal validation of 85 of the classes, representing 91% of the land area was performed. Agreement between withheld samples and the validated dataset was 61% (KHAT = .60, n = 17,030). This paper presents an overview of the methodologies used to create the regional land-cover dataset and highlights issues associated with large-area mapping within a coordinated, multi-institutional management framework. ?? 2006 Elsevier Inc. All rights reserved.

  10. A multi-temporal analysis approach for land cover mapping in support of nuclear incident response

    NASA Astrophysics Data System (ADS)

    Sah, Shagan; van Aardt, Jan A. N.; McKeown, Donald M.; Messinger, David W.

    2012-06-01

    Remote sensing can be used to rapidly generate land use maps for assisting emergency response personnel with resource deployment decisions and impact assessments. In this study we focus on constructing accurate land cover maps to map the impacted area in the case of a nuclear material release. The proposed methodology involves integration of results from two different approaches to increase classification accuracy. The data used included RapidEye scenes over Nine Mile Point Nuclear Power Station (Oswego, NY). The first step was building a coarse-scale land cover map from freely available, high temporal resolution, MODIS data using a time-series approach. In the case of a nuclear accident, high spatial resolution commercial satellites such as RapidEye or IKONOS can acquire images of the affected area. Land use maps from the two image sources were integrated using a probability-based approach. Classification results were obtained for four land classes - forest, urban, water and vegetation - using Euclidean and Mahalanobis distances as metrics. Despite the coarse resolution of MODIS pixels, acceptable accuracies were obtained using time series features. The overall accuracies using the fusion based approach were in the neighborhood of 80%, when compared with GIS data sets from New York State. The classifications were augmented using this fused approach, with few supplementary advantages such as correction for cloud cover and independence from time of year. We concluded that this method would generate highly accurate land maps, using coarse spatial resolution time series satellite imagery and a single date, high spatial resolution, multi-spectral image.

  11. Improving snow fraction spatio-temporal continuity using a combination of MODIS and Fengyun-2 satellites over China

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Wang, G.

    2017-12-01

    Snow cover is one of key elements in the investigations of weather, climatic change, water resource, and snow hazard. Satellites observations from on-board optical sensors provides the ability to snow cover mapping through the discrimination of snow from other surface features and cloud. MODIS provides maximum of snow cover data using 8-day composition data in order to reduce the cloud obscuration impacts. However, snow cover mapping is often required to obtain at the temporal scale of less than one day, especially in the case of disasters. Geostationary satellites provide much higher temporal resolution measurements (typically at 15 min or half or one hour), which has a great potential to reduce cloud cover problem and observe ground surface for identifying snow. The proposed method in this work is that how to take the advantages of polar-orbiting and geostationary optical sensors to accurately map snow cover without data gaps due to cloud. FY-2 geostationary satellites have high temporal resolution observations, however, they are lacking enough spectral bands essential for snow cover monitoring, such as the 1.6 μm band. Based on our recent work (Wang et al., 2017), we improved FY-2/VISSR fractional snow cover estimation with a linear spectral unmixing analysis method. The linear approach is applied then using the reflectance observed at the certain hourly image of FY-2 to calculate pixel-wise snow cover fraction. The composition of daily factional snow cover employs the sun zenith angle, where the snow fraction under lowest sun zenith angle is considered as the most confident result. FY-2/VISSR fractional snow cover map has less cloud due to the composition of multi-temporal snow maps in a single day. In order to get an accurate and cloud-reduced fractional snow cover map, both of MODIS and FY-2/VISSR daily snow fraction maps are blended together. With the combination of FY-2E/VISSR and MODIS, there are still some cloud existing in the daily snow fraction map. Then the combination snow fraction map is temporally reconstructed using MATLAB Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) function to derive a completely daily cloud-free snow cover map under all the sky conditions.

  12. Forest Canopy Cover and Height from MISR in Topographically Complex Southwestern US Landscape Assessed with High Quality Reference Data

    NASA Technical Reports Server (NTRS)

    Chopping, Mark; North, Malcolm; Chen, Jiquan; Schaaf, Crystal B.; Blair, J. Bryan; Martonchik, John V.; Bull, Michael A.

    2012-01-01

    This study addresses the retrieval of spatially contiguous canopy cover and height estimates in southwestern USforests via inversion of a geometric-optical (GO) model against surface bidirectional reflectance factor (BRF) estimates from the Multi-angle Imaging SpectroRadiometer (MISR). Model inversion can provide such maps if good estimates of the background bidirectional reflectance distribution function (BRDF) are available. The study area is in the Sierra National Forest in the Sierra Nevada of California. Tree number density, mean crown radius, and fractional cover reference estimates were obtained via analysis of QuickBird 0.6 m spatial resolution panchromatic imagery usingthe CANopy Analysis with Panchromatic Imagery (CANAPI) algorithm, while RH50, RH75 and RH100 (50, 75, and 100 energy return) height data were obtained from the NASA Laser Vegetation Imaging Sensor (LVIS), a full waveform light detection and ranging (lidar) instrument. These canopy parameters were used to drive a modified version of the simple GO model (SGM), accurately reproducing patterns ofMISR 672 nm band surface reflectance (mean RMSE 0.011, mean R2 0.82, N 1048). Cover and height maps were obtained through model inversion against MISR 672 nm reflectance estimates on a 250 m grid.The free parameters were tree number density and mean crown radius. RMSE values with respect to reference data for the cover and height retrievals were 0.05 and 6.65 m, respectively, with of 0.54 and 0.49. MISR can thus provide maps of forest cover and height in areas of topographic variation although refinements are required to improve retrieval precision.

  13. Land use and land cover (LULC) of the Republic of the Maldives: first national map and LULC change analysis using remote-sensing data.

    PubMed

    Fallati, Luca; Savini, Alessandra; Sterlacchini, Simone; Galli, Paolo

    2017-08-01

    The Maldives islands in recent decades have experienced dramatic land-use change. Uninhabited islands were turned into new resort islands; evergreen tropical forests were cut, to be replaced by fields and new built-up areas. All these changes happened without a proper monitoring and urban planning strategy from the Maldivian government due to the lack of national land-use and land-cover (LULC) data. This study aimed to realize the first land-use map of the entire Maldives archipelago and to detect land-use and land-cover change (LULCC) using high-resolution satellite images and socioeconomic data. Due to the peculiar geographic and environmental features of the archipelago, the land-use map was obtained by visual interpretation and manual digitization of land-use patches. The images used, dated 2011, were obtained from Digital Globe's WorldView 1 and WorldView 2 satellites. Nine land-use classes and 18 subclasses were identified and mapped. During a field survey, ground control points were collected to test the geographic and thematic accuracy of the land-use map. The final product's overall accuracy was 85%. Once the accuracy of the map had been checked, LULCC maps were created using images from the early 2000s derived from Google Earth historical imagery. Post-classification comparison of the classified maps showed that growth of built-up and agricultural areas resulted in decreases in forest land and shrubland. The LULCC maps also revealed an increase in land reclamation inside lagoons near inhabited islands, resulting in environmental impacts on fragile reef habitat. The LULC map of the Republic of the Maldives produced in this study can be used by government authorities to make sustainable land-use planning decisions and to provide better management of land use and land cover.

  14. Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies.

    PubMed

    Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O Halloran, John

    2015-01-01

    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1-98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting.

  15. Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies

    PubMed Central

    Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O`Halloran, John

    2015-01-01

    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1–98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting. PMID:26262681

  16. Comparison of Pixel-Based and Object-Based Classification Using Parameters and Non-Parameters Approach for the Pattern Consistency of Multi Scale Landcover

    NASA Astrophysics Data System (ADS)

    Juniati, E.; Arrofiqoh, E. N.

    2017-09-01

    Information extraction from remote sensing data especially land cover can be obtained by digital classification. In practical some people are more comfortable using visual interpretation to retrieve land cover information. However, it is highly influenced by subjectivity and knowledge of interpreter, also takes time in the process. Digital classification can be done in several ways, depend on the defined mapping approach and assumptions on data distribution. The study compared several classifiers method for some data type at the same location. The data used Landsat 8 satellite imagery, SPOT 6 and Orthophotos. In practical, the data used to produce land cover map in 1:50,000 map scale for Landsat, 1:25,000 map scale for SPOT and 1:5,000 map scale for Orthophotos, but using visual interpretation to retrieve information. Maximum likelihood Classifiers (MLC) which use pixel-based and parameters approach applied to such data, and also Artificial Neural Network classifiers which use pixel-based and non-parameters approach applied too. Moreover, this study applied object-based classifiers to the data. The classification system implemented is land cover classification on Indonesia topographic map. The classification applied to data source, which is expected to recognize the pattern and to assess consistency of the land cover map produced by each data. Furthermore, the study analyse benefits and limitations the use of methods.

  17. Developing a New North American Land Cover Product at 30m Resolution: Methods, Results and Future Plans

    NASA Astrophysics Data System (ADS)

    Homer, C.; Colditz, R. R.; Latifovic, R.; Llamas, R. M.; Pouliot, D.; Danielson, P.; Meneses, C.; Victoria, A.; Ressl, R.; Richardson, K.; Vulpescu, M.

    2017-12-01

    Land cover and land cover change information at regional and continental scales has become fundamental for studying and understanding the terrestrial environment. With recent advances in computer science and freely available image archives, continental land cover mapping has been advancing to higher spatial resolution products. The North American Land Change Monitoring System (NALCMS) remains the principal provider of seamless land cover maps of North America. Founded in 2006, this collaboration among the governments of Canada, Mexico and the United States has released two previous products based on 250m MODIS images, including a 2005 land cover and a 2005-2010 land cover change product. NALCMS has recently completed the next generation North America land cover product, based upon 30m Landsat images. This product now provides the first ever 30m land cover produced for the North American continent, providing 19 classes of seamless land cover. This presentation provides an overview of country-specific image classification processes, describes the continental map production process, provides results for the North American continent and discusses future plans. NALCMS is coordinated by the Commission for Environmental Cooperation (CEC) and all products can be obtained at their website - www.cec.org.

  18. Mapping Tropical Forest Change in the Greater Marañón and Ucayali regions of Peru using CLASlite

    NASA Astrophysics Data System (ADS)

    Perez-Leiva, P.; Knapp, D. E.; Clark, J. K.; Asner, G. P.

    2012-12-01

    The Carnegie Landsat Analysis System-lite (CLASlite) was used to map and monitor tropical forest change in two large tropical watersheds in Peru: Greater Marañón and Ucayali. CLASlite uses radiometric and atmospheric correction algorithms as well as an Automated Monte Carlo Unmixing (AutoMCU) to obtain consistent fractional land cover per-pixel at high spatial resolution. Fractional land cover is automatically extracted from universal spectral libraries which allow for a differentiation between live photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare substrate (S). Fractional cover information is directly translated to maps of forest cover based in the physical characteristics of the forest canopy. Rates of deforestation and disturbance are estimated through analysis of change in fractional land cover over time. The Greater Marañón and Ucayali watersheds were studied over the period 1985 to 2012, through analysis of 1900 multi-spectral images from Landsat 4, 5 and 7. These images were processed and analyzed using CLASlite to obtain fractional cover and forest cover information for each year within the period. Annualization of the collected maps provided detailed information on the gross rates of disturbance and deforestation throughout the region. Further, net deforestation and disturbance maps were used to show the general forest change in these watersheds over the past 25 years. We found that deforestation accounts for just ~50% of the total forest losses, and that forest disturbance (degradation) is critically important to consider when making forest change estimates associated with losses in habitat and carbon in the region. These results also provide spatially-detailed, temporally-specific information on forest change for nearly three decades. Information provided by this study will assist decision-makers in Peru to improve their regional environmental management. The results, unprecedented in spatial and temporal scope, are another example showing the fidelity of tropical deforestation and forest degradation monitoring made routine using the CLASlite system.

  19. Preliminary applications of Landsat images and aerial photography for determining land-use, geologic, and hydrologic characteristics, Yampa River basin, Colorado and Wyoming

    USGS Publications Warehouse

    Heimes, F.J.; Moore, G.K.; Steele, T.D.

    1978-01-01

    Expanded energy- and recreation-related activities in the Yampa River basin, Colorado and Wyoming, have caused a rapid increase in economic development which will result in increased demand and competition for natural resources. In planning for efficient allocation of the basin 's natural resources, Landsat images and small-scale color and color-infrared photographs were used for selected geologic, hydrologic and land-use applications within the Yampa River basin. Applications of Landsat data included: (1) regional land-use classification and mapping, (2) lineament mapping, and (3) areal snow-cover mapping. Results from the Landsat investigations indicated that: (1) Landsat land-use classification maps, at a regional level, compared favorably with areal land-use patterns that were defined from available ground information, (2) lineaments were mapped in sufficient detail using recently developed techniques for interpreting aerial photographs, (3) snow cover generally could be mapped for large areas with the exception of some densely forested areas of the basin and areas having a large percentage of winter-season cloud cover. Aerial photographs were used for estimation of turbidity for eight stream locations in the basin. Spectral reflectance values obtained by digitizing photographs were compared with measured turbidity values. Results showed strong correlations (variances explained of greater than 90 percent) between spectral reflectance obtained from color photographs and measured turbidity values. (Woodard-USGS)

  20. Optimal land use/land cover classification using remote sensing imagery for hydrological modeling in a Himalayan watershed

    NASA Astrophysics Data System (ADS)

    Saran, Sameer; Sterk, Geert; Kumar, Suresh

    2009-10-01

    Land use/land cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into HRU's requires good-quality spatial data on land use/land cover. This paper presents different approaches to attain an optimal land use/land cover map based on remote sensing imagery for a Himalayan watershed in northern India. First digital classifications using maximum likelihood classifier (MLC) and a decision tree classifier were applied. The results obtained from the decision tree were better and even improved after post classification sorting. But the obtained land use/land cover map was not sufficient for the delineation of HRUs, since the agricultural land use/land cover class did not discriminate between the two major crops in the area i.e. paddy and maize. Subsequently the digital classification on fused data (ASAR and ASTER) were attempted to map land use/land cover classes with emphasis to delineate the paddy and maize crops but the supervised classification over fused datasets did not provide the desired accuracy and proper delineation of paddy and maize crops. Eventually, we adopted a visual classification approach on fused data. This second step with detailed classification system resulted into better classification accuracy within the 'agricultural land' class which will be further combined with topography and soil type to derive HRU's for physically-based hydrological modeling.

  1. Classification and area estimation of land covers in Kansas using ground-gathered and LANDSAT digital data

    NASA Technical Reports Server (NTRS)

    May, G. A.; Holko, M. L.; Anderson, J. E.

    1983-01-01

    Ground-gathered data and LANDSAT multispectral scanner (MSS) digital data from 1981 were analyzed to produce a classification of Kansas land areas into specific types called land covers. The land covers included rangeland, forest, residential, commercial/industrial, and various types of water. The analysis produced two outputs: acreage estimates with measures of precision, and map-type or photo products of the classification which can be overlaid on maps at specific scales. State-level acreage estimates were obtained and substate-level land cover classification overlays and estimates were generated for selected geographical areas. These products were found to be of potential use in managing land and water resources.

  2. Mapping deforestation and urban expansion in Freetown, Sierra Leone, from pre- to post-war economic recovery.

    PubMed

    Mansaray, Lamin R; Huang, Jingfeng; Kamara, Alimamy A

    2016-08-01

    Freetown, the capital of Sierra Leone has experienced vast land-cover changes over the past three decades. In Sierra Leone, however, availability of updated land-cover data is still a problem even for environmental managers. This study was therefore, conducted to provide up-to-date land-cover data for Freetown. Multi-temporal Landsat data at 1986, 2001, and 2015 were obtained, and a maximum likelihood supervised classification was employed. Eight land-cover classes or categories were recognized as follows: water, wetland, built-up, dense forest, sparse forest, grassland, barren, and mangrove. Land-cover changes were mapped via post-classification change detection. The persistence, gain, and loss of each land-cover class, and selected land conversions were also quantified. An overall classification accuracy of 87.3 % and a Kappa statistic of 0.85 were obtained for the 2015 map. From 1986 to 2015, water, built-up, grassland, and barren had net gains, whereas forests, wetlands, and mangrove had net loses. Conversion analyses among forests, grassland, and built-up show that built-up had targeted grassland and avoided forests. This study also revealed that, the overall land-cover change at 2001-2015 was higher (28.5 %) than that recorded at 1986-2001 (20.9 %). This is attributable to the population increase in Freetown and the high economic growth and infrastructural development recorded countrywide after the civil war. In view of the rapid land-cover change and its associated environmental impacts, this study recommends the enactment of policies that would strike a balance between urbanization and environmental sustainability in Freetown.

  3. Correlation between land cover and ground vulnerability in Alexandria City (Egypt) using time series SAR interferometry and optical Earth observation data

    NASA Astrophysics Data System (ADS)

    Seleem, T.; Stergiopoulos, V.; Kourkouli, P.; Perrou, T.; Parcharidis, Is.

    2017-10-01

    The main scope of this study is to investigate the potential correlation between land cover and ground vulnerability over Alexandria city, Egypt. Two different datasets for generating ground deformation and land cover maps were used. Hence, two different approaches were followed, a PSI approach for surface displacement mapping and a supervised classification algorithm for land cover/use mapping. The interferometric results show a gradual qualitative and quantitative differentiation of ground deformation from East to West of Alexandria government. We selected three regions of interest, in order to compare the obtained interferometric results with the different land cover types. The ground deformation may be resulted due to different geomorphic and geologic factors encompassing the proximity to the active deltaic plain of the Nile River, the expansion of the urban network within arid regions of recent deposits, the urban density increase, and finally the combination of the above mentioned parameters.

  4. Evaluation of SLAR and thematic mapper MSS data for forest cover mapping using computer-aided analysis techniques. [south carolina

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator)

    1979-01-01

    A literature review on radar and spectral band information was conducted and a NC-130 mission was flown carrying the NS001 scanner system which basically corresponds to the channel configuration of the proposed thematic mapper. Aerial photography and other reference data were obtained for the study site, an area approximately 290 sq miles in north central South Carolina. A cover type map was prepared and methods were devised for reformatting and geometrically correcting MSS CRT data. Arrangements were made to obtain LANDSAT data for dates approximating the NC-130 mission. Because of the waveband employed to obtain SEASAT radar data, it was decided to determine if X-band (2.40 cm to 3.75 cm wavelength) imagery is available.

  5. Hydrologic impacts of land cover variability and change at seasonal to decadal time scales over North America, 1992-2016

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Vivoni, E. R.

    2017-12-01

    Land cover variability and change have been shown to influence the terrestrial hydrologic cycle by altering the partitioning of moisture and energy fluxes. However, the magnitude and directionality of the relationship between land cover and surface hydrology has been shown to vary substantially across regions. Here, we provide an assessment of the impacts of land cover change on hydrologic processes at seasonal (vegetation phenology) to decadal scales (land cover conversion) in the United States and Mexico. To this end, we combine time series of remotely-sensed land surface characteristics with land cover maps for different decades as input to the Variable Infiltration Capacity hydrologic model. Land surface characteristics (leaf area index, surface albedo, and canopy fraction derived from normalized difference vegetation index) were obtained from the Moderate Resolution Imaging Spectrometer (MODIS) at 8-day intervals over the period 2000-2016. Land cover maps representing conditions in 1992, 2001, and 2011 were derived by homogenizing the National Land Cover Database over the US and the INEGI Series I through V maps over Mexico. An additional map covering all of North America was derived from the most frequent land cover class observed in each pixel of the MODIS MOD12Q1 product during 2001-2013. Land surface characteristics were summarized over land cover fractions at 1/16 degree (6 km) resolution. For each land cover map, hydrologic simulations were conducted that covered the period 1980-2013, using the best-available, hourly meteorological forcings at a similar spatial resolution. Based on these simulations, we present a comparison of the contributions of land cover change and climate variability at seasonal to decadal scales on the hydrologic and energy budgets, identifying the dominant components through time and space. This work also offers a valuable dataset on land cover variability and its hydrologic response for continental-scale assessments and modeling.

  6. Image Analysis for Facility Siting: a Comparison of Lowand High-altitude Image Interpretability for Land Use/land Cover Mapping

    NASA Technical Reports Server (NTRS)

    Borella, H. M.; Estes, J. E.; Ezra, C. E.; Scepan, J.; Tinney, L. R.

    1982-01-01

    For two test sites in Pennsylvania the interpretability of commercially acquired low-altitude and existing high-altitude aerial photography are documented in terms of time, costs, and accuracy for Anderson Level II land use/land cover mapping. Information extracted from the imagery is to be used in the evaluation process for siting energy facilities. Land use/land cover maps were drawn at 1:24,000 scale using commercially flown color infrared photography obtained from the United States Geological Surveys' EROS Data Center. Detailed accuracy assessment of the maps generated by manual image analysis was accomplished employing a stratified unaligned adequate class representation. Both 'area-weighted' and 'by-class' accuracies were documented and field-verified. A discrepancy map was also drawn to illustrate differences in classifications between the two map scales. Results show that the 1:24,000 scale map set was more accurate (99% to 94% area-weighted) than the 1:62,500 scale set, especially when sampled by class (96% to 66%). The 1:24,000 scale maps were also more time-consuming and costly to produce, due mainly to higher image acquisition costs.

  7. Linear Subpixel Learning Algorithm for Land Cover Classification from WELD using High Performance Computing

    NASA Technical Reports Server (NTRS)

    Kumar, Uttam; Nemani, Ramakrishna R.; Ganguly, Sangram; Kalia, Subodh; Michaelis, Andrew

    2017-01-01

    In this work, we use a Fully Constrained Least Squares Subpixel Learning Algorithm to unmix global WELD (Web Enabled Landsat Data) to obtain fractions or abundances of substrate (S), vegetation (V) and dark objects (D) classes. Because of the sheer nature of data and compute needs, we leveraged the NASA Earth Exchange (NEX) high performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into 4 classes namely, forest, farmland, water and urban areas (with NPP-VIIRS-national polar orbiting partnership visible infrared imaging radiometer suite nighttime lights data) over California, USA using Random Forest classifier. Validation of these land cover maps with NLCD (National Land Cover Database) 2011 products and NAFD (North American Forest Dynamics) static forest cover maps showed that an overall classification accuracy of over 91 percent was achieved, which is a 6 percent improvement in unmixing based classification relative to per-pixel-based classification. As such, abundance maps continue to offer an useful alternative to high-spatial resolution data derived classification maps for forest inventory analysis, multi-class mapping for eco-climatic models and applications, fast multi-temporal trend analysis and for societal and policy-relevant applications needed at the watershed scale.

  8. Linear Subpixel Learning Algorithm for Land Cover Classification from WELD using High Performance Computing

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Kumar, U.; Nemani, R. R.; Kalia, S.; Michaelis, A.

    2017-12-01

    In this work, we use a Fully Constrained Least Squares Subpixel Learning Algorithm to unmix global WELD (Web Enabled Landsat Data) to obtain fractions or abundances of substrate (S), vegetation (V) and dark objects (D) classes. Because of the sheer nature of data and compute needs, we leveraged the NASA Earth Exchange (NEX) high performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into 4 classes namely, forest, farmland, water and urban areas (with NPP-VIIRS - national polar orbiting partnership visible infrared imaging radiometer suite nighttime lights data) over California, USA using Random Forest classifier. Validation of these land cover maps with NLCD (National Land Cover Database) 2011 products and NAFD (North American Forest Dynamics) static forest cover maps showed that an overall classification accuracy of over 91% was achieved, which is a 6% improvement in unmixing based classification relative to per-pixel based classification. As such, abundance maps continue to offer an useful alternative to high-spatial resolution data derived classification maps for forest inventory analysis, multi-class mapping for eco-climatic models and applications, fast multi-temporal trend analysis and for societal and policy-relevant applications needed at the watershed scale.

  9. Optimal land use/cover classification using remote sensing imagery for hydrological modelling in a Himalayan watershed

    NASA Astrophysics Data System (ADS)

    Saran, Sameer; Sterk, Geert; Kumar, Suresh

    2007-10-01

    Land use/cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into HRU's requires good-quality spatial data on land use/cover. This paper presents different approaches to attain an optimal land use/cover map based on remote sensing imagery for a Himalayan watershed in northern India. First digital classifications using maximum likelihood classifier (MLC) and a decision tree classifier were applied. The results obtained from the decision tree were better and even improved after post classification sorting. But the obtained land use/cover map was not sufficient for the delineation of HRUs, since the agricultural land use/cover class did not discriminate between the two major crops in the area i.e. paddy and maize. Therefore we adopted a visual classification approach using optical data alone and also fused with ENVISAT ASAR data. This second step with detailed classification system resulted into better classification accuracy within the 'agricultural land' class which will be further combined with topography and soil type to derive HRU's for physically-based hydrological modelling.

  10. Digital elevation data as an aid to land use and land cover classification

    USGS Publications Warehouse

    Colvocoresses, Alden P.

    1981-01-01

    In relatively well mapped areas such as the United States and Europe, digital data can be developed from topographic maps or from the stereo aerial photographic movie. For poorer mapped areas (which involved most of the world's land areas), a satellite designed to obtain stereo data offers the best hope for a digital elevation database. Such a satellite, known as Mapsat, has been defined by the U.S. Geological Survey. Utilizing modern solid state technology, there is no reason why such stereo data cannot be acquired simultaneously with the multispectral response, thus simplifying the overall problem of land use and land cover classification.

  11. Mapping of the Land Cover Spatiotemporal Characteristics in Northern Russia Caused by Climate Change

    NASA Astrophysics Data System (ADS)

    Panidi, E.; Tsepelev, V.; Torlopova, N.; Bobkov, A.

    2016-06-01

    The study is devoted to the investigation of regional climate change in Northern Russia. Due to sparseness of the meteorological observation network in northern regions, we investigate the application capabilities of remotely sensed vegetation cover as indicator of climate change at the regional scale. In previous studies, we identified statistically significant relationship between the increase of surface air temperature and increase of the shrub vegetation productivity. We verified this relationship using ground observation data collected at the meteorological stations and Normalised Difference Vegetation Index (NDVI) data produced from Terra/MODIS satellite imagery. Additionally, we designed the technique of growing seasons separation for detailed investigation of the land cover (shrub cover) dynamics. Growing seasons are the periods when the temperature exceeds +5°C and +10°C. These periods determine the vegetation productivity conditions (i.e., conditions that allow growth of the phytomass). We have discovered that the trend signs for the surface air temperature and NDVI coincide on planes and river floodplains. On the current stage of the study, we are working on the automated mapping technique, which allows to estimate the direction and magnitude of the climate change in Northern Russia. This technique will make it possible to extrapolate identified relationship between land cover and climate onto territories with sparse network of meteorological stations. We have produced the gridded maps of NDVI and NDWI for the test area in European part of Northern Russia covered with the shrub vegetation. Basing on these maps, we may determine the frames of growing seasons for each grid cell. It will help us to obtain gridded maps of the NDVI linear trend for growing seasons on cell-by-cell basis. The trend maps can be used as indicative maps for estimation of the climate change on the studied areas.

  12. Development and Evaluation of a Cloud-Gap-Filled MODIS Daily Snow-Cover Product

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Foster, James L.; Kumar, Sujay V.

    2010-01-01

    The utility of the Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover products is limited by cloud cover which causes gaps in the daily snow-cover map products. We describe a cloud-gap-filled (CGF) daily snowcover map using a simple algorithm to track cloud persistence, to account for the uncertainty created by the age of the snow observation. Developed from the 0.050 resolution climate-modeling grid daily snow-cover product, MOD10C1, each grid cell of the CGF map provides a cloud-persistence count (CPC) that tells whether the current or a prior day was used to make the snow decision. Percentage of grid cells "observable" is shown to increase dramatically when prior days are considered. The effectiveness of the CGF product is evaluated by conducting a suite of data assimilation experiments using the community Noah land surface model in the NASA Land Information System (LIS) framework. The Noah model forecasts of snow conditions, such as snow-water equivalent (SWE), are updated based on the observations of snow cover which are obtained either from the MOD1 OC1 standard product or the new CGF product. The assimilation integrations using the CGF maps provide domain averaged bias improvement of -11 %, whereas such improvement using the standard MOD1 OC1 maps is -3%. These improvements suggest that the Noah model underestimates SWE and snow depth fields, and that the assimilation integrations contribute to correcting this systematic error. We conclude that the gap-filling strategy is an effective approach for increasing cloud-free observations of snow cover.

  13. Runway Detection From Map, Video and Aircraft Navigational Data

    DTIC Science & Technology

    2016-03-01

    FROM MAP, VIDEO AND AIRCRAFT NAVIGATIONAL DATA by Jose R. Espinosa Gloria March 2016 Thesis Advisor: Roberto Cristi Co-Advisor: Oleg...COVERED Master’s thesis 4. TITLE AND SUBTITLE RUNWAY DETECTION FROM MAP, VIDEO AND AIRCRAFT NAVIGATIONAL DATA 5. FUNDING NUMBERS 6. AUTHOR...Mexican Navy, unmanned aerial vehicles (UAV) have been equipped with daylight and infrared cameras. Processing the video information obtained from these

  14. Susceptibility and triggering scenarios at a regional scale for shallow landslides

    NASA Astrophysics Data System (ADS)

    Gullà, G.; Antronico, L.; Iaquinta, P.; Terranova, O.

    2008-07-01

    The work aims at identifying susceptible areas and pluviometric triggering scenarios at a regional scale in Calabria (Italy), with reference to shallow landsliding events. The proposed methodology follows a statistical approach and uses a database linked to a GIS that has been created to support the various steps of spatial data management and manipulation. The shallow landslide predisposing factors taken into account are derived from (i) the 40-m digital terrain model of the region, an ˜ 15,075 km 2 extension; (ii) outcropping lithology; (iii) soils; and (iv) land use. More precisely, a map of the slopes has been drawn from the digital terrain model. Two kinds of covers [prevalently coarse-grained (CG cover) or fine-grained (FG cover)] were identified, referring to the geotechnical characteristics of geomaterial covers and to the lithology map; soilscapes were drawn from soil maps; and finally, the land use map was employed without any prior processing. Subsequently, the inventory maps of some shallow landsliding events, totaling more than 30,000 instabilities of the past and detected by field surveys and photo aerial restitution, were employed to calibrate the relative importance of these predisposing factors. The use of single factors (first level analysis) therefore provides three different susceptibility maps. Second level analysis, however, enables better location of areas susceptible to shallow landsliding events by crossing the single susceptibility maps. On the basis of the susceptibility map obtained by the second level analysis, five different classes of susceptibility to shallow landsliding events have been outlined over the regional territory: 8.9% of the regional territory shows very high susceptibility, 14.3% high susceptibility, 15% moderate susceptibility, 3.6% low susceptibility, and finally, about 58% very low susceptibility. Finally, the maps of two significant shallow landsliding events of the past and their related rainfalls have been utilized to identify the relevant pluviometric triggering scenarios. By using 205 daily rainfall series, different triggering pluviometric scenarios have been identified with reference to CG and FG covers: a value of 365 mm of the total rainfall of the event and/or 170 mm/d of the rainfall maximum intensity and a value of 325 mm of the total rainfall of the event and/or 158 mm/d of the rainfall maximum intensity are able to trigger shallow landsliding events for CG and FG covers, respectively. The results obtained from this study can help administrative authorities to plan future development activities and mitigation measures in shallow landslide-prone areas. In addition, the proposed methodology can be useful in managing emergency situations at a regional scale for shallow landsliding events triggered by intense rainfalls; through this approach, the susceptibility and the pluviometric triggering scenario maps will be improved by means of finer calibration of the involved factors.

  15. A cloud cover model based on satellite data

    NASA Technical Reports Server (NTRS)

    Somerville, P. N.; Bean, S. J.

    1980-01-01

    A model for worldwide cloud cover using a satellite data set containing infrared radiation measurements is proposed. The satellite data set containing day IR, night IR and incoming and absorbed solar radiation measurements on a 2.5 degree latitude-longitude grid covering a 45 month period was converted to estimates of cloud cover. The global area was then classified into homogeneous cloud cover regions for each of the four seasons. It is noted that the developed maps can be of use to the practicing climatologist who can obtain a considerable amount of cloud cover information without recourse to large volumes of data.

  16. The prediction and mapping of geoidal undulations from GEOS-3 altimetry. [gravity anomalies

    NASA Technical Reports Server (NTRS)

    Kearsley, W.

    1978-01-01

    From the adjusted altimeter data an approximation to the geoid height in ocean areas is obtained. Methods are developed to produce geoid maps in these areas. Geoid heights are obtained for grid points in the region to be mapped, and two of the parameters critical to the production of an accurate map are investigated. These are the spacing of the grid, which must be related to the half-wavelength of the altimeter signal whose amplitude is the desired accuracy of the contour; and the method adopted to predict the grid values. Least squares collocation was used to find geoid undulations on a 1 deg grid in the mapping area. Twenty maps, with their associated precisions, were produced and are included. These maps cover the Indian Ocean, Southwestern and Northeastern portions of the Pacific Ocean, and Southwest Atlantic and the U.S. Calibration Area.

  17. Modeling Land Use/Cover Changes in an African Rural Landscape

    NASA Astrophysics Data System (ADS)

    Kamusoko, C.; Aniya, M.

    2006-12-01

    Land use/cover changes are analyzed in the Bindura district of Zimbabwe, Africa through the integration of data from a time series of Landsat imagery (1973, 1989 and 2000), a household survey and GIS coverages. We employed a hybrid supervised/unsupervised classification approach to generate land use/cover maps from which landscape metrics were calculated. Population and other household variables were derived from a sample of surveyed villages, while road accessibility and slope were obtained from topographic maps and digital elevation model, respectively. Markov-cellular automata modeling approach that incorporates Markov chain analysis, cellular automata and multi-criteria evaluation (MCE) / multi-objective allocation (MOLA) procedures was used to simulate land use/cover changes. A GIS-based MCE technique computed transition potential maps, whereas transition areas were derived from the 1973-2000 land use/cover maps using the Markov chain analysis. A 5 x 5 cellular automata filter was used to develop a spatially explicit contiguity- weighting factor to change the cells based on its previous state and those of its neighbors, while MOLA resolved land use/cover class allocation conflicts. The kappa index of agreement was used for model validation. Observed trends in land use/cover changes indicate that deforestation and the encroachment of cultivation in woodland areas is a continuous trend in the study area. This suggests that economic activities driven by agricultural expansion were the main causes of landscape fragmentation, leading to landscape degradation. Rigorous calibration of transition potential maps done by a MCE algorithm and Markovian transition probabilities produced accurate inputs for the simulation of land use/cover changes. Overall standard kappa index of agreement ranged from 0.73 to 0.83, which is sufficient for simulating land use/cover changes in the study area. Land use/cover simulations under the 1989 and 2000 scenario indicated further landscape degradation in the rural areas of the Bindura district. Keywords: Zimbabwe, land use/cover changes, landscape fragmentation, GIS, land use/cover change modeling, multi-criteria evaluation/multi-objective allocation procedures, Markov-cellular automata

  18. Multi-Feature Classification of Multi-Sensor Satellite Imagery Based on Dual-Polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion Images for Urban Land-Cover Classification.

    PubMed

    Zhou, Tao; Li, Zhaofu; Pan, Jianjun

    2018-01-27

    This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively.

  19. Land Cover Mapping using GEOBIA to Estimate Loss of Salacca zalacca Trees in Landslide Area of Clapar, Madukara District of Banjarnegara

    NASA Astrophysics Data System (ADS)

    Permata, Anggi; Juniansah, Anwar; Nurcahyati, Eka; Dimas Afrizal, Mousafi; Adnan Shafry Untoro, Muhammad; Arifatha, Na'ima; Ramadhani Yudha Adiwijaya, Raden; Farda, Nur Mohammad

    2016-11-01

    Landslide is an unpredictable natural disaster which commonly happens in highslope area. Aerial photography in small format is one of acquisition method that can reach and obtain high resolution spatial data faster than other methods, and provide data such as orthomosaic and Digital Surface Model (DSM). The study area contained landslide area in Clapar, Madukara District of Banjarnegara. Aerial photographs of landslide area provided advantage in objects visibility. Object's characters such as shape, size, and texture were clearly seen, therefore GEOBIA (Geography Object Based Image Analysis) was compatible as method for classifying land cover in study area. Dissimilar with PPA (PerPixel Analyst) method that used spectral information as base object detection, GEOBIA could use spatial elements as classification basis to establish a land cover map with better accuracy. GEOBIA method used classification hierarchy to divide post disaster land cover into three main objects: vegetation, landslide/soil, and building. Those three were required to obtain more detailed information that can be used in estimating loss caused by landslide and establishing land cover map in landslide area. Estimating loss in landslide area related to damage in Salak (Salacca zalacca) plantations. This estimation towards quantity of Salak tree that were drifted away by landslide was calculated in assumption that every tree damaged by landslide had same age and production class with other tree that weren't damaged. Loss calculation was done by approximating quantity of damaged trees in landslide area with data of trees around area that were acquired from GEOBIA classification method.

  20. Evaluating the Effectiveness of Flood Control Strategies in Contrasting Urban Watersheds and Implications for Houston's Future Flood Vulnerability

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Kumar, U.; Nemani, R. R.; Kalia, S.; Michaelis, A.

    2016-12-01

    In this work, we use a Fully Constrained Least Squares Subpixel Learning Algorithm to unmix global WELD (Web Enabled Landsat Data) to obtain fractions or abundances of substrate (S), vegetation (V) and dark objects (D) classes. Because of the sheer nature of data and compute needs, we leveraged the NASA Earth Exchange (NEX) high performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into 4 classes namely, forest, farmland, water and urban areas (with NPP-VIIRS - national polar orbiting partnership visible infrared imaging radiometer suite nighttime lights data) over California, USA using Random Forest classifier. Validation of these land cover maps with NLCD (National Land Cover Database) 2011 products and NAFD (North American Forest Dynamics) static forest cover maps showed that an overall classification accuracy of over 91% was achieved, which is a 6% improvement in unmixing based classification relative to per-pixel based classification. As such, abundance maps continue to offer an useful alternative to high-spatial resolution data derived classification maps for forest inventory analysis, multi-class mapping for eco-climatic models and applications, fast multi-temporal trend analysis and for societal and policy-relevant applications needed at the watershed scale.

  1. Carbon emissions risk map from deforestation in the tropical Amazon

    NASA Astrophysics Data System (ADS)

    Ometto, J.; Soler, L. S.; Assis, T. D.; Oliveira, P. V.; Aguiar, A. P.

    2011-12-01

    Assis, Pedro Valle This work aims to estimate the carbon emissions from tropical deforestation in the Brazilian Amazon associated to the risk assessment of future land use change. The emissions are estimated by incorporating temporal deforestation dynamics, accounting for the biophysical and socioeconomic heterogeneity in the region, as well secondary forest growth dynamic in abandoned areas. The land cover change model that supported the risk assessment of deforestation, was run based on linear regressions. This method takes into account spatial heterogeneity of deforestation as the spatial variables adopted to fit the final regression model comprise: environmental aspects, economic attractiveness, accessibility and land tenure structure. After fitting a suitable regression models for each land cover category, the potential of each cell to be deforested (25x25km and 5x5 km of resolution) in the near future was used to calculate the risk assessment of land cover change. The carbon emissions model combines high-resolution new forest clear-cut mapping and four alternative sources of spatial information on biomass distribution for different vegetation types. The risk assessment map of CO2 emissions, was obtained by crossing the simulation results of the historical land cover changes to a map of aboveground biomass contained in the remaining forest. This final map represents the risk of CO2 emissions at 25x25km and 5x5 km until 2020, under a scenario of carbon emission reduction target.

  2. MODIS Collection 6 Data at the National Snow and Ice Data Center (NSIDC)

    NASA Astrophysics Data System (ADS)

    Fowler, D. K.; Steiker, A. E.; Johnston, T.; Haran, T. M.; Fowler, C.; Wyatt, P.

    2015-12-01

    For over 15 years, the NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) has archived and distributed snow and sea ice products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the NASA Earth Observing System (EOS) Aqua and Terra satellites. Collection 6 represents the next revision to NSIDC's MODIS archive, mainly affecting the snow-cover products. Collection 6 specifically addresses the needs of the MODIS science community by targeting the scenarios that have historically confounded snow detection and introduced errors into the snow-cover and fractional snow-cover maps even though MODIS snow-cover maps are typically 90 percent accurate or better under good observing conditions, Collection 6 uses revised algorithms to discriminate between snow and clouds, resolve uncertainties along the edges of snow-covered regions, and detect summer snow cover in mountains. Furthermore, Collection 6 applies modified and additional snow detection screens and new Quality Assessment protocols that enhance the overall accuracy of the snow maps compared with Collection 5. Collection 6 also introduces several new MODIS snow products, including a daily Climate Modelling Grid (CMG) cloud gap-filled (CGF) snow-cover map which generates cloud-free maps by using the most recent clear observations.. The MODIS Collection 6 sea ice extent and ice surface temperature algorithms and products are much the same as Collection 5; however, Collection 6 updates to algorithm inputs—in particular, the L1B calibrated radiances, land and water mask, and cloud mask products—have improved the sea ice outputs. The MODIS sea ice products are currently available at NSIDC, and the snow cover products are soon to follow in 2016 NSIDC offers a variety of methods for obtaining these data. Users can download data directly from an online archive or use the NASA Reverb Search & Order Tool to perform spatial, temporal, and parameter subsetting, reformatting, and re-projection of the data.

  3. Land use and land cover data changes in Indian Ocean Islands: Case study of Unguja in Zanzibar Island.

    PubMed

    Mwalusepo, Sizah; Muli, Eliud; Faki, Asha; Raina, Suresh

    2017-04-01

    Land use and land cover changes will continue to affect resilient human communities and ecosystems as a result of climate change. However, an assessment of land use and land cover changes over time in Indian Ocean Islands is less documented. The land use/cover data changes over 10 years at smaller geographical scale across Unguja Island in Zanzibar were analyzed. Downscaling of the data was obtained from SERVIR through partnership with Kenya-based Regional Centre for Mapping of Resources for Development (RCMRD) database (http://www.servirglobal.net), and clipped down in ArcMap (Version 10.1) to Unguja Island. SERVIR and RCMRD Land Cover Dataset are mainly 30 m multispectral images include Landsat TM and ETM+Multispectral Images. Landscape ecology Statistics tool (LecoS) was used to analysis the land use and land cover changes. The data provide information on the status of the land use and land cover changes along the Unguja Island in Zanzibar. The data is of great significance to the future research on global change.

  4. An interdisciplinary analysis of Colorado Rocky Mountain environments using ADP techniques. [San Juan Mts. and Indian Peaks

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Good ecological, classification accuracy (90-95%) can be achieved in areas of rugged relief on a regional basis for Level 1 cover types (coniferous forest, deciduous forest, grassland, cropland, bare rock and soil, and water) using computer-aided analysis techniques on ERTS/MSS data. Cost comparisons showed that a Level 1 cover type map and a table of areal estimates could be obtained for the 443,000 hectare San Juan Mt. test site for less than 0.1 cent per acre, whereas photointerpretation techniques would cost more than 0.4 cent per acre. Results of snow cover mapping have conclusively proven that the areal extent of snow in mountainous terrain can be rapidly and economically mapped by using ERTS/MSS data and computer-aided analysis techniques. A distinct relationship between elevation and time of freeze or thaw was observed, during mountain lake mapping. Basic lithologic units such as igneous, sedimentary, and unconsolidated rock materials were successfully identified. Geomorphic form, which is exhibited through spatial and textual data, can only be inferred from ERTS data. Data collection platform systems can be utilized to produce satisfactory data from extremely inaccessible locations that encounter very adverse weather conditions, as indicated by results obtained from a DCP located at 3,536 meters elevation that encountered minimum temperatures of -25.5 C and wind speeds of up to 40.9m/sec (91 mph), but which still performed very reliably.

  5. Satellite radars for geologic mapping in tropical regions

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Sabins, F. F.

    1987-01-01

    This paper presents interpretations of the satellite radar images of cloud-covered portions of Indonesia and Amazonia obtained from NASA's Shuttle imaging radar experiments in 1981 (SIR-A) and 1984 (SIR-B). It was found that different terrain categories observed from distinctive image textures correlate well with major lithologic associations. The images show geologic structures at regional and local scales. The SIR-B images of East Kalimantan, Indonesia, reveal structural features and terrain distributions that had been overlooked or not perceived in previous surface mapping. Variability in radar response from the vegetation cover is interpretable only in coastal areas or alluvial areas that are relatively level.

  6. Construction of a transfer vector for a clonal isolate of LdNPV

    Treesearch

    Shivanand T. Hiremath; Martha Fikes; Audrey Ichida

    1991-01-01

    Deoxyribonucleic acid from a clonal isolate of LdNPV (CI A2-1), obtained by in vivo cloning procedures, was used to construct genomic libraries in phage (lamda Gem 11) and cosmid (pHC79) vectors. Overlapping clones were selected to generate a restriction enzyme map. The restriction enzyme map, covering about 85% of the CI A2-1 genome, was determined...

  7. Large area mapping of southwestern forest crown cover, canopy height, and biomass using the NASA Multiangle Imaging Spectro-Radiometer

    Treesearch

    Mark Chopping; Gretchen G. Moisen; Lihong Su; Andrea Laliberte; Albert Rango; John V. Martonchik; Debra P. C. Peters

    2008-01-01

    A rapid canopy reflectance model inversion experiment was performed using multi-angle reflectance data from the NASA Multi-angle Imaging Spectro-Radiometer (MISR) on the Earth Observing System Terra satellite, with the goal of obtaining measures of forest fractional crown cover, mean canopy height, and aboveground woody biomass for large parts of south-eastern Arizona...

  8. Assessment of land use and land cover change using spatiotemporal analysis of landscape: case study in south of Tehran.

    PubMed

    Sabr, Abutaleb; Moeinaddini, Mazaher; Azarnivand, Hossein; Guinot, Benjamin

    2016-12-01

    In the recent years, dust storms originating from local abandoned agricultural lands have increasingly impacted Tehran and Karaj air quality. Designing and implementing mitigation plans are necessary to study land use/land cover change (LUCC). Land use/cover classification is particularly relevant in arid areas. This study aimed to map land use/cover by pixel- and object-based image classification methods, analyse landscape fragmentation and determine the effects of two different classification methods on landscape metrics. The same sets of ground data were used for both classification methods. Because accuracy of classification plays a key role in better understanding LUCC, both methods were employed. Land use/cover maps of the southwest area of Tehran city for the years 1985, 2000 and 2014 were obtained from Landsat digital images and classified into three categories: built-up, agricultural and barren lands. The results of our LUCC analysis showed that the most important changes in built-up agricultural land categories were observed in zone B (Shahriar, Robat Karim and Eslamshahr) between 1985 and 2014. The landscape metrics obtained for all categories pictured high landscape fragmentation in the study area. Despite no significant difference was evidenced between the two classification methods, the object-based classification led to an overall higher accuracy than using the pixel-based classification. In particular, the accuracy of the built-up category showed a marked increase. In addition, both methods showed similar trends in fragmentation metrics. One of the reasons is that the object-based classification is able to identify buildings, impervious surface and roads in dense urban areas, which produced more accurate maps.

  9. Quantitative X-ray mapping, scatter diagrams and the generation of correction maps to obtain more information about your material

    NASA Astrophysics Data System (ADS)

    Wuhrer, R.; Moran, K.

    2014-03-01

    Quantitative X-ray mapping with silicon drift detectors and multi-EDS detector systems have become an invaluable analysis technique and one of the most useful methods of X-ray microanalysis today. The time to perform an X-ray map has reduced considerably with the ability to map minor and trace elements very accurately due to the larger detector area and higher count rate detectors. Live X-ray imaging can now be performed with a significant amount of data collected in a matter of minutes. A great deal of information can be obtained from X-ray maps. This includes; elemental relationship or scatter diagram creation, elemental ratio mapping, chemical phase mapping (CPM) and quantitative X-ray maps. In obtaining quantitative x-ray maps, we are able to easily generate atomic number (Z), absorption (A), fluorescence (F), theoretical back scatter coefficient (η), and quantitative total maps from each pixel in the image. This allows us to generate an image corresponding to each factor (for each element present). These images allow the user to predict and verify where they are likely to have problems in our images, and are especially helpful to look at possible interface artefacts. The post-processing techniques to improve the quantitation of X-ray map data and the development of post processing techniques for improved characterisation are covered in this paper.

  10. Assessment of Classification Accuracies of SENTINEL-2 and LANDSAT-8 Data for Land Cover / Use Mapping

    NASA Astrophysics Data System (ADS)

    Hale Topaloğlu, Raziye; Sertel, Elif; Musaoğlu, Nebiye

    2016-06-01

    This study aims to compare classification accuracies of land cover/use maps created from Sentinel-2 and Landsat-8 data. Istanbul metropolitan city of Turkey, with a population of around 14 million, having different landscape characteristics was selected as study area. Water, forest, agricultural areas, grasslands, transport network, urban, airport- industrial units and barren land- mine land cover/use classes adapted from CORINE nomenclature were used as main land cover/use classes to identify. To fulfil the aims of this research, recently acquired dated 08/02/2016 Sentinel-2 and dated 22/02/2016 Landsat-8 images of Istanbul were obtained and image pre-processing steps like atmospheric and geometric correction were employed. Both Sentinel-2 and Landsat-8 images were resampled to 30m pixel size after geometric correction and similar spectral bands for both satellites were selected to create a similar base for these multi-sensor data. Maximum Likelihood (MLC) and Support Vector Machine (SVM) supervised classification methods were applied to both data sets to accurately identify eight different land cover/ use classes. Error matrix was created using same reference points for Sentinel-2 and Landsat-8 classifications. After the classification accuracy, results were compared to find out the best approach to create current land cover/use map of the region. The results of MLC and SVM classification methods were compared for both images.

  11. Interannual variability of monthly Southern Ocean sea ice distributions

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1992-01-01

    The interannual variability of the Southern-Ocean sea-ice distributions was mapped and analyzed using data from Nimbus-5 ESMR and Nimbus-7 SMMR, collected from 1973 to 1987. The set of 12 monthly maps obtained reveals many details on spatial variability that are unobtainable from time series of ice extents. These maps can be used as baseline maps for comparisons against future Southern Ocean sea ice distributions. The maps are supplemented by more detailed maps of the frequency of ice coverage, presented in this paper for one month within each of the four seasons, and by the breakdown of these results to the periods covered individually by each of the two passive-microwave imagers.

  12. Subpixel Snow Cover Mapping from MODIS Data by Nonparametric Regression Splines

    NASA Astrophysics Data System (ADS)

    Akyurek, Z.; Kuter, S.; Weber, G. W.

    2016-12-01

    Spatial extent of snow cover is often considered as one of the key parameters in climatological, hydrological and ecological modeling due to its energy storage, high reflectance in the visible and NIR regions of the electromagnetic spectrum, significant heat capacity and insulating properties. A significant challenge in snow mapping by remote sensing (RS) is the trade-off between the temporal and spatial resolution of satellite imageries. In order to tackle this issue, machine learning-based subpixel snow mapping methods, like Artificial Neural Networks (ANNs), from low or moderate resolution images have been proposed. Multivariate Adaptive Regression Splines (MARS) is a nonparametric regression tool that can build flexible models for high dimensional and complex nonlinear data. Although MARS is not often employed in RS, it has various successful implementations such as estimation of vertical total electron content in ionosphere, atmospheric correction and classification of satellite images. This study is the first attempt in RS to evaluate the applicability of MARS for subpixel snow cover mapping from MODIS data. Total 16 MODIS-Landsat ETM+ image pairs taken over European Alps between March 2000 and April 2003 were used in the study. MODIS top-of-atmospheric reflectance, NDSI, NDVI and land cover classes were used as predictor variables. Cloud-covered, cloud shadow, water and bad-quality pixels were excluded from further analysis by a spatial mask. MARS models were trained and validated by using reference fractional snow cover (FSC) maps generated from higher spatial resolution Landsat ETM+ binary snow cover maps. A multilayer feed-forward ANN with one hidden layer trained with backpropagation was also developed. The mutual comparison of obtained MARS and ANN models was accomplished on independent test areas. The MARS model performed better than the ANN model with an average RMSE of 0.1288 over the independent test areas; whereas the average RMSE of the ANN model was 0.1500. MARS estimates for low FSC values (i.e., FSC<0.3) were better than that of ANN. Both ANN and MARS tended to overestimate medium FSC values (i.e., 0.30.7).

  13. Satellite-derived land covers for runoff estimation using SCS-CN method in Chen-You-Lan Watershed, Taiwan

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Yan; Lin, Chao-Yuan

    2017-04-01

    The Soil Conservation Service Curve Number (SCS-CN) method, which was originally developed by the USDA Natural Resources Conservation Service, is widely used to estimate direct runoff volume from rainfall. The runoff Curve Number (CN) parameter is based on the hydrologic soil group and land use factors. In Taiwan, the national land use maps were interpreted from aerial photos in 1995 and 2008. Rapid updating of post-disaster land use map is limited due to the high cost of production, so the classification of satellite images is the alternative method to obtain the land use map. In this study, Normalized Difference Vegetation Index (NDVI) in Chen-You-Lan Watershed was derived from dry and wet season of Landsat imageries during 2003 - 2008. Land covers were interpreted from mean value and standard deviation of NDVI and were categorized into 4 groups i.e. forest, grassland, agriculture and bare land. Then, the runoff volume of typhoon events during 2005 - 2009 were estimated using SCS-CN method and verified with the measured runoff data. The result showed that the model efficiency coefficient is 90.77%. Therefore, estimating runoff by using the land cover map classified from satellite images is practicable.

  14. Automated Land Cover Change Detection and Mapping from Hidden Parameter Estimates of Normalized Difference Vegetation Index (NDVI) Time-Series

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Banerjee, A.; Gupta, S. K. S.; Christensen, P. R.; Papandreou-Suppappola, A.

    2017-12-01

    Multitemporal observations acquired frequently by satellites with short revisit periods such as the Moderate Resolution Imaging Spectroradiometer (MODIS), is an important source for modeling land cover. Due to the inherent seasonality of the land cover, harmonic modeling reveals hidden state parameters characteristic to it, which is used in classifying different land cover types and in detecting changes due to natural or anthropogenic factors. In this work, we use an eight day MODIS composite to create a Normalized Difference Vegetation Index (NDVI) time-series of ten years. Improved hidden parameter estimates of the nonlinear harmonic NDVI model are obtained using the Particle Filter (PF), a sequential Monte Carlo estimator. The nonlinear estimation based on PF is shown to improve parameter estimation for different land cover types compared to existing techniques that use the Extended Kalman Filter (EKF), due to linearization of the harmonic model. As these parameters are representative of a given land cover, its applicability in near real-time detection of land cover change is also studied by formulating a metric that captures parameter deviation due to change. The detection methodology is evaluated by considering change as a rare class problem. This approach is shown to detect change with minimum delay. Additionally, the degree of change within the change perimeter is non-uniform. By clustering the deviation in parameters due to change, this spatial variation in change severity is effectively mapped and validated with high spatial resolution change maps of the given regions.

  15. Vegetation Canopy Structure from NASA EOS Multiangle Imaging

    NASA Astrophysics Data System (ADS)

    Chopping, M.; Martonchik, J. V.; Bull, M.; Rango, A.; Schaaf, C. B.; Zhao, F.; Wang, Z.

    2008-12-01

    We used red band bidirectional reflectance data from the NASA Multiangle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS) mapped onto a 250 m grid in a multiangle approach to obtain estimates of woody plant fractional cover and crown height through adjustment of the mean radius and mean crown aspect ratio parameters of an hybrid geometric-optical (GO) model. We used a technique to rapidly obtain MISR surface reflectance estimates at 275 m resolution through regression on 1 km MISR land surface estimates previously corrected for atmospheric attenuation using MISR aerosol estimates. MISR data were used to make end of dry season maps from 2000-2007 for parts of southern New Mexico, while MODIS data were used to replicate previous results obtained using MISR for June 2002 over large parts of New Mexico and Arizona. We also examined the applicability of this method in Alaskan tundra and forest by adjusting the GO model against MISR data for winter (March 2000) and summer (August 2008) scenes. We found that the GO model crown aspect ratio from MISR followed dominant shrub species distributions in the USDA, ARS Jornada Experimental Range, enabling differentiation of the more spherical crowns of creosotebush (Larrea tridentata) from the more prolate crowns of honey mesquite (Prosopis glandulosa). The measurement limits determined from 2000-2007 maps for a large part of southern New Mexico are ~0.1 in fractional shrub crown cover and ~3 m in mean canopy height (results obtained using data acquired shortly after precipitation events that radically darkened and altered the structure and angular response of the background). Typical standard deviations over the period for 12 sites covering a range of cover types are on the order of 0.05 in crown cover and 2 m in mean canopy height. We found that the GO model can be inverted to retrieve reasonable distributions of canopy parameters in southwestern environments using MODIS V005 red band surface reflectance estimates at ~250 m spatial resolution accumulated over 16 day periods. The MODIS (N=895) and MISR (N=576) estimates of forest height and cover both showed agreement with USDA, Forest Service estimates, with MODIS mean absolute errors (MAE) of 0.09 and 8.4 m respectively; and MISR MAE of 0.10 and 2.2 m, respectively, noting that a sub-optimal background was used for the MODIS inversions. The MODIS and MISR MAE for estimates of aboveground woody biomass via regression against Forest Service estimates were both 10.1 Mg.ha-1. We found that red band MISR data for central Alaska can be used to obtain first-order estimates of forest cover and height using a snow-free summer scene and shrub cover using a winter scene with full snow cover. The GO model inversion results are often physically unrealistic but spatial distributions correspond to high resolution images and reflect the potential for the multiangle/GO method to retrieve meaningful information that is qualitatively different to that obtained using vegetation indices.

  16. Automated Glacier Mapping using Object Based Image Analysis. Case Studies from Nepal, the European Alps and Norway

    NASA Astrophysics Data System (ADS)

    Vatle, S. S.

    2015-12-01

    Frequent and up-to-date glacier outlines are needed for many applications of glaciology, not only glacier area change analysis, but also for masks in volume or velocity analysis, for the estimation of water resources and as model input data. Remote sensing offers a good option for creating glacier outlines over large areas, but manual correction is frequently necessary, especially in areas containing supraglacial debris. We show three different workflows for mapping clean ice and debris-covered ice within Object Based Image Analysis (OBIA). By working at the object level as opposed to the pixel level, OBIA facilitates using contextual, spatial and hierarchical information when assigning classes, and additionally permits the handling of multiple data sources. Our first example shows mapping debris-covered ice in the Manaslu Himalaya, Nepal. SAR Coherence data is used in combination with optical and topographic data to classify debris-covered ice, obtaining an accuracy of 91%. Our second example shows using a high-resolution LiDAR derived DEM over the Hohe Tauern National Park in Austria. Breaks in surface morphology are used in creating image objects; debris-covered ice is then classified using a combination of spectral, thermal and topographic properties. Lastly, we show a completely automated workflow for mapping glacier ice in Norway. The NDSI and NIR/SWIR band ratio are used to map clean ice over the entire country but the thresholds are calculated automatically based on a histogram of each image subset. This means that in theory any Landsat scene can be inputted and the clean ice can be automatically extracted. Debris-covered ice can be included semi-automatically using contextual and morphological information.

  17. Tetlin National Wildlife Refuge land cover mapping project users guide

    USGS Publications Warehouse

    Markon, Carl J.

    1987-01-01

    The U. S. Fish & Wildlife Service (USFWS) has the responsibility for collecting the resource information to address the research, management, development and planning requirements identified in Section 304. Because of the brief period provided by the Act for data collection, habitat mapping, and habitat assessment, the USFWS in cooperation with the U.S. Geological Survey's EROS Field Office, used digital Landsat multispectral scanner data (MSS) and digital terrain data to produce land cover and terrain maps. A computer assisted digital analysis of Landsat MSS data was used because coverage by aerial photographs was incomplete for much of the refuge and because the level of detail, obtained from the analysis of Landsat data, is adequate to meet most USFWS research, management and planning needs. Relative cost and time requirements were also factors in the decision to use the digital analysis approach.

  18. Selawik National Wildlife Refuge land cover mapping project users guide

    USGS Publications Warehouse

    Markon, Carl J.

    1988-01-01

    The U.S. Fish & Wildlife Service (USFWS) has the responsibility for collecting the resource information to address the research, management, development and planning requirements identified in Section 304. Because of the brief period provided by the Act for data collection, habitat mapping, and habitat assessment, the USFWS in cooperation with the U.S. Geological Survey's EROS Field Office, used digital Landsat multispectral scanner (MSS) data and digital terrain data to produce land cover and terrain maps. A computer assisted digital analysis of Landsat MSS data was used because coverage by aerial photographs was incomplete for the refuge and because the level of detail obtained from Landsat data was adequate to meet most USFWS research, management and planning needs. Relative cost and time requirements were also factors in the decision to use the digital analysis approach.

  19. Yukon Flats National Wildlife Refuge land cover mapping project users guide

    USGS Publications Warehouse

    Markon, Carl J.

    1987-01-01

    The U. S. Fish & Wildlife Service (USFWS) has the responsibility for collecting the resource information to address the research, management, development and planning requirements identified in Section 304. Because of the brief period provided by the Act for data collection, habitat mapping, and habitat assessment, the USFWS in cooperation with the U.S. Geological Survey's EROS Field Office, used digital Landsat multispectral scanner (MSS) data and digital terrain data to produce land cover and terrain maps. A computer assisted digital analysis of Landsat MSS data was used because coverage by aerial photographs was incomplete for much of the refuge and because the level of detail obtained from Landsat data was adequate to meet most USFWS research, management and planning needs. Relative cost and time requirements were also factors in the decision to use the digital analysis approach.

  20. Putting Pluto's Geology on the Map

    NASA Image and Video Library

    2016-02-11

    This geological map covers a portion of Pluto's surface that measures 1,290 miles (2,070 kilometers) from top to bottom, and includes the vast nitrogen-ice plain informally named Sputnik Planum and surrounding terrain. The map is overlain with colors that represent different geological terrains. Each terrain, or unit, is defined by its texture and morphology -- smooth, pitted, craggy, hummocky or ridged, for example. How well a unit can be defined depends on the resolution of the images that cover it. All of the terrain in this map has been imaged at a resolution of approximately 1,050 feet (320 meters) per pixel or better, meaning scientists can map units with relative confidence. The various blue and greenish units that fill the center of the map represent different textures seen across Sputnik Planum, from the cellular terrain in the center and north, to the smooth and pitted plains in the south. The black lines represent the troughs that mark the boundaries of cellular regions in the nitrogen ice. The purple unit represents the chaotic, blocky mountain ranges that line Sputnik's western border, and the pink unit represents the scattered, floating hills at its eastern edge. The possible cryovolcanic feature informally named Wright Mons is mapped in red in the southern corner of the map. The rugged highlands of the informally named Cthulhu Regio is mapped in dark brown along the western edge, and is pockmarked by many large impact craters, mapped in yellow. The base map for this geologic map is a mosaic of 12 images obtained by the Long Range Reconnaissance Imager (LORRI) at a resolution of 1,280 feet (about 390 meters) per pixel. The mosaic was obtained at a range of approximately 48,000 miles (77,300 kilometers) from Pluto, about an hour and 40 minutes before New Horizons' closest approach on July 14, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA20465

  1. Multi-Feature Classification of Multi-Sensor Satellite Imagery Based on Dual-Polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion Images for Urban Land-Cover Classification

    PubMed Central

    Pan, Jianjun

    2018-01-01

    This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively. PMID:29382073

  2. Intercomparison of Satellite-Derived Snow-Cover Maps

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Tait, Andrew B.; Foster, James L.; Chang, Alfred T. C.; Allen, Milan

    1999-01-01

    In anticipation of the launch of the Earth Observing System (EOS) Terra, and the PM-1 spacecraft in 1999 and 2000, respectively, efforts are ongoing to determine errors of satellite-derived snow-cover maps. EOS Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer-E (AMSR-E) snow-cover products will be produced. For this study we compare snow maps covering the same study area acquired from different sensors using different snow- mapping algorithms. Four locations are studied: 1) southern Saskatchewan; 2) a part of New England (New Hampshire, Vermont and Massachusetts) and eastern New York; 3) central Idaho and western Montana; and 4) parts of North and South Dakota. Snow maps were produced using a prototype MODIS snow-mapping algorithm used on Landsat Thematic Mapper (TM) scenes of each study area at 30-m and when the TM data were degraded to 1 -km resolution. National Operational Hydrologic Remote Sensing Center (NOHRSC) 1 -km resolution snow maps were also used, as were snow maps derived from 1/2 deg. x 1/2 deg. resolution Special Sensor Microwave Imager (SSM/1) data. A land-cover map derived from the International Geosphere-Biosphere Program (IGBP) land-cover map of North America was also registered to the scenes. The TM, NOHRSC and SSM/I snow maps, and land-cover maps were compared digitally. In most cases, TM-derived maps show less snow cover than the NOHRSC and SSM/I maps because areas of incomplete snow cover in forests (e.g., tree canopies, branches and trunks) are seen in the TM data, but not in the coarser-resolution maps. The snow maps generally agree with respect to the spatial variability of the snow cover. The 30-m resolution TM data provide the most accurate snow maps, and are thus used as the baseline for comparison with the other maps. Comparisons show that the percent change in amount of snow cover relative to the 3 0-m resolution TM maps is lowest using the TM I -km resolution maps, ranging from 0 to 40%. The highest percent change (less than 100%) is found in the New England study area, probably due to the presence of patchy snow cover. A scene with patchy snow cover is more difficult to map accurately than is a scene with a well-defined snowline such as is found on the North and South Dakota scene where the percent change ranged from 0 to 40%. There are also some important differences in the amount of snow mapped using the two different SSM/I algorithms because they utilize different channels.

  3. Incorporating Land-Use Mapping Uncertainty in Remote Sensing Based Calibration of Land-Use Change Models

    NASA Astrophysics Data System (ADS)

    Cockx, K.; Van de Voorde, T.; Canters, F.; Poelmans, L.; Uljee, I.; Engelen, G.; de Jong, K.; Karssenberg, D.; van der Kwast, J.

    2013-05-01

    Building urban growth models typically involves a process of historic calibration based on historic time series of land-use maps, usually obtained from satellite imagery. Both the remote sensing data analysis to infer land use and the subsequent modelling of land-use change are subject to uncertainties, which may have an impact on the accuracy of future land-use predictions. Our research aims to quantify and reduce these uncertainties by means of a particle filter data assimilation approach that incorporates uncertainty in land-use mapping and land-use model parameter assessment into the calibration process. This paper focuses on part of this work, more in particular the modelling of uncertainties associated with the impervious surface cover estimation and urban land-use classification adopted in the land-use mapping approach. Both stages are submitted to a Monte Carlo simulation to assess their relative contribution to and their combined impact on the uncertainty in the derived land-use maps. The approach was applied on the central part of the Flanders region (Belgium), using a time-series of Landsat/SPOT-HRV data covering the years 1987, 1996, 2005 and 2012. Although the most likely land-use map obtained from the simulation is very similar to the original classification, it is shown that the errors related to the impervious surface sub-pixel fraction estimation have a strong impact on the land-use map's uncertainty. Hence, incorporating uncertainty in the land-use change model calibration through particle filter data assimilation is proposed to address the uncertainty observed in the derived land-use maps and to reduce uncertainty in future land-use predictions.

  4. Specifications for updating USGS land use and land cover maps

    USGS Publications Warehouse

    Milazzo, Valerie A.

    1983-01-01

    To meet the increasing demands for up-to-date land use and land cover information, a primary goal of the U.S. Geological Survey's (USGS) national land use and land cover mapping program is to provide for periodic updating of maps and data in a timely and uniform manner. The technical specifications for updating existing USGS land use and land cover maps that are presented here cover both the interpretive aspects of detecting and identifying land use and land cover changes and the cartographic aspects of mapping and presenting the change data in conventional map format. They provide the map compiler with the procedures and techniques necessary to then use these change data to update existing land use and land cover maps in a manner that is both standardized and repeatable. Included are specifications for the acquisition of remotely sensed source materials, selection of compilation map bases, handling of data base corrections, editing and quality control operations, generation of map update products for USGS open file, and the reproduction and distribution of open file materials. These specifications are planned to become part of the National Mapping Division's Technical Instructions.

  5. A technology mapping based on graph of excitations and outputs for finite state machines

    NASA Astrophysics Data System (ADS)

    Kania, Dariusz; Kulisz, Józef

    2017-11-01

    A new, efficient technology mapping method of FSMs, dedicated for PAL-based PLDs is proposed. The essence of the method consists in searching for the minimal set of PAL-based logic blocks that cover a set of multiple-output implicants describing the transition and output functions of an FSM. The method is based on a new concept of graph: the Graph of Excitations and Outputs. The proposed algorithm was tested using the FSM benchmarks. The obtained results were compared with the classical technology mapping of FSM.

  6. Spatial averaging errors in creating hemispherical reflectance (albedo) maps from directional reflectance data

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Kerber, A. G.; Sellers, P. J.

    1993-01-01

    Spatial averaging errors which may occur when creating hemispherical reflectance maps for different cover types from direct nadir technique to estimate the hemispherical reflectance are assessed by comparing the results with those obtained with a knowledge-based system called VEG (Kimes et al., 1991, 1992). It was found that hemispherical reflectance errors provided by using VEG are much less than those using the direct nadir techniques, depending on conditions. Suggestions are made concerning sampling and averaging strategies for creating hemispherical reflectance maps for photosynthetic, carbon cycle, and climate change studies.

  7. Discharge forecasts in mountain basins based on satellite snow cover mapping. [Dinwoody Creek Basin, Wyoming and the Dischma Basin, Switzerland

    NASA Technical Reports Server (NTRS)

    Martinec, J.; Rango, A. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. A snow runoff model developed for European mountain basins was used with LANDSAT imagery and air temperature data to simulate runoff in the Rocky Mountains under conditions of large elevation range and moderate cloud cover (cloud cover of 40% or less during LANDSAT passes 70% of the time during a snowmelt season). Favorable results were obtained for basins with area not exceeding serval hundred square kilometers and with a significant component of subsurface runoff.

  8. Cosmic Microwave Background Anisotropy Measurement from Python V

    NASA Astrophysics Data System (ADS)

    Coble, K.; Dodelson, S.; Dragovan, M.; Ganga, K.; Knox, L.; Kovac, J.; Ratra, B.; Souradeep, T.

    2003-02-01

    We analyze observations of the microwave sky made with the Python experiment in its fifth year of operation at the Amundsen-Scott South Pole Station in Antarctica. After modeling the noise and constructing a map, we extract the cosmic signal from the data. We simultaneously estimate the angular power spectrum in eight bands ranging from large (l~40) to small (l~260) angular scales, with power detected in the first six bands. There is a significant rise in the power spectrum from large to smaller (l~200) scales, consistent with that expected from acoustic oscillations in the early universe. We compare this Python V map to a map made from data taken in the third year of Python. Python III observations were made at a frequency of 90 GHz and covered a subset of the region of the sky covered by Python V observations, which were made at 40 GHz. Good agreement is obtained both visually (with a filtered version of the map) and via a likelihood ratio test.

  9. Application of fuzzy logic approach for wind erosion hazard mapping in Laghouat region (Algeria) using remote sensing and GIS

    NASA Astrophysics Data System (ADS)

    Saadoud, Djouher; Hassani, Mohamed; Martin Peinado, Francisco José; Guettouche, Mohamed Saïd

    2018-06-01

    Wind erosion is one of the most serious environmental problems in Algeria that threatens human activities and socio-economic development. The main goal of this study is to apply a fuzzy logic approach to wind erosion sensitivity mapping in the Laghouat region, Algeria. Six causative factors, obtained by applying fuzzy membership functions to each used parameter, are considered: soil, vegetation cover, wind factor, soil dryness, land topography and land cover sensitivity. Different fuzzy operators (AND, OR, SUM, PRODUCT, and GAMMA) are applied to generate wind-erosion hazard map. Success rate curves reveal that the fuzzy gamma (γ) operator, with γ equal to 0.9, gives the best prediction accuracy with an area under curve of 85.2%. The resulting wind-erosion sensitivity map delineates the area into different zones of five relative sensitivity classes: very high, high, moderate, low and very low. The estimated result was verified by field measurements and the high statistically significant value of a chi-square test.

  10. Analytical Retrieval of Global Land Surface Emissivity Maps at AMSR-E passive microwave frequencies

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Temimi, M.; Khanbilvardi, R.

    2009-12-01

    Land emissivity is a crucial boundary condition in Numerical Weather Prediction (NWP) modeling. Land emissivity is also a key indicator of land surface and subsurface properties. The objective of this study, supported by NOAA-NESDIS, is to develop global land emissivity maps using AMSR-E passive microwave measurements along with several ancillary data. The International Satellite Cloud Climatology Project (ISCCP) database has been used to obtain several inputs for the proposed approach such as land surface temperature, cloud mask and atmosphere profile. The Community Radiative Transfer Model (CRTM) has been used to estimate upwelling and downwelling atmospheric contributions. Although it is well known that correction of the atmospheric effect on brightness temperature is required at higher frequencies (over 19 GHz), our preliminary results have shown that a correction at 10.7 GHz is also necessary over specific areas. The proposed approach is based on three main steps. First, all necessary data have been collected and processed. Second, a global cloud free composite of AMSR-E data and corresponding ancillary images is created. Finally, monthly composting of emissivity maps has been performed. AMSR-E frequencies at 6.9, 10.7, 18.7, 36.5 and 89.0 GHz have been used to retrieve the emissivity. Water vapor information obtained from ISCCP (TOVS data) was used to calculate upwelling, downwelling temperatures and atmospheric transmission in order to assess the consistency of those derived from the CRTM model. The frequent land surface temperature (LST) determination (8 times a day) in the ISCCP database has allowed us to assess the diurnal cycle effect on emissivity retrieval. Differences in magnitude and phase between thermal temperature and low frequencies microwave brightness temperature have been noticed. These differences seem to vary in space and time. They also depend on soil texture and thermal inertia. The proposed methodology accounts for these factors and resultant differences in phase and magnitude between LST and microwave brightness temperature. Additional factors such as topography and vegetation cover are under investigation. In addition, the potential of extrapolating the obtained land emissivity maps to different window and sounding channels has been also investigated in this study. The extrapolation of obtained emissivities to different incident angles is also under investigation. Land emissivity maps have been developed at different AMSR-E frequencies. Obtained product has been validated and compared to global land use distribution. Moreover, global soil moisture AMSR-E product maps have been also used to assess to the spatial distribution of the emissivity. Moreover, obtained emissivity maps seem to be consistent with landuse/land cover maps. They also agree well with land emissivity maps obtained from the ISCCP database and developed using SSM/I observations (for frequencies over 19 GHz).

