Sample records for covered include solar

  1. Module level solutions to solar cell polarization

    DOEpatents

    Xavier, Grace , Li; Bo, [San Jose, CA

    2012-05-29

    A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.

  2. Preheating Water In The Covers Of Solar Water Heaters

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep

    1995-01-01

    Solar water heaters that include glass covers over absorber plates redesigned to increase efficiencies according to proposal. Redesign includes modification of single-layer glass cover into double-layer glass cover and addition of plumbing so cool water to be heated made to flow between layers of cover before entering absorber plate.

  3. Long-Life Self-Renewing Solar Reflector Stack

    DOEpatents

    Butler, Barry Lynn

    1997-07-08

    A long-life solar reflector includes a solar collector substrate and a base layer bonded to a solar collector substrate. The first layer includes a first reflective layer and a first acrylic or transparent polymer layer covering the first reflective layer to prevent exposure of the first reflective layer. The reflector also includes at least one upper layer removably bonded to the first acrylic or transparent polymer layer of the base layer. The upper layer includes a second reflective layer and a second acrylic or transparent polymer layer covering the second reflective layer to prevent exposure of the second reflective layer. The upper layer may be removed from the base reflective layer to expose the base layer, thereby lengthening the useful life of the solar reflector. A method of manufacturing a solar reflector includes the steps of bonding a base layer to a solar collector substrate, wherein the base reflective layer includes a first reflective layer and a first transparent polymer or acrylic layer covering the first reflective layer; and removably bonding a first upper layer to the first transparent polymer or acrylic layer of the base layer. The first upper layer includes a second reflective layer and a second transparent polymer or acrylic layer covering the second reflective layer to prevent exposure of the second reflective layer.

  4. A broad look at solar physics adapted from the solar physics study of August 1975

    NASA Technical Reports Server (NTRS)

    Parker, E.; Timothy, A.; Beckers, J.; Hundhausen, A.; Kundu, M. R.; Leith, C. E.; Lin, R.; Linsky, J.; Macdonald, F. B.; Noyes, R.

    1979-01-01

    The current status of our knowledge of the basic mechanisms involved in fundamental solar phenomena is reviewed. These include mechanisms responsible for heating the corona, the generation of the solar wind, the particle acceleration in flares, and the dissipation of magnetic energy in field reversal regions, known as current sheets. The discussion covers solar flares and high-energy phenomena, solar active regions; solar interior, convection, and activity; the structure and energetics of the quiet solar atmosphere; the structure of the corona; the solar composition; and solar terrestrial interactions. It also covers a program of solar research, including the special observational requirements for spectral and angular resolution, sensitivity, time resolution, and duration of the techniques employed.

  5. Solar astronomy

    NASA Technical Reports Server (NTRS)

    Rosner, Robert; Noyes, Robert; Antiochos, Spiro K.; Canfield, Richard C.; Chupp, Edward L.; Deming, Drake; Doschek, George A.; Dulk, George A.; Foukal, Peter V.; Gilliland, Ronald L.

    1991-01-01

    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research.

  6. Goddard Visiting Scientist Program for the Space and Earth Sciences Directorate

    NASA Technical Reports Server (NTRS)

    Kerr, Frank

    1992-01-01

    Progress reports of the Visiting Scientist Program covering the period from 1 Jul. - 30 Sep. 1992 are included. Topics covered include space science and earth science. Other topics covered include cosmic rays, magnetic clouds, solar wind, satellite data, high resolution radiometer, and microwave scattering.

  7. Solar variability: Implications for global change

    NASA Technical Reports Server (NTRS)

    Lean, Judith; Rind, David

    1994-01-01

    Solar variability is examined in search of implications for global change. The topics covered include the following: solar variation modification of global surface temperature; the significance of solar variability with respect to future climate change; and methods of reducing the uncertainty of the potential amplitude of solar variability on longer time scales.

  8. Solar-geophysical data number 493, September 1985. Part 1: (Prompt reports). Data for August 1985, July 1985 and late data

    NASA Technical Reports Server (NTRS)

    Coffey, H. E. (Editor)

    1985-01-01

    Topics covered include: detailed index for 1985; data for August 1985--(IUWDS alert periods (Advanced and Worldwide), solar activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field); (solar active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic ray measurements by neutron monitor, geomagnetic indices, radio propagation indices); and late data--calcium plage data.

  9. Solar-cell defect analyzer

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.; Miller, E. L.; Shumka, A.

    1980-01-01

    Laser-Scanning System pinpoints imperfections in solar cells. Entire solar panels containing large numbers of cells can be scanned. Although technique is similar to use of scanning electron microscope (SEM) to locate microscopic imperfections, it differs in that large areas may be examined, including entire solar panels, and it is not necessary to remove cover glass or encapsulants.

  10. Ultraviolet irradiation at elevated temperatures and thermal cycling in vacuum of FEP-A covered silicon solar cells

    NASA Technical Reports Server (NTRS)

    Broder, J. D.; Marsik, S. J.

    1978-01-01

    Experiments were designed and performed on silicon solar cells covered with heat-bonded FEP-A in an effort to explain the rapid degeneration of open-circuit voltage and maximum power observered on cells of this type included in an experiment on the ATS-6 spacecraft. Solar cells were exposed to ultraviolet light in vacuum at temperatures ranging from 30 to 105 C. The samples were then subjected to thermal cycling from 130 to -130 C. Inspection following irradiation indicated that all the covers remained physically intact. However, during the temperature cycling heat-bonded covers showed cracking. The test showed that heat-bonded FEP-A covers embrittle during UV exposure and the embrittlement is dependent upon sample temperature during irradiation. The results of the experiment suggest a probable mechanism for the degradation of the FEP-A cells on ATS-6.

  11. Development of integral covers on solar cells

    NASA Technical Reports Server (NTRS)

    Stella, P.; Somberg, H.

    1971-01-01

    The electron-beam technique for evaporating a dielectric material onto solar cells is investigated. A process has been developed which will provide a highly transparent, low stress, 2 mil thick cover capable of withstanding conventional space type qualification tests including humidity, thermal shock, and thermal cycling. The covers have demonstrated the ability to withstand 10 to the 15th power 1 MeV electrons and UV irradiation with minor darkening. Investigation of the cell AR coating has produced a space qualifiable titanium oxide coating which will give an additional 6% current output over similar silicon oxide coated cells when covered by glass.

  12. Nimbus-7 ERB Solar Analysis Tape (ESAT) user's guide

    NASA Technical Reports Server (NTRS)

    Major, Eugene; Hickey, John R.; Kyle, H. Lee; Alton, Bradley M.; Vallette, Brenda J.

    1988-01-01

    Seven years and five months of Nimbus-7 Earth Radiation Budget (ERB) solar data are available on a single ERB Solar Analysis Tape (ESAT). The period covered is November 16, 1978 through March 31, 1986. The Nimbus-7 satellite performs approximately 14 orbits per day and the ERB solar telescope observes the sun once per orbit as the satellite crosses the southern terminator. The solar data were carefully calibrated and screened. Orbital and daily mean values are given for the total solar irradiance plus other spectral intervals (10 solar channels in all). In addition, selected solar activity indicators are included on the ESAT. The ESAT User's Guide is an update of the previous ESAT User's Guide (NASA TM 86143) and includes more detailed information on the solar data calibration, screening procedures, updated solar data plots, and applications to solar variability. Details of the tape format, including source code to access ESAT, are included.

  13. Solar Water Heater Installation Package

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A 48-page report describes water-heating system, installation (covering collector orientation, mounting, plumbing and wiring), operating instructions and maintenance procedures. Commercial solar-powered water heater system consists of a solar collector, solar-heated-water tank, electrically heated water tank and controls. Analysis of possible hazards from pressure, electricity, toxicity, flammability, gas, hot water and steam are also included.

  14. Satellite Power Systems (SPS) Concept Definition Study. Volume 3: SPS Concept Evolution

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    A solar photovoltaic satellite based upon the utilization of a GaAlAs solar cell is defined. Topics covered include silicon-based photovoltaics, solar thermal power conversion, microwave energy transmission, power distribution, structures, attitude control and stationkeeping, thermal, and information management and control.

  15. Spectral response data for development of cool coloured tile coverings

    NASA Astrophysics Data System (ADS)

    Libbra, Antonio; Tarozzi, Luca; Muscio, Alberto; Corticelli, Mauro A.

    2011-03-01

    Most ancient or traditional buildings in Italy show steep-slope roofs covered by red clay tiles. As the rooms immediately below the roof are often inhabited in historical or densely urbanized centres, the combination of low solar reflectance of tile coverings and low thermal inertia of either wooden roof structures or sub-tile insulation panels makes summer overheating a major problem. The problem can be mitigated by using tiles coated with cool colours, that is colours with the same spectral response of clay tiles in the visible, but highly reflecting in the near infrared range, which includes more than half of solar radiation. Cool colours can yield the same visible aspect of common building surfaces, but higher solar reflectance. Studies aimed at developing cool colour tile coverings for traditional Italian buildings have been started. A few coating solutions with the typical red terracotta colour have been produced and tested in the laboratory, using easily available materials. The spectral response and the solar reflectance have been measured and compared with that of standard tiles.

  16. Solar Energy Education Bibliography: Books, Films & Slides. Expanded Version.

    ERIC Educational Resources Information Center

    Center for Renewable Resources, Washington, DC.

    This directory offers a comprehensive listing of resources, including films, for energy education. The document is divided into three sections: (1) Publications according to elementary, secondary, and college level; (2) Audiovisuals; and (3) Periodicals. Specific energy topics covered include solar, wind, and biomass technologies. (RE)

  17. The Structure and Dynamics of the Solar Corona and Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    2002-01-01

    This report covers technical progress during the second quarter of the first year of NASA Sun-Earth Connections Theory Program (SECTP) contract 'The Structure and Dynamics of the Solar Corona and Inner Heliosphere,' NAS5-99188, between NASA and Science Applications International Corporation. and covers the period November 16, 1999 to February 15, 2000. Under this contract SAIC and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD (magnetohydrodynamic) model. The topics studied include: the effect of emerging flux on the stability of helmet streamers, coronal loops and streamers, the solar magnetic field, the solar wind, and open magnetic field lines.

  18. Nanostructured Solar Cells.

    PubMed

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-08-09

    We are glad to announce the Special Issue "Nanostructured Solar Cells", published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  19. Solar Resource Assessment for Sri Lanka and Maldives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renne, D.; George, R.; Marion, B.

    2003-08-01

    The countries of Sri Lanka and the Maldives lie within the equatorial belt, a region where substantial solar energy resources exist throughout much of the year in adequate quantities for many applications, including solar water heating, solar electricity, and desalination. The extent of solar resources in Sri Lanka has been estimated in the past based on a study of the daily total direct sunshine hours recorded at a number of weather and agricultural stations throughout the country. These data have been applied to the well-known Angstrom relationship in order to obtain an estimate of the distribution of monthly average dailymore » total solar resources at these stations. This study is an effort in improve on these estimates in two ways: (1) to apply a gridded cloud cover database at a 40-km resolution to produce updated monthly average daily total estimates of all solar resources (global horizontal, DNI, and diffuse) for the country, and (2) to input hourly or three-hourly cloud cover observations made at nine weather stations in Sri Lanka and two in the Maldives into a solar model that produces estimates of hourly solar radiation values of the direct normal, global, and diffuse resource covering the length of the observational period. Details and results of these studies are summarized in this report.« less

  20. Annular and Total Solar Eclipses of 2010

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, J.

    2008-01-01

    While most NASA eclipse bulletins cover a single eclipse, this publication presents predictions for two solar eclipses during 2010. This has required a different organization of the material into the following sections. Section 1 -- Eclipse Predictions: The section consists of a general discussion about the eclipse path maps, Besselian elements, shadow contacts, eclipse path tables, local circumstances tables, and the lunar limb profile. Section 2 -- Annular Solar Eclipse of 2010 Ja n 15: The section covers predictions and weather prospects for the annular eclipse. Section 3 -- Total Solar Eclipse of 2010 Jul 11: The se ction covers predictions and weather prospects for the total eclipse. Section 4 -- Observing Eclipses: The section provides information on eye safety, solar filters, eclipse photography, and making contact timings from the path limits. Section 5 -- Eclipse Resources: The final section contains a number of resources including information on the IAU Working Group on Eclipses, the Solar Eclipse Mailing List, the NASA eclipse bulletins on the Internet, Web sites for the two 2010 eclipses, and a summary identifying the algorithms, ephemerides, and paramete rs used in the eclipse predictions.

  1. Real-time and accelerated outdoor endurance testing of solar cells

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Anagnostou, E.

    1978-01-01

    Materials for solar-cell module construction have been studied on the basis of limited real-time outdoor exposure evaluations. The materials tested included transmission samples, sub-modules, and actual solar cells. The results suggest that glass, fluorinated ethylene propylene, and perfluoroalkoxy are good materials for the covering or encapsulation of solar-cell modules. In all cases, dirt accumulation and cleanability are important factors.

  2. Array Automated Assembly Task Low Cost Silicon Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Rhee, S. S.; Jones, G. T.; Allison, K. L.

    1978-01-01

    Progress in the development of solar cells and module process steps for low-cost solar arrays is reported. Specific topics covered include: (1) a system to automatically measure solar cell electrical performance parameters; (2) automation of wafer surface preparation, printing, and plating; (3) laser inspection of mechanical defects of solar cells; and (4) a silicon antireflection coating system. Two solar cell process steps, laser trimming and holing automation and spray-on dopant junction formation, are described.

  3. Introduction to meteorological measurements and data handling for solar energy applications. Task IV. Development of an isolation handbook and instrument package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The following are covered: the Sun and its radiation, solar radiation and atmospheric interaction, solar radiation measurement methods, spectral irradiance measurements of natural sources, the measurement of infrared radiation, the measurement of circumsolar radiation, some empirical properties of solar radiation and related parameters, duration of sunshine, and meteorological variables related to solar energy. Included in appendices are manufacturers and distributors of solar radiation measuring instruments and an approximate method for quality control of solar radiation instruments. (MHR)

  4. Natural environment design requirements for the Solar Electric Propulsion Stage (SEPS)

    NASA Technical Reports Server (NTRS)

    Andrews, L. E.

    1973-01-01

    The natural environment design requirements for the solar electric propulsion stage are presented. Environment criteria for the SEP stage will cover earth orbital operations out to geosynchronous altitudes and also interplanetary missions including comet and asteroid missions.

  5. Method for making an aluminum or copper substrate panel for selective absorption of solar energy

    NASA Technical Reports Server (NTRS)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1978-01-01

    A panel is described for selectively absorbing solar energy comprising an aluminum substrate. A zinc layer was covered by a layer of nickel and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a nickel layer. A layer of solar energy absorbing nickel oxide distal from the copper substrate was included. A method for making these panels is disclosed.

  6. The Sun as a star

    NASA Technical Reports Server (NTRS)

    Jordan, S. D. (Editor)

    1981-01-01

    Solar physics was reviewed in the context of the solar atmoshere. The understanding of the solar atmosphere is linked to stellar atmospheric research. Topics covered include: the existence of the chromosphere, the corona, and the solar wind; the interactive complex of convection, differential rotation, magnetic field generation and concentration, and the activity cycle; phenomena such as granulation, supergranulation, the 5 minute oscillation, filigree, faculae, sunspots, spicules, prominences, surges, and the spectacular flares.

  7. PEP solar array definition study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The conceptual design of a large, flexible, lightweight solar array is presented focusing on a solar array overview assessment, solar array blanket definition, structural-mechanical systems definition, and launch/reentry blanket protection features. The overview assessment includes a requirements and constraints review, the thermal environment assessment on the design selection, an evaluation of blanket integration sequence, a conceptual blanket/harness design, and a hot spot analysis considering the effects of shadowing and cell failures on overall array reliability. The solar array blanket definition includes the substrate design, hinge designs and blanket/harness flexibility assessment. The structural/mechanical systems definition includes an overall loads and deflection assessment, a frequency analysis of the deployed assembly, a components weights estimate, design of the blanket housing and tensioning mechanism. The launch/reentry blanket protection task includes assessment of solar cell/cover glass cushioning concepts during ascent and reentry flight condition.

  8. Studies of silicon p-n junction solar cells

    NASA Technical Reports Server (NTRS)

    Neugroschel, A.; Lindholm, F. A.