  11. Land cover mapping in Latvia using hyperspectral airborne and simulated Sentinel-2 data

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Filipovs, Jevgenijs; Brauns, Agris; Taskovs, Juris; Erins, Gatis

    2016-08-01

    Land cover mapping in Latvia is performed as part of the Corine Land Cover (CLC) initiative every six years. The advantage of CLC is the creation of a standardized nomenclature and mapping protocol comparable across all European countries, thereby making it a valuable information source at the European level. However, low spatial resolution and accuracy, infrequent updates and expensive manual production has limited its use at the national level. As of now, there is no remote sensing based high resolution land cover and land use services designed specifically for Latvia which would account for the country's natural and land use specifics and end-user interests. The European Space Agency launched the Sentinel-2 satellite in 2015 aiming to provide continuity of free high resolution multispectral satellite data thereby presenting an opportunity to develop and adapted land cover and land use algorithm which accounts for national enduser needs. In this study, land cover mapping scheme according to national end-user needs was developed and tested in two pilot territories (Cesis and Burtnieki). Hyperspectral airborne data covering spectral range 400-2500 nm was acquired in summer 2015 using Airborne Surveillance and Environmental Monitoring System (ARSENAL). The gathered data was tested for land cover classification of seven general classes (urban/artificial, bare, forest, shrubland, agricultural/grassland, wetlands, water) and sub-classes specific for Latvia as well as simulation of Sentinel-2 satellite data. Hyperspectral data sets consist of 122 spectral bands in visible to near infrared spectral range (356-950 nm) and 100 bands in short wave infrared (950-2500 nm). Classification of land cover was tested separately for each sensor data and fused cross-sensor data. The best overall classification accuracy 84.2% and satisfactory classification accuracy (more than 80%) for 9 of 13 classes was obtained using Support Vector Machine (SVM) classifier with 109 band hyperspectral data. Grassland and agriculture land demonstrated lowest classification accuracy in pixel based approach, but result significantly improved by looking at agriculture polygons registered in Rural Support Service data as objects. The test of simulated Sentinel-2 bands for land cover mapping using SVM classifier showed 82.8% overall accuracy and satisfactory separation of 7 classes. SVM provided highest overall accuracy 84.2% in comparison to 75.9% for k-Nearest Neighbor and 79.2% Linear Discriminant Analysis classifiers.

  12. A Semi-Automated Machine Learning Algorithm for Tree Cover Delineation from 1-m Naip Imagery Using a High Performance Computing Architecture

    NASA Astrophysics Data System (ADS)

    Basu, S.; Ganguly, S.; Nemani, R. R.; Mukhopadhyay, S.; Milesi, C.; Votava, P.; Michaelis, A.; Zhang, G.; Cook, B. D.; Saatchi, S. S.; Boyda, E.

    2014-12-01

    Accurate tree cover delineation is a useful instrument in the derivation of Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree cover delineation in high to coarse resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR datasets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree cover estimates for the whole of Continental United States, using a High Performance Computing Architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field (CRF), which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the state of California, which covers a total of 11,095 NAIP tiles and spans a total geographical area of 163,696 sq. miles. Our framework produced correct detection rates of around 85% for fragmented forests and 70% for urban tree cover areas, with false positive rates lower than 3% for both regions. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR high-resolution canopy height model shows the effectiveness of our algorithm in generating accurate high-resolution tree cover maps.

  13. Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers

    NASA Technical Reports Server (NTRS)

    Meier, M. F. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Preliminary results on the feasibility of mapping snow cover extent have been obtained from a limited number of ERTS-1 images of mountains in Alaska, British Columbia, and Washington. The snowline on land can be readily distinguished, except in heavy forest where such distinction appears to be virtually impossible. The snowline on very large glaciers can also be distinguished remarkably easily, leading to a convenient way to measure glacier accumulation area ratios or equilibrium line altitude. Monitoring of large surging glaciers appears to be possible, but only through observation of a change in area and/or medial moraine extent. Under certain conditions, ERTS-1 imagery appears to have high potential for mapping snow cover in mountainous areas. Distinction between snow and clouds appears to require use of the human eye, but in a cloud-free scene the snow cover is sufficiently distinct to allow use of automated techniques. This technique may prove very useful as an aid in the monitoring of the snowpack water resource and the prediction of summer snowmelt runoff volume.

  14. A multi-temporal fusion-based approach for land cover mapping in support of nuclear incident response

    NASA Astrophysics Data System (ADS)

    Sah, Shagan

    An increasingly important application of remote sensing is to provide decision support during emergency response and disaster management efforts. Land cover maps constitute one such useful application product during disaster events; if generated rapidly after any disaster, such map products can contribute to the efficacy of the response effort. In light of recent nuclear incidents, e.g., after the earthquake/tsunami in Japan (2011), our research focuses on constructing rapid and accurate land cover maps of the impacted area in case of an accidental nuclear release. The methodology involves integration of results from two different approaches, namely coarse spatial resolution multi-temporal and fine spatial resolution imagery, to increase classification accuracy. Although advanced methods have been developed for classification using high spatial or temporal resolution imagery, only a limited amount of work has been done on fusion of these two remote sensing approaches. The presented methodology thus involves integration of classification results from two different remote sensing modalities in order to improve classification accuracy. The data used included RapidEye and MODIS scenes over the Nine Mile Point Nuclear Power Station in Oswego (New York, USA). The first step in the process was the construction of land cover maps from freely available, high temporal resolution, low spatial resolution MODIS imagery using a time-series approach. We used the variability in the temporal signatures among different land cover classes for classification. The time series-specific features were defined by various physical properties of a pixel, such as variation in vegetation cover and water content over time. The pixels were classified into four land cover classes - forest, urban, water, and vegetation - using Euclidean and Mahalanobis distance metrics. On the other hand, a high spatial resolution commercial satellite, such as RapidEye, can be tasked to capture images over the affected area in the case of a nuclear event. This imagery served as a second source of data to augment results from the time series approach. The classifications from the two approaches were integrated using an a posteriori probability-based fusion approach. This was done by establishing a relationship between the classes, obtained after classification of the two data sources. Despite the coarse spatial resolution of MODIS pixels, acceptable accuracies were obtained using time series features. The overall accuracies using the fusion-based approach were in the neighborhood of 80%, when compared with GIS data sets from New York State. This fusion thus contributed to classification accuracy refinement, with a few additional advantages, such as correction for cloud cover and providing for an approach that is robust against point-in-time seasonal anomalies, due to the inclusion of multi-temporal data. We concluded that this approach is capable of generating land cover maps of acceptable accuracy and rapid turnaround, which in turn can yield reliable estimates of crop acreage of a region. The final algorithm is part of an automated software tool, which can be used by emergency response personnel to generate a nuclear ingestion pathway information product within a few hours of data collection.

  15. Tree Cover Mapping Tool—Documentation and user manual

    USGS Publications Warehouse

    Cotillon, Suzanne E.; Mathis, Melissa L.

    2016-06-02

    The Tree Cover Mapping (TCM) tool was developed by scientists at the U.S. Geological Survey Earth Resources Observation and Science Center to allow a user to quickly map tree cover density over large areas using visual interpretation of high resolution imagery within a geographic information system interface. The TCM tool uses a systematic sample grid to produce maps of tree cover. The TCM tool allows the user to define sampling parameters to estimate tree cover within each sample unit. This mapping method generated the first on-farm tree cover maps of vast regions of Niger and Burkina Faso. The approach contributes to implementing integrated landscape management to scale up re-greening and restore degraded land in the drylands of Africa. The TCM tool is easy to operate, practical, and can be adapted to many other applications such as crop mapping, settlements mapping, or other features. This user manual provides step-by-step instructions for installing and using the tool, and creating tree cover maps. Familiarity with ArcMap tools and concepts is helpful for using the tool.

  16. Theoretical Accuracy of Global Snow-Cover Mapping Using Satellite Data in the Earth Observing System (EOS) Era

    NASA Technical Reports Server (NTRS)

    Hall, D. K.; Foster, J. L.; Salomonson, V. V.; Klein, A. G.; Chien, J. Y. L.

    1998-01-01

    Following the launch of the Earth Observing System first morning (EOS-AM1) satellite, daily, global snow-cover mapping will be performed automatically at a spatial resolution of 500 m, cloud-cover permitting, using Moderate Resolution Imaging Spectroradiometer (MODIS) data. A technique to calculate theoretical accuracy of the MODIS-derived snow maps is presented. Field studies demonstrate that under cloud-free conditions when snow cover is complete, snow-mapping errors are small (less than 1%) in all land covers studied except forests where errors are greater and more variable. The theoretical accuracy of MODIS snow-cover maps is largely determined by percent forest cover north of the snowline. Using the 17-class International Geosphere-Biosphere Program (IGBP) land-cover maps of North America and Eurasia, the Northern Hemisphere is classified into seven land-cover classes and water. Snow-mapping errors estimated for each of the seven land-cover classes are extrapolated to the entire Northern Hemisphere for areas north of the average continental snowline for each month. Average monthly errors for the Northern Hemisphere are expected to range from 5 - 10%, and the theoretical accuracy of the future global snow-cover maps is 92% or higher. Error estimates will be refined after the first full year that MODIS data are available.

  17. Flood mapping from Sentinel-1 and Landsat-8 data: a case study from river Evros, Greece

    NASA Astrophysics Data System (ADS)

    Kyriou, Aggeliki; Nikolakopoulos, Konstantinos

    2015-10-01

    Floods are suddenly and temporary natural events, affecting areas which are not normally covered by water. The influence of floods plays a significant role both in society and the natural environment, therefore flood mapping is crucial. Remote sensing data can be used to develop flood map in an efficient and effective way. This work is focused on expansion of water bodies overtopping natural levees of the river Evros, invading the surroundings areas and converting them in flooded. Different techniques of flood mapping were used using data from active and passive remote sensing sensors like Sentinlel-1 and Landsat-8 respectively. Space borne pairs obtained from Sentinel-1 were processed in this study. Each pair included an image during the flood, which is called "crisis image" and another one before the event, which is called "archived image". Both images covering the same area were processed producing a map, which shows the spread of the flood. Multispectral data From Landsat-8 were also processed in order to detect and map the flooded areas. Different image processing techniques were applied and the results were compared to the respective results of the radar data processing.

  18. A Comparison of Satellite-Derived Snow Maps with a Focus on Ephemeral Snow in North Carolina

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Fuhrmann, Christopher M.; Perry, L. Baker; Riggs, George A.; Robinson, David A.; Foster, James L.

    2010-01-01

    In this paper, we focus on the attributes and limitations of four commonly-used daily snowcover products with respect to their ability to map ephemeral snow in central and eastern North Carolina. We show that the Moderate-Resolution Imaging Spectroradiometer (MODIS) fractional snow-cover maps can delineate the snow-covered area very well through the use of a fully-automated algorithm, but suffer from the limitation that cloud cover precludes mapping some ephemeral snow. The semi-automated Interactive Multi-sensor Snow and ice mapping system (IMS) and Rutgers Global Snow Lab (GSL) snow maps are often able to capture ephemeral snow cover because ground-station data are employed to develop the snow maps, The Rutgers GSL maps are based on the IMS maps. Finally, the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) provides some good detail of snow-water equivalent especially in deeper snow, but may miss ephemeral snow cover because it is often very thin or wet; the AMSR-E maps also suffer from coarse spatial resolution. We conclude that the southeastern United States represents a good test region for validating the ability of satellite snow-cover maps to capture ephemeral snow cover,

  19. Alaska Interim Land Cover Mapping Program; final report

    USGS Publications Warehouse

    Fitzpatrick-Lins, Katherine; Doughty, E.F.; Shasby, Mark; Benjamin, Susan

    1989-01-01

    In 1985, the U.S. Geological Survey initiated a research project to develop an interim land cover data base for Alaska as an alternative to the nationwide Land Use and Land Cover Mapping Program. The Alaska Interim Land Cover Mapping Program was subsequently created to develop methods for producing a series of land cover maps that utilized the existing Landsat digital land cover classifications produced by and for the major land management agencies for mapping the vegetation of Alaska. The program was successful in producing digital land cover classifications and statistical summaries using a common statewide classification and in reformatting these data to produce l:250,000-scale quadrangle-based maps directly from the Scitex laser plotter. A Federal and State agency review of these products found considerable user support for the maps. Presently the Geological Survey is committed to digital processing of six to eight quadrangles each year.

  20. Creating soil moisture maps based on radar satellite imagery

    NASA Astrophysics Data System (ADS)

    Hnatushenko, Volodymyr; Garkusha, Igor; Vasyliev, Volodymyr

    2017-10-01

    The presented work is related to a study of mapping soil moisture basing on radar data from Sentinel-1 and a test of adequacy of the models constructed on the basis of data obtained from alternative sources. Radar signals are reflected from the ground differently, depending on its properties. In radar images obtained, for example, in the C band of the electromagnetic spectrum, soils saturated with moisture usually appear in dark tones. Although, at first glance, the problem of constructing moisture maps basing on radar data seems intuitively clear, its implementation on the basis of the Sentinel-1 data on an industrial scale and in the public domain is not yet available. In the process of mapping, for verification of the results, measurements of soil moisture obtained from logs of the network of climate stations NOAA US Climate Reference Network (USCRN) were used. This network covers almost the entire territory of the United States. The passive microwave radiometers of Aqua and SMAP satellites data are used for comparing processing. In addition, other supplementary cartographic materials were used, such as maps of soil types and ready moisture maps. The paper presents a comparison of the effect of the use of certain methods of roughening the quality of radar data on the result of mapping moisture. Regression models were constructed showing dependence of backscatter coefficient values Sigma0 for calibrated radar data of different spatial resolution obtained at different times on soil moisture values. The obtained soil moisture maps of the territories of research, as well as the conceptual solutions about automation of operations of constructing such digital maps, are presented. The comparative assessment of the time required for processing a given set of radar scenes with the developed tools and with the ESA SNAP product was carried out.

  1. The role of global cloud climatologies in validating numerical models

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN

    1992-01-01

    Global maps of the monthly mean net upward longwave radiation flux at the ocean surface were obtained for April, July, October 1985 and January 1986. These maps were produced by blending information obtained from a combination of general circulation model cloud radiative forcing fields, the top of the atmosphere cloud radiative forcing from ERBE and TOVS profiles and sea surface temperature on ISCCP C1 tapes. The fields are compatible with known meteorological regimes of atmospheric water vapor content and cloudiness. There is a vast area of high net upward longwave radiation flux (greater than 80/sq Wm) in the eastern Pacific Ocean throughout most of the year. Areas of low net upward longwave radiation flux ((less than 40/sq Wm) are the tropical convective regions and extra tropical regions that tend to have persistent low cloud cover.The technique used relies on General Circulation Model simulations and so is subject to some of the uncertainties associated with the model. However, all input information regarding temperature, moisture, and cloud cover is from satellite data having near global coverage. This feature of the procedure alone warrants its consideration for further use in compiling global maps of longwave radiation.

  2. Mapping Land Cover and Land Use Changes in the Congo Basin Forests with Optical Satellite Remote Sensing: a Pilot Project Exploring Methodologies that Improve Spatial Resolution and Map Accuracy

    NASA Astrophysics Data System (ADS)

    Molinario, G.; Baraldi, A.; Altstatt, A. L.; Nackoney, J.

    2011-12-01

    The University of Maryland has been a USAID Central Africa Rregional Program for the Environment (CARPE) cross-cutting partner for many years, providing remote sensing derived information on forest cover and forest cover changes in support of CARPE's objectives of diminishing forest degradation, loss and biodiversity loss as a result of poor or inexistent land use planning strategies. Together with South Dakota State University, Congo Basin-wide maps have been provided that map forest cover loss at a maximum of 60m resolution, using Landsat imagery and higher resolution imagery for algorithm training and validation. However, to better meet the needs within the CARPE Landscapes, which call for higher resolution, more accurate land cover change maps, UMD has been exploring the use of the SIAM automatic spectral -rule classifier together with pan-sharpened Landsat data (15m resolution) and Very High Resolution imagery from various sources. The pilot project is being developed in collaboration with the African Wildlife Foundation in the Maringa Lopori Wamba CARPE Landscape. If successful in the future this methodology will make the creation of high resolution change maps faster and easier, making it accessible to other entities in the Congo Basin that need accurate land cover and land use change maps in order, for example, to create sustainable land use plans, conserve biodiversity and resources and prepare Reducing Emissions from forest Degradation and Deforestation (REDD) Measurement, Reporting and Verification (MRV) projects. The paper describes the need for higher resolution land cover change maps that focus on forest change dynamics such as the cycling between primary forests, secondary forest, agriculture and other expanding and intensifying land uses in the Maringa Lopori Wamba CARPE Landscape in the Equateur Province of the Democratic Republic of Congo. The Methodology uses the SIAM remote sensing imagery automatic spectral rule classifier, together with pan-sharpened Landsat imagery with 15m resolution and Very High Resolution imagery from different sensors, obtained from the Department of Defense database that was recently opened to NASA and its Earth Observation partners. Particular emphasis is placed on the detection of agricultural fields and their expansion in primary forests or intensification in secondary forests and fallow fields, as this is the primary driver of deforestation in this area. Fields in this area area also of very small size and irregular shapes, often partly obscured by neighboring forest canopy, hence the technical challenge of correctly detecting them and tracking them through time. Finally, the potential for use of this methodology in other regions where information on land cover changes is needed for land use sustainability planning, is also addressed.

  3. Assessment of the vegetation cover in a burned area 22-years ago using remote sensing techniques and GIS analysis (Sierra de las Nieves, South of Spain).

    NASA Astrophysics Data System (ADS)

    Martínez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.

    2015-04-01

    The study aim was to characterize the vegetation cover in a burned area 22-years ago considering the previous situation to wildfire in 1991 and the current one in 2013. The objectives were to: (i) compare the current and previous vegetation cover to widlfire; (ii) evaluate whether the current vegetation has recovered the previous cover to wildfire; and (iii) determine the spatial variability of vegetation recovery after 22-years since the wildfire. The study area is located in Sierra de las Nieves, South of Spain. It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1500 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. Likewise, the Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover map were obtained by means of object-oriented classifications. Also, NDVI and PVI1 vegetation indexes were calculated and mapped for both years. Finally, some images transformations and kernel density images were applied to determine the most recovered areas and to map the spatial concentration of bare soil and pine cover areas in 1991 and 2013, respectively. According to the results, the combination of remote sensing and GIS analysis let map the most recovered areas affected by the wildfire in 1991. The vegetation indexes indicated that the vegetation cover in 2013 was still lower than that mapped just before the 1991 widlfire in most of the burned area after 22-years. This result was also confirmed by other techniques applied. Finally, the kernel density surface let identify and locate the most recovered areas of pine cover as well as those areas that still remain totally or partially uncovered (bare soil.

  4. Satellite Snow-Cover Mapping: A Brief Review

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.

    1995-01-01

    Satellite snow mapping has been accomplished since 1966, initially using data from the reflective part of the electromagnetic spectrum, and now also employing data from the microwave part of the spectrum. Visible and near-infrared sensors can provide excellent spatial resolution from space enabling detailed snow mapping. When digital elevation models are also used, snow mapping can provide realistic measurements of snow extent even in mountainous areas. Passive-microwave satellite data permit global snow cover to be mapped on a near-daily basis and estimates of snow depth to be made, but with relatively poor spatial resolution (approximately 25 km). Dense forest cover limits both techniques and optical remote sensing is limited further by cloudcover conditions. Satellite remote sensing of snow cover with imaging radars is still in the early stages of research, but shows promise at least for mapping wet or melting snow using C-band (5.3 GHz) synthetic aperture radar (SAR) data. Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) data beginning with the launch of the first EOS platform in 1998. Digital maps will be produced that will provide daily, and maximum weekly global snow, sea ice and lake ice cover at 1-km spatial resolution. Statistics will be generated on the extent and persistence of snow or ice cover in each pixel for each weekly map, cloudcover permitting. It will also be possible to generate snow- and ice-cover maps using MODIS data at 250- and 500-m resolution, and to study and map snow and ice characteristics such as albedo. been under development. Passive-microwave data offer the potential for determining not only snow cover, but snow water equivalent, depth and wetness under all sky conditions. A number of algorithms have been developed to utilize passive-microwave brightness temperatures to provide information on snow cover and water equivalent. The variability of vegetative Algorithms are being developed to map global snow and ice cover using Earth Algorithms to map global snow cover using passive-microwave data have also cover and of snow grain size, globally, limits the utility of a single algorithm to map global snow cover.

  5. Analysis of MODIS snow cover time series over the alpine regions as input for hydrological modeling

    NASA Astrophysics Data System (ADS)

    Notarnicola, Claudia; Rastner, Philipp; Irsara, Luca; Moelg, Nico; Bertoldi, Giacomo; Dalla Chiesa, Stefano; Endrizzi, Stefano; Zebisch, Marc

    2010-05-01

    Snow extent and relative physical properties are key parameters in hydrology, weather forecast and hazard warning as well as in climatological models. Satellite sensors offer a unique advantage in monitoring snow cover due to their temporal and spatial synoptic view. The Moderate Resolution Imaging Spectrometer (MODIS) from NASA is especially useful for this purpose due to its high frequency. However, in order to evaluate the role of snow on the water cycle of a catchment such as runoff generation due to snowmelt, remote sensing data need to be assimilated in hydrological models. This study presents a comparison on a multi-temporal basis between snow cover data derived from (1) MODIS images, (2) LANDSAT images, and (3) predictions by the hydrological model GEOtop [1,3]. The test area is located in the catchment of the Matscher Valley (South Tyrol, Northern Italy). The snow cover maps derived from MODIS-images are obtained using a newly developed algorithm taking into account the specific requirements of mountain regions with a focus on the Alps [2]. This algorithm requires the standard MODIS-products MOD09 and MOD02 as input data and generates snow cover maps at a spatial resolution of 250 m. The final output is a combination of MODIS AQUA and MODIS TERRA snow cover maps, thus reducing the presence of cloudy pixels and no-data-values due to topography. By using these maps, daily time series starting from the winter season (November - May) 2002 till 2008/2009 have been created. Along with snow maps from MODIS images, also some snow cover maps derived from LANDSAT images have been used. Due to their high resolution (< 30 m) they have been considered as an evaluation tool. The snow cover maps are then compared with the hydrological GEOtop model outputs. The main objectives of this work are: 1. Evaluation of the MODIS snow cover algorithm using LANDSAT data 2. Investigation of snow cover, and snow cover duration for the area of interest for South Tyrol 3. Derivation and interpretation of the snow line for the seven winter seasons 4. An evaluation of the model outputs in order to determine the situations in which the remotely sensed data can be used to improve the model prediction of snow coverage and related variables References [1] Rigon R., Bertoldi G. and Over T.M. 2006. GEOtop: A Distributed Hydrological Model with Coupled Water and Energy Budgets, Journal of Hydrometeorology, 7: 371-388. [2] Rastner P., Irsara L., Schellenberger T., Della Chiesa S., Bertoldi G., Endrizzi S., Notarnicola C., Steurer C., Zebisch M. 2009. Monitoraggio del manto nevoso in aree alpine con dati MODIS multi-temporali e modelli idrologici, 13th ASITA National Conference, 1-4.12.2009, Bari, Italy. [3] Zanotti F., Endrizzi S., Bertoldi G. and Rigon R. 2004. The GEOtop snow module. Hydrological Processes, 18: 3667-3679. DOI:10.1002/hyp.5794.

  6. Mapping trees outside forests using high-resolution aerial imagery: a comparison of pixel- and object-based classification approaches.

    PubMed

    Meneguzzo, Dacia M; Liknes, Greg C; Nelson, Mark D

    2013-08-01

    Discrete trees and small groups of trees in nonforest settings are considered an essential resource around the world and are collectively referred to as trees outside forests (ToF). ToF provide important functions across the landscape, such as protecting soil and water resources, providing wildlife habitat, and improving farmstead energy efficiency and aesthetics. Despite the significance of ToF, forest and other natural resource inventory programs and geospatial land cover datasets that are available at a national scale do not include comprehensive information regarding ToF in the United States. Additional ground-based data collection and acquisition of specialized imagery to inventory these resources are expensive alternatives. As a potential solution, we identified two remote sensing-based approaches that use free high-resolution aerial imagery from the National Agriculture Imagery Program (NAIP) to map all tree cover in an agriculturally dominant landscape. We compared the results obtained using an unsupervised per-pixel classifier (independent component analysis-[ICA]) and an object-based image analysis (OBIA) procedure in Steele County, Minnesota, USA. Three types of accuracy assessments were used to evaluate how each method performed in terms of: (1) producing a county-level estimate of total tree-covered area, (2) correctly locating tree cover on the ground, and (3) how tree cover patch metrics computed from the classified outputs compared to those delineated by a human photo interpreter. Both approaches were found to be viable for mapping tree cover over a broad spatial extent and could serve to supplement ground-based inventory data. The ICA approach produced an estimate of total tree cover more similar to the photo-interpreted result, but the output from the OBIA method was more realistic in terms of describing the actual observed spatial pattern of tree cover.

  7. Simultaneous comparison and assessment of eight remotely sensed maps of Philippine forests

    NASA Astrophysics Data System (ADS)

    Estoque, Ronald C.; Pontius, Robert G.; Murayama, Yuji; Hou, Hao; Thapa, Rajesh B.; Lasco, Rodel D.; Villar, Merlito A.

    2018-05-01

    This article compares and assesses eight remotely sensed maps of Philippine forest cover in the year 2010. We examined eight Forest versus Non-Forest maps reclassified from eight land cover products: the Philippine Land Cover, the Climate Change Initiative (CCI) Land Cover, the Landsat Vegetation Continuous Fields (VCF), the MODIS VCF, the MODIS Land Cover Type product (MCD12Q1), the Global Tree Canopy Cover, the ALOS-PALSAR Forest/Non-Forest Map, and the GlobeLand30. The reference data consisted of 9852 randomly distributed sample points interpreted from Google Earth. We created methods to assess the maps and their combinations. Results show that the percentage of the Philippines covered by forest ranges among the maps from a low of 23% for the Philippine Land Cover to a high of 67% for GlobeLand30. Landsat VCF estimates 36% forest cover, which is closest to the 37% estimate based on the reference data. The eight maps plus the reference data agree unanimously on 30% of the sample points, of which 11% are attributable to forest and 19% to non-forest. The overall disagreement between the reference data and Philippine Land Cover is 21%, which is the least among the eight Forest versus Non-Forest maps. About half of the 9852 points have a nested structure such that the forest in a given dataset is a subset of the forest in the datasets that have more forest than the given dataset. The variation among the maps regarding forest quantity and allocation relates to the combined effects of the various definitions of forest and classification errors. Scientists and policy makers must consider these insights when producing future forest cover maps and when establishing benchmarks for forest cover monitoring.

  8. Quantifying landscape pattern and assessing the land cover changes in Piatra Craiului National Park and Bucegi Natural Park, Romania, using satellite imagery and landscape metrics.

    PubMed

    Vorovencii, Iosif

    2015-11-01

    Protected areas of Romania have enjoyed particular importance after 1989, but, at the same time, they were subject to different anthropogenic and natural pressures which resulted in the occurrence of land cover changes. These changes have generally led to landscape degradation inside and at the borders of the protected areas. In this article, 12 landscape metrics were used in order to quantify landscape pattern and assess land cover changes in two protected areas, Piatra Craiului National Park (PCNP) and Bucegi Natural Park (BNP). The landscape metrics were obtained from land cover maps derived from Landsat Thematic Mapper (TM) and Landsat Enhanced Thematic Mapper Plus (ETM+) images from 1987, 1993, 2000, 2009 and 2010. Three land cover classes were analysed in PCNP and five land cover map classes in BNP. The results show a landscape fragmentation trend for both parks, affecting different types of land covers. Between 1987 and 2010, in PCNP fragmentation was, in principle, the result not only of anthropogenic activities such as forest cuttings and illegal logging but also of natural causes. In BNP, between 1987 and 2009, the fragmentation affected the pasture which resulted in the occurrence of bare land and rocky areas because of the erosion on the Bucegi Plateau.

  9. Small covers of graph-associahedra and realization of cycles

    NASA Astrophysics Data System (ADS)

    Gaifullin, A. A.

    2016-11-01

    An oriented connected closed manifold M^n is called a URC-manifold if for any oriented connected closed manifold N^n of the same dimension there exists a nonzero-degree mapping of a finite-fold covering \\widehat{M}^n of M^n onto N^n. This condition is equivalent to the following: for any n-dimensional integral homology class of any topological space X, a multiple of it can be realized as the image of the fundamental class of a finite-fold covering \\widehat{M}^n of M^n under a continuous mapping f\\colon \\widehat{M}^n\\to X. In 2007 the author gave a constructive proof of Thom's classical result that a multiple of any integral homology class can be realized as an image of the fundamental class of an oriented smooth manifold. This construction yields the existence of URC-manifolds of all dimensions. For an important class of manifolds, the so-called small covers of graph-associahedra corresponding to connected graphs, we prove that either they or their two-fold orientation coverings are URC-manifolds. In particular, we obtain that the two-fold covering of the small cover of the usual Stasheff associahedron is a URC-manifold. In dimensions 4 and higher, this manifold is simpler than all the previously known URC-manifolds. Bibliography: 39 titles.

  10. A large-area, spatially continuous assessment of land cover map error and its impact on downstream analyses.

    PubMed

    Estes, Lyndon; Chen, Peng; Debats, Stephanie; Evans, Tom; Ferreira, Stefanus; Kuemmerle, Tobias; Ragazzo, Gabrielle; Sheffield, Justin; Wolf, Adam; Wood, Eric; Caylor, Kelly

    2018-01-01

    Land cover maps increasingly underlie research into socioeconomic and environmental patterns and processes, including global change. It is known that map errors impact our understanding of these phenomena, but quantifying these impacts is difficult because many areas lack adequate reference data. We used a highly accurate, high-resolution map of South African cropland to assess (1) the magnitude of error in several current generation land cover maps, and (2) how these errors propagate in downstream studies. We first quantified pixel-wise errors in the cropland classes of four widely used land cover maps at resolutions ranging from 1 to 100 km, and then calculated errors in several representative "downstream" (map-based) analyses, including assessments of vegetative carbon stocks, evapotranspiration, crop production, and household food security. We also evaluated maps' spatial accuracy based on how precisely they could be used to locate specific landscape features. We found that cropland maps can have substantial biases and poor accuracy at all resolutions (e.g., at 1 km resolution, up to ∼45% underestimates of cropland (bias) and nearly 50% mean absolute error (MAE, describing accuracy); at 100 km, up to 15% underestimates and nearly 20% MAE). National-scale maps derived from higher-resolution imagery were most accurate, followed by multi-map fusion products. Constraining mapped values to match survey statistics may be effective at minimizing bias (provided the statistics are accurate). Errors in downstream analyses could be substantially amplified or muted, depending on the values ascribed to cropland-adjacent covers (e.g., with forest as adjacent cover, carbon map error was 200%-500% greater than in input cropland maps, but ∼40% less for sparse cover types). The average locational error was 6 km (600%). These findings provide deeper insight into the causes and potential consequences of land cover map error, and suggest several recommendations for land cover map users. © 2017 John Wiley & Sons Ltd.

  11. Vegetation canopy structure from NASA EOS multiangle imaging

    USDA-ARS?s Scientific Manuscript database

    We used red band bidirectional reflectance data from the NASA Multiangle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS) mapped onto a 250 m grid in a multiangle approach to obtain estimates of woody plant fractional cover and crown height through adjus...

  12. Vegetation and terrain mapping in Alaska using Landsat MSS and digital terrain data

    USGS Publications Warehouse

    Shasby, Mark; Carneggie, David M.

    1986-01-01

    During the past 5 years, the U.S. Geological Survey's (USGS) Earth Resources Observation Systems (EROS) Data Center Field Office in Anchorage, Alaska has worked cooperatively with Federal and State resource management agencies to produce land-cover and terrain maps for 245 million acres of Alaska. The need for current land-cover information in Alaska comes principally from the mandates of the Alaska National Interest Lands Conservation Act (ANILCA), December 1980, which requires major land management agencies to prepare comprehensive management plans. The land-cover mapping projects integrate digital Landsat data, terrain data, aerial photographs, and field data. The resultant land-cover and terrain maps and associated data bases are used for resource assessment, management, and planning by many Alaskan agencies including the U.S. Fish and Wildlife Service, U.S. Forest Service, Bureau of Land Management, and Alaska Department of Natural Resources. Applications addressed through use of the digital land-cover and terrain data bases range from comprehensive refuge planning to multiphased sampling procedures designed to inventory vegetation statewide. The land-cover mapping programs in Alaska demonstrate the operational utility of digital Landsat data and have resulted in a new land-cover mapping program by the USGS National Mapping Division to compile 1:250,000-scale land-cover maps in Alaska using a common statewide land-cover map legend.

  13. Robust flood area detection using a L-band synthetic aperture radar: Preliminary application for Florida, the U.S. affected by Hurricane Irma

    NASA Astrophysics Data System (ADS)

    Nagai, H.; Ohki, M.; Abe, T.

    2017-12-01

    Urgent crisis response for a hurricane-induced flood needs urgent providing of a flood map covering a broad region. However, there is no standard threshold values for automatic flood identification from pre-and-post images obtained by satellite-based synthetic aperture radars (SARs). This problem could hamper prompt data providing for operational uses. Furthermore, one pre-flood SAR image does not always represent potential water surfaces and river flows especially in tropical flat lands which are greatly influenced by seasonal precipitation cycle. We are, therefore, developing a new method of flood mapping using PALSAR-2, an L-band SAR, which is less affected by temporal surface changes. Specifically, a mean-value image and a standard-deviation image are calculated from a series of pre-flood SAR images. It is combined with a post-flood SAR image to obtain normalized backscatter amplitude difference (NoBADi), with which a difference between a post-flood image and a mean-value image is divided by a standard-deviation image to emphasize anomalous water extents. Flooding areas are then automatically obtained from the NoBADi images as lower-value pixels avoiding potential water surfaces. We applied this method to PALSAR-2 images acquired on Sept. 8, 10, and 12, 2017, covering flooding areas in a central region of Dominican Republic and west Florida, the U.S. affected by Hurricane Irma. The output flooding outlines are validated with flooding areas manually delineated from high-resolution optical satellite images, resulting in higher consistency and less uncertainty than previous methods (i.e., a simple pre-and-post flood difference and pre-and-post coherence changes). The NoBADi method has a great potential to obtain a reliable flood map for future flood hazards, not hampered by cloud cover, seasonal surface changes, and "casual" thresholds in the flood identification process.

  14. Application of LANDSAT imagery for snow mapping in Norway

    NASA Technical Reports Server (NTRS)

    Odegaard, H. (Principal Investigator); Ostrem, G.

    1977-01-01

    The author has identified the following significant results. It was shown that if the snow cover extent was determined from all four LANDSAT bands, there were significant differences in results. The MSS 4 gave the largest snow cover, but only slightly more than MSS 5, whereas MSS 6 and 7 gave the smallest snow area. A study was made to show that there was a relationship between the last date of snow fall and the area covered with snow, as determined from different bands. Imagery obtained shortly after a snow fall showed no significant difference in the snow-covered area when the four bans were compared, whereas, pronounced differences in the snow-covered area were found in images taken after a long period without precipitation.

  15. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.

    1990-01-01

    Passive microwave data collected by Nimbus 7 were used to classify and monitor the Arctic multilayer sea ice cover. Sea ice concentration maps during several summer minima are analyzed to obtain estimates of ice floes that survived summer, and the results are compared with multiyear-ice concentrations derived from these data by using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data was found to be about 25 to 40 percent less than the summer ice-cover minimum, indicating that the multiyear ice cover in winter is inadequately represented by the passive microwave winter data and that a significant fraction of the Arctic multiyear ice floes exhibits a first-year ice signature.

  16. Mapping land cover through time with the Rapid Land Cover Mapper—Documentation and user manual

    USGS Publications Warehouse

    Cotillon, Suzanne E.; Mathis, Melissa L.

    2017-02-15

    The Rapid Land Cover Mapper is an Esri ArcGIS® Desktop add-in, which was created as an alternative to automated or semiautomated mapping methods. Based on a manual photo interpretation technique, the tool facilitates mapping over large areas and through time, and produces time-series raster maps and associated statistics that characterize the changing landscapes. The Rapid Land Cover Mapper add-in can be used with any imagery source to map various themes (for instance, land cover, soils, or forest) at any chosen mapping resolution. The user manual contains all essential information for the user to make full use of the Rapid Land Cover Mapper add-in. This manual includes a description of the add-in functions and capabilities, and step-by-step procedures for using the add-in. The Rapid Land Cover Mapper add-in was successfully used by the U.S. Geological Survey West Africa Land Use Dynamics team to accurately map land use and land cover in 17 West African countries through time (1975, 2000, and 2013).

  17. Glacier Surface Lowering and Stagnation in the Manaslu Region of Nepal

    NASA Astrophysics Data System (ADS)

    Robson, B. A.; Nuth, C.; Nielsen, P. R.; Hendrickx, M.; Dahl, S. O.

    2015-12-01

    Frequent and up-to-date glacier outlines are needed for many applications of glaciology, not only glacier area change analysis, but also for masks in volume or velocity analysis, for the estimation of water resources and as model input data. Remote sensing offers a good option for creating glacier outlines over large areas, but manual correction is frequently necessary, especially in areas containing supraglacial debris. We show three different workflows for mapping clean ice and debris-covered ice within Object Based Image Analysis (OBIA). By working at the object level as opposed to the pixel level, OBIA facilitates using contextual, spatial and hierarchical information when assigning classes, and additionally permits the handling of multiple data sources. Our first example shows mapping debris-covered ice in the Manaslu Himalaya, Nepal. SAR Coherence data is used in combination with optical and topographic data to classify debris-covered ice, obtaining an accuracy of 91%. Our second example shows using a high-resolution LiDAR derived DEM over the Hohe Tauern National Park in Austria. Breaks in surface morphology are used in creating image objects; debris-covered ice is then classified using a combination of spectral, thermal and topographic properties. Lastly, we show a completely automated workflow for mapping glacier ice in Norway. The NDSI and NIR/SWIR band ratio are used to map clean ice over the entire country but the thresholds are calculated automatically based on a histogram of each image subset. This means that in theory any Landsat scene can be inputted and the clean ice can be automatically extracted. Debris-covered ice can be included semi-automatically using contextual and morphological information.

  18. Temporal expansion of annual crop classification layers for the CONUS using the C5 decision tree classifier

    USGS Publications Warehouse

    Friesz, Aaron M.; Wylie, Bruce K.; Howard, Daniel M.

    2017-01-01

    Crop cover maps have become widely used in a range of research applications. Multiple crop cover maps have been developed to suite particular research interests. The National Agricultural Statistics Service (NASS) Cropland Data Layers (CDL) are a series of commonly used crop cover maps for the conterminous United States (CONUS) that span from 2008 to 2013. In this investigation, we sought to contribute to the availability of consistent CONUS crop cover maps by extending temporal coverage of the NASS CDL archive back eight additional years to 2000 by creating annual NASS CDL-like crop cover maps derived from a classification tree model algorithm. We used over 11 million records to train a classification tree algorithm and develop a crop classification model (CCM). The model was used to create crop cover maps for the CONUS for years 2000–2013 at 250 m spatial resolution. The CCM and the maps for years 2008–2013 were assessed for accuracy relative to resampled NASS CDLs. The CCM performed well against a withheld test data set with a model prediction accuracy of over 90%. The assessment of the crop cover maps indicated that the model performed well spatially, placing crop cover pixels within their known domains; however, the model did show a bias towards the ‘Other’ crop cover class, which caused frequent misclassifications of pixels around the periphery of large crop cover patch clusters and of pixels that form small, sparsely dispersed crop cover patches.

  19. Estimation of evapotranspiration across the conterminous United States using a regression with climate and land-cover data

    USGS Publications Warehouse

    Sanford, Ward E.; Selnick, David L.

    2013-01-01

    Evapotranspiration (ET) is an important quantity for water resource managers to know because it often represents the largest sink for precipitation (P) arriving at the land surface. In order to estimate actual ET across the conterminous United States (U.S.) in this study, a water-balance method was combined with a climate and land-cover regression equation. Precipitation and streamflow records were compiled for 838 watersheds for 1971-2000 across the U.S. to obtain long-term estimates of actual ET. A regression equation was developed that related the ratio ET/P to climate and land-cover variables within those watersheds. Precipitation and temperatures were used from the PRISM climate dataset, and land-cover data were used from the USGS National Land Cover Dataset. Results indicate that ET can be predicted relatively well at a watershed or county scale with readily available climate variables alone, and that land-cover data can also improve those predictions. Using the climate and land-cover data at an 800-m scale and then averaging to the county scale, maps were produced showing estimates of ET and ET/P for the entire conterminous U.S. Using the regression equation, such maps could also be made for more detailed state coverages, or for other areas of the world where climate and land-cover data are plentiful.

  20. Evaluating the Synergistic Use of Low-Altitude AVIRIS and AIRSAR Data for Land Cover Mapping in Northeast Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Berglund, Judith; Spruce, Joseph

    2001-01-01

    Current land cover maps are needed by Yellowstone National Park (YNP) managers to assist them in protecting and preserving native flora and fauna. Synergistic use of hyperspectral and radar imagery offers great promise for mapping habitat in terms of cover type composition and structure. In response, a study was conducted to assess the utility of combining low-altitude AVIRIS and AIRSAR data for mapping land cover in a portion of northeast YNP. Land cover maps were produced from individual AVIRIS and AIRSAR data sets, as well as from a hybrid data stack of selected AVIRIS and AIRSAR data bands. The three resulting classifications were compared to field survey data and aerial photography to assess apparent benefits of hyperspectral/SAR data fusion for land cover mapping. Preliminary results will be presented.

  1. Venus gravity anomalies and their correlations with topography

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Bills, B. G.; Birkeland, P. W.; Esposito, P. B.; Konopliv, A. R.; Mottinger, N. A.; Ritke, S. J.; Phillips, R. J.

    1983-01-01

    This report provides a summary of the high-resolution gravity data obtained from the Pioneer Venus Orbiter radio tracking data. Gravity maps, covering a 70 deg latitude band through 360 deg of longitude, are displayed as line-of-sight and vertical gravity. Topography converted to gravity and Bouguer gravity maps are also shown in both systems. Topography to gravity ratios are made over several regions of the planet. There are markedly different ratios for the Aphrodite area as compared to the Beta and Atla areas.

  2. Rapid Crop Cover Mapping for the Conterminous United States.

    PubMed

    Dahal, Devendra; Wylie, Bruce; Howard, Danny

    2018-06-05

    Timely crop cover maps with sufficient resolution are important components to various environmental planning and research applications. Through the modification and use of a previously developed crop classification model (CCM), which was originally developed to generate historical annual crop cover maps, we hypothesized that such crop cover maps could be generated rapidly during the growing season. Through a process of incrementally removing weekly and monthly independent variables from the CCM and implementing a 'two model mapping' approach, we found it viable to generate conterminous United States-wide rapid crop cover maps at a resolution of 250 m for the current year by the month of September. In this approach, we divided the CCM model into one 'crop type model' to handle the classification of nine specific crops and a second, binary model to classify the presence or absence of 'other' crops. Under the two model mapping approach, the training errors were 0.8% and 1.5% for the crop type and binary model, respectively, while test errors were 5.5% and 6.4%, respectively. With spatial mapping accuracies for annual maps reaching upwards of 70%, this approach demonstrated a strong potential for generating rapid crop cover maps by the 1 st of September.

  3. DMA (Defense Mapping Agency): The Digital Revolution,

    DTIC Science & Technology

    1984-06-21

    8217 , 𔃿DEFENSE APPING AGENCY: * TIlE DIGITAL REVOLUTION .. ..4 8 .O44 9 5* ; n : . . ., -. n I , . , : ’ . , , - n .’ ’.’- ;; : - COVER FIGURES Top... orthophoto bases. Development of the Continental Control Network and the procurement of an Off- Line Ortho-Photo System has expanded our ability to obtain

  4. Third Earth Resources Technology Satellite-1 Symposium. Volume 1: Technical Presentations, section A

    NASA Technical Reports Server (NTRS)

    Freden, S. C. (Compiler); Mercanti, E. P. (Compiler); Becker, M. A. (Compiler)

    1974-01-01

    Papers presented at the Third Symposium on Significant Results Obtained from the first Earth Resources Technology Satellite covered the areas of: agriculture, forestry, range resources, land use, mapping, mineral resources, geological structure, landform surveys, water resources, marine resources, environment surveys, and interpretation techniques.

  5. Employing airborne multispectral digital imagery to map Brazilian pepper infestation in south Texas.

    USDA-ARS?s Scientific Manuscript database

    A study was conducted in south Texas to determine the feasibility of using airborne multispectral digital imagery for differentiating the invasive plant Brazilian pepper (Schinus terebinthifolius) from other cover types. Imagery obtained in the visible, near infrared, and mid infrared regions of th...

  6. Large-scale assessment of soil erosion in Africa: satellites help to jointly account for dynamic rainfall and vegetation cover

    NASA Astrophysics Data System (ADS)

    Vrieling, Anton; Hoedjes, Joost C. B.; van der Velde, Marijn

    2015-04-01

    Efforts to map and monitor soil erosion need to account for the erratic nature of the soil erosion process. Soil erosion by water occurs on sloped terrain when erosive rainfall and consequent surface runoff impact soils that are not well-protected by vegetation or other soil protective measures. Both rainfall erosivity and vegetation cover are highly variable through space and time. Due to data paucity and the relative ease of spatially overlaying geographical data layers into existing models like USLE (Universal Soil Loss Equation), many studies and mapping efforts merely use average annual values for erosivity and vegetation cover as input. We first show that rainfall erosivity can be estimated from satellite precipitation data. We obtained average annual erosivity estimates from 15 yr of 3-hourly TRMM Multi-satellite Precipitation Analysis (TMPA) data (1998-2012) using intensity-erosivity relationships. Our estimates showed a positive correlation (r = 0.84) with long-term annual erosivity values of 37 stations obtained from literature. Using these TMPA erosivity retrievals, we demonstrate the large interannual variability, with maximum annual erosivity often exceeding two to three times the mean value, especially in semi-arid areas. We then calculate erosivity at a 10-daily time-step and combine this with vegetation cover development for selected locations in Africa using NDVI - normalized difference vegetation index - time series from SPOT VEGETATION. Although we do not integrate the data at this point, the joint analysis of both variables stresses the need for joint accounting for erosivity and vegetation cover for large-scale erosion assessment and monitoring.

  7. Near-real-time cheatgrass percent cover in the Northern Great Basin, USA, 2015

    USGS Publications Warehouse

    Boyte, Stephen; Wylie, Bruce K.

    2016-01-01

    Cheatgrass (Bromus tectorum L.) dramatically changes shrub steppe ecosystems in the Northern Great Basin, United States.Current-season cheatgrass location and percent cover are difficult to estimate rapidly.We explain the development of a near-real-time cheatgrass percent cover dataset and map in the Northern Great Basin for the current year (2015), display the current year’s map, provide analysis of the map, and provide a website link to download the map (as a PDF) and the associated dataset.The near-real-time cheatgrass percent cover dataset and map were consistent with non-expedited, historical cheatgrass percent cover datasets and maps.Having cheatgrass maps available mid-summer can help land managers, policy makers, and Geographic Information Systems personnel as they work to protect socially relevant areas such as critical wildlife habitats.

  8. GlobCorine- A Joint EEA-ESA Project for Operational Land Cover and Land Use Mapping at Pan-European Scale

    NASA Astrophysics Data System (ADS)

    Bontemps, S.; Defourny, P.; Van Bogaert, E.; Weber, J. L.; Arino, O.

    2010-12-01

    Regular and global land cover mapping contributes to evaluating the impact of human activities on the environment. Jointly supported by the European Space Agency and the European Environmental Agency, the GlobCorine project builds on the GlobCover findings and aims at making the full use of the MERIS time series for frequent land cover monitoring. The GlobCover automated classification approach has been tuned to the pan-European continent and adjusted towards a classification compatible with the Corine typology. The GlobCorine 2005 land cover map has been achieved, validated and made available to a broad- level stakeholder community from the ESA website. A first version of the GlobCorine 2009 map has also been produced, demonstrating the possibility for an operational production of frequent and updated global land cover maps.

  9. Integrating in-situ, Landsat, and MODIS data for mapping in Southern African savannas: experiences of LCCS-based land-cover mapping in the Kalahari in Namibia.

    PubMed

    Hüttich, Christian; Herold, Martin; Strohbach, Ben J; Dech, Stefan

    2011-05-01

    Integrated ecosystem assessment initiatives are important steps towards a global biodiversity observing system. Reliable earth observation data are key information for tracking biodiversity change on various scales. Regarding the establishment of standardized environmental observation systems, a key question is: What can be observed on each scale and how can land cover information be transferred? In this study, a land cover map from a dry semi-arid savanna ecosystem in Namibia was obtained based on the UN LCCS, in-situ data, and MODIS and Landsat satellite imagery. In situ botanical relevé samples were used as baseline data for the definition of a standardized LCCS legend. A standard LCCS code for savanna vegetation types is introduced. An object-oriented segmentation of Landsat imagery was used as intermediate stage for downscaling in-situ training data on a coarse MODIS resolution. MODIS time series metrics of the growing season 2004/2005 were used to classify Kalahari vegetation types using a tree-based ensemble classifier (Random Forest). The prevailing Kalahari vegetation types based on LCCS was open broadleaved deciduous shrubland with an herbaceous layer which differs from the class assignments of the global and regional land-cover maps. The separability analysis based on Bhattacharya distance measurements applied on two LCCS levels indicated a relationship of spectral mapping dependencies of annual MODIS time series features due to the thematic detail of the classification scheme. The analysis of LCCS classifiers showed an increased significance of life-form composition and soil conditions to the mapping accuracy. An overall accuracy of 92.48% was achieved. Woody plant associations proved to be most stable due to small omission and commission errors. The case study comprised a first suitability assessment of the LCCS classifier approach for a southern African savanna ecosystem.

  10. Aircraft and satellite remote sensing of desert soils and landscapes

    NASA Technical Reports Server (NTRS)

    Petersen, G. W.; Connors, K. F.; Miller, D. A.; Day, R. L.; Gardner, T. W.

    1987-01-01

    Remote sensing data on desert soils and landscapes, obtained by the Landsat TM, Heat Capacity Mapping Mission (HCMM), Simulated SPOT, and Thermal IR Multispectral Scanner (TIMS) aboard an aircraft, are discussed together with the analytical techniques used in the studies. The TM data for southwestern Nevada were used to discriminate among the alluvial fan deposits with different degrees of desert pavement and varnish, and different vegetation cover. Thermal-IR data acquired from the HCMM satellite were used to map the spatial distribution of diurnal surface temperatures and to estimate mean annual soil temperatures in central Utah. Simulated SPOT data for northwestern New Mexico identified geomorphic features, such as differences in eolian sand cover and fluvial incision, while the TIMS data depicted surface geologic features of the Saline Valley in California.

  11. Geomorphological mapping of ice-free areas using polarimetric RADARSAT-2 data on Fildes Peninsula and Ardley Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Schmid, T.; López-Martínez, J.; Guillaso, S.; Serrano, E.; D'Hondt, O.; Koch, M.; Nieto, A.; O'Neill, T.; Mink, S.; Durán, J. J.; Maestro, A.

    2017-09-01

    Satellite-borne Synthetic Aperture Radar (SAR) has been used for characterizing and mapping in two relevant ice-free areas in the South Shetland Islands. The objective has been to identify and characterize land surface covers that mainly include periglacial and glacial landforms, using fully polarimetric SAR C band RADARSAT-2 data, on Fildes Peninsula that forms part of King George Island, and Ardley Island. Polarimetric parameters obtained from the SAR data, a selection of field based training and validation sites and a supervised classification approach, using the support vector machine were chosen to determine the spatial distribution of the different landforms. Eight periglacial and glacial landforms were characterized according to their scattering mechanisms using a set of 48 polarimetric parameters. The mapping of the most representative surface covers included colluvial deposits, stone fields and pavements, patterned ground, glacial till and rock outcrops, lakes and glacier ice. The overall accuracy of the results was estimated at 81%, a significant value when mapping areas that are within isolated regions where access is limited. Periglacial surface covers such as stone fields and pavements occupy 25% and patterned ground over 20% of the ice-free areas. These are results that form the basis for an extensive monitoring of the ice-free areas throughout the northern Antarctic Peninsula region.

  12. Seismic design parameters - A user guide

    USGS Publications Warehouse

    Leyendecker, E.V.; Frankel, A.D.; Rukstales, K.S.

    2001-01-01

    The 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings (1997 NEHRP Provisions) introduced seismic design procedure that is based on the explicit use of spectral response acceleration rather than the traditional peak ground acceleration and/or peak ground velocity or zone factors. The spectral response accelerations are obtained from spectral response acceleration maps accompanying the report. Maps are available for the United States and a number of U.S. territories. Since 1997 additional codes and standards have also adopted seismic design approaches based on the same procedure used in the NEHRP Provisions and the accompanying maps. The design documents using the 1997 NEHRP Provisions procedure may be divided into three categories -(1) Design of New Construction, (2) Design and Evaluation of Existing Construction, and (3) Design of Residential Construction. A CD-ROM has been prepared for use in conjunction with the design documents in each of these three categories. The spectral accelerations obtained using the software on the CD are the same as those that would be obtained by using the maps accompanying the design documents. The software has been prepared to operate on a personal computer using a Windows (Microsoft Corporation) operating environment and a point and click type of interface. The user can obtain the spectral acceleration values that would be obtained by use of the maps accompanying the design documents, include site factors appropriate for the Site Class provided by the user, calculate a response spectrum that includes the site factor, and plot a response spectrum. Sites may be located by providing the latitude-longitude or zip code for all areas covered by the maps. All of the maps used in the various documents are also included on the CDROM

  13. Proposed hybrid-classifier ensemble algorithm to map snow cover area

    NASA Astrophysics Data System (ADS)

    Nijhawan, Rahul; Raman, Balasubramanian; Das, Josodhir

    2018-01-01

    Metaclassification ensemble approach is known to improve the prediction performance of snow-covered area. The methodology adopted in this case is based on neural network along with four state-of-art machine learning algorithms: support vector machine, artificial neural networks, spectral angle mapper, K-mean clustering, and a snow index: normalized difference snow index. An AdaBoost ensemble algorithm related to decision tree for snow-cover mapping is also proposed. According to available literature, these methods have been rarely used for snow-cover mapping. Employing the above techniques, a study was conducted for Raktavarn and Chaturangi Bamak glaciers, Uttarakhand, Himalaya using multispectral Landsat 7 ETM+ (enhanced thematic mapper) image. The study also compares the results with those obtained from statistical combination methods (majority rule and belief functions) and accuracies of individual classifiers. Accuracy assessment is performed by computing the quantity and allocation disagreement, analyzing statistic measures (accuracy, precision, specificity, AUC, and sensitivity) and receiver operating characteristic curves. A total of 225 combinations of parameters for individual classifiers were trained and tested on the dataset and results were compared with the proposed approach. It was observed that the proposed methodology produced the highest classification accuracy (95.21%), close to (94.01%) that was produced by the proposed AdaBoost ensemble algorithm. From the sets of observations, it was concluded that the ensemble of classifiers produced better results compared to individual classifiers.

  14. Unmanned Aerial Vehicles Produce High-Resolution Seasonally-Relevant Imagery for Classifying Wetland Vegetation

    NASA Astrophysics Data System (ADS)

    Marcaccio, J. V.; Markle, C. E.; Chow-Fraser, P.

    2015-08-01

    With recent advances in technology, personal aerial imagery acquired with unmanned aerial vehicles (UAVs) has transformed the way ecologists can map seasonal changes in wetland habitat. Here, we use a multi-rotor (consumer quad-copter, the DJI Phantom 2 Vision+) UAV to acquire a high-resolution (< 8 cm) composite photo of a coastal wetland in summer 2014. Using validation data collected in the field, we determine if a UAV image and SWOOP (Southwestern Ontario Orthoimagery Project) image (collected in spring 2010) differ in their classification of type of dominant vegetation type and percent cover of three plant classes: submerged aquatic vegetation, floating aquatic vegetation, and emergent vegetation. The UAV imagery was more accurate than available SWOOP imagery for mapping percent cover of submergent and floating vegetation categories, but both were able to accurately determine the dominant vegetation type and percent cover of emergent vegetation. Our results underscore the value and potential for affordable UAVs (complete quad-copter system < 3,000 CAD) to revolutionize the way ecologists obtain imagery and conduct field research. In Canada, new UAV regulations make this an easy and affordable way to obtain multiple high-resolution images of small (< 1.0 km2) wetlands, or portions of larger wetlands throughout a year.

  15. Shrub Abundance Mapping in Arctic Tundra with Misr

    NASA Astrophysics Data System (ADS)

    Duchesne, R.; Chopping, M. J.; Wang, Z.; Schaaf, C.; Tape, K. D.

    2013-12-01

    Over the last 60 years an increase in shrub abundance has been observed in the Arctic tundra in connection with a rapid surface warming trend. Rapid shrub expansion may have consequences in terms of ecosystem structure and function, albedo, and feedbacks to climate; however, its rate is not yet known. The goal of this research effort is thus to map large scale changes in Arctic tundra vegetation by exploiting the structural signal in moderate resolution satellite remote sensing images from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped onto a 250m Albers Conic Equal Area grid. We present here large area shrub mapping supported by reference data collated using extensive field inventory data and high resolution panchromatic imagery. MISR Level 1B2 Terrain radiance scenes from the Terra satellite from 15 June-31 July, 2000 - 2010 were converted to surface bidirectional reflectance factors (BRF) using MISR Toolkit routines and the MISR 1 km LAND product BRFs. The red band data in all available cameras were used to invert the RossThick-LiSparse-Reciprocal BRDF model to retrieve kernel weights, model-fitting RMSE, and Weights of Determination. The reference database was constructed using aerial survey, three field campaigns (field inventory for shrub count, cover, mean radius and height), and high resolution imagery. Tall shrub number, mean crown radius, cover, and mean height estimates were obtained from QuickBird and GeoEye panchromatic image chips using the CANAPI algorithm, and calibrated using field-based estimates, thus extending the database to over eight hundred locations. Tall shrub fractional cover maps for the North Slope of Alaska were constructed using the bootstrap forest machine learning algorithm that exploits the surface information provided by MISR. The reference database was divided into two datasets for training and validation. The model derived used a set of 19 independent variables(the three kernel weights, ratios and interaction terms; white and black sky albedos; and blue, green, red, and NIR nadir camera BRFs), to grow a forest of decision trees. The final estimate is the average of the predicted values from each tree. Observations not used in constructing the trees were used in validation. The model was applied with a large volume of MISR data and the resulting fractional cover estimates were combined into annual maps using a compositing algorithm that flags results affected by cloud, cloud shadow, surface water, extreme outliers, topographic shading, and burned areas. The maps show that shrub cover is lower on the north slope in comparison to southern part, as expected, however, a preliminary assessment of the fractional cover change over the last decade, achieved by averaging fractional cover values for 2000-2002 and 2008-2010 and then calculating the change between the two periods, revealed that there are large areas for which we cannot determine the sign of the change with high confidence, as the precision of our estimate is close to the magnitude of the cover values. Additional research is thus required to reliably map shrub cover in this environment at annual intervals.

  16. Using National Drug Codes and drug knowledge bases to organize prescription records from multiple sources.

    PubMed

    Simonaitis, Linas; McDonald, Clement J

    2009-10-01

    The utility of National Drug Codes (NDCs) and drug knowledge bases (DKBs) in the organization of prescription records from multiple sources was studied. The master files of most pharmacy systems include NDCs and local codes to identify the products they dispense. We obtained a large sample of prescription records from seven different sources. These records carried a national product code or a local code that could be translated into a national product code via their formulary master. We obtained mapping tables from five DKBs. We measured the degree to which the DKB mapping tables covered the national product codes carried in or associated with the sample of prescription records. Considering the total prescription volume, DKBs covered 93.0-99.8% of the product codes from three outpatient sources and 77.4-97.0% of the product codes from four inpatient sources. Among the in-patient sources, invented codes explained 36-94% of the noncoverage. Outpatient pharmacy sources rarely invented codes, which comprised only 0.11-0.21% of their total prescription volume, compared with inpatient pharmacy sources for which invented codes comprised 1.7-7.4% of their prescription volume. The distribution of prescribed products was highly skewed, with 1.4-4.4% of codes accounting for 50% of the message volume and 10.7-34.5% accounting for 90% of the message volume. DKBs cover the product codes used by outpatient sources sufficiently well to permit automatic mapping. Changes in policies and standards could increase coverage of product codes used by inpatient sources.

  17. Obtaining land cover changes information from multitemporal analysis of Landsat-TM images: results from a case study in West African dryland

    NASA Astrophysics Data System (ADS)

    Nutini, F.; Boschetti, M.; Brivio, P. A.; Antoninetti, M.

    2012-04-01

    The Sahelian belt of West Africa is a semiarid region characterized by wide climate variations, which can in turn affect the livelihood of local populations particularly in rangeland areas, as happens during the dramatic food crisis in the 70-80s caused by rainfall scarcity. The monitoring of natural resources and rainfed agricultural activities, with the aim to provide information to support Sahelian food security action, needs the production of detailed thematic maps as emphasized by several scientific papers. In this framework, a study was conducted to develop a method to exploit time series of remote sensed satellite data to 1) provide reliable land cover (LC) map at local scale in a dry region and 2) obtain a LC change (LCC) map that contribute to identify the plausible causes of local environmental instability. Satellite images used for this work consist in a time series of Landsat Thematic Mapper (TM) (path row 195-50) acquired in the 2000 (6 scenes) and 2007 (9 scenes) from February (Dry season) to September (end of wet season). The study investigates the different contribution provided by spectra information of a single Landsat TM image and by time series of derived NDVI. Different tests have been conducted with different combination of data set (spectral and temporal)in order to identify the best approach to obtain a LC map in five classes of interest: Shrubland, Cultivated Land, Water body, Herbaceous vegetation and Bare soil. The best classification approach is exposed and applied on two years in the last decade. The comparison between this two LC results in land cover change map, that displays the changes of vegetation patterns that have been characterized the area. The discussed results show a largely stable dryland region, but locally characterized by hot-spot of decreasing in natural vegetation inside the rangelands and an increasing of cultivations along fossil valleys where human activities are slightly intense. The discussion shows that this hot-spot aren't fully explained by climatic variability as displayed by a comparison with rainfall satellite data, and suggest that there are localized area where vegetation development is driven by other anthropic factors which interfere in the dynamics of plant growing.

  18. Design and analysis for thematic map accuracy assessment: Fundamental principles

    Treesearch

    Stephen V. Stehman; Raymond L. Czaplewski

    1998-01-01

    Land-cover maps are used in numerous natural resource applications to describe the spatial distribution and pattern of land-cover, to estimate areal extent of various cover classes, or as input into habitat suitability models, land-cover change analyses, hydrological models, and risk analyses. Accuracy assessment quantifies data quality so that map users may evaluate...

  19. Land cover mapping for development planning in Eastern and Southern Africa

    NASA Astrophysics Data System (ADS)

    Oduor, P.; Flores Cordova, A. I.; Wakhayanga, J. A.; Kiema, J.; Farah, H.; Mugo, R. M.; Wahome, A.; Limaye, A. S.; Irwin, D.

    2016-12-01

    Africa continues to experience intensification of land use, driven by competition for resources and a growing population. Land cover maps are some of the fundamental datasets required by numerous stakeholders to inform a number of development decisions. For instance, they can be integrated with other datasets to create value added products such as vulnerability impact assessment maps, and natural capital accounting products. In addition, land cover maps are used as inputs into Greenhouse Gas (GHG) inventories to inform the Agriculture, Forestry and other Land Use (AFOLU) sector. However, the processes and methodologies of creating land cover maps consistent with international and national land cover classification schemes can be challenging, especially in developing countries where skills, hardware and software resources can be limiting. To meet this need, SERVIR Eastern and Southern Africa developed methodologies and stakeholder engagement processes that led to a successful initiative in which land cover maps for 9 countries (Malawi, Rwanda, Namibia, Botswana, Lesotho, Ethiopia, Uganda, Zambia and Tanzania) were developed, using 2 major classification schemes. The first sets of maps were developed based on an internationally acceptable classification system, while the second sets of maps were based on a nationally defined classification system. The mapping process benefited from reviews from national experts and also from technical advisory groups. The maps have found diverse uses, among them the definition of the Forest Reference Levels in Zambia. In Ethiopia, the maps have been endorsed by the national mapping agency as part of national data. The data for Rwanda is being used to inform the Natural Capital Accounting process, through the WAVES program, a World Bank Initiative. This work illustrates the methodologies and stakeholder engagement processes that brought success to this land cover mapping initiative.

  20. Land cover mapping of North and Central America—Global Land Cover 2000

    USGS Publications Warehouse

    Latifovic, Rasim; Zhu, Zhi-Liang

    2004-01-01

    The Land Cover Map of North and Central America for the year 2000 (GLC 2000-NCA), prepared by NRCan/CCRS and USGS/EROS Data Centre (EDC) as a regional component of the Global Land Cover 2000 project, is the subject of this paper. A new mapping approach for transforming satellite observations acquired by the SPOT4/VGTETATION (VGT) sensor into land cover information is outlined. The procedure includes: (1) conversion of daily data into 10-day composite; (2) post-seasonal correction and refinement of apparent surface reflectance in 10-day composite images; and (3) extraction of land cover information from the composite images. The pre-processing and mosaicking techniques developed and used in this study proved to be very effective in removing cloud contamination, BRDF effects, and noise in Short Wave Infra-Red (SWIR). The GLC 2000-NCA land cover map is provided as a regional product with 28 land cover classes based on modified Federal Geographic Data Committee/Vegetation Classification Standard (FGDC NVCS) classification system, and as part of a global product with 22 land cover classes based on Land Cover Classification System (LCCS) of the Food and Agriculture Organisation. The map was compared on both areal and per-pixel bases over North and Central America to the International Geosphere–Biosphere Programme (IGBP) global land cover classification, the University of Maryland global land cover classification (UMd) and the Moderate Resolution Imaging Spectroradiometer (MODIS) Global land cover classification produced by Boston University (BU). There was good agreement (79%) on the spatial distribution and areal extent of forest between GLC 2000-NCA and the other maps, however, GLC 2000-NCA provides additional information on the spatial distribution of forest types. The GLC 2000-NCA map was produced at the continental level incorporating specific needs of the region.

  1. Estimating vegetation vulnerability to detect areas prone to land degradation in the Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Imbrenda, Vito; Coluzzi, Rosa; D'Emilio, Mariagrazia; Lanfredi, Maria; Simoniello, Tiziana

    2013-04-01

    Vegetation is one of the key components to study land degradation vulnerability because of the complex interactions and feedbacks that link it to soil. In the Mediterranean region, degradation phenomena are due to a mix of predisposing factors (thin soil horizons, low soil organic matter, increasing aridity, etc.) and bad management practices (overgrazing, deforestation, intensification of agriculture, tourism development). In particular, in areas threatened by degradation processes but still covered by vegetation, large scale soil condition evaluation is a hard task and the detection of stressed vegetation can be useful to identify on-going soil degradation phenomena and to reduce their impacts through interventions for recovery/rehabilitation. In this context the use of satellite time series can increase the efficacy and completeness of the land degradation assessment, providing precious information to understand vegetation dynamics. In order to estimate vulnerability levels in Basilicata (a Mediterranean region of Southern Italy) in the framework of PRO-LAND project (PO-FESR Basilicata 2007-2013), we crossed information on potential vegetation vulnerability with information on photosynthetic activity dynamics. Potential vegetation vulnerability represents the vulnerability related to the type of present cover in terms of fire risk, erosion protection, drought resistance and plant cover distribution. It was derived from an updated land cover map by separately analyzing each factor, and then by combining them to obtain concise information on the possible degradation exposure. The analysis of photosynthetic activity dynamics provides information on the status of vegetation, that is fundamental to discriminate the different vulnerability levels within the same land cover, i.e. the same potential vulnerability. For such a purpose, we analyzed a time series (2000-2010) of a satellite vegetation index (MODIS NDVI) with 250m resolution, available as 16-day composite from the NASA LP DAAC dataset. Vegetation activity trends were estimated and then normalized to the starting conditions to obtain the percentage variation (NDVI-PV) for the considered period. Information on the potential vulnerability and vegetation activity dynamics were classified into indexes and combined to obtain the final map of the actual vegetation vulnerability and to identify on-going degradation phenomena and priority sites within areas already compromised. As for the investigated area, this map shows a composite picture in which only a few values of high vulnerability are scattered along areas where medium-high vulnerability values generally prevail. Here, we singled out two kind of areas: one largely devoted to intensive agriculture, and other one mostly characterized by bare soils and sparse vegetation. On the contrary, a large part of natural and seminatural vegetation located along the Apennine chain does not show critical vulnerability values. By comparing the vegetation vulnerability map with the vulnerability map due to anthropic factors (pressure induced by agricultural and grazing activities, estimated by indicators derived from census data), we found correlation, confirming the anthropogenic cause of vulnerability and therefore the major role held by soil management in areas mainly devoted to intensive farming.

  2. Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) Global Snow-Cover Maps

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; Scharfen, Greg R.

    2000-01-01

    Following the 1999 launch of the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), the capability exists to produce global snow-cover maps on a daily basis at 500-m resolution. Eight-day composite snow-cover maps will also be available. MODIS snow-cover products are produced at Goddard Space Flight Center and archived and distributed by the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado. The products are available in both orbital and gridded formats. An online search and order tool and user-services staff will be available at NSIDC to assist users with the snow products. The snow maps are available at a spatial resolution of 500 m, and 1/4 degree x 1/4 degree spatial resolution, and provide information on sub-pixel (fractional) snow cover. Pre-launch validation work has shown that the MODIS snow-mapping algorithms perform best under conditions of continuous snow cover in low vegetation areas, but can also map snow cover in dense forests. Post-launch validation activities will be performed using field and aircraft measurements from a February 2000 validation mission, as well as from existing satellite-derived snow-cover maps from NOAA and Landsat-7 Enhanced Thematic Mapper Plus (ETM+).

  3. Linkage analysis by genotyping of sibling populations: a genetic map for the potato cyst nematode constructed using a "pseudo-F2" mapping strategy.

    PubMed

    Rouppe van der Voort, J N; van Eck, H J; van Zandvoort, P M; Overmars, H; Helder, J; Bakker, J

    1999-07-01

    A mapping strategy is described for the construction of a linkage map of a non-inbred species in which individual offspring genotypes are not amenable to marker analysis. After one extra generation of random mating, the segregating progeny was propagated, and bulked populations of offspring were analyzed. Although the resulting population structure is different from that of commonly used mapping populations, we show that the maximum likelihood formula for a normal F2 is applicable for the estimation of recombination. This "pseudo-F2" mapping strategy, in combination with the development of an AFLP assay for single cysts, facilitated the construction of a linkage map for the potato cyst nematode Globodera rostochiensis. Using 12 pre-selected AFLP primer combinations, a total of 66 segregating markers were identified, 62 of which were mapped to nine linkage groups. These 62 AFLP markers are randomly distributed and cover about 65% of the genome. An estimate of the physical size of the Globodera genome was obtained from comparisons of the number of AFLP fragments obtained with the values for Caenorhabditis elegans. The methodology presented here resulted in the first genomic map for a cyst nematode. The low value of the kilobase/centimorgan (kb/cM) ratio for the Globodera genome will facilitate map-based cloning of genes that mediate the interaction between the nematode and its host plant.

  4. Producing Information for Corine Database by Using Classification Method: a Case Study of Sazlidere Basin, Istanbul

    NASA Astrophysics Data System (ADS)

    Sarıyılmaz, F. B.; Musaoğlu, N.; Uluğtekin, N.

    2017-11-01

    The Sazlidere Basin is located on the European side of Istanbul within the borders of Arnavutkoy and Basaksehir districts. The total area of the basin, which is largely located within the province of Arnavutkoy, is approximately 177 km2. The Sazlidere Basin is faced with intense urbanization pressures and land use / cover change due to the Northern Marmara Motorway, 3rd airport and Channel Istanbul Projects, which are planned to be realized in the Arnavutkoy region. Due to the mentioned projects, intense land use /cover changes occur in the basin. In this study, 2000 and 2012 dated LANDSAT images were supervised classified based on CORINE Land Cover first level to determine the land use/cover classes. As a result, four information classes were identified. These classes are water bodies, forest and semi-natural areas, agricultural areas and artificial surfaces. Accuracy analysis of the images were performed following the classification process. The supervised classified images that have the smallest mapping units 0.09 ha and 0.64 ha were generalized to be compatible with the CORINE Land Cover data. The image pixels have been rearranged by using the thematic pixel aggregation method as the smallest mapping unit is 25 ha. These results were compared with CORINE Land Cover 2000 and CORINE Land Cover 2012, which were obtained by digitizing land cover and land use classes on satellite images. It has been determined that the compared results are compatible with each other in terms of quality and quantity.

  5. EVALUATING ECOREGIONS FOR SAMPLING AND MAPPING LAND-COVER PATTERNS

    EPA Science Inventory

    Ecoregional stratification has been proposed for sampling and mapping land- cover composition and pattern over time. Using a wall-to-wall land-cover map of the United States, we evaluated geographic scales of variance for 17 landscape pattern indices, and compared stratification ...

  6. Collapse susceptibility mapping in karstified gypsum terrain (Sivas basin - Turkey) by conditional probability, logistic regression, artificial neural network models

    NASA Astrophysics Data System (ADS)

    Yilmaz, Isik; Keskin, Inan; Marschalko, Marian; Bednarik, Martin

    2010-05-01

    This study compares the GIS based collapse susceptibility mapping methods such as; conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) applied in gypsum rock masses in Sivas basin (Turkey). Digital Elevation Model (DEM) was first constructed using GIS software. Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index- TWI, stream power index- SPI, Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from CP, LR and ANN models, and they were then compared by means of their validations. Area Under Curve (AUC) values obtained from all three methodologies showed that the map obtained from ANN model looks like more accurate than the other models, and the results also showed that the artificial neural networks is a usefull tool in preparation of collapse susceptibility map and highly compatible with GIS operating features. Key words: Collapse; doline; susceptibility map; gypsum; GIS; conditional probability; logistic regression; artificial neural networks.

  7. Assessing map accuracy in a remotely sensed, ecoregion-scale cover map

    USGS Publications Warehouse

    Edwards, T.C.; Moisen, Gretchen G.; Cutler, D.R.

    1998-01-01

    Landscape- and ecoregion-based conservation efforts increasingly use a spatial component to organize data for analysis and interpretation. A challenge particular to remotely sensed cover maps generated from these efforts is how best to assess the accuracy of the cover maps, especially when they can exceed 1000 s/km2 in size. Here we develop and describe a methodological approach for assessing the accuracy of large-area cover maps, using as a test case the 21.9 million ha cover map developed for Utah Gap Analysis. As part of our design process, we first reviewed the effect of intracluster correlation and a simple cost function on the relative efficiency of cluster sample designs to simple random designs. Our design ultimately combined clustered and subsampled field data stratified by ecological modeling unit and accessibility (hereafter a mixed design). We next outline estimation formulas for simple map accuracy measures under our mixed design and report results for eight major cover types and the three ecoregions mapped as part of the Utah Gap Analysis. Overall accuracy of the map was 83.2% (SE=1.4). Within ecoregions, accuracy ranged from 78.9% to 85.0%. Accuracy by cover type varied, ranging from a low of 50.4% for barren to a high of 90.6% for man modified. In addition, we examined gains in efficiency of our mixed design compared with a simple random sample approach. In regard to precision, our mixed design was more precise than a simple random design, given fixed sample costs. We close with a discussion of the logistical constraints facing attempts to assess the accuracy of large-area, remotely sensed cover maps.

  8. Rapid crop cover mapping for the conterminous United States

    USGS Publications Warehouse

    Dahal, Devendra; Wylie, Bruce K.; Howard, Daniel

    2018-01-01

    Timely crop cover maps with sufficient resolution are important components to various environmental planning and research applications. Through the modification and use of a previously developed crop classification model (CCM), which was originally developed to generate historical annual crop cover maps, we hypothesized that such crop cover maps could be generated rapidly during the growing season. Through a process of incrementally removing weekly and monthly independent variables from the CCM and implementing a ‘two model mapping’ approach, we found it viable to generate conterminous United States-wide rapid crop cover maps at a resolution of 250 m for the current year by the month of September. In this approach, we divided the CCM model into one ‘crop type model’ to handle the classification of nine specific crops and a second, binary model to classify the presence or absence of ‘other’ crops. Under the two model mapping approach, the training errors were 0.8% and 1.5% for the crop type and binary model, respectively, while test errors were 5.5% and 6.4%, respectively. With spatial mapping accuracies for annual maps reaching upwards of 70%, this approach demonstrated a strong potential for generating rapid crop cover maps by the 1st of September.

  9. Continuity of MODIS and VIIRS Snow-Cover Maps during Snowmelt in the Catskill Mountains in New York

    NASA Astrophysics Data System (ADS)

    Hall, D. K.; Riggs, G. A., Jr.; Roman, M. O.; DiGirolamo, N. E.

    2015-12-01

    We investigate the local and regional differences and possible biases between the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible-Infrared Imager Radiometer Suite (VIIRS) snow-cover maps in the winter of 2012 during snowmelt conditions in the Catskill Mountains in New York using a time series of cloud-gap filled daily snow-cover maps. The MODIS Terra instrument has been providing daily global snow-cover maps since February 2000 (Riggs and Hall, 2015). Using the VIIRS instrument, launched in 2011, NASA snow products are being developed based on the heritage MODIS snow-mapping algorithms, and will soon be available to the science community. Continuity of the standard NASA MODIS and VIIRS snow-cover maps is essential to enable environmental-data records (EDR) to be developed for analysis of snow-cover trends using a consistent data record. For this work, we compare daily MODIS and VIIRS snow-cover maps of the Catskill Mountains from 29 February through 14 March 2012. The entire region was snow covered on 29 February and by 14 March the snow had melted; we therefore have a daily time series available to compare normalized difference snow index (NDSI), as an indicator of snow-cover fraction. The MODIS and VIIRS snow-cover maps have different spatial resolutions (500 m for MODIS and 375 m for VIIRS) and different nominal overpass times (10:30 AM for MODIS Terra and 2:30 PM for VIIRS) as well as different cloud masks. The results of this work will provide a quantitative assessment of the continuity of the snow-cover data records for use in development of an EDR of snow cover.http://modis-snow-ice.gsfc.nasa.gov/Riggs, G.A. and D.K. Hall, 2015: MODIS Snow Products User Guide to Collection 6, http://modis-snow-ice.gsfc.nasa.gov/?c=userguides

  10. Globally scalable generation of high-resolution land cover from multispectral imagery

    NASA Astrophysics Data System (ADS)

    Stutts, S. Craig; Raskob, Benjamin L.; Wenger, Eric J.

    2017-05-01

    We present an automated method of generating high resolution ( 2 meter) land cover using a pattern recognition neural network trained on spatial and spectral features obtained from over 9000 WorldView multispectral images (MSI) in six distinct world regions. At this resolution, the network can classify small-scale objects such as individual buildings, roads, and irrigation ponds. This paper focuses on three key areas. First, we describe our land cover generation process, which involves the co-registration and aggregation of multiple spatially overlapping MSI, post-aggregation processing, and the registration of land cover to OpenStreetMap (OSM) road vectors using feature correspondence. Second, we discuss the generation of land cover derivative products and their impact in the areas of region reduction and object detection. Finally, we discuss the process of globally scaling land cover generation using cloud computing via Amazon Web Services (AWS).

  11. Heat Capacity Mapping Mission (HCMM): Interpretation of imagery over Canada

    NASA Technical Reports Server (NTRS)

    Cihlar, J. (Principal Investigator); Dixon, R. G.

    1981-01-01

    Visual analysis of HCMM images acquired over two sites in Canada and supporting aircraft and ground data obtained at a smaller subsite in Alberta show that nightime surface temperature distribution is primarily related to the near-surface air temperature; the effects of topography, wind, and land cover were low or indirect through air temperature. Surface cover and large altitudinal differences were important parameters influencing daytime apparent temperature values. A quantitative analysis of the relationship between the antecedent precipitation index and the satellite thermal IR measurements did not yield statistically significant correlation coefficients, but the correlations had a definite temporal trend which could be related to the increasing uniformity of vegetation cover. The large pixel size (resulting in a mixture of cover types and soil/canopy temperatures measured by the satellite) and high cloud cover frequency found in images covering both Canadian sites and northern U.S. were considered the main deficiencies of the thermal satellite data.

  12. Advanced microwave soil moisture studies. [Big Sioux River Basin, Iowa

    NASA Technical Reports Server (NTRS)

    Dalsted, K. J.; Harlan, J. C.

    1983-01-01

    Comparisons of low level L-band brightness temperature (TB) and thermal infrared (TIR) data as well as the following data sets: soil map and land cover data; direct soil moisture measurement; and a computer generated contour map were statistically evaluated using regression analysis and linear discriminant analysis. Regression analysis of footprint data shows that statistical groupings of ground variables (soil features and land cover) hold promise for qualitative assessment of soil moisture and for reducing variance within the sampling space. Dry conditions appear to be more conductive to producing meaningful statistics than wet conditions. Regression analysis using field averaged TB and TIR data did not approach the higher sq R values obtained using within-field variations. The linear discriminant analysis indicates some capacity to distinguish categories with the results being somewhat better on a field basis than a footprint basis.

  13. Fracture mapping and strip mine inventory in the Midwest by using ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Wier, C. W.; Wobber, F. J.; Russell, O. R.; Amato, R. V.

    1973-01-01

    Analysis of the ERTS-1 imagery and high-altitude infrared photography indicates that useful fracture data can be obtained in Indiana and Illinois despite a glacial till cover. ERTS MSS bands 5 and 7 have proven most useful for fracture mapping in coal-bearing rocks in this region. Preliminary results suggest a reasonable correlation between image-detected fractures and mine roof-fall accidents. Information related to surface mined land, such as disturbed area, water bodies, and kind of reclamation, has been derived from the analysis of ERTS imagery.

  14. Basic forest cover mapping using digitized remote sensor data and automated data processing techniques

    NASA Technical Reports Server (NTRS)

    Coggeshall, M. E.; Hoffer, R. M.

    1973-01-01

    Remote sensing equipment and automatic data processing techniques were employed as aids in the institution of improved forest resource management methods. On the basis of automatically calculated statistics derived from manually selected training samples, the feature selection processor of LARSYS selected, upon consideration of various groups of the four available spectral regions, a series of channel combinations whose automatic classification performances (for six cover types, including both deciduous and coniferous forest) were tested, analyzed, and further compared with automatic classification results obtained from digitized color infrared photography.

  15. Mapping urban land cover from space: Some observations for future progress

    NASA Technical Reports Server (NTRS)

    Gaydos, L.

    1982-01-01

    The multilevel classification system adopted by the USGS for operational mapping of land use and land cover at levels 1 and 2 is discussed and the successes and failures of mapping land cover from LANDSAT digital data are reviewed. Techniques used for image interpretation and their relationships to sensor parameters are examined. The requirements for mapping levels 2 and 3 classes are considered.

  16. Commentary: A cautionary tale regarding use of the National Land Cover Dataset 1992

    USGS Publications Warehouse

    Thogmartin, Wayne E.; Gallant, Alisa L.; Knutson, Melinda G.; Fox, Timothy J.; Suarez, Manuel J.

    2004-01-01

    Digital land-cover data are among the most popular data sources used in ecological research and natural resource management. However, processes for accurate land-cover classification over large regions are still evolving. We identified inconsistencies in the National Land Cover Dataset 1992, the most current and available representation of land cover for the conterminous United States. We also report means to address these inconsistencies in a bird-habitat model. We used a Geographic Information System (GIS) to position a regular grid (or lattice) over the upper midwestern United States and summarized the proportion of individual land covers in each cell within the lattice. These proportions were then mapped back onto the lattice, and the resultant lattice was compared to satellite paths, state borders, and regional map classification units. We observed mapping inconsistencies at the borders between mapping regions, states, and Thematic Mapper (TM) mapping paths in the upper midwestern United States, particularly related to grass I and-herbaceous, emergent-herbaceous wetland, and small-grain land covers. We attributed these discrepancies to differences in image dates between mapping regions, suboptimal image dates for distinguishing certain land-cover types, lack of suitable ancillary data for improving discrimination for rare land covers, and possibly differences among image interpreters. To overcome these inconsistencies for the purpose of modeling regional populations of birds, we combined grassland-herbaceous and pasture-hay land-cover classes and excluded the use of emergent-herbaceous and small-grain land covers. We recommend that users of digital land-cover data conduct similar assessments for other regions before using these data for habitat evaluation. Further, caution is advised in using these data in the analysis of regional land-cover change because it is not likely that future digital land-cover maps will repeat the same problems, thus resulting in biased estimates of change.

  17. Moss and lichen cover mapping at local and regional scales in the boreal forest ecosystem of central Canada

    USGS Publications Warehouse

    Rapalee, G.; Steyaert, L.T.; Hall, F.G.

    2001-01-01

    Mosses and lichens are important components of boreal landscapes [Vitt et al., 1994; Bubier et al., 1997]. They affect plant productivity and belowground carbon sequestration and alter the surface runoff and energy balance. We report the use of multiresolution satellite data to map moss and lichens over the BOREAS region at a 10 m, 30 m, and 1 km scales. Our moss and lichen classification at the 10 m scale is based on ground observations of associations among soil drainage classes, overstory composition, and cover type among four broad classes of ground cover (feather, sphagnum, and brown mosses and lichens). For our 30 m map, we used field observations of ground cover-overstory associations to map mosses and lichens in the BOREAS southern study area (SSA). To scale up to a 1 km (AVHRR) moss map of the BOREAS region, we used the TM SSA mosaics plus regional field data to identify AVHRR overstory-ground cover associations. We found that: 1) ground cover, overstory composition and density are highly correlated, permitting inference of moss and lichen cover from satellite-based land cover classifications; 2) our 1 km moss map reveals that mosses dominate the boreal landscape of central Canada, thereby a significant factor for water, energy, and carbon modeling; 3) TM and AVHRR moss cover maps are comparable; 4) satellite data resolution is important; particularly in detecting the smaller wetland features, lakes, and upland jack pine sites; and 5) distinct regional patterns of moss and lichen cover correspond to latitudinal and elevational gradients. Copyright 2001 by the American Geophysical Union.

  18. A Tool for Creating Regionally Calibrated High-Resolution Land Cover Data Sets for the West African Sahel: Using Machine Learning to Scale Up Hand-Classified Maps in a Data-Sparse Environment

    NASA Astrophysics Data System (ADS)

    Van Gordon, M.; Van Gordon, S.; Min, A.; Sullivan, J.; Weiner, Z.; Tappan, G. G.

    2017-12-01

    Using support vector machine (SVM) learning and high-accuracy hand-classified maps, we have developed a publicly available land cover classification tool for the West African Sahel. Our classifier produces high-resolution and regionally calibrated land cover maps for the Sahel, representing a significant contribution to the data available for this region. Global land cover products are unreliable for the Sahel, and accurate land cover data for the region are sparse. To address this gap, the U.S. Geological Survey and the Regional Center for Agriculture, Hydrology and Meteorology (AGRHYMET) in Niger produced high-quality land cover maps for the region via hand-classification of Landsat images. This method produces highly accurate maps, but the time and labor required constrain the spatial and temporal resolution of the data products. By using these hand-classified maps alongside SVM techniques, we successfully increase the resolution of the land cover maps by 1-2 orders of magnitude, from 2km-decadal resolution to 30m-annual resolution. These high-resolution regionally calibrated land cover datasets, along with the classifier we developed to produce them, lay the foundation for major advances in studies of land surface processes in the region. These datasets will provide more accurate inputs for food security modeling, hydrologic modeling, analyses of land cover change and climate change adaptation efforts. The land cover classification tool we have developed will be publicly available for use in creating additional West Africa land cover datasets with future remote sensing data and can be adapted for use in other parts of the world.

  19. Global land cover mapping: a review and uncertainty analysis

    USGS Publications Warehouse

    Congalton, Russell G.; Gu, Jianyu; Yadav, Kamini; Thenkabail, Prasad S.; Ozdogan, Mutlu

    2014-01-01

    Given the advances in remotely sensed imagery and associated technologies, several global land cover maps have been produced in recent times including IGBP DISCover, UMD Land Cover, Global Land Cover 2000 and GlobCover 2009. However, the utility of these maps for specific applications has often been hampered due to considerable amounts of uncertainties and inconsistencies. A thorough review of these global land cover projects including evaluating the sources of error and uncertainty is prudent and enlightening. Therefore, this paper describes our work in which we compared, summarized and conducted an uncertainty analysis of the four global land cover mapping projects using an error budget approach. The results showed that the classification scheme and the validation methodology had the highest error contribution and implementation priority. A comparison of the classification schemes showed that there are many inconsistencies between the definitions of the map classes. This is especially true for the mixed type classes for which thresholds vary for the attributes/discriminators used in the classification process. Examination of these four global mapping projects provided quite a few important lessons for the future global mapping projects including the need for clear and uniform definitions of the classification scheme and an efficient, practical, and valid design of the accuracy assessment.

  20. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing

    USGS Publications Warehouse

    Kokaly, R.F.; Rockwell, B.W.; Haire, S.L.; King, T.V.V.

    2007-01-01

    Forest fires leave behind a changed ecosystem with a patchwork of surface cover that includes ash, charred organic matter, soils and soil minerals, and dead, damaged, and living vegetation. The distributions of these materials affect post-fire processes of erosion, nutrient cycling, and vegetation regrowth. We analyzed high spatial resolution (2.4??m pixel size) Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data collected over the Cerro Grande fire, to map post-fire surface cover into 10 classes, including ash, soil minerals, scorched conifer trees, and green vegetation. The Cerro Grande fire occurred near Los Alamos, New Mexico, in May 2000. The AVIRIS data were collected September 3, 2000. The surface cover map revealed complex patterns of ash, iron oxide minerals, and clay minerals in areas of complete combustion. Scorched conifer trees, which retained dry needles heated by the fire but not fully combusted by the flames, were found to cover much of the post-fire landscape. These scorched trees were found in narrow zones at the edges of completely burned areas. A surface cover map was also made using Landsat Enhanced Thematic Mapper plus (ETM+) data, collected September 5, 2000, and a maximum likelihood, supervised classification. When compared to AVIRIS, the Landsat classification grossly overestimated cover by dry conifer and ash classes and severely underestimated soil and green vegetation cover. In a comparison of AVIRIS surface cover to the Burned Area Emergency Rehabilitation (BAER) map of burn severity, the BAER high burn severity areas did not capture the variable patterns of post-fire surface cover by ash, soil, and scorched conifer trees seen in the AVIRIS map. The BAER map, derived from air photos, also did not capture the distribution of scorched trees that were observed in the AVIRIS map. Similarly, the moderate severity class of Landsat-derived burn severity maps generated from the differenced Normalized Burn Ratio (dNBR) calculation had low agreement with the AVIRIS classes of scorched conifer trees. Burn severity and surface cover images were found to contain complementary information, with the dNBR map presenting an image of degree of change caused by fire and the AVIRIS-derived map showing specific surface cover resulting from fire.

  1. Snow cover dynamics in the Catalan Pyrenees range using remote sensing data from 2002 to 2008 period

    NASA Astrophysics Data System (ADS)

    Cea, C.; Cristóbal, J.; Pons, X.

    2009-04-01

    Snow cover dynamics in the Catalan Pyrenees range using remote sensing data from 2002 to 2008 period. C. Cea (1), J. Cristóbal (1), X. Pons (1, 2) (1) Department of Geography. Autonomous University of Barcelona. Cerdanyola del Vallès, 08193. Cristina.Cea@uab.cat, (2) Center for Ecological Research and Forestry Applications (CREAF) Cerdanyola del Vallès, 08193. Water resources and its management are essential in many alpine mountainous areas. Snow cover monitoring in the Mediterranean zone requires obtaining accurate snow cartography to estimate the volume of water derived from snow melting and species distribution modelling. Snow data is usually obtained by field campaigns, but to obtain a spatial and temporal cover of enough detail and quality it is necessary collect an important number of data. However, when a continuous surface is needed, Remote Sensing could provide better snow cover estimation due to its spatial and temporal resolution. The aim of this study is to map snow cover and analyse its spatial and temporal dynamics using medium and coarse remote sensing data at a regional scale over an heterogeneous area, the Catalan Pyrenees (NE of the Iberian Peninsula). The seasonal snow cover period is from October to June. In this period, regular snowfalls usually take place from December to April, although during the rest of the period, punctual but important episodes of snowfalls are frequent. To perform this analysis, a set of 96 Landsat images (36 Landsat-5 TM and 60 Landsat-7 ETM+) of path 197 and 198 and rows 31 and 32 from January 2002 to April 2007, and 90 Terra-MODIS images from October 2007 to July 2008, with a different percentage of cloudiness, have been chosen. The computation of the Landsat-5 TM and Landsat-7 ETM+ data used in snow cover mapping has been carried out by means of the following methodologies. Images have been geometrically corrected by means of techniques based on first order polynomials taking into account the effect of the relief of the land surface using a Digital Elevation Model. Radiometric correction (non-thermal bands) has been done following the methodology which allows us to reduce the number of undesired artefacts that are due to the effects of the atmosphere or to the differential illumination. Finally, cloud removal has been carried out by means of a semi-automatic methodology. In the case of MODIS images, these have been imported by reading all the necessary metadata to document and interpret them. These products have already been radiometrically and geometrically corrected by USGS in a sinusoidal projection. Snow cover mapping has been carried out by means of the Normalized Snow Cover Index (NDSI), one of the most widely methodologies used. This methodology proposes a normalized index using green band 2 and Medium Infrared band because of snow reflectance is higher in the visible bands than in the medium infrared bands. NDSI pixels greater than 0.4 are select as snow cover. Although this threshold also selects water bodies, we have obtained optimal results using a mask of water bodies and generating a pre-boundary snow mask around the snow cover. In shadow cast areas, we have used a hybrid classification to obtain the snow cover. Preliminary results show the snow surface evolution of the Pyrenean basis during the hydrological period, as well as the differences between the different years of study. The obtained data shows how the basins with Mediterranean influence, placed in the east, receive less nival contribution than those with Atlantic influence, situated in the west. In addition, this data allow establishing the beginning and the ending of the snowfall cycle. Eastern basins usually have a shorter period than west basins, where the snow line is lower. The snow cover area average of the studied period is about 1200 km2 and stands out that for the particular period 2006-2007, this area was only about 55% of the average, due to the lack of snow precipitation. It affected the winter sports, an important sector in this area, the vegetation and the extensive livestock, just as the volume of water that flows towards river basins and reservoir when snow melts. Technical characteristics are different between both sensors. On the one hand, Landsat spatial resolution is better to obtain accuracy cartography, however it is not suitable to determine the frequency of snow falls. On the one other hand, MODIS with its daily temporal resolution allows better temporal monitoring, but with coarse spatial resolution.

  2. Digital soil map of the Ussuri River basin

    NASA Astrophysics Data System (ADS)

    Bugaets, A. N.; Pschenichnikova, N. F.; Tereshkina, A. A.; Krasnopeev, S. M.; Gartsman, B. I.; Golodnaya, O. M.; Oznobikhin, V. I.

    2017-08-01

    On the basis of digital soil, topographic, and geological maps; raster topography model; forestry materials; and literature data, the digital soil map of the Ussuri River basin (24400 km2) was created on a scale of 1: 100000. To digitize the initial paper-based maps and analyze the results, an ESRI ArcGIS Desktop (ArcEditor) v.10.1 (http://www.esri.com) and an open-code SAGA GIS v.2.3 (System for Automated Geoscientific Analyses, http://www.saga-gis.org) were used. The spatial distribution of soil areas on the obtained digital soil map is in agreement with modern cartographic data and the SRTM digital elevation model (SRTM DEM). The regional soil classification developed by G.I. Ivanov was used in the legend to the soil map. The names of soil units were also correlated with the names suggested in the modern Russian soil classification system. The major soil units on the map are at the soil subtypes that reflect the entire vertical spectrum of soils in the south of the Far East of Russia (Primorye region). These are mountainous tundra soils, podzolic soils, brown taiga soils, mountainous brown forest soils, bleached brown soils, meadow-brown soils, meadow gley soils, and floodplain soils). With the help of the spatial analysis function of GIS, the comparison of the particular characteristics of the soil cover with numerical characteristics of the topography, geological composition of catchments, and vegetation cover was performed.

  3. Comparison of MODIS and VIIRS Snow Cover Products for the 2016 Hydrological Year

    NASA Astrophysics Data System (ADS)

    Klein, A. G.; Thapa, S.

    2017-12-01

    The VIIRS (Visible Infrared Imaging Radiometer Suite) instrument on board the Suomi-NPP satellite aims to provide long-term continuity of several environmental data series including snow cover initiated with MODIS. While it is speculated that MODIS and VIIRS snow cover products may differ because of their differing spatial resolutions and spectral coverage quantitative comparisons between their snow products are currently limited. Therefore this study intercompares MODIS and VIIRS snow products for the 2016 Hydrological Year over the Midwestern United States and southern Canada. Two hundred and forty-four swath snow products from MODIS/Aqua (MYD10L2) and the VIIRS EDR (VSCMO/binary) were intercompared using confusion matrices, comparison maps and false color imagery. Thresholding the MODIS NDSI Snow Cover product at a snow cover fraction of 30% generated binary snow maps most comparable to the NOAA VIIRS binary snow product. Overall agreement between MODIS and VIIRS was found to be approximately 98%. This exceeds the VIIRS accuracy requirements of 90% probability of correct typing. Agreement was highest during the winter but lower during late fall and spring. Comparability was lowest over forest. MODIS and VIIRS often mapped snow/no-snow transition zones as cloud. The assessment of total snow and cloud pixels and comparison snow maps of MODIS and VIIRS indicates that VIIRS is mapping more snow cover and less cloud cover compared to MODIS. This is evidenced by the average area of snow in MYD10L2 and VSCMO being 5.72% and 11.43%, no-snow 26.65% and 28.67%, and cloud 65.02% and 59.91%, respectively. Visual comparisons depict good qualitative agreement between snow cover area visible in MODIS and VIIRS false color imagery and mapped in their respective snow cover products. While VIIRS and MODIS have similar capacity to map snow cover, VIIRS has the potential to more accurately map snow cover area for the successive development of climate data records.

  4. Operational monitoring of land-cover change using multitemporal remote sensing data

    NASA Astrophysics Data System (ADS)

    Rogan, John

    2005-11-01

    Land-cover change, manifested as either land-cover modification and/or conversion, can occur at all spatial scales, and changes at local scales can have profound, cumulative impacts at broader scales. The implication of operational land-cover monitoring is that researchers have access to a continuous stream of remote sensing data, with the long term goal of providing for consistent and repetitive mapping. Effective large area monitoring of land-cover (i.e., >1000 km2) can only be accomplished by using remotely sensed images as an indirect data source in land-cover change mapping and as a source for land-cover change model projections. Large area monitoring programs face several challenges: (1) choice of appropriate classification scheme/map legend over large, topographically and phenologically diverse areas; (2) issues concerning data consistency and map accuracy (i.e., calibration and validation); (3) very large data volumes; (4) time consuming data processing and interpretation. Therefore, this dissertation research broadly addresses these challenges in the context of examining state-of-the-art image pre-processing, spectral enhancement, classification, and accuracy assessment techniques to assist the California Land-cover Mapping and Monitoring Program (LCMMP). The results of this dissertation revealed that spatially varying haze can be effectively corrected from Landsat data for the purposes of change detection. The Multitemporal Spectral Mixture Analysis (MSMA) spectral enhancement technique produced more accurate land-cover maps than those derived from the Multitemporal Kauth Thomas (MKT) transformation in northern and southern California study areas. A comparison of machine learning classifiers showed that Fuzzy ARTMAP outperformed two classification tree algorithms, based on map accuracy and algorithm robustness. Variation in spatial data error (positional and thematic) was explored in relation to environmental variables using geostatistical interpolation techniques. Finally, the land-cover modification maps generated for three time intervals (1985--1990--1996--2000), with nine change-classes revealed important variations in land-cover gain and loss between northern and southern California study areas.

  5. Application of remote sensing to the photogeologic mapping of the region of the Itatiaia alkaline complex. M.S. Thesis; [Minas Gerais, Rio De Janeiro, Sao Paulo, and Itatiaia, Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Rodrigues, J. E.

    1981-01-01

    Remote sensing methods applied to geologically complex areas, through interaction of ground truth and information obtained from multispectral LANDSAT images and radar mosaics were evaluated. The test area covers parts of Minos Gerais, Rio De Janeiro and Sao Paulo states and contains the alkaline complex of Itatiaia and surrounding Precambrian terrains. Geological and structural mapping was satisfactory; however, lithological varieties which form the massif's could not be identified. Photogeological lineaments were mapped, some of which represent the boundaries of stratigraphic units. Automatic processing was used to classify sedimentary areas, which includes the talus deposits of the alkaline massifs.

  6. Northern Forest Ecosystem Dynamics Using Coupled Models and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Sun, G.; Knox, R. G.; Levine, E. R.; Weishampel, J. F.; Fifer, S. T.

    1999-01-01

    Forest ecosystem dynamics modeling, remote sensing data analysis, and a geographical information system (GIS) were used together to determine the possible growth and development of a northern forest in Maine, USA. Field measurements and airborne synthetic aperture radar (SAR) data were used to produce maps of forest cover type and above ground biomass. These forest attribute maps, along with a conventional soils map, were used to identify the initial conditions for forest ecosystem model simulations. Using this information along with ecosystem model results enabled the development of predictive maps of forest development. The results obtained were consistent with observed forest conditions and expected successional trajectories. The study demonstrated that ecosystem models might be used in a spatial context when parameterized and used with georeferenced data sets.

  7. Global Maps of Lunar Neutron Fluxes from the LEND Instrument

    NASA Technical Reports Server (NTRS)

    Litvak, M. L.; Mitrofanov, I. G.; Sanin, A.; Malakhov, A.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Golovin, D. V.; hide

    2012-01-01

    The latest neutron spectrometer measurements with the Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) are presented. It covers more than 1 year of mapping phase starting on 15 September 2009. In our analyses we have created global maps showing regional variations in the flux of thermal (energy range < 0.015 eV) and fast neutrons (>0.5 MeV), and compared these fluxes to variances in soil elemental composition, and with previous results obtained by the Lunar Prospector Neutron Spectrometer (LPNS). We also processed data from LEND collimated detectors and derived a value for the collimated signal of epithermal neutrons based on the comparative analysis with the LEND omnidirectional detectors. Finally, we have compared our final (after the data reduction) global epithermal neutron map with LPNS data.

  8. The Application of Synoptic Weather Forecasting Rules to Selected Weather Situations in the United States.

    ERIC Educational Resources Information Center

    Kohler, Fred E.

    The document describes the use of weather maps and data in teaching introductory college courses in synoptic meteorology. Students examine weather changes at three-hour intervals from data obtained from the "Monthly Summary of Local Climatological Data." Weather variables in the local summary include sky cover, air temperature, dew point, relative…

  9. Evaluating ecoregions for sampling and mapping land-cover patterns

    Treesearch

    Kurt H. Riitters; James D. Wickham; Timothy G. Wade

    2006-01-01

    Ecoregional stratification has been proposed for sampling and mapping land-cover composition and pattern over time. Using a wall-to-wall land-cover map of the United States, we evaluated geographic scales of variance for nine landscapelevel and eight forest pattern indices, and compared stratification by ecoregions, administrative units, and watersheds. Ecoregions...

  10. Status of vegetation cover after 25 years since the last wildfire (Río Verde, Spain)

    NASA Astrophysics Data System (ADS)

    Martinez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.

    2016-04-01

    Climatic conditions play an important role in the post-fire vegetation recovery as well as other factors like topography, soil, and pre and post-fire land use (Shakesby, 2011; Robichaud et al., 2013). This study deals with the characterization of the vegetation cover status in an area affected by a wildfire 25 years ago. Namely, the objectives are to: i) compare the current and previous vegetation cover to wildfire; and ii) evaluate whether the current vegetation has recovered the previous cover to wildfire. The study area is mainly located in the Rio Verde watershed (Sierra de las Nieves, South of Spain). It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8,156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1700 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. The Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover maps were obtained by means of object-oriented classifications. Also, NDVI index were calculated and mapped for both years in order to compare the status of vegetation cover. According to the results, the combination of remote sensing and GIS analysis let map the most recovered areas affected by the wildfire in 1991. The vegetation indexes indicated that the vegetation cover in 2013 was still lower than that mapped just before the 1991 wildfire in most of the burned area after 25-years: 33% of the burned area showed a regression in the vegetation from pine to shrubland or to grassland; 54% showed a similar status than in 1991; and only 11% presented a better vegetation cover nowadays than in 1991. References Robichaud, P., Lewis, S.A., Wagenbrenner, J.W., Ashmun, L.E., Brown, R.E. 2013. Post-fire mulching for runoff and erosion mitigation. Part I: Effectiveness at reducing hillslope erosion rates. Catena 105, 75-92. Shakesby, R.A. 2011. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Science Reviews 105, 71-100.

  11. Statewide LANDSAT inventory of California forests

    NASA Technical Reports Server (NTRS)

    Likens, W.; Peterson, D. (Principal Investigator)

    1981-01-01

    Six forest cover categories were mapped, along with 10 general land cover classes. To map the state's 100 million acres, 1.6 acre mapping units were utilized. Map products were created. Standing forest acreage for the state was computed to be 26.8 million acres.

  12. Shuttle imaging radar views the Earth from Challenger: The SIR-B experiment

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Cimino, J. B.; Holt, B.; Ruzek, M. R.

    1986-01-01

    In October 1984, SIR-B obtained digital image data of about 6.5 million km2 of the Earth's surface. The coverage is mostly of selected experimental test sites located between latitudes 60 deg north and 60 deg south. Programmed adjustments made to the look angle of the steerable radar antenna and to the flight attitude of the shuttle during the mission permitted collection of multiple-incidence-angle coverage or extended mapping coverage as required for the experiments. The SIR-B images included here are representative of the coverage obtained for scientific studies in geology, cartography, hydrology, vegetation cover, and oceanography. The relations between radar backscatter and incidence angle for discriminating various types of surfaces, and the use of multiple-incidence-angle SIR-B images for stereo measurement and viewing, are illustrated with examples. Interpretation of the images is facilitated by corresponding images or photographs obtained by different sensors or by sketch maps or diagrams.

  13. A new global 1-km dataset of percentage tree cover derived from remote sensing

    USGS Publications Warehouse

    DeFries, R.S.; Hansen, M.C.; Townshend, J.R.G.; Janetos, A.C.; Loveland, Thomas R.

    2000-01-01

    Accurate assessment of the spatial extent of forest cover is a crucial requirement for quantifying the sources and sinks of carbon from the terrestrial biosphere. In the more immediate context of the United Nations Framework Convention on Climate Change, implementation of the Kyoto Protocol calls for estimates of carbon stocks for a baseline year as well as for subsequent years. Data sources from country level statistics and other ground-based information are based on varying definitions of 'forest' and are consequently problematic for obtaining spatially and temporally consistent carbon stock estimates. By combining two datasets previously derived from the Advanced Very High Resolution Radiometer (AVHRR) at 1 km spatial resolution, we have generated a prototype global map depicting percentage tree cover and associated proportions of trees with different leaf longevity (evergreen and deciduous) and leaf type (broadleaf and needleleaf). The product is intended for use in terrestrial carbon cycle models, in conjunction with other spatial datasets such as climate and soil type, to obtain more consistent and reliable estimates of carbon stocks. The percentage tree cover dataset is available through the Global Land Cover Facility at the University of Maryland at http://glcf.umiacs.umd.edu.

  14. Utility of Thermal Infrared Satellite Data For Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Xian, G.; Crane, M.; Granneman, B.

    2006-12-01

    Urban landscapes are comprised of a variety of surfaces that are characterized by contrasting radiative, thermal, aerodynamic, and moisture properties. These different surfaces possess diverse physical and thermal attributes that directly influence surface energy balance and our ability to determine surface characteristics in urban areas. Reflectance properties obtained from satellite imagery have proven useful for mapping urban land use and land cover change, as well as ecosystem health. Landsat reflectance bands are commonly used in regression tree models to generate linear equations that correspond to distinct land surface materials. However, urban land cover is generally a heterogeneous mix of bare soil, vegetation, rock, and anthropogenic impervious surfaces. Surface temperature obtained from satellite thermal infrared bands provides valuable information about surface biophysical properties and radiant thermal characteristics of land cover elements, especially for urban environments. This study demonstrates the improved characterization of land cover conditions for Seattle, Washington, and Las Vegas, Nevada, that were achieved by using both the reflectance and thermal bands of Landsat Enhanced Thematic Mapper Plus (ETM+) data. Including the thermal band in the image analysis increased the accuracy of discriminating cover types in heterogeneous landscapes with extreme contrasts, especially for mixed pixels at the urban interface.

  15. Land cover maps, BVOC emissions, and SOA burden in a global aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Stanelle, Tanja; Henrot, Alexandra; Bey, Isaelle

    2015-04-01

    It has been reported that different land cover representations influence the emission of biogenic volatile organic compounds (BVOC) (e.g. Guenther et al., 2006). But the land cover forcing used in model simulations is quite uncertain (e.g. Jung et al., 2006). As a consequence the simulated emission of BVOCs depends on the applied land cover map. To test the sensitivity of global and regional estimates of BVOC emissions on the applied land cover map we applied 3 different land cover maps into our global aerosol-climate model ECHAM6-HAM2.2. We found a high sensitivity for tropical regions. BVOCs are a very prominent precursor for the production of Secondary Organic Aerosols (SOA). Therefore the sensitivity of BVOC emissions on land cover maps impacts the SOA burden in the atmosphere. With our model system we are able to quantify that impact. References: Guenther et al. (2006), Estimates of global terrestrial isoprene emissions using MEGAN, Atmos. Chem. Phys., 6, 3181-3210, doi:10.5194/acp-6-3181-2006. Jung et al. (2006), Exploiting synergies of global land cover products for carbon cycle modeling, Rem. Sens. Environm., 101, 534-553, doi:10.1016/j.rse.2006.01.020.

  16. Spectral signature selection for mapping unvegetated soils

    NASA Technical Reports Server (NTRS)

    May, G. A.; Petersen, G. W.

    1975-01-01

    Airborne multispectral scanner data covering the wavelength interval from 0.40-2.60 microns were collected at an altitude of 1000 m above the terrain in southeastern Pennsylvania. Uniform training areas were selected within three sites from this flightline. Soil samples were collected from each site and a procedure developed to allow assignment of scan line and element number from the multispectral scanner data to each sampling location. These soil samples were analyzed on a spectrophotometer and laboratory spectral signatures were derived. After correcting for solar radiation and atmospheric attenuation, the laboratory signatures were compared to the spectral signatures derived from these same soils using multispectral scanner data. Both signatures were used in supervised and unsupervised classification routines. Computer-generated maps using the laboratory and multispectral scanner derived signatures resulted in maps that were similar to maps resulting from field surveys. Approximately 90% agreement was obtained between classification maps produced using multispectral scanner derived signatures and laboratory derived signatures.

  17. Applications of national land cover maps in United States forestry

    Treesearch

    Kurt H. Riitters; Gregory A. Reams

    2008-01-01

    Land cover maps derived from satellite imagery have a long and varied history of uses in United States forestry science and management. This article reviews recent developments concerning the use of national- to continental-scale land cover maps for inventory, monitoring, and resource assessment in the U.S. Forest Service. The use of mid-scale digital resolution...

  18. Topographic Maps: Rediscovering an Accessible Data Source for Land Cover Change Research

    ERIC Educational Resources Information Center

    McChesney, Ron; McSweeney, Kendra

    2005-01-01

    Given some limitations of satellite imagery for the study of land cover change, we draw attention here to a robust and often overlooked data source for use in student research: USGS topographic maps. Topographic maps offer an inexpensive, rapid, and accessible means for students to analyze land cover change over large areas. We demonstrate our…

  19. Comparison and assessment of coarse resolution land cover maps for Northern Eurasia

    Treesearch

    Dirk Pflugmacher; Olga N. Krankina; Warren B. Cohen; Mark A. Friedl; Damien Sulla-Menashe; Robert E. Kennedy; Peder Nelson; Tatiana V. Loboda; Tobias Kuemmerle; Egor Dyukarev; Vladimir Elsadov; Viacheslav I. Kharuk

    2011-01-01

    Information on land cover at global and continental scales is critical for addressing a range of ecological, socioeconomic and policy questions. Global land cover maps have evolved rapidly in the last decade, but efforts to evaluate map uncertainties have been limited, especially in remote areas like Northern Eurasia. Northern Eurasia comprises a particularly diverse...

  20. Introduction to special issue on map accuracy

    Treesearch

    Stephen V. Stehman; Raymond L. Czaplewski

    2003-01-01

    With the advent of satellite remote sensing and computing technology, mapping land cover over extensive regions of the earth has become practical and cost effective. For example, land-cover maps have been produced covering pan-Europe (Mucher et al., 2000), Great Britain (Fuller et al., 1994), Canada (Cihlar et al., 1999), Mexico (Mas et al., 2002) the United States (...

  1. An automated approach for mapping persistent ice and snow cover over high latitude regions

    USGS Publications Warehouse

    Selkowitz, David J.; Forster, Richard R.

    2016-01-01

    We developed an automated approach for mapping persistent ice and snow cover (glaciers and perennial snowfields) from Landsat TM and ETM+ data across a variety of topography, glacier types, and climatic conditions at high latitudes (above ~65°N). Our approach exploits all available Landsat scenes acquired during the late summer (1 August–15 September) over a multi-year period and employs an automated cloud masking algorithm optimized for snow and ice covered mountainous environments. Pixels from individual Landsat scenes were classified as snow/ice covered or snow/ice free based on the Normalized Difference Snow Index (NDSI), and pixels consistently identified as snow/ice covered over a five-year period were classified as persistent ice and snow cover. The same NDSI and ratio of snow/ice-covered days to total days thresholds applied consistently across eight study regions resulted in persistent ice and snow cover maps that agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI), with a mean accuracy (agreement with the RGI) of 0.96, a mean precision (user’s accuracy of the snow/ice cover class) of 0.92, a mean recall (producer’s accuracy of the snow/ice cover class) of 0.86, and a mean F-score (a measure that considers both precision and recall) of 0.88. We also compared results from our approach to glacier area mapped from high spatial resolution imagery at four study regions and found similar results. Accuracy was lowest in regions with substantial areas of debris-covered glacier ice, suggesting that manual editing would still be required in these regions to achieve reasonable results. The similarity of our results to those from the RGI as well as glacier area mapped from high spatial resolution imagery suggests it should be possible to apply this approach across large regions to produce updated 30-m resolution maps of persistent ice and snow cover. In the short term, automated PISC maps can be used to rapidly identify areas where substantial changes in glacier area have occurred since the most recent conventional glacier inventories, highlighting areas where updated inventories are most urgently needed. From a longer term perspective, the automated production of PISC maps represents an important step toward fully automated glacier extent monitoring using Landsat or similar sensors.

  2. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models

    NASA Astrophysics Data System (ADS)

    Akgun, Aykut; Dag, Serhat; Bulut, Fikri

    2008-05-01

    Landslides are very common natural problems in the Black Sea Region of Turkey due to the steep topography, improper use of land cover and adverse climatic conditions for landslides. In the western part of region, many studies have been carried out especially in the last decade for landslide susceptibility mapping using different evaluation methods such as deterministic approach, landslide distribution, qualitative, statistical and distribution-free analyses. The purpose of this study is to produce landslide susceptibility maps of a landslide-prone area (Findikli district, Rize) located at the eastern part of the Black Sea Region of Turkey by likelihood frequency ratio (LRM) model and weighted linear combination (WLC) model and to compare the results obtained. For this purpose, landslide inventory map of the area were prepared for the years of 1983 and 1995 by detailed field surveys and aerial-photography studies. Slope angle, slope aspect, lithology, distance from drainage lines, distance from roads and the land-cover of the study area are considered as the landslide-conditioning parameters. The differences between the susceptibility maps derived by the LRM and the WLC models are relatively minor when broad-based classifications are taken into account. However, the WLC map showed more details but the other map produced by LRM model produced weak results. The reason for this result is considered to be the fact that the majority of pixels in the LRM map have high values than the WLC-derived susceptibility map. In order to validate the two susceptibility maps, both of them were compared with the landslide inventory map. Although the landslides do not exist in the very high susceptibility class of the both maps, 79% of the landslides fall into the high and very high susceptibility zones of the WLC map while this is 49% for the LRM map. This shows that the WLC model exhibited higher performance than the LRM model.

  3. Comparison of two Classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia

    NASA Astrophysics Data System (ADS)

    Rokni Deilmai, B.; Ahmad, B. Bin; Zabihi, H.

    2014-06-01

    Mapping is essential for the analysis of the land use and land cover, which influence many environmental processes and properties. For the purpose of the creation of land cover maps, it is important to minimize error. These errors will propagate into later analyses based on these land cover maps. The reliability of land cover maps derived from remotely sensed data depends on an accurate classification. In this study, we have analyzed multispectral data using two different classifiers including Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM). To pursue this aim, Landsat Thematic Mapper data and identical field-based training sample datasets in Johor Malaysia used for each classification method, which results indicate in five land cover classes forest, oil palm, urban area, water, rubber. Classification results indicate that SVM was more accurate than MLC. With demonstrated capability to produce reliable cover results, the SVM methods should be especially useful for land cover classification.

  4. A map of the cosmic background radiation at 3 millimeters

    NASA Technical Reports Server (NTRS)

    Lubin, P.; Villela, T.; Epstein, G.; Smoot, G.

    1985-01-01

    Data from a series of balloon flights covering both the Northern and Southern Hemispheres, measuring the large angular scale anisotropy in the cosmic background radiation at 3.3 mm wavelength are presented. The data cover 85 percent of the sky to a limiting sensitivity of 0.7 mK per 7 deg field of view. The data show a 50-sigma (statistical error only) dipole anisotropy with an amplitude of 3.44 + or - 0.17 mK and a direction of alpha = 11.2 h + or - 0.1 h, and delta = -6.0 deg + or - 1.5 deg. A 90 percent confidence level upper limit of 0.00007 is obtained for the rms quadrupole amplitude. Flights separated by 6 months show the motion of earth around the sun. Galactic contamination is very small, with less than 0.1 mK contribution to the dipole quadrupole terms. A map of the sky has been generated from the data.

  5. Hydrocarbons on the Icy Satellites of Saturn

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2010-01-01

    The Visible-Infrared Mapping Spectrometer on the Cassini Spacecraft has obtained spectral reflectance maps of the satellites of Saturn in the wavelength region 0.4-5.1 micrometers since its insertion into Saturn orbit in late 2004. We have detected the spectral signature of the C-H stretching molecular mode of aromatic and aliphatic hydrocarbons in the low albedo material covering parts of several of Saturn's satellites, notably Iapetus and Phoebe (Cruikshank et al. 2008). The distribution of this material is complex, and in the case of Iapetus we are seeking to determine if it is related to the native grey-colored materials left as lag deposits upon evaporation of the ices, or represents in-fall from an external source, notably the newly discovered large dust ring originating at Phoebe. This report covers our latest exploration of the nature and source of this organic material.

  6. DEVELOPMENT OF LAND COVER AND TERRAIN DATA BASES FOR THE INNOKO NATIONAL WILDLIFE REFUGE, ALASKA, USING LANDSAT AND DIGITAL TERRAIN DATA.

    USGS Publications Warehouse

    Markon, Carl J.; Talbot, Stephen

    1986-01-01

    Landsat-derived land cover maps and associated elevation, slope, and aspect class maps were produced for the Innoko National Wildlife Refuge (3,850,000 acres; 1,555,095 hectares) in northwestern Alaska. These maps and associated digital data products are being used by the U. S. Fish and Wildlife Service for wildlife management, research, and comprehensive conservation planning. Portions of two Landsat Multispectral Scanner (MSS) scenes and digital terrain data were used to produce 1:250,000 scale land cover and terrain maps. Prints of summer and winter Landsat MSS scenes were used to manually interpret broad physiographic strata. These strata were transferred to U. S. Geological Survey 1:250,000-scale topographic maps and digitized. Seven major land cover classes and 23 subclasses were identified. The major land cover classes include: forest, scrub, dwarf scrub and related types, herbaceous, scarcely vegetated areas, water, and shadow.

  7. A Prototype MODI- SSM/I Snow Mapping Algorithm

    NASA Technical Reports Server (NTRS)

    Tait, Andrew B.; Barton, Jonathan S.; Hall, Dorothy K.

    1999-01-01

    Data in the wavelength range 0.545 - 1.652 microns from the Moderate Resolution Imaging Spectroradiometer (MODIS), to be launched aboard the Earth Observing System (EOS) Terra in the fall of 1999, will be used to map daily global snow cover at 500m resolution. However, during darkness, or when the satellite's view of the surface is obscured by cloud, snow cover cannot be mapped using MODIS data. We show that during these conditions, it is possible to supplement the MODIS product by mapping the snow cover using passive microwave data from the Special Sensor Microwave Imager (SSM/I), albeit with much poorer resolution. For a 7-day time period in March 1999, a prototype MODIS snow-cover product was compared with a prototype MODIS-SSM/I product for the same area in the mid-western United States. The combined MODIS-SSM/I product mapped 9% more snow cover than the MODIS-only product.

  8. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  9. Completing the Picture: Importance of Considering Participatory Mapping for REDD+ Measurement, Reporting and Verification (MRV)

    PubMed Central

    Rafanoharana, Serge; Boissière, Manuel; Wijaya, Arief; Wardhana, Wahyu

    2016-01-01

    Remote sensing has been widely used for mapping land cover and is considered key to monitoring changes in forest areas in the REDD+ Measurement, Reporting and Verification (MRV) system. But Remote Sensing as a desk study cannot capture the whole picture; it also requires ground checking. Therefore, complementing remote sensing analysis using participatory mapping can help provide information for an initial forest cover assessment, gain better understanding of how local land use might affect changes, and provide a way to engage local communities in REDD+. Our study looked at the potential of participatory mapping in providing complementary information for remotely sensed maps. The research sites were located in different ecological and socio-economic contexts in the provinces of Papua, West Kalimantan and Central Java, Indonesia. Twenty-one maps of land cover and land use were drawn with local community participation during focus group discussions in seven villages. These maps, covering a total of 270,000ha, were used to add information to maps developed using remote sensing, adding 39 land covers to the eight from our initial desk assessment. They also provided additional information on drivers of land use and land cover change, resource areas, territory claims and land status, which we were able to correlate to understand changes in forest cover. Incorporating participatory mapping in the REDD+ MRV protocol would help with initial remotely sensed land classifications, stratify an area for ground checks and measurement plots, and add other valuable social data not visible at the RS scale. Ultimately, it would provide a forum for local communities to discuss REDD+ activities and develop a better understanding of REDD+. PMID:27977685

  10. Advancing the quantification of humid tropical forest cover loss with multi-resolution optical remote sensing data: Sampling & wall-to-wall mapping

    NASA Astrophysics Data System (ADS)

    Broich, Mark

    Humid tropical forest cover loss is threatening the sustainability of ecosystem goods and services as vast forest areas are rapidly cleared for industrial scale agriculture and tree plantations. Despite the importance of humid tropical forest in the provision of ecosystem services and economic development opportunities, the spatial and temporal distribution of forest cover loss across large areas is not well quantified. Here I improve the quantification of humid tropical forest cover loss using two remote sensing-based methods: sampling and wall-to-wall mapping. In all of the presented studies, the integration of coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data enable advances in quantifying forest cover loss in the humid tropics. Imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used as the source of coarse spatial resolution, high temporal resolution data and imagery from the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor are used as the source of moderate spatial, low temporal resolution data. In a first study, I compare the precision of different sampling designs for the Brazilian Amazon using the annual deforestation maps derived by the Brazilian Space Agency for reference. I show that sampling designs can provide reliable deforestation estimates; furthermore, sampling designs guided by MODIS data can provide more efficient estimates than the systematic design used for the United Nations Food and Agricultural Organization Forest Resource Assessment 2010. Sampling approaches, such as the one demonstrated, are viable in regions where data limitations, such as cloud contamination, limit exhaustive mapping methods. Cloud-contaminated regions experiencing high rates of change include Insular Southeast Asia, specifically Indonesia and Malaysia. Due to persistent cloud cover, forest cover loss in Indonesia has only been mapped at a 5-10 year interval using photo interpretation of single best Landsat images. Such an approach does not provide timely results, and cloud cover reduces the utility of map outputs. In a second study, I develop a method to exhaustively mine the recently opened Landsat archive for cloud-free observations and automatically map forest cover loss for Sumatra and Kalimantan for the 2000-2005 interval. In a comparison with a reference dataset consisting of 64 Landsat sample blocks, I show that my method, using per pixel time-series, provides more accurate forest cover loss maps for multiyear intervals than approaches using image composites. In a third study, I disaggregate Landsat-mapped forest cover loss, mapped over a multiyear interval, by year using annual forest cover loss maps generated from coarse spatial, high temporal resolution MODIS imagery. I further disaggregate and analyze forest cover loss by forest land use, and provinces. Forest cover loss trends show high spatial and temporal variability. These results underline the importance of annual mapping for the quantification of forest cover loss in Indonesia, specifically in the light of the developing Reducing Emissions from Deforestation and Forest Degradation in Developing Countries policy framework (REDD). All three studies highlight the advances in quantifying forest cover loss in the humid tropics made by integrating coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data. The three methods presented can be combined into an integrated monitoring strategy.

  11. Life on the Edge - Improved Forest Cover Mapping in Mixed-Use Tropical Regions

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Mendenhall, C. D.; Daily, G.

    2016-12-01

    Tropical ecosystems and biodiversity are experiencing rapid change, primarily due to conversion of forest habitat to agriculture. Protected areas, while effective for conservation, only manage 15% of terrestrial area, whereas approximately 58% is privately owned. To incentivize private forest management and slow the loss of biodiversity, payments for ecosystem services (PES) programs were established in Costa Rica that pay landowners who maintain trees on their property. While this program is effective in improving livelihoods and preventing forest conversion, it is only managing payments to landowners on 1% of eligible, non-protected forested land.A major bottleneck for this program is access to accurate, national-scale tree cover maps. While the remote sensing community has made great progress in global-scale tree cover mapping, these maps are not sufficient to guide investments for PES programs. The major limitations of current global-scale tree-cover maps are that they a) do not distinguish between forest and agriculture and b) overestimate tree cover in mixed land-use areas (e.g. Global Forest Change overestimates by 20% on average in this region). This is especially problematic in biodiversity-rich Costa Rica, where small patches of forest intermix with agricultural production, and where the conservation value of tree-cover is high. To address this problem, we are developing a new forest cover mapping method that a) performs a least-squares spectral mixture analysis (SMA) using repeat Landsat imagery and canopy radiative transfer modeling: b) combines Landsat data, SMA results, and radar backscatter data using multi-sensor fusion techniques and: c) trains tree-cover classification models using high resolution data sets along a land use-intensity gradient. Our method predicted tree cover with 85% accuracy when compared to a fine-scale map of tree cover in a tropical, agricultural landscape, whereas the next-best method, the Global Forest Change map, predicted tree cover with 72% accuracy. Next steps will aim to test, improve, and apply this method globally to guide investments in nature in agricultural landscapes where forest stewardship will sustain biodiversity.

  12. Genetic map of artichoke × wild cardoon: toward a consensus map for Cynara cardunculus.

    PubMed

    Sonnante, Gabriella; Gatto, Angela; Morgese, Anita; Montemurro, Francesco; Sarli, Giulio; Blanco, Emanuela; Pignone, Domenico

    2011-11-01

    An integrated consensus linkage map is proposed for globe artichoke. Maternal and paternal genetic maps were constructed on the basis of an F(1) progeny derived from crossing an artichoke genotype (Mola) with its progenitor, the wild cardoon (Tolfa), using EST-derived SSRs, genomic SSRs, AFLPs, ten genes, and two morphological traits. For most genes, mainly belonging to the chlorogenic acid pathway, new markers were developed. Five of these were SNP markers analyzed through high-resolution melt technology. From the maternal (Mola) and paternal (Tolfa) maps, an integrated map was obtained, containing 337 molecular and one morphological markers ordered in 17 linkage groups (LGs), linked between Mola and Tolfa. The integrated map covers 1,488.8 cM, with an average distance of 4.4 cM between markers. The map was aligned with already existing maps for artichoke, and 12 LGs were linked via 31 bridge markers. LG numbering has been proposed. A total of 124 EST-SSRs and two genes were mapped here for the first time, providing a framework for the construction of a functional map in artichoke. The establishment of a consensus map represents a necessary condition to plan a complete sequencing of the globe artichoke genome.

  13. Snow Cover Mapping and Ice Avalanche Monitoring from the Satellite Data of the Sentinels

    NASA Astrophysics Data System (ADS)

    Wang, S.; Yang, B.; Zhou, Y.; Wang, F.; Zhang, R.; Zhao, Q.

    2018-04-01

    In order to monitor ice avalanches efficiently under disaster emergency conditions, a snow cover mapping method based on the satellite data of the Sentinels is proposed, in which the coherence and backscattering coefficient image of Synthetic Aperture Radar (SAR) data (Sentinel-1) is combined with the atmospheric correction result of multispectral data (Sentinel-2). The coherence image of the Sentinel-1 data could be segmented by a certain threshold to map snow cover, with the water bodies extracted from the backscattering coefficient image and removed from the coherence segment result. A snow confidence map from Sentinel-2 was used to map the snow cover, in which the confidence values of the snow cover were relatively high. The method can make full use of the acquired SAR image and multispectral image under emergency conditions, and the application potential of Sentinel data in the field of snow cover mapping is exploited. The monitoring frequency can be ensured because the areas obscured by thick clouds are remedied in the monitoring results. The Kappa coefficient of the monitoring results is 0.946, and the data processing time is less than 2 h, which meet the requirements of disaster emergency monitoring.

  14. Producing Alaska interim land cover maps from Landsat digital and ancillary data

    USGS Publications Warehouse

    Fitzpatrick-Lins, Katherine; Doughty, Eileen Flanagan; Shasby, Mark; Loveland, Thomas R.; Benjamin, Susan

    1987-01-01

    In 1985, the U.S. Geological Survey initiated a research program to produce 1:250,000-scale land cover maps of Alaska using digital Landsat multispectral scanner data and ancillary data and to evaluate the potential of establishing a statewide land cover mapping program using this approach. The geometrically corrected and resampled Landsat pixel data are registered to a Universal Transverse Mercator (UTM) projection, along with arc-second digital elevation model data used as an aid in the final computer classification. Areas summaries of the land cover classes are extracted by merging the Landsat digital classification files with the U.S. Bureau of Land Management's Public Land Survey digital file. Registration of the digital land cover data is verified and control points are identified so that a laser plotter can products screened film separate for printing the classification data at map scale directly from the digital file. The final land cover classification is retained both as a color map at 1:250,000 scale registered to the U.S. Geological Survey base map, with area summaries by township and range on the reverse, and as a digital file where it may be used as a category in a geographic information system.

  15. Long term land cover and seagrass mapping using Landsat and object-based image analysis from 1972 to 2010 in the coastal environment of South East Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Lyons, Mitchell B.; Phinn, Stuart R.; Roelfsema, Chris M.

    2012-07-01

    Long term global archives of high-moderate spatial resolution, multi-spectral satellite imagery are now readily accessible, but are not being fully utilised by management agencies due to the lack of appropriate methods to consistently produce accurate and timely management ready information. This work developed an object-based remote sensing approach to map land cover and seagrass distribution in an Australian coastal environment for a 38 year Landsat image time-series archive (1972-2010). Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery were used without in situ field data input (but still using field knowledge) to produce land and seagrass cover maps every year data were available, resulting in over 60 map products over the 38 year archive. Land cover was mapped annually using vegetation, bare ground, urban and agricultural classes. Seagrass distribution was also mapped annually, and in some years monthly, via horizontal projected foliage cover classes, sand and deep water. Land cover products were validated using aerial photography and seagrass maps were validated with field survey data, producing several measures of accuracy. An average overall accuracy of 65% and 80% was reported for seagrass and land cover products respectively, which is consistent with other studies in the area. This study is the first to show moderate spatial resolution, long term annual changes in land cover and seagrass in an Australian environment, created without the use of in situ data; and only one of a few similar studies globally. The land cover products identify several long term trends; such as significant increases in South East Queensland's urban density and extent, vegetation clearing in rural and rural-residential areas, and inter-annual variation in dry vegetation types in western South East Queensland. The seagrass cover products show that there has been a minimal overall change in seagrass extent, but that seagrass cover level distribution is extremely dynamic; evidenced by large scale migrations of higher seagrass cover levels and several sudden and significant changes in cover level. These mapping products will allow management agencies to build a baseline assessment of their resources, understand past changes and help inform implementation and planning of management policy to address potential future changes.

  16. MAPPING SPATIAL ACCURACY AND ESTIMATING LANDSCAPE INDICATORS FROM THEMATIC LAND COVER MAPS USING FUZZY SET THEORY

    EPA Science Inventory

    This paper presents a fuzzy set-based method of mapping spatial accuracy of thematic map and computing several ecological indicators while taking into account spatial variation of accuracy associated with different land cover types and other factors (e.g., slope, soil type, etc.)...

  17. USE OF ROAD MAPS IN NATIONAL ASSESSMENTS OF FOREST FRAGMENTATION IN THE UNITED STATES

    EPA Science Inventory

    Including road-mediated forest fragmentation is a contentious issue in United States national assessments. We compared fragmentation as calculated from national land-cover maps alone, and from land-cover maps in combination with road maps. The increment of forest edge from roads ...

  18. Estimating Accuracy of Land-Cover Composition From Two-Stage Clustering Sampling

    EPA Science Inventory

    Land-cover maps are often used to compute land-cover composition (i.e., the proportion or percent of area covered by each class), for each unit in a spatial partition of the region mapped. We derive design-based estimators of mean deviation (MD), mean absolute deviation (MAD), ...

  19. Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west Turkey).

    PubMed

    Akgun, Aykut; Kıncal, Cem; Pradhan, Biswajeet

    2012-09-01

    In this study, landslide risk assessment for Izmir city (west Turkey) was carried out, and the environmental effects of landslides on further urban development were evaluated using geographical information systems and remote sensing techniques. For this purpose, two different data groups, namely conditioning and triggering data, were produced. With the help of conditioning data such as lithology, slope gradient, slope aspect, distance from roads, distance from faults and distance from drainage lines, a landslide susceptibility model was constructed by using logistic regression modelling approach. The accuracy assessment of the susceptibility map was carried out by the area under curvature (AUC) approach, and a 0.810 AUC value was obtained. This value shows that the map obtained is successful. Due to the fact that the study area is located in an active seismic region, earthquake data were considered as primary triggering factor contributing to landslide occurrence. In addition to this, precipitation data were also taken into account as a secondary triggering factor. Considering the susceptibility data and triggering factors, a landslide hazard index was obtained. Furthermore, using the Aster data, a land-cover map was produced with an overall kappa value of 0.94. From this map, settlement areas were extracted, and these extracted data were assessed as elements at risk in the study area. Next, a vulnerability index was created by using these data. Finally, the hazard index and the vulnerability index were combined, and a landslide risk map for Izmir city was obtained. Based on this final risk map, it was observed that especially south and north parts of the Izmir Bay, where urbanization is dense, are threatened to future landsliding. This result can be used for preliminary land use planning by local governmental authorities.

  20. Observations on the method of determining the velocity of airships

    NASA Technical Reports Server (NTRS)

    Volterra, Vito

    1921-01-01

    To obtain the absolute velocity of an airship by knowing the speed at which two routes are covered, we have only to determine the geographical direction of the routes which we locate from a map, and the angles of routes as given by the compass, after correcting for the variation (the algebraical sum of the local magnetic declination and the deviation).

  1. A Modified Relative Spectral Mixture Analysis to Extract the Fractions of Major Land Cover Components

    NASA Astrophysics Data System (ADS)

    Jia, S.

    2015-12-01

    As an effective method of extracting land cover fractions based on spectral endmembers, spectral mixture analysis (SMA) has been applied using remotely sensed imagery in different spatial, temporal, and spectral resolutions. A number of studies focused on arid/semiarid ecosystem have used SMA to obtain the land cover fractions of GV, NPV/litter, and bare soil (BS) using MODIS reflectance products to understand ecosystem phenology, track vegetation dynamics, and evaluate the impact of major disturbances. However, several challenges remain in the application of SMA in studying ecosystem phenology, including obtaining high quality endmembers and increasing computational efficiency when considering to long time series that cover a broad spatial extent. Okin (2007) proposes a variation of SMA, named as relative spectra mixture analysis (RSMA) to address the latter challenge by calculating the relative change of fraction of GV, NPV/litter, and BS compared with a baseline date. This approach assumes that the baseline image contains the spectral information of the bare soil that can be used as an endmember for spectral mixture analysis though it is mixed with the spectral reflectance of other non-soil land cover types. Using the baseline image, one can obtain the change of fractions of GV, NPV/litter, BS, and snow compared with the baseline image. However, RSMA results depend on the selection of baseline date and the fractional components during this date. In this study, we modified the strategy of implementing RSMA by introducing a step of obtaining a soil map as the baseline image using multiple-endmember SMA (MESMA) before applying RSMA. The fractions of land cover components from this modified RSMA are also validated using the field observations from two study area in semiarid savanna and grassland of Queensland, Australia.

  2. Meteorological Effects of Land Cover Changes in Hungary during the 20th Century

    NASA Astrophysics Data System (ADS)

    Drüszler, Á.; Vig, P.; Csirmaz, K.

    2012-04-01

    Geological, paleontological and geomorphologic studies show that the Earth's climate has always been changing since it came into existence. The climate change itself is self-evident. Therefore the far more serious question is how much does mankind strengthen or weaken these changes beyond the natural fluctuation and changes of climate. The aim of the present study was to restore the historical land cover changes and to simulate the meteorological consequences of these changes. Two different land cover maps for Hungary were created in vector data format using GIS technology. The land cover map for 1900 was reconstructed based on statistical data and two different historical maps: the derived map of the 3rd Military Mapping Survey of the Austro-Hungarian Empire and the Synoptic Forestry Map of the Kingdom of Hungary. The land cover map for 2000 was derived from the CORINE land cover database. Significant land cover changes were found in Hungary during the 20th century according to the examinations of these maps and statistical databases. The MM5 non-hydrostatic dynamic model was used to further evaluate the meteorological effects of these changes. The lower boundary conditions for this mesoscale model were generated for two selected time periods (for 1900 and 2000) based on the reconstructed maps. The dynamic model has been run with the same detailed meteorological conditions of selected days from 2006 and 2007, but with modified lower boundary conditions. The set of the 26 selected initial conditions represents the whole set of the macrosynoptic situations for Hungary. In this way, 2×26 "forecasts" were made with 48 hours of integration. The effects of land cover changes under different weather situations were further weighted by the long-term (1961-1990) mean frequency of the corresponding macrosynoptic types, to assume the climatic effects from these stratified averages. The detailed evaluation of the model results were made for three different meteorological variables (temperature, dew point and precipitation).

  3. Complete ISOPHOT (C200) Maps of a Nearby Prototypical GMC: W3 (Spring) or NGC7538 (Fall)

    NASA Technical Reports Server (NTRS)

    Sanders, David B.

    2001-01-01

    We were originally awarded Priority 3 time (approximately 60,000 sec) with Infrared Space Observatory (ISO) to obtain a complete ISOPHOT (PHT32-C200) map of a nearby prototypical giant molecular cloud (GMC). Following the FALL launch and revised estimates for the sensitivity of the ISOPHOT detectors, our program was modified to fit within the time constraints while still carrying out the main science requirements. The revised program requested long strip maps of our FALL target (NGC7538) using sequences of PHT37/38/39 observations with LWS observations of the brightest regions. The large number of AOTs required to cover each GMC required that our observations be spread over four separate proposals (PROP-01, PROP-02, PROP-03, PROP-04) which together comprise a single observing program. Our program was executed in early 1997; nearly 50,000 sec of data were obtained, including all of our requested ISOPHOT C200 observations. None of the LWS data were taken.

  4. The use of color infrared photography for wetlands mapping with special reference to shoreline and waterfowl habitat assessment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Evaluation of low altitude oblique photography obtained by hand-held cameras was useful in determining specifications of operational mission requirements for conventional smaller-scaled vertical photography. Remote sensing techniques were used to assess the rapid destruction of marsh areas at Pointe Mouillee. In an estuarian environment where shoreline features change yearly, there is a need for revision in existing area maps. A land cover inventory, mapped from aerial photography, provided essential data necessary for determining adjacent lands suitable for marshland development. To quantitatively assess the wetlands environment, a detailed inventory of vegetative communities (19 categories) was made using color infrared photography and intensive ground truth. A carefully selected and well laid-out transect was found to be a key asset to photointerpretation and to the analysis of vegetative conditions. Transect data provided the interpreter with locally representative areas of various vegetative types. This facilitated development of a photointerpretation key. Additional information on vegetative conditions in the area was also obtained by evaluating the transect data.

  5. Genetic mapping of resistance to Fusarium oxysporum f. sp. tulipae in tulip.

    PubMed

    Tang, Nan; van der Lee, Theo; Shahin, Arwa; Holdinga, Maarten; Bijman, Paul; Caser, Matteo; Visser, Richard G F; van Tuyl, Jaap M; Arens, Paul

    Fusarium oxysporum is a major problem in the production of tulip bulbs. Breeding for resistant cultivars through a conventional approach is a slow process due to the long life cycle of tulip. Until now, marker-assisted selection (MAS) has been hampered by the large genome size and the absence of a genetic map. This study is aimed at construction of the first genetic map for tulip and at the identification of loci associated with resistance to F. oxysporum . A cross-pollinated population of 125 individuals segregating for Fusarium resistance was obtained from Tulipa gesneriana "Kees Nelis" and T. fosteriana "Cantata." Fusarium resistance of the mapping population was evaluated through a soil infection test in two consecutive years, and a spot inoculation test in which a green fluorescent protein tagged Fusarium strain was used for inoculation. The genetic maps have been constructed for the parents separately. The genetic map of "Kees Nelis" comprised 342 markers on 27 linkage groups covering 1707 cM, while the map of "Cantata" comprised 300 markers on 21 linkage groups covering 1201 cM. Median distance between markers was 3.9 cM for "Kees Nelis" and 3.1 cM for "Cantata." Six putative quantitative trait loci (QTLs) for Fusarium resistance were identified, derived from both parents. QTL2, QTL3, and QTL6 were significant in all disease tests. For the flanking markers of the QTLs, phenotypic means of the two allelic groups, segregating from a parent for such a marker, were significantly different. These markers will be useful for the development of MAS in tulip breeding.

  6. Agricultural land cover mapping in the context of a geographically referenced digital information system. [Carroll, Macon, and Gentry Counties, Missouri

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.

    1982-01-01

    The introduction of soil map information to the land cover mapping process can improve discrimination of land cover types and reduce confusion among crop types that may be caused by soil-specific management practices and background reflectance characteristics. Multiple dates of LANDSAT MSS digital were analyzed for three study areas in northern Missouri to produce cover types for major agricultural land cover classes. Digital data bases were then developed by adding ancillary data such as digitized soil and transportation network information to the LANDSAT-derived cover type map. Procedures were developed to manipulate the data base parameters to extract information applicable to user requirements. An agricultural information system combining such data can be used to determine the productive capacity of land to grow crops, fertilizer needs, chemical weed control rates, irrigation suitability, and trafficability of soil for planting.

  7. Characterization and delineation of caribou habitat on Unimak Island using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Atkinson, Brain M.

    The assessment of herbivore habitat quality is traditionally based on quantifying the forages available to the animal across their home range through ground-based techniques. While these methods are highly accurate, they can be time-consuming and highly expensive, especially for herbivores that occupy vast spatial landscapes. The Unimak Island caribou herd has been decreasing in the last decade at rates that have prompted discussion of management intervention. Frequent inclement weather in this region of Alaska has provided for little opportunity to study the caribou forage habitat on Unimak Island. The overall objectives of this study were two-fold 1) to assess the feasibility of using high-resolution color and near-infrared aerial imagery to map the forage distribution of caribou habitat on Unimak Island and 2) to assess the use of a new high-resolution multispectral satellite imagery platform, RapidEye, and use of the "red-edge" spectral band on vegetation classification accuracy. Maximum likelihood classification algorithms were used to create land cover maps in aerial and satellite imagery. Accuracy assessments and transformed divergence values were produced to assess vegetative spectral information and classification accuracy. By using RapidEye and aerial digital imagery in a hierarchical supervised classification technique, we were able to produce a high resolution land cover map of Unimak Island. We obtained overall accuracy rates of 71.4 percent which are comparable to other land cover maps using RapidEye imagery. The "red-edge" spectral band included in the RapidEye imagery provides additional spectral information that allows for a more accurate overall classification, raising overall accuracy 5.2 percent.