    1979-01-01

    To provide theoretical support for investigating different ways to obtain high open-circuit voltages in p-n junction silicon solar cells, an analytical treatment of heavily doped transparent-emitter devices is presented that includes the effects of bandgap narrowing, Fermi-Dirac statistics, a doping concentration gradient, and a finite surface recombination velocity at the emitter surface. Topics covered include: (1) experimental determination of bandgap narrowing in the emitter of silicon p-n junction devices; (2) heavily doped transparent regions in junction solar cells, diodes, and transistors; (3) high-low-emitter solar cell; (4) determination of lifetimes and recombination currents in p-n junction solar cells; (5) MOS and oxide-charged-induced BSF solar cells; and (6) design of high efficiency solar cells for space and terrestrial applications.

  9. Qualification test results for blue-red reflecting solar covers

    NASA Technical Reports Server (NTRS)

    Beauchamp, W. T.

    1994-01-01

    Recent market forces and design innovations have spurred the development of solar cell covers that significantly reduce the solar absorptance for a cell array. GaAs cells, using Ge as the substrate host material, can have a significantly higher output if the solar absorptance of the cell array is reduced. New optical coating design techniques have allowed the construction of covers that reflect the ultraviolet energy (below 350 nm) and the near infrared energy (above 900 nm) resulting in the beneficial reduction in absorptance. Recent modeling suggests three or more present output increase due to the lowered temperature with such a device. Within the last several months we have completed the testing of production samples of these new covers in a qualification series that included the usual environmental effects associated with the routine testing of solar cell covers and the combined effects of protons, electrons and solar UV as would be encountered in space. For the combined effects testing the samples were exposed to 300 sun days equivalent UV, 5 x 10(exp 14)/sq cm of 0.5 MeV protons and 10(exp 15)/sq cm of 1.0 MeV electrons. Measurements of the reflectance, transmission, emittance and other appropriate parameters were made before and after the testing. As measured by the averaged transmission over the cell operating band, the change in transmission for the samples was less than or about equal to 1 percent. The details of the testing and the results in terms of transmission, reflectance and emittance are discussed in the paper.

  10. Solar-terrestrial Predictions Proceedings. Volume 1: Prediction Group Reports

    NASA Technical Reports Server (NTRS)

    Donnelly, R. F. (Editor)

    1979-01-01

    The current practice in solar terrestrial predictions is reviewed with emphasis of prediction, warning, and monitoring services. Topics covered include: ionosphere-reflected HF radio propagation; radiation hazards for manned space flights and high altitude and high latitude aircraft flights; and geomagnetic activity.

  11. Joint observations of solar corona in space projects ARKA and KORTES

    NASA Astrophysics Data System (ADS)

    Vishnyakov, Eugene A.; Bogachev, Sergey A.; Kirichenko, Alexey S.; Reva, Anton A.; Loboda, Ivan P.; Malyshev, Ilya V.; Ulyanov, Artem S.; Dyatkov, Sergey Yu.; Erkhova, Nataliya F.; Pertsov, Andrei A.; Kuzin, Sergey V.

    2017-05-01

    ARKA and KORTES are two upcoming solar space missions in extreme ultraviolet and X-ray wavebands. KORTES is a sun-oriented mission designed for the Russian segment of International Space Station. KORTES consists of several imaging and spectroscopic instruments that will observe the solar corona in a number of wavebands, covering EUV and X-ray ranges. The surveillance strategy of KORTES is to cover a wide range of observations including simultaneous imaging, spectroscopic and polarization measurements. ARKA is a small satellite solar mission intended to take highresolution images of the Sun at the extreme ultraviolet wavelengths. ARKA will be equipped with two high-resolution EUV telescopes designed to collect images of the Sun with approximately 150 km spatial resolution in the field of view of about 10'×10'. The scientific results of the mission may have a significant impact on the theory of coronal heating and may help to clarify the physics of small-scale solar structures and phenomena including oscillations of fine coronal structures and the physics of micro- and nanoflares.

  12. Energy Implementation Centers: A Method of Speeding the Use of Solar Energy and Other Energy Conserving Technologies. Final Report.

    ERIC Educational Resources Information Center

    Hirshberg, A. S.; And Others

    This report examines the role of implementation centers as a vehicle for speeding the use of solar energy and energy conservation. It covers a study of previous building industry innovations; a brief review of the diffusion of innovation literature, including several case studies; identification of the solar thermal application process and…

  13. Solar Physics and Terrestrial Effects: A Curriculum Guide for Teachers Grades 7-12, 2nd Edition.

    ERIC Educational Resources Information Center

    Briggs, Roger P.; Carlisle, Robert J.

    This curriculum guide includes a brief textbook, a hands-on activity guide, and resource listings. The textbook provides background information in solar physics for teachers and contains problems suitable for advanced students at the end of each chapter. Topics covered in the textbook include stellar evolution, the structure of the sun, methods of…

  14. Development of a solar-powered residential air conditioner. Program review

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Progress in the effort to develop a residential solar-powered air conditioning system is reported. The topics covered include the objectives, scope and status of the program. The results of state-of-art, design, and economic studies and component and system data are also presented.

  15. Solar power satellite system definition study, volume 4, phase 2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results of an overall evaluation of the solar power satellite concept are reported. Specific topics covered include: solid state sandwich configuration; parametric development of reliability design; power distribution system for solid state solar power satellites; multibeam transmission; GEO base system configuration; suppression of the heavy lift launch vehicle trajectory; conceptual design of an offshore space center facility; solar power satellite development and operations scenario; and microwave power transmission technology, advancement, development, and facility requirements.

  16. Long Duration Exposure Facility Space Optics Handbook

    DTIC Science & Technology

    1993-09-01

    apparent (Ref. 12). The solar cell covers showed similar impact damage as the refractive optics components. 4-1020 Si i -i 10 • 4.12, Related Material...coatings, which worsens the synergistic A(0 0 cr()Sil Oi on Uateia IS, 11nd canl Upset olties, issoc iated telescope baffles, solar cells , star 0 0 trackers...and material processes which address S primarily solar array materials, including solar cell -, 0 composites, thin films, paints, metals and other

  17. Possible external sources of terrestrial cloud cover variability: the solar wind

    NASA Astrophysics Data System (ADS)

    Voiculescu, Mirela; Usoskin, Ilya; Condurache-Bota, Simona

    2014-05-01

    Cloud cover plays an important role in the terrestrial radiation budget. The possible influence of the solar activity on cloud cover is still an open question with contradictory answers. An extraterrestrial factor potentially affecting the cloud cover is related to fields associated with solar wind. We focus here on a derived quantity, the interplanetary electric field (IEF), defined as the product between the solar wind speed and the meridional component, Bz, of the interplanetary magnetic field (IMF) in the Geocentric Solar Magnetospheric (GSM) system. We show that cloud cover at mid-high latitudes systematically correlates with positive IEF, which has a clear energetic input into the atmosphere, but not with negative IEF, in general agreement with predictions of the global electric circuit (GEC)-related mechanism. Since the IEF responds differently to solar activity than, for instance, cosmic ray flux or solar irradiance, we also show that such a study allows distinguishing one solar-driven mechanism of cloud evolution, via the GEC, from others. We also present results showing that the link between cloud cover and IMF varies depending on composition and altitude of clouds.

  18. Gamma Ray Astrophysics: New insight into the universe

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Trombka, J. I.

    1981-01-01

    Gamma ray observations of the solar system, the galaxy and extragalactic radiation are reported. Topics include: planets, comets, and asteroids; solar observations; interstellar medium and galactic structure; compact objects; cosmology; and diffuse radiation. The instrumentation used in gamma ray astronomy in covered along with techniques for the analysis of observational spectra.

  19. The energy crisis and energy from the sun; Proceedings of the Symposium on Solar Energy Utilization, Washington, D.C., April 30, 1974

    NASA Technical Reports Server (NTRS)

    Thekaekara, M. P.

    1974-01-01

    Papers on the state of the art and future prospects of solar energy utilization in the United States are included. Research and technologies for heating and cooling of buildings, solar thermal energy conversion, photovoltaic conversion, biomass production and conversion, wind energy conversion and ocean thermal energy conversion are covered. The increasing funding of the National Solar Energy Program is noted. Individual items are announced in this issue.

  20. Report from solar physics

    NASA Technical Reports Server (NTRS)

    Walker, A. B. C.; Acton, L.; Brueckner, G.; Chupp, E. L.; Hudson, H. S.; Roberts, W.

    1989-01-01

    A discussion of the nature of solar physics is followed by a brief review of recent advances in the field. These advances include: the first direct experimental confirmation of the central role played by thermonuclear processes in stars; the discovery that the 5-minute oscillations of the Sun are a global seismic phenomenon that can be used as a probe of the structure and dynamical behavior of the solar interior; the discovery that the solar magnetic field is subdivided into individual flux tubes with field strength exceeding 1000 gauss. Also covered was a science strategy for pure solar physics. Brief discussions are given of solar-terrestrial physics, solar/stellar relationships, and suggested space missions.

  1. Observational and theoretical investigations in solar seismology

    NASA Technical Reports Server (NTRS)

    Noyes, Robert W.

    1992-01-01

    This is the final report on a project to develop a theoretical basis for interpreting solar oscillation data in terms of the interior dynamics and structure of the Sun. The topics covered include the following: (1) studies of the helioseismic signatures of differential rotation and convection in the solar interior; (2) wave generation by turbulent convection; and (3) the study of antipodal sunspot imaging of an active region tomography.

  2. Low-Frequency Waves in Space Plasmas

    NASA Astrophysics Data System (ADS)

    Keiling, Andreas; Lee, Dong-Hun; Nakariakov, Valery

    2016-02-01

    Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun's atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered questions? While in the past waves in different astrophysical plasmas have been largely treated in separate books, the unique feature of this monograph is that it covers waves in many plasma regions, including: Waves in geospace, including ionosphere and magnetosphere Waves in planetary magnetospheres Waves at the Moon Waves in the solar wind Waves in the solar atmosphere Because of the breadth of topics covered, this volume should appeal to a broad community of space scientists and students, and it should also be of interest to astronomers/astrophysicists who are studying space plasmas beyond our Solar System.

  3. Early Spacelab physics and astronomy missions

    NASA Technical Reports Server (NTRS)

    Chapman, R. D.

    1976-01-01

    Some of the scientific problems which will be investigated during the early Spacelab physics and astronomy missions are reviewed. The Solar Terrestrial Programs will include the Solar Physics Spacelab Payloads (SPSP) and the Atmospheres, Magnetospheres and Plasmas in Space (AMPS) missions. These missions will study the sun as a star and the influence of solar phenomena on the earth, including sun-solar wind interface, the nature of the solar flares, etc. The Astrophysics Spacelab Payloads (ASP) programs are divided into the Ultraviolet-Optical Astronomy and the High Energy Astrophysics areas. The themes of astrophysics Spacelab investigations will cover the nature of the universe, the fate of matter and the life cycles of stars. The paper discusses various scientific experiments and instruments to be used in the early Spacelab missions.

  4. Synergies of solar energy across a land-food-energy-water nexus

    NASA Astrophysics Data System (ADS)

    Hoffacker, M. K.; Hernandez, R. R.; Allen, M. F.

    2017-12-01

    Land-cover change from energy development, including solar energy, presents trade-offs for the production of food and the conservation of natural ecosystems. Solar energy plays a critical role in contributing to the alternative energy mix to mitigate climate change and meet policy milestones; however, the extent that solar energy development can mitigate land scarcity, water shortages, and conservation is understudied. Here, we test whether projected electricity needs for the state of California (CA, United States [US]) can be met within land-cover types that can also generate environmental, social and fiscal co-benefits (techno-ecological synergies) including: the built environment, salt-affected land, contaminated land, and water reservoirs (as floatovoltaics). Additionally, we analyze general spatial trends and patterns related to clustering and proximity of techno-ecological opportunities and land-cover types (e.g. contamination sites and cities). In total, the Central Valley, a globally significant agricultural region, encompasses 15% of CA, 8,415 km2 of which was identified as potentially synergistic land for solar energy. These areas comprise a capacity-based energy potential of 17,348 TWh y-1 for photovoltaic (PV) and 1,655 TWh y-1 for concentrating solar power (CSP). Accounting for technology efficiencies, this exceeds California's 2025 projected electricity demands up to 13 and 2 times for PV and CSP, respectively. Further, 60% of contaminated lands are clustered within and up to 10 km of the 10 most populated cities in the Central Valley, where energy is consumed. Our study underscores the potential of strategic renewable energy siting to mitigate environmental trade-offs typically coupled with energy development sprawl in landscapes characterized by complex nexus issues.

  5. Sail film materials and supporting structure for a solar sail, a preliminary design, volume 4

    NASA Technical Reports Server (NTRS)

    Rowe, W. M. (Editor)

    1978-01-01

    Solar sailing technology was examined in relation to a mission to rendezvous with Halley's Comet. Development of an ultra-light, highly reflecting material system capable of operating at high solar intensity for long periods of time was emphasized. Data resulting from the sail materials study are reported. Topics covered include: basic film; coatings and thermal control; joining and handling; system performance; and supporting structures assessment for the heliogyro.

  6. Stable density stratification solar pond

    NASA Technical Reports Server (NTRS)

    Lansing, F. L. (Inventor)

    1985-01-01

    A stable density-stratification solar pond for use in the collection and storage of solar thermal energy including a container having a first section characterized by an internal wall of a substantially cylindrical configuration and a second section having an internal wall of a substantially truncated conical configuration surmounting the first section in coaxial alignment therewith, the second section of said container being characterized by a base of a diameter substantially equal to the diameter of the first section and a truncated apex defining a solar energy acceptance opening is discussed. A body of immiscible liquids is disposed within the container and comprises a lower portion substantially filling the first section of the container and an upper portion substantially filling the second section of the container, said lower portion being an aqueous based liquid of a darker color than the upper portion and of a greater density. A protective cover plate is removably provided for covering the acceptance opening.

  7. Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    PubMed Central

    2009-01-01

    The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

  8. Modern representation of databases on the example of the Catalog of Solar Proton Events in the 23rd Cycle of Solar Activity

    NASA Astrophysics Data System (ADS)

    Ishkov, V. N.; Zabarinskaya, L. P.; Sergeeva, N. A.

    2017-11-01

    The development of studies of solar sources and their effects on the state of the near-Earth space required systematization of the corresponding information in the form of databases and catalogs for the entire time of observation of any geoeffective phenomenon that includes, if possible at the time of creation, all of the characteristics of the phenomena themselves and the sources of these phenomena on the Sun. A uniform presentation of information in the form of a series of similar catalogs that cover long time intervals is of particular importance. The large amount of information collected in such catalogs makes it necessary to use modern methods of its organization and presentation that allow a transition between individual parts of the catalog and a quick search for necessary events and their characteristics, which is implemented in the presented Catalog of Solar Proton Events in the 23rd Cycle of Solar Activity of the sequence of catalogs (six separate issues) that cover the period from 1970 to 2009 (20th-23rd solar cycles).

  9. Large area low-cost space solar cell development

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.; Cioni, J. L.

    1982-01-01

    A development program to produce large-area (5.9 x 5.9 cm) space quality silicon solar cells with a cost goal of 30 $/watt is descibed. Five cell types under investigation include wraparound dielectric, mechanical wraparound and conventional contact configurations with combinations of 2 or 10 ohm-cm resistivity, back surface reflectors and/or fields, and diffused or ion implanted junctions. A single step process to cut cell and cover-glass simultaneously is being developed. A description of cell developments by Applied Solar Energy Corp., Spectrolab and Spire is included. Results are given for cell and array tests, performed by Lockheed, TRW and NASA. Future large solar arrays that might use cells of this type are discussed.

  10. Solar Drivers for Space Weather Operations (Invited)

    NASA Astrophysics Data System (ADS)

    White, S. M.

    2013-12-01

    Most space weather effects can be tied back to the Sun, and major research efforts are devoted to understanding the physics of the relevant phenomena with a long-term view of predicting their occurrence. This talk will focus on the current state of knowledge regarding the solar drivers of space weather, and in particular the connection between the science and operational needs. Topics covered will include the effects of solar ionizing flux on communications and navigation, radio interference, flare forecasting, the solar wind and the arrival of coronal mass ejections at Earth.