  8. AVIRIS Land-Surface Mapping in Support of the Boreal Ecosystem-Atmosphere Study (BOREAS)

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Gamon, John; Keightley, Keir; Prentiss, Dylan; Reith, Ernest; Green, Robert

    2001-01-01

    A key scientific objective of the original Boreal Ecosystem-Atmospheric Study (BOREAS) field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass, and trace gases in the boreal forest biome. These data sets are necessary to determine the sensitivity of the boreal forest biome to potential climatic changes and potential biophysical feedbacks on climate. A considerable volume of remotely-sensed and supporting field data were acquired by numerous researchers to meet this objective. By design, remote sensing and modeling were considered critical components for scaling efforts, extending point measurements from flux towers and field sites over larger spatial and longer temporal scales. A major focus of the BOREAS follow-on program is concerned with integrating the diverse remotely sensed and ground-based data sets to address specific questions such as carbon dynamics at local to regional scales. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has the potential of contributing to BOREAS through: (1) accurate retrieved apparent surface reflectance; (2) improved landcover classification; and (3) direct assessment of biochemical/biophysical information such as canopy liquid water and chlorophyll concentration through pigment fits. In this paper, we present initial products for major flux tower sites including: (1) surface reflectance of dominant cover types; (2) a land-cover classification developed using spectral mixture analysis (SMA) and Multiple Endmember Spectral Mixture Analysis (MESMA); and (3) liquid water maps. Our goal is to compare these land-cover maps to existing maps and to incorporate AVIRIS image products into models of photosynthetic flux.

  9. Assessment of land cover changes in Lampedusa Island (Italy) using Landsat TM and OLI data

    NASA Astrophysics Data System (ADS)

    Mei, Alessandro; Manzo, Ciro; Fontinovo, Giuliano; Bassani, Cristiana; Allegrini, Alessia; Petracchini, Francesco

    2016-10-01

    The Lampedusa Island displays important socio-economic criticalities related to an intensive touristic activity, which implies an increase in electricity consumption and waste production. An adequate island conversion to a more environmental, sustainable community needs to be faced by the local Management Plans establishment. For this purpose, several thematic datasets have to be produced and evaluated. Socio-economic and bio-ecological components as well as land cover/use assessment are some of the main topics to be managed within the Decision Support Systems. Considering the lack of Land Cover (LC) and vegetation change detection maps in Lampedusa Island (Italy), this paper focuses on the retrieval of these topics by remote sensing techniques. The analysis was carried out by Landsat 5 TM and Landsat 8 OLI multispectral images from 1984 to 2014 in order to obtain spatial and temporal information of changes occurred in the island. Firstly, imagery was co-registered and atmospherically corrected; secondly, it was then classified for land cover and vegetation distribution analysis with the use of QGIS and Saga GIS open source softwares. The Maximum Likelihood Classifier (MLC) was used for LC maps production, while the Normalized Difference Vegetation Index (NDVI) was used for vegetation examination and distribution. Topographic maps, historical aerial photos, ortophotos and field data are merged in the GIS for accuracy assessment. Finally, change detection of MLC and NDVI are provided respectively by Post-Classification Comparison (PCC) and Image Differencing (ID). The provided information, combined with local socio-economic parameters, is essential for the improvement of environmental sustainability of anthropogenic activities in Lampedusa.

  10. Mapping erodibility in dust source regions based on geomorphology, meteorology, and remote sensing

    NASA Astrophysics Data System (ADS)

    Parajuli, Sagar Prasad; Yang, Zong-Liang; Kocurek, Gary

    2014-09-01

    Mineral dust in the atmosphere has implications for Earth's radiation budget, biogeochemical cycles, hydrological cycles, human health, and visibility. Currently, the simulated vertical mass flux of dust differs greatly among the existing dust models. While most of the models utilize an erodibility factor to characterize dust sources, this factor is assumed to be static, without sufficient characterization of the highly heterogeneous and dynamic nature of dust source regions. We present a high-resolution land cover map of the Middle East and North Africa (MENA) in which the terrain is classified by visually examining satellite images obtained from Google Earth Professional and Environmental Systems Research Institute Basemap. We show that the correlation between surface wind speed and Moderate Resolution Imaging Spectroradiometer deep blue aerosol optical depth (AOD) can be used as a proxy for erodibility, which satisfactorily represents the spatiotemporal distribution of soil-derived dust sources. This method also identifies agricultural dust sources and eliminates the satellite-observed dust component that arises from long-range transport, pollution, and biomass burning. The erodible land cover of the MENA region is grouped into nine categories: (1) bedrock: with sediment, (2) sand deposit, (3) sand deposit: on bedrock, (4) sand deposit: stabilized, (5) agricultural and urban area, (6) fluvial system, (7) stony surface, (8) playa/sabkha, and (9) savanna/grassland. Our results indicate that erodibility is linked to the land cover type and has regional variation. An improved land cover map, which explicitly accounts for sediment supply, availability, and transport capacity, may be necessary to represent the highly dynamic nature of dust sources in climate models.

  11. Mapping tree and impervious cover using Ikonos imagery: links with water quality and stream health

    NASA Astrophysics Data System (ADS)

    Wright, R.; Goetz, S. J.; Smith, A.; Zinecker, E.

    2002-12-01

    Precision georeferened Ikonos satellite imagery was used to map tree cover and impervious surface area in Montgomery county Maryland. The derived maps were used to assess riparian zone stream buffer tree cover and to predict, with multivariate logistic regression, stream health ratings across 246 small watersheds averaging 472 km2 in size. Stream health was assessed by state and county experts using a combination of physical measurements (e.g., dissolved oxygen) and biological indicators (e.g., benthic macroinvertebrates). We found it possible to create highly accurate (90+ per cent) maps of tree and impervious cover using decision tree classifiers, provided extensive field data were available for algorithm training. Impervious surface area was found to be the primary predictor of stream health, followed by tree cover in riparian buffers, and total tree cover within entire watersheds. A number of issues associated with mapping using Ikonos imagery were encountered, including differences in phenological and atmospheric conditions, shadowing within canopies and between scene elements, and limited spectral discrimination of cover types. We report on both the capabilities and limitations of Ikonos imagery for these applications, and considerations for extending these analyses to other areas.

  12. Land cover and land use mapping of the iSimangaliso Wetland Park, South Africa: comparison of oblique and orthogonal random forest algorithms

    NASA Astrophysics Data System (ADS)

    Bassa, Zaakirah; Bob, Urmilla; Szantoi, Zoltan; Ismail, Riyad

    2016-01-01

    In recent years, the popularity of tree-based ensemble methods for land cover classification has increased significantly. Using WorldView-2 image data, we evaluate the potential of the oblique random forest algorithm (oRF) to classify a highly heterogeneous protected area. In contrast to the random forest (RF) algorithm, the oRF algorithm builds multivariate trees by learning the optimal split using a supervised model. The oRF binary algorithm is adapted to a multiclass land cover and land use application using both the "one-against-one" and "one-against-all" combination approaches. Results show that the oRF algorithms are capable of achieving high classification accuracies (>80%). However, there was no statistical difference in classification accuracies obtained by the oRF algorithms and the more popular RF algorithm. For all the algorithms, user accuracies (UAs) and producer accuracies (PAs) >80% were recorded for most of the classes. Both the RF and oRF algorithms poorly classified the indigenous forest class as indicated by the low UAs and PAs. Finally, the results from this study advocate and support the utility of the oRF algorithm for land cover and land use mapping of protected areas using WorldView-2 image data.

  13. An automated approach to mapping corn from Landsat imagery

    USGS Publications Warehouse

    Maxwell, S.K.; Nuckols, J.R.; Ward, M.H.; Hoffer, R.M.

    2004-01-01

    Most land cover maps generated from Landsat imagery involve classification of a wide variety of land cover types, whereas some studies may only need spatial information on a single cover type. For example, we required a map of corn in order to estimate exposure to agricultural chemicals for an environmental epidemiology study. Traditional classification techniques, which require the collection and processing of costly ground reference data, were not feasible for our application because of the large number of images to be analyzed. We present a new method that has the potential to automate the classification of corn from Landsat satellite imagery, resulting in a more timely product for applications covering large geographical regions. Our approach uses readily available agricultural areal estimates to enable automation of the classification process resulting in a map identifying land cover as ‘highly likely corn,’ ‘likely corn’ or ‘unlikely corn.’ To demonstrate the feasibility of this approach, we produced a map consisting of the three corn likelihood classes using a Landsat image in south central Nebraska. Overall classification accuracy of the map was 92.2% when compared to ground reference data.

  14. Fractional Snow Cover Mapping by Artificial Neural Networks and Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Çiftçi, B. B.; Kuter, S.; Akyürek, Z.; Weber, G.-W.

    2017-11-01

    Snow is an important land cover whose distribution over space and time plays a significant role in various environmental processes. Hence, snow cover mapping with high accuracy is necessary to have a real understanding for present and future climate, water cycle, and ecological changes. This study aims to investigate and compare the design and use of artificial neural networks (ANNs) and support vector machines (SVMs) algorithms for fractional snow cover (FSC) mapping from satellite data. ANN and SVM models with different model building settings are trained by using Moderate Resolution Imaging Spectroradiometer surface reflectance values of bands 1-7, normalized difference snow index and normalized difference vegetation index as predictor variables. Reference FSC maps are generated from higher spatial resolution Landsat ETM+ binary snow cover maps. Results on the independent test data set indicate that the developed ANN model with hyperbolic tangent transfer function in the output layer and the SVM model with radial basis function kernel produce high FSC mapping accuracies with the corresponding values of R = 0.93 and R = 0.92, respectively.

  15. Land use mapping from CBERS-2 images with open source tools by applying different classification algorithms

    NASA Astrophysics Data System (ADS)

    Sanhouse-García, Antonio J.; Rangel-Peraza, Jesús Gabriel; Bustos-Terrones, Yaneth; García-Ferrer, Alfonso; Mesas-Carrascosa, Francisco J.

    2016-02-01

    Land cover classification is often based on different characteristics between their classes, but with great homogeneity within each one of them. This cover is obtained through field work or by mean of processing satellite images. Field work involves high costs; therefore, digital image processing techniques have become an important alternative to perform this task. However, in some developing countries and particularly in Casacoima municipality in Venezuela, there is a lack of geographic information systems due to the lack of updated information and high costs in software license acquisition. This research proposes a low cost methodology to develop thematic mapping of local land use and types of coverage in areas with scarce resources. Thematic mapping was developed from CBERS-2 images and spatial information available on the network using open source tools. The supervised classification method per pixel and per region was applied using different classification algorithms and comparing them among themselves. Classification method per pixel was based on Maxver algorithms (maximum likelihood) and Euclidean distance (minimum distance), while per region classification was based on the Bhattacharya algorithm. Satisfactory results were obtained from per region classification, where overall reliability of 83.93% and kappa index of 0.81% were observed. Maxver algorithm showed a reliability value of 73.36% and kappa index 0.69%, while Euclidean distance obtained values of 67.17% and 0.61% for reliability and kappa index, respectively. It was demonstrated that the proposed methodology was very useful in cartographic processing and updating, which in turn serve as a support to develop management plans and land management. Hence, open source tools showed to be an economically viable alternative not only for forestry organizations, but for the general public, allowing them to develop projects in economically depressed and/or environmentally threatened areas.

  16. Open Land-Use Map: A Regional Land-Use Mapping Strategy for Incorporating OpenStreetMap with Earth Observations

    NASA Astrophysics Data System (ADS)

    Yang, D.; Fu, C. S.; Binford, M. W.

    2017-12-01

    The southeastern United States has high landscape heterogeneity, withheavily managed forestlands, highly developed agriculture lands, and multiple metropolitan areas. Human activities are transforming and altering land patterns and structures in both negative and positive manners. A land-use map for at the greater scale is a heavy computation task but is critical to most landowners, researchers, and decision makers, enabling them to make informed decisions for varying objectives. There are two major difficulties in generating the classification maps at the regional scale: the necessity of large training point sets and the expensive computation cost-in terms of both money and time-in classifier modeling. Volunteered Geographic Information (VGI) opens a new era in mapping and visualizing our world, where the platform is open for collecting valuable georeferenced information by volunteer citizens, and the data is freely available to the public. As one of the most well-known VGI initiatives, OpenStreetMap (OSM) contributes not only road network distribution, but also the potential for using this data to justify land cover and land use classifications. Google Earth Engine (GEE) is a platform designed for cloud-based mapping with a robust and fast computing power. Most large scale and national mapping approaches confuse "land cover" and "land-use", or build up the land-use database based on modeled land cover datasets. Unlike most other large-scale approaches, we distinguish and differentiate land-use from land cover. By focusing our prime objective of mapping land-use and management practices, a robust regional land-use mapping approach is developed by incorporating the OpenstreepMap dataset into Earth observation remote sensing imageries instead of the often-used land cover base maps.

  17. High-resolution mapping of Martian water ice clouds using Mars Express OMEGA observations - Derivation of the diurnal cloud life cycle

    NASA Astrophysics Data System (ADS)

    Szantai, Andre; Audouard, Joachim; Madeleine, Jean-Baptiste; Forget, Francois; Pottier, Alizée; Millour, Ehouarn; Gondet, Brigitte; Langevin, Yves; Bibring, Jean-Pierre

    2016-10-01

    The mapping in space and time of water ice clouds can help to explain the Martian water cycle and atmospheric circulation. For this purpose, an ice cloud index (ICI) corresponding to the depth of a water ice absorption band at 3.4 microns is derived from a series of OMEGA images (spectels) covering 5 Martian years. The ICI values for the corresponding pixels are then binned on a high-resolution regular grid (1° longitude x 1° latitude x 5° Ls x 1 h local time) and averaged. Inside each bin, the cloud cover is calculated by dividing the number of pixels considered as cloudy (after comparison to a threshold) to the number of all (valid) pixelsWe compare the maps of clouds obtained around local time 14:00 with collocated TES cloud observations (which were only obtained around this time of the day). A good agreement is found.Averaged ICI compared to the water ice column variable from the Martian Climate Database (MCD) show a correct correlation (~0.5) , which increases when values limited to the tropics only are compared.The number of gridpoints containing ICI values is small ( ~1%), but by taking several neighbor gridpoints and over longer periods, we can observe a cloud life cycle during daytime. An example in the the tropics, around the northern summer solstice, shows a decrease of cloudiness in the morning followed by an increase in the afternoon.

  18. The 1980 land cover for the Puget Sound region

    NASA Technical Reports Server (NTRS)

    Shinn, R. D.; Westerlund, F. V.; Eby, J. R.

    1982-01-01

    Both LANDSAT imagery and the video information communications and retrieval software were used to develop a land cover classifiction of the Puget Sound of Washington. Planning agencies within the region were provided with a highly accurate land cover map registered to the 1980 census tracts which could subsequently be incorporated as one data layer in a multi-layer data base. Many historical activities related to previous land cover mapping studies conducted in the Puget Sound region are summarized. Valuable insight into conducting a project with a large community of users and in establishing user confidence in a multi-purpose land cover map derived from LANDSAT is provided.

  19. Land cover mapping of the National Park Service northwest Alaska management area using Landsat multispectral and thematic mapper satellite data

    USGS Publications Warehouse

    Markon, C.J.; Wesser, Sara

    1998-01-01

    A land cover map of the National Park Service northwest Alaska management area was produced using digitally processed Landsat data. These and other environmental data were incorporated into a geographic information system to provide baseline information about the nature and extent of resources present in this northwest Alaskan environment.This report details the methodology, depicts vegetation profiles of the surrounding landscape, and describes the different vegetation types mapped. Portions of nine Landsat satellite (multispectral scanner and thematic mapper) scenes were used to produce a land cover map of the Cape Krusenstern National Monument and Noatak National Preserve and to update an existing land cover map of Kobuk Valley National Park Valley National Park. A Bayesian multivariate classifier was applied to the multispectral data sets, followed by the application of ancillary data (elevation, slope, aspect, soils, watersheds, and geology) to enhance the spectral separation of classes into more meaningful vegetation types. The resulting land cover map contains six major land cover categories (forest, shrub, herbaceous, sparse/barren, water, other) and 19 subclasses encompassing 7 million hectares. General narratives of the distribution of the subclasses throughout the project area are given along with vegetation profiles showing common relationships between topographic gradients and vegetation communities.

  20. Geospatial Modelling Approach for Interlinking of Rivers: A Case Study of Vamsadhara and Nagavali River Systems in Srikakulam, Andhra Pradesh

    NASA Astrophysics Data System (ADS)

    Swathi Lakshmi, A.; Saran, S.; Srivastav, S. K.; Krishna Murthy, Y. V. N.

    2014-11-01

    India is prone to several natural disasters such as floods, droughts, cyclones, landslides and earthquakes on account of its geoclimatic conditions. But the most frequent and prominent disasters are floods and droughts. So to reduce the impact of floods and droughts in India, interlinking of rivers is one of the best solutions to transfer the surplus flood waters to deficit/drought prone areas. Geospatial modelling provides a holistic approach to generate probable interlinking routes of rivers based on existing geoinformatics tools and technologies. In the present study, SRTM DEM and AWiFS datasets coupled with land-use/land -cover, geomorphology, soil and interpolated rainfall surface maps have been used to identify the potential routes in geospatial domain for interlinking of Vamsadhara and Nagavali River Systems in Srikakulam district, Andhra Pradesh. The first order derivatives are derived from DEM and road, railway and drainage networks have been delineated using the satellite data. The inundation map has been prepared using AWiFS derived Normalized Difference Water Index (NDWI). The Drought prone areas were delineated on the satellite image as per the records declared by Revenue Department, Srikakulam. Majority Rule Based (MRB) aggregation technique is performed to optimize the resolution of obtained data in order to retain the spatial variability of the classes. Analytical Hierarchy Process (AHP) based Multi-Criteria Decision Making (MCDM) is implemented to obtain the prioritization of parameters like geomorphology, soil, DEM, slope, and land use/land-cover. A likelihood grid has been generated and all the thematic layers are overlaid to identify the potential grids for routing optimization. To give a better routing map, impedance map has been generated and several other constraints are considered. The implementation of canal construction needs extra cost in some areas. The developed routing map is published into OGC WMS services using open source GeoServer and proposed routing service can be visualized over Bhuvan portal (http://www.bhuvan.nrsc.gov.in/).Thus the obtained routing map of proposed canals focuses on transferring the surplus waters to drought prone areas to solve the problem of water scarcity, to properly utilize the flood waters for irrigational purposes and also help in recharging of groundwater. Similar methodology can be adopted in other interlinking of river systems.

  1. Monitoring Areal Snow Cover Using NASA Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Harshburger, Brian J.; Blandford, Troy; Moore, Brandon

    2011-01-01

    The objective of this project is to develop products and tools to assist in the hydrologic modeling process, including tools to help prepare inputs for hydrologic models and improved methods for the visualization of streamflow forecasts. In addition, this project will facilitate the use of NASA satellite imagery (primarily snow cover imagery) by other federal and state agencies with operational streamflow forecasting responsibilities. A GIS software toolkit for monitoring areal snow cover extent and producing streamflow forecasts is being developed. This toolkit will be packaged as multiple extensions for ArcGIS 9.x and an opensource GIS software package. The toolkit will provide users with a means for ingesting NASA EOS satellite imagery (snow cover analysis), preparing hydrologic model inputs, and visualizing streamflow forecasts. Primary products include a software tool for predicting the presence of snow under clouds in satellite images; a software tool for producing gridded temperature and precipitation forecasts; and a suite of tools for visualizing hydrologic model forecasting results. The toolkit will be an expert system designed for operational users that need to generate accurate streamflow forecasts in a timely manner. The Remote Sensing of Snow Cover Toolbar will ingest snow cover imagery from multiple sources, including the MODIS Operational Snowcover Data and convert them to gridded datasets that can be readily used. Statistical techniques will then be applied to the gridded snow cover data to predict the presence of snow under cloud cover. The toolbar has the ability to ingest both binary and fractional snow cover data. Binary mapping techniques use a set of thresholds to determine whether a pixel contains snow or no snow. Fractional mapping techniques provide information regarding the percentage of each pixel that is covered with snow. After the imagery has been ingested, physiographic data is attached to each cell in the snow cover image. This data can be obtained from a digital elevation model (DEM) for the area of interest.

  2. VizieR Online Data Catalog: Galaxies and QSOs FIR size and surface brightness (Lutz+, 2016)

    NASA Astrophysics Data System (ADS)

    Lutz, D.; Berta, S.; Contursi, A.; Forster Schreiber, N. M.; Genzel, R.; Gracia-Carpio, J.; Herrera-Camus, R.; Netzer, H.; Sturm, E.; Tacconi, L. J.; Tadaki, K.; Veilleux, S.

    2016-08-01

    We use 70, 100, and 160um images from scan maps obtained with PACS on board Herschel, collecting archival data from various projects. In order to cover a wide range of galaxy properties, we first obtain an IR-selected local sample ranging from normal galaxies up to (ultra)luminous infrared galaxies. For that purpose, we searched the Herschel archive for all cz>=2000km/s objects from the IRAS Revised Bright Galaxy Sample (RBGS, Sanders et al., 2003, Cat. J/AJ/126/1607). (1 data file).

  3. Land cover map for map zones 8 and 9 developed from SAGEMAP, GNN, and SWReGAP: a pilot for NWGAP

    Treesearch

    James S. Kagan; Janet L. Ohmann; Matthew Gregory; Claudine Tobalske

    2008-01-01

    As part of the Northwest Gap Analysis Project, land cover maps were generated for most of eastern Washington and eastern Oregon. The maps were derived from regional SAGEMAP and SWReGAP data sets using decision tree classifiers for nonforest areas, and Gradient Nearest Neighbor imputation modeling for forests and woodlands. The maps integrate data from regional...

  4. Assessment of the Relative Accuracy of Hemispheric-Scale Snow-Cover Maps

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Kelly, Richard E.; Riggs, George A.; Chang, Alfred T. C.; Foster, James L.; Houser, Paul (Technical Monitor)

    2001-01-01

    There are several hemispheric-scale satellite-derived snow-cover maps available, but none has been fully validated. For the period October 23 - December 25, 2000, we compare snow maps of North America derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the National Oceanic and Atmospheric Administration (NOAA) National Operational Hydrologic Remote Sensing Center (NOHRSC), which both rely on satellite data from the visible and near-infrared parts of the spectrum; we also compare MODIS and Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) passive-microwave snow maps. The maps derived from visible and near-infrared data are more accurate for mapping snow cover than are the passive-microwave-derived maps, however discrepancies exist as to the location and extent of the snow cover among those maps. The large (approx. 30 km) footprint of the SSM/I data and the difficulty in distinguishing wet and shallow snow from wet or snow-free ground, reveal differences up to 5.32 million sq km in the amount of snow mapped using MODIS versus SSM/I data. Algorithms that utilize both visible and passive-microwave data, which would take advantage of the all-weather mapping ability of the passive-microwave data, will be refined following the launch of the Advanced Microwave Scanning Radiometer (AMSR) in the fall of 2001.

  5. A study of the utilization of ERTS-1 data from the Wabash River Basin

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Nine projects are defined, five ERTS data applications experiments and four supporting technology tasks. The most significant applications results were achieved in the soil association mapping, earth surface feature identification, and urban land use mapping efforts. Four soil association boundaries were accurately delineated from ERTS-1 imagery. A data bank has been developed to test surface feature classifications obtained from ERTS-1 data. Preliminary forest cover classifications indicated that the number of acres estimated tended to be greater than actually existed by 25%. Urban land use analysis of ERTS-1 data indicated highly accurate classification could be obtained for many urban catagories. The wooded residential category tended to be misclassified as woods or agricultural land. Further statistical analysis revealed that these classes could be separated using sample variance.

  6. A Backpack-Mounted Omnidirectional Camera with Off-the-Shelf Navigation Sensors for Mobile Terrestrial Mapping: Development and Forest Application

    PubMed Central

    Prol, Fabricio dos Santos; El Issaoui, Aimad; Hakala, Teemu

    2018-01-01

    The use of Personal Mobile Terrestrial System (PMTS) has increased considerably for mobile mapping applications because these systems offer dynamic data acquisition with ground perspective in places where the use of wheeled platforms is unfeasible, such as forests and indoor buildings. PMTS has become more popular with emerging technologies, such as miniaturized navigation sensors and off-the-shelf omnidirectional cameras, which enable low-cost mobile mapping approaches. However, most of these sensors have not been developed for high-accuracy metric purposes and therefore require rigorous methods of data acquisition and data processing to obtain satisfactory results for some mapping applications. To contribute to the development of light, low-cost PMTS and potential applications of these off-the-shelf sensors for forest mapping, this paper presents a low-cost PMTS approach comprising an omnidirectional camera with off-the-shelf navigation systems and its evaluation in a forest environment. Experimental assessments showed that the integrated sensor orientation approach using navigation data as the initial information can increase the trajectory accuracy, especially in covered areas. The point cloud generated with the PMTS data had accuracy consistent with the Ground Sample Distance (GSD) range of omnidirectional images (3.5–7 cm). These results are consistent with those obtained for other PMTS approaches. PMID:29522467

  7. A new vegetation map of the western Seward Peninsula, Alaska, based on ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Anderson, J. H.; Belon, A. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A reconstituted, simulated color-infrared ERTS-1 image covering the western Seward Peninsula was prepared and it is used for identifying and mapping vegetation types by direct visual examination. The image, NASA ERTS E-1009-22095, was obtained approximately at 1110 hours, 165 degrees WMT on August 1, 1972. Seven major colors are identified. Four of these are matched with units on existing vegetation maps: bright red - shrub thicket; light gray-red - upland tundra; medium gray-red - coastal coastal wet tundra; gray - alpine barrens. The three colors having no map equivalents are tentatively interpreted as follows: pink - grassland tundra; dark gray-red - burn scars; light orange-red - senescent vegetation. A vegetation map, drawn by tracing on an acetate overlay of the image is presented. Significantly more information is depicted than on existing maps with regards to vegetation types and their areal distribution. Furthermore the preparation of the new map from ERTS-1 imagery required little time relative to conventional methods and extent of areal coverage.

  8. Long Term Land Cover and Seagrass Mapping using Landsat and Object-based Image Analysis from 1972 - 2010 in the Coastal Environment of South East Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Lyons, M. B.; Phinn, S. R.; Roelfsema, C. M.

    2011-12-01

    Long term global archives of high-moderate spatial resolution, multi-spectral satellite imagery are now readily accessible, but are not being fully utilised by management agencies due to the lack of appropriate methods to consistently produce accurate and timely management ready information. This work developed an object-based approach to map land cover and seagrass distribution in an Australian coastal environment for a 38 year Landsat image time-series archive. Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery were used without in-situ field data input to produce land and seagrass cover maps every year data was available, resulting in over 60 individual map products over the 38 year archive. Land cover was mapped annually and included several vegetation, bare ground, urban and agricultural classes. Seagrass distribution was also mapped annually, and in some years monthly, via horizontal projective foliage cover classes, sand and deepwater. Land cover products were validated using aerial photography and seagrass was validated with field survey data, producing several measures of accuracy. An average overall accuracy of 65% and 81% was reported for seagrass and land cover respectively, which is consistent with other studies in the area. This study is the first to show moderate spatial resolution, long term annual changes in land cover and seagrass in an Australian environment, without the use of in-situ data; and only one of a few similar studies globally. The land cover products identify several long term trends; such as significant increases in South East Queensland's urban density, vegetation clearing in rural and rural-residential areas, and inter-annual variation in dry vegetation types in western South East Queensland. The seagrass cover products show that there has been a minimal overall change in seagrass extent, but that seagrass cover level distribution is extremely dynamic; evidenced by large scale migrations of higher seagrass cover levels and several events of sudden, significant changes in cover level. These mapping products will allow management agencies to build a baseline assessment of their resources, understand past changes and help inform implementation and planning of management policy to address potential future changes.

  9. Merging the MODIS and NESDIS Monthly Snow-Cover Records to Study Decade-Scale Changes in Northern Hemisphere Snow Cover

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Foster, James L.; Robinson, David A.; Riggs, George A.

    2004-01-01

    A decade-scale record of Northern Hemisphere snow cover has been available from the National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite Data and Information Service (NESDIS) and has been reconstructed and validated by Rutgers University following adjustments for inconsistencies that were discovered in the early years of the data set. This record provides weekly, monthly (and, in recent years, daily) snow cover from 1966 to the present for the Northern Hemisphere. With the December 1999 launch of NASA's Earth observing System (EOS) Terra satellite, snow maps are being produced globally, using automated algorithms, on a daily, weekly and monthly basis from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument. The resolution of the MODIS monthly snow maps (0.05deg or about 5 km) is an improvement over that of the NESDIS-derived monthly snow maps (>approx.10 km) the maps, it is necessary to study the datasets carefully to determine if it is possible to merge the datasets into a continuous record. The months in which data are available for both the NESDIS and MODIS maps (March 2000 to the present) will be compared quantitatively to analyze differences in North American and Eurasian snow cover. Results from the NESDIS monthly maps show that for North America (including all 12 months), there is a trend toward slightly less snow cover in each succeeding decade. Interannual snow-cover extent has varied significantly since 2000 as seen in both the NESDIS and MODIS maps. As the length of the satellite record increases through the MODIS era, and into the National Polar-orbiting Environmental Satellite System (NPOESS) era, it should become easier to identify trends in areal extent of snow cover, if present, that may have climatic significance. Thus it is necessary to analyze the validity of merging the NESDIS and MODIS, and, in the future, the NPOESS datasets for determination of long-term continuity in measurement of Northern Hemisphere snow cover.

  10. Potential and limitations of webcam images for snow cover monitoring in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Dizerens, Céline; Hüsler, Fabia; Wunderle, Stefan

    2017-04-01

    In Switzerland, several thousands of outdoor webcams are currently connected to the Internet. They deliver freely available images that can be used to analyze snow cover variability on a high spatio-temporal resolution. To make use of this big data source, we have implemented a webcam-based snow cover mapping procedure, which allows to almost automatically derive snow cover maps from such webcam images. As there is mostly no information about the webcams and its parameters available, our registration approach automatically resolves these parameters (camera orientation, principal point, field of view) by using an estimate of the webcams position, the mountain silhouette, and a high-resolution digital elevation model (DEM). Combined with an automatic snow classification and an image alignment using SIFT features, our procedure can be applied to arbitrary images to generate snow cover maps with a minimum of effort. Resulting snow cover maps have the same resolution as the digital elevation model and indicate whether each grid cell is snow-covered, snow-free, or hidden from webcams' positions. Up to now, we processed images of about 290 webcams from our archive, and evaluated images of 20 webcams using manually selected ground control points (GCPs) to evaluate the mapping accuracy of our procedure. We present methodological limitations and ongoing improvements, show some applications of our snow cover maps, and demonstrate that webcams not only offer a great opportunity to complement satellite-derived snow retrieval under cloudy conditions, but also serve as a reference for improved validation of satellite-based approaches.

  11. Unusually Low Snow Cover in the U.S.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    New maps of snow cover produced by NASA's Terra satellite show that this year's snow line stayed farther north than normal. When combined with land surface temperature measurements, the observations confirm earlier National Oceanic and Atmospheric Administration reports that the United States was unusually warm and dry this past winter. The above map shows snow cover over the continental United States from February 2002 and is based on data acquired by the Moderate-Resolution Imaging Spectroradiometer (MODIS). The amount of land covered by snow during this period was much lower than usual. With the exception of the western mountain ranges and the Great Lakes region, the country was mostly snow free. The solid red line marks the average location of the monthly snow extent; white areas are snow-covered ground. Snow was mapped at approximately 5 kilometer pixel resolution on a daily basis and then combined, or composited, every eight days. If a pixel was at least 50 percent snow covered during all of the eight-day periods that month, it was mapped as snow covered for the whole month. For more information, images, and animations, read: Terra Satellite Data Confirm Unusually Warm, Dry U.S. Winter Image by Robert Simmon, based on data from the MODIS Snow/Ice Global Mapping Project

  12. Arctic and subarctic environmental analyses utilizing ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Anderson, D. M. (Principal Investigator); Mckim, H. L.; Gatto, L. W.; Haugen, R. K.; Crowder, W. K.; Slaughter, C. W.; Marlar, T. L.

    1974-01-01

    The author has identified the following significant results. ERTS-1 imagery provides a means of distinguishing and monitoring estuarine surface water circulation patterns and changes in the relative sediment load of discharging rivers on a regional basis. Physical boundaries mapped from ERTS-1 imagery in combination with ground truth obtained from existing small scale maps and other sources resulted in improved and more detailed maps of permafrost terrain and vegetation for the same area. Snowpack cover within a research watershed has been analyzed and compared to ground data. Large river icings along the proposed Alaska pipeline route from Prudhoe Bay to the Brooks Range have been monitored. Sea ice deformation and drift northeast of Point Barrow, Alaska have been measured during a four day period in March and shore-fast ice accumulation and ablation along the west coast of Alaska have been mapped for the spring and early summer seasons.

  13. Automatic mapping of strip mine operations from spacecraft data. [Ohio

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator); Reed, L. E.; Pettyjohn, W. A.

    1974-01-01

    The author has identified the following significant results. Computer techniques were applied to process ERTS tapes acquired over coal mining operations in southeastern Ohio on 21 August 1972 and 3 September 1973. ERTS products obtained included geometrically-correct map overlays, at scales from 1:24,000 to 1:250,000, showing stripped earth, partially reclaimed earth, water, and natural vegetation. Computer-generated tables listing the area covered by each land-water category in square kilometers were also produced. By comparing these mapping products, the study demonstrates the capability of ERTS to monitor changes in the extent of stripping and reclamation. NASA C-130 photography acquired on 7 September 1973 when compared with the ERTS products generated from the 3 September 1973 tape established the categorization accuracy to be better than 90%. It is estimated that the stripping and reclamation maps and data were produced from the ERTS CCTs at a tenth of the cost of conventional techniques.

  14. Land use survey and mapping and water resources investigation in Korea

    NASA Technical Reports Server (NTRS)

    Choi, J. H.; Kim, W. I.; Son, D. S. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Land use imagery is applicable to land use classification for small scale land use mapping less than 1:250,000. Land use mapping by satellite is more efficient and more cost-effective than land use mapping from conventional medium altitude aerial photographs. Six categories of level 1 land use classification are recognizable from MSS imagery. A hydrogeomorphological study of the Han River basin indicates that band 7 is useful for recognizing the soil and the weathering part of bed rock. The morphological change of the main river is accurately recognized and the drainage system in the area observed is easily classified because of the more or less simple rock type. Although the direct hydrological characteristics are not obtained from the MSS imagery, the indirect information such as the permeability of the soil and the vegetation cover, is helpful in interpreting the hydrological aspects.

  15. Groundwater vulnerability assessment for organic compounds: fuzzy multi-criteria approach for Mexico city.

    PubMed

    Mazari-Hiriart, Marisa; Cruz-Bello, Gustavo; Bojórquez-Tapia, Luis A; Juárez-Marusich, Lourdes; Alcantar-López, Georgina; Marín, Luis E; Soto-Galera, Ernesto

    2006-03-01

    This study was based on a groundwater vulnerability assessment approach implemented for the Mexico City Metropolitan Area (MCMA). The approach is based on a fuzzy multi-criteria procedure integrated in a geographic information system. The approach combined the potential contaminant sources with the permeability of geological materials. Initially, contaminant sources were ranked by experts through the Analytic Hierarchy Process. An aggregated contaminant sources map layer was obtained through the simple additive weighting method, using a scalar multiplication of criteria weights and binary maps showing the location of each source. A permeability map layer was obtained through the reclassification of a geology map using the respective hydraulic conductivity values, followed by a linear normalization of these values against a compatible scale. A fuzzy logic procedure was then applied to transform and combine the two map layers, resulting in a groundwater vulnerability map layer of five classes: very low, low, moderate, high, and very high. Results provided a more coherent assessment of the policy-making priorities considered when discussing the vulnerability of groundwater to organic compounds. The very high and high vulnerability areas covered a relatively small area (71 km(2) or 1.5% of the total study area), allowing the identification of the more critical locations. The advantage of a fuzzy logic procedure is that it enables the best possible use to be made of the information available regarding groundwater vulnerability in the MCMA.

  16. Remote Sensing techniques used to characterize soil erosion in southwestern Sao Paulo state. M.S. Thesis - 29 Sep. 1982; [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Pinto, S. D. A. F.

    1983-01-01

    Within randomly sampled squares of a 1 km x 1 km grid, rill/gullies frequency, land cover/land use type and shape of the slopes were extracted from aerial photographs of the Ribeirao Anhumas drainage basin. Mean slope gradient, stream frequency and slope length were calculated on topographic maps. Ground truth data on fine sand/coarse sand ratio and vegetation cover densities were obtained. The MSS-LANDSAT-2 data (CCTs) were analyzed using single-cell, cluster synthesis and slicer algorithms. Graphical and statistical analyses of the data indicate that different slope gradients and land cover/land use types are the most significant factors related to the soil erosion process. The digital analysis of MSS data allowed the association among gray level classes and vegetation cover classes, which defined seven classes. These gray level classes and slope gradient classes were used to rank erosion risk.

  17. THEMATIC ACCURACY OF MRLC LAND COVER FOR THE EASTERN UNITED STATES

    EPA Science Inventory



    One objective of the MultiResolution Land Characteristics (MRLC) consortium is to map general land-cover categories for the conterminous United States using Landsat Thematic Mapper (TM) data. Land-cover mapping and classification accuracy assessment are complete for the e...

  18. Spatial Patterns of NLCD Land Cover Change Thematic Accuracy (2001 - 2011)

    EPA Science Inventory

    Research on spatial non-stationarity of land cover classification accuracy has been ongoing for over two decades. We extend the understanding of thematic map accuracy spatial patterns by: 1) quantifying spatial patterns of map-reference agreement for class-specific land cover c...

  19. Automatic categorization of land-water cover types of the Green Swamp, Florida, using Skylab multispectral scanner (S-192) data

    NASA Technical Reports Server (NTRS)

    Coker, A. E.; Higer, A. L.; Rogers, R. H.; Shah, N. J.; Reed, L. E.; Walker, S.

    1975-01-01

    The techniques used and the results achieved in the successful application of Skylab Multispectral Scanner (EREP S-192) high-density digital tape data for the automatic categorizing and mapping of land-water cover types in the Green Swamp of Florida were summarized. Data was provided from Skylab pass number 10 on 13 June 1973. Significant results achieved included the automatic mapping of a nine-category and a three-category land-water cover map of the Green Swamp. The land-water cover map was used to make interpretations of a hydrologic condition in the Green Swamp. This type of use marks a significant breakthrough in the processing and utilization of EREP S-192 data.

  20. Potential for Monitoring Snow Cover in Boreal Forests by Combining MODIS Snow Cover and AMSR-E SWE Maps

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.; Foster, James L.

    2009-01-01

    Monitoring of snow cover extent and snow water equivalent (SWE) in boreal forests is important for determining the amount of potential runoff and beginning date of snowmelt. The great expanse of the boreal forest necessitates the use of satellite measurements to monitor snow cover. Snow cover in the boreal forest can be mapped with either the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) microwave instrument. The extent of snow cover is estimated from the MODIS data and SWE is estimated from the AMSR-E. Environmental limitations affect both sensors in different ways to limit their ability to detect snow in some situations. Forest density, snow wetness, and snow depth are factors that limit the effectiveness of both sensors for snow detection. Cloud cover is a significant hindrance to monitoring snow cover extent Using MODIS but is not a hindrance to the use of the AMSR-E. These limitations could be mitigated by combining MODIS and AMSR-E data to allow for improved interpretation of snow cover extent and SWE on a daily basis and provide temporal continuity of snow mapping across the boreal forest regions in Canada. The purpose of this study is to investigate if temporal monitoring of snow cover using a combination of MODIS and AMSR-E data could yield a better interpretation of changing snow cover conditions. The MODIS snow mapping algorithm is based on snow detection using the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to enhance snow detection in dense vegetation. (Other spectral threshold tests are also used to map snow using MODIS.) Snow cover under a forest canopy may have an effect on the NDVI thus we use the NDVI in snow detection. A MODIS snow fraction product is also generated but not used in this study. In this study the NDSI and NDVI components of the snow mapping algorithm were calculated and analyzed to determine how they changed through the seasons. A blended snow product, the Air Force Weather Agency and NASA (ANSA) snow algorithm and product has recently been developed. The ANSA algorithm blends the MODIS snow cover and AMSR-E SWE products into a single snow product that has been shown to improve the performance of snow cover mapping. In this study components of the ANSA snow algorithm are used along with additional MODIS data to monitor daily changes in snow cover over the period of 1 February to 30 June 2008.

  1. High resolution linkage maps of the model organism Petunia reveal substantial synteny decay with the related genome of tomato.

    PubMed

    Bossolini, Eligio; Klahre, Ulrich; Brandenburg, Anna; Reinhardt, Didier; Kuhlemeier, Cris

    2011-04-01

    Two linkage maps were constructed for the model plant Petunia. Mapping populations were obtained by crossing the wild species Petunia axillaris subsp. axillaris with Petunia inflata, and Petunia axillaris subsp. parodii with Petunia exserta. Both maps cover the seven chromosomes of Petunia, and span 970 centimorgans (cM) and 700 cM of the genomes, respectively. In total, 207 markers were mapped. Of these, 28 are multilocus amplified fragment length polymorphism (AFLP) markers and 179 are gene-derived markers. For the first time we report on the development and mapping of 83 Petunia microsatellites. The two maps retain the same marker order, but display significant differences of recombination frequencies at orthologous mapping intervals. A complex pattern of genomic rearrangements was detected with the related genome of tomato (Solanum lycopersicum), indicating that synteny between Petunia and other Solanaceae crops has been considerably disrupted. The newly developed markers will facilitate the genetic characterization of mutants and ecological studies on genetic diversity and speciation within the genus Petunia. The maps will provide a powerful tool to link genetic and genomic information and will be useful to support sequence assembly of the Petunia genome.

  2. Visual saliency in MPEG-4 AVC video stream

    NASA Astrophysics Data System (ADS)

    Ammar, M.; Mitrea, M.; Hasnaoui, M.; Le Callet, P.

    2015-03-01

    Visual saliency maps already proved their efficiency in a large variety of image/video communication application fields, covering from selective compression and channel coding to watermarking. Such saliency maps are generally based on different visual characteristics (like color, intensity, orientation, motion,…) computed from the pixel representation of the visual content. This paper resumes and extends our previous work devoted to the definition of a saliency map solely extracted from the MPEG-4 AVC stream syntax elements. The MPEG-4 AVC saliency map thus defined is a fusion of static and dynamic map. The static saliency map is in its turn a combination of intensity, color and orientation features maps. Despite the particular way in which all these elementary maps are computed, the fusion techniques allowing their combination plays a critical role in the final result and makes the object of the proposed study. A total of 48 fusion formulas (6 for combining static features and, for each of them, 8 to combine static to dynamic features) are investigated. The performances of the obtained maps are evaluated on a public database organized at IRCCyN, by computing two objective metrics: the Kullback-Leibler divergence and the area under curve.

  3. Identification, definition and mapping of terrestrial ecosystems in interior Alaska

    NASA Technical Reports Server (NTRS)

    Anderson, J. H. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Two new, as yet unfinished vegetation maps are presented. These tend further to substantiate the belief that ERTS-1 imagery is a valuable mapping tool. Newly selected scenes show that vegetation interpretations can be refined through use of non-growing season imagery, particularly through the different spectral characteristics of vegetation lacking foliage and through the effect of vegetation structure on apparent snow cover. Scenes now are available for all test area north of the Alaska Range except Mt. McKinley National Park. No support was obtained for the hypothesis that similar interband ratios, from two areas apparently different spectrally because of different sun angles, would indicate similar surface features. However, attempts to test this hypothesis have so far been casual.

  4. Comparing Different Approaches for Mapping Urban Vegetation Cover from Landsat ETM+ Data: A Case Study on Brussels

    PubMed Central

    Van de Voorde, Tim; Vlaeminck, Jeroen; Canters, Frank

    2008-01-01

    Urban growth and its related environmental problems call for sustainable urban management policies to safeguard the quality of urban environments. Vegetation plays an important part in this as it provides ecological, social, health and economic benefits to a city's inhabitants. Remotely sensed data are of great value to monitor urban green and despite the clear advantages of contemporary high resolution images, the benefits of medium resolution data should not be discarded. The objective of this research was to estimate fractional vegetation cover from a Landsat ETM+ image with sub-pixel classification, and to compare accuracies obtained with multiple stepwise regression analysis, linear spectral unmixing and multi-layer perceptrons (MLP) at the level of meaningful urban spatial entities. Despite the small, but nevertheless statistically significant differences at pixel level between the alternative approaches, the spatial pattern of vegetation cover and estimation errors is clearly distinctive at neighbourhood level. At this spatially aggregated level, a simple regression model appears to attain sufficient accuracy. For mapping at a spatially more detailed level, the MLP seems to be the most appropriate choice. Brightness normalisation only appeared to affect the linear models, especially the linear spectral unmixing. PMID:27879914

  5. High resolution satellite remote sensing used in a stratified random sampling scheme to quantify the constituent land cover components of the shifting cultivation mosaic of the Democratic Republic of Congo

    NASA Astrophysics Data System (ADS)

    Molinario, G.; Hansen, M.; Potapov, P.

    2016-12-01

    High resolution satellite imagery obtained from the National Geospatial Intelligence Agency through NASA was used to photo-interpret sample areas within the DRC. The area sampled is a stratifcation of the forest cover loss from circa 2014 that either occurred completely within the previosly mapped homogenous area of the Rural Complex, at it's interface with primary forest, or in isolated forest perforations. Previous research resulted in a map of these areas that contextualizes forest loss depending on where it occurs and with what spatial density, leading to a better understading of the real impacts on forest degradation of livelihood shifting cultivation. The stratified random sampling approach of these areas allows the characterization of the constituent land cover types within these areas, and their variability throughout the DRC. Shifting cultivation has a variable forest degradation footprint in the DRC depending on many factors that drive it, but it's role in forest degradation and deforestation had been disputed, leading us to investigate and quantify the clearing and reuse rates within the strata throughout the country.

  6. Land use and land cover mapping: City of Palm Bay, Florida

    NASA Technical Reports Server (NTRS)

    Barile, D. D.; Pierce, R.

    1977-01-01

    Two different computer systems were compared for use in making land use and land cover maps. The Honeywell 635 with the LANDSAT signature development program (LSDP) produced a map depicting general patterns, but themes were difficult to classify as specific land use. Urban areas were unclassified. The General Electric Image 100 produced a map depicting eight land cover categories classifying 68 percent of the total area. Ground truth, LSDP, and Image 100 maps were all made to the same scale for comparison. LSDP agreed with the ground truth 60 percent and 64 percent within the two test areas compared and Image 100 was in agreement 70 percent and 80 percent.

  7. Analysis and Mapping of Vegetation and Habitat for the Sheldon National Wildlife Refuge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagestad, Jerry D.

    The Lakeview, Oregon, office of the U.S. Fish and Wildlife Service (USFWS) contracted Pacific Northwest National Laboratory to classify vegetation communities on Sheldon National Wildlife Refuge in northeastern Nevada. The objective of the mapping project was to provide USFWS refuge biologists and planners with detailed vegetation and habitat information that can be referenced to make better decisions regarding wildlife resources, fuels and fire risk, and land management. This letter report describes the datasets and methods used to develop vegetation cover type and shrub canopy cover maps for the Sheldon National Wildlife Refuge. The two map products described in this reportmore » are (1) a vegetation cover classification that provides updated information on the vegetation associations occurring on the refuge and (2) a map of shrub canopy cover based on high-resolution images and field data.« less

  8. Determine utility of ERTS-1 to detect and monitor area strip mining and reclamation. [southeastern Ohio

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator); Pettyjohn, W. A.

    1975-01-01

    The author has identified the following significant results. Computer techniques were applied to process ERTS tapes acquired over coal mining operations in southeastern Ohio on 21 August 1972 and 3 September 1973. ERTS products obtained included geometrically correct map overlays showing stripped earth, partially reclaimed earth, water, and natural vegetation. Computer-generated tables listing the area covered by each land-water category in square kilometers and acres were produced. By comparing these mapping products, the study demonstrates the capability of ERTS to monitor changes in the extent of stripping, success of reclamation, and the secondary effects of mining on the environment.

  9. KSC-99pp0327

    NASA Image and Video Library

    1999-03-24

    Inside the Multi-Payload Processing Facility, the lid covering the Shuttle Radar Topography Mission (SRTM) is lifted. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth

  10. Relief influence on the spatial distribution of the Atlantic Forest cover on the Ibiúna Plateau, SP.

    PubMed

    Silva, W G; Metzger, J P; Simões, S; Simonetti, C

    2007-08-01

    Several studies suggest that, on a large scale, relief conditions influence the Atlantic Forest cover. The aim of this work was to explore these relationships on a local scale, in Caucaia do Alto, on the Ibiúna Plateau. Within an area of about 78 km(2), the distribution of forest cover, divided into two successional stages, was associated with relief attribute data (slope, slope orientation and altitude). The mapping of the vegetation was based on the interpretation of stereoscopic pairs of aerial photographs, from April 2000, on a scale of 1:10,000, while the relief attributes were obtained by geoprocessing from digitalized topographic maps on a scale of 1:10,000. Statistical analyses, based on qui-square tests, revealed that there was a more extensive forest cover, irrespective of the successional stage, in steeper areas (>10 degrees) located at higher altitudes (>923 m), but no influence of the slope orientation. There was no sign of direct influence of relief on the forest cover through environmental gradients that might have contributed to the forest regeneration. Likewise, there was no evidence that these results could have been influenced by the distance from roads or urban areas or with respect to permanent preservation areas. Relief seems to influence the forest cover indirectly, since agricultural land use is preferably made in flatter and lower areas. These results suggest a general distribution pattern of the forest remnants, independent of the scale of study, on which relief indirectly has a strong influence, since it determines human occupation.

  11. Microwave Brightness Of Land Surfaces From Outer Space

    NASA Technical Reports Server (NTRS)

    Kerr, Yann H.; Njoku, Eni G.

    1991-01-01

    Mathematical model approximates microwave radiation emitted by land surfaces traveling to microwave radiometer in outer space. Applied to measurements made by Scanning Multichannel Microwave Radiometer (SMMR). Developed for interpretation of microwave imagery of Earth to obtain distributions of various chemical, physical, and biological characteristics across its surface. Intended primarily for use in mapping moisture content of soil and fraction of Earth covered by vegetation. Advanced Very-High-Resolution Radiometer (AVHRR), provides additional information on vegetative cover, thereby making possible retrieval of soil-moisture values from SMMR measurements. Possible to monitor changes of land surface during intervals of 5 to 10 years, providing significant data for mathematical models of evolution of climate.

  12. Large-area Mapping of Forest Cover and Biomass using ALOS PALSAR

    NASA Astrophysics Data System (ADS)

    Cartus, O.; Kellndorfer, J. M.; Walker, W. S.; Goetz, S. J.; Laporte, N.; Bishop, J.; Cormier, T.; Baccini, A.

    2011-12-01

    In the frame of a Pantropical mapping project, we aim at producing high-resolution forest cover maps from ALOS PALSAR. The ALOS data was obtained through the Americas ALOS Data Node (AADN) at ASF. For the forest cover classification, a pan-tropical network of calibrated reference data was generated from ancillary satellite data (ICESAT GLAS). These data are used to classify PALSAR swath data to be combined to continental forest probability maps. The maps are validated with withheld training data for testing, as well as through independent operator verification with very high-resolution image. In addition, we aim at developing robust algorithms for the mapping of forest biophysical parameters like stem volume or biomass using synergy of PALSAR, optical and Lidar data. Currently we are testing different approaches for the mapping of forest biophysical parameters. 1) For the showcase scenario of Mexico, where we have access to ~1400 PALSAR FBD images as well as the 30 m Landsat Vegetation Continuous Field product, VCF, we test a traditional ground-data based approach. The PALSAR HH/HV intensity data and VCF are used as predictor layers in RandomForest for predicting aboveground forest biomass. A network of 40000 in situ biomass plots is used for model development (for each PALSAR swath) as well as for validation. With this approach a first 30 m biomass map for entire Mexico was produced. An initial validation of the map resulted in an RMSE of 41 t/ha and an R2 of 0.42. Pronounced differences between different ecozones were observed. In some areas the retrieval reached an R2 of 0.6 (e.g. pine-oak forests) whereas, for instance, in dry woodlands, the retrieval accuracy was much lower (R2 of 0.1). A major limitation of the approach was also represented by the fact that for the development of models for each ALOS swath, in some cases too few sample plots were available. 2) Chile: At a forest site in Central Chile, dominated by plantations of pinus radiata, synergy of ALOS PALSAR, Landsat and small-footprint Lidar is investigated for the mapping of forest growing stock volume and canopy height. Canopy Height Models with 1 m pixel size that were generated from the first/last return Lidar data were used to produce surrogate sampling plots to upscale stand-level inventory measurements to wall-to-wall maps with the aid of multi-temporal ALOS and Landsat data. The Lidar data allowed the estimation of volume and canopy height with high accuracy: 23 % error in case of volume and 7 % error in case of height. Using the Lidar estimates as surrogate training data for the development of models relating the ALOS backscatter to volume and height we obtained retrieval errors of ~60 % in case of volume and 31 % in case of height when using only one ALOS FBD image. Significant improvements could be achieved when 1) using three ALOS images for retrieval (50 % error for volume and 26 % for height) and 2) when including also Landsat data (42 % error for volume and 20 % for height).

  13. High-Resolution Sequence-Function Mapping of Full-Length Proteins

    PubMed Central

    Kowalsky, Caitlin A.; Klesmith, Justin R.; Stapleton, James A.; Kelly, Vince; Reichkitzer, Nolan; Whitehead, Timothy A.

    2015-01-01

    Comprehensive sequence-function mapping involves detailing the fitness contribution of every possible single mutation to a gene by comparing the abundance of each library variant before and after selection for the phenotype of interest. Deep sequencing of library DNA allows frequency reconstruction for tens of thousands of variants in a single experiment, yet short read lengths of current sequencers makes it challenging to probe genes encoding full-length proteins. Here we extend the scope of sequence-function maps to entire protein sequences with a modular, universal sequence tiling method. We demonstrate the approach with both growth-based selections and FACS screening, offer parameters and best practices that simplify design of experiments, and present analytical solutions to normalize data across independent selections. Using this protocol, sequence-function maps covering full sequences can be obtained in four to six weeks. Best practices introduced in this manuscript are fully compatible with, and complementary to, other recently published sequence-function mapping protocols. PMID:25790064

  14. Applications of Skylab EREP photographs to mapping landforms and environmental geomorphology in the Great Plains and Midwest

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.; Lineback, J. A.; Fuller, H. K.; Rinkenberger, R. K.

    1975-01-01

    The following evaluations of Skylab photographs were undertaken: (1) the 1290 Skylab S190A and S190B photographs of Illinois, Iowa, Kansas, Missouri, Nebraska, and South Dakota were evaluated in detail in terms of coverage, cloud cover, photographic quality, endlap, detectability of roads and stereorelief, and utility for geomorphologic mapping, and (2) the utility of the Skylab photos were tested for interpretive analytic mapping of geomorphologic features over large areas representative of different parts of this region. Photointerpretative maps of analytic geomorphology were obtained for various test areas representative of the varied landscapes in the region. These maps are useful for regional land-use planning, ground-water exploration, and other environmental geomorphologic-geologic applications. Compared with LANDSAT-1 MSS images, Skylab photos afford almost as extensive overviews of large areas but in considerably greater detail, and for many SL photos, moderate stereorelief. However, repetitive multiseasonal, cloud-free coverage by high-quality photos is very limited and many areas have no coverage at all.

  15. Generation of 2D Land Cover Maps for Urban Areas Using Decision Tree Classification

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2014-09-01

    A 2D land cover map can automatically and efficiently be generated from high-resolution multispectral aerial images. First, a digital surface model is produced and each cell of the elevation model is then supplemented with attributes. A decision tree classification is applied to extract map objects like buildings, roads, grassland, trees, hedges, and walls from such an "intelligent" point cloud. The decision tree is derived from training areas which borders are digitized on top of a false-colour orthoimage. The produced 2D land cover map with six classes is then subsequently refined by using image analysis techniques. The proposed methodology is described step by step. The classification, assessment, and refinement is carried out by the open source software "R"; the generation of the dense and accurate digital surface model by the "Match-T DSM" program of the Trimble Company. A practical example of a 2D land cover map generation is carried out. Images of a multispectral medium-format aerial camera covering an urban area in Switzerland are used. The assessment of the produced land cover map is based on class-wise stratified sampling where reference values of samples are determined by means of stereo-observations of false-colour stereopairs. The stratified statistical assessment of the produced land cover map with six classes and based on 91 points per class reveals a high thematic accuracy for classes "building" (99 %, 95 % CI: 95 %-100 %) and "road and parking lot" (90 %, 95 % CI: 83 %-95 %). Some other accuracy measures (overall accuracy, kappa value) and their 95 % confidence intervals are derived as well. The proposed methodology has a high potential for automation and fast processing and may be applied to other scenes and sensors.

  16. Mapping land cover from satellite images: A basic, low cost approach

    NASA Technical Reports Server (NTRS)

    Elifrits, C. D.; Barney, T. W.; Barr, D. J.; Johannsen, C. J.

    1978-01-01

    Simple, inexpensive methodologies developed for mapping general land cover and land use categories from LANDSAT images are reported. One methodology, a stepwise, interpretive, direct tracing technique was developed through working with university students from different disciplines with no previous experience in satellite image interpretation. The technique results in maps that are very accurate in relation to actual land cover and relative to the small investment in skill, time, and money needed to produce the products.

  17. EnviroAtlas -Phoenix, AZ- One Meter Resolution Urban Land Cover Data (2010) Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The EnviroAtlas Phoenix, AZ land cover data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near-infrared) aerial photography taken from June through September, 2010 at 1 m spatial resolution. Seven land cover classes were mapped: water, impervious surfaces, soil and barren land, trees and forest, shrubland, grass and herbaceous non-woody vegetation, and agriculture. An accuracy assessment using a completely random sampling of 598 land cover reference points yielded an overall accuracy of 69.2%. The area mapped includes the entirety of the Central Arizona-Phoenix Long-Term Ecological Research (CAP-LTER) area, which was classified by the Environmental Remote Sensing and Geoinformatics Lab (ERSG) at Arizona State University. The land cover dataset also includes an area of approximately 625 square kilometers which is located north of Phoenix. This section was classified by the EPA land cover classification team. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data

  18. EnviroAtlas - Phoenix, AZ - One Meter Resolution Urban Land Cover Data (2010)

    EPA Pesticide Factsheets

    The EnviroAtlas Phoenix, AZ land cover (LC) data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near-infrared) aerial photography taken from June through September, 2010 at 1 m spatial resolution. Seven land cover classes were mapped: water, impervious surfaces, soil and barren land, trees and forest, shrubs, grass and herbaceous non-woody vegetation, and agriculture. An accuracy assessment using a completely random sampling of 598 land cover reference points yielded an overall accuracy of 69.2%. The area mapped includes the entirety of the Central Arizona-Phoenix Long-Term Ecological Research (CAP-LTER) area, which was classified by the Environmental Remote Sensing and Geoinformatics Lab (ERSG) at Arizona State University. The land cover dataset also includes an area of approximately 625 square kilometers which is located north of Phoenix. This section was classified by the EPA land cover classification team. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each at

  19. Thematic Accuracy Assessment of the 2011 National Land Cover Database (NLCD)

    EPA Science Inventory

    Accuracy assessment is a standard protocol of National Land Cover Database (NLCD) mapping. Here we report agreement statistics between map and reference labels for NLCD 2011, which includes land cover for ca. 2001, ca. 2006, and ca. 2011. The two main objectives were assessment o...

  20. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Galactic Neutron Capture Abundance Gradients

    NASA Astrophysics Data System (ADS)

    O'Connell, Julia; Frinchaboy, Peter M.; Shetrone, Matthew D.; Melendez, Matthew; Cunha, Katia M. L.; Majewski, Steven R.; Zasowski, Gail; APOGEE Team

    2017-01-01

    The evolution of elements, as a function or age, throughout the Milky Way disk provides a key constraint for galaxy evolution models. In an effort to provide these constraints, we have conducted an investigation into the r- and s- process elemental abundances for a large sample of open clusters as part of an optical follow-up to the SDSS-III/APOGEE-1 survey. Stars were identified as cluster members by the Open Cluster Chemical Abundance & Mapping (OCCAM) survey, which culls member candidates by radial velocity, metallicity, and proper motion from the observed APOGEE sample. To obtain data for neutron capture elements in these clusters, we conducted a long-term observing campaign covering three years (2013-2016) using the McDonald Observatory Otto Struve 2.1-m telescope and Sandiford Cass Echelle Spectrograph (R ~ 60,000). We present Galactic neutron-capture abundance gradients using 30+ clusters, within 6 kpc of the Sun, covering a range of ages from ~80 Myr to ~10 Gyr .

  1. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Galactic Neutron CaptureAbundance Gradients

    NASA Astrophysics Data System (ADS)

    O'Connell, Julia; Frinchaboy, Peter M.; Shetrone, Matthew D.; Melendez, Matthew; Cunha, Katia; Majewski, Steven R.; Zasowski, Gail; APOGEE Team

    2017-06-01

    The evolution of elements, as a function or age, throughout the Milky Way disk provides a key constraint for galaxy evolution models. In an effort to provide these constraints, we have conducted an investigation into the r- and s- process elemental abundances for a large sample of open clusters as part of an optical follow-up to the SDSS-III/APOGEE-1 survey. Stars were identified as cluster members by the Open Cluster Chemical Abundance & Mapping (OCCAM) survey, which culls member candidates by radial velocity, metallicity and proper motion from the observed APOGEE sample. To obtain data for neutron capture elements in these clusters, we conducted a long-term observing campaign covering three years (2013-2016) using the McDonald Observatory Otto Struve 2.1-m telescope and Sandiford Cass Echelle Spectrograph (R ~ 60,000). We present Galactic neutron capture abundance gradients using 30+ clusters, within 6 kpc of the Sun, covering a range of ages from ~80 Myr to ~10 Gyr .

  2. Summer snowmelt patterns in the South Shetlands using TerraSAR-X imagery

    NASA Astrophysics Data System (ADS)

    Mora, C.; Jimenez, J. J.; Catalao Fernades, J.; Ferreira, A.; David, A.; Ramos, M.; Vieira, G.

    2014-12-01

    Snow plays an important role in controlling ground thermal regime and thus influencing permafrost distribution in the lower areas of the South Shetlands archipelago, where late lying snowpatches protect the soil from summer warming. However, summer snow distribution is complex in the mountainous environments of the Maritime Antarctica and it is very difficult to obtain accurate mapping products of snow cover extent and also to monitor snowmelt. Field observations of snow cover in the region are currently based on: i) thickness data from a very scarce network of meteorological stations, ii) temperature poles allowing to estimate snow thickness, iii) and time-lapse cameras allowing for assessing snow distribution over relatively small areas. The high cloudiness of the Maritime Antarctic environment limits good mapping results from the analysis of optical remote sensing imagery such as Landsat, QuickBird or GeoEye. Therefore, microwave sensors provide the best imagery, since they are not influenced by cloudiness and are sensitive to wet-snow, typical of the melting season. We have acquired TerraSAR-X scenes for Deception and Livingston Islands for January-March 2014 in spotlight (HH, VV and HH/VV) and stripmap modes (HH) and analyse the radar backscattering for determining the differences between wet-snow, dry-snow and bare soil aiming at developing snow melt pattern maps. For ground truthing, snowpits were dug in order to characterize snow stratigraphy, grain size, grain type and snow density and to evaluate its effects on radar backscattering. Time-lapse cameras allow to identify snow patch boundaries in the field and ground surface temperatures obtained with minloggers, together with air temperatures, allow to identify the presence of snow cover in the ground. The current research is conducted in the framework of the project PERMANTAR-3 (Permafrost monitoring and modelling in Antarctic Peninsula - PTDC/AAG-GLO/3908/2012 of the FCT and PROPOLAR).

  3. The Enceladus Atlas

    NASA Image and Video Library

    2010-05-13

    This map sheet covers a 15-series image set covering the entire surface of Enceladus. The map data was acquired by NASA Cassini imaging experiment. Individual images can be viewed via the Photojournal.

  4. Tropical land use land cover mapping in Pará (Brazil) using discriminative Markov random fields and multi-temporal TerraSAR-X data

    NASA Astrophysics Data System (ADS)

    Hagensieker, Ron; Roscher, Ribana; Rosentreter, Johannes; Jakimow, Benjamin; Waske, Björn

    2017-12-01

    Remote sensing satellite data offer the unique possibility to map land use land cover transformations by providing spatially explicit information. However, detection of short-term processes and land use patterns of high spatial-temporal variability is a challenging task. We present a novel framework using multi-temporal TerraSAR-X data and machine learning techniques, namely discriminative Markov random fields with spatio-temporal priors, and import vector machines, in order to advance the mapping of land cover characterized by short-term changes. Our study region covers a current deforestation frontier in the Brazilian state Pará with land cover dominated by primary forests, different types of pasture land and secondary vegetation, and land use dominated by short-term processes such as slash-and-burn activities. The data set comprises multi-temporal TerraSAR-X imagery acquired over the course of the 2014 dry season, as well as optical data (RapidEye, Landsat) for reference. Results show that land use land cover is reliably mapped, resulting in spatially adjusted overall accuracies of up to 79% in a five class setting, yet limitations for the differentiation of different pasture types remain. The proposed method is applicable on multi-temporal data sets, and constitutes a feasible approach to map land use land cover in regions that are affected by high-frequent temporal changes.

  5. The Spatial Resolution in the Computer Modelling of Atmospheric Flow over a Double-Hill Forested Region

    NASA Astrophysics Data System (ADS)

    Palma, J. L.; Rodrigues, C. V.; Lopes, A. S.; Carneiro, A. M. C.; Coelho, R. P. C.; Gomes, V. C.

    2017-12-01

    With the ever increasing accuracy required from numerical weather forecasts, there is pressure to increase the resolution and fidelity employed in computational micro-scale flow models. However, numerical studies of complex terrain flows are fundamentally bound by the digital representation of the terrain and land cover. This work assess the impact of the surface description on micro-scale simulation results at a highly complex site in Perdigão, Portugal, characterized by a twin parallel ridge topography, densely forested areas and an operating wind turbine. Although Coriolis and stratification effects cannot be ignored, the study is done under neutrally stratified atmosphere and static inflow conditions. The understanding gained here will later carry over to WRF-coupled simulations, where those conditions do not apply and the flow physics is more accurately modelled. With access to very fine digital mappings (<1m horizontal resolution) of both topography and land cover (roughness and canopy cover, both obtained through aerial LIDAR scanning of the surface) the impact of each element of the surface description on simulation results can be individualized, in order to estimate the resolution required to satisfactorily resolve them. Starting from the bare topographic description, in its coursest form, these include: a) the surface roughness mapping, b) the operating wind turbine, c) the canopy cover, as either body forces or added surface roughness (akin to meso-scale modelling), d) high resolution topography and surface cover mapping. Each of these individually will have an impact near the surface, including the rotor swept area of modern wind turbines. Combined they will considerably change flow up to boundary layer heights. Sensitivity to these elements cannot be generalized and should be assessed case-by-case. This type of in-depth study, unfeasible using WRF-coupled simulations, should provide considerable insight when spatially allocating mesh resolution for accurate resolution of complex flows.

  6. Accuracy Assessment of Satellite Derived Forest Cover Products in South and Southeast Asia

    NASA Astrophysics Data System (ADS)

    Gilani, H.; Xu, X.; Jain, A. K.

    2017-12-01

    South and Southeast Asia (SSEA) region occupies 16 % of worlds land area. It is home to over 50% of the world's population. The SSEA's countries are experiencing significant land-use and land-cover changes (LULCCs), primarily in agriculture, forest, and urban land. For this study, we compiled four existing global forest cover maps for year 2010 by Gong et al.(2015), Hansen et al. (2013), Sexton et al.(2013) and Shimada et al. (2014), which were all medium resolution (≤30 m) products based on Landsat and/or PALSAR satellite images. To evaluate the accuracy of these forest products, we used three types of information: (1) ground measurements, (2) high resolution satellite images and (3) forest cover maps produced at the national scale. The stratified random sampling technique was used to select a set of validation data points from the ground and high-resolution satellite images. Then the confusion matrix method was used to assess and rank the accuracy of the forest cover products for the entire SSEA region. We analyzed the spatial consistency of different forest cover maps, and further evaluated the consistency with terrain characteristics. Our study suggests that global forest cover mapping algorithms are trained and tested using limited ground measurement data. We found significant uncertainties in mountainous areas due to the topographical shadow effect and the dense tree canopies effects. The findings of this study will facilitate to improve our understanding of the forest cover dynamics and their impacts on the quantities and pathways of terrestrial carbon and nitrogen fluxes. Gong, P., et al. (2012). "Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data." International Journal of Remote Sensing 34(7): 2607-2654. Hansen, M. C., et al. (2013). "High-Resolution Global Maps of 21st-Century Forest Cover Change." Science 342(6160): 850-853. Sexton, J. O., et al. (2013). "Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error." International Journal of Digital Earth: 1-22. Shimada, M., et al. (2014). "New global forest/non-forest maps from ALOS PALSAR data (2007-2010)." Remote Sensing of Environment 155: 13-31.

  7. Summer Crop Classification by Multi-Temporal COSMO-SkyMed® Data

    NASA Astrophysics Data System (ADS)

    Guarini, Rocchina; Bruzzone, Lorenzo; Santoni, Massimo; Vuolo, Francesco; Luigi, Dini

    2016-08-01

    In this study, we propose a multi-temporal and multi- polarization approach to discriminate different crop types in the Marchefel region, Austria. The sensitivity of X-band COSMO-SkyMed® (CSK®) data with respect to five crop classes, namely carrot, corn, potato, soybean and sugarbeet is investigated. In particular, the capabilities of dual-polarization (StripMap PingPong) HH/HV, and single-polarization (StripMap Himage), HH and VH, in distinguishing among the five crop types are evaluated. A total of twenty-one Himage and ten PingPong images were acquired in a seven-months period, from April to October 2014. Therefore, the backscattering coefficient was extracted for each dataset and the classification was performed using a pixel-based support vector machine (SVM) approach. The accuracy of the obtained crop classifications was assessed by comparing them with ground truth. The dual-polarization results are contrasted between the HH and HV polarization, and with single-polarization ones (HH and VH polarizations). The best accuracy is obtained by using time-series of StripMap Himage data, at VH polarization, covering the whole season period.

  8. Generating a National Land Cover Dataset for Mexico at 30m Spatial Resolution in the Framework of the NALCMS Project.

    NASA Astrophysics Data System (ADS)

    Llamas, R. M.; Colditz, R. R.; Ressl, R.; Jurado Cruz, D. A.; Argumedo, J.; Victoria, A.; Meneses, C.

    2017-12-01

    The North American Land Change Monitoring System (NALCMS) is a tri-national initiative for mapping land cover across Mexico, United States and Canada, integrating efforts of institutions from the three countries. At the continental scale the group released land cover and change maps derived from MODIS image mosaics at 250m spatial resolution for 2005 and 2010. Current efforts are based on 30m Landsat images for 2010 ± 1 year. Each country uses its own mapping approach and sources for ancillary data, while ensuring that maps are produced in a coherent fashion across the continent. This paper presents the methodology and final land cover map of Mexico for the year 2010 that was later integrated into a continental map. The principal input for Mexico was the Monitoring Activity Data for Mexico (MAD-MEX) land cover map (version 4.3), derived from all available mostly cloud-free images for the year 2010. A total of 35 classes were regrouped to 15 classes of the NALCMS legend present in Mexico. Next, various issues of the automatically generated MAD-MEX land cover mosaic were corrected, such as: filling areas of no data due no cloud-free observation or gaps in Landsat 7 ETM+ images, filling inland water bodies which were left unclassified due to masking issues, relabeling isolated unclassified of falsely classified pixels, structural mislabeling due to data gaps, reclassifying areas of adjacent scenes with significant class disagreements and correcting obvious misclassifications, mostly of water and urban areas. In a second step minor missing areas and rare class snow and ice were digitized and a road network was added. A product such as NALCMS land cover map at 30m for North America is an unprecedented effort and will be without doubt an important source of information for many users around the world who need coherent land cover data over a continental domain as an input for a wide variety of environmental studies. The product release to the general public is expected by late summer of 2017 and will be made available through the Commission for Environmental Cooperation (CEC) at www.cec.org

  9. Mapping forest types in Worcester County, Maryland, using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Burtis, J., Jr.; Witt, R. G.

    1981-01-01

    The feasibility of mapping Level 2 forest cover types for a county-sized area on Maryland's Eastern Shore was demonstrated. A Level 1 land use/land cover classification was carried out for all of Worcester County as well. A June 1978 LANDSAT scene was utilized in a classification which employed two software packages on different computers (IDIMS on an HP 3000 and ASTEP-II on a Univac 1108). A twelve category classification scheme was devised for the study area. Resulting products include black and white line printer maps, final color coded classification maps, digitally enhanced color imagery and tabulated acreage statistics for all land use and land cover types.

  10. Interacting Boson Model and nucleons

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu

    2012-10-01

    An overview on the recent development of the microscopic derivation of the Interacting Boson Model is presented with some remarks not found elsewhere. The OAI mapping is reviewed very briefly, including the basic correspondence from nucleon-pair to boson. The new fermionboson mapping method is introduced, where intrinsic states of nucleons and bosons for a wide variation of shapes play an important role. Nucleon intrinsic states are obtained from mean field models, which is Skyrme model in examples to be shown. This method generates IBM-2 Hamiltonian which can describe and predict various situations of quadrupole collective states, including U(5), SU(3), O(6) and E(5) limits. The method is extended so that rotational response (cranking) can be handled, which enables us to describe rotational bands of strongly deformed nuclei. Thus, we have obtained a unified framework for the microscopic derivation of the IBM covering all known situations of quadrupole collectivity at low energy.

  11. An assessment of the safety performance of farm vehicles subject to exemptions under MAP-21 : analysis brief.

    DOT National Transportation Integrated Search

    2016-05-01

    The Moving Ahead for Progress in the 21st Century Act (MAP-21) requires that the Secretary of Transportation conduct a Safety Study of covered farm vehicles. The Act defines a covered farm vehicle as a vehicle that: MAP-21 requires that t...