  11. The 2 SOPS Ephemeris Enhancement Endeavor (EEE)

    DTIC Science & Technology

    1997-12-01

    reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching...if it does not display a currently valid OMB control number. 1 . REPORT DATE DEC 1997 2. REPORT TYPE 3. DATES COVERED 00-00-1997 to 00-00-1997 4...deficiencies. They include: 1 . Solar Pressure States. A 1995 study revealed that some deficiencies exist within the solar state model used by the

  12. Design and development of a brushless, direct drive solar array reorientation system

    NASA Technical Reports Server (NTRS)

    Jessee, R. D.

    1972-01-01

    This report covers the design and development of the laboratory model, and is essentially a compilation of reports covering the system and its various parts. To enhance completeness, the final report of Phase 1 covering circuit development of the controller is also included. A controller was developed for a brushless, direct-drive, single axis solar array reorientation system for earth-pointed, passively-stabilized spacecraft. A control systems was designed and breadboard circuits were built and tested for performance. The controller is designed to take over automatic control of the array on command after the spacecraft is stabilized in orbit. The controller will orient the solar array to the sun vector and automatically track to maintain proper orientation. So long as the orbit is circular, orientation toward the sun is maintained even though the spacecraft goes into the shadow of the earth. Particular attention was given in the design to limit reaction between the array and the spacecraft.

  13. Output-increasing, protective cover for a solar cell

    DOEpatents

    Hammerbacher, Milfred D.

    1995-11-21

    A flexible cover (14) for a flexible solar cell (12) protects the cell from the ambient and increases the cell's efficiency. The cell(12)includes silicon spheres (16) held in a flexible aluminum sheet matrix (20,22). The cover (14) is a flexible, protective layer (60) of light-transparent material having a relatively flat upper, free surface (64) and an irregular opposed surface (66). The irregular surface (66) includes first portions (68) which conform to the polar regions (31R) of the spheres (16) and second convex (72) or concave (90) portions (72 or 90) which define spaces (78) in conjunction with the reflective surface (20T) of one aluminum sheet (20). Without the cover (14) light (50) falling on the surface (20T) between the spheres (16) is wasted, that is, it does not fall on a sphere (16). The surfaces of the second portions are non-parallel to the direction of the otherwise wasted light (50), which fact, together with a selected relationship between the refractive indices of the cover and the spaces, result in sufficient diffraction of the otherwise wasted light (50) so that about 25% of it is reflected from the surface (20T) onto a sphere (16).

  14. Solar Thermal Power Systems parabolic dish project

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.

    1981-01-01

    The status of the Solar Thermal Power Systems Project for FY 1980 is summarized. Included is: a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.

  15. Solar and stellar coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1985-01-01

    Progress made in describing and interpreting coronal plasma processes and the relationship between the solar corona and its stellar counterparts is reported. Topics covered include: stellar X-ray emission, HEAO 2 X-ray survey of the Pleiades, closed coronal structures, X-ray survey of main-sequence stars with shallow convection zones, implications of the 1400 MHz flare emission, and magnetic field stochasticity.

  16. Development of a Solar System Concept Inventory

    NASA Astrophysics Data System (ADS)

    Hornstein, Seth D.; Duncan, D.; S, C. A. T.

    2009-01-01

    Concept inventories can provide useful insight into students’ understanding of key physical concepts. Knowing what your students have learned during a course is a valuable tool for improving your own teaching. Unfortunately, current astronomy concept inventories are not suitable for an introductory solar system course because they either cover too broad of a range of topics (e.g. Astronomy Diagnostic Test) or are too narrowly focused (e.g. Greenhouse Effect Concept Inventory, Lunar Phase Concept Inventory). We have developed the Solar System Concept Inventory (SSCI) to cover those topics commonly taught in an introductory solar system course. The topics included on the SSCI were selected by having faculty identify the key concepts they address when teaching about the solar system. SSCI topics include formation mechanisms, planetary interiors, atmospheric effects, and small solar system bodies. Student interviews were conducted to identify common naive ideas and reasoning difficulties relating to these key topics. Preliminary development of the SSCI was completed at the University of Colorado and involved over 400 students. A larger, national, multi-institutional field test is planned for Spring 2009 as a Collaboration of Astronomy Teaching Scholars (CATS) research project. We present here the results from the preliminary development and proposed changes for the next stage of research. We would like to thank the NSF for funding under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  17. Local effects of partly cloudy skies on solar and emitted radiations

    NASA Technical Reports Server (NTRS)

    Whitney, D. A.; Venable, D. D.

    1981-01-01

    Solar radiation measurements are made on a routine basis. Global solar, atmospheric emitted, downwelled diffuse solar, and direct solar radiation measurement systems are fully operational with the first two in continuous operation. Fractional cloud cover measurements are made from GOES imagery or from ground based whole sky photographs. Normalized global solar irradiance values for partly cloudy skies were correlated to fractional cloud cover.

  18. The performance of solar collector CPC (compound parabolic concentrator) type with three pipes covered by glass tubes

    NASA Astrophysics Data System (ADS)

    Gaos, Yogi Sirodz; Yulianto, Muhamad; Juarsa, Mulya; Nurrohman, Marzuki, Edi; Yuliaji, Dwi; Budiono, Kabul

    2017-03-01

    Indonesia is a tropical country that has potential energy of solar radiation worth of 4.5 until 4.8 kWh/m2. However, this potential has not been utilized regularly. This paper will discuss the performance of solar collector compound parabolic concentrator (CPC) type with water as the working fluid. This CPC solar collector utilized three pipes covered by glass tubes. This paper has contribution to provide the temperature achievement between three pipes covered by glass tubes with and without glass cover of solar collector CPC type. The research conducted by varying the water flow rate of 1 l/m up to 6 l/m with three pipes arranged in series and parallel. From the results, the used of solar collector CPC type in the current study shows that the decrease of solar radiation, which was caused by climate change, did not influence the heat absorbance by water in the pipe. Therefore, the design of the solar collector in this research has potential to be used in future when solar radiation are used as the energy source.

  19. Solar array study for solar electric propulsion spacecraft for the Encke rendezvous mission

    NASA Technical Reports Server (NTRS)

    Sequeira, E. A.; Patterson, R. E.

    1974-01-01

    The work is described which was performed on the design, analysis and performance of a 20 kW rollup solar array capable of meeting the design requirements of a solar electric spacecraft for the 1980 Encke rendezvous mission. To meet the high power requirements of the proposed electric propulsion mission, solar arrays on the order of 186.6 sq m were defined. Because of the large weights involved with arrays of this size, consideration of array configurations is limited to lightweight, large area concepts with maximum power-to-weight ratios. Items covered include solar array requirements and constraints, array concept selection and rationale, structural and electrical design considerations, and reliability considerations.

  20. Rhizosphere microorganisms affected by soil solarization and cover cropping in Capsicum annuum and Phaseolus lunatus agroecosystems

    USDA-ARS?s Scientific Manuscript database

    Field experiments were conducted to evaluate the effects of soil solarization or cover cropping on bell pepper (Capsicum annuum) and lima bean (Phaseolus lunatus, L.) rhizosphere microorganisms. In Experiment I, flat surface solarization (FSS), raised bed solarization (RBS), cowpea (Vigna unguiculat...

  1. Fabrication of contacts for silicon solar cells including printing burn through layers

    DOEpatents

    Ginley, David S; Kaydanova, Tatiana; Miedaner, Alexander; Curtis, Calvin J; Van Hest, Marinus Franciscus Antonius Maria

    2014-06-24

    A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).

  2. Landsat 7 Solar Array Testing Experiences

    NASA Technical Reports Server (NTRS)

    Helfrich, Daniel

    2000-01-01

    This paper covers the extensive Landsat 7 solar array flight qualification testing effort. Details of the mechanical design of the solar array and its retention/release system are presented. A testing chronology is provided beginning with the onset of problems encountered at the subsystem level and carrying through the third and final powered-spacecraft ground deployment test. Design fixes and other changes are explained in the same order as they became necessary to flight-qualify the array. Some interesting lessons learned are included along with key references.

  3. Research in solar plasma theory

    NASA Technical Reports Server (NTRS)

    Vanhoven, Gerard

    1992-01-01

    The main thrust and significance of our research results are presented. The topics covered include: (1) coronal structure and dynamics; (2) coronal heating; (3) filament formation; and (4) flare energy release.

  4. Evaluation of the National Solar Radiation Database (NSRDB) Using Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Sengupta, M.; Habte, A.; Lopez, A.

    2017-12-01

    Solar resource is essential for a wide spectrum of applications including renewable energy, climate studies, and solar forecasting. Solar resource information can be obtained from ground-based measurement stations and/or from modeled data sets. While measurements provide data for the development and validation of solar resource models and other applications modeled data expands the ability to address the needs for increased accuracy and spatial and temporal resolution. The National Renewable Energy Laboratory (NREL) has developed and regular updates modeled solar resource through the National Solar Radiation Database (NSRDB). The recent NSRDB dataset was developed using the physics-based Physical Solar Model (PSM) and provides gridded solar irradiance (global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance) at a 4-km by 4-km spatial and half-hourly temporal resolution covering 18 years from 1998-2015. A comprehensive validation of the performance of the NSRDB (1998-2015) was conducted to quantify the accuracy of the spatial and temporal variability of the solar radiation data. Further, the study assessed the ability of NSRDB (1998-2015) to accurately capture inter-annual variability, which is essential information for solar energy conversion projects and grid integration studies. Comparisons of the NSRDB (1998-2015) with nine selected ground-measured data were conducted under both clear- and cloudy-sky conditions. These locations provide a high quality data covering a variety of geographical locations and climates. The comparison of the NSRDB to the ground-based data demonstrated that biases were within +/- 5% for GHI and +/-10% for DNI. A comprehensive uncertainty estimation methodology was established to analyze the performance of the gridded NSRDB and includes all sources of uncertainty at various time-averaged periods, a method that is not often used in model evaluation. Further, the study analyzed the inter-annual and mean-anomaly of the 18 years of solar radiation data. This presentation will outline the validation methodology and provide detailed results of the comparison.

  5. Handbook of experiences in the design and installation of solar heating and cooling systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, D.S.; Oberoi, H.S.

    1980-07-01

    A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

  6. New mounting improves solar-cell efficiency

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1980-01-01

    Method boosts output by about 20 percent by trapping and redirecting solar radiation without increasing module depth. Mounted solar-cell array is covered with internally reflecting plate. Plate is attached to each cell by transparent adhesive, and space between cells is covered with layer of diffusely reflecting material. Solar energy falling on space between cells is diffused and reflected internally by plate until it is reflected onto solar cell.

  7. Design, fabrication, testing and delivery of a solar collector

    NASA Technical Reports Server (NTRS)

    Sims, W. H.; Ballheim, R. W.; Bartley, S. M.; Smith, G. W.

    1976-01-01

    A two phase program encompassing the redesign and fabrication of a solar collector which is low in cost and aesthetically appealing is described. Phase one work reviewed the current collector design and developed a low-cost design based on specific design/performance/cost requirements. Throughout this phase selected collector component materials were evaluated by testing and by considering cost, installation, maintainability and durability. The resultant collector design was composed of an absorber plate, insulation, frame, cover, desiccant and sealant. In Phase two, three collector prototypes were fabricated and evaluated for both nonthermal and thermal characteristics. Tests included static load tests of covers, burst pressure tests of absorber plates, and tests for optical characteristics of selective absorber plate coatings. The three prototype collectors were shipped to Marshall Space Flight Center for use in their solar heating and cooling test facility.

  8. Electromagnetically Clean Solar Arrays

    NASA Technical Reports Server (NTRS)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the wiring on the back of the panel. Each step increases the potential for occurrence of latent defects, loss of process control, and attrition of components. An EMCSA panel includes an integral cover made from a transparent material. The silicone cover supplants the individual cover glasses on the cells and serves as an additional unitary structural support that offers the advantage, relative to glass, of the robust, forgiving nature of the silcone material. The cover contains pockets that hold the solar cells in place during the lamination process. The cover is coated with indium tin oxide to make its surface electrically conductive, so that it serves as a contiguous, electrically grounded shield over the entire panel surface. The cells are mounted in proximity to metallic printed wiring. The painted-wiring layer comprises metal-film traces on a sheet of Kapton (or equivalent) polyimide. The traces include contact pads on one side of the sheet for interconnecting the cells. Return leads are on the opposite side of the sheet, positioned to form the return currents substantially as mirror images of, and in proximity to, the cell sheet currents, thereby minimizing magnetic moments. The printed-wiring arrangement mimics the back-wiring arrangement of conventional solar arrays, but the current-loop areas and the resulting magnetic moments are much smaller because the return-current paths are much closer to the solar-cell sheet currents. The contact pads are prepared with solder fo electrical and mechanical bonding to the cells. The pocketed cover/shield, the solar cells, the printed-wiring layer, an electrical bonding agent, a mechanical-bonding agent, a composite structural front-side face sheet, an aluminum honeycomb core, and a composite back-side face sheet are all assembled, then contact pads are soldered to the cells and the agents are cured in a single lamination process.

  9. Soho Ultraviolet Coronograph Spectrometer (UVCS) Mission Operations and Data Analysis

    NASA Technical Reports Server (NTRS)

    Kohl, John L.; Gurman, Joseph (Technical Monitor)

    2002-01-01

    The scientific goal of UVCS is to obtain detailed empirical descriptions of the extended solar corona as it evolves over the solar cycle and to use these descriptions to identify and understand the physical processes responsible for coronal heating, solar wind acceleration, coronal mass ejections (CMEs), and the phenomena that establish the plasma properties of the solar wind as measured by 'in situ' solar wind instruments. This report covers the period from 01 December 2000 to 31 January 2002. During that time, UVCS observations have consisted of three types: (1) standard synoptic observations comprising, primarily, the H I Ly(alpha) line profile and the O VI 103.2 and 103.7 nm intensity over a range of heights from 1.5 to about 3.0 solar radii and covering 360 degrees about the sun; (2) sit and stare watches for CMEs; and (3) special observations designed by the UVCS Lead Observer of the Week for a specific scientific purpose. The special observations are often coordinated with those of other space-based and ground-based instruments and they often are part of SOHO joint observation programs and campaigns. Lead observers have included UVCS Co-Investigators, scientists from the solar physics community and several graduate and undergraduate level students.

  10. Development of the Solar System Concept Inventory

    NASA Astrophysics Data System (ADS)

    Hornstein, S.; Prather, E.

    2009-12-01

    Concept inventories can provide useful insight into students’ understanding of key physical concepts. Knowing what your students have learned during a course is a valuable tool for improving your own teaching. Unfortunately, current astronomy concept inventories are not suitable for an introductory solar system course because they either cover too broad of a range of topics (e.g. Astronomy Diagnostic Test) or are too narrowly focused (e.g. Greenhouse Effect Concept Inventory, Lunar Phase Concept Inventory). We have developed the Solar System Concept Inventory (SSCI) to cover those topics commonly taught in an introductory solar system course. The topics included on the SSCI were selected by having faculty identify the key concepts they address when teaching about the solar system. SSCI topics include formation mechanisms, planetary interiors, atmospheric effects, and small solar system bodies. Student interviews were conducted to identify common naive ideas and reasoning difficulties relating to these key topics. The SSCI has been through two semesters of national, multi-institutional field-testing, involving over 1500 students. After the first semester of testing, question statistics were used to flag ineffective questions and flagged questions were revised or eliminated. We will present an overall outline of the SSCI development as well as our question-flagging criteria and question analyses from the latest round of field-testing. We would like to thank the NSF for funding under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  11. A lightweight solar array study

    NASA Technical Reports Server (NTRS)

    Josephs, R. H.

    1977-01-01

    A sample module was assembled to model a portion of a flexible extendable solar array, a type that promises to become the next generation of solar array design. The resulting study of this module is intended to provide technical support to the array designer for lightweight component selection, specifications, and tests. Selected from available lightweight components were 127-micron-thick wrap-around contacted solar cells, 34- micron-thick sputtered glass covers, and as a substrate a 13-micron-thick polyimide film clad with a copper printed circuit. Each component displayed weaknesses. The thin solar cells had excessive breakage losses. Sputtered glass cover adhesion was poor, and the covered cell was weaker than the cell uncovered. Thermal stresses caused some cell delamination from the model solar array substrate.

  12. Plant engineers solar energy handbook. [Includes glossaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-01-21

    This handbook is to provide plant engineers with factual information on solar energy technology and on the various methods for assessing the future potential of this alternative energy source. The following areas are covered: solar components and systems (collectors, storage, service hot-water systems, space heating with liquid and air systems, space cooling, heat pumps and controls); computer programs for system optimization local solar and weather data; a description of buildings and plants in the San Francisco Bay Area applying solar technology; current Federal and California solar legislation; standards, codes, and performance testing information; a listing of manufacturers, distributors, and professionalmore » services that are available in Northern California; and information access. Finally, solar design checklists are provided for those engineers who wish to design their own systems. (MHR)« less

  13. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials

    PubMed Central

    Shang, Yunfei; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2015-01-01

    Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed. PMID:28347095

  14. Effect of 1 MeV electrons on ceria-doped solar cell cover glass

    NASA Technical Reports Server (NTRS)

    Haynes, G. A.

    1973-01-01

    The effect of 1 MeV electrons on the transmission properties of 1.5-percent ceria-doped solar cell cover glass was studied. Samples of doped and undoped cover glass and synthetic fused silica were irradiated with a total integrated flux of 10 to the 15th power e/sq cm. Wideband transmission and spectral transmission measurements were made before and after irradiation. The results indicate that 1.5-percent ceria-doped cover glass is much less sensitive to radiation induced discoloration than undoped cover glass. Consequently, the glass is comparable to synthetic fused silica when used as a radiation resistant solar cell cover for many space missions.

  15. Proceedings: Fourth Parabolic Dish Solar Thermal Power Program Review

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of activities within the parabolic dish technology and applications development program are presented. Stirling, organic Rankine and Brayton module technologies, associated hardware and test results to date; concentrator development and progress; economic analyses; and international dish development activities are covered. Two panel discussions, concerning industry issues affecting solar thermal dish development and dish technology from a utility/user perspective, are also included.

  16. Solar cell array design handbook, volume 1

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1976-01-01

    Twelve chapters discuss the following: historical developments, the environment and its effects, solar cells, solar cell filters and covers, solar cell and other electrical interconnections, blocking and shunt diodes, substrates and deployment mechanisms, material properties, design synthesis and optimization, design analysis, procurement, production and cost aspects, evaluation and test, orbital performance, and illustrative design examples. A comprehensive index permits rapid locating of desired topics. The handbook consists of two volumes: Volume 1 is of an expository nature while Volume 2 contains detailed design data in an appendix-like fashion. Volume 2 includes solar cell performance data, applicable unit conversion factors and physical constants, and mechanical, electrical, thermal optical, magnetic, and outgassing material properties. Extensive references are provided.

  17. Research and technology: Fiscal year 1984 report

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Topics covered include extraterrestrial physics, high energy astrophysics, astronomy, solar physics, atmospheres, oceans, terrestrial physics, space technology, sensors, techniques, user space data systems, space communications and navigation, and system and software engineering.

  18. Summer Thermal Performance of Ventilated Roofs with Tiled Coverings

    NASA Astrophysics Data System (ADS)

    Bortoloni, M.; Bottarelli, M.; Piva, S.

    2017-01-01

    The thermal performance of a ventilated pitched roof with tiled coverings is analysed and compared with unventilated roofs. The analysis is carried out by means of a finite element numerical code, by solving both the fluid and thermal problems in steady-state. A whole one-floor building with a pitched roof is schematized as a 2D computational domain including the air-permeability of tiled covering. Realistic data sets for wind, temperature and solar radiation are used to simulate summer conditions at different times of the day. The results demonstrate that the batten space in pitched roofs is an effective solution for reducing the solar heat gain in summer and thus for achieving better indoor comfort conditions. The efficiency of the ventilation is strictly linked to the external wind conditions and to buoyancy forces occurring due to the heating of the tiles.

  19. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    The chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials is investigated. The objective is to develop CVD techniques for producing large areas of Si sheet on inexpensive substrate materials, with sheet properties suitable for fabricating solar cells meeting the technical goals of the Low Cost Silicon Solar Array Project. Specific areas covered include: (1) modification and test of existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using standard and near-standard processing techniques.

  20. Study terrestrial applications of solar cell powered systems

    NASA Technical Reports Server (NTRS)

    Ravin, J. W.

    1973-01-01

    Terrestrial applications of solar cells and design systems are considered for those applications that show the most promise for becoming practical and accepted by users within the next five years. The study includes the definition, categorization, evaluation and screening of the most attractive potential terrestrial applications for solar cells. Potential markets are initially grouped and categorized in a general sense and are weighted in priority by their business volume, present and future. From a categorized list including marine, transportation, security, communication, meteorological and others, 66 potential solar cell applications have been cataloged. A methodology was formulated to include the criteria for evaluation and screening. The evaluation process covers all parts and components of the complete system required for each application and gives consideration to all factors, such as engineering, economic, production, marketing and other factors that may have an influence on the acceptance of the system.

  1. Solar heating and hot water system installed at Municipal Building complex, Abbeville, South Carolina

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information on the solar energy system installed at the new municipal building for the City of Abbeville, SC is presented, including a description of solar energy system and buildings, lessons learned, and recommendations. The solar space heating system is a direct air heating system. The flat roof collector panel was sized to provide 75% of the heating requirement based on an average day in January. The collectors used are job-built with two layers of filon corrugated fiberglass FRP panels cross lapped make up the cover. The storage consists of a pit filled with washed 3/4 in - 1 1/2 in diameter crushed granite stone. The air handler includes the air handling mechanism, motorized dampers, air circulating blower, sensors, control relays and mode control unit. Solar heating of water is provided only those times when the hot air in the collector is exhausted to the outside.

  2. Energy for agriculture: a computerized information retrieval system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stout, B A; Myers, C A

    1979-12-01

    This bibliography contains 2613 citations to the literature for 1973 through May 1979. Some of the subjects covered include: accounting, agriculture, animal production, conservation, drying, fertilizer, food processing, greenhouses, home, international, irrigation, organic, solar, storage, tillage, and wind. Author and keyword indexes are included. (MHR)

  3. Solar dynamic power system development for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The development of a solar dynamic electric power generation system as part of the Space Station Freedom Program is documented. The solar dynamic power system includes a solar concentrator, which collects sunlight; a receiver, which accepts and stores the concentrated solar energy and transfers this energy to a gas; a Brayton turbine, alternator, and compressor unit, which generates electric power; and a radiator, which rejects waste heat. Solar dynamic systems have greater efficiency and lower maintenance costs than photovoltaic systems and are being considered for future growth of Space Station Freedom. Solar dynamic development managed by the NASA Lewis Research Center from 1986 to Feb. 1991 is covered. It summarizes technology and hardware development, describes 'lessons learned', and, through an extensive bibliography, serves as a source list of documents that provide details of the design and analytic results achieved. It was prepared by the staff of the Solar Dynamic Power System Branch at the NASA Lewis Research Center in Cleveland, Ohio. The report includes results from the prime contractor as well as from in-house efforts, university grants, and other contracts. Also included are the writers' opinions on the best way to proceed technically and programmatically with solar dynamic efforts in the future, on the basis of their experiences in this program.

  4. Open Workshop on Solar Technologies: Proceedings

    NASA Astrophysics Data System (ADS)

    1980-07-01

    The deliberations, conclusions, and recommendations of six panels asked to provide advice to the Department of Energy on the subject of solar energy are detailed. Introductory speeches by seven experts, excerpts from the succeeding two half days of discussion, the final reports for the panel chairpersons, and subsequent discussion and questioning are included. Approximately 125 findings and recommendations were developed by the six panels covering a wide variety of topics. Major recurring themes were recommendations for increased funding, federal program improvement, conservation, outreach programs small business funding, and solar training programs.

  5. Ground truth data for test sites (SL-4). [thermal radiation brightness temperature and solar radiation measurments

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Field measurements performed simultaneous with Skylab overpass in order to provide comparative calibration and performance evaluation measurements for the EREP sensors are presented. Wavelength region covered include: solar radiation (400 to 1300 nanometer), and thermal radiation (8 to 14 micrometer). Measurements consisted of general conditions and near surface meteorology, atmospheric temperature and humidity vs altitude, the thermal brightness temperature, total and diffuse solar radiation, direct solar radiation (subsequently analyzed for optical depth/transmittance), and target reflectivity/radiance. The particular instruments used are discussed along with analyses performed. Detailed instrument operation, calibrations, techniques, and errors are given.

  6. Defining solar park location using shadow over time detection method

    NASA Astrophysics Data System (ADS)

    Martynov, Ivan; Kauranne, Tuomo

    2016-06-01

    There is nowadays a high demand for research on using renewable sources of energy including solar energy. The availability of stable and efficient solar energy is of paramount importance. Therefore, it is vital to install solar panels in locations which are most of the time not in shadow. To illustrate this idea we have developed a shadow identification method for digital elevation models (DEMs) using the computational means of MATLAB whose environment and tools allow fast and easy image processing. As a source of DEMs we use the Shuttle Radar Topography Mission (SRTM) database since it covers most of the terrain of our planet.

  7. Preliminary evaluation of glass resin materials for solar cell cover use. [on spacecraft

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Swartz, C. K.; Baraona, C. R.

    1978-01-01

    Silicon solar cells and silicon wafers coated with a heat-curable resin consisting of alternating Si-O atoms were subjected to three tests to evaluate the potential utility of this coating in space environments. These included UV irradiation in vacuum at an intensity of 10 air mass zero UV energy-equivalent solar constants for 728 hours followed by a long thermal cycle; 15 thermal shock cycles between 100 C and minus 196 C; and high temperature and humidity (65 C at 90% relative humidity). The UV tests resulted in a 8 to 24% loss in short-circuit current and darkening of the covers. Modification of the resin to provide a better match between the coefficients of expansion of the resin and silicon improved resistance to thermal shock, but also increased the darkening effect under UV irradiation. Silicon wafers coated with the resin were not adversely affected by the temperature/humidity test.

  8. Plasmon-Assisted Efficiency Enhancement of Eu3+-Doped Tellurite Glass-Covered Solar Cells

    NASA Astrophysics Data System (ADS)

    Lima, Bismarck C.; Gómez-Malagón, L. A.; Gomes, A. S. L.; Garcia, J. A. M.; Kassab, L. R. P.

    2017-12-01

    Rare-earth-doped tellurite glass containing metallic nanoparticles can be exploited to manage the solar spectrum in order to increase solar cell efficiency. It is therefore possible to modify the incident solar spectrum profile to the spectrum that optimizes the solar cell recombination process by covering the solar cell with plasmonic luminescent downshifting layers. With this approach, the losses due to thermalization are minimized and the efficiency is increased. Due to the down-conversion process that couples the plasmon resonance of the metallic nanoparticles and the rare-earth electronic energy levels, it is possible to convert photons from the ultraviolet region to the visible and near-band-gap region of the semiconductor. It is demonstrated here that plasmon-assisted efficiency enhancements of 14.0% and 34.5% can be obtained for commercial Si and GaP solar cells, respectively, covered with Eu3+-doped TeO2-ZnO glass containing silver nanoparticles.

  9. Electrical power system WP-04

    NASA Astrophysics Data System (ADS)

    Nored, Donald L.

    Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.

  10. Electrical power system WP-04

    NASA Technical Reports Server (NTRS)

    Nored, Donald L.

    1990-01-01

    Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.

  11. The McDonnell Douglas geophysical observatory program progress report 13 Conjugate point riometer program

    NASA Technical Reports Server (NTRS)

    Baker, M. B.

    1975-01-01

    This report, the thirteenth and final progress report on the McDonnell Douglas Geophysical Observatory Program, discusses history of the program from 1962 through 1973, and results of the research carried out in 1974. Topic areas covered include: Station operation; Ionospheric work; Solar studies, Magnetospheric studies; Satellite measurements; International participation; and, 1974 research on solar activity, ATS-6 studies, magnetospheric physics, and station operation.

  12. Stormwater dissolved organic matter: influence of land cover and environmental factors.

    PubMed

    McElmurry, Shawn P; Long, David T; Voice, Thomas C

    2014-01-01

    Dissolved organic matter (DOM) plays a major role in defining biological systems and it influences the fate and transport of many pollutants. Despite the importance of DOM, understanding of how environmental and anthropogenic factors influence its composition and characteristics is limited. This study focuses on DOM exported as stormwater from suburban and urban sources. Runoff was collected before entering surface waters and DOM was characterized using specific ultraviolet absorbance at 280 nm (a proxy for aromaticity), molecular weight, polydispersity and the fraction of DOM removed from solution via hydrophobic and H-bonding mechanisms. General linear models (GLMs) incorporating land cover, precipitation, solar radiation and selected aqueous chemical measurements explained variations in DOM properties. Results show (1) molecular characteristics of DOM differ as a function of land cover, (2) DOM produced by forested land is significantly different from other landscapes, particularly urban and suburban areas, and (3) DOM from land cover that contains paved surfaces and sewers is more hydrophobic than from other types of land cover. GLMs incorporating environmental factors and land cover accounted for up to 86% of the variability observed in DOM characteristics. Significant variables (p < 0.05) included solar radiation, water temperature and water conductivity.

  13. Soil quality and the solar corridor crop system

    USDA-ARS?s Scientific Manuscript database

    The solar corridor crop system (SCCS) is designed for improved crop productivity based on highly efficient use of solar radiation by integrating row crops with drilled or solid-seeded crops in broad strips (corridors) that also facilitate establishment of cover crops for year-round soil cover. The S...

  14. Soil Quality and the Solar Corridor Crop System

    USDA-ARS?s Scientific Manuscript database

    The solar corridor crop system (SCCS) is designed for improved crop productivity based on highly efficient use of solar radiation by integrating row crops with drilled or solid-seeded crops in broad strips (corridors) that also facilitate establishment of cover crops for year-round soil cover. The S...

  15. Liquid cooled, linear focus solar cell receiver

    DOEpatents

    Kirpich, A.S.

    1983-12-08

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  16. Liquid cooled, linear focus solar cell receiver

    DOEpatents

    Kirpich, Aaron S.

    1985-01-01

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  17. Testing of solar cell covers and encapsulants conducted in a simulated space environment

    NASA Technical Reports Server (NTRS)

    Russell, D. A.

    1981-01-01

    The materials included in the evaluation were 0211 micro-sheet, FEP-A used as a cover and as an adhesive, DC 93-500 adhesive, PFA "hard coat" used as a cover, GE 615/UV-24 used as a cover, GR 650 used as a cover, and electrostatically bonded 7070 glass. The test environments were 1 MeV electron irradiation interspersed with thermal cycling, 0.5 MeV proton irradiation interspersed with thermal cycling and UV exposure interspersed with thermal cycling. Summary data is given describing the response of the test materials both visually and electrically to the three different environments.

  18. Hall Effect Thruster Plume Contamination and Erosion Study

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2000-01-01

    The objective of the Hall effect thruster plume contamination and erosion study was to evaluate the impact of a xenon ion plume on various samples placed in the vicinity of a Hall effect thruster for a continuous 100 hour exposure. NASA Glenn Research Center was responsible for the pre- and post-test evaluation of three sample types placed around the thruster: solar cell cover glass, RTV silicone, and Kapton(R). Mass and profilometer), were used to identify the degree of deposition and/or erosion on the solar cell cover glass, RTV silicone, and Kapton@ samples. Transmittance, reflectance, solar absorptance, and room temperature emittance were used to identify the degree of performance degradation of the solar cell cover glass samples alone. Auger spectroscopy was used to identify the chemical constituents found on the surface of the exposed solar cell cover glass samples. Chemical analysis indicated some boron nitride contamination on the samples, from boron nitride insulators used in the body of the thruster. However, erosion outweighted contamination. All samples exhibited some degree of erosion. with the most erosion occurring near the centerline of the plume and the least occurring at the +/- 90 deg positions. For the solar cell cover glass samples, erosion progressed through the antireflective coating and into the microsheet glass itself. Erosion occurred in the solar cell cover glass, RTV silicone and Kapton(R) at different rates. All optical properties changed with the degree of erosion, with solar absorptance and room temperature emittance increasing with erosion. The transmittance of some samples decreased while the reflectance of some samples increased and others decreased. All results are consistent with an energetic plume of xenon ions serving as a source for erosion.

  19. Thin film coatings for improved alpha/epi

    NASA Technical Reports Server (NTRS)

    Krisl, M. E.; Sachs, I. M.