  12. Inexpensive Tools To Quantify And Map Vegetative Cover For Large-Scale Research Or Management Decisions.

    USDA-ARS?s Scientific Manuscript database

    Vegetative cover can be quantified quickly and consistently and often at lower cost with image analysis of color digital images than with visual assessments. Image-based mapping of vegetative cover for large-scale research and management decisions can now be considered with the accuracy of these met...

  13. Urban cover mapping using digital, high-resolution aerial imagery

    Treesearch

    Soojeong Myeong; David J. Nowak; Paul F. Hopkins; Robert H. Brock

    2003-01-01

    High-spatial resolution digital color-infrared aerial imagery of Syracuse, NY was analyzed to test methods for developing land cover classifications for an urban area. Five cover types were mapped: tree/shrub, grass/herbaceous, bare soil, water and impervious surface. Challenges in high-spatial resolution imagery such as shadow effect and similarity in spectral...

  14. Improving automated disturbance maps using snow-covered landsat time series stacks

    Treesearch

    Kirk M. Stueve; Ian W. Housman; Patrick L. Zimmerman; Mark D. Nelson; Jeremy Webb; Charles H. Perry; Robert A. Chastain; Dale D. Gormanson; Chengquan Huang; Sean P. Healey; Warren B. Cohen

    2012-01-01

    Snow-covered winter Landsat time series stacks are used to develop a nonforest mask to enhance automated disturbance maps produced by the Vegetation Change Tracker (VCT). This method exploits the enhanced spectral separability between forested and nonforested areas that occurs with sufficient snow cover. This method resulted in significant improvements in Vegetation...

  15. Determinants of woody cover in African savannas

    USGS Publications Warehouse

    Sankaran, M.; Hanan, N.P.; Scholes, Robert J.; Ratnam, J.; Augustine, D.J.; Cade, B.S.; Gignoux, J.; Higgins, S.I.; Le, Roux X.; Ludwig, F.; Ardo, J.; Banyikwa, F.; Bronn, A.; Bucini, G.; Caylor, K.K.; Coughenour, M.B.; Diouf, A.; Ekaya, W.; Feral, C.J.; February, E.C.; Frost, P.G.H.; Hiernaux, P.; Hrabar, H.; Metzger, K.L.; Prins, H.H.T.; Ringrose, S.; Sea, W.; Tews, J.; Worden, J.; Zambatis, N.

    2005-01-01

    Savannas are globally important ecosystems of great significance to human economies. In these biomes, which are characterized by the co-dominance of trees and grasses, woody cover is a chief determinant of ecosystem properties 1-3. The availability of resources (water, nutrients) and disturbance regimes (fire, herbivory) are thought to be important in regulating woody cover1,2,4,5, but perceptions differ on which of these are the primary drivers of savanna structure. Here we show, using data from 854 sites across Africa, that maximum woody cover in savannas receiving a mean annual precipitation (MAP) of less than ???650 mm is constrained by, and increases linearly with, MAP. These arid and semi-arid savannas may be considered 'stable' systems in which water constrains woody cover and permits grasses to coexist, while fire, herbivory and soil properties interact to reduce woody cover below the MAP-controlled upper bound. Above a MAP of ???650 mm, savannas are 'unstable' systems in which MAP is sufficient for woody canopy closure, and disturbances (fire, herbivory) are required for the coexistence of trees and grass. These results provide insights into the nature of African savannas and suggest that future changes in precipitation 6 may considerably affect their distribution and dynamics. ?? 2005 Nature Publishing Group.

  16. Computer-aided classification of forest cover types from small scale aerial photography

    NASA Astrophysics Data System (ADS)

    Bliss, John C.; Bonnicksen, Thomas M.; Mace, Thomas H.

    1980-11-01

    The US National Park Service must map forest cover types over extensive areas in order to fulfill its goal of maintaining or reconstructing presettlement vegetation within national parks and monuments. Furthermore, such cover type maps must be updated on a regular basis to document vegetation changes. Computer-aided classification of small scale aerial photography is a promising technique for generating forest cover type maps efficiently and inexpensively. In this study, seven cover types were classified with an overall accuracy of 62 percent from a reproduction of a 1∶120,000 color infrared transparency of a conifer-hardwood forest. The results were encouraging, given the degraded quality of the photograph and the fact that features were not centered, as well as the lack of information on lens vignetting characteristics to make corrections. Suggestions are made for resolving these problems in future research and applications. In addition, it is hypothesized that the overall accuracy is artificially low because the computer-aided classification more accurately portrayed the intermixing of cover types than the hand-drawn maps to which it was compared.

  17. Mapping forest functional type in a forest-shrubland ecotone using SPOT imagery and predictive habitat distribution modelling

    USGS Publications Warehouse

    Assal, Timothy J.; Anderson, Patrick J.; Sibold, Jason

    2015-01-01

    The availability of land cover data at local scales is an important component in forest management and monitoring efforts. Regional land cover data seldom provide detailed information needed to support local management needs. Here we present a transferable framework to model forest cover by major plant functional type using aerial photos, multi-date Système Pour l’Observation de la Terre (SPOT) imagery, and topographic variables. We developed probability of occurrence models for deciduous broad-leaved forest and needle-leaved evergreen forest using logistic regression in the southern portion of the Wyoming Basin Ecoregion. The model outputs were combined into a synthesis map depicting deciduous and coniferous forest cover type. We evaluated the models and synthesis map using a field-validated, independent data source. Results showed strong relationships between forest cover and model variables, and the synthesis map was accurate with an overall correct classification rate of 0.87 and Cohen’s kappa value of 0.81. The results suggest our method adequately captures the functional type, size, and distribution pattern of forest cover in a spatially heterogeneous landscape.

  18. NLCD tree canopy cover (TCC) maps of the contiguous United States and coastal Alaska

    Treesearch

    Robert Benton; Bonnie Ruefenacht; Vicky Johnson; Tanushree Biswas; Craig Baker; Mark Finco; Kevin Megown; John Coulston; Ken Winterberger; Mark Riley

    2015-01-01

    A tree canopy cover (TCC) map is one of three elements in the National Land Cover Database (NLCD) 2011 suite of nationwide geospatial data layers. In 2010, the USDA Forest Service (USFS) committed to creating the TCC layer as a member of the Multi-Resolution Land Cover (MRLC) consortium. A general methodology for creating the TCC layer was reported at the 2012 FIA...

  19. A Multitemporal, Multisensor Approach to Mapping the Canadian Boreal Forest

    NASA Astrophysics Data System (ADS)

    Reith, Ernest

    The main anthropogenic source of CO2 emissions is the combustion of fossil fuels, while the clearing and burning of forests contribute significant amounts as well. Vegetation represents a major reservoir for terrestrial carbon stocks, and improving our ability to inventory vegetation will enhance our understanding of the impacts of land cover and climate change on carbon stocks and fluxes. These relationships may be an indication of a series of troubling biosphere-atmospheric feedback mechanisms that need to be better understood and modeled. Valuable land cover information can be provided to the global climate change modeling community using advanced remote sensing capabilities such as Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR). Individually and synergistically, data were successfully used to characterize the complex nature of the Canadian boreal forest land cover types. The multiple endmember spectral mixture analysis process was applied against seasonal AVIRIS data to produce species-level vegetated land cover maps of two study sites in the Canadian boreal forest: Old Black Spruce (OBS) and Old Jack Pine (OJP). The highest overall accuracy was assessed to be at least 66% accurate to the available reference map, providing evidence that high-quality, species-level land cover mapping of the Canadian boreal forest is achievable at accuracy levels greater than other previous research efforts in the region. Backscatter information from multichannel, polarimetric SAR utilizing a binary decision tree-based classification technique methodology was moderately successfully applied to AIRSAR to produce maps of the boreal land cover types at both sites, with overall accuracies at least 59%. A process, centered around noise whitening and principal component analysis features of the minimum noise fraction transform, was implemented to leverage synergies contained within spatially coregistered multitemporal and multisensor AVIRIS and AIRSAR data sets to successfully produce high-accuracy boreal forest land cover maps. Overall land cover map accuracies of 78% and 72% were assessed for OJP and OBS sites, respectively, for either seasonal or multitemporal data sets. High individual land cover accuracies appeared to be independent of site, season, or multisensor combination in the minimum-noise fraction-based approach.

  20. The Regional Land Cover Monitoring System: Building regional capacity through innovative land cover mapping approaches

    NASA Astrophysics Data System (ADS)

    Saah, D.; Tenneson, K.; Hanh, Q. N.; Aekakkararungroj, A.; Aung, K. S.; Goldstein, J.; Cutter, P. G.; Maus, P.; Markert, K. N.; Anderson, E.; Ellenburg, W. L.; Ate, P.; Flores Cordova, A. I.; Vadrevu, K.; Potapov, P.; Phongsapan, K.; Chishtie, F.; Clinton, N.; Ganz, D.

    2017-12-01

    Earth observation and Geographic Information System (GIS) tools, products, and services are vital to support the environmental decision making by governmental institutions, non-governmental agencies, and the general public. At the heart of environmental decision making is the monitoring land cover and land use change (LCLUC) for land resource planning and for ecosystem services, including biodiversity conservation and resilience to climate change. A major challenge for monitoring LCLUC in developing regions, such as Southeast Asia, is inconsistent data products at inconsistent intervals that have different typologies across the region and are typically made in without stakeholder engagement or input. Here we present the Regional Land Cover Monitoring System (RLCMS), a novel land cover mapping effort for Southeast Asia, implemented by SERVIR-Mekong, a joint NASA-USAID initiative that brings Earth observations to improve environmental decision making in developing countries. The RLCMS focuses on mapping biophysical variables (e.g. canopy cover, tree height, or percent surface water) at an annual interval and in turn using those biophysical variables to develop land cover maps based on stakeholder definitions of land cover classes. This allows for flexible and consistent land cover classifications that can meet the needs of different institutions across the region. Another component of the RLCMS production is the stake-holder engagement through co-development. Institutions that directly benefit from this system have helped drive the development for regional needs leading to services for their specific uses. Examples of services for regional stakeholders include using the RLCMS to develop maps using the IPCC classification scheme for GHG emission reporting and developing custom annual maps as an input to hydrologic modeling/flood forecasting systems. In addition to the implementation of this system and the service stemming from the RLCMS in Southeast Asia, it is planned to replicate the methods presented at the SERVIR-Hindu Kush Himalaya hub serving South Asia. Enhancements to the system will include change detection methods, enhanced biophysical models, and delivery systems.

  1. The national land use data program of the US Geological Survey

    NASA Technical Reports Server (NTRS)

    Anderson, J. R.; Witmer, R. E.

    1975-01-01

    The Land Use Data and Analysis (LUDA) Program which provides a systematic and comprehensive collection and analysis of land use and land cover data on a nationwide basis is described. Maps are compiled at about 1:125,000 scale showing present land use/cover at Level II of a land use/cover classification system developed by the U.S. Geological Survey in conjunction with other Federal and state agencies and other users. For each of the land use/cover maps produced at 1:125,000 scale, overlays are also compiled showing Federal land ownership, river basins and subbasins, counties, and census county subdivisions. The program utilizes the advanced technology of the Special Mapping Center of the U.S. Geological Survey, high altitude NASA photographs, aerial photographs acquired for the USGS Topographic Division's mapping program, and LANDSAT data in complementary ways.

  2. Survey methods for assessing land cover map accuracy

    USGS Publications Warehouse

    Nusser, S.M.; Klaas, E.E.

    2003-01-01

    The increasing availability of digital photographic materials has fueled efforts by agencies and organizations to generate land cover maps for states, regions, and the United States as a whole. Regardless of the information sources and classification methods used, land cover maps are subject to numerous sources of error. In order to understand the quality of the information contained in these maps, it is desirable to generate statistically valid estimates of accuracy rates describing misclassification errors. We explored a full sample survey framework for creating accuracy assessment study designs that balance statistical and operational considerations in relation to study objectives for a regional assessment of GAP land cover maps. We focused not only on appropriate sample designs and estimation approaches, but on aspects of the data collection process, such as gaining cooperation of land owners and using pixel clusters as an observation unit. The approach was tested in a pilot study to assess the accuracy of Iowa GAP land cover maps. A stratified two-stage cluster sampling design addressed sample size requirements for land covers and the need for geographic spread while minimizing operational effort. Recruitment methods used for private land owners yielded high response rates, minimizing a source of nonresponse error. Collecting data for a 9-pixel cluster centered on the sampled pixel was simple to implement, and provided better information on rarer vegetation classes as well as substantial gains in precision relative to observing data at a single-pixel.

  3. Mapping Urban Tree Canopy Cover Using Fused Airborne LIDAR and Satellite Imagery Data

    NASA Astrophysics Data System (ADS)

    Parmehr, Ebadat G.; Amati, Marco; Fraser, Clive S.

    2016-06-01

    Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, Australia.

  4. Side-looking airborne radar image interpretation and geological mapping: Problems and results

    NASA Technical Reports Server (NTRS)

    Scanvic, J. Y.; Soubari, E. H.

    1980-01-01

    Geological experiments and surveys conducted by BRGM and GDTA members to evaluate interest in SLAR image interpretation are summarized. Two surveys were selected for presentation: Les Vans (Massif central, France) and Guyana (South America). They have permitted a comparison between different types of SLAR: Goodyear, Motorola, JPL, and Vigie in term of lithological and structural applications. On the Les Vans test site conclusions reached concern radiometry, which is better on L-band imagery, polarization, HV being more useful than HH for geological mapping in an L-band system, wavelength and illuminations. Over Guyana, the use of Goodyear X-band SLAR enables satisfactory geological and structural mapping under heavy equatorial forest with cloud cover conditions. A differential program was developed for fracture filtering and image enhancement with a coherent light laser, and significant results were obtained.

  5. Monitoring water quality from LANDSAT. [satellite observation of Virginia

    NASA Technical Reports Server (NTRS)

    Barker, J. L.

    1975-01-01

    Water quality monitoring possibilities from LANDSAT were demonstrated both for direct readings of reflectances from the water and indirect monitoring of changes in use of land surrounding Swift Creek Reservoir in a joint project with the Virginia State Water Control Board and NASA. Film products were shown to have insufficient resolution and all work was done by digitally processing computer compatible tapes. Land cover maps of the 18,000 hectare Swift Creek Reservoir watershed, prepared for two dates in 1974, are shown. A significant decrease in the pine cover was observed in a 740 hectare construction site within the watershed. A measure of the accuracy of classification was obtained by comparing the LANDSAT results with visual classification at five sites on a U-2 photograph. Such changes in land cover can alert personnel to watch for potential changes in water quality.

  6. Landslide susceptibility mapping & prediction using Support Vector Machine for Mandakini River Basin, Garhwal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Thakur, Manoj; Dubey, Chandra S.; Shukla, Dericks P.

    2017-10-01

    In recent years, various machine learning techniques have been applied for landslide susceptibility mapping. In this study, three different variants of support vector machine viz., SVM, Proximal Support Vector Machine (PSVM) and L2-Support Vector Machine - Modified Finite Newton (L2-SVM-MFN) have been applied on the Mandakini River Basin in Uttarakhand, India to carry out the landslide susceptibility mapping. Eight thematic layers such as elevation, slope, aspect, drainages, geology/lithology, buffer of thrusts/faults, buffer of streams and soil along with the past landslide data were mapped in GIS environment and used for landslide susceptibility mapping in MATLAB. The study area covering 1625 km2 has merely 0.11% of area under landslides. There are 2009 pixels for past landslides out of which 50% (1000) landslides were considered as training set while remaining 50% as testing set. The performance of these techniques has been evaluated and the computational results show that L2-SVM-MFN obtains higher prediction values (0.829) of receiver operating characteristic curve (AUC-area under the curve) as compared to 0.807 for PSVM model and 0.79 for SVM. The results obtained from L2-SVM-MFN model are found to be superior than other SVM prediction models and suggest the usefulness of this technique to problem of landslide susceptibility mapping where training data is very less. However, these techniques can be used for satisfactory determination of susceptible zones with these inputs.

  7. Mapping lichen color-groups in western Arctic Alaska using seasonal Landsat composites

    NASA Astrophysics Data System (ADS)

    Nelson, P.; Macander, M. J.; Swingley, C. S.

    2016-12-01

    Mapping lichens at a landscape scale has received increased recent interest due to fears that terricolous lichen mats, primary winter caribou forage, may be decreasing across the arctic and boreal zones. However, previous efforts have produced taxonomically coarse, total lichen cover maps or have covered relatively small spatial extents. Here we attempt to map lichens of differing colors as species proxies across northwestern Alaska to produce the finest taxonomic and spatial- grained lichen maps covering the largest spatial extent to date. Lichen community sampling in five western Alaskan National Parks and Preserves from 2007-2012 generated 328 FIA-style 34.7 m radius plots on which species-level macrolichen community structure and abundance was estimated. Species were coded by color and plot lichen cover was aggregated by plot as the sum of the cover of each species in a color group. Ten different lichen color groupings were used for modeling to deduce which colors were most detectable. Reflectance signatures of each plot were extracted from a series of Landsat composites (circa 2000-2010) partitioned into two-week intervals from June 1 to Sept. 15. Median reflectance values for each band in each pixel were selected based on filtering criteria to reduce likelihood of snow cover. Lichen color group cover was regressed against plot reflectance plus additional abiotic predictors in two different data mining algorithms. Brown and grey lichens had the best models explaining approximately 40% of lichen cover in those color groups. Both data mining techniques produced similarly good fitting models. Spatial patterns of lichen color-group cover show distinctly different ecological patterns of these color-group species proxies.

  8. Investigating the use of the dual-polarized and large incident angle of SAR data for mapping the fluvial and aeolian deposits

    NASA Astrophysics Data System (ADS)

    Gaber, Ahmed; Amarah, Bassam A.; Abdelfattah, Mohamed; Ali, Sarah

    2017-12-01

    Mapping the spatial distributions of the fluvial deposits in terms of particles size as well as imaging the near-surface features along the non-vegetated aeolian sand-sheets, provides valuable geological information. Thus this work aims at investigating the contribution of the dual-polarization SAR data in classifying and mapping the surface sediments as well as investigating the effect of the radar incident-angle on improving the images of the hidden features under the desert sand cover. For mapping the fluvial deposits, the covariance matrix ([C2]) using four dual-polarized ALOS/PALSAR-1 scenes cover the Wadi El Matulla, East Qena, Egypt were generated. This [C2] matrix was used to generate a supervised classification map with three main classes (gravel, gravel/sand and sand). The polarimetric scattering response, spectral reflectance and temperatures brightness of these 3 classes were extracted. However for the aeolian deposits investigation, two Radarsat-1 and three full-polarimetric ALOS/PALSAR-1 images, which cover the northwestern sandy part of Sinai, Egypt were calibrated, filtered, geocoded and ingested in a GIS database to image the near-surface features. The fluvial mapping results show that the values of the radar backscattered coefficient (σ°) and the degree of randomness of the obtained three classes are increasing respectively by increasing their grain size. Moreover, the large incident angle (θi = 39.7) of the Radarsat-1 image has revealed a meandering buried stream under the sand sheet of the northwestern part of Sinai. Such buried stream does not appear in the other optical, SRTM and SAR dataset. The main reason is the enhanced contrast between the low backscattered return from the revealed meandering stream and the surroundings as a result of the increased backscattering intensity, which is related to the relatively large incident angle along the undulated surface of the study area. All archaeological observations support the existence of paleo-fresh water lagoon at the northwestern corner of the study area, which might have been the discharge lagoon of the revealed hidden stream.

  9. Mapping forest tree species over large areas with partially cloudy Landsat imagery

    NASA Astrophysics Data System (ADS)

    Turlej, K.; Radeloff, V.

    2017-12-01

    Forests provide numerous services to natural systems and humankind, but which services forest provide depends greatly on their tree species composition. That makes it important to track not only changes in forest extent, something that remote sensing excels in, but also to map tree species. The main goal of our work was to map tree species with Landsat imagery, and to identify how to maximize mapping accuracy by including partially cloudy imagery. Our study area covered one Landsat footprint (26/28) in Northern Wisconsin, USA, with temperate and boreal forests. We selected this area because it contains numerous tree species and variable forest composition providing an ideal study area to test the limits of Landsat data. We quantified how species-level classification accuracy was affected by a) the number of acquisitions, b) the seasonal distribution of observations, and c) the amount of cloud contamination. We classified a single year stack of Landsat-7, and -8 images data with a decision tree algorithm to generate a map of dominant tree species at the pixel- and stand-level. We obtained three important results. First, we achieved producer's accuracies in the range 70-80% and user's accuracies in range 80-90% for the most abundant tree species in our study area. Second, classification accuracy improved with more acquisitions, when observations were available from all seasons, and is the best when images with up to 40% cloud cover are included. Finally, classifications for pure stands were 10 to 30 percentage points better than those for mixed stands. We conclude that including partially cloudy Landsat imagery allows to map forest tree species with accuracies that were previously only possible for rare years with many cloud-free observations. Our approach thus provides important information for both forest management and science.

  10. THEMATIC ACCURACY OF THE 1992 NATIONAL LAND-COVER DATA (NLCD) FOR THE EASTERN UNITED STATES: STATISTICAL METHODOLOGY AND REGIONAL RESULTS

    EPA Science Inventory

    The accuracy of the National Land Cover Data (NLCD) map is assessed via a probability sampling design incorporating three levels of stratification and two stages of selection. Agreement between the map and reference land-cover labels is defined as a match between the primary or a...

  11. How Scientists Differentiate Between Land Cover Types

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Before scientists can transform raw satellite image data into land cover maps, they must decide on what categories of land cover they would like to use. Categories are simply the types of landscape that the scientists are trying to map and can vary greatly from map to map. For flood maps, there may be only two categories-dry land and wet land-while a standard global land cover map may have seventeen categories including closed shrub lands, savannas, evergreen needle leaf forest, urban areas, and ice/snow. The only requirement for any land cover category is that it have a distinct spectral signature that a satellite can record. As can be seen through a prism, many different colors (wavelengths) make up the spectra of sunlight. When sunlight strikes objects, certain wavelengths are absorbed and others are reflected or emitted. The unique way in which a given type of land cover reflects and absorbs light is known as its spectral signature. Anyone who has flown over the midwestern United States has seen evidence of this phenomenon. From an airplane window, the ground appears as a patchwork of different colors formed by the fields of crops planted there. The varying pigments of the leaves, the amount of foliage per square foot, the age of the plants, and many other factors create this tapestry. Most imaging satellites are sensitive to specific wavelengths of light, including infrared wavelengths that cannot be seen with the naked eye. Passive satellite remote sensors-such as those flown on Landsat 5, Landsat 7, and Terra-have a number of light detectors (photoreceptors) on board that measure the energy reflected or emitted by the Earth. One light detector records only the blue part of the spectrum coming off the Earth. Another observes all the yellow-green light and still another picks up on all the near-infrared light. The detectors scan the Earth's surface as the satellite travels in a circular orbit very nearly from pole-to-pole. To differentiate between types of land cover and their attributes, researchers manipulate the colors recorded by the satellite to get the combination of wavelengths that best distinguishes the spectral signature of the land cover they wish to identify. After an area of forest or water or grass is identified, they can outline the category on an easy-to-analyze, color-coded map. To verify their results, the scientists will often travel to the regions of interest and compare the results of the map with test sites on the ground. next: The Basic Vegetation Map back: Mapping Earth's Diverse Landscapes

  12. Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss

    USGS Publications Warehouse

    Potapov, P.; Hansen, Matthew C.; Stehman, S.V.; Loveland, Thomas R.; Pittman, K.

    2008-01-01

    Estimation of forest cover change is important for boreal forests, one of the most extensive forested biomes, due to its unique role in global timber stock, carbon sequestration and deposition, and high vulnerability to the effects of global climate change. We used time-series data from the MODerate Resolution Imaging Spectroradiometer (MODIS) to produce annual forest cover loss hotspot maps. These maps were used to assign all blocks (18.5 by 18.5 km) partitioning the boreal biome into strata of high, medium and low likelihood of forest cover loss. A stratified random sample of 118 blocks was interpreted for forest cover and forest cover loss using high spatial resolution Landsat imagery from 2000 and 2005. Area of forest cover gross loss from 2000 to 2005 within the boreal biome is estimated to be 1.63% (standard error 0.10%) of the total biome area, and represents a 4.02% reduction in year 2000 forest cover. The proportion of identified forest cover loss relative to regional forest area is much higher in North America than in Eurasia (5.63% to 3.00%). Of the total forest cover loss identified, 58.9% is attributable to wildfires. The MODIS pan-boreal change hotspot estimates reveal significant increases in forest cover loss due to wildfires in 2002 and 2003, with 2003 being the peak year of loss within the 5-year study period. Overall, the precision of the aggregate forest cover loss estimates derived from the Landsat data and the value of the MODIS-derived map displaying the spatial and temporal patterns of forest loss demonstrate the efficacy of this protocol for operational, cost-effective, and timely biome-wide monitoring of gross forest cover loss.

  13. Unbiased Taxonomic Annotation of Metagenomic Samples

    PubMed Central

    Fosso, Bruno; Pesole, Graziano; Rosselló, Francesc

    2018-01-01

    Abstract The classification of reads from a metagenomic sample using a reference taxonomy is usually based on first mapping the reads to the reference sequences and then classifying each read at a node under the lowest common ancestor of the candidate sequences in the reference taxonomy with the least classification error. However, this taxonomic annotation can be biased by an imbalanced taxonomy and also by the presence of multiple nodes in the taxonomy with the least classification error for a given read. In this article, we show that the Rand index is a better indicator of classification error than the often used area under the receiver operating characteristic (ROC) curve and F-measure for both balanced and imbalanced reference taxonomies, and we also address the second source of bias by reducing the taxonomic annotation problem for a whole metagenomic sample to a set cover problem, for which a logarithmic approximation can be obtained in linear time and an exact solution can be obtained by integer linear programming. Experimental results with a proof-of-concept implementation of the set cover approach to taxonomic annotation in a next release of the TANGO software show that the set cover approach further reduces ambiguity in the taxonomic annotation obtained with TANGO without distorting the relative abundance profile of the metagenomic sample. PMID:29028181

  14. KSC-99pp0330

    NASA Image and Video Library

    1999-03-24

    The Shuttle Radar Topography Mission (SRTM) sits inside the Multi-Payload Processing Facility after the SRTM's cover was removed. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth

  15. KSC-99pp0328

    NASA Image and Video Library

    1999-03-24

    Inside the Multi-Payload Processing Facility, the lid covering the Shuttle Radar Topography Mission (SRTM) is lifted from the crate. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth

  16. NASA Earth Resources Survey Symposium. Volume 1-A: Agriculture, environment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A number of papers dealing with the practical application of imagery obtained from remote sensors on LANDSAT satellites, the Skylab Earth resources experiment package, and aircraft to problems in agriculture and the environment were presented. Some of the more important topics that were covered included: range management and resources, environmental monitoring and management, crop growth and inventory, land management, multispectral band scanners, forest management, mapping, marshlands, strip mining, water quality and pollution, ecology.

  17. Spatial resolution requirements for urban land cover mapping from space

    NASA Technical Reports Server (NTRS)

    Todd, William J.; Wrigley, Robert C.

    1986-01-01

    Very low resolution (VLR) satellite data (Advanced Very High Resolution Radiometer, DMSP Operational Linescan System), low resolution (LR) data (Landsat MSS), medium resolution (MR) data (Landsat TM), and high resolution (HR) satellite data (Spot HRV, Large Format Camera) were evaluated and compared for interpretability at differing spatial resolutions. VLR data (500 m - 1.0 km) is useful for Level 1 (urban/rural distinction) mapping at 1:1,000,000 scale. Feature tone/color is utilized to distinguish generalized urban land cover using LR data (80 m) for 1:250,000 scale mapping. Advancing to MR data (30 m) and 1:100,000 scale mapping, confidence in land cover mapping is greatly increased, owing to the element of texture/pattern which is now evident in the imagery. Shape and shadow contribute to detailed Level II/III urban land use mapping possible if the interpreter can use HR (10-15 m) satellite data; mapping scales can be 1:25,000 - 1:50,000.

  18. Low Altitude AVIRIS Data for Mapping Land Cover in Yellowstone National Park: Use of Isodata Clustering Techniques

    NASA Technical Reports Server (NTRS)

    Spruce, Joe

    2001-01-01

    Yellowstone National Park (YNP) contains a diversity of land cover. YNP managers need site-specific land cover maps, which may be produced more effectively using high-resolution hyperspectral imagery. ISODATA clustering techniques have aided operational multispectral image classification and may benefit certain hyperspectral data applications if optimally applied. In response, a study was performed for an area in northeast YNP using 11 select bands of low-altitude AVIRIS data calibrated to ground reflectance. These data were subjected to ISODATA clustering and Maximum Likelihood Classification techniques to produce a moderately detailed land cover map. The latter has good apparent overall agreement with field surveys and aerial photo interpretation.

  19. Snow-Cover Variability in North America in the 2000-2001 Winter as Determined from MODIS Snow Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Chien, Janet Y. L.; Houser, Paul R. (Technical Monitor)

    2001-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps have been available since September 13, 2000. These products, at 500 m spatial resolution, are available through the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado. By the 2001-02 winter, 5 km climate-modeling grid (CMG) products will be available for presentation of global views of snow cover and for use in climate models. All MODIS snow-cover products are produced from automated algorithms that map snow in an objective manner. In this paper, we describe the MODIS snow products, and show snow maps from the fall of 2000 in North America.

  20. Snow-Cover Variability in North America in the 2000-2001 Winter as Determined from MODIS Snow Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Chien, Y. L.; Houser, Paul R. (Technical Monitor)

    2001-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps have been available since September 13, 2000. These products, at 500-m spatial resolution, are available through the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado. By the 2001-02 winter, 5-km climate-modeling grid (CMG) products will be available for presentation of global views of snow cover and for use in climate models. All MODIS snow-cover products are produced from automated algorithms that map snow in an objective manner. In this paper, we describe the MODIS snow products, and show snow maps from the fall of 2000 in North America.

  1. Potential for using regional and global datasets for national scale ecosystem service modelling

    NASA Astrophysics Data System (ADS)

    Maxwell, Deborah; Jackson, Bethanna

    2016-04-01

    Ecosystem service models are increasingly being used by planners and policy makers to inform policy development and decisions about national-level resource management. Such models allow ecosystem services to be mapped and quantified, and subsequent changes to these services to be identified and monitored. In some cases, the impact of small scale changes can be modelled at a national scale, providing more detailed information to decision makers about where to best focus investment and management interventions that could address these issues, while moving toward national goals and/or targets. National scale modelling often uses national (or local) data (for example, soils, landcover and topographical information) as input. However, there are some places where fine resolution and/or high quality national datasets cannot be easily obtained, or do not even exist. In the absence of such detailed information, regional or global datasets could be used as input to such models. There are questions, however, about the usefulness of these coarser resolution datasets and the extent to which inaccuracies in this data may degrade predictions of existing and potential ecosystem service provision and subsequent decision making. Using LUCI (the Land Utilisation and Capability Indicator) as an example predictive model, we examine how the reliability of predictions change when national datasets of soil, landcover and topography are substituted with coarser scale regional and global datasets. We specifically look at how LUCI's predictions of where water services, such as flood risk, flood mitigation, erosion and water quality, change when national data inputs are replaced by regional and global datasets. Using the Conwy catchment, Wales, as a case study, the land cover products compared are the UK's Land Cover Map (2007), the European CORINE land cover map and the ESA global land cover map. Soils products include the National Soil Map of England and Wales (NatMap) and the European Soils Database. NEXTmap elevation data, which covers the UK and parts of continental Europe, are compared to global AsterDEM and SRTM30 topographical products. While the regional and global datasets can be used to fill gaps in data requirements, the coarser resolution of these datasets means that there is greater aggregation of information over larger areas. This loss of detail impacts on the reliability of model output, particularly where significant discrepancies between datasets exist. The implications of this loss of detail in terms of spatial planning and decision making is discussed. Finally, in the context of broader development the need for better nationally and globally available data to allow LUCI and other ecosystem models to become more globally applicable is highlighted.

  2. National Park Service Vegetation Mapping Inventory Program: Appalachian National Scenic Trail vegetation mapping project

    USGS Publications Warehouse

    Hop, Kevin D.; Strassman, Andrew C.; Hall, Mark; Menard, Shannon; Largay, Ery; Sattler, Stephanie; Hoy, Erin E.; Ruhser, Janis; Hlavacek, Enrika; Dieck, Jennifer

    2017-01-01

    The National Park Service (NPS) Vegetation Mapping Inventory (VMI) Program classifies, describes, and maps existing vegetation of national park units for the NPS Natural Resource Inventory and Monitoring (I&M) Program. The NPS VMI Program is managed by the NPS I&M Division and provides baseline vegetation information to the NPS Natural Resource I&M Program. The U.S. Geological Survey Upper Midwest Environmental Sciences Center, NatureServe, NPS Northeast Temperate Network, and NPS Appalachian National Scenic Trail (APPA) have completed vegetation classification and mapping of APPA for the NPS VMI Program.Mappers, ecologists, and botanists collaborated to affirm vegetation types within the U.S. National Vegetation Classification (USNVC) of APPA and to determine how best to map the vegetation types by using aerial imagery. Analyses of data from 1,618 vegetation plots were used to describe USNVC associations of APPA. Data from 289 verification sites were collected to test the field key to vegetation associations and the application of vegetation associations to a sample set of map polygons. Data from 269 validation sites were collected to assess vegetation mapping prior to submitting the vegetation map for accuracy assessment (AA). Data from 3,265 AA sites were collected, of which 3,204 were used to test accuracy of the vegetation map layer. The collective of these datasets affirmed 280 USNVC associations for the APPA vegetation mapping project.To map the vegetation and land cover of APPA, 169 map classes were developed. The 169 map classes consist of 150 that represent natural (including ruderal) vegetation types in the USNVC, 11 that represent cultural (agricultural and developed) vegetation types in the USNVC, 5 that represent natural landscapes with catastrophic disturbance or some other modification to natural vegetation preventing accurate classification in the USNVC, and 3 that represent nonvegetated water (non-USNVC). Features were interpreted from viewing 4-band digital aerial imagery using digital onscreen three-dimensional stereoscopic workflow systems in geographic information systems (GIS). (Digital aerial imagery was collected each fall during 2009–11 to capture leaf-phenology change of hardwood trees across the latitudinal range of APPA.) The interpreted data were digitally and spatially referenced, thus making the spatial-database layers usable in GIS. Polygon units were mapped to either a 0.5-hectare (ha) or 0.25-ha minimum mapping unit, depending on vegetation type or scenario; however, polygon units were mapped to 0.1 ha for alpine vegetation.A geodatabase containing various feature-class layers and tables provide locations and support data to USNVC vegetation types (vegetation map layer), vegetation plots, verification sites, validation sites, AA sites, project boundary extent and zones, and aerial image centers and flight lines. The feature-class layer and related tables of the vegetation map layer provide 30,395 polygons of detailed attribute data covering 110,919.7 ha, with an average polygon size of 3.6 ha; the vegetation map coincides closely with the administrative boundary for APPA.Summary reports generated from the vegetation map layer of the map classes representing USNVC natural (including ruderal) vegetation types apply to 28,242 polygons (92.9% of polygons) and cover 106,413.0 ha (95.9%) of the map extent for APPA. The map layer indicates APPA to be 92.4% forest and woodland (102,480.8 ha), 1.7% shrubland (1866.3 ha), and 1.8% herbaceous cover (2,065.9 ha). Map classes representing park-special vegetation (undefined in the USNVC) apply to 58 polygons (0.2% of polygons) and cover 404.3 ha (0.4%) of the map extent. Map classes representing USNVC cultural types apply to 1,777 polygons (5.8% of polygons) and cover 2,516.3 ha (2.3%) of the map extent. Map classes representing nonvegetated water (non-USNVC) apply to 332 polygons (1.1% of polygons) and cover 1,586.2 ha (1.4%) of the map extent.

  3. The thickness of cover sequences in the Western Desert of Iraq from a power spectrum analysis of gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Mousa, Ahmed; Mickus, Kevin; Al-Rahim, Ali

    2017-05-01

    The Western Desert of Iraq is part of the stable shelf region on the Arabian Plate where the subsurface structural makeup is relatively unknown due to the lack of cropping out rocks, deep drill holes and deep seismic refraction and reflection profiles. To remedy this situation, magnetic and gravity data were analyzed to determine the thickness of the Phanerozoic cover sequences. The 2-D power spectrum method was used to estimate the depth to density and magnetic susceptibility interfaces by using 0.5° square windows. Additionally, the gravity data were analyzed using isostatic residual and decompensative methods to isolate gravity anomalies due to upper crustal density sources. The decompensative gravity anomaly and the differentially reduced to the pole magnetic map indicate a series of mainly north-south and northwest-southeast trending maxima and minima anomalies related to Proterozoic basement lithologies and the varying thickness of cover sequences. The magnetic and gravity derived thickness of cover sequences maps indicate that these thicknesses range from 4.5 to 11.5 km. Both maps in general are in agreement but more detail in the cover thicknesses was determined by the gravity analysis. The gravity-based cover thickness maps indicates regions with shallower depths than the magnetic-based cover thickness t map which may be due to density differences between limestone and shale units within the Paleozoic sediments. The final thickness maps indicate that the Western Desert is a complicated region of basins and uplifts that are more complex than have been shown on previous structural maps of the Western Desert. These basins and uplifts may be related to Paleozoic compressional tectonic events and possibly to the opening of the Tethys Ocean. In addition, petroleum exploration could be extended to three basins outlined by our analysis within the relatively unexplored western portions of the Western Desert.

  4. Mapping and measuring land-cover characteristics of New River Basin, Tennessee, using Landsat digital tapes

    USGS Publications Warehouse

    Hollyday, E.F.; Sauer, S.P.

    1976-01-01

    Land-cover information is needed to select subbasins within the New River basin, Tennessee, for the study of hydrologic processes and also is needed to transfer study results to other sites affected by coal mining. It was believed that data recorded by the first Earth Resources Technology Satellite (Landsat-1) could be processed to yield the needed land-cover information. This study demonstrates that digital computer processing of the spectral information contained in each picture element (pixel) of 1.1 acres (4,500 m2) can produce maps and tables of the areal extent of selected land-cover categories.The distribution of water, rock, agricultural areas, evergreens, bare earth, hardwoods, and uncategorized areas, is portrayed on a map of the entire New River basin (1:62,500 scale) and on 15 quadrangles (1:24,000 scale). Although some categories are a mixture of land-cover types, they portray the predominant component named. Tables quantify the area of each category and indicate that agriculture covers 5 percent of the basin, evergreens cover 7 percent, bare earth covers 6 percent, three categories of hardwoods cover 81 percent, and water, rock, and uncategorized areas each cover less than 1 percent of the basin.

  5. High Spatial Resolution Europa Coverage by the Galileo Near Infrared Mapping Spectrometer (NIMS)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NIMS instrument on the Galileo spacecraft, which is being used to map the mineral and ice properties over the surfaces of the Jovian moons, produces global spectral images at modest spatial resolution and high resolution spectral images for small selected regions on the satellites. This map illustrates the high resolution coverage of Europa obtained by NIMS through the April 1997 G7 orbit.

    The areas covered are displayed on a Voyager-derived map. A good sampling of the dark trailing-side material (180 to 360 degrees) has been obtained, with less coverage of Europa's leading side.

    The false-color composites use red, green and blue to represent the infrared brightnesses at 0.7, 1.51 and 1.82 microns respectively. Considerable variations are evident and are related to the composition and sizes of the surface grains.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  6. An assessment on the use of bivariate, multivariate and soft computing techniques for collapse susceptibility in GIS environ

    NASA Astrophysics Data System (ADS)

    Yilmaz, Işik; Marschalko, Marian; Bednarik, Martin

    2013-04-01

    The paper presented herein compares and discusses the use of bivariate, multivariate and soft computing techniques for collapse susceptibility modelling. Conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) models representing the bivariate, multivariate and soft computing techniques were used in GIS based collapse susceptibility mapping in an area from Sivas basin (Turkey). Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index (TWI), stream power index (SPI), Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from the models, and they were then compared by means of their validations. However, Area Under Curve (AUC) values obtained from all three models showed that the map obtained from soft computing (ANN) model looks like more accurate than the other models, accuracies of all three models can be evaluated relatively similar. The results also showed that the conditional probability is an essential method in preparation of collapse susceptibility map and highly compatible with GIS operating features.

  7. The assessment of EUMETSAT HSAF Snow Products for mountainuos areas in the eastern part of Turkey

    NASA Astrophysics Data System (ADS)

    Akyurek, Z.; Surer, S.; Beser, O.; Bolat, K.; Erturk, A. G.

    2012-04-01

    Monitoring the snow parameters (e.g. snow cover area, snow water equivalent) is a challenging work. Because of its natural physical properties, snow highly affects the evolution of weather from daily basis to climate on a longer time scale. The derivation of snow products over mountainous regions has been considered very challenging. This can be done by periodic and precise mapping of the snow cover. However inaccessibility and scarcity of the ground observations limit the snow cover mapping in the mountainous areas. Today, it is carried out operationally by means of optical satellite imagery and microwave radiometry. In retrieving the snow cover area from satellite images bring the problem of topographical variations within the footprint of satellite sensors and spatial and temporal variation of snow characteristics in the mountainous areas. Most of the global and regional operational snow products use generic algorithms for flat and mountainous areas. However the non-uniformity of the snow characteristics can only be modeled with different algorithms for mountain and flat areas. In this study the early findings of Satellite Application Facilities on Hydrology (H-SAF) project, which is financially supported by EUMETSAT, will be presented. Turkey is a part of the H-SAF project, both in product generation (eg. snow recognition, fractional snow cover and snow water equivalent) for mountainous regions for whole Europe, cal/val of satellite-derived snow products with ground observations and cal/val studies with hydrological modeling in the mountainous terrain of Europe. All the snow products are operational on a daily basis. For the snow recognition product (H10) for mountainous areas, spectral thresholding methods were applied on sub pixel scale of MSG-SEVIRI images. The different spectral characteristics of cloud, snow and land determined the structure of the algorithm and these characteristics were obtained from subjective classification of known snow cover features in the MSG/SEVIRI images. The fractional snow cover area (H12) algorithm is based on a sub-pixel reflectance model applied on METOP-AVHRR data. Knowing the effects of topography on satellite-measured radiances for rough terrain, the sun zenith and azimuth angles, as well as direction of observation relative to these are taken into account in estimating the target reflectances from the satellite images. The values of SWE products (H13) were obtained using an assimilation process based on the Helsinki University of Technology model using Advanced Microwave Scanning Radiometer for EOS (AMSR-E) daily brightness-temperature values. The validation studies for three products have been performed for the water years 2010 and 2011. Average values of 70% of probability of detection for snow recognition product, 60% of overall accuracy for the fractional snow cover product and 45 mm RMSE for the snow water equivalent product have been obtained from the validation studies. Final versions of these three products will be presented and discussed. Key words: snow, satellite images, mountain, HSAF, snow cover, snow water equivalent

  8. Global forest cover mapping for the United Nations Food and Agriculture Organization forest resources assessment 2000 program

    USGS Publications Warehouse

    Zhu, Z.; Waller, E.

    2003-01-01

    Many countries periodically produce national reports on the status and changes of forest resources, using statistical surveys and spatial mapping of remotely sensed data. At the global level, the Food and Agriculture Organization (FAO) of the United Nations has conducted a Forest Resources Assessment (FRA) program every 10 yr since 1980, producing statistics and analysis that give a global synopsis of forest resources in the world. For the year 2000 of the FRA program (FRA2000), a global forest cover map was produced to provide spatial context to the extensive survey. The forest cover map, produced at the U.S. Geological Survey (USGS) EROS Data Center (EDC), has five classes: closed forest, open or fragmented forest, other wooded land, other land cover, and water. The first two forested classes at the global scale were delineated using combinations of temporal compositing, modified mixture analysis, geographic stratification, and other classification techniques. The remaining three FAO classes were derived primarily from the USGS global land cover characteristics database (Loveland et al. 1999). Validated on the basis of existing reference data sets, the map is estimated to be 77% accurate for the first four classes (no reference data were available for water), and 86% accurate for the forest and nonforest classification. The final map will be published as an insert to the FAO FRA2000 report.

  9. LACO-Wiki: A land cover validation tool and a new, innovative teaching resource for remote sensing and the geosciences

    NASA Astrophysics Data System (ADS)

    See, Linda; Perger, Christoph; Dresel, Christopher; Hofer, Martin; Weichselbaum, Juergen; Mondel, Thomas; Steffen, Fritz

    2016-04-01

    The validation of land cover products is an important step in the workflow of generating a land cover map from remotely-sensed imagery. Many students of remote sensing will be given exercises on classifying a land cover map followed by the validation process. Many algorithms exist for classification, embedded within proprietary image processing software or increasingly as open source tools. However, there is little standardization for land cover validation, nor a set of open tools available for implementing this process. The LACO-Wiki tool was developed as a way of filling this gap, bringing together standardized land cover validation methods and workflows into a single portal. This includes the storage and management of land cover maps and validation data; step-by-step instructions to guide users through the validation process; sound sampling designs; an easy-to-use environment for validation sample interpretation; and the generation of accuracy reports based on the validation process. The tool was developed for a range of users including producers of land cover maps, researchers, teachers and students. The use of such a tool could be embedded within the curriculum of remote sensing courses at a university level but is simple enough for use by students aged 13-18. A beta version of the tool is available for testing at: http://www.laco-wiki.net.

  10. A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products

    USGS Publications Warehouse

    Hansen, M.C.; Reed, B.

    2000-01-01

    Two global 1 km land cover data sets derived from 1992-1993 Advanced Very High Resolution Radiometer (AVHRR) data are currently available, the International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS) DISCover and the University of Maryland (UMd) 1 km land cover maps. This paper makes a preliminary comparison of the methodologies and results of the two products. The DISCover methodology employed an unsupervised clustering classification scheme on a per-continent basis using 12 monthly maximum NDVI composites as inputs. The UMd approach employed a supervised classification tree method in which temporal metrics derived from all AVHRR bands and the NDVI were used to predict class membership across the entire globe. The DISCover map uses the IGBP classification scheme, while the UMd map employs a modified IGBP scheme minus the classes of permanent wetlands, cropland/natural vegetation mosaic and ice and snow. Global area totals of aggregated vegetation types are very similar and have a per-pixel agreement of 74%. For tall versus short/no vegetation, the per-pixel agreement is 84%. For broad vegetation types, core areas map similarly, while transition zones around core areas differ significantly. This results in high regional variability between the maps. Individual class agreement between the two 1 km maps is 49%. Comparison of the maps at a nominal 0.5 resolution with two global ground-based maps shows an improvement of thematic concurrency of 46% when viewing average class agreement. The absence of the cropland mosaic class creates a difficulty in comparing the maps, due to its significant extent in the DISCover map. The DISCover map, in general, has more forest, while the UMd map has considerably more area in the intermediate tree cover classes of woody savanna/ woodland and savanna/wooded grassland.

  11. AN ACCURACY ASSESSMENT OF 1997 LANDSAT THEMATIC MAPPER DERIVED LAND COVER FOR THE UPPER SAN PEDRO WATERSHED (U.S./MEXICO)

    EPA Science Inventory

    High-Resolution airborne color video data were used to evaluate the accuracy of a land cover map of the upper San Pedro River watershed, derived from June 1997 Landsat Thematic Mapper data. The land cover map was interpreted and generated by Instituto del Medio Ambiente y el Bes...

  12. Classification of surface types using SIR-C/X-SAR, Mount Everest Area, Tibet

    USGS Publications Warehouse

    Albright, Thomas P.; Painter, Thomas H.; Roberts, Dar A.; Shi, Jiancheng; Dozier, Jeff; Fielding, Eric

    1998-01-01

    Imaging radar is a promising tool for mapping snow and ice cover in alpine regions. It combines a high-resolution, day or night, all-weather imaging capability with sensitivity to hydrologic and climatic snow and ice parameters. We use the spaceborne imaging radar-C/X-band synthetic aperture radar (SIR-C/X-SAR) to map snow and glacial ice on the rugged north slope of Mount Everest. From interferometrically derived digital elevation data, we compute the terrain calibration factor and cosine of the local illumination angle. We then process and terrain-correct radar data sets acquired on April 16, 1994. In addition to the spectral data, we include surface slope to improve discrimination among several surface types. These data sets are then used in a decision tree to generate an image classification. This method is successful in identifying and mapping scree/talus, dry snow, dry snow-covered glacier, wet snow-covered glacier, and rock-covered glacier, as corroborated by comparison with existing surface cover maps and other ancillary information. Application of the classification scheme to data acquired on October 7 of the same year yields accurate results for most surface types but underreports the extent of dry snow cover.

  13. A new strategy for snow-cover mapping using remote sensing data and ensemble based systems techniques

    NASA Astrophysics Data System (ADS)

    Roberge, S.; Chokmani, K.; De Sève, D.

    2012-04-01

    The snow cover plays an important role in the hydrological cycle of Quebec (Eastern Canada). Consequently, evaluating its spatial extent interests the authorities responsible for the management of water resources, especially hydropower companies. The main objective of this study is the development of a snow-cover mapping strategy using remote sensing data and ensemble based systems techniques. Planned to be tested in a near real-time operational mode, this snow-cover mapping strategy has the advantage to provide the probability of a pixel to be snow covered and its uncertainty. Ensemble systems are made of two key components. First, a method is needed to build an ensemble of classifiers that is diverse as much as possible. Second, an approach is required to combine the outputs of individual classifiers that make up the ensemble in such a way that correct decisions are amplified, and incorrect ones are cancelled out. In this study, we demonstrate the potential of ensemble systems to snow-cover mapping using remote sensing data. The chosen classifier is a sequential thresholds algorithm using NOAA-AVHRR data adapted to conditions over Eastern Canada. Its special feature is the use of a combination of six sequential thresholds varying according to the day in the winter season. Two versions of the snow-cover mapping algorithm have been developed: one is specific for autumn (from October 1st to December 31st) and the other for spring (from March 16th to May 31st). In order to build the ensemble based system, different versions of the algorithm are created by varying randomly its parameters. One hundred of the versions are included in the ensemble. The probability of a pixel to be snow, no-snow or cloud covered corresponds to the amount of votes the pixel has been classified as such by all classifiers. The overall performance of ensemble based mapping is compared to the overall performance of the chosen classifier, and also with ground observations at meteorological stations.

  14. Remote Sensing Application to Land Use Classification in a Rapidly Changing Agricultural/Urban Area: City of Virginia Beach, Virginia. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Odenyo, V. A. O.

    1975-01-01

    Remote sensing data on computer-compatible tapes of LANDSAT 1 multispectral scanner imager were analyzed to generate a land use map of the City of Virginia Beach. All four bands were used in both the supervised and unsupervised approaches with the LAYSYS software system. Color IR imagery of a U-2 flight of the same area was also digitized and two sample areas were analyzed via the unsupervised approach. The relationships between the mapped land use and the soils of the area were investigated. A land use land cover map at a scale of 1:24,000 was obtained from the supervised analysis of LANDSAT 1 data. It was concluded that machine analysis of remote sensing data to produce land use maps was feasible; that the LAYSYS software system was usable for this purpose; and that the machine analysis was capable of extracting detailed information from the relatively small scale LANDSAT data in a much shorter time without compromising accuracy.

  15. Identification of marsh vegetation and coastal land use in ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Daiber, F. C.; Bartlett, D. S.

    1973-01-01

    Coastal vegetation species appearing in the ERTS-1 images taken of Delaware Bay on August 16, and October 10, 1972 have been correlated with ground truth vegetation maps and imagery obtained from high altitude RB-57 and U-2 overflights. The vegetation maps of the entire Delaware Coast were prepared during the summer of 1972 and checked out with ground truth data collected on foot, in small boats, and from low-altitude aircraft. Multispectral analysis of high altitude RB-57 and U-2 photographs indicated that five vegetation communities could be clearly discriminated from 60,000 feet altitude including: (1) salt marsh cord grass, (2) salt marsh hay and spike grass, (3) reed grass, (4) high tide bush and sea myrtle, and (5) a group of fresh water species found in impoundments built to attract water fowl. All of these species are shown in fifteen overlay maps, covering all of Delaware's wetlands prepared to match the USGS topographic map size of 1:24,000.

  16. Mapping vegetation communities using statistical data fusion in the Ozark National Scenic Riverways, Missouri, USA

    USGS Publications Warehouse

    Chastain, R.A.; Struckhoff, M.A.; He, H.S.; Larsen, D.R.

    2008-01-01

    A vegetation community map was produced for the Ozark National Scenic Riverways consistent with the association level of the National Vegetation Classification System. Vegetation communities were differentiated using a large array of variables derived from remote sensing and topographic data, which were fused into independent mathematical functions using a discriminant analysis classification approach. Remote sensing data provided variables that discriminated vegetation communities based on differences in color, spectral reflectance, greenness, brightness, and texture. Topographic data facilitated differentiation of vegetation communities based on indirect gradients (e.g., landform position, slope, aspect), which relate to variations in resource and disturbance gradients. Variables derived from these data sources represent both actual and potential vegetation community patterns on the landscape. A hybrid combination of statistical and photointerpretation methods was used to obtain an overall accuracy of 63 percent for a map with 49 vegetation community and land-cover classes, and 78 percent for a 33-class map of the study area.

  17. Continental land cover classification using meteorological satellite data

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Townshend, J. R. G.; Goff, T. E.

    1983-01-01

    The use of the National Oceanic and Atmospheric Administration's advanced very high resolution radiometer satellite data for classifying land cover and monitoring of vegetation dynamics over an extremely large area is demonstrated for the continent of Africa. Data from 17 imaging periods of 21 consecutive days each were composited by a technique sensitive to the in situ green-leaf biomass to provide cloud-free imagery for the whole continent. Virtually cloud-free images were obtainable even for equatorial areas. Seasonal variation in the density and extent of green leaf vegetation corresponded to the patterns of rainfall associated with the inter-tropical convergence zone. Regional variations, such as the 1982 drought in east Africa, were also observed. Integration of the weekly satellite data with respect to time produced a remotely sensed assessment of biological activity based upon density and duration of green-leaf biomass. Two of the 21-day composited data sets were used to produce a general land cover classification. The resultant land cover distributions correspond well to those of existing maps.

  18. Building a time series of water vapour maps: A first step towards assimilation of Interferometric SAR data in forecasting models

    NASA Astrophysics Data System (ADS)

    Nico, Giovanni; Mateus, Pedro; Catalão, João.

    2010-05-01

    The knowledge of water vapor spatial distribution in the Earth's atmosphere at a given time is an important information for numerical forecasting. In fact this is the most varying atmospheric constituent both in space and in time. The water vapor is basically concentrated in the troposphere, the atmosphere layer where the most important phenomena related to weather occur. This layer is destabilized by radiative heating and vertical wind shear near the surfce. The accuracy of quantitative precipitation forecasting over a given region strongly depends on the knowledge of the temporal and spatial variations in the water vapor spatial distribution. Currently, measurements based on ground-based and upper-air sounding networks furnish water vapor distribution only at a coarse scales. This could not be enough to capture variations of the local concentrations of water vapor. Spaceborne radiometer observations can observe atmospheric layers above 3 km due to absorption by water vapor and in any case maps of vater vapour density are too coarse. Availability of GPS measurements of on a routine basis is improving numerical forecasting. However, the density of meuserements which can be obtained by a GPS network is too low to capture spatial variations of local concentrations of water vapor. Synthetic Aperture Radar (SAR) interferometry provides maps of temporal variations of the vertically integrated water vapor density with a horizontal resolution as fine as 10-20 m depending on the radar wavelength and over a swath typically 100 km wide. In the past, the availability of the tandem ERS-1/2 interferometric SAR data allowed to get maps of the vertically-integrated with a temporal baseline of 1 day. In those maps it was possible to recognize signature of a precipitating cumulonimbus cloud, the effects of a cold front and the phenomenon of horizontal convective rolls. Current interferometric spaceborne missions use SAR sensors working at different frequency bands: L (ALOS-PALSAR), C (ENVISAT-ASAR, RADARSAT) and X (TerraSAR, Cosmo-Sky-Med) and with a repetition cycle ranging from 11 (TerraSAR-X) to 35 days (ENVISAT-ASAR). From each SAR sensor, it can be obtained a map of the temporal changes of the IPW occurred between the two subsequent acquisitions by interferometrically processing the SAR data. The accuracy of these maps depends on the radar wavelength and on spatial filtering. A procedure to properly merge all these maps could give information about the temporal evolution of the IPW spatial distribution with a sampling period shorter than the revisiting times of each of the SAR sensors. The main difficulty of this operation is related to the fact that the integration of temporal changes of IPW is not direct when maps are obtained by different SAR sensors. The aim of this work is to describe a methodologiy to merge IPW maps obtained by the different SAR sensor based on the availbality of GPS time series measuring the IPW over the same area. The Lisbon region, Portugal, was chosen as a study area. This region is monitored by a network of 12 GPS permanent stations covering an area of about squared kilometers. A set of SAR interferograms were processed using data acquired by ENVISAT-ASAR and TerraSAR-X mission over the Lisbon region during the period from 2009 to 2010. A time series with GPS measurement of IPW was processed to cover the time interval between the first and last SAR acquisition. This time series is then used to integrate all maps of temporal changes of IPW obtained by the different interferometric SAR couples. This results in a time series giving with the information about the spatial distribution of the IPW.

  19. Peculiarities of changes in the soil cover of landscapes adjacent to a megalopolis

    NASA Astrophysics Data System (ADS)

    Lazareva, Margarita; Aparin, Boris; Sukhacheva, Elena

    2017-04-01

    The progressive growth of cities has a significant impact on the soil cover of territories adjacent to the same. Megalopolises are centers of anthropogenic impact on the soils. Generally, forms and intensity of the urban impact on the soil cover weaken with increasing distance from the city's boundaries. In this respect, ample opportunities for the analysis of urban impact on the adjacent territories are provided by the study of the soil cover in the Leningrad Region (the LR). Saint Petersburg is a major European megalopolis, which is the administrative center of the LR. The time period of Saint Petersburg's impact on the environment does not exceed 300 years, which allows us to identify very clearly the character and areas of its impact on the soil cover. Over the past decades, there have been significant changes in the soils and the soil cover of the LR. In a large territory, there appeared new anthropogenic soils and soil cover organization forms, having no natural analogues, with a dramatic increase in the surface area of degraded soils. To access the current state of soil cover, to identify the role of anthropogenic factors of changes in this state; to carry out land reclamation, remediation and rehabilitation measures; to perform land cadastral valuation etc., we need an information resource containing data on the current state of soils and soil cover in the LR, the key element of which should be a map. We carried out mapping and created a 1:200 000 digital soil map (DSM) for the LR's territories. Diagnostics of soil contours were performed using traditionally drawn-up (paper) maps of soils and soil-formation factors; satellite images (Google, Yandex); data of remote sensing (Spot 5, Landsat 7,8); digital maps of main soil-formation factors (topographical ones, etc.). The digital soil map of the LR has been created in the geographic information system - QGIS. The map clarifies the contours of natural soils and soil combinations, and shows, for the first time, the contours of: - non-soil formations; - soils of the initial soil formation; - soils of agricultural lands within their existing boundaries; - soils and soil combinations that are specific for human settlements and horticultural land plots; - fallow lands; - anthropogenically disturbed soils. During the analysis of the created digital medium-scale soil map, we identified some changes in the soil cover of the territories adjacent to Saint Petersburg. Virtually in all the landscapes, we found a large number of soil cover structures, the components of which, along with natural soils, are anthropogenically disturbed soils, anthropogenic soils and non-soil formations. We revealed that the human impact on the soil cover is manifested within the range that varies from insignificant changes in soil parameters to radical transformations of the soil profile, complete destruction of soil and "creation" of new soil forms and soil cover organization forms. We have developed a typology of anthropogenically changed and anthropogenically created soil cover structures, taking into consideration the types of the economic impact on and the quality of environmental functions performed by the soils.

  20. MODSNOW-Tool: an operational tool for daily snow cover monitoring using MODIS data

    NASA Astrophysics Data System (ADS)

    Gafurov, Abror; Lüdtke, Stefan; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Schöne, Tilo; Schmidt, Sebastian; Kalashnikova, Olga; Merz, Bruno

    2017-04-01

    Spatially distributed snow cover information in mountain areas is extremely important for water storage estimations, seasonal water availability forecasting, or the assessment of snow-related hazards (e.g. enhanced snow-melt following intensive rains, or avalanche events). Moreover, spatially distributed snow cover information can be used to calibrate and/or validate hydrological models. We present the MODSNOW-Tool - an operational monitoring tool offers a user-friendly application which can be used for catchment-based operational snow cover monitoring. The application automatically downloads and processes freely available daily Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data. The MODSNOW-Tool uses a step-wise approach for cloud removal and delivers cloud-free snow cover maps for the selected river basins including basin specific snow cover extent statistics. The accuracy of cloud-eliminated MODSNOW snow cover maps was validated for 84 almost cloud-free days in the Karadarya river basin in Central Asia, and an average accuracy of 94 % was achieved. The MODSNOW-Tool can be used in operational and non-operational mode. In the operational mode, the tool is set up as a scheduled task on a local computer allowing automatic execution without user interaction and delivers snow cover maps on a daily basis. In the non-operational mode, the tool can be used to process historical time series of snow cover maps. The MODSNOW-Tool is currently implemented and in use at the national hydrometeorological services of four Central Asian states - Kazakhstan, Kyrgyzstan, Uzbekistan and Turkmenistan and used for seasonal water availability forecast.

  1. Meter-scale Urban Land Cover Mapping for EPA EnviroAtlas Using Machine Learning and OBIA Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Pilant, A. N.; Baynes, J.; Dannenberg, M.; Riegel, J.; Rudder, C.; Endres, K.

    2013-12-01

    US EPA EnviroAtlas is an online collection of tools and resources that provides geospatial data, maps, research, and analysis on the relationships between nature, people, health, and the economy (http://www.epa.gov/research/enviroatlas/index.htm). Using EnviroAtlas, you can see and explore information related to the benefits (e.g., ecosystem services) that humans receive from nature, including clean air, clean and plentiful water, natural hazard mitigation, biodiversity conservation, food, fuel, and materials, recreational opportunities, and cultural and aesthetic value. EPA developed several urban land cover maps at very high spatial resolution (one-meter pixel size) for a portion of EnviroAtlas devoted to urban studies. This urban mapping effort supported analysis of relations among land cover, human health and demographics at the US Census Block Group level. Supervised classification of 2010 USDA NAIP (National Agricultural Imagery Program) digital aerial photos produced eight-class land cover maps for several cities, including Durham, NC, Portland, ME, Tampa, FL, New Bedford, MA, Pittsburgh, PA, Portland, OR, and Milwaukee, WI. Semi-automated feature extraction methods were used to classify the NAIP imagery: genetic algorithms/machine learning, random forest, and object-based image analysis (OBIA). In this presentation we describe the image processing and fuzzy accuracy assessment methods used, and report on some sustainability and ecosystem service metrics computed using this land cover as input (e.g., carbon sequestration from USFS iTREE model; health and demographics in relation to road buffer forest width). We also discuss the land cover classification schema (a modified Anderson Level 1 after the National Land Cover Data (NLCD)), and offer some observations on lessons learned. Meter-scale urban land cover in Portland, OR overlaid on NAIP aerial photo. Streets, buildings and individual trees are identifiable.

  2. Land Cover Change Detection using Neural Network and Grid Cells Techniques

    NASA Astrophysics Data System (ADS)

    Bagan, H.; Li, Z.; Tangud, T.; Yamagata, Y.

    2017-12-01

    In recent years, many advanced neural network methods have been applied in land cover classification, each of which has both strengths and limitations. In which, the self-organizing map (SOM) neural network method have been used to solve remote sensing data classification problems and have shown potential for efficient classification of remote sensing data. In SOM, both the distribution and the topology of features of the input layer are identified by using an unsupervised, competitive, neighborhood learning method. The high-dimensional data are then projected onto a low-dimensional map (competitive layer), usually as a two-dimensional map. The neurons (nodes) in the competitive layer are arranged by topological order in the input space. Spatio-temporal analyses of land cover change based on grid cells have demonstrated that gridded data are useful for obtaining spatial and temporal information about areas that are smaller than municipal scale and are uniform in size. Analysis based on grid cells has many advantages: grid cells all have the same size allowing for easy comparison; grids integrate easily with other scientific data; grids are stable over time and thus facilitate the modelling and analysis of very large multivariate spatial data sets. This study chose time-series MODIS and Landsat images as data sources, applied SOM neural network method to identify the land utilization in Inner Mongolia Autonomous Region of China. Then the results were integrated into grid cell to get the dynamic change maps. Land cover change using MODIS data in Inner Mongolia showed that urban area increased more than fivefold in recent 15 years, along with the growth of mining area. In terms of geographical distribution, the most obvious place of urban expansion is Ordos in southwest Inner Mongolia. The results using Landsat images from 1986 to 2014 in northeastern part of the Inner Mongolia show degradation in grassland from 1986 to 2014. Grid-cell-based spatial correlation analysis also confirmed a strong negative correlation between grassland and barren land, indicating that grassland degradation in this region is due to the urbanization and coal mining activities over the past three decades.

  3. Construction of an interspecific genetic map based on InDel and SSR for mapping the QTLs affecting the initiation of flower primordia in pepper (Capsicum spp.).

    PubMed

    Tan, Shu; Cheng, Jiao-Wen; Zhang, Li; Qin, Cheng; Nong, Ding-Guo; Li, Wei-Peng; Tang, Xin; Wu, Zhi-Ming; Hu, Kai-Lin

    2015-01-01

    Re-sequencing permits the mining of genome-wide variations on a large scale and provides excellent resources for the research community. To accelerate the development and application of molecular markers and identify the QTLs affecting the flowering time-related trait in pepper, a total of 1,038 pairs of InDel and 674 SSR primers from different sources were used for genetic mapping using the F2 population (n = 154) derived from a cross between BA3 (C. annuum) and YNXML (C. frutescens). Of these, a total of 224 simple PCR-based markers, including 129 InDels and 95 SSRs, were validated and integrated into a map, which was designated as the BY map. The BY map consisted of 13 linkage groups (LGs) and spanned a total genetic distance of 1,249.77 cM with an average marker distance of 5.60 cM. Comparative analysis of the genetic and physical map based on the anchored markers showed that the BY map covered nearly the whole pepper genome. Based on the BY map, one major and five minor QTLs affecting the number of leaves on the primary axis (Nle) were detected on chromosomes P2, P7, P10 and P11 in 2012. The major QTL on P2 was confirmed based on another subset of the same F2 population (n = 147) in 2014 with selective genotyping of markers from the BY map. With the accomplishment of pepper whole genome sequencing and annotations (release 2.0), 153 candidate genes were predicted to embed in the Nle2.2 region, of which 12 important flowering related genes were obtained. The InDel/SSR-based interspecific genetic map, QTLs and candidate genes obtained by the present study will be useful for the downstream isolation of flowering time-related gene and other genetic applications for pepper.

  4. Geology of Point Reyes National Seashore and vicinity, California: a digital database

    USGS Publications Warehouse

    Clark, Jospeh C.; Brabb, Earl E.

    1997-01-01

    This Open-File report is a digital geologic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. The report does include, however, a PostScript plot file containing an image of the geologic map sheet with explanation, as well as the accompanying text describing the geology of the area. For those interested in a paper plot of information contained in the database or in obtaining the PostScript plot files, please see the section entitled 'For Those Who Aren't Familiar With Digital Geologic Map Databases' below. This digital map database, compiled from previously published and unpublished data and new mapping by the authors, represents the general distribution of surficial deposits and rock units in Point Reyes and surrounding areas. Together with the accompanying text file (pr-geo.txt or pr-geo.ps), it provides current information on the stratigraphy and structural geology of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:48,000 or smaller.

  5. Assessing Hurricane Katrina Vegetation Damage at Stennis Space Center using IKONOS Image Classification Techniques

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Ross, Kenton W.; Graham, William D.

    2006-01-01

    Hurricane Katrina inflicted widespread damage to vegetation in southwestern coastal Mississippi upon landfall on August 29, 2005. Storm damage to surface vegetation types at the NASA John C. Stennis Space Center (SSC) was mapped and quantified using IKONOS data originally acquired on September 2, 2005, and later obtained via a Department of Defense ClearView contract. NASA SSC management required an assessment of the hurricane s impact to the 125,000-acre buffer zone used to mitigate rocket engine testing noise and vibration impacts and to manage forestry and fire risk. This study employed ERDAS IMAGINE software to apply traditional classification techniques to the IKONOS data. Spectral signatures were collected from multiple ISODATA classifications of subset areas across the entire region and then appended to a master file representative of major targeted cover type conditions. The master file was subsequently used with the IKONOS data and with a maximum likelihood algorithm to produce a supervised classification later refined using GIS-based editing. The final results enabled mapped, quantitative areal estimates of hurricane-induced damage according to general surface cover type. The IKONOS classification accuracy was assessed using higher resolution aerial imagery and field survey data. In-situ data and GIS analysis indicate that the results compare well to FEMA maps of flooding extent. The IKONOS classification also mapped open areas with woody storm debris. The detection of such storm damage categories is potentially useful for government officials responsible for hurricane disaster mitigation.

  6. Remote Sensing of Snow Cover. Section; Snow Extent

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Frei, Allan; Drey, Stephen J.

    2012-01-01

    Snow was easily identified in the first image obtained from the Television Infrared Operational Satellite-1 (TIROS-1) weather satellite in 1960 because the high albedo of snow presents a good contrast with most other natural surfaces. Subsequently, the National Oceanic and Atmospheric Administration (NOAA) began to map snow using satellite-borne instruments in 1966. Snow plays an important role in the Earth s energy balance, causing more solar radiation to be reflected back into space as compared to most snow-free surfaces. Seasonal snow cover also provides a critical water resource through meltwater emanating from rivers that originate from high-mountain areas such as the Tibetan Plateau. Meltwater from mountain snow packs flows to some of the world s most densely-populated areas such as Southeast Asia, benefiting over 1 billion people (Immerzeel et al., 2010). In this section, we provide a brief overview of the remote sensing of snow cover using visible and near-infrared (VNIR) and passive-microwave (PM) data. Snow can be mapped using the microwave part of the electromagnetic spectrum, even in darkness and through cloud cover, but at a coarser spatial resolution than when using VNIR data. Fusing VNIR and PM algorithms to produce a blended product offers synergistic benefits. Snow-water equivalent (SWE), snow extent, and melt onset are important parameters for climate models and for the initialization of atmospheric forecasts at daily and seasonal time scales. Snowmelt data are also needed as input to hydrological models to improve flood control and irrigation management.

  7. Facilitating the exploitation of ERTS imagery using snow enhancement techniques

    NASA Technical Reports Server (NTRS)

    Wobber, F. J.; Martin, K. (Principal Investigator); Amato, R. V.; Leshendok, T.

    1973-01-01

    The author has identified the following significant results. Comparative analysis of snow-free and snow-covered imagery of the New England Test Area has resulted in a larger number of lineaments mapped from snow-covered imagery in three out of four sets of comparative imagery. Analysts unfamiliar with the New England Test Area were utilized; the quality of imagery was independently judged to be uniform. In all image sets, a greater total length of lineaments was mapped with the snow-covered imagery. The value of this technique for fracture mapping in areas with thick soil cover is suggested. A number of potentially useful environmental applications of snow enhancement related to such areas as mining, land use, and hydrology have been identified.

  8. Deriving Continuous Fields of Tree Cover at 1-m over the Continental United States From the National Agriculture Imagery Program (NAIP) Imagery to Reduce Uncertainties in Forest Carbon Stock Estimation

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Basu, S.; Mukhopadhyay, S.; Michaelis, A.; Milesi, C.; Votava, P.; Nemani, R. R.

    2013-12-01

    An unresolved issue with coarse-to-medium resolution satellite-based forest carbon mapping over regional to continental scales is the high level of uncertainty in above ground biomass (AGB) estimates caused by the absence of forest cover information at a high enough spatial resolution (current spatial resolution is limited to 30-m). To put confidence in existing satellite-derived AGB density estimates, it is imperative to create continuous fields of tree cover at a sufficiently high resolution (e.g. 1-m) such that large uncertainties in forested area are reduced. The proposed work will provide means to reduce uncertainty in present satellite-derived AGB maps and Forest Inventory and Analysis (FIA) based regional estimates. Our primary objective will be to create Very High Resolution (VHR) estimates of tree cover at a spatial resolution of 1-m for the Continental United States using all available National Agriculture Imaging Program (NAIP) color-infrared imagery from 2010 till 2012. We will leverage the existing capabilities of the NASA Earth Exchange (NEX) high performance computing and storage facilities. The proposed 1-m tree cover map can be further aggregated to provide percent tree cover at any medium-to-coarse resolution spatial grid, which will aid in reducing uncertainties in AGB density estimation at the respective grid and overcome current limitations imposed by medium-to-coarse resolution land cover maps. We have implemented a scalable and computationally-efficient parallelized framework for tree-cover delineation - the core components of the algorithm [that] include a feature extraction process, a Statistical Region Merging image segmentation algorithm and a classification algorithm based on Deep Belief Network and a Feedforward Backpropagation Neural Network algorithm. An initial pilot exercise has been performed over the state of California (~11,000 scenes) to create a wall-to-wall 1-m tree cover map and the classification accuracy has been assessed. Results show an improvement in accuracy of tree-cover delineation as compared to existing forest cover maps from NLCD, especially over fragmented, heterogeneous and urban landscapes. Estimates of VHR tree cover will complement and enhance the accuracy of present remote-sensing based AGB modeling approaches and forest inventory based estimates at both national and local scales. A requisite step will be to characterize the inherent uncertainties in tree cover estimates and propagate them to estimate AGB.

  9. Teton Dam flood of June 1976, Firth quadrangle, Idaho

    USGS Publications Warehouse

    Hubbard, Larry L.; Bartells, John H.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Firth quadrangle. (Woodard-USGS)

  10. Teton Dam flood of June 1976, Rose quadrangle, Idaho

    USGS Publications Warehouse

    Bartells, John H.; Hubbard, Larry L.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Rose quadrangle. (Woodard-USGS)

  11. Teton Dam flood of June 1976, Rexburg quadrangle, Idaho

    USGS Publications Warehouse

    Harenberg, W.A.; Bigelow, B.B.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification on these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Rexburg quadrangle. (Woodard-USGS)

  12. Teton Dam flood of June 1976, Deer Parks quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Bennett, C. Michael; Records, Andrew W.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Deer Parks quadrangle. (Woodard-USGS)

  13. Teton Dam flood of June 1976, Parker quadrangle, Idaho

    USGS Publications Warehouse

    Thomas, Cecil Albert; Ray, Herman A.

    1976-01-01

    The failure of Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls, Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Parker quadrangle. (Woodard-USGS)

  14. Teton Dam flood of June 1976, St. Anthony quadrangle, Idaho

    USGS Publications Warehouse

    Thomas, Cecil A.; Ray, Herman A.; Matthai, Howard F.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the St. Anthony quadrangle. (Woodard-USGS)

  15. Teton Dam flood of June 1976, Woodville quadrangle, Idaho

    USGS Publications Warehouse

    Matthai, Howard F.; Ray, Herman A.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Woodville quadrangle. (Woodard-USGS)

  16. Teton Dam flood of June 1976, Menan Buttes quadrangle, Idaho

    USGS Publications Warehouse

    Thomas, Cecil A.; Ray, Herman A.; Harenberg, William A.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Menan Buttes quadrangle. (Woodard-USGS)

  17. Teton Dam flood of June 1976, Idaho Falls South quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Matthai, Howard F.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Idaho Falls South quadrangle. (Woodard-USGS)

  18. Teton Dam flood of June 1976, Lewisville quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Bigelow, Bruce B.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Lewisville quadrangle. (Woodard-USGS)

  19. Teton Dam flood of June 1976, Idaho Falls North quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Matthai, Howard F.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Idaho Falls North quadrangle. (Woodard-USGS)

  20. Teton Dam flood of June 1976, Pingree quadrangle, Idaho

    USGS Publications Warehouse

    Hubbard, Larry L.; Bartells, John H.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Pingree quadrangle. (Woodard-USGS)

  1. Teton Dam flood of June 1976, Blackfoot quadrangle, Idaho

    USGS Publications Warehouse

    Bartells, J.H.; Hubbard, Larry L.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Blackfoot quadrangle. (Woodard-USGS)

  2. Teton Dam flood of June 1976, Moreland quadrangle, Idaho

    USGS Publications Warehouse

    Hubbard, Larry L.; Bartells, John H.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The aea covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Moreland quadrangle. (Woodard-USGS)

  3. Teton Dam flood of June 1976, Rigby quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Bigelow, Bruce B.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Rigby quadrangle. (Woodard-USGS)

  4. Teton Dam flood of June 1976, Newdale quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Matthai, Howard F.; Thomas, Cecil A.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Newdale quadrangle. (Woodard-USGS)

  5. Teton Dam flood of June 1976, Moody quadrangle, Idaho

    USGS Publications Warehouse

    Harenberg, William A.; Bigelow, Bruce B.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Moody quadrangle. (Woodard-USGS)

  6. THE USE OF NTM DATA FOR THE ACCURACY ASSESSMENT OF LANDSAT DERIVED LAND USE/LAND COVER MAPS

    EPA Science Inventory

    National Technical Means (NTM) data were utilized to validate the accuracy of a series of LANDSAT derived Land Use / Land Cover (LU/LC) maps for the time frames mid- I 970s, early- I 990s and mid- I 990s. The area-of-interest for these maps is a 2000 square mile portion of the De...

  7. Sampling intensity and normalizations: Exploring cost-driving factors in nationwide mapping of tree canopy cover

    Treesearch

    John Tipton; Gretchen Moisen; Paul Patterson; Thomas A. Jackson; John Coulston

    2012-01-01

    There are many factors that will determine the final cost of modeling and mapping tree canopy cover nationwide. For example, applying a normalization process to Landsat data used in the models is important in standardizing reflectance values among scenes and eliminating visual seams in the final map product. However, normalization at the national scale is expensive and...

  8. Spatial patterns of land cover in the United States: a technical document supporting the Forest Service 2010 RPA Assessment

    Treesearch

    Kurt H. Riitters

    2011-01-01

    Land cover patterns inventoried from a national land cover map provide information about the landscape context and fragmentation of the Nation’s forests, grasslands, and shrublands. This inventory is required to quantify, map, and evaluate the capacities of landscapes to provide ecological goods and services sustainably. This report documents the procedures to...

  9. Mapping land cover and estimating forest structure using satellite imagery and coarse resolution lidar in the Virgin Islands

    Treesearch

    T.A. Kennaway; E.H. Helmer; M.A. Lefsky; T.A. Brandeis; K.R. Sherill

    2008-01-01

    Current information on land cover, forest type and forest structure for the Virgin Islands is critical to land managers and researchers for accurate forest inventory and ecological monitoring. In this study, we use cloud free image mosaics of panchromatic sharpened Landsat ETM+ images and decision tree classification software to map land cover and forest type for the...

  10. Mapping land cover and estimating forest structure using satellite imagery and coarse resolution lidar in the Virgin Islands

    Treesearch

    Todd Kennaway; Eileen Helmer; Michael Lefsky; Thomas Brandeis; Kirk Sherrill

    2009-01-01

    Current information on land cover, forest type and forest structure for the Virgin Islands is critical to land managers and researachers for accurate forest inverntory and ecological monitoring. In this study, we use cloud free image mosaics of panchromatic sharpened Landsat ETM+ images and decision tree classification software to map land cover and forest type for the...

  11. Forest cover of North America in the 1970s mapped using Landsat MSS data

    NASA Astrophysics Data System (ADS)

    Feng, M.; Sexton, J. O.; Channan, S.; Townshend, J. R.

    2015-12-01

    The distribution and changes in Earth's forests impact hydrological, biogeochemical, and energy fluxes, as well as ecosystems' capacity to support biodiversity and human economies. Long-term records of forest cover are needed across a broad range of investigation, including climate and carbon-cycle modeling, hydrological studies, habitat analyzes, biological conservation, and land-use planning. Satellite-based observations enable mapping and monitoring of forests at ecologically and economically relevant resolutions and continental or even global extents. Following early forest-mapping efforts using coarser resolution remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR) and MODerate-resolution Imaging Spectroradiometer (MODIS), forests have been mapped regionally at < 100-m resolution using Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+). These "Landsat-class" sensors offer precise calibration, but they provide observations only over the past three decades—a relatively short period for delineating the long-term changes of forests. Starting in 1971, the Multispectral Scanner (MSS) was the first generation of sensors aboard the Landsat satellites. MSS thus provides a unique resource to extend observations by at least a decade longer in history than records based on Landsat TM and ETM+. Leveraging more recent Landsat-based forest-cover products developed by the Global Land Cover Facility (GLCF) as reference, we developed an automated approach to detect forests using MSS data by leveraging the multispectral and phenological characteristics of forests observed in MSS time-series. The forest-cover map is produced with layers representing the year of observation, detection of forest-cover change relative to 1990, and the uncertainty of forest-cover and -change layers. The approach has been implemented with open-source libraries to facilitate processing large volumes of Landsat MSS images on high-performance computing machines. As the first result of our global mapping effort, we present the forest cover for North America. More than 25,000 Landsat MSS scenes were processed to provide a 120-meter resolution forest cover for North America, which will be made publicly available on the GLCF website (http://www.landcover.org).

  12. Remote sensing of soils, land forms, and land use in the northern great plains in preparation for ERTS applications

    NASA Technical Reports Server (NTRS)

    Frazee, C. J.; Westin, F. C.; Gropper, J.; Myers, V. I.

    1972-01-01

    Research to determine the optimum time or season for obtaining imagery to identify and map soil limitations was conducted in the proposed Oahe irrigation project area in South Dakota. The optimum time for securing photographs or imagery is when the soil surface patterns are most apparent. For cultivated areas similar to the study area, May is the optimum time. The fields are cultivated or the planted crop has not yet masked soil surface features. Soil limitations in 59 percent of the field of the flight line could be mapped using the above criteria. The remaining fields cannot be mapped because the vegetation or growing crops do not express features related to soil differences. This suggests that imagery from more than one year is necessary to map completely the soil limitations of Oahe area by remote sensing techniques. Imagery from the other times studied is not suitable for identifying and mapping soil limitations of Oahe area by remote sensing techniques. Imagery from the other times studied is not suitable for identifying and mapping soil limitations because the vegetative cover masked the soil surface and does not reflect soil differences.

  13. Global maps of the magnetic thickness and magnetization of the Earth's lithosphere

    NASA Astrophysics Data System (ADS)

    Vervelidou, Foteini; Thébault, Erwan

    2015-10-01

    We have constructed global maps of the large-scale magnetic thickness and magnetization of Earth's lithosphere. Deriving such large-scale maps based on lithospheric magnetic field measurements faces the challenge of the masking effect of the core field. In this study, the maps were obtained through analyses in the spectral domain by means of a new regional spatial power spectrum based on the Revised Spherical Cap Harmonic Analysis (R-SCHA) formalism. A series of regional spectral analyses were conducted covering the entire Earth. The R-SCHA surface power spectrum for each region was estimated using the NGDC-720 spherical harmonic (SH) model of the lithospheric magnetic field, which is based on satellite, aeromagnetic, and marine measurements. These observational regional spectra were fitted to a recently proposed statistical expression of the power spectrum of Earth's lithospheric magnetic field, whose free parameters include the thickness and magnetization of the magnetic sources. The resulting global magnetic thickness map is compared to other crustal and magnetic thickness maps based upon different geophysical data. We conclude that the large-scale magnetic thickness of the lithosphere is on average confined to a layer that does not exceed the Moho.

  14. Arctic and subarctic environmental analyses utilizing ERTS-1 imagery. [permafrost sediment transport, snow cover, ice conditions, and water runoff in Alaska

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; Mckim, H. L.; Haugen, R. K.; Gatto, L. W.; Slaughter, C. W.; Marlar, T. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Physiognomic landscape features were used as geologic and vegetative indicators in preparation of a surficial geology, vegetation, and permafrost map at a scale of 1:1 million using ERTS-1 band 7 imagery. The detail from this map compared favorably with USGS maps at 1:250,000 scale. Physical boundaries mapped from ERTS-1 imagery in combination with ground truth obtained from existing small maps and other sources resulted in improved and more detailed maps of permafrost terrain and vegetation for the same area. ERTS-1 imagery provides for the first time, a means of monitoring the following regional estuarine processes: daily and periodic surface water circulation patterns; changes in the relative sediment load of rivers discharging into the inlet; and, several local patterns not recognized before, such as a clockwise back eddy offshore from Clam Gulch and a counterclockwise current north of the Forelands. Comparison of ERTS-1 and Mariner imagery has revealed that the thermokarst depressions found on the Alaskan North Slope and polygonal patterns on the Yukon River Delta are possible analogs to some Martian terrain features.

  15. Modeling a color-rendering operator for high dynamic range images using a cone-response function

    NASA Astrophysics Data System (ADS)

    Choi, Ho-Hyoung; Kim, Gi-Seok; Yun, Byoung-Ju

    2015-09-01

    Tone-mapping operators are the typical algorithms designed to produce visibility and the overall impression of brightness, contrast, and color of high dynamic range (HDR) images on low dynamic range (LDR) display devices. Although several new tone-mapping operators have been proposed in recent years, the results of these operators have not matched those of the psychophysical experiments based on the human visual system. A color-rendering model that is a combination of tone-mapping and cone-response functions using an XYZ tristimulus color space is presented. In the proposed method, the tone-mapping operator produces visibility and the overall impression of brightness, contrast, and color in HDR images when mapped onto relatively LDR devices. The tone-mapping resultant image is obtained using chromatic and achromatic colors to avoid well-known color distortions shown in the conventional methods. The resulting image is then processed with a cone-response function wherein emphasis is placed on human visual perception (HVP). The proposed method covers the mismatch between the actual scene and the rendered image based on HVP. The experimental results show that the proposed method yields an improved color-rendering performance compared to conventional methods.

  16. Remote sensing data applied to the evaluation of soil erosion caused by land-use. Ribeirao Anhumas Basin Area: A case study. [Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Dosanjosferreirapinto, S.; Kux, H. J. H.

    1980-01-01

    Formerly covered by a tropical forest, the study area was deforested in the early 40's for coffee plantation and cattle raising, which caused intense gully erosion problems. To develop a method to analyze the relationship between land use and soil erosion, visual interpretations of aerial photographs (scale 1:25.000), MSS-LANDSAT imagery (scale 1:250,000), as well as automatic interpretation of computer compatible tapes by IMAGE-100 system were carried out. From visual interpretation the following data were obtained: land use and cover tapes, slope classes, ravine frequency, and a texture sketch map. During field work, soil samples were collected for texture and X-ray analysis. The texture sketch map indicate that the areas with higher slope angles have a higher susceptibilty to the development of gullies. Also, the over carriage of pastureland, together with very friable lithologies (mainly sandstone) occuring in that area, seem to be the main factors influencing the catastrophic extension of ravines in the study site.

  17. Evaluation of SLAR and thematic mapper MSS data for forest cover mapping using computer-aided analysis techniques

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator)

    1981-01-01

    Training and test data sets for CAM1S from NS-001 MSS data for two dates (geometrically adjusted to 30 meter resolution) were used to evaluate wavelength band. Two sets of tapes containing digitized HH and HV polarization data were obtained. Because the SAR data on the 9 track tapes contained no meaningful data, the 7 track tapes were copied onto 9 track tapes at LARS. The LARSYS programs were modified and a program was written to reformat the digitized SAR data into a LARSYS format. The radar imagery is being qualitatively interpreted. Results are to be used to identify possible cover types, to produce a classification map to aid in the numerical evaluation classification of radar data, and to develop an interpretation key for radar imagery. The four spatial resolution data sets were analyzed. A program was developed to reduce the spatial distortions resulting from variable viewing distance, and geometrically adjusted data sets were generated. A flowchart of steps taken to geometrically adjust a data set from the NS-001 scanner is presented.

  18. Applications systems verification and transfer project. Volume 1: Operational applications of satellite snow cover observations: Executive summary. [usefulness of satellite snow-cover data for water yield prediction

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1981-01-01

    Both LANDSAT and NOAA satellite data were used in improving snowmelt runoff forecasts. When the satellite snow cover data were tested in both empirical seasonal runoff estimation and short term modeling approaches, a definite potential for reducing forecast error was evident. A cost benefit analysis run in conjunction with the snow mapping indicated a $36.5 million annual benefit accruing from a one percent improvement in forecast accuracy using the snow cover data for the western United States. The annual cost of employing the system would be $505,000. The snow mapping has proven that satellite snow cover data can be used to reduce snowmelt runoff forecast error in a cost effective manner once all operational satellite data are available within 72 hours after acquisition. Executive summaries of the individual snow mapping projects are presented.

  19. ASSESSING ACCURACY OF NET CHANGE DERIVED FROM LAND COVER MAPS

    EPA Science Inventory

    Net change derived from land-cover maps provides important descriptive information for environmental monitoring and is often used as an input or explanatory variable in environmental models. The sampling design and analysis for assessing net change accuracy differ from traditio...

  20. Construction of an ultra-high density consensus genetic map, and enhancement of the physical map from genome sequencing in Lupinus angustifolius.

    PubMed

    Zhou, Gaofeng; Jian, Jianbo; Wang, Penghao; Li, Chengdao; Tao, Ye; Li, Xuan; Renshaw, Daniel; Clements, Jonathan; Sweetingham, Mark; Yang, Huaan

    2018-01-01

    An ultra-high density genetic map containing 34,574 sequence-defined markers was developed in Lupinus angustifolius. Markers closely linked to nine genes of agronomic traits were identified. A physical map was improved to cover 560.5 Mb genome sequence. Lupin (Lupinus angustifolius L.) is a recently domesticated legume grain crop. In this study, we applied the restriction-site associated DNA sequencing (RADseq) method to genotype an F 9 recombinant inbred line population derived from a wild type × domesticated cultivar (W × D) cross. A high density linkage map was developed based on the W × D population. By integrating sequence-defined DNA markers reported in previous mapping studies, we established an ultra-high density consensus genetic map, which contains 34,574 markers consisting of 3508 loci covering 2399 cM on 20 linkage groups. The largest gap in the entire consensus map was 4.73 cM. The high density W × D map and the consensus map were used to develop an improved physical map, which covered 560.5 Mb of genome sequence data. The ultra-high density consensus linkage map, the improved physical map and the markers linked to genes of breeding interest reported in this study provide a common tool for genome sequence assembly, structural genomics, comparative genomics, functional genomics, QTL mapping, and molecular plant breeding in lupin.

  1. FORUM: A Suggestion for an Improved Vegetation Scheme for Local and Global Mapping and Monitoring.

    PubMed

    ADAMS

    1999-01-01

    / Understanding of global ecological problems is at least partly dependent on clear assessments of vegetation change, and such assessment is always dependent on the use of a vegetation classification scheme. Use of satellite remotely sensed data is the only practical means of carrying out any global-scale vegetation mapping exercise, but if the resulting maps are to be useful to most ecologists and conservationists, they must be closely tied to clearly defined features of vegetation on the ground. Furthermore, much of the mapping that does take place involves more local-scale description of field sites; for purposes of cost and practicality, such studies usually do not involve remote sensing using satellites. There is a need for a single scheme that integrates the smallest to the largest scale in a way that is meaningful to most environmental scientists. Existing schemes are unsatisfactory for this task; they are ambiguous, unnecessarily complex, and their categories do not correspond to common-sense definitions. In response to these problems, a simple structural-physiognomically based scheme with 23 fundamental categories is proposed here for mapping and monitoring on any scale, from local to global. The fundamental categories each subdivide into more specific structural categories for more detailed mapping, but all the categories can be used throughout the world and at any scale, allowing intercomparison between regions. The next stage in the process will be to obtain the views of as many people working in as many different fields as possible, to see whether the proposed scheme suits their needs and how it should be modified. With a few modifications, such a scheme could easily be appended to an existing land cover classification scheme, such as the FAO system, greatly increasing the usefulness and accessability of the results of the landcover classification. KEY WORDS: Vegetation scheme; Mapping; Monitoring; Land cover

  2. Shaded relief aeromagnetic map of the Santa Clara Valley and vicinity, California

    USGS Publications Warehouse

    Roberts, Carter W.; Jachens, Robert C.

    2003-01-01

    This aeromagnetic map covers the southern portion of San Francisco Bay, the Santa Clara Valley and surrounding mountains, part of which has been modelled in threedimensions (Jachens and other, 2001). The magnetic anomaly map has been compiled from existing digital data. Data was obtained from six aeromagnetic surveys that were flown at different times, spacings and elevations. The International Geomagnetic Reference Field (IGRF) for the date of each survey had been removed in the initial processing. The resulting residual magnetic anomalies were analytically continued onto a common surface 305 m (1000 ft) above terrain. Portions of each survey were substantially above the specified flight height listed in the table. The surveys were then merged together using a commercial software package called Oasis Montage. The gray lines on the map indicate the extent of each survey. The program used these regions of overlap to determine the best fit between surveys. Black dots show probable edges of magnetic bodies defined by the maximum horizontal gradient determined using a computer program by Blakely (1995). Crystalline rocks generally contain sufficient magnetic minerals to cause variations in the Earth’s magnetic field that can be mapped by aeromagnetic surveys. Sedimentary rocks are generally weakly magnetized and consequently have a small effect on the magnetic field: thus a magnetic anomaly map can be used to “see through” the sedimentary rock cover and can convey information on lithologic contrasts and structural trends related to the underlying crystalline basement (see Nettleton,1971; Blakely, 1995). Faults often cut magnetic bodies and offset magnetic anomalies can thus be used to help determine fault motion. Serpentinite, which is highly magnetic, is often found along faults. On this map areas of low magnetic anomalies are shown in blues and green while highs are shown in reds and magentas. Faults are from Brabb and others, 1998a,1998b, Graymer and others 1996, Lienkaemper, 1992 and Wentworth and others 1998.

  3. Development of Ground Reference GIS for Assessing Land Cover Maps of Northeast Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Spruce, Joe; Warner, Amanda; Terrie, Greg; Davis, Bruce

    2001-01-01

    GIS technology and ground reference data often play vital roles in assessing land cover maps derived from remotely sensed data. This poster illustrates these roles, using results from a study done in Northeast Yellowstone National Park. This area holds many forest, range, and wetland cover types of interest to park managers. Several recent studies have focused on this locale, including the NASA Earth Observations Commercial Applications Program (EOCAP) hyperspectral project performed by Yellowstone Ecosystems Studies (YES) on riparian and in-stream habitat mapping. This poster regards a spin-off to the EOCAP project in which YES and NASA's Earth Science Applications Directorate explored the potential for synergistic use of hyperspecral, synthetic aperture radar, and multiband thermal imagery in mapping land cover types. The project included development of a ground reference GIS for site-specific data needed to evaluate maps from remotely sensed imagery. Field survey data included reflectance of plant communities, native and exotic plant species, and forest health conditions. Researchers also collected GPS points, annotated aerial photographs, and took hand held photographs of reference sites. The use of ESRI, ERDAS, and ENVI software enabled reference data entry into a GIS for comparision to georeferenced imagery and thematic maps. The GIS-based ground reference data layers supported development and assessment of multiple maps from remotely sensed data sets acquired over the study area.

  4. Remote sensing of land use/cover changes and its effect on wind erosion potential in southern Iran

    PubMed Central

    Sameni, Abdolmajid; Fallah Shamsi, Seyed Rashid; Bartholomeus, Harm

    2016-01-01

    Wind erosion is a complex process influenced by different factors. Most of these factors are stable over time, but land use/cover and land management practices are changing gradually. Therefore, this research investigates the impact of changing land use/cover and land management on wind erosion potential in southern Iran. We used remote sensing data (Landsat ETM+ and Landsat 8 imagery of 2004 and 2013) for land use/cover mapping and employed the Iran Research Institute of Forest and Rangeland (IRIFR) method to estimate changes in wind erosion potential. For an optimal mapping, the performance of different classification algorithms and input layers was tested. The amount of changes in wind erosion and land use/cover were quantified using cross-tabulation between the two years. To discriminate land use/cover related to wind erosion, the best results were obtained by combining the original spectral bands with synthetic bands and using Maximum Likelihood classification algorithm (Kappa Coefficient of 0.8 and 0.9 for Landsat ETM+ and Landsat 8, respectively). The IRIFR modelling results indicate that the wind erosion potential has increased over the last decade. The areas with a very high sediment yield potential have increased, whereas the areas with a low, medium, and high sediment yield potential decreased. The area with a very low sediment yield potential have remained constant. When comparing the change in erosion potential with land use/cover change, it is evident that soil erosion potential has increased mostly in accordance with the increase of the area of agricultural practices. The conversion of rangeland to agricultural land was a major land-use change which lead to more agricultural practices and associated soil loss. Moreover, results indicate an increase in sandification in the study area which is also a clear evidence of increasing in soil erosion. PMID:27547511

  5. Multisensor earth observations to characterize wetlands and malaria epidemiology in Ethiopia

    PubMed Central

    Midekisa, Alemayehu; Senay, Gabriel B; Wimberly, Michael C

    2014-01-01

    Malaria is a major global public health problem, particularly in Sub-Saharan Africa. The spatial heterogeneity of malaria can be affected by factors such as hydrological processes, physiography, and land cover patterns. Tropical wetlands, for example, are important hydrological features that can serve as mosquito breeding habitats. Mapping and monitoring of wetlands using satellite remote sensing can thus help to target interventions aimed at reducing malaria transmission. The objective of this study was to map wetlands and other major land cover types in the Amhara region of Ethiopia and to analyze district-level associations of malaria and wetlands across the region. We evaluated three random forests classification models using remotely sensed topographic and spectral data based on Shuttle Radar Topographic Mission (SRTM) and Landsat TM/ETM+ imagery, respectively. The model that integrated data from both sensors yielded more accurate land cover classification than single-sensor models. The resulting map of wetlands and other major land cover classes had an overall accuracy of 93.5%. Topographic indices and subpixel level fractional cover indices contributed most strongly to the land cover classification. Further, we found strong spatial associations of percent area of wetlands with malaria cases at the district level across the dry, wet, and fall seasons. Overall, our study provided the most extensive map of wetlands for the Amhara region and documented spatiotemporal associations of wetlands and malaria risk at a broad regional level. These findings can assist public health personnel in developing strategies to effectively control and eliminate malaria in the region. Key Points Remote sensing produced an accurate wetland map for the Ethiopian highlands Wetlands were associated with spatial variability in malaria risk Mapping and monitoring wetlands can improve malaria spatial decision support PMID:25653462

  6. Landslide susceptibility mapping by combining the three methods Fuzzy Logic, Frequency Ratio and Analytical Hierarchy Process in Dozain basin

    NASA Astrophysics Data System (ADS)

    Tazik, E.; Jahantab, Z.; Bakhtiari, M.; Rezaei, A.; Kazem Alavipanah, S.

    2014-10-01

    Landslides are among the most important natural hazards that lead to modification of the environment. Therefore, studying of this phenomenon is so important in many areas. Because of the climate conditions, geologic, and geomorphologic characteristics of the region, the purpose of this study was landslide hazard assessment using Fuzzy Logic, frequency ratio and Analytical Hierarchy Process method in Dozein basin, Iran. At first, landslides occurred in Dozein basin were identified using aerial photos and field studies. The influenced landslide parameters that were used in this study including slope, aspect, elevation, lithology, precipitation, land cover, distance from fault, distance from road and distance from river were obtained from different sources and maps. Using these factors and the identified landslide, the fuzzy membership values were calculated by frequency ratio. Then to account for the importance of each of the factors in the landslide susceptibility, weights of each factor were determined based on questionnaire and AHP method. Finally, fuzzy map of each factor was multiplied to its weight that obtained using AHP method. At the end, for computing prediction accuracy, the produced map was verified by comparing to existing landslide locations. These results indicate that the combining the three methods Fuzzy Logic, Frequency Ratio and Analytical Hierarchy Process method are relatively good estimators of landslide susceptibility in the study area. According to landslide susceptibility map about 51% of the occurred landslide fall into the high and very high susceptibility zones of the landslide susceptibility map, but approximately 26 % of them indeed located in the low and very low susceptibility zones.

  7. The managed clearing: An overlooked land-cover type in urbanizing regions?

    PubMed Central

    Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K.

    2018-01-01

    Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type–semi-natural, vegetated land surfaces with varying degrees of management practices–for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area– 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and mapping of managed clearings in urbanizing landscapes. Our findings also demonstrate the need to more carefully consider managed clearings and their critical ecological functions in landscape- to regional-scale studies of urbanizing ecosystems. PMID:29432442

  8. The managed clearing: An overlooked land-cover type in urbanizing regions?

    PubMed

    Singh, Kunwar K; Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K

    2018-01-01

    Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type-semi-natural, vegetated land surfaces with varying degrees of management practices-for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area- 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and mapping of managed clearings in urbanizing landscapes. Our findings also demonstrate the need to more carefully consider managed clearings and their critical ecological functions in landscape- to regional-scale studies of urbanizing ecosystems.

  9. Mapping tree canopy cover in support of proactive prairie grouse conservation in western North America

    USGS Publications Warehouse

    Falkowski, Michael J.; Evans, Jeffrey S.; Naugle, David E.; Hagen, Christian A.; Carleton, Scott A.; Maestas, Jeremy D.; Henareh Khalyani, Azad; Poznanovic, Aaron J.; Lawrence, Andrew J.

    2017-01-01

    Invasive woody plant expansion is a primary threat driving fragmentation and loss of sagebrush (Artemisia spp.) and prairie habitats across the central and western United States. Expansion of native woody plants, including conifer (primarily Juniperus spp.) and mesquite (Prosopis spp.), over the past century is primarily attributable to wildfire suppression, historic periods of intensive livestock grazing, and changes in climate. To guide successful conservation programs aimed at reducing top-down stressors, we mapped invasive woody plants at regional scales to evaluate landscape level impacts, target restoration actions, and monitor restoration outcomes. Our overarching goal was to produce seamless regional products across sociopolitical boundaries with resolution fine enough to depict the spatial extent and degree of woody plant invasion relevant to greater sage-grouse (Centrocercus urophasianus) and lesser prairie-chicken (Tympanuchus pallidicinctus)conservation efforts. We mapped tree canopy cover at 1-m spatial resolution across an 11-state region (508 265 km2). Greater than 90% of occupied lesser prairie-chicken habitat was largely treeless for conifers (< 1% canopy cover), whereas > 67% was treeless for mesquite. Conifers in the higher canopy cover classes (16 − 50% and > 50% canopy cover) were scarce (< 2% and 1% canopy cover), as was mesquite (< 5% and 1% canopy cover). Occupied habitat by sage-grouse was more variable but also had a relatively large proportion of treeless areas (x−">x− = 71, SE = 5%). Low to moderate levels of conifer cover (1 − 20%) were fewer (x−">x− = 23, SE = 5%) as were areas in the highest cover class (> 50%; x−">x−= 6, SE = 2%). Mapping indicated that a high proportion of invading woody plants are at a low to intermediate level. Canopy cover maps for conifer and mesquite resulting from this study provide the first and most geographically complete, high-resolution assessment of woody plant cover as a top-down threat to western sage-steppe and prairie ecosystems.

  10. Discrimination of unique biological communities in the Mississippi lignite belt

    NASA Technical Reports Server (NTRS)

    Miller, W. F. (Principal Investigator); Cutler, J. D.

    1981-01-01

    Small scale hardcopy LANDSAT prints were manually interpreted and color infrared aerial photography was obtained in an effort to identify and map large contiguous areas of old growth hardwood stands within Mississippi's lignite belt which do not exhibit signs of recent disturbance by agriculture, grazing, timber harvesting, fire, or any natural catastrophe, and which may, therefore, contain unique or historical ecological habitat types. An information system using land cover classes derived from digital LANDSAT data and containing information on geology, hydrology, soils, and cultural activities was developed. Using computer-assisted land cover classifications, all hardwood remnants in the study area which are subject to possible disturbance from surface mining were determined. Twelve rare plants were also identified by botanists.

  11. The Impact of Anthropogenic Land Cover Change on Continental River Flow

    NASA Astrophysics Data System (ADS)

    Sterling, S. M.; Ducharne, A.; Polcher, J.

    2006-12-01

    The 2003 World Water Forum highlighted a water crisis that forces over one billion people to drink contaminated water and leaves countless millions with insufficient supplies for agriculture industry. This crisis has spurred numerous recent calls for improved science and understanding of how we alter the water cycle. Here we investigate how this global water crisis is affected by human-caused land cover change. We examine the impact of the present extent of land cover change on the water cycle, in particular on evapotranspiration and streamflow, through numerical experiments with the ORCHIDEE land surface model. Using Geographic Information Systems, we characterise land cover change by assembling and modifying existing global-scale maps of land cover change. To see how the land cover change impacts river runoff streamflow, we input the maps into ORCHIDEE and run 50-year "potential vegetation" and "current land cover" simulations of the land surface and energy fluxes, forced by the 50-year NCC atmospheric forcing data set. We present global maps showing the "hotspot" areas with the largest change in ET and streamflow due to anthropogenic land cover change. The results of this project enhance scientific understanding of the nature of human impact on the global water cycle.

  12. Erasing the Milky Way: new cleaning technique applied to GBT intensity mapping data

    NASA Astrophysics Data System (ADS)

    Wolz, L.; Blake, C.; Abdalla, F. B.; Anderson, C. J.; Chang, T.-C.; Li, Y.-C.; Masui, K. W.; Switzer, E.; Pen, U.-L.; Voytek, T. C.; Yadav, J.

    2017-02-01

    We present the first application of a new foreground removal pipeline to the current leading H I intensity mapping data set, obtained by the Green Bank Telescope (GBT). We study the 15- and 1-h-field data of the GBT observations previously presented in Mausui et al. and Switzer et al., covering about 41 deg2 at 0.6 < z < 1.0, for which cross-correlations may be measured with the galaxy distribution of the WiggleZ Dark Energy Survey. In the presented pipeline, we subtract the Galactic foreground continuum and the point-source contamination using an independent component analysis technique (FASTICA), and develop a Fourier-based optimal estimator to compute the temperature power spectrum of the intensity maps and cross-correlation with the galaxy survey data. We show that FASTICA is a reliable tool to subtract diffuse and point-source emission through the non-Gaussian nature of their probability distributions. The temperature power spectra of the intensity maps are dominated by instrumental noise on small scales which FASTICA, as a conservative subtraction technique of non-Gaussian signals, cannot mitigate. However, we determine similar GBT-WiggleZ cross-correlation measurements to those obtained by the singular value decomposition (SVD) method, and confirm that foreground subtraction with FASTICA is robust against 21 cm signal loss, as seen by the converged amplitude of these cross-correlation measurements. We conclude that SVD and FASTICA are complementary methods to investigate the foregrounds and noise systematics present in intensity mapping data sets.

  13. A globally complete map of supraglacial debris cover and a new toolkit for debris cover research

    NASA Astrophysics Data System (ADS)

    Herreid, Sam; Pellicciotti, Francesca

    2017-04-01

    A growing canon of literature is focused on resolving the processes and implications of debris cover on glaciers. However, this work is often confined to a handful of glaciers that were likely selected based on criteria optimizing their suitability to test a specific hypothesis or logistical ease. The role of debris cover in a glacier system is likely to not go overlooked in forthcoming research, yet the magnitude of this role at a global scale has not yet been fully described. Here, we present a map of debris cover for all glacierized regions on Earth including the Greenland Ice Sheet using 30 m Landsat data. This dataset will begin to open a wider context to the high quality, localized findings from the debris-covered glacier research community and help inform large-scale modeling efforts. A global map of debris cover also facilitates analysis attempting to isolate first order geomorphological and climate controls of supraglacial debris production. Furthering the objective of expanding the inclusion of debris cover in forthcoming research, we also present an under development suite of open-source, Python based tools. Requiring minimal and often freely available input data, we have automated the mapping of: i) debris cover, ii) ice cliffs, iii) debris cover evolution over the Landsat era and iv) glacier flow instabilities from altered debris structures. At the present time, debris extent is the only globally complete quantity but with the expanding repository of high quality global datasets and further tool development minimizing manual tasks and computational cost, we foresee all of these tools being applied globally in the near future.

  14. Accuracy assessments and areal estimates using two-phase stratified random sampling, cluster plots, and the multivariate composite estimator

    Treesearch

    Raymond L. Czaplewski

    2000-01-01

    Consider the following example of an accuracy assessment. Landsat data are used to build a thematic map of land cover for a multicounty region. The map classifier (e.g., a supervised classification algorithm) assigns each pixel into one category of land cover. The classification system includes 12 different types of forest and land cover: black spruce, balsam fir,...

  15. Difficulties with estimating city-wide urban forest cover change from national, remotely-sensed tree canopy maps

    Treesearch

    Jeffrey T. Walton

    2008-01-01

    Two datasets of percent urban tree canopy cover were compared. The first dataset was based on a 1991 AVHRR forest density map. The second was the US Geological Survey's National Land Cover Database (NLCD) 2001 sub-pixel tree canopy. A comparison of these two tree canopy layers was conducted in 36 census designated places of western New York State. Reference data...

  16. Development and characterization of a 3D high-resolution terrain database

    NASA Astrophysics Data System (ADS)

    Wilkosz, Aaron; Williams, Bryan L.; Motz, Steve

    2000-07-01

    A top-level description of methods used to generate elements of a high resolution 3D characterization database is presented. The database elements are defined as ground plane elevation map, vegetation height elevation map, material classification map, discrete man-made object map, and temperature radiance map. The paper will cover data collection by means of aerial photography, techniques of soft photogrammetry used to derive the elevation data, and the methodology followed to generate the material classification map. The discussion will feature the development of the database elements covering Fort Greely, Alaska. The developed databases are used by the US Army Aviation and Missile Command to evaluate the performance of various missile systems.

  17. National Park Service Vegetation Inventory Program, Cuyahoga Valley National Park, Ohio

    USGS Publications Warehouse

    Hop, Kevin D.; Drake, J.; Strassman, Andrew C.; Hoy, Erin E.; Menard, Shannon; Jakusz, J.W.; Dieck, J.J.

    2013-01-01

    The National Park Service (NPS) Vegetation Inventory Program (VIP) is an effort to classify, describe, and map existing vegetation of national park units for the NPS Natural Resource Inventory and Monitoring (I&M) Program. The NPS VIP is managed by the NPS Biological Resources Management Division and provides baseline vegetation information to the NPS Natural Resource I&M Program. The U.S. Geological Survey (USGS) Vegetation Characterization Program lends a cooperative role in the NPS VIP. The USGS Upper Midwest Environmental Sciences Center, NatureServe, and NPS Cuyahoga Valley National Park (CUVA) have completed vegetation classification and mapping of CUVA.Mappers, ecologists, and botanists collaborated to identify and describe vegetation types within the National Vegetation Classification Standard (NVCS) and to determine how best to map them by using aerial imagery. The team collected data from 221 vegetation plots within CUVA to develop detailed descriptions of vegetation types. Data from 50 verification sites were also collected to test both the key to vegetation types and the application of vegetation types to a sample set of map polygons. Furthermore, data from 647 accuracy assessment (AA) sites were collected (of which 643 were used to test accuracy of the vegetation map layer). These data sets led to the identification of 45 vegetation types at the association level in the NVCS at CUVA.A total of 44 map classes were developed to map the vegetation and general land cover of CUVA, including the following: 29 map classes represent natural/semi-natural vegetation types in the NVCS, 12 map classes represent cultural vegetation (agricultural and developed) in the NVCS, and 3 map classes represent non-vegetation features (open-water bodies). Features were interpreted from viewing color-infrared digital aerial imagery dated October 2010 (during peak leaf-phenology change of trees) via digital onscreen three-dimensional stereoscopic workflow systems in geographic information systems (GIS). The interpreted data were digitally and spatially referenced, thus making the spatial database layers usable in GIS. Polygon units were mapped to either a 0.5 ha or 0.25 ha minimum mapping unit, depending on vegetation type.A geodatabase containing various feature-class layers and tables shows the locations of vegetation types and general land cover (vegetation map), vegetation plot samples, verification sites, AA sites, project boundary extent, and aerial photographic centers. The feature-class layer and relate tables for the CUVA vegetation map provides 4,640 polygons of detailed attribute data covering 13,288.4 ha, with an average polygon size of 2.9 ha.Summary reports generated from the vegetation map layer show map classes representing natural/semi-natural types in the NVCS apply to 4,151 polygons (89.4% of polygons) and cover 11,225.0 ha (84.5%) of the map extent. Of these polygons, the map layer shows CUVA to be 74.4% forest (9,888.8 ha), 2.5% shrubland (329.7 ha), and 7.6% herbaceous vegetation cover (1,006.5 ha). Map classes representing cultural types in the NVCS apply to 435 polygons (9.4% of polygons) and cover 1,825.7 ha (13.7%) of the map extent. Map classes representing non-NVCS units (open water) apply to 54 polygons (1.2% of polygons) and cover 237.7 ha (1.8%) of the map extent.A thematic AA study was conducted of map classes representing natural/semi-natural types in the NVCS. Results present an overall accuracy of 80.7% (kappa index of 79.5%) based on data from 643 of the 647 AA sites. Most individual map-class themes exceed the NPS VIP standard of 80% with a 90% confidence interval.The CUVA vegetation mapping project delivers many geospatial and vegetation data products in hardcopy and/or digital formats. These products consist of an in-depth project report discussing methods and results, which include descriptions and a dichotomous key to vegetation types, map classification and map-class descriptions, and a contingency table showing AA results. The suite of products also includes a database of vegetation plots, verification sites, and AA sites; digital pictures of field sites; field data sheets; aerial photographic imagery; hardcopy and digital maps; and a geodatabase of vegetation types and land cover (map layer), fieldwork locations (vegetation plots, verification sites, and AA sites), aerial photographic index, project boundary, and metadata. All geospatial products are projected in Universal Transverse Mercator, Zone 17, by using the North American Datum of 1983. Information on the NPS VIP and completed park mapping projects are located on the Internet at and .

  18. Analysis of spatio-temporal land cover changes for hydrological impact assessment within the Nyando River Basin of Kenya.

    PubMed

    Olang, Luke Omondi; Kundu, Peter; Bauer, Thomas; Fürst, Josef

    2011-08-01

    The spatio-temporal changes in the land cover states of the Nyando Basin were investigated for auxiliary hydrological impact assessment. The predominant land cover types whose conversions could influence the hydrological response of the region were selected. Six Landsat images for 1973, 1986, and 2000 were processed to discern the changes based on a methodology that employs a hybrid of supervised and unsupervised classification schemes. The accuracy of the classifications were assessed using reference datasets processed in a GIS with the help of ground-based information obtained through participatory mapping techniques. To assess the possible hydrological effect of the detected changes during storm events, a physically based lumped approach for infiltration loss estimation was employed within five selected sub-basins. The results obtained indicated that forests in the basin declined by 20% while agricultural fields expanded by 16% during the entire period of study. Apparent from the land cover conversion matrices was that the majority of the forest decline was a consequence of agricultural expansion. The model results revealed decreased infiltration amounts by between 6% and 15%. The headwater regions with the vast deforestation were noted to be more vulnerable to the land cover change effects. Despite the haphazard land use patterns and uncertainties related to poor data quality for environmental monitoring and assessment, the study exposed the vast degradation and hence the need for sustainable land use planning for enhanced catchment management purposes.

  19. OVERVIEW OF US NATIONAL LAND-COVER MAPPING PROGRAM

    EPA Science Inventory

    Because of escalating costs amid growing needs for large-scale, satellite-based landscape information, a group of US federal agencies agreed to pool resources and operate as a consortium to acquire the necessary data land-cover mapping of the nation . The consortium was initiated...

  20. Thematic accuracy of the 1992 National Land-Cover Data for the western United States

    USGS Publications Warehouse

    Wickham, J.D.; Stehman, S.V.; Smith, J.H.; Yang, L.

    2004-01-01

    The MultiResolution Land Characteristics (MRLC) consortium sponsored production of the National Land Cover Data (NLCD) for the conterminous United States, using Landsat imagery collected on a target year of 1992 (1992 NLCD). Here we report the thematic accuracy of the 1992 NLCD for the six western mapping regions. Reference data were collected in each region for a probability sample of pixels stratified by map land-cover class. Results are reported for each of the six mapping regions with agreement defined as a match between the primary or alternate reference land-cover label and a mode class of the mapped 3×3 block of pixels centered on the sample pixel. Overall accuracy at Anderson Level II was low and variable across the regions, ranging from 38% for the Midwest to 70% for the Southwest. Overall accuracy at Anderson Level I was higher and more consistent across the regions, ranging from 82% to 85% for five of the six regions, but only 74% for the South-central region.

  1. Identification of RFLP and NBS/PK profiling markers for disease resistance loci in genetic maps of oats.

    PubMed

    Sanz, M J; Loarce, Y; Fominaya, A; Vossen, J H; Ferrer, E

    2013-01-01

    Two of the domains most widely shared among R genes are the nucleotide binding site (NBS) and protein kinase (PK) domains. The present study describes and maps a number of new oat resistance gene analogues (RGAs) with two purposes in mind: (1) to identify genetic regions that contain R genes and (2) to determine whether RGAs can be used as molecular markers for qualitative loci and for QTLs affording resistance to Puccinia coronata. Such genes have been mapped in the diploid A. strigosa × A. wiestii (Asw map) and the hexaploid MN841801-1 × Noble-2 (MN map). Genomic and cDNA NBS-RGA probes from oat, barley and wheat were used to produce RFLPs and to obtain markers by motif-directed profiling based on the NBS (NBS profiling) and PK (PK profiling) domains. The efficiency of primers used in NBS/PK profiling to amplify RGA fragments was assessed by sequencing individual marker bands derived from genomic and cDNA fragments. The positions of 184 markers were identified in the Asw map, while those for 99 were identified in the MN map. Large numbers of NBS and PK profiling markers were found in clusters across different linkage groups, with the PK profiling markers more evenly distributed. The location of markers throughout the genetic maps and the composition of marker clusters indicate that NBS- and PK-based markers cover partly complementary regions of oat genomes. Markers of the different classes obtained were found associated with the two resistance loci, PcA and R-284B-2, mapped on Asw, and with five out of eight QTLs for partial resistance in the MN map. 53 RGA-RFLPs and 187 NBS/PK profiling markers were also mapped on the hexaploid map A. byzantina cv. Kanota × A. sativa cv. Ogle. Significant co-localization was seen between the RGA markers in the KO map and other markers closely linked to resistance loci, such as those for P. coronata and barley yellow dwarf virus (Bydv) that were previously mapped in other segregating populations.

  2. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data

    NASA Astrophysics Data System (ADS)

    Comiso, J. C.

    1990-08-01

    The ability to classify and monitor Arctic multiyear sea ice cover using multispectral passive microwave data is studied. Sea ice concentration maps during several summer minima have been analyzed to obtain estimates of ice surviving the summer. The results are compared with multiyear ice concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data is approximately 25 to 40% less than the summer ice cover minimum, suggesting that even during winter when the emissivity of sea ice is most stable, passive microwave data may account for only a fraction of the total multiyear ice cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear ice floes in the Arctic, especially those near the summer marginal ice zone, have first-year ice or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-ice interface, which often occurs near the marginal ice zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear ice. Hence the multiyear ice data should be studied in conjunction with the previous summer ice data to obtain a more complete characterization of the state of the Arctic ice cover. The total extent and actual areas of the summertime Arctic pack ice were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable ice cover.

  3. Automated mapping of persistent ice and snow cover across the western U.S. with Landsat

    NASA Astrophysics Data System (ADS)

    Selkowitz, David J.; Forster, Richard R.

    2016-07-01

    We implemented an automated approach for mapping persistent ice and snow cover (PISC) across the conterminous western U.S. using all available Landsat TM and ETM+ scenes acquired during the late summer/early fall period between 2010 and 2014. Two separate validation approaches indicate this dataset provides a more accurate representation of glacial ice and perennial snow cover for the region than either the U.S. glacier database derived from US Geological Survey (USGS) Digital Raster Graphics (DRG) maps (based on aerial photography primarily from the 1960s-1980s) or the National Land Cover Database 2011 perennial ice and snow cover class. Our 2010-2014 Landsat-derived dataset indicates 28% less glacier and perennial snow cover than the USGS DRG dataset. There are larger differences between the datasets in some regions, such as the Rocky Mountains of Northwest Wyoming and Southwest Montana, where the Landsat dataset indicates 54% less PISC area. Analysis of Landsat scenes from 1987-1988 and 2008-2010 for three regions using a more conventional, semi-automated approach indicates substantial decreases in glaciers and perennial snow cover that correlate with differences between PISC mapped by the USGS DRG dataset and the automated Landsat-derived dataset. This suggests that most of the differences in PISC between the USGS DRG and the Landsat-derived dataset can be attributed to decreases in PISC, as opposed to differences between mapping techniques. While the dataset produced by the automated Landsat mapping approach is not designed to serve as a conventional glacier inventory that provides glacier outlines and attribute information, it allows for an updated estimate of PISC for the conterminous U.S. as well as for smaller regions. Additionally, the new dataset highlights areas where decreases in PISC have been most significant over the past 25-50 years.

  4. Automated mapping of persistent ice and snow cover across the western U.S. with Landsat

    USGS Publications Warehouse

    Selkowitz, David J.; Forster, Richard R.

    2016-01-01

    We implemented an automated approach for mapping persistent ice and snow cover (PISC) across the conterminous western U.S. using all available Landsat TM and ETM+ scenes acquired during the late summer/early fall period between 2010 and 2014. Two separate validation approaches indicate this dataset provides a more accurate representation of glacial ice and perennial snow cover for the region than either the U.S. glacier database derived from US Geological Survey (USGS) Digital Raster Graphics (DRG) maps (based on aerial photography primarily from the 1960s–1980s) or the National Land Cover Database 2011 perennial ice and snow cover class. Our 2010–2014 Landsat-derived dataset indicates 28% less glacier and perennial snow cover than the USGS DRG dataset. There are larger differences between the datasets in some regions, such as the Rocky Mountains of Northwest Wyoming and Southwest Montana, where the Landsat dataset indicates 54% less PISC area. Analysis of Landsat scenes from 1987–1988 and 2008–2010 for three regions using a more conventional, semi-automated approach indicates substantial decreases in glaciers and perennial snow cover that correlate with differences between PISC mapped by the USGS DRG dataset and the automated Landsat-derived dataset. This suggests that most of the differences in PISC between the USGS DRG and the Landsat-derived dataset can be attributed to decreases in PISC, as opposed to differences between mapping techniques. While the dataset produced by the automated Landsat mapping approach is not designed to serve as a conventional glacier inventory that provides glacier outlines and attribute information, it allows for an updated estimate of PISC for the conterminous U.S. as well as for smaller regions. Additionally, the new dataset highlights areas where decreases in PISC have been most significant over the past 25–50 years.

  5. Snow fraction products evaluation with Landsat-8/OLI data and its spatial scale effects over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Jiang, L.

    2016-12-01

    Snow cover is one of important elements in the water supply of large populations, especially in those downstream from mountainous watershed. The cryosphere process in the Tibetan Plateau is paid much attention due to rapid change of snow amount and cover extent. Snow mapping from MODIS has been increased attention in the study of climate change and hydrology. But the lack of intensive validation of different snow mapping methods especially at Tibetan Plateau hinders its application. In this work, we examined three MODIS snow products, including standard MODIS fractional snow product (MOD10A1) (Kaufman et al., 2002; Salomonson & Appel, 2004, 2006), two other fractional snow product, MODSCAG (Painter et al., 2009) and MOD_MESMA (Shi, 2012). Both these two methods are based on spectral mixture analysis. The difference between MODISCAG and MOD_MESMA was the endmember selection. For MODSCAG product, snow spectral endmembers of varying grain size was obtained both from a radiative transfer model and spectra of vegetation, rock and soil collected in the field and laboratory. MOD_MESMA was obtained from automated endmember extraction method using linear spectral mixture analysis. Its endmembers are selected in each image to enhance the computational efficiency of MESMA (Multiple Endmember Spectral Analysis). Landsat-8 Operatinal Land Imager (OLI) data from 2013-2015 was used to evaluate the performance of these three snow fraction products in Tibetan Plateau. The effect of land cover types including forest, grass and bare soil was analyzed to evaluate three products. In addition, the effects of relatively flat surface in internal plateau and high mountain areas of Himalaya were also evaluated on the impact of these snow fraction products. From our comparison, MODSCAG and MOD10A1 overestimated snow cover, while MOD_MESMA underestimated snow cover. And RMSE of MOD_MESMA at each land cover type including forest, grass and mountain area decreased with the spatial resolution increasing from 500m, 1km, 2km to 5km. The RMSE of MODSCAG and MOD10A1 is very similar. In Himalaya area, these two RMSEs of MODSCAG and MOD10A1 increased with the spatial resolution increasing from 500m to 5km. For forest, grass and bare soil, RMSE decreased from 500m to 1km, then increased from 1km to 2km.

  6. Integrating recent land cover mapping efforts to update the National Gap Analysis Program's species habitat map

    USGS Publications Warehouse

    McKerrow, Alexa; Davidson, A.; Earnhardt, Todd; Benson, Abigail L.; Toth, Charles; Holm, Thomas; Jutz, Boris

    2014-01-01

    Over the past decade, great progress has been made to develop national extent land cover mapping products to address natural resource issues. One of the core products of the GAP Program is range-wide species distribution models for nearly 2000 terrestrial vertebrate species in the U.S. We rely on deductive modeling of habitat affinities using these products to create models of habitat availability. That approach requires that we have a thematically rich and ecologically meaningful map legend to support the modeling effort. In this work, we tested the integration of the Multi-Resolution Landscape Characterization Consortium's National Land Cover Database 2011 and LANDFIRE's Disturbance Products to update the 2001 National GAP Vegetation Dataset to reflect 2011 conditions. The revised product can then be used to update the species models. We tested the update approach in three geographic areas (Northeast, Southeast, and Interior Northwest). We used the NLCD product to identify areas where the cover type mapped in 2011 was different from what was in the 2001 land cover map. We used Google Earth and ArcGIS base maps as reference imagery in order to label areas identified as "changed" to the appropriate class from our map legend. Areas mapped as urban or water in the 2011 NLCD map that were mapped differently in the 2001 GAP map were accepted without further validation and recoded to the corresponding GAP class. We used LANDFIRE's Disturbance products to identify changes that are the result of recent disturbance and to inform the reassignment of areas to their updated thematic label. We ran species habitat models for three species including Lewis's Woodpecker (Melanerpes lewis) and the White-tailed Jack Rabbit (Lepus townsendii) and Brown Headed nuthatch (Sitta pusilla). For each of three vertebrate species we found important differences in the amount and location of suitable habitat between the 2001 and 2011 habitat maps. Specifically, Brown headed nuthatch habitat in 2011 was −14% of the 2001 modeled habitat, whereas Lewis's Woodpecker increased by 4%. The white-tailed jack rabbit (Lepus townsendii) had a net change of −1% (11% decline, 10% gain). For that species we found the updates related to opening of forest due to burning and regenerating shrubs following harvest to be the locally important main transitions. In the Southeast updates related to timber management and urbanization are locally important.

  7. Monitoring of reforestation on burnt areas in Western Russia using Landsat time series

    NASA Astrophysics Data System (ADS)

    Vorobev, Oleg; Kurbanov, Eldar

    2017-04-01

    Forest fires are main disturbance factor for the natural ecosystems, especially in boreal forests. Monitoring for the dynamic of forest cover regeneration in the post-fire period of ecosystem recovery is crucial to both estimation of forest stands and forest management. In this study, on the example of burnt areas of 2010 wildfires in Republic Mari El of Russian Federation we estimated post-fire dynamic of different classes of vegetation cover between 2011-2016 years with the use of time series Landsat satellite images. To validate the newly obtained thematic maps we used 80 test sites with independent field data, as well Canopus-B images of high spatial resolution. For the analysis of the satellite images we referred to Normalized Differenced Vegetation Index (NDVI) and Tasseled Cap transformation. The research revealed that at the post-fire period the area of thematic classes "Reforestation of the middle and low density" has maximum cover (44%) on the investigated burnt area. On the burnt areas of 2010 there is ongoing active process of grass overgrowing (up to 20%), also there are thematic classes of deadwood (15%) and open spaces (10%). The results indicate that there is mostly natural regeneration of tree species pattern corresponding to the pre-fire condition. Forest plantations cover only 2% of the overall burnt area. By the 2016 year the NDVI parameters of young vegetation cover were recovered to the pre-fire level as well. The overall unsupervised classification accuracy of more than 70% shows high degree of agreement between the thematic map and the ground truth data. The research results can be applied for the long term succession monitoring and management plan development for the reforestation activities on the lands disturbed by fire.

  8. An integrated approach for automated cover-type mapping of large inaccessible areas in Alaska

    USGS Publications Warehouse

    Fleming, Michael D.

    1988-01-01

    The lack of any detailed cover type maps in the state necessitated that a rapid and accurate approach to be employed to develop maps for 329 million acres of Alaska within a seven-year period. This goal has been addressed by using an integrated approach to computer-aided analysis which combines efficient use of field data with the only consistent statewide spatial data sets available: Landsat multispectral scanner data, digital elevation data derived from 1:250 000-scale maps, and 1:60 000-scale color-infrared aerial photographs.

  9. Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers

    PubMed Central

    Julier, Bernadette; Flajoulot, Sandrine; Barre, Philippe; Cardinet, Gaëlle; Santoni, Sylvain; Huguet, Thierry; Huyghe, Christian

    2003-01-01

    Background Alfalfa (Medicago sativa) is a major forage crop. The genetic progress is slow in this legume species because of its autotetraploidy and allogamy. The genetic structure of this species makes the construction of genetic maps difficult. To reach this objective, and to be able to detect QTLs in segregating populations, we used the available codominant microsatellite markers (SSRs), most of them identified in the model legume Medicago truncatula from EST database. A genetic map was constructed with AFLP and SSR markers using specific mapping procedures for autotetraploids. The tetrasomic inheritance was analysed in an alfalfa mapping population. Results We have demonstrated that 80% of primer pairs defined on each side of SSR motifs in M. truncatula EST database amplify with the alfalfa DNA. Using a F1 mapping population of 168 individuals produced from the cross of 2 heterozygous parental plants from Magali and Mercedes cultivars, we obtained 599 AFLP markers and 107 SSR loci. All but 3 SSR loci showed a clear tetrasomic inheritance. For most of the SSR loci, the double-reduction was not significant. For the other loci no specific genotypes were produced, so the significant double-reduction could arise from segregation distortion. For each parent, the genetic map contained 8 groups of four homologous chromosomes. The lengths of the maps were 2649 and 3045 cM, with an average distance of 7.6 and 9.0 cM between markers, for Magali and Mercedes parents, respectively. Using only the SSR markers, we built a composite map covering 709 cM. Conclusions Compared to diploid alfalfa genetic maps, our maps cover about 88–100% of the genome and are close to saturation. The inheritance of the codominant markers (SSR) and the pattern of linkage repulsions between markers within each homology group are consistent with the hypothesis of a tetrasomic meiosis in alfalfa. Except for 2 out of 107 SSR markers, we found a similar order of markers on the chromosomes between the tetraploid alfalfa and M. truncatula genomes indicating a high level of colinearity between these two species. These maps will be a valuable tool for alfalfa breeding and are being used to locate QTLs. PMID:14683527

  10. Characterisation of well-adhered ZrO2 layers produced on structured reactors using the sonochemical sol-gel method

    NASA Astrophysics Data System (ADS)

    Jodłowski, Przemysław J.; Chlebda, Damian K.; Jędrzejczyk, Roman J.; Dziedzicka, Anna; Kuterasiński, Łukasz; Sitarz, Maciej

    2018-01-01

    The aim of this study was to obtain thin zirconium dioxide coatings on structured reactors using the sonochemical sol-gel method. The preparation method of metal oxide layers on metallic structures was based on the synergistic combination of three approaches: the application of ultrasonic irradiation during the synthesis of Zr sol-gel based on a precursor solution containing zirconium(IV) n-propoxide, the addition of stabilszing agents, and the deposition of ZrO2 on the metallic structures using the dip-coating method. As a result, dense, uniform zirconium dioxide films were obtained on the FeCrAlloy supports. The structured reactors were characterised by various physicochemical methods, such as BET, AFM, EDX, XRF, XRD, XPS and in situ Raman spectroscopy. The results of the structural analysis by Raman and XPS spectroscopy confirmed that the metallic surface was covered by a ZrO2 layer without any impurities. SEM/EDX mapping revealed that the deposited ZrO2 covered the metallic support uniformly. The mechanical and high temperature tests showed that the developed ultrasound assisted sol-gel method is an efficient way to obtain thin, well-adhered zirconium dioxide layers on the structured reactors. The prepared metallic supports covered with thin ZrO2 layers may be a good alternative to layered structured reactors in several dynamics flow processes, for example for gas exhaust abatement.

  11. Evaluation of SLAR and thematic mapper MSS data for forest cover mapping using computer-aided analysis techniques

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator); Latty, R. S.; Dean, E.; Knowlton, D. J.

    1980-01-01

    Separate holograms of horizontally (HH) and vertically (HV) polarized responses obtained by the APQ-102 side-looking radar were processed through an optical correlator and the resulting image was recorded on positive film from which black and white negative and positive prints were made. Visual comparison of the HH and HV images reveals a distinct dark band in the imagery which covers about 30% of the radar strip. Preliminary evaluaton of the flight line 1 date indicates that various features on the HH and HV images seem to have different response levels. The amount of sidelap due to the look angle between flight lines 1 and 2 is negligible. NASA mission #425 to obtain flightlines of NS-001 MSS data and supporting aerial photography was successfully flown. Flight line 3 data are of very good quality and virtually cloud-free. Results of data analysis for selection of test fields and for evaluation of waveband combination and spatial resolution are presented.

  12. Microwave maps of the polar ice of the earth. [from Nimbus-5 satellite

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Wilheit, T. T.; Chang, T. C.; Nordberg, W.; Campbell, W. J.

    1973-01-01

    Synoptic views of the entire polar regions of earth were obtained free of the usual persistent cloud cover using a scanning microwave radiometer operating at a wavelength of 1.55 cm on board the Nimbus-5 satellite. Three different views at each pole are presented utilizing data obtained at approximately one-month intervals during the winter of 1972-1973. The major discoveries resulting from an analysis of these data are as follows: (1) Large discrepancies exist between the climatic norm ice cover depicted in various atlases and the actual extent of the canopies. (2) The distribution of multiyear ice in the north polar region is markedly different from that predicted by existing ice dynamics models. (3) Irregularities in the edge of the Antarctic sea ice pack occur that have neither been observed previously nor anticipated. (4) The brightness temperatures of the Greenland and Antarctica glaciers show interesting contours probably related to the ice and snow morphologic structure.

  13. Mapping spatial patterns with morphological image processing

    Treesearch

    Peter Vogt; Kurt H. Riitters; Christine Estreguil; Jacek Kozak; Timothy G. Wade; James D. Wickham

    2006-01-01

    We use morphological image processing for classifying spatial patterns at the pixel level on binary land-cover maps. Land-cover pattern is classified as 'perforated,' 'edge,' 'patch,' and 'core' with higher spatial precision and thematic accuracy compared to a previous approach based on image convolution, while retaining the...

  14. Computer mapping of LANDSAT data for environmental applications

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator); Mckeon, J. B.; Reed, L. E.; Schmidt, N. F.; Schecter, R. N.

    1975-01-01

    The author has identified the following significant results. Land cover overlays and maps produced from LANDSAT are providing information on existing land use and resources throughout the 208 study area. The overlays are being used to delineate drainage areas of a predominant land cover type. Information on cover type is also being combined with other pertinent data to develop estimates of sediment and nutrients flows from the drainage area. The LANDSAT inventory of present land cover together with population projects is providing a basis for developing maps of anticipated land use patterns required to evaluate impact on water quality which may result from these patterns. Overlays of forest types were useful for defining wildlife habitat and vegetational resources in the region. LANDSAT data and computer assisted interpretation was found to be a rapid cost effective procedure for inventorying land cover on a regional basis. The entire 208 inventory which include acquisition of ground truth, LANDSAT tapes, computer processing, and production of overlays and coded tapes was completed within a period of 2 months at a cost of about 0.6 cents per acre, a significant improvement in time and cost over conventional photointerpretation and mapping techniques.

  15. High spatial resolution mapping of land cover types in a priority area for conservation in the Brazilian savanna

    NASA Astrophysics Data System (ADS)

    Ribeiro, F.; Roberts, D. A.; Hess, L. L.; Davis, F. W.; Caylor, K. K.; Nackoney, J.; Antunes Daldegan, G.

    2017-12-01

    Savannas are heterogeneous landscapes consisting of highly mixed land cover types that lack clear distinct boundaries. The Brazilian Cerrado is a Neotropical savanna considered a biodiversity hotspot for conservation due to its biodiversity richness and rapid transformation of its landscape by crop and pasture activities. The Cerrado is one of the most threatened Brazilian biomes and only 2.2% of its original extent is strictly protected. Accurate mapping and monitoring of its ecosystems and adjacent land use are important to select areas for conservation and to improve our understanding of the dynamics in this biome. Land cover mapping of savannas is difficult due to spectral similarity between land cover types resulting from similar vegetation structure, floristically similar components, generalization of land cover classes, and heterogeneity usually expressed as small patch sizes within the natural landscape. These factors are the major contributor to misclassification and low map accuracies among remote sensing studies in savannas. Specific challenges to map the Cerrado's land cover types are related to the spectral similarity between classes of land use and natural vegetation, such as natural grassland vs. cultivated pasture, and forest ecosystem vs. crops. This study seeks to classify and evaluate the land cover patterns across an area ranked as having extremely high priority for future conservation in the Cerrado. The main objective of this study is to identify the representativeness of each vegetation type across the landscape using high to moderate spatial resolution imagery using an automated scheme. A combination of pixel-based and object-based approaches were tested using RapidEye 3A imagery (5m spatial resolution) to classify the Cerrado's major land cover types. The random forest classifier was used to map the major ecosystems present across the area, and demonstrated to have an effective result with 68% of overall accuracy. Post-classification modification was performed to refine information to the major physiognomic groups of each ecosystem type. In this step, we used segmentation in eCognition, considering the random forest classification as input as well as other environmental layers (e.g. slope, soil types), which improved the overall classification to 75%.

  16. Low-Altitude AVIRIS Data for Mapping Land Cover in Yellowstone National Park: Use of Isodata Clustering Techniques

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.

    2001-01-01

    Northeast Yellowstone National Park (YNP) has a diversity of forest, range, and wetland cover types. Several remote sensing studies have recently been done in this area, including the NASA Earth Observations Commercial Applications Program (EOCAP) hyperspectral project conducted by Yellowstone Ecosystems Studies (YES) on the use of hyperspectral imaging for assessing riparian and in-stream habitats. In 1999, YES and NASA's Commercial Remote Sensing Program Office began collaborative study of this area, assessing the potential of synergistic use of hyperspectral, synthetic aperture radar (SAR), and multiband thermal data for mapping forest, range, and wetland land cover. Since the beginning, a quality 'reference' land cover map has been desired as a tool for developing and validating other land cover maps produced during the project. This paper recounts an effort to produce such a reference land cover map using low-altitude Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and unsupervised classification techniques. The main objective of this study is to assess ISODATA classification for mapping land cover in Northeast YNP using select bands of low-altitude AVIRIS data. A secondary, more long-term objective is to assess the potential for improving ISODATA-based classification of land cover through use of principal components analysis and minimum noise fraction (MNF) techniques. This paper will primarily report on work regarding the primary research objective. This study focuses on an AVIRIS cube acquired on July 23, 1999, by the confluence of Soda Butte Creek with the Lamar River. Range and wetland habitats dominate the image with forested habitats being a comparatively minor component of the scene. The scene generally tracks from southwest to northeast. Most of the scene is valley bottom with some lower side slopes occurring on the western portion. Elevations within the AVIRIS scene range from approximately 1998 to 2165 m above sea level, based on US Geological Survey (USGS) 30-m digital elevation model (DEM) data. Despain and the National Park Service (NPS) provide additional description of the study area.

  17. Potential reciprocal effect between land use / land cover change and climate change

    NASA Astrophysics Data System (ADS)

    Daham, Afrah; Han, Dawei; Rico-Ramirez, Miguel

    2016-04-01

    Land use/land cover (LULC) activity influences climate change and one way to explore climate change is to analyse the change in LULC patterns. Modelling the Spatio-temporal pattern of LULC change requires the use of satellite remote sensing data and aerial photographs with different pre-processing steps. The aim of this research is to analyse the reciprocal effects of LUCC (Land Use and Cover Change) and the climate change on each other in the study area which covers part of Bristol, South Gloucestershire, Bath and Somerset in England for the period (1975-2015). LUCC is assessed using remote sensing data. Three sets of remotely sensed data, LanSAT-1 Multispectral Scanner (MSS) data obtained in (1975 and 1976), LanSAT-5 Thematic Mapper (TM) data obtained in (1984 and 1997), and LandSAT-7 Enhanced Thematic Mapper Plus (ETM+) acquired in (2003 and 2015), with a time span of forty years were used in the study. One of the most common problems in the satellite images is the presence of cloud covers. In this study, the cloud cover problem is handled using a novel algorithm, which is capable of reducing the cloud coverage in the classified images significantly. This study also examines a suite of possible photogrammetry techniques applicable to detect the change in LULC. At the moment photogrammertic techniques are used to derive the ground truth for supervised classification from the high resolution aerial photos which were provided by Ordnance Survey (contract number: 240215) and global mapper for the years in (2001 and 2014). After obtaining the classified images almost free of clouds, accuracy assessment is implemented with the derived classified images using confusion matrix at some ground truth points. Eight classes (Improved grassland, Built up areas and gardens, Arable and horticulture, Broad-leaved / mixed woodland, Coniferous woodland, Oceanic seas, Standing open water and reservoir, and Mountain; heath; bog) have been classified in the chosen study area. Also, CORINE Land Cover (CLC) maps are used to study the environmental changes and to validate the obtained maps from remote sensing and photogrammetry data. On climate change, different sources of climate data were used in this research. Three rainfall datasets from the Global Precipitation Climatology Centre (GPCC), the Climate Research Unit (CRU) and Gridded Estimates of daily Areal Rainfall (CEH-GEAR) in the study area were compared at a resolution of 0.5 degrees. The dataset were available for the operational period 1975-2015. The historically observed rainfall datasets for the study area were obtained from the Met Office Integrated Data Archive System (MIDAS) Land and Marine downloaded through the British Atmospheric Data Centre (BADC) website, which includes the rainfall and the temperature, are collected from all the weather stations in the UK in the last 40 years. Only four gauging stations were available to represent the spatial variability of rainfall within and around the study area. The monthly rainfall time series were evaluated against a dataset based on four rain gauges. These data are processed and analysed statistically to find the changes in climate of the study area in the last 40 years. The potential reciprocal effect between the LULC change and the climate change is done by finding the correlation between LUCC and the variables Rainfall and Temperature. In addition, The Soil and Water Assessment Tool (SWAT) model is used to study the impact of LULC change on the water system and climate.

  18. Multi-Sensor Approach to Mapping Snow Cover Using Data From NASA's EOS Aqua and Terra Spacecraft

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Brodzik, M. J.

    2003-12-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Over the past several decades both optical and passive microwave satellite data have been utilized for snow mapping at the regional to global scale. For the period 1978 to 2002, we have shown earlier that both passive microwave and visible data sets indicate a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are, depending on season, less than those provided by the visible satellite data and the visible data typically show higher monthly variability. Snow mapping using optical data is based on the magnitude of the surface reflectance while microwave data can be used to identify snow cover because the microwave energy emitted by the underlying soil is scattered by the snow grains resulting in a sharp decrease in brightness temperature and a characteristic negative spectral gradient. Our previous work has defined the respective advantages and disadvantages of these two types of satellite data for snow cover mapping and it is clear that a blended product is optimal. We present a multi-sensor approach to snow mapping based both on historical data as well as data from current NASA EOS sensors. For the period 1978 to 2002 we combine data from the NOAA weekly snow charts with passive microwave data from the SMMR and SSM/I brightness temperature record. For the current and future time period we blend MODIS and AMSR-E data sets. An example of validation at the brightness temperature level is provided through the comparison of AMSR-E with data from the well-calibrated heritage SSM/I sensor over a large homogeneous snow-covered surface (Dome C, Antarctica). Prototype snow cover maps from AMSR-E compare well with maps derived from SSM/I. Our current blended product is being developed in the 25 km EASE-Grid while the MODIS data being used are in the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) allowing the blended product to indicate percent snow cover over the larger grid cell. Relationships between the percent area covered by snow as indicated by the MODIS data and the threshold for the appearance of snow as indicated by the passive microwave data are presented. Both MODIS and AMSR-E data have enhanced spatial resolution compared to the earlier data sources and examples of how this increased spatial resolution results in more accurate snow cover maps are presented. A wide range of validation data sets are being employed in this study including the NASA Cold Lands Processes Field Experiment undertaken in Colorado during 2002 and 2003.

  19. Comparing long-term geomorphic model outcomes with sediment archives highlights the need for high-resolution Holocene land cover reconstructions

    NASA Astrophysics Data System (ADS)

    De Brue, Hanne; Verstraeten, Gert

    2013-04-01

    During the last decade, several global land cover reconstructions have been produced that enable to quantify human impact on the landscape since the introduction of agriculture. Application of these land cover maps in geomorphic models potentially allows to estimate the anthropogenic impact on sediment fluxes and thus to reconstruct changes in landscape morphology through time. However, current land cover reconstructions face some drawbacks. First of all, their low spatial resolution (i.e. 5 arc-minutes at best) questions their use in geomorphic models, as sub-catchment vegetation patterns play an important role in sediment dynamics. Existing global land cover reconstructions also do not differentiate the typology of human impact (cropland, grazing land, disturbed forests), although the susceptibility of different anthropogenic land uses towards erosion varies greatly. Finally, the various land cover reconstructions differ significantly regarding the estimated intensity of human impact for the preindustrial period. In this study, we assessed the performance of a spatially distributed erosion and sediment redistribution model that operates at high resolution (100 m) to the quality and spatial resolution of input land cover maps. This was done through a comparison of two sets of model runs. Firstly, low-resolution land cover (expressed as percentage of non-natural vegetation) maps were resampled to a spatial resolution of 100 m without differentiation of non-natural vegetation types. For the second set of model runs, estimated non-natural vegetation was differentiated in areas of cropland and grassland, and spatially allocated to a high-resolution grid (100 m) using a logistic model that relates contemporary land cover classes to slope, soil characteristics, landforms and distance to rivers. For both land cover maps, different scenarios for the ratio between cropland and grassland were simulated. Analyses were performed for several time periods throughout the Holocene, for the Scheldt River Basin (19,000 km2) in Belgium and northern France. Results indicate that low-resolution land cover information, regardless of the considered cropland/grassland ratio, leads to largely overestimated sediment fluxes when compared to field-based sediment budgets. Allocation of land cover to a higher spatial resolution yields far better results. Variations in model outcomes are related to differences in landscape connectivity between allocated and non-allocated land cover. These results point towards the need for higher-resolution land cover maps that incorporate the patchiness of vegetation at relevant scales regarding geomorphic processes. Also, model results with allocated and non-allocated land cover maps differ greatly for different cropland/grassland ratios. This indicates that there is not only a need for land cover reconstructions at high spatial resolution, but also that differentiation between cropland and grassland is essential for accurate geomorphic modeling. Further improvements in land cover reconstructions are thus needed before reliable quantitative estimates of anthropogenic impact on soil profiles and sediment redistribution can be simulated at continental scales. Detailed historic sediment budgets can provide an important tool not only for validating but also for reconstructing land cover histories.