    1985-01-01

    New thin film coatings were developed for fused silica, ceria doped glass, and Corning 0211 microsheet which provide increased emissivity and/or decreased solar absorption. Emissivity is enhanced by suppression of the reststrahlen reflectance and solar absorption is reduced by externally reflecting the ultraviolet portion of the solar spectrum. Optical properties of these coatings make them suitable for both solar cell cover and thermal control mirror applications. Measurements indicate equivalent environmental performance to conventional solar cell cover and thermal control mirror products.

  20. Optimized flexible cover films for improved conversion efficiency in thin film flexible solar cells

    NASA Astrophysics Data System (ADS)

    Guterman, Sidney; Wen, Xin; Gudavalli, Ganesh; Rhajbhandari, Pravakar; Dhakal, Tara P.; Wilt, David; Klotzkin, David

    2018-05-01

    Thin film solar cell technologies are being developed for lower cost and flexible applications. For such technologies, it is desirable to have inexpensive, flexible cover strips. In this paper, we demonstrate that transparent silicone cover glass adhesive can be doped with TiO2 nanoparticles to achieve an optimal refractive index and maximize the performance of the cell. Cells covered with the film doped with nanoparticles at the optimal concentration demonstrated a ∼1% increase in photocurrent over the plain (undoped) film. In addition, fused silica beads can be incorporated into the flexible cover slip to realize a built-in pseudomorphic glass diffuser layer as well. This additional degree of freedom in engineering flexible solar cell covers allows maximal performance from a given cell for minimal increased cost.

  1. Heat pipe technology. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography cites 55 publications on the theory, design, development, fabrication, and testing of heat pipes. Applications covered include solar, nuclear, and thermoelectric energy conversion. A book (in Russian) on low temperature heat pipes is included as well as abstracts when available. Indexes provided list authors, titles/keywords (permuted) and patents.

  2. Experimental investigation of insolation-driven dust ejection from Mars' CO2 ice caps

    NASA Astrophysics Data System (ADS)

    Kaufmann, E.; Hagermann, A.

    2017-01-01

    Mars' polar caps are - depending on hemisphere and season - partially or totally covered with CO2 ice. Icy surfaces such as the polar caps of Mars behave differently from surfaces covered with rock and soil when they are irradiated by solar light. The latter absorb and reflect incoming solar radiation within a thin layer beneath the surface. In contrast, ices are partially transparent in the visible spectral range and opaque in the infrared. Due to this fact, the solar radiation can penetrate to a certain depth and raise the temperature of the ice or dust below the surface. This may play an important role in the energy balance of icy surfaces in the solar system, as already noted in previous investigations. We investigated the temperature profiles inside CO2 ice samples including a dust layer under Martian conditions. We have been able to trigger dust eruptions, but also demonstrated that these require a very narrow range of temperature and ambient pressure. We discuss possible implications for the understanding of phenomena such as arachneiform patterns or fan shaped deposits as observed in Mars' southern polar region.

  3. Martian environmental effects on solar cells and solar cell cover glasses

    NASA Technical Reports Server (NTRS)

    Wade, F. A.

    1971-01-01

    The results of a study concerned with the effects of the Martian environment on the performance of solar cells are given. The results indicate that the efficiency of a power system composed of solar cells will be greatly reduced when subjected to dust storms such as may occur on Mars. Two factors are responsible for this, (1) accumulation of dust on the protective covers, and (2) damage to covers by pitting, cracking, and chipping. It is recommended that this type of power system not be used on Mars landing vehicles. Experimental procedures are described and results are summarized and damage assessed.

  4. Use of Carbon Arc Lamps as Solar Simulation in Environmental Testing

    NASA Technical Reports Server (NTRS)

    Goggia, R. J.; Maclay, J. E.

    1962-01-01

    This report covers work done by the authors on the solar simulator for the six-foot diameter space simulator presently in use at JPL. The space simulator was made by modifying an existent vacuum chamber and uses carbon arc lamps for solar simulation. All Ranger vehicles flown to date have been tested in this facility. The report also contains a series of appendixes covering various aspects of space-simulation design and use. Some of these appendixes contain detailed analyses of space-simulator design criteria. Others cover the techniques used in studying carbon-arc lamps and in applying them as solar simulation.

  5. Modular off-axis solar concentrator

    DOEpatents

    Plesniak, Adam P; Hall, John C

    2015-01-27

    A solar concentrator including a housing defining a vertical axis and including a receiving wall connected to a reflecting wall to define an internal volume and an opening into the internal volume, wherein the reflecting wall defines at least one primary optical element, and wherein at least a portion of the reflecting wall includes a layer of reflective material, the housing further including a cover connected to the receiving wall and the reflecting wall to seal the opening, and at least one receiver mounted on the receiving wall such that a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, the receiver including at least one photovoltaic cell.

  6. Theoretical and experimental studies in ultraviolet solar physics

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Reeves, E. M.

    1975-01-01

    The processes and parameters in atomic and molecular physics that are relevant to solar physics are investigated. The areas covered include: (1) measurement of atomic and molecular parameters that contribute to discrete and continous sources of opacity and abundance determinations in the sun; (2) line broadening and scattering phenomena; and (3) development of an ion beam spectroscopic source which is used for the measurement of electron excitation cross sections of transition region and coronal ions.

  7. High voltage solar array experiments

    NASA Technical Reports Server (NTRS)

    Kennerud, K. L.

    1974-01-01

    The interaction between the components of a high voltage solar array and a simulated space plasma is studied to obtain data for the design of a high voltage solar array capable of 15kW at 2 to 16kV. Testing was conducted in a vacuum chamber 1.5-m long by 1.5-m diameter having a plasma source which simulated the plasma conditions existing in earth orbit between 400 nautical miles and synchronous altitude. Test samples included solar array segments pinholes in insulation covering high voltage electrodes, and plain dielectric samples. Quantitative data are presented in the areas of plasma power losses, plasma and high voltage induced damage, and dielectric properties. Limitations of the investigation are described.

  8. Theory and laboratory astrophysics

    NASA Technical Reports Server (NTRS)

    Schramm, David N.; Mckee, Christopher F.; Alcock, Charles; Allamandola, Lou; Chevalier, Roger A.; Cline, David B.; Dalgarno, Alexander; Elmegreen, Bruce G.; Fall, S. Michael; Ferland, Gary J.

    1991-01-01

    Science opportunities in the 1990's are discussed. Topics covered include the large scale structure of the universe, galaxies, stars, star formation and the interstellar medium, high energy astrophysics, and the solar system. Laboratory astrophysics in the 1990's is briefly surveyed, covering such topics as molecular, atomic, optical, nuclear and optical physics. Funding recommendations are given for the National Science Foundation, NASA, and the Department of Energy. Recommendations for laboratory astrophysics research are given.

  9. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators.

    PubMed

    Good, Philipp; Cooper, Thomas; Querci, Marco; Wiik, Nicolay; Ambrosetti, Gianluca; Steinfeld, Aldo

    2016-03-01

    The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300-2500 nm at incidence angles 15-60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0-60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350-1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article "Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators" in Solar Energy Materials and Solar Cells.

  10. Study of magnetic notions in the solar photosphere and their implications for heating the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Noyes, Robert W.

    1995-01-01

    This progress report covers the first year of NASA Grant NAGw-2545, a study of magnetic structure in the solar photosphere and chromosphere. We have made significant progress in three areas: (1) analysis of vorticity in photospheric convection, which probably affects solar atmospheric heating through the stresses it imposes on photospheric magnetic fields; (2) modelling of the horizontal motions of magnetic footpoints in the solar photosphere using an assumed relation between brightness and vertical motion as well as continuity of flow; and (3) observations and analysis of infrared CO lines formed near the solar temperature minimum, whose structure and dynamics also yield important clues to the nature of heating of the upper atmosphere. Each of these areas are summarized in this report, with copies of those papers prepared or published this year included.

  11. Effect of ice-albedo feedback on global sensitivity in a one-dimensional radiative-convective climate model

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.; Stone, P. H.

    1980-01-01

    The feedback between the ice albedo and temperature is included in a one-dimensional radiative-convective climate model. The effect of this feedback on global sensitivity to changes in solar constant is studied for the current climate conditions. This ice-albedo feedback amplifies global sensitivity by 26 and 39%, respectively, for assumptions of fixed cloud altitude and fixed cloud temperature. The global sensitivity is not affected significantly if the latitudinal variations of mean solar zenith angle and cloud cover are included in the global model. The differences in global sensitivity between one-dimensional radiative-convective models and energy balance models are examined. It is shown that the models are in close agreement when the same feedback mechanisms are included. The one-dimensional radiative-convective model with ice-albedo feedback included is used to compute the equilibrium ice line as a function of solar constant.

  12. Voltage gradients in solar array cavities as possible breakdown sites in spacecraft-charging-induced discharges

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Mills, H. E.; Orange, L.

    1981-01-01

    A possible explanation for environmentally-induced discharges on geosynchronous satellites exists in the electric fields formed in the cavities between solar cells - the small gaps formed by the cover slides, solar cells, metallic interconnects and insulating substrate. When exposed to a substorm environment, the cover slides become less negatively charged than the spacecraft ground. If the resultant electric field becomes large enough, then the interconnect could emit electrons (probably by field emission) which could be accelerated to space by the positive voltage on the covers. An experimental study was conducted using a small solar array segment in which the interconnect potential was controlled by a power supply while the cover slides were irradiated by monoenergetic electrons. It was found that discharges could be triggered when the interconnect potential became at least 500 volts negative with respect to the cover slides. Analytical modeling of satellites exposed to substorm environments indicates that such gradients are possible. Therefore, it appears that this trigger mechanism for discharges is possible.

  13. Saltless solar pond

    NASA Technical Reports Server (NTRS)

    Lin, E. I. H. (Inventor)

    1984-01-01

    A solar pond adapted for efficiently trapping and storing radiant solar energy without the use of a salt concentration gradient in the pond is disclosed. A body of water which may be fresh, saline, relatively clear or turbid, is substantially covered by a plurality of floating honeycomb panels. The honeycomb panels are made of a material such as glass which is pervious to short wave solar radiation but impervious to infrared radiation. Each honeycomb panel includes a multitude of honeycomb cells. The honeycomb panels are divided into the elongated honeycomb cells by a multitude of intermediate plates disposed between a bottom plate and top plate of the panel. The solar pond is well suited for providing hot water of approximately 85 to 90 C temperature for direct heating applications, and for electrical power generation.

  14. Performance of active solar space-heating systems, 1980-1981 heating season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, K.; Kendall, P.; Pakkala, P.

    Data are provided on 32 solar heating sites in the National Solar Data Network (NSDN). Of these, comprehensive data are included for 14 sites which cover a range of system types and solar applications. A brief description of the remaining sites is included along with system problems experienced which prevented comprehensive seasonal analyses. Tables and discussions of individual site parameters such as collector areas, storage tank sizes, manufacturers, building dimensions, etc. are provided. Tables and summaries of 1980-1981 heating season data are also provided. Analysis results are presented in graphic form to highlight key summary information. Performance indices are graphedmore » for two major groups of collectors - liquid and air. Comparative results of multiple NSDN systems' operation for the 1980-1981 heating season are summarized with discussions of specific cases and conclusions which may be drawn from the data. (LEW)« less

  15. Electrostatic bonding of thin (cycle sine 3 mil) 7070 cover glass to Ta2O5 AR-coated thin (cycle sine 2 mil) silicon wafers and solar cells

    NASA Technical Reports Server (NTRS)

    Egelkrout, D. W.

    1981-01-01

    Electrostatic bonding of thin cover glass to thin solar cells was researched. Silicon solar cells, wafers, and Corning 7070 glass of from about 0.002" to about 0.003" in thickness were used in the investigation to establish optimum parameters for producing mechanically acceptable bonds while minimizing thermal stresses and resultant solar cell electrical parameter degradation.

  16. Innovation: Key to the future

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA Marshall Space Flight Center Annual Report is presented. A description of research and development projects is included. Topics covered include: space science; space systems; transportation systems; astronomy and astrophysics; earth sciences; solar terrestrial physics; microgravity science; diagnostic and inspection system; information, electronic, and optical systems; materials and manufacturing; propulsion; and structures and dynamics.

  17. Novel duplex vapor electrochemical method for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Kapur, V.; Sancier, K. M.; Sanjurjo, A.; Leach, S.; Westphal, S.; Bartlett, R.; Nanis, L.

    1978-01-01

    Progress in the development of low-cost solar arrays is reported. Topics covered include: (1) development of a simplified feed system for the Na used in the Na-SiF4 reactor; (2) production of high purity silicon through the reduction of sodium fluosilicate with sodium metal; (3) the leaching process for recovering silicon from the reaction products of the SiF4-Na reaction; and (4) silicon separation by the melting of the reaction product.

  18. Monolithic tandem solar cell

    DOEpatents

    Wanlass, M.W.

    1994-06-21

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

  19. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1994-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

  20. Alternative scenarios utilizing nonterrestrial resources

    NASA Technical Reports Server (NTRS)

    Eldred, Charles H.; Roberts, Barney B.

    1992-01-01

    A collection of alternative scenarios that are enabled or substantially enhanced by the utilization of nonterrestrial resources is provided. We take a generalized approach to scenario building so that our report will have value in the context of whatever goals are eventually chosen. Some of the topics covered include the following: lunar materials processing; asteroid mining; lunar resources; construction of a large solar power station; solar dynamic power for the space station; reduced gravity; mission characteristics and options; and tourism.

  1. A NOAA/SWPC Perspective on Space Weather Forecasts That Fail

    NASA Astrophysics Data System (ADS)

    Biesecker, D. A.

    2014-12-01

    The Space Weather Prediction Center (SWPC) at NOAA is the Official US source for space weather watches, warning and alerts. These alerts are provided to a breadth of customers covering a range of industries, including electric utilities, airlines, emergency managers, and users of precision GPS to name a few. This talk will review the current tools used by SWPC to forecast geomagnetic storms, solar flares, and solar energetic particle events and present the SWPC performance in each of these areas. We will include a discussion of the current limitations and examples of events that proved difficult to forecast.

  2. Alterations in fruit and vegetable beta-carotene and vitamin C content caused by open-sun drying, visqueen-covered and polyethylene-covered solar-dryers.

    PubMed

    Ndawula, J; Kabasa, J D; Byaruhanga, Y B

    2004-08-01

    This study investigated the effects of three drying methods (open sun drying, visqueen-covered solar dryer and polyethylene-covered solar dryer) on b-carotene and vitamin C content of edible portions of mango fruit (Mangifera indica) and cowpea leaves (Vigna unguiculata). Commercial samples were analysed for vitamin C by titrimetry and b-carotene by spectrophotometry at 450 nm. Differences in vitamin retention and loss associated with the three drying methods were assessed by analysis of variance and least significant difference (LSD) at (p<0.05. The fresh cowpea leaf b-carotene and vitamin C content was 140.9 and 164.3 mg / 100g DM respectively and decreased (p<0.05) with drying. Open sun drying method caused the greatest b-carotene and vitamin C loss (58% and 84% respectively), while the visqueen-covered solar dryer caused the least loss (34.5% and 71% respectively). Blanching cowpea leaves improved b-carotene and vitamin C retention by 15% and 7.5% respectively. The b-carotene and vitamin C content of fresh ripe mango fruit was 5.9 and 164.3 mg/100g DM respectively. Similar to effects on cowpea leaves, the mango micronutrient content decreased (p<0.05) with drying. The open sun drying method caused the greatest b-carotene (94.2%) and vitamin C (84.5%) loss, while the visqueen-covered solar dryer caused the least (73 and 53% respectively). These results show that the three solar drying methods cause significant loss of pro-vitamin A and vitamin C in dried fruits and vegetables. However, open sun drying causes the most loss and the visqueen-covered solar dryer the least, making the later a probable better drying technology for fruit and vegetable preservation. The drying technologies should be improved to enhance vitamin retention.