  20. Applying the Manning equation to determine the critical distance in non-point source pollution using remotely sensed data and cartographic modelling

    NASA Astrophysics Data System (ADS)

    de Oliveira, Lília M.; Santos, Nádia A. P.; Maillard, Philippe

    2013-10-01

    Non-point source pollution (NPSP) is perhaps the leading cause of water quality problems and one of the most challenging environmental issues given the difficulty of modeling and controlling it. In this article, we applied the Manning equation, a hydraulic concept, to improve models of non-point source pollution and determine its influence as a function of slope - land cover roughness for runoff to reach the stream. In our study the equation is somewhat taken out of its usual context to be applies to the flow of an entire watershed. Here a digital elevation model (DEM) from the SRTM satellite was used to compute the slope and data from the RapidEye satellite constellation was used to produce a land cover map later transformed into a roughness surface. The methodology is applied to a 1433 km2 watershed in Southeast Brazil mostly covered by forest, pasture, urban and wetlands. The model was used to create slope buffer of varying width in which the proportions of land cover and roughness coefficient were obtained. Next we correlated these data, through regression, with four water quality parameters measured in situ: nitrate, phosphorous, faecal coliform and turbidity. We compare our results with the ones obtained by fixed buffer. It was found that slope buffer outperformed fixed buffer with higher coefficients of determination up to 15%.

  1. Enhancement of snow cover change detection with sparse representation and dictionary learning

    NASA Astrophysics Data System (ADS)

    Varade, D.; Dikshit, O.

    2014-11-01

    Sparse representation and decoding is often used for denoising images and compression of images with respect to inherent features. In this paper, we adopt a methodology incorporating sparse representation of a snow cover change map using the K-SVD trained dictionary and sparse decoding to enhance the change map. The pixels often falsely characterized as "changes" are eliminated using this approach. The preliminary change map was generated using differenced NDSI or S3 maps in case of Resourcesat-2 and Landsat 8 OLI imagery respectively. These maps are extracted into patches for compressed sensing using Discrete Cosine Transform (DCT) to generate an initial dictionary which is trained by the K-SVD approach. The trained dictionary is used for sparse coding of the change map using the Orthogonal Matching Pursuit (OMP) algorithm. The reconstructed change map incorporates a greater degree of smoothing and represents the features (snow cover changes) with better accuracy. The enhanced change map is segmented using kmeans to discriminate between the changed and non-changed pixels. The segmented enhanced change map is compared, firstly with the difference of Support Vector Machine (SVM) classified NDSI maps and secondly with a reference data generated as a mask by visual interpretation of the two input images. The methodology is evaluated using multi-spectral datasets from Resourcesat-2 and Landsat-8. The k-hat statistic is computed to determine the accuracy of the proposed approach.

  2. APPLICATION OF A "VITURAL FIELD REFERENCE DATABASE" TO ASSESS LAND-COVER MAP ACCURACIES

    EPA Science Inventory

    An accuracy assessment was performed for the Neuse River Basin, NC land-cover/use
    (LCLU) mapping results using a "Virtual Field Reference Database (VFRDB)". The VFRDB was developed using field measurement and digital imagery (camera) data collected at 1,409 sites over a perio...

  3. An interoperable standard system for the automatic generation and publication of the fire risk maps based on Fire Weather Index (FWI)

    NASA Astrophysics Data System (ADS)

    Julià Selvas, Núria; Ninyerola Casals, Miquel

    2015-04-01

    It has been implemented an automatic system to predict the fire risk in the Principality of Andorra, a small country located in the eastern Pyrenees mountain range, bordered by Catalonia and France, due to its location, his landscape is a set of a rugged mountains with an average elevation around 2000 meters. The system is based on the Fire Weather Index (FWI) that consists on different components, each one, measuring a different aspect of the fire danger calculated by the values of the weather variables at midday. CENMA (Centre d'Estudis de la Neu i de la Muntanya d'Andorra) has a network around 10 automatic meteorological stations, located in different places, peeks and valleys, that measure weather data like relative humidity, wind direction and speed, surface temperature, rainfall and snow cover every ten minutes; this data is sent daily and automatically to the system implemented that will be processed in the way to filter incorrect measurements and to homogenizer measurement units. Then this data is used to calculate all components of the FWI at midday and for the level of each station, creating a database with the values of the homogeneous measurements and the FWI components for each weather station. In order to extend and model this data to all Andorran territory and to obtain a continuous map, an interpolation method based on a multiple regression with spline residual interpolation has been implemented. This interpolation considerer the FWI data as well as other relevant predictors such as latitude, altitude, global solar radiation and sea distance. The obtained values (maps) are validated using a cross-validation leave-one-out method. The discrete and continuous maps are rendered in tiled raster maps and published in a web portal conform to Web Map Service (WMS) Open Geospatial Consortium (OGC) standard. Metadata and other reference maps (fuel maps, topographic maps, etc) are also available from this geoportal.

  4. Forest Cover Mapping in Iskandar Malaysia Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Kanniah, K. D.; Mohd Najib, N. E.; Vu, T. T.

    2016-09-01

    Malaysia is the third largest country in the world that had lost forest cover. Therefore, timely information on forest cover is required to help the government to ensure that the remaining forest resources are managed in a sustainable manner. This study aims to map and detect changes of forest cover (deforestation and disturbance) in Iskandar Malaysia region in the south of Peninsular Malaysia between years 1990 and 2010 using Landsat satellite images. The Carnegie Landsat Analysis System-Lite (CLASlite) programme was used to classify forest cover using Landsat images. This software is able to mask out clouds, cloud shadows, terrain shadows, and water bodies and atmospherically correct the images using 6S radiative transfer model. An Automated Monte Carlo Unmixing technique embedded in CLASlite was used to unmix each Landsat pixel into fractions of photosynthetic vegetation (PV), non photosynthetic vegetation (NPV) and soil surface (S). Forest and non-forest areas were produced from the fractional cover images using appropriate threshold values of PV, NPV and S. CLASlite software was found to be able to classify forest cover in Iskandar Malaysia with only a difference between 14% (1990) and 5% (2010) compared to the forest land use map produced by the Department of Agriculture, Malaysia. Nevertheless, the CLASlite automated software used in this study was found not to exclude other vegetation types especially rubber and oil palm that has similar reflectance to forest. Currently rubber and oil palm were discriminated from forest manually using land use maps. Therefore, CLASlite algorithm needs further adjustment to exclude these vegetation and classify only forest cover.

  5. Quantifying biological integrity of California sage scrub communities using plant life-form cover.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Y.; Stow, D. A.; Franklin, J.

    2010-01-01

    The California sage scrub (CSS) community type in California's Mediterranean-type ecosystems supports a large number of rare, threatened, and endangered species, and is critically degraded and endangered. Monitoring ecological variables that provide information about community integrity is vital to conserving these biologically diverse communities. Fractional cover of true shrub, subshrub, herbaceous vegetation, and bare ground should fill information gaps between generalized vegetation type maps and detailed field-based plot measurements of species composition and provide an effective means for quantifying CSS community integrity. Remote sensing is the only tool available for estimating spatially comprehensive fractional cover over large extent, and fractionalmore » cover of plant life-form types is one of the measures of vegetation state that is most amenable to remote sensing. The use of remote sensing does not eliminate the need for either field surveying or vegetation type mapping; rather it will likely require a combination of approaches to reliably estimate life-form cover and to provide comprehensive information for communities. According to our review and synthesis, life-form fractional cover has strong potential for providing ecologically meaningful intermediate-scale information, which is unattainable from vegetation type maps and species-level field measurements. Thus, we strongly recommend incorporating fractional cover of true shrub, subshrub, herb, and bare ground in CSS community monitoring methods. Estimating life-form cover at a 25 m x 25 m spatial scale using remote sensing would be an appropriate approach for initial implementation. Investigation of remote sensing techniques and an appropriate spatial scale; collaboration of resource managers, biologists, and remote sensing specialists, and refinement of protocols are essential for integrating life-form fractional cover mapping into strategies for sustainable long-term CSS community management.« less

  6. The use of the LANDSAT data collection system and imagery in reservoir management and operation. [Maine, Vermont, New Hamphire, Canada, St. John River, Beech Ridge, Merrimack River, and Franklin Falls

    NASA Technical Reports Server (NTRS)

    Cooper, S. (Principal Investigator); Buckelew, T. D.; Mckim, H. L.; Merry, C. J.

    1977-01-01

    The author has identified the following significant results. An increase in the data collection system's (DCS) ability to function in the flood control mission with no additional manpower was demonstrated during the storms which struck New England during April and May of 1975 and August 1976. It was found that for this watershed, creditable flood hydrographs could be generated from DCS data. It was concluded that an ideal DCS for reservoir regulation would draw features from LANDSAT and GOES. MSS grayscale computer printout and a USGS topographic map were compared, yielding an optimum computer classification map of the wetland areas of the Merrimack River estuary. A classification accuracy of 75% was obtained for the wetlands unit, taking into account the misclassified and the unclassified pixels. The MSS band 7 grayscale printouts of the Franklin Falls reservoir showed good agreement to USGS topographic maps in total area of water depicted at the low water reservoir stage and at the maximum inundation level. Preliminary analysis of the LANDSAT digital data using the GISS computer algorithms showed that the radiance of snow cover/vegetation varied from approximately 20 mW/sq cm sr in nonvegetated areas to less than 4 mW/sq cm sr for densely covered forested area.

  7. Identification and mapping of heavy metal pollution in soils of a sports ground in Galway City, Ireland, using a portable XRF analyser and GIS.

    PubMed

    Carr, Ramona; Zhang, Chaosheng; Moles, Norman; Harder, Marie

    2008-02-01

    Heavy metals in urban soils continue to attract attention because of their potential long-term effects on human health. During a previous investigation of urban soils in Galway City, Ireland, a pollution hotspot of Pb, Cu, Zn and As was identified in the sports ground of South Park in the Claddagh. The sports ground was formerly a rubbish dumping site for both municipal and industrial wastes. In the present study, a portable X-ray fluorescence (PXRF) analyser was used to obtain rapid in-situ elemental analyses of the topsoil (depth: about 5-10 cm) at 200 locations on a 20 x 20-m grid in South Park. Extremely high values of the pollutants were found, with maximum values of Pb, Zn, Cu and As of 10,297, 24,716, 2224 and 744 mg/kg soil, respectively. High values occur particularly where the topsoil cover is thin, whereas lower values were found in areas where imported topsoil covers the polluted substrate. Geographic Information Systems (GIS) techniques were applied to the dataset to create elemental spatial distribution maps, three-dimensional images and interpretive hazard maps of the pollutants in the study area. Immediate action to remediate the contaminated topsoil is recommended to safeguard the health of children who play at the sports ground.

  8. RADARSAT-2 Polarimetry for Lake Ice Mapping

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Kang, Kyung-Kuk; Duguay, Claude

    2016-04-01

    Changes in the ice regime of lakes can be employed to assess long-term climate trends and variability in high latitude regions. Lake ice cover observations are not only useful for climate monitoring, but also for improving ice and weather forecasts using numerical prediction models. In recent years, satellite remote sensing has assumed a greater role in observing lake ice cover for both purposes. Radar remote sensing has become an essential tool for mapping lake ice at high latitudes where cloud cover and polar darkness severely limits ice observations from optical systems. In Canada, there is an emerging interest by government agencies to evaluate the potential of fully polarimetric synthetic aperture radar (SAR) data from RADARSAT-2 (C-band) for lake ice monitoring. In this study, we processed and analyzed the polarization states and scattering mechanisms of fully polarimetric RADARSAT-2 data obtained over Great Bear Lake, Canada, to identify open water and different ice types during the freeze-up and break-up periods. Polarimetric decompositions were employed to separate polarimetric measurements into basic scattering mechanisms. Entropy, anisotropy, and alpha angle were derived to characterize the scattering heterogeneity and mechanisms. Ice classes were then determined based on entropy and alpha angle using the unsupervised Wishart classifier and results evaluated against Landsat 8 imagery. Preliminary results suggest that the RADARSAT-2 polarimetric data offer a strong capability for identifying open water and different lake ice types.

  9. Evaluating and comparing methods of sinkhole susceptibility mapping in the Ebro Valley evaporite karst (NE Spain)

    NASA Astrophysics Data System (ADS)

    Galve, J. P.; Gutiérrez, F.; Remondo, J.; Bonachea, J.; Lucha, P.; Cendrero, A.

    2009-10-01

    Multiple sinkhole susceptibility models have been generated in three study areas of the Ebro Valley evaporite karst (NE Spain) applying different methods (nearest neighbour distance, sinkhole density, heuristic scoring system and probabilistic analysis) for each sinkhole type separately (cover collapse sinkholes, cover and bedrock collapse sinkholes and cover and bedrock sagging sinkholes). The quantitative and independent evaluation of the predictive capability of the models reveals that: (1) The most reliable susceptibility models are those derived from the nearest neighbour distance and sinkhole density. These models can be generated in a simple and rapid way from detailed geomorphological maps. (2) The reliability of the nearest neighbour distance and density models is conditioned by the degree of clustering of the sinkholes. Consequently, the karst areas in which sinkholes show a higher clustering are a priori more favourable for predicting new occurrences. (3) The predictive capability of the best models obtained in this research is significantly higher (12.5-82.5%) than that of the heuristic sinkhole susceptibility model incorporated into the General Urban Plan for the municipality of Zaragoza. Although the probabilistic approach provides lower quality results than the methods based on sinkhole proximity and density, it helps to identify the most significant factors and select the most effective mitigation strategies and may be applied to model susceptibility in different future scenarios.

  10. A 50-m forest cover map in Southeast Asia from ALOS/PALSAR and its application on forest fragmentation assessment.

    PubMed

    Dong, Jinwei; Xiao, Xiangming; Sheldon, Sage; Biradar, Chandrashekhar; Zhang, Geli; Duong, Nguyen Dinh; Hazarika, Manzul; Wikantika, Ketut; Takeuhci, Wataru; Moore, Berrien

    2014-01-01

    Southeast Asia experienced higher rates of deforestation than other continents in the 1990s and still was a hotspot of forest change in the 2000s. Biodiversity conservation planning and accurate estimation of forest carbon fluxes and pools need more accurate information about forest area, spatial distribution and fragmentation. However, the recent forest maps of Southeast Asia were generated from optical images at spatial resolutions of several hundreds of meters, and they do not capture well the exceptionally complex and dynamic environments in Southeast Asia. The forest area estimates from those maps vary substantially, ranging from 1.73×10(6) km(2) (GlobCover) to 2.69×10(6) km(2) (MCD12Q1) in 2009; and their uncertainty is constrained by frequent cloud cover and coarse spatial resolution. Recently, cloud-free imagery from the Phased Array Type L-band Synthetic Aperture Radar (PALSAR) onboard the Advanced Land Observing Satellite (ALOS) became available. We used the PALSAR 50-m orthorectified mosaic imagery in 2009 to generate a forest cover map of Southeast Asia at 50-m spatial resolution. The validation, using ground-reference data collected from the Geo-Referenced Field Photo Library and high-resolution images in Google Earth, showed that our forest map has a reasonably high accuracy (producer's accuracy 86% and user's accuracy 93%). The PALSAR-based forest area estimates in 2009 are significantly correlated with those from GlobCover and MCD12Q1 at national and subnational scales but differ in some regions at the pixel scale due to different spatial resolutions, forest definitions, and algorithms. The resultant 50-m forest map was used to quantify forest fragmentation and it revealed substantial details of forest fragmentation. This new 50-m map of tropical forests could serve as a baseline map for forest resource inventory, deforestation monitoring, reducing emissions from deforestation and forest degradation (REDD+) implementation, and biodiversity.

  11. A 50-m Forest Cover Map in Southeast Asia from ALOS/PALSAR and Its Application on Forest Fragmentation Assessment

    PubMed Central

    Dong, Jinwei; Xiao, Xiangming; Sheldon, Sage; Biradar, Chandrashekhar; Zhang, Geli; Dinh Duong, Nguyen; Hazarika, Manzul; Wikantika, Ketut; Takeuhci, Wataru; Moore, Berrien

    2014-01-01

    Southeast Asia experienced higher rates of deforestation than other continents in the 1990s and still was a hotspot of forest change in the 2000s. Biodiversity conservation planning and accurate estimation of forest carbon fluxes and pools need more accurate information about forest area, spatial distribution and fragmentation. However, the recent forest maps of Southeast Asia were generated from optical images at spatial resolutions of several hundreds of meters, and they do not capture well the exceptionally complex and dynamic environments in Southeast Asia. The forest area estimates from those maps vary substantially, ranging from 1.73×106 km2 (GlobCover) to 2.69×106 km2 (MCD12Q1) in 2009; and their uncertainty is constrained by frequent cloud cover and coarse spatial resolution. Recently, cloud-free imagery from the Phased Array Type L-band Synthetic Aperture Radar (PALSAR) onboard the Advanced Land Observing Satellite (ALOS) became available. We used the PALSAR 50-m orthorectified mosaic imagery in 2009 to generate a forest cover map of Southeast Asia at 50-m spatial resolution. The validation, using ground-reference data collected from the Geo-Referenced Field Photo Library and high-resolution images in Google Earth, showed that our forest map has a reasonably high accuracy (producer's accuracy 86% and user's accuracy 93%). The PALSAR-based forest area estimates in 2009 are significantly correlated with those from GlobCover and MCD12Q1 at national and subnational scales but differ in some regions at the pixel scale due to different spatial resolutions, forest definitions, and algorithms. The resultant 50-m forest map was used to quantify forest fragmentation and it revealed substantial details of forest fragmentation. This new 50-m map of tropical forests could serve as a baseline map for forest resource inventory, deforestation monitoring, reducing emissions from deforestation and forest degradation (REDD+) implementation, and biodiversity. PMID:24465714

  12. EnviroAtlas - Cleveland, OH - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. In this community, tree cover is defined as Trees & Forest and Woody Wetlands. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  13. EnviroAtlas - Minneapolis/St. Paul, MN - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. In this community, tree cover is defined as Trees and Forest and Woody Wetlands. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  14. Mapping national scale land cover disturbance for the continental United States, 2006 to 2010

    NASA Astrophysics Data System (ADS)

    Hansen, M. C.; Potapov, P. V.; Egorov, A.; Roy, D. P.; Loveland, T. R.

    2011-12-01

    Data from the Web-Enabled Landsat Data (WELD) project were used to quantify forest cover loss and bare ground gain dynamics for the continental United States at a 30 meter spatial resolution from 2006 to 2010. Results illustrate the land cover dynamics associated with forestry, urbanization and other medium to long-term cover conversion processes. Ephemeral changes, such as crop rotations and fallows or inundation, were not quantified. Forest disturbance is pervasive at the national-scale, while increasing bare ground is found in growing urban areas as well as in mining regions. The methods applied are an outgrowth of the Vegetation Continuous Field (VCF) method, initially employed with MODIS data and then WELD data to map percent cover variables. As in our previous work with MODIS in mapping forest change, we applied the VCF method to characterize forest cover loss and bare ground gain probability per pixel. Additional themes will be added to provide a more comprehensive picture of national-scale land dynamics based on these initial results using WELD.

  15. Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers.

    PubMed

    Cervera, M T; Storme, V; Ivens, B; Gusmão, J; Liu, B H; Hostyn, V; Van Slycken, J; Van Montagu, M; Boerjan, W

    2001-06-01

    Populus deltoides, P. nigra, and P. trichocarpa are the most important species for poplar breeding programs worldwide. In addition, Populus has become a model for fundamental research on trees. Linkage maps were constructed for these three species by analyzing progeny of two controlled crosses sharing the same female parent, Populus deltoides cv. S9-2 x P. nigra cv. Ghoy and P. deltoides cv. S9-2 x P. trichocarpa cv. V24. The two-way pseudotestcross mapping strategy was used to construct the maps. Amplified fragment length polymorphism (AFLP) markers that segregated 1:1 were used to form the four parental maps. Microsatellites and sequence-tagged sites were used to align homoeologous groups between the maps and to merge linkage groups within the individual maps. Linkage analysis and alignment of the homoeologous groups resulted in 566 markers distributed over 19 groups for P. deltoides covering 86% of the genome, 339 markers distributed over 19 groups for P. trichocarpa covering 73%, and 369 markers distributed over 28 groups for P. nigra covering 61%. Several tests for randomness showed that the AFLP markers were randomly distributed over the genome.

  16. Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers.

    PubMed Central

    Cervera, M T; Storme, V; Ivens, B; Gusmão, J; Liu, B H; Hostyn, V; Van Slycken, J; Van Montagu, M; Boerjan, W

    2001-01-01

    Populus deltoides, P. nigra, and P. trichocarpa are the most important species for poplar breeding programs worldwide. In addition, Populus has become a model for fundamental research on trees. Linkage maps were constructed for these three species by analyzing progeny of two controlled crosses sharing the same female parent, Populus deltoides cv. S9-2 x P. nigra cv. Ghoy and P. deltoides cv. S9-2 x P. trichocarpa cv. V24. The two-way pseudotestcross mapping strategy was used to construct the maps. Amplified fragment length polymorphism (AFLP) markers that segregated 1:1 were used to form the four parental maps. Microsatellites and sequence-tagged sites were used to align homoeologous groups between the maps and to merge linkage groups within the individual maps. Linkage analysis and alignment of the homoeologous groups resulted in 566 markers distributed over 19 groups for P. deltoides covering 86% of the genome, 339 markers distributed over 19 groups for P. trichocarpa covering 73%, and 369 markers distributed over 28 groups for P. nigra covering 61%. Several tests for randomness showed that the AFLP markers were randomly distributed over the genome. PMID:11404342

  17. The first genetic map of a synthesized allohexaploid Brassica with A, B and C genomes based on simple sequence repeat markers.

    PubMed

    Yang, S; Chen, S; Geng, X X; Yan, G; Li, Z Y; Meng, J L; Cowling, W A; Zhou, W J

    2016-04-01

    We present the first genetic map of an allohexaploid Brassica species, based on segregating microsatellite markers in a doubled haploid mapping population generated from a hybrid between two hexaploid parents. This study reports the first genetic map of trigenomic Brassica. A doubled haploid mapping population consisting of 189 lines was obtained via microspore culture from a hybrid H16-1 derived from a cross between two allohexaploid Brassica lines (7H170-1 and Y54-2). Simple sequence repeat primer pairs specific to the A genome (107), B genome (44) and C genome (109) were used to construct a genetic linkage map of the population. Twenty-seven linkage groups were resolved from 274 polymorphic loci on the A genome (109), B genome (49) and C genome (116) covering a total genetic distance of 3178.8 cM with an average distance between markers of 11.60 cM. This is the first genetic framework map for the artificially synthesized Brassica allohexaploids. The linkage groups represent the expected complement of chromosomes in the A, B and C genomes from the original diploid and tetraploid parents. This framework linkage map will be valuable for QTL analysis and future genetic improvement of a new allohexaploid Brassica species, and in improving our understanding of the genetic control of meiosis in new polyploids.

  18. Prevalence of pure versus mixed snow cover pixels across spatial resolutions in alpine environments: implications for binary and fractional remote sensing approaches

    USGS Publications Warehouse

    Selkowitz, David J.; Forster, Richard; Caldwell, Megan K.

    2014-01-01

    Remote sensing of snow-covered area (SCA) can be binary (indicating the presence/absence of snow cover at each pixel) or fractional (indicating the fraction of each pixel covered by snow). Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed) pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days and averaged 37 days. Our results suggest that mixed snow-covered snow-free pixels are common at the spatial resolutions imaged by both the Landsat and MODIS sensors. This highlights the additional information available from fractional SCA products and suggests fractional SCA can provide a major advantage for hydrological and climatological monitoring and modeling, particularly when accurate representation of the spatial distribution of snow cover is critical.

  19. Design, Development and Testing of Web Services for Multi-Sensor Snow Cover Mapping

    NASA Astrophysics Data System (ADS)

    Kadlec, Jiri

    This dissertation presents the design, development and validation of new data integration methods for mapping the extent of snow cover based on open access ground station measurements, remote sensing images, volunteer observer snow reports, and cross country ski track recordings from location-enabled mobile devices. The first step of the data integration procedure includes data discovery, data retrieval, and data quality control of snow observations at ground stations. The WaterML R package developed in this work enables hydrologists to retrieve and analyze data from multiple organizations that are listed in the Consortium of Universities for the Advancement of Hydrologic Sciences Inc (CUAHSI) Water Data Center catalog directly within the R statistical software environment. Using the WaterML R package is demonstrated by running an energy balance snowpack model in R with data inputs from CUAHSI, and by automating uploads of real time sensor observations to CUAHSI HydroServer. The second step of the procedure requires efficient access to multi-temporal remote sensing snow images. The Snow Inspector web application developed in this research enables the users to retrieve a time series of fractional snow cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) for any point on Earth. The time series retrieval method is based on automated data extraction from tile images provided by a Web Map Tile Service (WMTS). The average required time for retrieving 100 days of data using this technique is 5.4 seconds, which is significantly faster than other methods that require the download of large satellite image files. The presented data extraction technique and space-time visualization user interface can be used as a model for working with other multi-temporal hydrologic or climate data WMTS services. The third, final step of the data integration procedure is generating continuous daily snow cover maps. A custom inverse distance weighting method has been developed to combine volunteer snow reports, cross-country ski track reports and station measurements to fill cloud gaps in the MODIS snow cover product. The method is demonstrated by producing a continuous daily time step snow presence probability map dataset for the Czech Republic region. The ability of the presented methodology to reconstruct MODIS snow cover under cloud is validated by simulating cloud cover datasets and comparing estimated snow cover to actual MODIS snow cover. The percent correctly classified indicator showed accuracy between 80 and 90% using this method. Using crowdsourcing data (volunteer snow reports and ski tracks) improves the map accuracy by 0.7--1.2%. The output snow probability map data sets are published online using web applications and web services. Keywords: crowdsourcing, image analysis, interpolation, MODIS, R statistical software, snow cover, snowpack probability, Tethys platform, time series, WaterML, web services, winter sports.

  20. High-Resolution Land Use and Land Cover Mapping

    USGS Publications Warehouse

    ,

    1999-01-01

    As the Nation?s population grows, quantifying, monitoring, and managing land use becomes increasingly important. The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover (LULC) mapping that has been the model both nationally and internationally for over 20 years. At present, the USGS is producing high-resolution LULC data for several watershed and urban areas within the United States. This high-resolution LULC mapping is part of an ongoing USGS Land Cover Characterization Program (LCCP). The four components of the LCCP are global (1:2,000,000-scale), national (1:100,000-scale), urban (1:24,000-scale), and special projects (various scales and time periods). Within the urban and special project components, the USGS Rocky Mountain Mapping Center (RMMC) is collecting historical as well as contemporary high-resolution LULC data. RMMC?s high-resolution LULC mapping builds on the heritage and success of previous USGS LULC programs and provides LULC information to meet user requirements.

  1. EnviroAtlas - Memphis, TN - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  2. EnviroAtlas - Portland, ME - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. EnviroAtlas - New York, NY - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  4. EnviroAtlas - Green Bay, WI - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  5. EnviroAtlas - Pittsburgh, PA - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  6. EnviroAtlas - Portland, OR - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. EnviroAtlas - Paterson, NJ - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. EnviroAtlas - Des Moines, IA - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. EnviroAtlas - Phoenix, AZ - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  10. EnviroAtlas - Milwaukee, WI - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. EnviroAtlas - Tampa, FL - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  12. EnviroAtlas - Durham, NC - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  13. EnviroAtlas - Fresno, CA - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. EnviroAtlas - New Bedford, MA - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  15. EnviroAtlas - Woodbine, IA - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  16. Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers

    NASA Technical Reports Server (NTRS)

    Meier, M. F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The area of snow cover on land was determined from ERTS-1 imagery. Snow cover in specific drainage basins was measured with the Stanford Research Institute console by electronically superimposing basin outlines on imagery, with video density slicing to measure areas. Snow covered area and snowline altitudes were also determined by enlarging ERTS-1 imagery 1:250,000 and using a transparent map overlay. Under very favorable conditions, snowline altitude was determined to an accuracy of about 60 m. Ability to map snow cover or to determine snowline altitude depends primarily on cloud cover and vegetation and secondarily on slope, terrain roughness, sun angle, radiometric fidelity, and amount of spectral information available. Glacier accumulation area ratios were determined from ERTS-1 imagery. Also, subtle flow structures, undetected on aerial photographs, were visible. Surging glaciers were identified, and the changes resulting from the surge of a large glacier were measured as were changes in tidal glacier termini.

  17. EnviroAtlas - Austin, TX - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. Current status of coral reefs in the United Arab Emirates: Distribution, extent, and community structure with implications for management.

    PubMed

    Grizzle, Raymond E; Ward, Krystin M; AlShihi, Rashid M S; Burt, John A

    2016-04-30

    Coral reefs of the United Arab Emirates were once extensive, but have declined dramatically in recent decades. Marine management and policy have been hampered by outdated and inaccurate habitat maps and habitat quality information. We combined existing recent datasets with our newly mapped coral habitats to provide a current assessment of nation-wide extent, and performed quantitative surveys of communities at 23 sites to assess coral cover and composition. Over 132 km(2) of coral habitat was mapped, averaging 28.6 ± 3.8% live coral cover at surveyed sites. In the Arabian Gulf low cover, low richness Porites dominated communities characterized western Abu Dhabi, while reefs northeast of Abu Dhabi city generally contained higher richness and cover, and were dominated by merulinids (formerly faviids). Distinct communities occur in the Sea of Oman, where cover and richness were low. We provide management recommendations to enhance conservation of vulnerable coral reefs in the UAE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. EnviroAtlas -Durham, NC- One Meter Resolution Urban Area Land Cover Map (2010)

    EPA Pesticide Factsheets

    The EnviroAtlas Durham, NC land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from July 2010 at 1 m spatial resolution. Five land cover classes were mapped: impervious surface, soil and barren, grass and herbaceous, trees and forest, and water. An accuracy assessment using a stratified random sampling of 500 samples yielded an overall accuracy of 83 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Durham, and includes the cities of Durham, Chapel Hill, Carrboro and Hillsborough, NC. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  20. Development of a 30 m Spatial Resolution Land Cover of Canada: Contribution to the Harmonized North America Land Cover Dataset

    NASA Astrophysics Data System (ADS)

    Pouliot, D.; Latifovic, R.; Olthof, I.

    2017-12-01

    Land cover is needed for a large range of environmental applications regarding climate impacts and adaption, emergency response, wildlife habitat, air quality, water yield, etc. In Canada a 2008 user survey revealed that the most practical scale for provision of land cover data is 30 m, nationwide, with an update frequency of five years (Ball, 2008). In response to this need the Canada Centre for Remote Sensing has generated a 30 m land cover of Canada for the base year 2010 as part of a planned series of maps at the recommended five year update frequency. This land cover is the Canadian contribution to the North American Land Change Monitoring System initiative, which seeks to provide harmonized land cover across Canada, the United States, and Mexico. The methodology developed in this research utilized a combination of unsupervised and machine learning techniques to map land cover, blend results between mapping units, locally optimize results, and process some thematic attributes with specific features sets. Accuracy assessment with available field data shows it was on average 75% for the five study areas assessed. In this presentation an overview of the unique processing aspects, example results, and initial accuracy assessment will be discussed.

  1. Intra-operative mapping of the atria: the first step towards individualization of atrial fibrillation therapy?

    PubMed

    Kik, Charles; Mouws, Elisabeth M J P; Bogers, Ad J J C; de Groot, Natasja M S

    2017-07-01

    Atrial fibrillation (AF), an age-related progressive disease, is becoming a worldwide epidemic with a prevalence rate of 33 million. Areas covered: In this expert review, an overview of important results obtained from previous intra-operative mapping studies is provided. In addition, our novel intra-operative high resolution mapping studies, its surgical considerations and data analyses are discussed. Furthermore, the importance of high resolution mapping studies of both sinus rhythm and AF for the development of future AF therapy is underlined by our most recent results. Expert commentary: Progression of AF is determined by the extensiveness of electropathology which is defined as conduction disorders caused by structural damage of atrial tissue. The severity of electropathology is a major determinant of therapy failure. At present, we do not have any diagnostic tool to determine the degree of electropathology in the individual patient and we can thus not select the most optimal treatment modality for the individual patient. An intra-operative, high resolution scale, epicardial mapping approach combined with quantification of electrical parameters may serve as a diagnostic tool to stage AF in the individual patient and to provide patient tailored therapy.

  2. Mapping and evaluation of snow avalanche risk using GIS technique in Rodnei National Park

    NASA Astrophysics Data System (ADS)

    Covǎsnianu, Adrian; Grigoraş, Ioan-Rǎducu; Covǎsnianu, Liliana-Elena; Iordache, Iulian; Balin, Daniela

    2010-05-01

    The study consisted in a precise mapping project (GPS field campaign, on-screen digitization of the topographic maps at 1:25.000 scale and updated with ASTER mission) of the Rodnei National Park area (Romanian Carpathians) with a focus on snow avalanche risk survey. Parameters taken into account were slope, aspect, altitude, landforms and roughness resulted from a high resolute numerical terrain model obtained by ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) mission. The resulted digital surface model with a spatial resolution of 10 m covered a total area of 187 square kilometers and was improved by the help of Topo to Raster tool. All these parameters were calibrated after a model applied onto Tatra Massive and also Ceahlău Mountain. The results were adapted and interpreted in accordance with European avalanche hazard scale. This work was made in the context of the elaboration of Risk Map and is directly concerning both the security of tourism activities but also the management of the Rodnei Natural Park. The extension of this method to similar mountain areas is ongoing.

  3. High-resolution land cover classification using low resolution global data

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark J.

    2013-05-01

    A fusion approach is described that combines texture features from high-resolution panchromatic imagery with land cover statistics derived from co-registered low-resolution global databases to obtain high-resolution land cover maps. The method does not require training data or any human intervention. We use an MxN Gabor filter bank consisting of M=16 oriented bandpass filters (0-180°) at N resolutions (3-24 meters/pixel). The size range of these spatial filters is consistent with the typical scale of manmade objects and patterns of cultural activity in imagery. Clustering reduces the complexity of the data by combining pixels that have similar texture into clusters (regions). Texture classification assigns a vector of class likelihoods to each cluster based on its textural properties. Classification is unsupervised and accomplished using a bank of texture anomaly detectors. Class likelihoods are modulated by land cover statistics derived from lower resolution global data over the scene. Preliminary results from a number of Quickbird scenes show our approach is able to classify general land cover features such as roads, built up area, forests, open areas, and bodies of water over a wide range of scenes.

  4. Preliminary bedrock geologic map of part of the northern disturbed belt, Lewis and Clark, Teton, Pondera, Glacier, Flathead, and Powell Counties, Montana

    USGS Publications Warehouse

    Mudge, Melville R.; Earhart, Robert L.; Rice, Dudley D.; Heisey, E.L.

    1977-01-01

    The geologic map covers the Sawtooth and Lewis and Clark Ranges and part of the Flathead Range. It includes most of the disturbed belt in northwestern Moutana except the area east of the northern Rocky Mountains and the norhtern and southern parts of the belt. Most data are from an unpublished map of the Bob Marshall Wilderness and of the many proposed additions to the Wilderness. Strike and dip symbols are omitted from the map, and all contacts are shown in solid lines, alhough locally they are inferred beneath a Quaternary cover. Future studies will complete mapping of the northern disturbed belt in Montana.

  5. Mapping the Recent US Hurricanes Triggered Flood Events in Near Real Time

    NASA Astrophysics Data System (ADS)

    Shen, X.; Lazin, R.; Anagnostou, E. N.; Wanik, D. W.; Brakenridge, G. R.

    2017-12-01

    Synthetic Aperture Radar (SAR) observations is the only reliable remote sensing data source to map flood inundation during severe weather events. Unfortunately, since state-of-art data processing algorithms cannot meet the automation and quality standard of a near-real-time (NRT) system, quality controlled inundation mapping by SAR currently depends heavily on manual processing, which limits our capability to quickly issue flood inundation maps at global scale. Specifically, most SAR-based inundation mapping algorithms are not fully automated, while those that are automated exhibit severe over- and/or under-detection errors that limit their potential. These detection errors are primarily caused by the strong overlap among the SAR backscattering probability density functions (PDF) of different land cover types. In this study, we tested a newly developed NRT SAR-based inundation mapping system, named Radar Produced Inundation Diary (RAPID), using Sentinel-1 dual polarized SAR data over recent flood events caused by Hurricanes Harvey, Irma, and Maria (2017). The system consists of 1) self-optimized multi-threshold classification, 2) over-detection removal using land-cover information and change detection, 3) under-detection compensation, and 4) machine-learning based correction. Algorithm details are introduced in another poster, H53J-1603. Good agreements were obtained by comparing the result from RAPID with visual interpretation of SAR images and manual processing from Dartmouth Flood Observatory (DFO) (See Figure 1). Specifically, the over- and under-detections that is typically noted in automated methods is significantly reduced to negligible levels. This performance indicates that RAPID can address the automation and accuracy issues of current state-of-art algorithms and has the potential to apply operationally on a number of satellite SAR missions, such as SWOT, ALOS, Sentinel etc. RAPID data can support many applications such as rapid assessment of damage losses and disaster alleviation/rescue at global scale.

  6. Improving Land Cover Mapping: a Mobile Application Based on ESA Sentinel 2 Imagery

    NASA Astrophysics Data System (ADS)

    Melis, M. T.; Dessì, F.; Loddo, P.; La Mantia, C.; Da Pelo, S.; Deflorio, A. M.; Ghiglieri, G.; Hailu, B. T.; Kalegele, K.; Mwasi, B. N.

    2018-04-01

    The increasing availability of satellite data is a real value for the enhancement of environmental knowledge and land management. Possibilities to integrate different source of geo-data are growing and methodologies to create thematic database are becoming very sophisticated. Moreover, the access to internet services and, in particular, to web mapping services is well developed and spread either between expert users than the citizens. Web map services, like Google Maps or Open Street Maps, give the access to updated optical imagery or topographic maps but information on land cover/use - are not still provided. Therefore, there are many failings in the general utilization -non-specialized users- and access to those maps. This issue is particularly felt where the digital (web) maps could form the basis for land use management as they are more economic and accessible than the paper maps. These conditions are well known in many African countries where, while the internet access is becoming open to all, the local map agencies and their products are not widespread.

  7. Automatic crown cover mapping to improve forest inventory

    Treesearch

    Claude Vidal; Jean-Guy Boureau; Nicolas Robert; Nicolas Py; Josiane Zerubia; Xavier Descombes; Guillaume Perrin

    2009-01-01

    To automatically analyze near infrared aerial photographs, the French National Institute for Research in Computer Science and Control developed together with the French National Forest Inventory (NFI) a method for automatic crown cover mapping. This method uses a Reverse Jump Monte Carlo Markov Chain algorithm to locate the crowns and describe those using ellipses or...

  8. Combining accuracy assessment of land-cover maps with environmental monitoring programs

    Treesearch

    Stephen V. Stehman; Raymond L. Czaplewski; Sarah M. Nusser; Limin Yang; Zhiliang Zhu

    2000-01-01

    A scientifically valid accuracy assessment of a large-area, land-cover map is expensive. Environmental monitoring programs offer a potential source of data to partially defray the cost of accuracy assessment while still maintaining the statistical validity. In this article, three general strategies for combining accuracy assessment and environmental monitoring...

  9. Snow survey and vegetation growth in high mountains (Swiss Alps)

    NASA Technical Reports Server (NTRS)

    Haefner, H. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A method for mapping snow over large areas was developed combining the possibilities of a Quantimet (QTM 72) to evaluate the exact density level of the snow cover for each individual image (or a selected section of the photo) with the higher resolution of photographic techniques. The density level established on the monitor by visual control is used as reference for the exposure time of a lithographic film, producing a clear tonal separation of all snow- and ice-covered areas from uncovered land in black and white. The data is projected onto special maps 1:500,000 or 1:100,000 showing the contour lines and the hydrographic features only. The areal extent of the snow cover may be calculated directly with the QTM 720 or on the map. Bands 4 and 5 provide the most accurate results for mapping snow. Using all four bands a separation of an old melting snow cover from a new one is possible. Regional meteorological studies combining ERTS-1 imagery and conventional sources describe synoptical evolution of meteorological systems over the Alps.

  10. Eclipse Mapping Experiments in Dwarf Novae Outbursts

    NASA Astrophysics Data System (ADS)

    Borges, B. W.; Baptista, R.

    2006-06-01

    In this work, we report the eclipse mapping analysis of CCD photometric data of two short period dwarf novae - V4140 Sgr (Borges & Baptista 2005) and HT Cas (Borges, Baptista & Catalán, in preparation) - during observed outburst events. The analysis of the observations of V4140 Sgr, done between 1991 and 2001, reveals that the object was in the decline from an outburst in 1992 and again in outburst in 2001. A distance of d = 170+/-30 pc is obtained from a method similar to that used to constrain the distance to open clusters. From this distance, disc radial brightness temperature distributions are determined, and the disc temperatures remain below the critical effective temperature T_{crit} at all disc radii during the outburst. The distributions in quiescence and in outburst are significantly different from those of other dwarf novae of similar orbital period. These results cannot be explained within the framework of the disc instability model and the small amplitude outbursts of V4140 Sgr can be due bursts of enhanced mass transfer rate from the secondary star. Our HT Cas data consist of V and R CCD photometric observations done in 2005 November with the 0.95-m James Gregory Telescope (JGT) and cover a outburst cycle. We used the entropy associated to the eclipse maps to obtain the semi-opening disc angle α evolution throught the outburst. The obtained angles are systematically lower than those obtained by Ioannou et al. (1999) and we can conclude that the outburst radial profiles must be flatter than the the T ∝ r^{-3/4} law of steady state dics, against the expectations of the disc instability model. Our intensity radial distributions presents the same ``outside-in'' outburst behavior as obtained by the referred author.

  11. Quantitative maps of geomagnetic perturbation vectors during substorm onset and recovery

    PubMed Central

    Pothier, N M; Weimer, D R; Moore, W B

    2015-01-01

    We have produced the first series of spherical harmonic, numerical maps of the time-dependent surface perturbations in the Earth's magnetic field following the onset of substorms. Data from 124 ground magnetometer stations in the Northern Hemisphere at geomagnetic latitudes above 33° were used. Ground station data averaged over 5 min intervals covering 8 years (1998–2005) were used to construct pseudo auroral upper, auroral lower, and auroral electrojet (AU*, AL*, and AE*) indices. These indices were used to generate a list of substorms that extended from 1998 to 2005, through a combination of automated processing and visual checks. Events were sorted by interplanetary magnetic field (IMF) orientation (at the Advanced Composition Explorer (ACE) satellite), dipole tilt angle, and substorm magnitude. Within each category, the events were aligned on substorm onset. A spherical cap harmonic analysis was used to obtain a least error fit of the substorm disturbance patterns at 5 min intervals up to 90 min after onset. The fits obtained at onset time were subtracted from all subsequent fits, for each group of substorm events. Maps of the three vector components of the averaged magnetic perturbations were constructed to show the effects of substorm currents. These maps are produced for several specific ranges of values for the peak |AL*| index, IMF orientation, and dipole tilt angle. We demonstrate an influence of the dipole tilt angle on the response to substorms. Our results indicate that there are downward currents poleward and upward currents just equatorward of the peak in the substorms' westward electrojet. Key Points Show quantitative maps of ground geomagnetic perturbations due to substorms Three vector components mapped as function of time during onset and recovery Compare/contrast results for different tilt angle and sign of IMF Y-component PMID:26167445

  12. Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea.

    PubMed

    Neukermans, Griet; Ruddick, Kevin; Bernard, Emilien; Ramon, Didier; Nechad, Bouchra; Deschamps, Pierre-Yves

    2009-08-03

    Geostationary ocean colour sensors have not yet been launched into space, but are under consideration by a number of space agencies. This study provides a proof of concept for mapping of Total Suspended Matter (TSM) in turbid coastal waters from geostationary platforms with the existing SEVIRI (Spinning Enhanced Visible and InfraRed Imager) meteorological sensor on the METEOSAT Second Generation platform. Data are available in near real time every 15 minutes. SEVIRI lacks sufficient bands for chlorophyll remote sensing but its spectral resolution is sufficient for quantification of Total Suspended Matter (TSM) in turbid waters, using a single broad red band, combined with a suitable near infrared band. A test data set for mapping of TSM in the Southern North Sea was obtained covering 35 consecutive days from June 28 until July 31 2006. Atmospheric correction of SEVIRI images includes corrections for Rayleigh and aerosol scattering, absorption by atmospheric gases and atmospheric transmittances. The aerosol correction uses assumptions on the ratio of marine reflectances and aerosol reflectances in the red and near-infrared bands. A single band TSM retrieval algorithm, calibrated by non-linear regression of seaborne measurements of TSM and marine reflectance was applied. The effect of the above assumptions on the uncertainty of the marine reflectance and TSM products was analysed. Results show that (1) mapping of TSM in the Southern North Sea is feasible with SEVIRI for turbid waters, though with considerable uncertainties in clearer waters, (2) TSM maps are well correlated with TSM maps obtained from MODIS AQUA and (3) during cloud-free days, high frequency dynamics of TSM are detected.

  13. Two-dimensional radial laser scanning for circular marker detection and external mobile robot tracking.

    PubMed

    Teixidó, Mercè; Pallejà, Tomàs; Font, Davinia; Tresanchez, Marcel; Moreno, Javier; Palacín, Jordi

    2012-11-28

    This paper presents the use of an external fixed two-dimensional laser scanner to detect cylindrical targets attached to moving devices, such as a mobile robot. This proposal is based on the detection of circular markers in the raw data provided by the laser scanner by applying an algorithm for outlier avoidance and a least-squares circular fitting. Some experiments have been developed to empirically validate the proposal with different cylindrical targets in order to estimate the location and tracking errors achieved, which are generally less than 20 mm in the area covered by the laser sensor. As a result of the validation experiments, several error maps have been obtained in order to give an estimate of the uncertainty of any location computed. This proposal has been validated with a medium-sized mobile robot with an attached cylindrical target (diameter 200 mm). The trajectory of the mobile robot was estimated with an average location error of less than 15 mm, and the real location error in each individual circular fitting was similar to the error estimated with the obtained error maps. The radial area covered in this validation experiment was up to 10 m, a value that depends on the radius of the cylindrical target and the radial density of the distance range points provided by the laser scanner but this area can be increased by combining the information of additional external laser scanners.

  14. Trajectory analysis of land use and land cover maps to improve spatial-temporal patterns, and impact assessment on groundwater recharge

    NASA Astrophysics Data System (ADS)

    Zomlot, Z.; Verbeiren, B.; Huysmans, M.; Batelaan, O.

    2017-11-01

    Land use/land cover (LULC) change is a consequence of human-induced global environmental change. It is also considered one of the major factors affecting groundwater recharge. Uncertainties and inconsistencies in LULC maps are one of the difficulties that LULC timeseries analysis face and which have a significant effect on hydrological impact analysis. Therefore, an accuracy assessment approach of LULC timeseries is needed for a more reliable hydrological analysis and prediction. The objective of this paper is to assess the impact of land use uncertainty and to improve the accuracy of a timeseries of CORINE (coordination of information on the environment) land cover maps by using a new approach of identifying spatial-temporal LULC change trajectories as a pre-processing tool. This ensures consistency of model input when dealing with land-use dynamics and as such improves the accuracy of land use maps and consequently groundwater recharge estimation. As a case study the impact of consistent land use changes from 1990 until 2013 on groundwater recharge for the Flanders-Brussels region is assessed. The change trajectory analysis successfully assigned a rational trajectory to 99% of all pixels. The methodology is shown to be powerful in correcting interpretation inconsistencies and overestimation errors in CORINE land cover maps. The overall kappa (cell-by-cell map comparison) improved from 0.6 to 0.8 and from 0.2 to 0.7 for forest and pasture land use classes respectively. The study shows that the inconsistencies in the land use maps introduce uncertainty in groundwater recharge estimation in a range of 10-30%. The analysis showed that during the period of 1990-2013 the LULC changes were mainly driven by urban expansion. The results show that the resolution at which the spatial analysis is performed is important; the recharge differences using original and corrected CORINE land cover maps increase considerably with increasing spatial resolution. This study indicates that improving consistency of land use map timeseries is of critical importance for assessing land use change and its environmental impact.

  15. Semi-automatic classification of glaciovolcanic landforms: An object-based mapping approach based on geomorphometry

    NASA Astrophysics Data System (ADS)

    Pedersen, G. B. M.

    2016-02-01

    A new object-oriented approach is developed to classify glaciovolcanic landforms (Procedure A) and their landform elements boundaries (Procedure B). It utilizes the principle that glaciovolcanic edifices are geomorphometrically distinct from lava shields and plains (Pedersen and Grosse, 2014), and the approach is tested on data from Reykjanes Peninsula, Iceland. The outlined procedures utilize slope and profile curvature attribute maps (20 m/pixel) and the classified results are evaluated quantitatively through error matrix maps (Procedure A) and visual inspection (Procedure B). In procedure A, the highest obtained accuracy is 94.1%, but even simple mapping procedures provide good results (> 90% accuracy). Successful classification of glaciovolcanic landform element boundaries (Procedure B) is also achieved and this technique has the potential to delineate the transition from intraglacial to subaerial volcanic activity in orthographic view. This object-oriented approach based on geomorphometry overcomes issues with vegetation cover, which has been typically problematic for classification schemes utilizing spectral data. Furthermore, it handles complex edifice outlines well and is easily incorporated into a GIS environment, where results can be edited or fused with other mapping results. The approach outlined here is designed to map glaciovolcanic edifices within the Icelandic neovolcanic zone but may also be applied to similar subaerial or submarine volcanic settings, where steep volcanic edifices are surrounded by flat plains.

  16. A web-based system for supporting global land cover data production

    NASA Astrophysics Data System (ADS)

    Han, Gang; Chen, Jun; He, Chaoying; Li, Songnian; Wu, Hao; Liao, Anping; Peng, Shu

    2015-05-01

    Global land cover (GLC) data production and verification process is very complicated, time consuming and labor intensive, requiring huge amount of imagery data and ancillary data and involving many people, often from different geographic locations. The efficient integration of various kinds of ancillary data and effective collaborative classification in large area land cover mapping requires advanced supporting tools. This paper presents the design and development of a web-based system for supporting 30-m resolution GLC data production by combining geo-spatial web-service and Computer Support Collaborative Work (CSCW) technology. Based on the analysis of the functional and non-functional requirements from GLC mapping, a three tiers system model is proposed with four major parts, i.e., multisource data resources, data and function services, interactive mapping and production management. The prototyping and implementation of the system have been realised by a combination of Open Source Software (OSS) and commercially available off-the-shelf system. This web-based system not only facilitates the integration of heterogeneous data and services required by GLC data production, but also provides online access, visualization and analysis of the images, ancillary data and interim 30 m global land-cover maps. The system further supports online collaborative quality check and verification workflows. It has been successfully applied to China's 30-m resolution GLC mapping project, and has improved significantly the efficiency of GLC data production and verification. The concepts developed through this study should also benefit other GLC or regional land-cover data production efforts.

  17. Comprehensive data set of global land cover change for land surface model applications

    NASA Astrophysics Data System (ADS)

    Sterling, Shannon; Ducharne, AgnèS.

    2008-09-01

    To increase our understanding of how humans have altered the Earth's surface and to facilitate land surface modeling experiments aimed to elucidate the direct impact of land cover change on the Earth system, we create and analyze a database of global land use/cover change (LUCC). From a combination of sources including satellite imagery and other remote sensing, ecological modeling, and country surveys, we adapt and synthesize existing maps of potential land cover and layers of the major anthropogenic land covers, including a layer of wetland loss, that are then tailored for land surface modeling studies. Our map database shows that anthropogenic land cover totals to approximately 40% of the Earth's surface, consistent with literature estimates. Almost all (92%) of the natural grassland on the Earth has been converted to human use, mostly grazing land, and the natural temperate savanna with mixed C3/C4 is almost completely lost (˜90%), due mostly to conversion to cropland. Yet the resultant change in functioning, in terms of plant functional types, of the Earth system from land cover change is dominated by a loss of tree cover. Finally, we identify need for standardization of percent bare soil for global land covers and for a global map of tree plantations. Estimates of land cover change are inherently uncertain, and these uncertainties propagate into modeling studies of the impact of land cover change on the Earth system; to begin to address this problem, modelers need to document fully areas of land cover change used in their studies.

  18. Comparison of Hyperspectral and Multispectral Satellites for Discriminating Land Cover in Northern California

    NASA Astrophysics Data System (ADS)

    Clark, M. L.; Kilham, N. E.

    2015-12-01

    Land-cover maps are important science products needed for natural resource and ecosystem service management, biodiversity conservation planning, and assessing human-induced and natural drivers of land change. Most land-cover maps at regional to global scales are produced with remote sensing techniques applied to multispectral satellite imagery with 30-500 m pixel sizes (e.g., Landsat, MODIS). Hyperspectral, or imaging spectrometer, imagery measuring the visible to shortwave infrared regions (VSWIR) of the spectrum have shown impressive capacity to map plant species and coarser land-cover associations, yet techniques have not been widely tested at regional and greater spatial scales. The Hyperspectral Infrared Imager (HyspIRI) mission is a VSWIR hyperspectral and thermal satellite being considered for development by NASA. The goal of this study was to assess multi-temporal, HyspIRI-like satellite imagery for improved land cover mapping relative to multispectral satellites. We mapped FAO Land Cover Classification System (LCCS) classes over 22,500 km2 in the San Francisco Bay Area, California using 30-m HyspIRI, Landsat 8 and Sentinel-2 imagery simulated from data acquired by NASA's AVIRIS airborne sensor. Random Forests (RF) and Multiple-Endmember Spectral Mixture Analysis (MESMA) classifiers were applied to the simulated images and accuracies were compared to those from real Landsat 8 images. The RF classifier was superior to MESMA, and multi-temporal data yielded higher accuracy than summer-only data. With RF, hyperspectral data had overall accuracy of 72.2% and 85.1% with full 20-class and reduced 12-class schemes, respectively. Multispectral imagery had lower accuracy. For example, simulated and real Landsat data had 7.5% and 4.6% lower accuracy than HyspIRI data with 12 classes, respectively. In summary, our results indicate increased mapping accuracy using HyspIRI multi-temporal imagery, particularly in discriminating different natural vegetation types, such as spectrally-mixed woodlands and forests.

  19. Evaluating rapid ground sampling and scaling estimated plant cover using UAV imagery up to Landsat for mapping arctic vegetation

    NASA Astrophysics Data System (ADS)

    Nelson, P.; Paradis, D. P.

    2017-12-01

    The small stature and spectral diversity of arctic plant taxa presents challenges in mapping arctic vegetation. Mapping vegetation at the appropriate scale is needed to visualize effects of disturbance, directional vegetation change or mapping of specific plant groups for other applications (eg. habitat mapping). Fine spatial grain of remotely sensed data (ca. 10 cm pixels) is often necessary to resolve patches of many arctic plant groups, such as bryophytes and lichens. These groups are also spectrally different from mineral, litter and vascular plants. We sought to explore method to generate high-resolution spatial and spectral data to explore better mapping methods for arctic vegetation. We sampled ground vegetation at seven sites north or west of tree-line in Alaska, four north of Fairbanks and three northwest of Bethel, respectively. At each site, we estimated cover of plant functional types in 1m2 quadrats spaced approximately every 10 m along a 100 m long transect. Each quadrat was also scanned using a field spectroradiometer (PSR+ Spectral Evolution, 400-2500 nm range) and photographed from multiple perspectives. We then flew our small UAV with a RGB camera over the transect and at least 50 m on either side collecting on imagery of the plot, which were used to generate a image mosaic and digital surface model of the plot. We compare plant functional group cover ocular estimated in situ to post-hoc estimation, either automated or using a human observer, using the quadrat photos. We also compare interpolated lichen cover from UAV scenes to estimated lichen cover using a statistical models using Landsat data, with focus on lichens. Light and yellow lichens are discernable in the UAV imagery but certain lichens, especially dark colored lichens or those with spectral signatures similar to graminoid litter, present challenges. Future efforts will focus on integrating UAV-upscaled ground cover estimates to hyperspectral sensors (eg. AVIRIS ng) for better combined spectral and spatial resolution.

  20. Potential Role of Land Use and Land Cover Information in Powerplant Siting: Example of Three Mile Island

    NASA Technical Reports Server (NTRS)

    Wray, J. R.

    1982-01-01

    Selecting a site for a nuclear powerplant can be helped by digitizing land use and land cover data, population data, and other pertinent data sets, and then placing them in a geographic information system. Such a system begins with a set of standardized maps for location reference and then provides for retrieval and analysis of spatial data keyed to the maps. This makes possible thematic mapping by computer, or interactive visual display for decisionmaking. It also permits correlating land use area measurements with census and other data (such as fallout dosages), and the updating of all data sets. The system is thus a tool for dealing with resource management problems and for analyzing the interaction between people and their environment. An explanation of a computer-plotted map of land use and cover for Three Mile Island and vicinity is given.

  1. Mapping Land Cover Types in Amazon Basin Using 1km JERS-1 Mosaic

    NASA Technical Reports Server (NTRS)

    Saatchi, Sassan S.; Nelson, Bruce; Podest, Erika; Holt, John

    2000-01-01

    In this paper, the 100 meter JERS-1 Amazon mosaic image was used in a new classifier to generate a I km resolution land cover map. The inputs to the classifier were 1 km resolution mean backscatter and seven first order texture measures derived from the 100 m data by using a 10 x 10 independent sampling window. The classification approach included two interdependent stages: 1) a supervised maximum a posteriori Bayesian approach to classify the mean backscatter image into 5 general land cover categories of forest, savannah, inundated, white sand, and anthropogenic vegetation classes, and 2) a texture measure decision rule approach to further discriminate subcategory classes based on taxonomic information and biomass levels. Fourteen classes were successfully separated at 1 km scale. The results were verified by examining the accuracy of the approach by comparison with the IBGE and the AVHRR 1 km resolution land cover maps.

  2. Multi-Sensor Characterization of the Boreal Forest: Initial Findings

    NASA Technical Reports Server (NTRS)

    Reith, Ernest; Roberts, Dar A.; Prentiss, Dylan

    2001-01-01

    Results are presented in an initial apriori knowledge approach toward using complementary multi-sensor multi-temporal imagery in characterizing vegetated landscapes over a site in the Boreal Ecosystem-Atmosphere Study (BOREAS). Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR) data were segmented using multiple endmember spectral mixture analysis and binary decision tree approaches. Individual date/sensor land cover maps had overall accuracies between 55.0% - 69.8%. The best eight land cover layers from all dates and sensors correctly characterized 79.3% of the cover types. An overlay approach was used to create a final land cover map. An overall accuracy of 71.3% was achieved in this multi-sensor approach, a 1.5% improvement over our most accurate single scene technique, but 8% less than the original input. Black spruce was evaluated to be particularly undermapped in the final map possibly because it was also contained within jack pine and muskeg land coverages.

  3. Vegetation database for land-cover mapping, Clark and Lincoln Counties, Nevada

    USGS Publications Warehouse

    Charlet, David A.; Damar, Nancy A.; Leary, Patrick J.

    2014-01-01

    Floristic and other vegetation data were collected at 3,175 sample sites to support land-cover mapping projects in Clark and Lincoln Counties, Nevada, from 2007 to 2013. Data were collected at sample sites that were selected to fulfill mapping priorities by one of two different plot sampling approaches. Samples were described at the stand level and classified into the National Vegetation Classification hierarchy at the alliance level and above. The vegetation database is presented in geospatial and tabular formats.

  4. Aggregation of Sentinel-2 time series classifications as a solution for multitemporal analysis

    NASA Astrophysics Data System (ADS)

    Lewiński, Stanislaw; Nowakowski, Artur; Malinowski, Radek; Rybicki, Marcin; Kukawska, Ewa; Krupiński, Michał

    2017-10-01

    The general aim of this work was to elaborate efficient and reliable aggregation method that could be used for creating a land cover map at a global scale from multitemporal satellite imagery. The study described in this paper presents methods for combining results of land cover/land use classifications performed on single-date Sentinel-2 images acquired at different time periods. For that purpose different aggregation methods were proposed and tested on study sites spread on different continents. The initial classifications were performed with Random Forest classifier on individual Sentinel-2 images from a time series. In the following step the resulting land cover maps were aggregated pixel by pixel using three different combinations of information on the number of occurrences of a certain land cover class within a time series and the posterior probability of particular classes resulting from the Random Forest classification. From the proposed methods two are shown superior and in most cases were able to reach or outperform the accuracy of the best individual classifications of single-date images. Moreover, the aggregations results are very stable when used on data with varying cloudiness. They also enable to reduce considerably the number of cloudy pixels in the resulting land cover map what is significant advantage for mapping areas with frequent cloud coverage.

  5. Erasing the Milky Way: New Cleaning Technique Applied to GBT Intensity Mapping Data

    NASA Technical Reports Server (NTRS)

    Wolz, L.; Blake, C.; Abdalla, F. B.; Anderson, C. J.; Chang, T.-C.; Li, Y.-C.; Masi, K.W.; Switzer, E.; Pen, U.-L.; Voytek, T. C.; hide

    2016-01-01

    We present the first application of a new foreground removal pipeline to the current leading HI intensity mapping dataset, obtained by the Green Bank Telescope (GBT). We study the 15- and 1-h field data of the GBT observations previously presented in Masui et al. (2013) and Switzer et al. (2013), covering about 41 square degrees at 0.6 less than z is less than 1.0, for which cross-correlations may be measured with the galaxy distribution of the WiggleZ Dark Energy Survey. In the presented pipeline, we subtract the Galactic foreground continuum and the point source contamination using an independent component analysis technique (fastica), and develop a Fourier-based optimal estimator to compute the temperature power spectrum of the intensity maps and cross-correlation with the galaxy survey data. We show that fastica is a reliable tool to subtract diffuse and point-source emission through the non-Gaussian nature of their probability distributions. The temperature power spectra of the intensity maps is dominated by instrumental noise on small scales which fastica, as a conservative sub-traction technique of non-Gaussian signals, can not mitigate. However, we determine similar GBT-WiggleZ cross-correlation measurements to those obtained by the Singular Value Decomposition (SVD) method, and confirm that foreground subtraction with fastica is robust against 21cm signal loss, as seen by the converged amplitude of these cross-correlation measurements. We conclude that SVD and fastica are complementary methods to investigate the foregrounds and noise systematics present in intensity mapping datasets.

  6. High resolution multispectral photogrammetric imagery: enhancement, interpretation and evaluations

    NASA Astrophysics Data System (ADS)

    Roberts, Arthur; Haefele, Martin; Bostater, Charles; Becker, Thomas

    2007-10-01

    A variety of aerial mapping cameras were adapted and developed into simulated multiband digital photogrammetric mapping systems. Direct digital multispectral, two multiband cameras (IIS 4 band and Itek 9 band) and paired mapping and reconnaissance cameras were evaluated for digital spectral performance and photogrammetric mapping accuracy in an aquatic environment. Aerial films (24cm X 24cm format) tested were: Agfa color negative and extended red (visible and near infrared) panchromatic, and; Kodak color infrared and B&W (visible and near infrared) infrared. All films were negative processed to published standards and digitally converted at either 16 (color) or 10 (B&W) microns. Excellent precision in the digital conversions was obtained with scanning errors of less than one micron. Radiometric data conversion was undertaken using linear density conversion and centered 8 bit histogram exposure. This resulted in multiple 8 bit spectral image bands that were unaltered (not radiometrically enhanced) "optical count" conversions of film density. This provided the best film density conversion to a digital product while retaining the original film density characteristics. Data covering water depth, water quality, surface roughness, and bottom substrate were acquired using different measurement techniques as well as different techniques to locate sampling points on the imagery. Despite extensive efforts to obtain accurate ground truth data location errors, measurement errors, and variations in the correlation between water depth and remotely sensed signal persisted. These errors must be considered endemic and may not be removed through even the most elaborate sampling set up. Results indicate that multispectral photogrammetric systems offer improved feature mapping capability.

  7. Object-based Mapping of the Circumpolar Taiga-Tundra Ecotone with MODIS Tree Cover

    NASA Technical Reports Server (NTRS)

    Ransom, Kenneth J.; Montesano, Paul M.; Nelson, Ross F.

    2011-01-01

    The circumpolar taiga-tundra ecotone was delineated using an image segmentation based mapping approach with multi-annual MODIS Vegetation Continuous Fields (VCF) tree cover data. Circumpolar tree canopy cover (TCC) throughout the ecotone was derived by averaging MODIS VCF data from 2000 - 2005 and adjusting the averaged values using linear equations relating MODIS TCC to Quickbird-derived tree cover estimates. The adjustment helped mitigate VCF's overestimation of tree cover in lightly forested regions. An image segmentation grouped pixels representing similar tree cover into polygonal features (objects) that form the map of the transition zone. Eachfeature represents an area much larger than the 500m MODIS pixel to characterize thepatterns of sparse forest patches on a regional scale. Comparisons of the adjusted average tree cover data were made with (1) two existing tree line definitions aggregated for each 1deg longitudinal interval in North America and Eurasia and (2) Landsat-derived Canadianproportion of forest cover for Canada. The adjusted TCC from MODIS VCF shows, on average, greater than 12% TCC for all but one regional zone at the intersection with independently delineated tree lines. Adjusted values track closely with Canadian proportion of forest cover data in areas of low tree cover. Those polygons near the boreal/tundra interface with either (1) mean adjusted TCC values between 5-20% , or (2) mean adjusted TCC values <5% but with a standard deviation > 5% were used to identify the ecotone.

  8. Land cover mapping with emphasis to burnt area delineation using co-orbital ALI and Landsat TM imagery

    NASA Astrophysics Data System (ADS)

    Petropoulos, George P.; Kontoes, Charalambos C.; Keramitsoglou, Iphigenia

    2012-08-01

    In this study, the potential of EO-1 Advanced Land Imager (ALI) radiometer for land cover and especially burnt area mapping from a single image analysis is investigated. Co-orbital imagery from the Landsat Thematic Mapper (TM) was also utilised for comparison purposes. Both images were acquired shortly after the suppression of a fire occurred during the summer of 2009 North-East of Athens, the capital of Greece. The Maximum Likelihood (ML), Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) classifiers were parameterised and subsequently applied to the acquired satellite datasets. Evaluation of the land use/cover mapping accuracy was based on the error matrix statistics. Also, the McNemar test was used to evaluate the statistical significance of the differences between the approaches tested. Derived burnt area estimates were validated against the operationally deployed Services and Applications For Emergency Response (SAFER) Burnt Scar Mapping service. All classifiers applied to either ALI or TM imagery proved flexible enough to map land cover and also to extract the burnt area from other land surface types. The highest total classification accuracy and burnt area detection capability was returned from the application of SVMs to ALI data. This was due to the SVMs ability to identify an optimal separating hyperplane for best classes' separation that was able to better utilise ALI's advanced technological characteristics in comparison to those of TM sensor. This study is to our knowledge the first of its kind, effectively demonstrating the benefits of the combined application of SVMs to ALI data further implying that ALI technology may prove highly valuable in mapping burnt areas and land use/cover if it is incorporated into the development of Landsat 8 mission, planned to be launched in the coming years.

  9. Slope, Scarp and Sea Cliff Instability Susceptibility Mapping for Planning Regulations in Almada County, Portugal

    NASA Astrophysics Data System (ADS)

    Marques, Fernando; Queiroz, Sónia; Gouveia, Luís; Vasconcelos, Manuel

    2017-12-01

    In Portugal, the modifications introduced in 2008 and 2012 in the National Ecological Reserve law (REN) included the mandatory study of slope instability, including slopes, natural scarps, and sea cliffs, at municipal or regional scale, with the purpose of avoiding the use of hazardous zones with buildings and other structures. The law also indicates specific methods to perform these studies, with different approaches for slope instability, natural scarps and sea cliffs. The methods used to produce the maps required by REN law, with modifications and improvements to the law specified methods, were applied to the 71 km2 territory of Almada County, and included: 1) Slope instability mapping using the statistically based Information Value method validated with the landslide inventory using ROC curves, which provided an AAC=0.964, with the higher susceptibility zones which cover at least 80% of the landslides of the inventory to be included in REN map. The map was object of a generalization process to overcome the inconveniences of the use of a pixel based approach. 2) Natural scarp mapping including setback areas near the top, defined according to the law and setback areas near the toe defined by the application of the shadow angle calibrated with the major rockfalls which occurred in the study area; 3) Sea cliffs mapping including two levels of setback zones near the top, and one setback zone at the cliffs toe, which were based on systematic inventories of cliff failures occurred between 1947 and 2010 in a large scale regional littoral monitoring project. In the paper are described the methods used and the results obtained in this study, which correspond to the final maps of areas to include in REN. The results obtained in this study may be considered as an example of good practice of the municipal authorities in terms of solid, technical and scientifically supported regulation definitions, hazard prevention and safe and sustainable land use management.

  10. Mapping of land cover in northern California with simulated hyperspectral satellite imagery

    NASA Astrophysics Data System (ADS)

    Clark, Matthew L.; Kilham, Nina E.

    2016-09-01

    Land-cover maps are important science products needed for natural resource and ecosystem service management, biodiversity conservation planning, and assessing human-induced and natural drivers of land change. Analysis of hyperspectral, or imaging spectrometer, imagery has shown an impressive capacity to map a wide range of natural and anthropogenic land cover. Applications have been mostly with single-date imagery from relatively small spatial extents. Future hyperspectral satellites will provide imagery at greater spatial and temporal scales, and there is a need to assess techniques for mapping land cover with these data. Here we used simulated multi-temporal HyspIRI satellite imagery over a 30,000 km2 area in the San Francisco Bay Area, California to assess its capabilities for mapping classes defined by the international Land Cover Classification System (LCCS). We employed a mapping methodology and analysis framework that is applicable to regional and global scales. We used the Random Forests classifier with three sets of predictor variables (reflectance, MNF, hyperspectral metrics), two temporal resolutions (summer, spring-summer-fall), two sample scales (pixel, polygon) and two levels of classification complexity (12, 20 classes). Hyperspectral metrics provided a 16.4-21.8% and 3.1-6.7% increase in overall accuracy relative to MNF and reflectance bands, respectively, depending on pixel or polygon scales of analysis. Multi-temporal metrics improved overall accuracy by 0.9-3.1% over summer metrics, yet increases were only significant at the pixel scale of analysis. Overall accuracy at pixel scales was 72.2% (Kappa 0.70) with three seasons of metrics. Anthropogenic and homogenous natural vegetation classes had relatively high confidence and producer and user accuracies were over 70%; in comparison, woodland and forest classes had considerable confusion. We next focused on plant functional types with relatively pure spectra by removing open-canopy shrublands, woodlands and mixed forests from the classification. This 12-class map had significantly improved accuracy of 85.1% (Kappa 0.83) and most classes had over 70% producer and user accuracies. Finally, we summarized important metrics from the multi-temporal Random Forests to infer the underlying chemical and structural properties that best discriminated our land-cover classes across seasons.

  11. Synergy of airborne LiDAR and Worldview-2 satellite imagery for land cover and habitat mapping: A BIO_SOS-EODHaM case study for the Netherlands

    NASA Astrophysics Data System (ADS)

    Mücher, C. A.; Roupioz, L.; Kramer, H.; Bogers, M. M. B.; Jongman, R. H. G.; Lucas, R. M.; Kosmidou, V. E.; Petrou, Z.; Manakos, I.; Padoa-Schioppa, E.; Adamo, M.; Blonda, P.

    2015-05-01

    A major challenge is to develop a biodiversity observation system that is cost effective and applicable in any geographic region. Measuring and reliable reporting of trends and changes in biodiversity requires amongst others detailed and accurate land cover and habitat maps in a standard and comparable way. The objective of this paper is to assess the EODHaM (EO Data for Habitat Mapping) classification results for a Dutch case study. The EODHaM system was developed within the BIO_SOS (The BIOdiversity multi-SOurce monitoring System: from Space TO Species) project and contains the decision rules for each land cover and habitat class based on spectral and height information. One of the main findings is that canopy height models, as derived from LiDAR, in combination with very high resolution satellite imagery provides a powerful input for the EODHaM system for the purpose of generic land cover and habitat mapping for any location across the globe. The assessment of the EODHaM classification results based on field data showed an overall accuracy of 74% for the land cover classes as described according to the Food and Agricultural Organization (FAO) Land Cover Classification System (LCCS) taxonomy at level 3, while the overall accuracy was lower (69.0%) for the habitat map based on the General Habitat Category (GHC) system for habitat surveillance and monitoring. A GHC habitat class is determined for each mapping unit on the basis of the composition of the individual life forms and height measurements. The classification showed very good results for forest phanerophytes (FPH) when individual life forms were analyzed in terms of their percentage coverage estimates per mapping unit from the LCCS classification and validated with field surveys. Analysis for shrubby chamaephytes (SCH) showed less accurate results, but might also be due to less accurate field estimates of percentage coverage. Overall, the EODHaM classification results encouraged us to derive the heights of all vegetated objects in the Netherlands from LiDAR data, in preparation for new habitat classifications.