  3. El Toro Library Solar Heating and Cooling Demonstration Project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report is divided into a number of essentially independent sections, each of which covers a specific topic. The sections, and the topics covered, are as follows. Section 1 provides a brief summary description of the solar energy heating and cooling system including the key final design parameters. Section 2 contains a copy of the final Acceptance Test Report. Section 3 consists of a reduced set of final updated as-built mechanical, electrical, control and instrumentations drawings of the solar energy heating and cooling system. Section 4 provides a summary of system maintenance requirements, in the form of a maintenance schedulemore » which lists necessary maintenance tasks to be performed at monthly, quarterly, semi-annual, and annual intervals. Section 5 contains a series of photographs of the final solar energy system installation, including the collector field and the mechanical equipment room. Section 6 provides a concise summary of system operation and performance for the period of December 1981 through June 1982, as measured, computed and reported by Vitro Laboratories Division of Automation Industries, Inc., for the DOE National Solar Data Network. Section 7 provides a summary of key as-built design parameters, compared with the corresponding original design concept parameters. Section 8 provides a description of a series of significant problems encountered during construction, start-up and check-out of the solar energy heating and cooling system, together with the method employed to solve the problem at the time and/or recommendations for avoiding the problem in the future design of similar systems. Appendices A through H contain the installation, operation and maintenance submittals of the various manufacturers on the major items of equipment in the system. Reference CAPE-2823.« less

  4. The use of FEP Teflon in solar cell cover technology

    NASA Technical Reports Server (NTRS)

    Broder, J. D.; Mazaris, G. A.

    1973-01-01

    FEP plastic film was used as a cover and as an adhesive to bond cover glasses to silicon solar cells. Various anti-reflective coatings were applied to cells and subsequently covered with FEP. Short circuit currents were measured before and after application of the coating and of the FEP. FEP was bonded to seven of the nine differently coated cells, with no change in the total short circuit current in four cases.

  5. The use of FEP Teflon in solar cell cover technology

    NASA Technical Reports Server (NTRS)

    Broder, J. D.; Mazaris, G. A.

    1974-01-01

    FEP plastic film was used as a cover and as an adhesive to bond cover glasses to silicon solar cells. Various anti-reflective coatings were applied to cells and subsequently covered with FEP. Short-circuit currents were measured before and after application of the coating and of the FEP. FEP bonded to seven of the nine differently coated cells, with no change in the total short circuit current in four cases.

  6. Industry sector analysis: The market for renewable energy resources (the Philippines). Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, E.; Miranda, A.L.

    1990-08-01

    The market survey covers the renewable energy resources market in the Philippines. Sub-sectors covered include biomass, solar energy, photovoltaic cells, windmills, and mini-hydro systems. The analysis contains statistical and narrative information on projected market demand, end-users; receptivity of Philippine consumers to U.S. products; the competitive situation, and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). It also contains key contact information.

  7. Global map of solar power production efficiency, considering micro climate factors

    NASA Astrophysics Data System (ADS)

    Hassanpour Adeh, E.; Higgins, C. W.

    2017-12-01

    Natural resources degradation and greenhouse gas emissions are creating a global crisis. Renewable energy is the most reliable option to mitigate this environmental dilemma. Abundancy of solar energy makes it highly attractive source of electricity. The existing global spatial maps of available solar energy are created with various models which consider the irradiation, latitude, cloud cover, elevation, shading and aerosols, and neglect the influence of local meteorological conditions. In this research, the influences of microclimatological variables on solar energy productivity were investigated with an in-field study at the Rabbit Hills solar arrays near Oregon State University. The local studies were extended to a global level, where global maps of solar power were produced, taking the micro climate variables into account. These variables included: temperature, relative humidity, wind speed, wind direction, solar radiation. The energy balance approach was used to synthesize the data and compute the efficiencies. The results confirmed that the solar power efficiency can be directly affected by the air temperature and wind speed.

  8. Two Coronal Holes on the Sun Viewed by SDO

    NASA Image and Video Library

    2015-03-17

    NASA’s Solar Dynamics Observatory, or SDO, captured this solar image on March 16, 2015, which clearly shows two dark patches, known as coronal holes. The larger coronal hole of the two, near the southern pole, covers an estimated 6- to 8-percent of the total solar surface. While that may not sound significant, it is one of the largest polar holes scientists have observed in decades. The smaller coronal hole, towards the opposite pole, is long and narrow. It covers about 3.8 billion square miles on the sun - only about 0.16-percent of the solar surface. Coronal holes are lower density and temperature regions of the sun’s outer atmosphere, known as the corona. Coronal holes can be a source of fast solar wind of solar particles that envelop the Earth. The magnetic field in these regions extends far out into space rather than quickly looping back into the sun’s surface. Magnetic fields that loop up and back down to the surface can be seen as arcs in non-coronal hole regions of the image, including over the lower right horizon. The bright active region on the lower right quadrant is the same region that produced solar flares last week. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Clouds and the Near-Earth Environment: Possible Links

    NASA Astrophysics Data System (ADS)

    Condurache-Bota, Simona; Voiculescu, Mirela; Dragomir, Carmelia

    2015-12-01

    Climate variability is a hot topic not only for scientists and policy-makers, but also for each and every one of us. The anthropogenic activities are considered to be responsible for most climate change, however there are large uncertainties about the magnitude of effects of solar variability and other extraterrestrial influences, such as galactic cosmic rays on terrestrial climate. Clouds play an important role due to feedbacks of the radiation budget: variation of cloud cover/composition affects climate, which, in turn, affects cloud cover via atmospheric dynamics and sea temperature variations. Cloud formation and evolution are still under scientific scrutiny, since their microphysics is still not understood. Besides atmospheric dynamics and other internal climatic parameters, extraterrestrial sources of cloud cover variation are considered. One of these is the solar wind, whose effect on cloud cover might be modulated by the global atmospheric electrical circuit. Clouds height and composition, their seasonal variation and latitudinal distribution should be considered when trying to identify possible mechanisms by which solar energy is transferred to clouds. The influence of the solar wind on cloud formation can be assessed also through the ap index - the geomagnetic storm index, which can be readily connected with interplanetary magnetic field, IMF structure. This paper proposes to assess the possible relationship between both cloud cover and solar wind proxies, as the ap index, function of cloud height and composition and also through seasonal studies. The data covers almost three solar cycles (1984-2009). Mechanisms are looked for by investigating observed trends or correlation at local/seasonal scale

  10. Real-time and accelerated outdoor endurance testing of solar cells

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Anagnostou, E.

    1977-01-01

    Real-time and accelerated outdoor endurance testing was performed on a variety of samples of interest to the National Photovoltaic Conversion Program. The real-time tests were performed at seven different sites and the accelerated tests were performed at one of those sites in the southwestern United States. The purpose of the tests were to help evaluate the lifetime of photovoltaic systems. Three types of samples were tested; transmission samples of possible cover materials, sub-modules constructed using these materials attached to solar cells, and solar cell modules produced by the manufacturers for the ERDA program. Results indicate that suitable cover materials are glass, FEP-A and PFA. Dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.

  11. Drying firewood in a temporary solar kiln: a case study.

    Treesearch

    George R. Sampson; Anthony F. Gasbarro

    1986-01-01

    A pilot study was undertaken to determine drying rates for small diameter, unsplit paper birch firewood that was dried: (1) in a conventional top-covered pile; (2) in a simple, temporary solar kiln; and (3) in tree length. Drying rates were the same for firewood piles whether they were in the temporary solar kilns or only covered on top to keep rain or snow from...

  12. Feasibility study of a 110 watt per kilogram lightweight solar array system

    NASA Technical Reports Server (NTRS)

    Shepard, N. F.; Stahle, C. V.; Hanson, K. L.; Schneider, A.; Blomstrom, L. E.; Hansen, W. T.; Kirpich, A.

    1973-01-01

    The feasibility of a 10,000 watt solar array panel which has a minimum power-to-mass ratio of 110 watt/kg is discussed. The application of this ultralightweight solar array to three possible missions was investigated. With the interplanetary mission as a baseline, the constraining requirements for a geosynchronous mission and for a manned space station mission are presented. A review of existing lightweight solar array system concepts revealed that changes in the system approach are necessary to achieve the specified 110 watt/kg goal. A comprehensive review of existing component technology is presented in the areas of thin solar cells, solar cell covers, welded interconnectors, substrates and deployable booms. Advances in the state-of-the-art of solar cell and deployable boom technology were investigated. System level trade studies required to select the optimum boom bending stiffness, system aspect ratio, bus voltage level, and solar cell circuit arrangement are reported. Design analysis tasks included the thermal analysis of the solar cell blanket, thermal stress analysis of the solar cell interconnectors/substrate, and the thermostructural loading of the deployed boom.

  13. Construction of a century solar chromosphere data set for solar activity related research

    NASA Astrophysics Data System (ADS)

    Lin, Ganghua; Wang, Xiao Fan; Yang, Xiao; Liu, Suo; Zhang, Mei; Wang, Haimin; Liu, Chang; Xu, Yan; Tlatov, Andrey; Demidov, Mihail; Borovik, Aleksandr; Golovko, Aleksey

    2017-06-01

    This article introduces our ongoing project "Construction of a Century Solar Chromosphere Data Set for Solar Activity Related Research". Solar activities are the major sources of space weather that affects human lives. Some of the serious space weather consequences, for instance, include interruption of space communication and navigation, compromising the safety of astronauts and satellites, and damaging power grids. Therefore, the solar activity research has both scientific and social impacts. The major database is built up from digitized and standardized film data obtained by several observatories around the world and covers a time span of more than 100 years. After careful calibration, we will develop feature extraction and data mining tools and provide them together with the comprehensive database for the astronomical community. Our final goal is to address several physical issues: filament behavior in solar cycles, abnormal behavior of solar cycle 24, large-scale solar eruptions, and sympathetic remote brightenings. Significant signs of progress are expected in data mining algorithms and software development, which will benefit the scientific analysis and eventually advance our understanding of solar cycles.

  14. A New SATIRE-S Spectral Solar Irradiance Reconstruction for Solar Cycles 21-23 and Its Implications for Stratospheric Ozone*

    NASA Astrophysics Data System (ADS)

    Ball, William T.; Krivova, Natalie A.; Unruh, Yvonne C.; Haigh, Joanna D.; Solanki, Sami K.

    2014-11-01

    We present a revised and extended total and spectral solar irradiance (SSI) reconstruction, which includes a wavelength-dependent uncertainty estimate, spanning the last three solar cycles using the SATIRE-S model. The SSI reconstruction covers wavelengths between 115 and 160,000 nm and all dates between August 1974 and October 2009. This represents the first full-wavelength SATIRE-S reconstruction to cover the last three solar cycles without data gaps and with an uncertainty estimate. SATIRE-S is compared with the NRLSSI model and SORCE/SOLSTICE ultraviolet (UV) observations. SATIRE-S displays similar cycle behaviour to NRLSSI for wavelengths below 242 nm and almost twice the variability between 242 and 310 nm. During the decline of last solar cycle, between 2003 and 2008, SSI from SORCE/SOLSTICE version 12 and 10 typically displays more than three times the variability of SATIRE-S between 200 and 300 nm. All three datasets are used to model changes in stratospheric ozone within a 2D atmospheric model for a decline from high solar activity to solar minimum. The different flux changes result in different modelled ozone trends. Using NRLSSI leads to a decline in mesospheric ozone, while SATIRE-S and SORCE/SOLSTICE result in an increase. Recent publications have highlighted increases in mesospheric ozone when considering version 10 SORCE/SOLSTICE irradiances. The recalibrated SORCE/SOLSTICE version 12 irradiances result in a much smaller mesospheric ozone response than when using version 10 and now similar in magnitude to SATIRE-S. This shows that current knowledge of variations in spectral irradiance is not sufficient to warrant robust conclusions concerning the impact of solar variability on the atmosphere and climate.

  15. Future of Ultraviolet Astronomy Based on Six Years of IUE Research

    NASA Technical Reports Server (NTRS)

    Mead, J. M. (Editor); Chapman, R. D. (Editor); Kondo, Y. (Editor)

    1984-01-01

    Physical insights into the various astronomical objects which were studied using the International Ultraviolet Explorer (IUE) satellite. Topics covered included galaxies, cool stars, hot stars, close binaries, variable stars, the interstellar medium, the solar system, and IUE follow-on missions.

  16. Solar production of industrial process steam ranging in temperature from 300/sup 0/F to 550/sup 0/F (Phase I). Volume 3. Appendices (cont). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-30

    The following appendices are included: (1) instruments, (2) electrical specifications, (3) protective coverings, (4) welding requirements, (5) engineering specifications, and (6) administrative. (MOW)

  17. Laboratory for Extraterrestrial Physics

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    The NASA Goddard Space Flight Center (GSFC) Laboratory for Extraterrestrial Physics (LEP) performs experimental and theoretical research on the heliosphere, the interstellar medium, and the magnetospheres and upper atmospheres of the planets, including Earth. LEP space scientists investigate the structure and dynamics of the magnetospheres of the planets including Earth. Their research programs encompass the magnetic fields intrinsic to many planetary bodies as well as their charged-particle environments and plasma-wave emissions. The LEP also conducts research into the nature of planetary ionospheres and their coupling to both the upper atmospheres and their magnetospheres. Finally, the LEP carries out a broad-based research program in heliospheric physics covering the origins of the solar wind, its propagation outward through the solar system all the way to its termination where it encounters the local interstellar medium. Special emphasis is placed on the study of solar coronal mass ejections (CME's), shock waves, and the structure and properties of the fast and slow solar wind. LEP planetary scientists study the chemistry and physics of planetary stratospheres and tropospheres and of solar system bodies including meteorites, asteroids, comets, and planets. The LEP conducts a focused program in astronomy, particularly in the infrared and in short as well as very long radio wavelengths. We also perform an extensive program of laboratory research, including spectroscopy and physical chemistry related to astronomical objects. The Laboratory proposes, develops, fabricates, and integrates experiments on Earth-orbiting, planetary, and heliospheric spacecraft to measure the characteristics of planetary atmospheres and magnetic fields, and electromagnetic fields and plasmas in space. We design and develop spectrometric instrumentation for continuum and spectral line observations in the x-ray, gamma-ray, infrared, and radio regimes; these are flown on spacecraft to study the interplanetary medium, asteroids, comets, and planets. Suborbital sounding rockets and groundbased observing platforms form an integral part of these research activities. This report covers the period from approximately October 1999 through September 2000.

  18. Max '91 Workshop 2: Developments in Observations and Theory for Solar Cycle 22

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M. (Editor); Dennis, Brian R. (Editor)

    1989-01-01

    Papers and observatory reports presented at the second workshop of the Max '91 program are compiled along with discussion group summaries and invited reviews. The four discussion groups addressed the following subjects: high-energy flare physics; coordinated magnetograph observations; flare theory and modeling; and Max '91 communications and coordination. A special session also took place on observations of Active Region 5395 and the associated flares of March 1989. Other topics covered during the workshop include the scientific objectives of solar gamma ray observations, the solar capabilities of each of the four instruments on the Gamma Ray Observatory, and access to Max '91 information.

  19. Thermal Storage Applications Workshop. Volume 1: Plenary Session Analysis

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The importance of the development of inexpensive and efficient thermal and thermochemical energy storage technology to the solar power program is discussed in a summary of workship discussions held to exchange information and plan for future systems. Topics covered include storage in central power applications such as the 10 MW-e demonstration pilot receiver to be constructed in Barstow, California; storage for small dispersed systems, and problems associated with the development of storage systems for solar power plants interfacing with utility systems.

  20. Next-generation laser retroreflectors for GNSS, solar system exploration, geodesy, gravitational physics and earth observation

    NASA Astrophysics Data System (ADS)

    Dell'Agnello, S.; Boni, A.; Cantone, C.; Ciocci, E.; Martini, M.; Patrizi, G.; Tibuzzi, M.; Delle Monache, G.; Vittori, R.; Bianco, G.; Currie, D.; Intaglietta, N.; Salvatori, L.; Lops, C.; Contessa, S.; Porcelli, L.; Mondaini, C.; Tuscano, P.; Maiello, M.

    2017-11-01

    The SCF_Lab (Satellite/lunar/gnss laser ranging and altimetry Characterization Facility Laboratory) of INFNLNF is designed to cover virtually LRAs (Laser Retroreflector Arrays) of CCRs (Cube Corner Retroreflectors) for missions in the whole solar system, with a modular organization of its instrumentation, two redundant SCF (SCF_Lab Characterization Facilities), and an evolutionary measurement approach, including customization and potentially upgrade on-demand. See http://www.lnf.infn.it/esperimenti/etrusco/ for a general description.