  12. Pollen-inferred quantitative reconstructions of Holocene land-cover in NW Europe for the evaluation of past climate-vegetation feedbacks - methods and first maps of the cover of plant functional types at 6000, 3000, 600, 200 and 0 BP.

    NASA Astrophysics Data System (ADS)

    Trondman, Anna-Kari; Gaillard, Marie-José; Sugita, Shinya; Mazier, Florence; Fyfe, Ralph; Nielsen, Anne-Birgitte; Leydet, Michelle; Members, Landclim

    2010-05-01

    Quantitative estimates of land-cover changes during the Holocene have become increasingly important for a better understanding of the earth surface-atmosphere feedbacks, and refining climate models. The LANDCLIM project and research network (sponsored by the Swedish [VR] and Nordic [NordForsk] Research Councils) (see Gaillard et al., CL 1.22) have the objective to quantify human-induced changes in regional land-cover in NW Europe during the Holocene, and to evaluate the effects of these changes on the regional climate through altered feedbacks. We use the REVEALS model to estimate the percentage cover of groups of taxa (plant functional types, PFTs) from fossil pollen data. The past cover of PFTs will be compared with the outputs of the LPJ-GUESS, a widely-used dynamic vegetation model, and applied as an alternative to the simulated LPG-GUESS vegetation to run the regional climate model RCA3 for the past. The REVEALS model requires raw pollen counts, site radius, pollen productivity estimates (PPEs), and fall speed of pollen (FS). PPEs and FS are available for 34 taxa in the study area. The study area is divided between four principle investigators within the LANDCLIM project. A protocol was established in order to standardize the strategy and methods applied to prepare the pollen data and run REVEALS. It includes instructions for both data contributors and users on 1) chronologies, 2) pollen taxa and harmonization with the PPEs available, and 3) number of pollen taxa and datasets of PPEs to use in alternative test runs. New age-depth models were performed for several records to ensure consistency in the chronologies. The pollen records are selected from pollen databases, i.e. the European Pollen Database (EPD), the Czech Pollen Database (PALYCZ) and the Alpine Pollen Database (ALPDABA), as well as obtained directly from the authors. Using the pollen records of the Czech Pollen Database, the effect on the REVEALS estimates of 1) basin type (lakes or bogs), 2) number of pollen taxa, 3) PPEs dataset, and 4) number of dates per record used to establish the chronology (≥3 or ≥5) was tested (see Mazier et al. CL 1.21). Following the results of these tests, the first maps are based on REVEALS runs using pollen records from both lakes and bogs with ≥3 dates, 24 taxa (entomophilous taxa excluded), and the mean of all PPEs available in the study area. The maps are produced for 10 PFTs (LPJ-GUESS) and 3 PFTs (RCA3) at a spatial resolution of 1o x 1o for five selected time windows of the Holocene with contrasting human-induced land-cover (0-100 cal BP, 100-350 cal BP, 350-700 cal BP, 2700-3200 cal BP and 5700-6200 cal BP). The maps of PFTs show significant changes in the degree of human-induced vegetation openness through the Holocene over most of the study area. There are large discrepancies between these first quantitative land-cover maps and earlier maps based on pollen data and other methods such as biomization and the modern analogue approach. * The following LANDCLIM members are acknowledged for providing pollen records and for help with pollen databases: Teija Alenius (Espoo), Heather Almquist-Jacobson (Montana, USA), Lena Barnekow and Thomas Persson (Lund), Jonas Bergman (Stockholm), Anne Bjune and John Birks (Bergen), Thomas Giesecke (Göttingen), Rixt de Jong (Bern), Mihkel Kangur and Tiiuu Koff (Tallinn), Malgorzata Latalowa (Gdansk), Ann-Marie Robertsson (Stockholm), Ulf Segerström and Henrik von Stedingk (Umeå), Heikki Seppä (Helsinki). Sugita, S. 2007. The Holocene, 17, 229-241.

  13. Calibration of 2D Hydraulic Inundation Models with SAR Imagery in the Floodplain Region of the Lower Tagus River

    NASA Astrophysics Data System (ADS)

    Pestana, Rita; Matias, Magda; Canelas, Ricardo; Roque, Dora; Araujo, Amelia; Van Zeller, Emilia; Trigo-Teixeira, Antonio; Ferreira, Rui; Oliveira, Rodrigo; Heleno, Sandra; Falcão, Ana Paula; Gonçalves, Alexandre B.

    2014-05-01

    Floods account for 40% of all natural hazards worldwide and were responsible for the loss of about 100 thousand human lives and affected more than 1,4 million people in the last decade of the 20th century alone. Floods have been the deadliest natural hazard in Portugal in the last 100 years. In terms of inundated area, the largest floods in Portugal occur in the Lower Tagus (LT) River. On average, the river overflows every 2.5 years, at times blocking roads and causing important agricultural damages. The economical relevance of the area and the high frequency of the relevant flood events make the LT floodplain a good pilot region to conduct a data-driven, systematic calibration work of flood hydraulic models. This paper focus on the calibration of 2D-horizontal flood simulation models for the floods of 1997, 2001 and 2006 on a 70-km stretch of the LT River, between Tramagal and Omnias, using the software Tuflow. This computational engine provides 2D solutions based on the Stelling finite-difference, alternating direction implicit (ADI) scheme that solves the full 2D free surface shallow-water flow equations and allowed the introduction of structures that constrain water flow. The models were based on a digital terrain model (DTM) acquired in 2008 by radar techniques (5m of spatial resolution) and on in situ measurements of water elevation in Omnias (downstream boundary condition) and discharge in Tramagal and Zezere (upstream boundary conditions). Due to the relevancy of several dykes on this stretch of the LT River, non-existent on the available DTM, five of them were introduced in the models. All models have the same boundaries and were simulated using steady-state flow initial conditions. The resolution of the 2D grid mesh was 30m. Land cover data for the study area was retrieved from Corine Land Cover 2006 (CO-ordination of INformation on the Environment) with spatial resolution of 100m, and combined with estimated manning coefficients obtained in literature for the different land cover classes. Flood extent maps, derived from satellite-born Synthetic Aperture Radar (SAR), namely ERS SAR and ENVISAT ASAR imagery, provided the spatially distributed data needed for the calibration of the hydraulic models for the several floods. The flood extent maps obtained for each simulation were then compared with the flood extent maps derived from SAR imagery for each flood and the roughness coefficients changed accordingly. The models were also calibrated in terms of the stage at the gauging station Almourol, located 12km downriver from Tramagal. The combination of the calibration results for the several past floods provided 100 meters resolution Manning coefficient maps of the study area. An application of the obtained calibrated Manning coefficient maps was made for the largest flood of the 20th century (February 1979), for which no SAR imagery was available. In this case validation of the model was made in terms of the stage at the gauging station Almourol and at flood stage marks distributed throughout the floodplain.

  14. GIS based mapping of land cover changes utilizing multi-temporal remotely sensed image data in Lake Hawassa Watershed, Ethiopia.

    PubMed

    Nigatu Wondrade; Dick, Øystein B; Tveite, Havard

    2014-03-01

    Classifying multi-temporal image data to produce thematic maps and quantify land cover changes is one of the most common applications of remote sensing. Mapping land cover changes at the regional level is essential for a wide range of applications including land use planning, decision making, land cover database generation, and as a source of information for sustainable management of natural resources. Land cover changes in Lake Hawassa Watershed, Southern Ethiopia, were investigated using Landsat MSS image data of 1973, and Landsat TM images of 1985, 1995, and 2011, covering a period of nearly four decades. Each image was partitioned in a GIS environment, and classified using an unsupervised algorithm followed by a supervised classification method. A hybrid approach was employed in order to reduce spectral confusion due to high variability of land cover. Classification of satellite image data was performed integrating field data, aerial photographs, topographical maps, medium resolution satellite image (SPOT 20 m), and visual image interpretation. The image data were classified into nine land cover types: water, built-up, cropland, woody vegetation, forest, grassland, swamp, bare land, and scrub. The overall accuracy of the LULC maps ranged from 82.5 to 85.0 %. The achieved accuracies were reasonable, and the observed classification errors were attributable to coarse spatial resolution and pixels containing a mixture of cover types. Land cover change statistics were extracted and tabulated using the ERDAS Imagine software. The results indicated an increase in built-up area, cropland, and bare land areas, and a reduction in the six other land cover classes. Predominant land cover is cropland changing from 43.6 % in 1973 to 56.4 % in 2011. A significant portion of land cover was converted into cropland. Woody vegetation and forest cover which occupied 21.0 and 10.3 % in 1973, respectively, diminished to 13.6 and 5.6 % in 2011. The change in water body was very peculiar in that the area of Lake Hawassa increased from 91.9 km(2) in 1973 to 95.2 km(2) in 2011, while that of Lake Cheleleka whose area was 11.3 km(2) in 1973 totally vanished in 2011 and transformed into mud-flat and grass dominated swamp. The "change and no change" analysis revealed that more than one third (548.0 km(2)) of the total area was exposed to change between 1973 and 2011. This study was useful in identifying the major land cover changes, and the analysis pursued provided a valuable insight into the ongoing changes in the area under investigation.

  15. Remote sensing of a dynamic sub-arctic peatland reservoir using optical and synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Larter, Jarod Lee

    Stephens Lake, Manitoba is an example of a peatland reservoir that has undergone physical changes related to mineral erosion and peatland disintegration processes since its initial impoundment. In this thesis I focused on the processes of peatland upheaval, transport, and disintegration as the primary drivers of dynamic change within the reservoir. The changes related to these processes are most frequent after initial reservoir impoundment and decline over time. They continue to occur over 35 years after initial flooding. I developed a remote sensing approach that employs both optical and microwave sensors for discriminating land (Le. floating peatlands, forested land, and barren land) from open water within the reservoir. High spatial resolution visible and near-infrared (VNIR) optical data obtained from the QuickBird satellite, and synthetic aperture radar (SAR) microwave data obtained from the RADARSAT-1 satellite were implemented. The approach was facilitated with a Geographic Information System (GIS) based validation map for the extraction of optical and SAR pixel data. Each sensor's extracted data set was first analyzed separately using univariate and multivariate statistical methods to determine the discriminant ability of each sensor. The initial analyses were followed by an integrated sensor approach; the development of an image classification model; and a change detection analysis. Results showed excellent (> 95%) classification accuracy using QuickBird satellite image data. Discrimination and classification of studied land cover classes using SAR image texture data resulted in lower overall classification accuracies (˜ 60%). SAR data classification accuracy improved to > 90% when classifying only land and water, demonstrating SAR's utility as a land and water mapping tool. An integrated sensor data approach showed no considerable improvement over the use of optical satellite image data alone. An image classification model was developed that could be used to map both detailed land cover classes and the land and water interface within the reservoir. Change detection analysis over a seven year period indicated that physical changes related to mineral erosion, peatland upheaval, transport, and disintegration, and operational water level variation continue to take place in the reservoir some 35 years after initial flooding. This thesis demonstrates the ability of optical and SAR satellite image remote sensing data sets to be used in an operational context for the routine discrimination of the land and water boundaries within a dynamic peatland reservoir. Future monitoring programs would benefit most from a complementary image acquisition program in which SAR images, known for their acquisition reliability under cloud cover, are acquired along with optical images given their ability to discriminate land cover classes in greater detail.

  16. A comparison of the macrophyte cover and macroinvertebrate fauna at three sites on the River Kennet in the mid 1970s and late 1990s.

    PubMed

    Wright, J F; Gunn, R J M; Winder, J M; Wiggers, R; Vowles, K; Clarke, R T; Harris, I

    2002-01-23

    In 1974-1976, baseline studies were carried out on the flora and macroinvertebrate fauna of the R. Kennet at two sites downstream of Marlborough (Savernake Upper and Lower) and at one site upstream of Hungerford (Littlecote). Simplified maps of each site, showing the cover of macrophytes, were obtained monthly between April 1974 and April/June 1976, and replicated quantitative samples of the macroinvertebrates were collected on the dominant macrophyte and on gravel in June 1974, and also in June and December 1975. As a consequence of two major droughts and increasing concern over water quality in the Upper Kennet in the 1990s, the studies recommenced in the summer of 1997 using the same sites and methodologies. Maps and macroinvertebrate samples were obtained in early July and December 1997 and in June of both 1998 and 1999. At the Savernake sites, mapping in summer 1997 confirmed what had been apparent for some years. That is, macrophyte cover (both Ranunculus and Schoenoplectus) was much lower than in the 1970s. In contrast, the site downstream at Littlecote retained a relatively high cover of Ranunculus, despite the drought. In late autumn 1997, phosphate stripping commenced at Marlborough Sewage Treatment Works, the drought ended and in addition, the spring of 1998 was unusually wet. Ranunculus recolonised both Savernake sites with remarkable speed by summer 1998 and retained this dominant position in 1999. Quantitative samples of macroinvertebrates collected on gravel and the dominant macrophyte at each of the three study sites indicated that there was no evidence of major loss of family richness between the 1970s and 1990s as a result of the low flows or enrichment. However, at Savernake (but not Littlecote) in summer 1997, the macroinvertebrate assemblage was affected by low flows and/or enrichment. This took the form of changes in the abundance of some families, with lentic forms being favoured in relation to some lotic families. Following the end of the drought, many macroinvertebrate families at Savernake showed a rapid response to the new conditions and the assemblages reverted to those expected in a fast-flowing cretaceous chalk stream. Continued monitoring through the next drought is advisable to provide a greater understanding of the interplay between water quality, the discharge regime, habitat quality (including macrophyte growth) and the response of the macroinvertebrate fauna.

  17. The influence of forest cover on landslide occurrence explored with spatio-temporal information

    NASA Astrophysics Data System (ADS)

    Schmaltz, Elmar M.; Steger, Stefan; Glade, Thomas

    2017-08-01

    Multi-temporal landslide inventories in widely forested landscapes are scarce and further studies are required to face the challenges of producing reliable inventories in woodland areas. An elaboration of valuable empirical relationships between shallow landslides and forest cover based on recent remote sensing data alone is often hampered due to constant land cover changes, differing ages of landslides within a landslide inventory and the fact that usage of different data sets for mapping might lead to various systematic mapping biases. Within this study, we attempted to overcome these difficulties in order to explore the effect of forest cover on shallow landslide occurrences. Thus, forest dynamics were examined on the basis of 9 orthophoto series from 1950s to 2015, distinguishing 3 forest classes, based on the wood type. These classes were furthermore distinguished in 12 subclasses, considering stand density and age. A multi-temporal landslide inventory was compiled for the same period based on the aerial photography, 2 airborne LiDAR imageries, 8 field surveys and archive data. We derived topographical parameters (slope, topographical positioning index and convergency index) from the digital elevation model for areal correction and accounting for topographical confounders within a logistic regression model. Empirical relationships were assessed by means of (a) areal changes of forests and logged areas, (b) spatio-temporal distribution of shallow translational landslides, (c) frequency ratios and (d) logistic regression analysis. The findings revealed that forests increased by 16.2% from 1950s to 2015. 311 landslides of 351 in total that where mapped in total could be assigned to the observed time series and were considered for our analyses. Frequency ratios and odds ratios indicated a stabilising effect of all forest classes on landslide occurrences. Odds ratios observed for the models based on aggregated data sets (3 forest classes) indicated provided evidence that forest was constantly estimated to be less prone to slope failure than their non-forested counterparts. The chances for forest classes to be affected by shallow landslides were estimated to be considerably lower whenever topographic predictors were as well included in the model. A detailed inspection of the statistical results suggests that the obtained empirical relationships should be interpreted with care. Challenges in the mapping procedures of forests and landslides, implications of the applied methods and potential pitfalls are discussed.

  18. Temporal trend of the snow-related variables in Sierra Nevada in the last years: An analysis combining Earth Observation and hydrological modelling

    NASA Astrophysics Data System (ADS)

    Pérez-Luque, Antonio J.; Herrero, Javier; Bonet, Francisco J.; Pérez-Pérez, Ramón

    2016-04-01

    Climate change is causing declines in snow-cover extent and duration in European mountain ranges. This is especially important in Mediterranean mountain ranges where the observed trends towards precipitation and higher temperatures can provoke problems of water scarcity. In this work, we analyzed temporal trends (2000 to 2014) of snow-related variables obtained from satellite and modelling data in Sierra Nevada, a Mediterranean high-mountain range located in Southern Spain, at 37°N. Snow cover indicators (snow-cover duration, snow-cover onset dates and snow-cover melting dates) were obtained by processing images of MOD10A2 MODIS product using an automated workflow. Precipitation data were obtained using WiMMed, a complete and fully distributed hydrological model that is used to map the annual rainfall and snowfall with a resolution of 30x30 m over the whole study area. It uses expert algorithms to interpolate precipitation and temperature at an hourly scale, and simulates partition of precipitation into snowfall with several methods. For each snow-related indicator (snow-covers and snowfall), a trend analysis was applied at the MODIS pixel scale during the study period (2000-2014). We applied Mann-Kendall test and Theil-Sen slope estimation in each of the pixels comprising Sierra Nevada. The trend analysis assesses the intensity, magnitude and degree of statistical significance during the period analysed. The spatial pattern of these trends was explored according to elevation ranges. Finally, we explored the relationship between trends of snow-cover related indicators and precipitation trends. Our results show that snow-cover has undergone significant changes in the last 14 years. 80 % of the pixels covering Sierra Nevada showed a negative trend in the duration of snow-cover. We also observed a delay in the snow-cover onset date (68.03 % pixels showing a positive trend in the snow-cover onset date) and an advance in the melt date (80.72 % of pixels followed a negative trend for the snow-cover melting date). Precipitation does not show a significant trend for these years, even though its inter-annual variability has been outstanding. The maximum mean annual precipitation of 906 mm/year doubles the mean precipitation, which somehow compensates for the occurrence of a sequence of dry years with a minimum of 250 mm/year. The assessment of the spatial pattern of snow cover duration shows that both the trend and the slope of the trend becomes more pronounced with elevation. At higher elevations the snow-cover duration decreased an average of 3 days from 2000-2014. This research has been funded by ECOPOTENTIAL (Improving future ecosystem benefits through Earth Observations) Horizon 2020 EU project, and Sierra Nevada Global Change Observatory (LTER-site)

  19. Geoenvironments from the vicinity of Arctowski Station, Admiralty Bay, King George Island, Antarctica: vulnerability and valuation assessment

    USGS Publications Warehouse

    Schaefer, Carlos Ernesto G.R.; Santana, Rogério Mercandelle; Simas, Felipe Nogueira Bello; Francelino, Márcio R.; Filho, Elpídio Inácio Fernandes; Albuquerque, Miriam Abreu; Calijuri, Maria Lúcia

    2007-01-01

    The use of a geographic information system (GIS) allows the mapping and quantification of biotic and physical features of importance to the environmental planning of Antarctic areas. In this paper we examined the main aspects of the geoenvironments of Arctowski Station vicinity (Admiralty bay, Maritime Antartica), by means of a photointerpretation of an orthomosaic at 1:6000 scale, produced by non-conventional aerial photographs obtained by the Brazilian Cryosols project. We carried out a preliminary environmental valuation and vulnerability assessment of the area. Hence, geoenvironments were classified and ranked according with their biological valuation and vulnerability (fragility), mapping 20 units covering approximately 150 ha. The most fragile geoenvironmental units were former and present penguin rookeries with different vegetation covers, all very prone to degradation by over-trampling and human perturbations. The relationships between each geoenvironment were also explored, emphasizing the ecological aspects and their valuation. In quantitative terms, the most vulnerable and fragile units (classes 4 and 5) occupy nearly 22 % of the total area, being highly concentrated near the coastal areas. There, ornithogenic input is an important factor favoring the vegetation development.

  20. Airborne and spaceborne radar images for geologic and environmental mapping in the Amazon rain forest, Brazil

    NASA Technical Reports Server (NTRS)

    Hurtak, James J.; Ford, John P.

    1986-01-01

    Spaceborne and airborne radar image of portions of the Middle and Upper Amazon basin in the state of Amazonas and the Territory of Roraima are compared for purposes of geological and environmental mapping. The contrasted illumination geometries and imaging parameters are related to terrain slope and surface roughness characteristics for corresponding areas that were covered by each of the radar imaging systems. Landforms range from deeply dissected mountain and plateau with relief up to 500 m in Roraima, revealing ancient layered rocks through folded residual mountains to deeply beveled pediplain in Amazonas. Geomorphic features provide distinct textural signatures that are characteristic of different rock associations. The principle drainages in the areas covered are the Rio Negro, Rio Branco, and the Rio Japura. Shadowing effects and low radar sensitivity to subtle linear fractures that are aligned parallel or nearly parallel to the direction of radar illumination illustrate the need to obtain multiple coverage with viewing directions about 90 degrees. Perception of standing water and alluvial forest in floodplains varies with incident angle and with season. Multitemporal data sets acquired over periods of years provide an ideal method of monitoring environmental changes.

  1. A Far-ultraviolet Fluorescent Molecular Hydrogen Emission Map of the Milky Way Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, Young-Soo; Min, Kyoung-Wook; Seon, Kwang-Il

    We present the far-ultraviolet (FUV) fluorescent molecular hydrogen (H{sub 2}) emission map of the Milky Way Galaxy obtained with FIMS/SPEAR covering ∼76% of the sky. The extinction-corrected intensity of the fluorescent H{sub 2} emission has a strong linear correlation with the well-known tracers of the cold interstellar medium (ISM), including color excess E(B–V) , neutral hydrogen column density N (H i), and H α emission. The all-sky H{sub 2} column density map was also obtained using a simple photodissociation region model and interstellar radiation fields derived from UV star catalogs. We estimated the fraction of H{sub 2} ( f {submore » H2}) and the gas-to-dust ratio (GDR) of the diffuse ISM. The f {sub H2} gradually increases from <1% at optically thin regions where E(B–V) < 0.1 to ∼50% for E(B–V)  = 3. The estimated GDR is ∼5.1 × 10{sup 21} atoms cm{sup −2} mag{sup −1}, in agreement with the standard value of 5.8 × 10{sup 21} atoms cm{sup −2} mag{sup −1}.« less

  2. An Assessment of Differences in Tree Cover Measurements between Landsat and Lidar-derived Products

    NASA Astrophysics Data System (ADS)

    Tang, H.; Song, X. P.; Armston, J.; Hancock, S.; Duncanson, L.; Zhao, F. A.; Schaaf, C.; Strahler, A. H.; Huang, C.; Hansen, M.; Goetz, S. J.; Dubayah, R.

    2016-12-01

    Tree cover is one of the most important canopy structural variables describe interactions between atmosphere and biosphere, and is also linked to the function and quality of ecosystem services. Large-area tree cover measurements are traditionally based on multispectral satellite imagery, and there are several global products available at high to medium spatial resolution (30m-1km). Recent developments in lidar remote sensing, including the upcoming Global Ecosystem Dynamics Investigation (GEDI) lidar, offers an alternative means to map tree cover over broad geographical extents. However, differences in the definition of tree cover and the retrieval method can result in large discrepancies between products derived from multispectral imagery and lidar data, and can potentially impact their further use in ecosystem modelling and above-ground biomass mapping. To separate the effects of cover definition and retrieval method, we first conducted a meta-analysis of several tree cover data sets across different biogeographic regions using three publicly available Landsat-based tree cover products (GLCF, NLCD and GLAD), and two waveform and discrete return airborne lidar products. We found that, whereas Landsat products had low-moderate agreements (up to 40% mean difference) on tree cover estimates particularly at the high end (e.g. >80%), airborne lidar can provide more accurate and consistent measurements (mean difference < 5%) when compared with field data. The differences among Landsat products were mainly due to low measurement accuracy and those among lidar products were caused by different definitions of tree cover (e.g. crown cover vs. fractional cover). We further recommended the use of lidar data as a complement or alternative to ultra-fine resolution images in training/validating Landsat-class images for large-area tree cover mapping.

  3. Analysis of slope stabillity and controlling factor on residual soil of folded breccia formation

    NASA Astrophysics Data System (ADS)

    Rachman, S.; Muslim, D.; Sulaksana, N.; Burhannuddinnur, M.; Pramudito, H.

    2018-01-01

    This research aims to obtain a potential landslide zonation. Theresearch area is located in Depok Village and surroundings, Jatigede District, Sumedang regency, West Java province. Geographically located at the point of coordinates 06°50‧33-06°51‧00″ South Latitude and 108°05‧37 ″- 108°06‧17″ East Longitude. This research is intended to mapping the identification of landslide and soil properties data. The mapping and soil sampling were conducted only in the research area. The methodology used was mapping and finding the safety factor with Bishop Analysis. The morphological condition of the study area indicates moderate conditions undulating hilly area with slopes between 15° - 40°, with a tick soil layer was covering the slope. This condition is greatly affected by rainfall. This research is to know the type of ground movement along with the value of the safety factor of the slope so that can provide suggestions for overcoming instability in the study area.

  4. Radar response to vegetation. [soil moisture mapping via microwave backscattering

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1975-01-01

    Active microwave measurements of vegetation backscatter were conducted to determine the utility of radar in mapping soil moisture through vegetation and mapping crop types. Using a truck-mounted boom, spectral response data were obtained for four crop types (corn, milo, soybeans, and alfalfa) over the 4-8 GHz frequency band, at incidence angles of 0 to 70 degrees in 10-degree steps, and for all four linear polarization combinations. Based on a total of 125 data sets covering a wide range of soil moisture, content, system design criteria are proposed for each of the aforementioned objectives. Quantitative soil moisture determination was best achieved at the lower frequency end of the 4-8 GHz band using HH polarized waves in the 5- to 15-degree incidence angle range. A combination of low and high frequency measurements are suggested for classifying crop types. For crop discrimination, a dual-frequency dual-polarization (VV and cross) system operating at incidence angles above 40 degrees is suggested.

  5. Soil-Gas Radon Anomaly Map of an Unknown Fault Zone Area, Chiang Mai, Northern Thailand

    NASA Astrophysics Data System (ADS)

    Udphuay, S.; Kaweewong, C.; Imurai, W.; Pondthai, P.

    2015-12-01

    Soil-gas radon concentration anomaly map was constructed to help detect an unknown subsurface fault location in San Sai District, Chiang Mai Province, Northern Thailand where a 5.1-magnitude earthquake took place in December 2006. It was suspected that this earthquake may have been associated with an unrecognized active fault in the area. In this study, soil-gas samples were collected from eighty-four measuring stations covering an area of approximately 50 km2. Radon in soil-gas samples was quantified using Scintrex Radon Detector, RDA-200. The samplings were conducted twice: during December 2014-January 2015 and March 2015-April 2015. The soil-gas radon map obtained from this study reveals linear NNW-SSE trend of high concentration. This anomaly corresponds to the direction of the prospective fault system interpreted from satellite images. The findings from this study support the existence of this unknown fault system. However a more detailed investigation should be conducted in order to confirm its geometry, orientation and lateral extent.

  6. The Orion Nebula in the Far-Infrared: High-J CO and fine-structure lines mapped by FIFI-LS/SOFIA

    NASA Astrophysics Data System (ADS)

    Klein, Randolf; Looney, Leslie W.; Cox, Erin; Fischer, Christian; Iserlohe, Christof; Krabbe, Alfred

    2017-03-01

    The Orion Nebula is the closest massive star forming region allowing us to study the physical conditions in such a region with high spatial resolution. We used the far infrared integral-field spectrometer, FIFI-LS, on-board the airborne observatory SOFIA to study the atomic and molecular gas in the Orion Nebula at medium spectral resolution. The large maps obtained with FIFI-LS cover the nebula from the BN/KL-object to the bar in several fine structure lines. They allow us to study the conditions of the photon-dominated region and the interface to the molecular cloud with unprecedented detail. Another investigation targeted the molecular gas in the BN/KL region of the Orion Nebula, which is stirred up by a violent explosion about 500 years ago. The explosion drives a wide angled molecular outflow. We present maps of several high-J CO observations, allowing us to analyze the heated molecular gas.

  7. A GIS/Remote Sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece

    NASA Astrophysics Data System (ADS)

    Oikonomidis, D.; Dimogianni, S.; Kazakis, N.; Voudouris, K.

    2015-06-01

    The aim of this paper is to assess the groundwater potentiality combining Geographic Information Systems and Remote Sensing with data obtained from the field, as an additional tool to the hydrogeological research. The present study was elaborated in the broader area of Tirnavos, covering 419.4 km2. The study area is located in Thessaly (central Greece) and is crossed by two rivers, Pinios and Titarisios. Agriculture is one of the main elements of Thessaly's economy resulting in intense agricultural activity and consequently increased exploitation of groundwater resources. Geographic Information Systems (GIS) and Remote Sensing (RS) were used in order to create a map that depicts the likelihood of existence of groundwater, consisting of five classes, showing the groundwater potentiality and ranging from very high to very low. The extraction of this map is based on the study of input data such as: rainfall, potential recharge, lithology, lineament density, slope, drainage density and depth to groundwater. Weights were assigned to all these factors according to their relevance to groundwater potential and eventually a map based on weighted spatial modeling system was created. Furthermore, a groundwater quality suitability map was illustrated by overlaying the groundwater potentiality map with the map showing the potential zones for drinking groundwater in the study area. The results provide significant information and the maps could be used from local authorities for groundwater exploitation and management.

  8. Mapping Vesta Mid-Latitude Quadrangle V-12EW: Mapping the Edge of the South Polar Structure

    NASA Astrophysics Data System (ADS)

    Hoogenboom, T.; Schenk, P.; Williams, D. A.; Hiesinger, H.; Garry, W. B.; Yingst, R.; Buczkowski, D.; McCord, T. B.; Jaumann, R.; Pieters, C. M.; Gaskell, R. W.; Neukum, G.; Schmedemann, N.; Marchi, S.; Nathues, A.; Le Corre, L.; Roatsch, T.; Preusker, F.; White, O. L.; DeSanctis, C.; Filacchione, G.; Raymond, C. A.; Russell, C. T.

    2011-12-01

    NASA's Dawn spacecraft arrived at the asteroid 4Vesta on July 15, 2011, and is now collecting imaging, spectroscopic, and elemental abundance data during its one-year orbital mission. As part of the geological analysis of the surface, a series of 15 quadrangle maps are being produced based on Framing Camera images (FC: spatial resolution: ~65 m/pixel) along with Visible & Infrared Spectrometer data (VIR: spatial resolution: ~180 m/pixel) obtained during the High-Altitude Mapping Orbit (HAMO). This poster presentation concentrates on our geologic analysis and mapping of quadrangle V-12EW. This quadrangle is dominated by the arcuate edge of the large 460+ km diameter south polar topographic feature first observed by HST (Thomas et al., 1997). Sparsely cratered, the portion of this feature covered in V-12EW is characterized by arcuate ridges and troughs forming a generalized arcuate pattern. Mapping of this terrain and the transition to areas to the north will be used to test whether this feature has an impact or other (e.g., internal) origin. We are also using FC stereo and VIR images to assess whether their are any compositional differences between this terrain and areas further to the north, and image data to evaluate the distribution and age of young impact craters within the map area. The authors acknowledge the support of the Dawn Science, Instrument and Operations Teams.

  9. Mapping soil erosion risk in Serra de Grândola (Portugal)

    NASA Astrophysics Data System (ADS)

    Neto Paixão, H. M.; Granja Martins, F. M.; Zavala, L. M.; Jordán, A.; Bellinfante, N.

    2012-04-01

    Geomorphological processes can pose environmental risks to people and economical activities. Information and a better knowledge of the genesis of these processes is important for environmental planning, since it allows to model, quantify and classify risks, what can mitigate the threats. The objective of this research is to assess the soil erosion risk in Serra de Grândola, which is a north-south oriented mountain ridge with an altitude of 383 m, located in southwest of Alentejo (southern Portugal). The study area is 675 km2, including the councils of Grândola, Santiago do Cacém and Sines. The process for mapping of erosive status was based on the guidelines for measuring and mapping the processes of erosion of coastal areas of the Mediterranean proposed by PAP/RAC (1997), developed and later modified by other authors in different areas. This method is based on the application of a geographic information system that integrates different types of spatial information inserted into a digital terrain model and in their derivative models. Erosive status are classified using information from soil erodibility, slope, land use and vegetation cover. The rainfall erosivity map was obtained using the modified Fournier index, calculated from the mean monthly rainfall, as recorded in 30 meteorological stations with influence in the study area. Finally, the soil erosion risk map was designed by ovelaying the erosive status map and the rainfall erosivity map.

  10. Measuring snow cover using satellite imagery during 1973 and 1974 melt season: North Santiam, Boise, and Upper Snake Basins, phase 1. [LANDSAT satellites, imaging techniques

    NASA Technical Reports Server (NTRS)

    Wiegman, E. J.; Evans, W. E.; Hadfield, R.

    1975-01-01

    Measurements are examined of snow coverage during the snow-melt season in 1973 and 1974 from LANDSAT imagery for the three Columbia River Subbasins. Satellite derived snow cover inventories for the three test basins were obtained as an alternative to inventories performed with the current operational practice of using small aircraft flights over selected snow fields. The accuracy and precision versus cost for several different interactive image analysis procedures was investigated using a display device, the Electronic Satellite Image Analysis Console. Single-band radiance thresholding was the principal technique employed in the snow detection, although this technique was supplemented by an editing procedure involving reference to hand-generated elevation contours. For each data and view measured, a binary thematic map or "mask" depicting the snow cover was generated by a combination of objective and subjective procedures. Photographs of data analysis equipment (displays) are shown.

  11. Evaluation of ERTS imagery for spectral geological mapping in diverse terranes of New York State

    NASA Technical Reports Server (NTRS)

    Isachsen, Y. W. (Principal Investigator); Rickard, L. V.

    1972-01-01

    The author has identified the following significant results. Preliminary visual examination of film positives of thirty ERTS-1 scenes obtained over New York State and adjacent areas indicates the following: (1) sixty percent of the imagery has a cloud cover of 70-100 percent, twenty-five percent has a cloud cover of 0-30 percent, and the remainder has a cover of 40-65 percent; (2) on the useable imagery, the spectral lines which may turn out to be geologically-linked totals as follows: spectral linears, 5200 km; broadly curved lines (spectral curvilinears), 700 km; major forest boundaries, 3100 km; areas with spectral geological fabric, 3100 sgkm. In the central and northwest Adirondacks, known lineaments and faults were subtracted from the spectral linears leaving a residue which totals 160 km in the central Adirondacks and 230 km in the northwest Adirondacks. It must be emphasized that these are spectral linears which have not yet been checked out against any ground truth except geological.

  12. A physical map of a BAC clone contig covering the entire autosome insertion between ovine MHC Class IIa and IIb

    PubMed Central

    2012-01-01

    Background The ovine Major Histocompatibility Complex (MHC) harbors genes involved in overall resistance/susceptibility of the host to infectious diseases. Compared to human and mouse, the ovine MHC is interrupted by a large piece of autosome insertion via a hypothetical chromosome inversion that constitutes ~25% of ovine chromosome 20. The evolutionary consequence of such an inversion and an insertion (inversion/insertion) in relation to MHC function remains unknown. We previously constructed a BAC clone physical map for the ovine MHC exclusive of the insertion region. Here we report the construction of a high-density physical map covering the autosome insertion in order to address the question of what the inversion/insertion had to do with ruminants during the MHC evolution. Results A total of 119 pairs of comparative bovine oligo primers were utilized to screen an ovine BAC library for positive clones and the orders and overlapping relationships of the identified clones were determined by DNA fingerprinting, BAC-end sequencing, and sequence-specific PCR. A total of 368 positive BAC clones were identified and 108 of the effective clones were ordered into an overlapping BAC contig to cover the consensus region between ovine MHC class IIa and IIb. Therefore, a continuous physical map covering the entire ovine autosome inversion/insertion region was successfully constructed. The map confirmed the bovine sequence assembly for the same homologous region. The DNA sequences of 185 BAC-ends have been deposited into NCBI database with the access numbers HR309252 through HR309068, corresponding to dbGSS ID 30164010 through 30163826. Conclusions We have constructed a high-density BAC clone physical map for the ovine autosome inversion/insertion between the MHC class IIa and IIb. The entire ovine MHC region is now fully covered by a continuous BAC clone contig. The physical map we generated will facilitate MHC functional studies in the ovine, as well as the comparative MHC evolution in ruminants. PMID:22897909

  13. Global rates of habitat loss and implications for amphibian conservation

    USGS Publications Warehouse

    Gallant, Alisa L.; Klaver, R.W.; Casper, G.S.; Lannoo, M.J.

    2007-01-01

    A large number of factors are known to affect amphibian population viability, but most authors agree that the principal causes of amphibian declines are habitat loss, alteration, and fragmentation. We provide a global assessment of land use dynamics in the context of amphibian distributions. We accomplished this by compiling global maps of amphibian species richness and recent rates of change in land cover, land use, and human population growth. The amphibian map was developed using a combination of published literature and digital databases. We used an ecoregion framework to help interpret species distributions across environmental, rather than political, boundaries. We mapped rates of land cover and use change with statistics from the World Resources Institute, refined with a global digital dataset on land cover derived from satellite data. Temporal maps of human population were developed from the World Resources Institute database and other published sources. Our resultant map of amphibian species richness illustrates that amphibians are distributed in an uneven pattern around the globe, preferring terrestrial and freshwater habitats in ecoregions that are warm and moist. Spatiotemporal patterns of human population show that, prior to the 20th century, population growth and spread was slower, most extensive in the temperate ecoregions, and largely exclusive of major regions of high amphibian richness. Since the beginning of the 20th century, human population growth has been exponential and has occurred largely in the subtropical and tropical ecoregions favored by amphibians. Population growth has been accompanied by broad-scale changes in land cover and land use, typically in support of agriculture. We merged information on land cover, land use, and human population growth to generate a composite map showing the rates at which humans have been changing the world. When compared with the map of amphibian species richness, we found that many of the regions of the earth supporting the richest assemblages of amphibians are currently undergoing the highest rates of landscape modification.

  14. Snow Cover Mapping at the Continental to Global Scale Using Combined Visible and Passive Microwave Satellite Data

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Brodzik, M.; Savoie, M. H.

    2007-12-01

    Over the past several decades both visible and passive microwave satellite data have been utilized for snow mapping at the continental to global scale. Snow mapping using visible data has been based primarily on the magnitude of the surface reflectance, and in more recent cases on specific spectral signatures, while microwave data can be used to identify snow cover because the microwave energy emitted by the underlying soil is scattered by the snow grains resulting in a sharp decrease in brightness temperature and a characteristic negative spectral gradient. Both passive microwave and visible data sets indicate a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. We describe the respective problems as well as the advantages and disadvantages of these two types of satellite data for snow cover mapping and demonstrate how a multi-sensor approach is optimal. For the period 1978 to present we combine data from the NOAA weekly snow charts with snow cover derived from the SMMR and SSM/I brightness temperature data. For the period since 2002 we blend NASA EOS MODIS and AMSR-E data sets. Our current product incorporates MODIS data from the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) with microwave-derived snow water equivalent (SWE) at 25 km, resulting in a blended product that includes percent snow cover in the larger grid cell whenever the microwave SWE signal is absent. Validation of AMSR-E at the brightness temperature level is provided through the comparison with data from the well-calibrated heritage SSM/I sensor over large homogeneous snow-covered surfaces (e.g. Dome C region, Antarctica). We also describe how the application of the higher frequency microwave channels (85 and 89 GHz)enhances accurate mapping of shallow and intermittent snow cover.

  15. Forest Resource Information System (FRIS)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The technological and economical feasibility of using multispectral digital image data as acquired from the LANDSAT satellites in an ongoing operational forest information system was evaluated. Computer compatible multispectral scanner data secured from the LANDSAT satellites were demonstrated to be a significant contributor to ongoing information systems by providing the added dimensions of synoptic and repeat coverage of the Earth's surface. Major forest cover types of conifer, deciduous, mixed conifer-deciduous and non-forest, were classified well within the bounds of the statistical accuracy of the ground sample. Further, when overlayed with existing maps, the acreage of cover type retains a high level of positional integrity. Maps were digitized by a graphics design system, overlayed and registered onto LANDSAT imagery such that the map data with associated attributes were displayed on the image. Once classified, the analysis results were converted back to map form as a cover type of information. Existing tabular information as represented by inventory is registered geographically to the map base through a vendor provided data management system. The notion of a geographical reference base (map) providing the framework to which imagery and tabular data bases are registered and where each of the three functions of imagery, maps and inventory can be accessed singly or in combination is the very essence of the forest resource information system design.

  16. EnviroAtlas -Portland, ME- One Meter Resolution Urban Land Cover (2010)

    EPA Pesticide Factsheets

    The EnviroAtlas Portland, ME land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2010 at 1 m spatial resolution. Eight land cover classes were mapped: water, impervious surfaces, soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, agriculture, and wetlands (woody and emergent). An accuracy assessment using a stratified random sampling of 600 samples yielded an overall accuracy of 87.5 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Portland. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  17. EnviroAtlas -Milwaukee, WI- One Meter Resolution Urban Land Cover Data (2010)

    EPA Pesticide Factsheets

    The EnviroAtlas Milwaukee, WI land cover data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2010 at 1 m spatial resolution. Nine land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, agriculture, and wetlands (woody and emergent). An accuracy assessment using a completely random sampling of 600 samples yielded an overall accuracy of 85.39% percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Milwaukee. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. EnviroAtlas -- Woodbine, IA -- One Meter Resolution Urban Land Cover Data (2011)

    EPA Pesticide Factsheets

    The EnviroAtlas Woodbine, IA land cover (LC) data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2011 at 1 m spatial resolution. Six land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, and agriculture. An accuracy assessment using a completely random sampling of 600 samples yielded an overall accuracy of 87.03% percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Woodbine. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. Combined Study of Snow Depth Determination and Winter Leaf Area Index Retrieval by Unmanned Aerial Vehicle Photogrammetry

    NASA Astrophysics Data System (ADS)

    Lendzioch, Theodora; Langhammer, Jakub; Jenicek, Michal

    2017-04-01

    A rapid and robust approach using Unmanned Aerial Vehicle (UAV) digital photogrammetry was performed for evaluating snow accumulation over different small localities (e.g. disturbed forest and open area) and for indirect field measurements of Leaf Area Index (LAI) of coniferous forest within the Šumava National Park, Czech Republic. The approach was used to reveal impacts related to changes in forest and snowpack and to determine winter effective LAI for monitoring the impact of forest canopy metrics on snow accumulation. Due to the advancement of the technique, snow depth and volumetric changes of snow depth over these selected study areas were estimated at high spatial resolution (1 cm) by subtracting a snow-free digital elevation model (DEM) from a snow-covered DEM. Both, downward-looking UAV images and upward-looking digital hemispherical photography (DHP), and additional widely used LAI-2200 canopy analyser measurements were applied to determine the winter LAI, controlling interception and transmitting radiation. For the performance of downward-looking UAV images the snow background instead of the sky fraction was used. The reliability of UAV-based LAI retrieval was tested by taking an independent data set during the snow cover mapping campaigns. The results showed the potential of digital photogrammetry for snow depth mapping and LAI determination by UAV techniques. The average difference obtained between ground-based and UAV-based measurements of snow depth was 7.1 cm with higher values obtained by UAV. The SD of 22 cm for the open area seemed competitive with the typical precision of point measurements. In contrast, the average difference in disturbed forest area was 25 cm with lower values obtained by UAV and a SD of 36 cm, which is in agreement with other studies. The UAV-based LAI measurements revealed the lowest effective LAI values and the plant canopy analyser LAI-2200 the highest effective LAI values. The biggest bias of effective LAI was observed between LAI-2200 and UAV-based analyses. Since the LAI parameter is important for snowpack modelling, this method presents the potential of simplifying LAI retrieval and mapping of snow dynamics while reducing running costs and time.

  20. Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest

    NASA Astrophysics Data System (ADS)

    Tian, Jinyan; Wang, Le; Li, Xiaojuan; Gong, Huili; Shi, Chen; Zhong, Ruofei; Liu, Xiaomeng

    2017-09-01

    Unmanned Aerial Vehicle (UAV) remote sensing has opened the door to new sources of data to effectively characterize vegetation metrics at very high spatial resolution and at flexible revisit frequencies. Successful estimation of the leaf area index (LAI) in precision agriculture with a UAV image has been reported in several studies. However, in most forests, the challenges associated with the interference from a complex background and a variety of vegetation species have hindered research using UAV images. To the best of our knowledge, very few studies have mapped the forest LAI with a UAV image. In addition, the drawbacks and advantages of estimating the forest LAI with UAV and satellite images at high spatial resolution remain a knowledge gap in existing literature. Therefore, this paper aims to map LAI in a mangrove forest with a complex background and a variety of vegetation species using a UAV image and compare it with a WorldView-2 image (WV2). In this study, three representative NDVIs, average NDVI (AvNDVI), vegetated specific NDVI (VsNDVI), and scaled NDVI (ScNDVI), were acquired with UAV and WV2 to predict the plot level (10 × 10 m) LAI. The results showed that AvNDVI achieved the highest accuracy for WV2 (R2 = 0.778, RMSE = 0.424), whereas ScNDVI obtained the optimal accuracy for UAV (R2 = 0.817, RMSE = 0.423). In addition, an overall comparison results of the WV2 and UAV derived LAIs indicated that UAV obtained a better accuracy than WV2 in the plots that were covered with homogeneous mangrove species or in the low LAI plots, which was because UAV can effectively eliminate the influence from the background and the vegetation species owing to its high spatial resolution. However, WV2 obtained a slightly higher accuracy than UAV in the plots covered with a variety of mangrove species, which was because the UAV sensor provides a negative spectral response function(SRF) than WV2 in terms of the mangrove LAI estimation.

  1. Remote sensing sensors and applications in environmental resources mapping and modeling

    USGS Publications Warehouse

    Melesse, Assefa M.; Weng, Qihao; Thenkabail, Prasad S.; Senay, Gabriel B.

    2007-01-01

    The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling.

  2. Advancing reference emission levels in subnational and national REDD+ initiatives: a CLASlite approach

    PubMed Central

    Asner, Gregory P; Joseph, Shijo

    2015-01-01

    Conservation and monitoring of tropical forests requires accurate information on their extent and change dynamics. Cloud cover, sensor errors and technical barriers associated with satellite remote sensing data continue to prevent many national and sub-national REDD+ initiatives from developing their reference deforestation and forest degradation emission levels. Here we present a framework for large-scale historical forest cover change analysis using free multispectral satellite imagery in an extremely cloudy tropical forest region. The CLASlite approach provided highly automated mapping of tropical forest cover, deforestation and degradation from Landsat satellite imagery. Critically, the fractional cover of forest photosynthetic vegetation, non-photosynthetic vegetation, and bare substrates calculated by CLASlite provided scene-invariant quantities for forest cover, allowing for systematic mosaicking of incomplete satellite data coverage. A synthesized satellite-based data set of forest cover was thereby created, reducing image incompleteness caused by clouds, shadows or sensor errors. This approach can readily be implemented by single operators with highly constrained budgets. We test this framework on tropical forests of the Colombian Pacific Coast (Chocó) – one of the cloudiest regions on Earth, with successful comparison to the Colombian government’s deforestation map and a global deforestation map. PMID:25678933

  3. A long-term Northern Hemisphere snow cover extent product (JASMES) deriving from satellite-borne optical sensors using consistent objective criteria

    NASA Astrophysics Data System (ADS)

    Hori, M.; Sugiura, K.; Kobayashi, K.; Aoki, T.; Tanikawa, T.; Niwano, M.; Enomoto, H.

    2017-12-01

    A long-term Northern Hemisphere (NH) snow cover extent (SCE) product (JASMES SCE) was developed from the application of a consistent objective snow cover mapping algorithm to satellite-borne optical sensors (NOAA/AVHRR and NASA's optical sensor MODIS) from 1982 to the present. We estimated NH SCE from weekly composited snow cover maps and evaluated the accuracies of snow cover detection using in-situ snow data. As benchmark SCE product, we also evaluated the accuracy of SCE maps from the National Oceanic and Atmospheric Administration Climate Data Record (NOAA-CDR) product. The evaluation showed that JASMES SCE has more temporally stable accuracies. Seasonally averaged SCE derived from JASMES exhibited negative slopes in all seasons which is opposite to those of NOAA-CDR SCE in the fall and winter seasons. The spatial pattern of annual snow cover duration (SCD) trends exhibited noticeable asymmetric pattern between continents with the largest negative trends seen over western Eurasia. The NH SCE product will be connected to the data of the Japanese Earth Observing satellite named "Global Change Observation Mission for Climate (GCOM-C)" to be launched in late 2017.

  4. Mapping Nearshore Seagrass and Colonized Hard Bottom Spatial Distribution and Percent Biological Cover in Florida, USA Using Object Based Image Analysis of WorldView-2 Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Baumstark, R. D.; Duffey, R.; Pu, R.

    2016-12-01

    The offshore extent of seagrass habitat along the West Florida (USA) coast represents an important corridor for inshore-offshore migration of economically important fish and shellfish. Surviving at the fringe of light requirements, offshore seagrass beds are sensitive to changes in water clarity. Beyond and intermingled with the offshore seagrass areas are large swaths of colonized hard bottom. These offshore habitats of the West Florida coast have lacked mapping efforts needed for status and trends monitoring. The objective of this study was to propose an object-based classification method for mapping offshore habitats and to compare results to traditional photo-interpreted maps. Benthic maps depicting the spatial distribution and percent biological cover were created from WorldView-2 satellite imagery using Object Based Image Analysis (OBIA) method and a visual photo-interpretation method. A logistic regression analysis identified depth and distance from shore as significant parameters for discriminating spectrally similar seagrass and colonized hard bottom features. Seagrass, colonized hard bottom and unconsolidated sediment (sand) were mapped with 78% overall accuracy using the OBIA method compared to 71% overall accuracy using the photo-interpretation method. This study presents an alternative for mapping deeper, offshore habitats capable of producing higher thematic (percent biological cover) and spatial resolution maps compared to those created with the traditional photo-interpretation method.

  5. Multisensor earth observations to characterize wetlands and malaria epidemiology in Ethiopia

    NASA Astrophysics Data System (ADS)

    Midekisa, Alemayehu; Senay, Gabriel B.; Wimberly, Michael C.

    2014-11-01

    Malaria is a major global public health problem, particularly in Sub-Saharan Africa. The spatial heterogeneity of malaria can be affected by factors such as hydrological processes, physiography, and land cover patterns. Tropical wetlands, for example, are important hydrological features that can serve as mosquito breeding habitats. Mapping and monitoring of wetlands using satellite remote sensing can thus help to target interventions aimed at reducing malaria transmission. The objective of this study was to map wetlands and other major land cover types in the Amhara region of Ethiopia and to analyze district-level associations of malaria and wetlands across the region. We evaluated three random forests classification models using remotely sensed topographic and spectral data based on Shuttle Radar Topographic Mission (SRTM) and Landsat TM/ETM+ imagery, respectively. The model that integrated data from both sensors yielded more accurate land cover classification than single-sensor models. The resulting map of wetlands and other major land cover classes had an overall accuracy of 93.5%. Topographic indices and subpixel level fractional cover indices contributed most strongly to the land cover classification. Further, we found strong spatial associations of percent area of wetlands with malaria cases at the district level across the dry, wet, and fall seasons. Overall, our study provided the most extensive map of wetlands for the Amhara region and documented spatiotemporal associations of wetlands and malaria risk at a broad regional level. These findings can assist public health personnel in developing strategies to effectively control and eliminate malaria in the region.

  6. Postfire soil burn severity mapping with hyperspectral image unmixing

    USGS Publications Warehouse

    Robichaud, P.R.; Lewis, S.A.; Laes, D.Y.M.; Hudak, A.T.; Kokaly, R.F.; Zamudio, J.A.

    2007-01-01

    Burn severity is mapped after wildfires to evaluate immediate and long-term fire effects on the landscape. Remotely sensed hyperspectral imagery has the potential to provide important information about fine-scale ground cover components that are indicative of burn severity after large wildland fires. Airborne hyperspectral imagery and ground data were collected after the 2002 Hayman Fire in Colorado to assess the application of high resolution imagery for burn severity mapping and to compare it to standard burn severity mapping methods. Mixture Tuned Matched Filtering (MTMF), a partial spectral unmixing algorithm, was used to identify the spectral abundance of ash, soil, and scorched and green vegetation in the burned area. The overall performance of the MTMF for predicting the ground cover components was satisfactory (r2 = 0.21 to 0.48) based on a comparison to fractional ash, soil, and vegetation cover measured on ground validation plots. The relationship between Landsat-derived differenced Normalized Burn Ratio (dNBR) values and the ground data was also evaluated (r2 = 0.20 to 0.58) and found to be comparable to the MTMF. However, the quantitative information provided by the fine-scale hyperspectral imagery makes it possible to more accurately assess the effects of the fire on the soil surface by identifying discrete ground cover characteristics. These surface effects, especially soil and ash cover and the lack of any remaining vegetative cover, directly relate to potential postfire watershed response processes. ?? 2006 Elsevier Inc. All rights reserved.

  7. Multisensor earth observations to characterize wetlands and malaria epidemiology in Ethiopia

    USGS Publications Warehouse

    Midekisa, Alemayehu; Senay, Gabriel; Wimberly, Michael C.

    2014-01-01

    Malaria is a major global public health problem, particularly in Sub-Saharan Africa. The spatial heterogeneity of malaria can be affected by factors such as hydrological processes, physiography, and land cover patterns. Tropical wetlands, for example, are important hydrological features that can serve as mosquito breeding habitats. Mapping and monitoring of wetlands using satellite remote sensing can thus help to target interventions aimed at reducing malaria transmission. The objective of this study was to map wetlands and other major land cover types in the Amhara region of Ethiopia and to analyze district-level associations of malaria and wetlands across the region. We evaluated three random forests classification models using remotely sensed topographic and spectral data based on Shuttle Radar Topographic Mission (SRTM) and Landsat TM/ETM+ imagery, respectively. The model that integrated data from both sensors yielded more accurate land cover classification than single-sensor models. The resulting map of wetlands and other major land cover classes had an overall accuracy of 93.5%. Topographic indices and subpixel level fractional cover indices contributed most strongly to the land cover classification. Further, we found strong spatial associations of percent area of wetlands with malaria cases at the district level across the dry, wet, and fall seasons. Overall, our study provided the most extensive map of wetlands for the Amhara region and documented spatiotemporal associations of wetlands and malaria risk at a broad regional level. These findings can assist public health personnel in developing strategies to effectively control and eliminate malaria in the region.

  8. Fusion of High Resolution Multispectral Imagery in Vulnerable Coastal and Land Ecosystems.

    PubMed

    Ibarrola-Ulzurrun, Edurne; Gonzalo-Martin, Consuelo; Marcello-Ruiz, Javier; Garcia-Pedrero, Angel; Rodriguez-Esparragon, Dionisio

    2017-01-25

    Ecosystems provide a wide variety of useful resources that enhance human welfare, but these resources are declining due to climate change and anthropogenic pressure. In this work, three vulnerable ecosystems, including shrublands, coastal areas with dunes systems and areas of shallow water, are studied. As far as these resources' reduction is concerned, remote sensing and image processing techniques could contribute to the management of these natural resources in a practical and cost-effective way, although some improvements are needed for obtaining a higher quality of the information available. An important quality improvement is the fusion at the pixel level. Hence, the objective of this work is to assess which pansharpening technique provides the best fused image for the different types of ecosystems. After a preliminary evaluation of twelve classic and novel fusion algorithms, a total of four pansharpening algorithms was analyzed using six quality indices. The quality assessment was implemented not only for the whole set of multispectral bands, but also for the subset of spectral bands covered by the wavelength range of the panchromatic image and outside of it. A better quality result is observed in the fused image using only the bands covered by the panchromatic band range. It is important to highlight the use of these techniques not only in land and urban areas, but a novel analysis in areas of shallow water ecosystems. Although the algorithms do not show a high difference in land and coastal areas, coastal ecosystems require simpler algorithms, such as fast intensity hue saturation, whereas more heterogeneous ecosystems need advanced algorithms, as weighted wavelet ' à trous ' through fractal dimension maps for shrublands and mixed ecosystems. Moreover, quality map analysis was carried out in order to study the fusion result in each band at the local level. Finally, to demonstrate the performance of these pansharpening techniques, advanced Object-Based (OBIA) support vector machine classification was applied, and a thematic map for the shrubland ecosystem was obtained, which corroborates wavelet ' à trous ' through fractal dimension maps as the best fusion algorithm for this ecosystem.

  9. Fusion of High Resolution Multispectral Imagery in Vulnerable Coastal and Land Ecosystems

    PubMed Central

    Ibarrola-Ulzurrun, Edurne; Gonzalo-Martin, Consuelo; Marcello-Ruiz, Javier; Garcia-Pedrero, Angel; Rodriguez-Esparragon, Dionisio

    2017-01-01

    Ecosystems provide a wide variety of useful resources that enhance human welfare, but these resources are declining due to climate change and anthropogenic pressure. In this work, three vulnerable ecosystems, including shrublands, coastal areas with dunes systems and areas of shallow water, are studied. As far as these resources’ reduction is concerned, remote sensing and image processing techniques could contribute to the management of these natural resources in a practical and cost-effective way, although some improvements are needed for obtaining a higher quality of the information available. An important quality improvement is the fusion at the pixel level. Hence, the objective of this work is to assess which pansharpening technique provides the best fused image for the different types of ecosystems. After a preliminary evaluation of twelve classic and novel fusion algorithms, a total of four pansharpening algorithms was analyzed using six quality indices. The quality assessment was implemented not only for the whole set of multispectral bands, but also for the subset of spectral bands covered by the wavelength range of the panchromatic image and outside of it. A better quality result is observed in the fused image using only the bands covered by the panchromatic band range. It is important to highlight the use of these techniques not only in land and urban areas, but a novel analysis in areas of shallow water ecosystems. Although the algorithms do not show a high difference in land and coastal areas, coastal ecosystems require simpler algorithms, such as fast intensity hue saturation, whereas more heterogeneous ecosystems need advanced algorithms, as weighted wavelet ‘à trous’ through fractal dimension maps for shrublands and mixed ecosystems. Moreover, quality map analysis was carried out in order to study the fusion result in each band at the local level. Finally, to demonstrate the performance of these pansharpening techniques, advanced Object-Based (OBIA) support vector machine classification was applied, and a thematic map for the shrubland ecosystem was obtained, which corroborates wavelet ‘à trous’ through fractal dimension maps as the best fusion algorithm for this ecosystem. PMID:28125055

  10. Effective water surface mapping in macrophyte-covered reservoirs in NE Brazil based on TerraSAR-X time series

    NASA Astrophysics Data System (ADS)

    Zhang, Shuping; Foerster, Saskia; Medeiros, Pedro; de Araújo, José Carlos; Waske, Bjoern

    2018-07-01

    Water supplies in northeastern Brazil strongly depend on the numerous surface water reservoirs of various sizes there. However, the seasonal and long-term water surface dynamics of these reservoirs, particularly the large number of small ones, remain inadequately known. Remote sensing techniques have shown great potentials in water bodies mapping. Yet, the widespread presence of macrophytes in most of the reservoirs often impedes the delineation of the effective water surfaces. Knowledge of the dynamics of the effective water surfaces in the reservoirs is essential for understanding, managing, and modelling the local and regional water resources. In this study, a two-year time series of TerraSAR-X (TSX) satellite data was used to monitor the effective water surface areas in nine reservoirs in NE Brazil. Calm open water surfaces were obtained by segmenting the backscattering coefficients of TSX images with minimum error thresholding. Linear unmixing was implemented on the distributions of gray-level co-occurrence matrix (GLCM) variance in the reservoirs to quantify the proportions of sub-populations dominated by different types of scattering along the TSX time series. By referring to the statistics and the seasonal proportions of the GLCM variance sub-populations the GLCM variance was segmented to map the vegetated water surfaces. The effective water surface areas that include the vegetation-covered waters as well as calm open water in the reservoirs were mapped with accuracies >77%. The temporal and spatial change patterns of water surfaces in the nine reservoirs over a period of two consecutive dry and wet seasons were derived. Precipitation-related soil moisture changes, topography and the dense macrophyte canopies are the main sources of errors in the such-derived effective water surfaces. Independent from in-situ data, the approach employed in this study shows great potential in monitoring water surfaces of different complexity and macrophyte coverage. The effective water surface areas obtained for the reservoirs can provide valuable input for efficient water management and improve the hydrological modelling in this region.

  11. Large scale IRAM 30 m CO-observations in the giant molecular cloud complex W43

    NASA Astrophysics Data System (ADS)

    Carlhoff, P.; Nguyen Luong, Q.; Schilke, P.; Motte, F.; Schneider, N.; Beuther, H.; Bontemps, S.; Heitsch, F.; Hill, T.; Kramer, C.; Ossenkopf, V.; Schuller, F.; Simon, R.; Wyrowski, F.

    2013-12-01

    We aim to fully describe the distribution and location of dense molecular clouds in the giant molecular cloud complex W43. It was previously identified as one of the most massive star-forming regions in our Galaxy. To trace the moderately dense molecular clouds in the W43 region, we initiated W43-HERO, a large program using the IRAM 30 m telescope, which covers a wide dynamic range of scales from 0.3 to 140 pc. We obtained on-the-fly-maps in 13CO (2-1) and C18O (2-1) with a high spectral resolution of 0.1 km s-1 and a spatial resolution of 12''. These maps cover an area of ~1.5 square degrees and include the two main clouds of W43 and the lower density gas surrounding them. A comparison to Galactic models and previous distance calculations confirms the location of W43 near the tangential point of the Scutum arm at approximately 6 kpc from the Sun. The resulting intensity cubes of the observed region are separated into subcubes, which are centered on single clouds and then analyzed in detail. The optical depth, excitation temperature, and H2 column density maps are derived out of the 13CO and C18O data. These results are then compared to those derived from Herschel dust maps. The mass of a typical cloud is several 104 M⊙ while the total mass in the dense molecular gas (>102 cm-3) in W43 is found to be ~1.9 × 106 M⊙. Probability distribution functions obtained from column density maps derived from molecular line data and Herschel imaging show a log-normal distribution for low column densities and a power-law tail for high densities. A flatter slope for the molecular line data probability distribution function may imply that those selectively show the gravitationally collapsing gas. Appendices are available in electronic form at http://www.aanda.orgThe final datacubes (13CO and C18O) for the entire survey are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A24

  12. Mapping and quantifying ecosystem services: analysis of trade-offs and synergies at the different spatial scales

    NASA Astrophysics Data System (ADS)

    Tomczyk, Aleksandra; Ewertowski, Marek

    2014-05-01

    The importance of conserving the natural environment has been known for a long time. It can be fulfilled by designation of protected areas as well as proper management of broader landscapes. During past two decades, conservation has shifted from a predominantly species- and habitat-focus to a more holistic "ecosystem approach" with an emphasis on "ecosystem services", which underpin the benefits which society can obtain (directly or indirectly) from ecosystems. This study aims to investigate and compare existing land use prioritization models and to develop new GIS-based frameworks for analysis for different spatial scales. Research were carried out in several conservation areas in UK and Poland. Main focus was on regulating (including regulation of soil erosion and landslide susceptibility) and recreation services. A new GIS-based model was developed which enabled to analysis of this services. Different spatial scales, ranging from whole conservation areas to single catchments were chosen for mapping and quantifying. Based on different scenarios three sets of ecosystem services were calculated. Data contained specific land-cover/land-use resulting from the different strategy of the natural conservation for each of the study sites. Modelling was carried out based on the trends identified on the basis of past changes in land-use/land-cover (based on analysis of time-series satellite images), and the probability of a particular class of land-use/land-cover for the chosen scenario. Comparison between results revealed ecosystem service tradeoffs (when the obtaining of one service results in the reducing of another service) and synergies (when multiple services can be provides simultaneously). Results of the study shows where (and under which condition): (1) conservation areas can accommodate more visitors and in the same time provide regulation of soil erosion and protection against landslide developments, (2) further development of recreation services will lead to inevitable degradation of environment. Based on these results several further activities were proposed: from changing of conservation strategy for some part of the areas to changing of the land cover/land use.

  13. Geothermal Maps | Geospatial Data Science | NREL

    Science.gov Websites

    presented in these maps was aggregated from the Geothermal Energy Association 2014 Annual U.S. and Global Geothermal Maps Geothermal Maps Our geothermal map collection covers U.S. geothermal power plants , geothermal resource potential, and geothermal power generation. If you have difficulty accessing these maps

  14. HectoMAPping the Universe. Karl Schwarzschild Award Lecture 2014

    NASA Astrophysics Data System (ADS)

    Geller, Margaret J.; Hwang, Ho Seong

    2015-06-01

    During the last three decades progress in mapping the Universe from an age of 400 000 years to the present has been stunning. Instrument/telescope combinations have naturally determined the sampling of various redshift ranges. Here we outline the impact of the Hectospec on the MMT on exploration of the Universe in the redshift range 0.2 ⪉ z ⪉ 0.8. We focus on dense redshift surveys, SHELS and HectoMAP. SHELS is a complete magnitude limited survey covering 8 square degrees. The HectoMAP survey combines a red-selected dense redshift survey and a weak lensing map covering 50 square degrees. Combining the dense redshift survey with a Subaru HyperSuprimeCam (HSC) weak lensing map will provide a powerful probe of the way galaxies trace the distribution of dark matter on a wide range of physical scales.

  15. EnviroAtlas -Durham, NC- One Meter Resolution Urban Area Land Cover Map (2010) Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas ). The EnviroAtlas Durham, NC land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from July 2010 at 1 m spatial resolution. Five land cover classes were mapped: impervious surface, soil and barren, grass and herbaceous, trees and forest, and water. An accuracy assessment using a stratified random sampling of 500 samples yielded an overall accuracy of 83 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Durham, and includes the cities of Durham, Chapel Hill, Carrboro and Hillsborough, NC. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  16. Land User and Land Cover Maps of Europe: a Webgis Platform

    NASA Astrophysics Data System (ADS)

    Brovelli, M. A.; Fahl, F. C.; Minghini, M.; Molinari, M. E.

    2016-06-01

    This paper presents the methods and implementation processes of a WebGIS platform designed to publish the available land use and land cover maps of Europe at continental scale. The system is built completely on open source infrastructure and open standards. The proposed architecture is based on a server-client model having GeoServer as the map server, Leaflet as the client-side mapping library and the Bootstrap framework at the core of the front-end user interface. The web user interface is designed to have typical features of a desktop GIS (e.g. activate/deactivate layers and order layers by drag and drop actions) and to show specific information on the activated layers (e.g. legend and simplified metadata). Users have the possibility to change the base map from a given list of map providers (e.g. OpenStreetMap and Microsoft Bing) and to control the opacity of each layer to facilitate the comparison with both other land cover layers and the underlying base map. In addition, users can add to the platform any custom layer available through a Web Map Service (WMS) and activate the visualization of photos from popular photo sharing services. This last functionality is provided in order to have a visual assessment of the available land coverages based on other user-generated contents available on the Internet. It is supposed to be a first step towards a calibration/validation service that will be made available in the future.

  17. New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities

    NASA Astrophysics Data System (ADS)

    Roy, P. S.; Behera, M. D.; Murthy, M. S. R.; Roy, Arijit; Singh, Sarnam; Kushwaha, S. P. S.; Jha, C. S.; Sudhakar, S.; Joshi, P. K.; Reddy, Ch. Sudhakar; Gupta, Stutee; Pujar, Girish; Dutt, C. B. S.; Srivastava, V. K.; Porwal, M. C.; Tripathi, Poonam; Singh, J. S.; Chitale, Vishwas; Skidmore, A. K.; Rajshekhar, G.; Kushwaha, Deepak; Karnatak, Harish; Saran, Sameer; Giriraj, A.; Padalia, Hitendra; Kale, Manish; Nandy, Subrato; Jeganathan, C.; Singh, C. P.; Biradar, C. M.; Pattanaik, Chiranjibi; Singh, D. K.; Devagiri, G. M.; Talukdar, Gautam; Panigrahy, Rabindra K.; Singh, Harnam; Sharma, J. R.; Haridasan, K.; Trivedi, Shivam; Singh, K. P.; Kannan, L.; Daniel, M.; Misra, M. K.; Niphadkar, Madhura; Nagabhatla, Nidhi; Prasad, Nupoor; Tripathi, O. P.; Prasad, P. Rama Chandra; Dash, Pushpa; Qureshi, Qamer; Tripathi, S. K.; Ramesh, B. R.; Gowda, Balakrishnan; Tomar, Sanjay; Romshoo, Shakil; Giriraj, Shilpa; Ravan, Shirish A.; Behera, Soumit Kumar; Paul, Subrato; Das, Ashesh Kumar; Ranganath, B. K.; Singh, T. P.; Sahu, T. R.; Shankar, Uma; Menon, A. R. R.; Srivastava, Gaurav; Neeti; Sharma, Subrat; Mohapatra, U. B.; Peddi, Ashok; Rashid, Humayun; Salroo, Irfan; Krishna, P. Hari; Hajra, P. K.; Vergheese, A. O.; Matin, Shafique; Chaudhary, Swapnil A.; Ghosh, Sonali; Lakshmi, Udaya; Rawat, Deepshikha; Ambastha, Kalpana; Malik, Akhtar H.; Devi, B. S. S.; Gowda, Balakrishna; Sharma, K. C.; Mukharjee, Prashant; Sharma, Ajay; Davidar, Priya; Raju, R. R. Venkata; Katewa, S. S.; Kant, Shashi; Raju, Vatsavaya S.; Uniyal, B. P.; Debnath, Bijan; Rout, D. K.; Thapa, Rajesh; Joseph, Shijo; Chhetri, Pradeep; Ramachandran, Reshma M.

    2015-07-01

    A seamless vegetation type map of India (scale 1: 50,000) prepared using medium-resolution IRS LISS-III images is presented. The map was created using an on-screen visual interpretation technique and has an accuracy of 90%, as assessed using 15,565 ground control points. India has hitherto been using potential vegetation/forest type map prepared by Champion and Seth in 1968. We characterized and mapped further the vegetation type distribution in the country in terms of occurrence and distribution, area occupancy, percentage of protected area (PA) covered by each vegetation type, range of elevation, mean annual temperature and precipitation over the past 100 years. A remote sensing-amenable hierarchical classification scheme that accommodates natural and semi-natural systems was conceptualized, and the natural vegetation was classified into forests, scrub/shrub lands and grasslands on the basis of extent of vegetation cover. We discuss the distribution and potential utility of the vegetation type map in a broad range of ecological, climatic and conservation applications from global, national and local perspectives. We used 15,565 ground control points to assess the accuracy of products available globally (i.e., GlobCover, Holdridge's life zone map and potential natural vegetation (PNV) maps). Hence we recommend that the map prepared herein be used widely. This vegetation type map is the most comprehensive one developed for India so far. It was prepared using 23.5 m seasonal satellite remote sensing data, field samples and information relating to the biogeography, climate and soil. The digital map is now available through a web portal (http://bis.iirs.gov.in).

  18. Leading-order classical Lagrangians for the nonminimal standard-model extension

    NASA Astrophysics Data System (ADS)

    Reis, J. A. A. S.; Schreck, M.

    2018-03-01

    In this paper, we derive the general leading-order classical Lagrangian covering all fermion operators of the nonminimal standard-model extension (SME). Such a Lagrangian is considered to be the point-particle analog of the effective field theory description of Lorentz violation that is provided by the SME. At leading order in Lorentz violation, the Lagrangian obtained satisfies the set of five nonlinear equations that govern the map from the field theory to the classical description. This result can be of use for phenomenological studies of classical bodies in gravitational fields.

  19. Multispectral sensing of citrus young tree decline

    NASA Technical Reports Server (NTRS)

    Edwards, G. J.; Ducharme, E. P.; Schehl, T.

    1975-01-01

    Computer processing of MSS data to identify and map citrus trees affected by young tree decline is analyzed. The data were obtained at 1500-feet altitude in six discrete spectral bands covering regions from 0.53 to 1.3 millimicrons as well as from instrumental ground truths of tree crowns. Measurable spectral reflectance intensity differences are observed in the leaves of healthy and diseased trees, especially at wavelengths of 500 to 600 nm and 700 to 800 nm. The overall accuracy of the method is found to be 89%.

  20. Predictive landslide susceptibility mapping using spatial information in the Pechabun area of Thailand

    NASA Astrophysics Data System (ADS)

    Oh, Hyun-Joo; Lee, Saro; Chotikasathien, Wisut; Kim, Chang Hwan; Kwon, Ju Hyoung

    2009-04-01

    For predictive landslide susceptibility mapping, this study applied and verified probability model, the frequency ratio and statistical model, logistic regression at Pechabun, Thailand, using a geographic information system (GIS) and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys, and maps of the topography, geology and land cover were constructed to spatial database. The factors that influence landslide occurrence, such as slope gradient, slope aspect and curvature of topography and distance from drainage were calculated from the topographic database. Lithology and distance from fault were extracted and calculated from the geology database. Land cover was classified from Landsat TM satellite image. The frequency ratio and logistic regression coefficient were overlaid for landslide susceptibility mapping as each factor’s ratings. Then the landslide susceptibility map was verified and compared using the existing landslide location. As the verification results, the frequency ratio model showed 76.39% and logistic regression model showed 70.42% in prediction accuracy. The method can be used to reduce hazards associated with landslides and to plan land cover.

Top