  1. Life from the stars?. [extraterrestrial sources contributing to chemical evolution on Earth

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.; Cruikshank, Dale P.

    1994-01-01

    Scientists are now seriously considering the possibility that organic matter from interstellar space could have influenced, or even spurred, the origin of life on Earth. Various aspects of chemical evolution are discussed along with possible extraterrestrial sources responsible for contributing to Earth's life-producing, chemical composition. Specific topics covered include the following: interstellar matter, molecular clouds, asteroid dust, organic molecules in our solar system, interplanetary dust and comets, meteoritic composition, and organic-rich solar-system bodies.

  2. Meteoritical Society Annual Meeting, 57th, Prague, Czech Republic, July 25-29, 1994. [Abstracts only

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Ranging in size from mere grains and palm-size stones to boulders and many-mile- wide hunks of rock, meteorites hold many secrets of our solar system, and indeed of our universe. The 57th Annual Meeting of the Meteoritical Society discussed many aspects of this fascinating 'chunk' of the evolution of the Solar System. Topics covered included: chemical composition, meteorite types, meteorite age determination, meteorite origins, and find locations, as well as a multitude of other important subjects.

  3. Studies of volatiles and organic materials in early terrestrial and present-day outer solar system environments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Chyba, Christopher F.; Khare, B. N.

    1991-01-01

    A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.

  4. Near-earth radiation environment including time variations and secondary radiation; Meetings F2.6 and F2.7, COSPAR Scientific Assembly, 30th, Hamburg, Germany, July 11-21, 1994

    NASA Technical Reports Server (NTRS)

    Shea, M. A. (Editor); Heinrich, W. (Editor); Badhwar, G. D. (Editor)

    1996-01-01

    Both man and technological equipment must survive the near-earth space radiation environment, which can, under specific conditions, be extremely severe. This conference produced 17 papers on the dynamic space radiation environment covering: galactic, solar and trapped particles; nuclear fragmentation; nuclear interactions and transport theory; solar proton events; radiation shielding; and heavy ion fluences. Several papers present results from the recent SAMPEX mission.

  5. Facilitating the exploitation of ERTS-1 imagery utilizing snow enhancement techniques

    NASA Technical Reports Server (NTRS)

    Wobber, F. J. (Principal Investigator); Martin, K. R.; Amato, R. V.

    1973-01-01

    The author has identified the following significant results. Snow cover in combination with low angle solar illumination has been found to provide increased tonal contrast of surface feature and is useful in the detection of bedrock fractures. Identical fracture systems were not as readily detectable in the fall due to the lack of a contrasting surface medium (snow) and a relatively high sun angle. Low angle solar illumination emphasizes topographic expressions not as apparent on imagery acquired with a higher sun angle. A strong correlation exists between the major fracture-lineament directions interpreted from multi-sensor imagery (including snow-free and snow cover ERTS) and the strike of bedrock joints recorded in the field indicating the structural origin of interpreted fracture-lineaments. A fracture-annotated ERTS-1 photo base map (1:250,000 scale) is being prepared for western Massachusetts. The map will document the utilization of ERTS-1 imagery for geological analysis in comparative snow-free and snow-covered terrain.

  6. Flat-plate solar array project. Volume 3: Silicon sheet: Wafers and ribbons

    NASA Technical Reports Server (NTRS)

    Briglio, A.; Dumas, K.; Leipold, M.; Morrison, A.

    1986-01-01

    The primary objective of the Silicon Sheet Task of the Flat-Plate Solar Array (FSA) Project was the development of one or more low cost technologies for producing silicon sheet suitable for processing into cost-competitive solar cells. Silicon sheet refers to high purity crystalline silicon of size and thickness for fabrication into solar cells. Areas covered in the project were ingot growth and casting, wafering, ribbon growth, and other sheet technologies. The task made and fostered significant improvements in silicon sheet including processing of both ingot and ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics associated with high quality sheet, and the control of the parameters required for higher efficiency solar cells. Although significant sheet cost reductions were made, the technology advancements required to meet the task cost goals were not achieved.

  7. Solar Irradiance Data Products at the LASP Interactive Solar IRradiance Datacenter (LISIRD)

    NASA Astrophysics Data System (ADS)

    Lindholm, D. M.; Ware DeWolfe, A.; Wilson, A.; Pankratz, C. K.; Snow, M. A.; Woods, T. N.

    2011-12-01

    The Laboratory for Atmospheric and Space Physics (LASP) has developed the LASP Interactive Solar IRradiance Datacenter (LISIRD, http://lasp.colorado.edu/lisird/) web site to provide access to a comprehensive set of solar irradiance measurements and related datasets. Current data holdings include products from NASA missions SORCE, UARS, SME, and TIMED-SEE. The data provided covers a wavelength range from soft X-ray (XUV) at 0.1 nm up to the near infrared (NIR) at 2400 nm, as well as Total Solar Irradiance (TSI). Other datasets include solar indices, spectral and flare models, solar images, and more. The LISIRD web site features updated plotting, browsing, and download capabilities enabled by dygraphs, JavaScript, and Ajax calls to the LASP Time Series Server (LaTiS). In addition to the web browser interface, most of the LISIRD datasets can be accessed via the LaTiS web service interface that supports the OPeNDAP standard. OPeNDAP clients and other programming APIs are available for making requests that subset, aggregate, or filter data on the server before it is transported to the user. This poster provides an overview of the LISIRD system, summarizes the datasets currently available, and provides details on how to access solar irradiance data products through LISIRD's interfaces.

  8. Transparent heat-spreader for optoelectronic applications

    DOEpatents

    Minano, Juan Carlos; Benitez, Pablo

    2014-11-04

    An optoelectronic cooling system is equally applicable to an LED collimator or a photovoltaic solar concentrator. A transparent fluid conveys heat from the optoelectronic chip to a hollow cover over the system aperture. The cooling system can keep a solar concentrator chip at the same temperature as found for a one-sun flat-plate solar cell. Natural convection or forced circulation can operate to convey heat from the chip to the cover.

  9. Development of a new integral solar cell protective cover

    NASA Technical Reports Server (NTRS)

    Naselow, A. B.; Dupont, P. S.; Scott-Monck, J.

    1983-01-01

    A unique polyimide polymer has been developed which shows promise as an encapsulant for interconnected solar cell modules. Such an integral cover offers important weight and cost advantages. The polymer has been characterized on silicon solar cells with respect to electrical output and spectral response. The response of the material-coated cells to electron, low-energy proton, and vacuum-ultraviolet radiation, thermal shock and humidity tests was determined.

  10. Measurement of solar radiation at the Earth's surface

    NASA Technical Reports Server (NTRS)

    Bartman, F. L.

    1982-01-01

    The characteristics of solar energy arriving at the surface of the Earth are defined and the history of solar measurements in the United States presented. Radiation and meteorological measurements being made at solar energy meteorological research and training sites and calibration procedures used there are outlined. Data illustrating the annual variation in daily solar radiation at Ann Arbor, Michigan and the diurnal variation in radiation at Albuquerque, New Mexico are presented. Direct normal solar radiation received at Albuquerque is contrasted with that received at Maynard, Massachusetts. Average measured global radiation for a period of one year for four locations under clear skies, 50% cloud cover, and 100% cloud cover is given and compared with the solar radiation at the top of the atmosphere. The May distribution of mean daily direct solar radiation and mean daily global solar radiation over the United States is presented. The effects of turbidity on the direct and circumsolar radiation are shown.

  11. Space environmental effect on solar cells: LDEF and other flight tests

    NASA Technical Reports Server (NTRS)

    Gruenbaum, Peter; Dursch, Harry

    1995-01-01

    This paper summarizes results of several experiments flown on the Long Duration Exposure Facility (LDEF) to examine the effects of the space environment on materials and technologies to be used in solar arrays. The various LDEF experiments are compared to each other as well as to other solar cell flight data published in the literature. Data on environmental effects such as atomic oxygen, ultraviolet light, micrometeoroids and debris, and charged particles are discussed in detail. The results from the LDEF experiments allow us to draw several conclusions. Atomic oxygen erodes unprotected silver interconnects, unprotected Kapton, and polymer cell covers, but certain dielectric coatings can protect both silver and Kapton. Cells that had wrap-around silver contacts sometimes showed erosion at the edges, but more recently developed wrap-through cells are not expected to have these problems. Micrometeoroid and debris damage is limited to the area close to the impact, and microsheet covers provide the cells with some protection. Damage from charged particles was as predicted, and the cell covers provided adequate protection. In general, silicon cells with microsheet covers showed very little degradation, and solar modules showed less than 3 percent degradation, except when mechanically damaged. The solar cell choices for the Space Station solar array are supported by the data from LDEF.

  12. Heat pipes in solar collectors

    NASA Astrophysics Data System (ADS)

    Bairamov, R.; Toiliev, K.

    The diode property of heat pipes is evaluated for use in solar collectors. Model experiments show that the effect of heat pipes in solar collectors is most pronounced during the nighttime, when solar radiation is zero, due to a significant reduction in the heat loss from the transparent cover surface of the collector compared to that for conventional collectors. For a solar collector with a glass cover area of one square meter during the summer season when the maximum water temperature is 60 C and the discharge is 85 l/sq m/day, the water temperature in the accumulator tank of the solar collector with a heat pipe is 10-11 C higher than in the solar collector lacking a heat pipe. In addition, the design of a solar house with passive systems in which heat pipes serve as the heat eliminating mechanism is discussed

  13. Local effects of partly-cloudy skies on solar and emitted radiation

    NASA Technical Reports Server (NTRS)

    Whitney, D. A.; Venable, D. D.

    1982-01-01

    A computer automated data acquisition system for atmospheric emittance, and global solar, downwelled diffuse solar, and direct solar irradiances is discussed. Hourly-integrated global solar and atmospheric emitted radiances were measured continuously from February 1981 and hourly-integrated diffuse solar and direct solar irradiances were measured continuously from October 1981. One-minute integrated data are available for each of these components from February 1982. The results of the correlation of global insolation with fractional cloud cover for the first year's data set. A February data set, composed of one-minute integrated global insolation and direct solar irradiance, cloud cover fractions, meteorological data from nearby weather stations, and GOES East satellite radiometric data, was collected to test the theoretical model of satellite radiometric data correlation and develop the cloud dependence for the local measurement site.

  14. Fundamentals of Solar Heating. Correspondence Course.

    ERIC Educational Resources Information Center

    Sheet Metal and Air Conditioning Contractors National Association, Vienna, VA.

    This course is designed for the use of employees of the air conditioning industry, and offers supervised correspondence instruction about solar technology. The following aspects of applied solar technology are covered: solar heating and cooling, solar radiation, solar collectors, heat storage control devices and specialty items, sizing solar…

  15. Cleaner for Solar-Collector Covers

    NASA Technical Reports Server (NTRS)

    Frickland, P. O.; Cleland, E. L.

    1983-01-01

    Simple self-contained cleaning system proposed for solar collectors or solar-collector protective domes. Perforated transparent plastic cap attached to top of protective dome in heliostat solar-energy collection system distributes cleaning fluid over surface of dome without blocking significant fraction of solar radiation.

  16. Lightweight, Light-Trapped, Thin GaAs Solar Cells for Spacecraft Applications.

    DTIC Science & Technology

    1995-10-05

    improve the efficiency of this type of cell. 2 The high efficiency and light weight of the cover glass supported GaAs solar cell can have a significant...is a 3-mil cover glass and 1-mil silicone adhesive on the front surface of the GaAs solar cell. Power Output 3000 400 -{ 2400 { N 300 S18200 W/m2...the ultra-thin, light-trapped GaAs solar ceill 3. Incorporate light trapping. 0 external quantum efficiency at 850 nm increased by 5.2% 4. Develop

  17. 8 years of Solar Spectral Irradiance Observations from the ISS with the SOLAR/SOLSPEC Instrument

    NASA Astrophysics Data System (ADS)

    Damé, L.; Bolsée, D.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Pereira, N.; Cessateur, G.; Marchand, M.; Thiéblemont, R.; Foujols, T.

    2016-12-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its UV variability, as measured by SOLAR/SOLSPEC. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  18. Direct glass bonded high specific power silicon solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Rand, J. A.; Cummings, J. R.; Lampo, S. M.; Shreve, K. P.; Barnett, Allen M.

    1991-01-01

    A lightweight, radiation hard, high performance, ultra-thin silicon solar cell is described that incorporates light trapping and a cover glass as an integral part of the device. The manufacturing feasibility of high specific power, radiation insensitive, thin silicon solar cells was demonstrated experimentally and with a model. Ultra-thin, light trapping structures were fabricated and the light trapping demonstrated experimentally. The design uses a micro-machined, grooved back surface to increase the optical path length by a factor of 20. This silicon solar cell will be highly tolerant to radiation because the base width is less than 25 microns making it insensitive to reduction in minority carrier lifetime. Since the silicon is bonded without silicone adhesives, this solar cell will also be insensitive to UV degradation. These solar cells are designed as a form, fit, and function replacement for existing state of the art silicon solar cells with the effect of simultaneously increasing specific power, power/area, and power supply life. Using a 3-mil thick cover glass and a 0.3 g/sq cm supporting Al honeycomb, a specific power for the solar cell plus cover glass and honeycomb of 80.2 W/Kg is projected. The development of this technology can result in a revolutionary improvement in high survivability silicon solar cell products for space with the potential to displace all existing solar cell technologies for single junction space applications.

  19. The seasonal cycle of snow cover, sea ice and surface albedo

    NASA Technical Reports Server (NTRS)

    Robock, A.

    1980-01-01

    The paper examines satellite data used to construct mean snow cover caps for the Northern Hemisphere. The zonally averaged snow cover from these maps is used to calculate the seasonal cycle of zonally averaged surface albedo. The effects of meltwater on the surface, solar zenith angle, and cloudiness are parameterized and included in the calculations of snow and ice albedo. The data allows a calculation of surface albedo for any land or ocean 10 deg latitude band as a function of surface temperature ice and snow cover; the correct determination of the ice boundary is more important than the snow boundary for accurately simulating the ice and snow albedo feedback.

  20. Significant achievements in the Planetary Geology Program. [geologic processes, comparative planetology, and solar system evolution

    NASA Technical Reports Server (NTRS)

    Head, J. W. (Editor)

    1978-01-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included.

  1. Land-Sparing Opportunities for Solar Energy Development in Agricultural Landscapes: A Case Study of the Great Central Valley, CA, United States.

    PubMed

    Hoffacker, Madison K; Allen, Michael F; Hernandez, Rebecca R

    2017-12-19

    Land-cover change from energy development, including solar energy, presents trade-offs for land used for the production of food and the conservation of ecosystems. Solar energy plays a critical role in contributing to the alternative energy mix to mitigate climate change and meet policy milestones; however, the extent that solar energy development on nonconventional surfaces can mitigate land scarcity is understudied. Here, we evaluate the land sparing potential of solar energy development across four nonconventional land-cover types: the built environment, salt-affected land, contaminated land, and water reservoirs (as floatovoltaics), within the Great Central Valley (CV, CA), a globally significant agricultural region where land for food production, urban development, and conservation collide. Furthermore, we calculate the technical potential (TWh year -1 ) of these land sparing sites and test the degree to which projected electricity needs for the state of California can be met therein. In total, the CV encompasses 15% of CA, 8415 km 2 of which was identified as potentially land-sparing for solar energy development. These areas comprise a capacity-based energy potential of at least 17 348 TWh year -1 for photovoltaic (PV) and 2213 TWh year -1 for concentrating solar power (CSP). Accounting for technology efficiencies, this exceeds California's 2025 projected electricity demands up to 13 and 2 times for PV and CSP, respectively. Our study underscores the potential of strategic renewable energy siting to mitigate environmental trade-offs typically coupled with energy sprawl in agricultural landscapes.

  2. First results from Spacelab 2

    NASA Technical Reports Server (NTRS)

    Urban, E. W.

    1986-01-01

    Preliminary results of physical experiments carried out during the Spacelab 2 Shuttle mission are summarized. Attention is given to experiments in the fields of plasma dynamics; solar physics; high-energy astrophysics; and astronomy. Plasma experiments included an ejectable plasma diagnosics package and measurements of the passive charging of the Shuttle vehicle in the surrounding space plasma. The solar physics instrument package consisted of a solar spectral irradiance monitor; a solar optical universal polarimeter (SOUP); and a solar helium abundance high-resolution telescope and spectrograph (HRTS). Astronomical observations were performed using a scanning infrared telescope (IRT) which consisted of a highly baffled herschelian telescope and 10 detectors covering wavelengths from 2 to 120 microns. Cosmic-ray nuclei were detected and analyzed using gas Cerenkov counters and a transition radiation detector. Addition experiments included a thin film fluid dynamics payload and analysis of blood samples taken from the mission specialists. Complete data records from the experiments have now been distributed for an analysis period which will take at least a year. A table listing the Spacelab 2 experiments and their principal investigators is provided.

  3. The impact of solar cell technology on planar solar array performance

    NASA Technical Reports Server (NTRS)

    Mills, Michael W.; Kurland, Richard M.

    1989-01-01

    The results of a study into the potential impact of advanced solar cell technologies on the characteristics (weight, cost, area) of typical planar solar arrays designed for low, medium and geosynchronous altitude earth orbits are discussed. The study considered planar solar array substrate designs of lightweight, rigid-panel graphite epoxy and ultra-lightweight Kapton. The study proposed to answer the following questions: Do improved cell characteristics translate into array-level weight, size and cost improvements; What is the relative importance of cell efficiency, weight and cost with respect to array-level performance; How does mission orbital environment affect array-level performance. Comparisons were made at the array level including all mechanisms, hinges, booms, and harnesses. Array designs were sized to provide 5kW of array power (not spacecraft bus power, which is system dependent but can be scaled from given values). The study used important grass roots issues such as use of the GaAs radiation damage coefficients as determined by Anspaugh. Detailed costing was prepared, including cell and cover costs, and manufacturing attrition rates for the various cell types.

  4. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    DTIC Science & Technology

    2013-09-30

    Sea Ice , and the Ice Albedo Feedback in a...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Sunlight, Sea Ice , and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover 5a...during a period when incident solar irradiance is large increasing solar heat input to the ice . Seasonal sea ice typically has a smaller albedo

  5. Microgravity Particle Research on the Space Station

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W. (Editor); Mckay, Christopher P. (Editor); Schwartz, Deborah E. (Editor)

    1987-01-01

    Science questions that could be addressed by a Space Station Microgravity Particle Research Facility for studying small suspended particles were discussed. Characteristics of such a facility were determined. Disciplines covered include astrophysics and the solar nebula, planetary science, atmospheric science, exobiology and life science, and physics and chemistry.

  6. Dish/stirling hybrid-receiver

    DOEpatents

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2002-01-01

    A hybrid high-temperature solar receiver is provided which comprises a solar heat-pipe-receiver including a front dome having a solar absorber surface for receiving concentrated solar energy, a heat pipe wick, a rear dome, a sidewall joining the front and the rear dome, and a vapor and a return liquid tube connecting to an engine, and a fossil fuel fired combustion system in radial integration with the sidewall for simultaneous operation with the solar heat pipe receiver, the combustion system comprising an air and fuel pre-mixer, an outer cooling jacket for tangentially introducing and cooling the mixture, a recuperator for preheating the mixture, a burner plenum having an inner and an outer wall, a porous cylindrical metal matrix burner firing radially inward facing a sodium vapor sink, the mixture ignited downstream of the matrix forming combustion products, an exhaust plenum, a fossil-fuel heat-input surface having an outer surface covered with a pin-fin array, the combustion products flowing through the array to give up additional heat to the receiver, and an inner surface covered with an extension of the heat-pipe wick, a pin-fin shroud sealed to the burner and exhaust plenums, an end seal, a flue-gas diversion tube and a flue-gas valve for use at off-design conditions to limit the temperature of the pre-heated air and fuel mixture, preventing pre-ignition.

  7. Analysis of type 3 solar radio bursts observed at kilometric wavelengths from the OGO-5 satellite

    NASA Technical Reports Server (NTRS)

    Alvarez, H.

    1971-01-01

    Research was conducted to analyze the data on solar radio bursts obtained by the OGO-5 satellite. Since the wavelengths corresponding to the three lowest frequencies of observations exceeded one kilometer, the bursts detected in those channels were designated as kilometer-waves. The data search covered approximately 9200 hours between March 1968 and February 1970, and included the maximum of solar cycle No. 20. The study concentrated on 64 Type 3 solar radio events reaching frequencies equal or lower than 0.35 MHz. This selection criteria led to the choice of the most intense radio events. Measurements included: times of start, times of decay, and amplitudes of the 64 events. The consistency of the results, within the accuracy of the measurements, lends support to some of the assumptions made for the analysis, notably, the validity of the local plasma hypothesis, the constancy of the exciter particles velocity, and spiral shape of their trajectory.

  8. Theoretical studies of the solar atmosphere and interstellar pickup ions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Solar atmosphere research activities are summarized. Specific topics addressed include: (1) coronal mass ejections and related phenomena; (2) parametric instabilities of Alfven waves; (3) pickup ions in the solar wind; and (4) cosmic rays in the outer heliosphere. Also included is a list of publications covering the following topics: catastrophic evolution of a force-free flux rope; maximum energy release in flux-rope models of eruptive flares; sheet approximations in models of eruptive flares; material ejection, motions of loops and ribbons of two-ribbon flares; dispersion relations for parametric instabilities of parallel-propagating; parametric instabilities of parallel-propagating Alfven waves; beat, modulation, and decay instabilities of a circularly-polarized Alfven wave; effects of time-dependent photoionization on interstellar pickup helium; observation of waves generated by the solar wind pickup of interstellar hydrogen ions; ion thermalization and wave excitation downstream of the quasi-perpendicular bowshock; ion cyclotron instability and the inverse correlation between proton anisotrophy and proton beta; and effects of cosmic rays and interstellar gas on the dynamics of a wind.

  9. A solar activity monitoring platform for SCADM

    NASA Technical Reports Server (NTRS)

    Kissell, K. E.; Ratcliff, D. D.

    1980-01-01

    The adaptation of proven space probe technology is proposed as a means of providing a solar activity monitoring platform which could be injected behind the Earth's orbital position to give 3 to 6 days advanced coverage of the solar phenomenon on the backside hemisphere before it rotates into view and affects terrestrial activities. The probe would provide some three dimensional discrimination within the ecliptic latitude. This relatively simple off-Earth probe could provide very high quality data to support the SCADM program, by transmitting both high resolution video data of the solar surface and such measurements of solar activity as particle, X-ray, ultraviolet, and radio emission fluxes. Topics covered include the orbit; constraints on the spacecraft; subsystems and their embodiments; optical imaging sensors and their operation; and the radiation-pressure attitude control system are described. The platform would be capable of mapping active regions on an hourly basis with one arc-second resolution.

  10. Marshall Space Flight Center's Solar Wind Facility

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Whittlesey, P. L.

    2017-01-01

    Historically, NASA's Marshall Space Flight Center (MSFC) has operated a Solar Wind Facility (SWF) to provide long term particle and photon exposure to material samples. The requirements on the particle beam details were not stringent as the cumulative fluence level is the test goal. Motivated by development of the faraday cup instrument on the NASA Solar Probe Plus (SPP) mission, the MSFC SWF has been upgraded to included high fidelity particle beams providing broadbeam ions, broadbeam electrons, and narrow beam protons or ions, which cover a wide dynamic range of solar wind velocity and flux conditions. The large vacuum chamber with integrated cryo-shroud, combined with a 3-axis positioning system, provides an excellent platform for sensor development and qualification. This short paper provides some details of the SWF charged particle beams characteristics in the context of the Solar Probe Plus program requirements. Data will be presented on the flux and energy ranges as well as beam stability.

  11. The 40 KW of Solar Cell Modules for the Large Scale Production Task a Low Cost Silicon Solar Array Project

    NASA Technical Reports Server (NTRS)

    Jones, G. T.

    1977-01-01

    Forty kilowatts of solar cell modules was produced in this program. This is equivalent to 4123 modules. The average power output per module was 9.7 watts at 16.5 volts, 60 C and 100 mW/sq cm. The peak production rate was 200 modules per week which is equal to 1.9 kW per week. This rate was sustained for over four and one-half months and is equivalent to 100 kW per year. This final report covers the solar cell module design, electrical and power performance, module preproduction environmental test results, production and shipping schedule, program summary, and delivery. A cost analysis section is written. Particular emphasis on the percentage of labor and material utilized in constructing a solar cell module is presented. Also included are cost reduction recommendations.

  12. Proceedings of the 12th Space Photovoltaic Research and Technology Conference (SPRAT 12)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Twelfth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from 20 to 22 Oct. 1992. The papers and workshops presented in this volume report substantial progress in a variety of areas in space photovoltaics. Topics covered include: high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, flexible amorphous and thin film solar cells (in the early stages of pilot production), high efficiency multiple bandgap cells, laser power converters, solar cell and array technology, heteroepitaxial cells, betavoltaic energy conversion, and space radiation effects in InP cells. Space flight data on a variety of cells were also presented.

  13. Radiation energy conversion in space; Conference, 3rd, NASA Ames Research Center, Moffett Field, Calif., January 26-28, 1978, Technical Papers

    NASA Technical Reports Server (NTRS)

    Billman, K. W.

    1978-01-01

    Concepts for space-based conversion of space radiation energy into useful energy for man's needs are developed and supported by studies of costs, material and size requirements, efficiency, and available technology. Besides the more studied solar power satellite system using microwave transmission, a number of alternative space energy concepts are considered. Topics covered include orbiting mirrors for terrestrial energy supply, energy conversion at a lunar polar site, ultralightweight structures for space power, radiatively sustained cesium plasmas for solar electric conversion, solar pumped CW CO2 laser, superelastic laser energy conversion, laser-enhanced dynamics in molecular rate processes, and electron beams in space for energy storage.

  14. Observation of Galactic and Solar Cosmic Rays from October 13, 1959 to February 17, 1961 with Explorer VII (Satellite 1959 Iota)

    NASA Technical Reports Server (NTRS)

    Lin, Wei Ching

    1961-01-01

    This paper gives a comprehensive summary of cosmic-ray intensity observations at high latitudes over North America and over Australia in the altitude range 550 to 1100 km by means of Geiger tubes in Explorer VII (Earth satellite 1959 Iota). The time period covered is October 13, 1959 to February 17, 1961. Of special interest are the observational data on some 20 solar cosmic-ray events including major events of early April 1960, early September 1960, and of mid-November 1960. Detailed study of the latitude dependence of solar cosmic ray intensity will be presented in a later companion paper.

  15. Impact of Solar Array Designs on High Voltage Operations

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Ferguson, Dale; Piszczor, Mike; ONeill, Mark

    2006-01-01

    As power levels of advanced spacecraft climb above 25 kW, higher solar array operating voltages become attractive. Even in today s satellites, operating spacecraft buses at 100 V and above has led to arcing in GEO communications satellites, so the issue of spacecraft charging and solar array arcing remains a design problem. In addition, micrometeoroid impacts on all of these arrays can also lead to arcing if the spacecraft is at an elevated potential. For example, tests on space station hardware disclosed arcing at 75V on anodized A1 structures that were struck with hypervelocity particles in Low Earth Orbit (LEO) plasmas. Thus an understanding of these effects is necessary to design reliable high voltage solar arrays of the future, especially in light of the Vision for Space Exploration of NASA. In the future, large GEO communication satellites, lunar bases, solar electric propulsion missions, high power communication systems around Mars can lead to power levels well above 100 kW. As noted above, it will be essential to increase operating voltages of the solar arrays well above 80 V to keep the mass of cabling needed to carry the high currents to an acceptable level. Thus, the purpose of this paper is to discuss various solar array approaches, to discuss the results of testing them at high voltages, in the presence of simulated space plasma and under hypervelocity impact. Three different types of arrays will be considered. One will be a planar array using thin film cells, the second will use planar single or multijunction cells and the last will use the Stretched Lens Array (SLA - 8-fold concentration). Each of these has different approaches for protection from the space environment. The thin film cell based arrays have minimal covering due to their inherent radiation tolerance, conventional GaAs and multijunction cells have the traditional cerium-doped microsheet glasses (of appropriate thickness) that are usually attached with Dow Corning DC 93-500 silicone adhesive. In practice, these cover glasses and adhesive do not cover the cell edges. Finally, in the SLA, the entire cell and cell edges are fully encapsulated by a cover glass that overhangs the cell perimeter and the silicone adhesive covers the cell edges providing a sealed environment. These three types of blanket technology have been tested at GRC and Auburn. The results of these tests will be described. For example, 15 modules composed of four state-of-the-art 2x4 cm GaAs solar cells with 150 pm cover glasses connected in two-cell series strings were tested at high voltage, in plasma under hypervelocity impact. A picture of one of the modules is shown in figure 1. These were prepared by standard industry practice from a major supplier and had efficiencies above 18%. The test results and other fabrication factors that influenced the tests will be presented. In addition, results for SLA segments tested under the same conditions will be presented. Testing of thin film blankets at GRC will also be presented. Figure 1 : Typical GaAs Solar Cell Module These results will show significant differences in resistance to arcing that are directly related to array design and manufacturing procedures. Finally, the approaches for mitigating the problems uncovered by these tests will be described. These will lay the foundation for future higher voltage array operation, even including voltages above 300-600 V for direct drive SEP applications.

  16. Solar heated beehives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, B.

    1985-02-01

    A new translucent plastic cover for bee hives is described which will serve as a passive solar collector and insulator. Scientists at the USDA-ARS designed the cover to maintain bees in cold weather. It should be of interest to beekeepers in northern states who have had to destroy colonies to avoid overwintering costs.

  17. Remote Sensing of the Environmental Impacts of Utility-Scale Solar Energy Plants

    NASA Astrophysics Data System (ADS)

    Edalat, Mohammad Masih

    Solar energy has many environmental benefits compared with fossil fuels but solar farming can have environmental impacts especially during construction and development. Thus, in order to enhance environmental sustainability, it is imperative to understand the environmental impacts of utility-scale solar energy (USSE) plants. During recent decades, remote sensing techniques and geographic information systems have become standard techniques in environmental applications. In this study, the environmental impacts of USSE plants are investigated by analyzing changes to land surface characteristics using remote sensing. The surface characteristics studied include land cover, land surface temperature, and hydrological response whereas changes are mapped by comparing pre-, syn-, and post- construction conditions. In order to study the effects of USSE facilities on land cover, the changes in the land cover are measured and analyzed inside and around two USSE facilities. The principal component analysis (PCA), minimum noise fraction (MNF), and spectral mixture analysis (SMA) of remote sensing images are used to estimate the subpixel fraction of four land surface endmembers: high-albedo, low-albedo, shadow, and vegetation. The results revealed that USSE plants do not significantly impact land cover outside the plant boundary. However, land-cover radiative characteristics within the plant area are significantly affected after construction. During the construction phase, site preparation practices including shrub removal and land grading increase high-albedo and decrease low-albedo fractions. The thermal effects of USSE facilities are studied by the time series analysis of remote sensing land surface temperature (LST). A statistical trend analysis of LST, with seasonal trends removed is performed with a particular consideration of panel shadowing by analyzing sun angles for different times of year. The results revealed that the LST outside the boundary of the solar plant does not change, whereas it significantly decreases inside the plant at 10 AM after the construction. The decrease in LST mainly occurred in winters due to lower sun's altitude, which casts longer shadows on the ground. In order to study the hydrological impacts of PV plants, pre- and post-installation hydrological response over single-axis technology is compared. A theoretical reasoning is developed to explain flows under the influence of PV panels. Moreover, a distributed parametric hydrologic model is used to estimate runoff before and after the construction of PV plants. The results revealed that peak flow, peak flow time, and runoff volume alter after panel installation. After panel installation, peak flow decreases and is observed to shift in time, which depends on orientation. Likewise, runoff volume increases irrespective of panel orientation. The increase in the tilt angle of panel results in decrease in the peak flow, peak flow time, and runoff. This study provides an insight into the environmental impacts of USSE development using remote sensing. The research demonstrates that USSE plants are environmentally sustainable due to minimal impact on land cover and surface temperature in their vicinity. In addition, this research explains the role of rainfall shadowing on hydrological behavior at USSE plants.

  18. Analysis of data from the plasma composition experiment on the International Sun-Earth Explorer (ISEE 1)

    NASA Technical Reports Server (NTRS)

    Lennartsson, O. W.

    1994-01-01

    The Lockheed plasma composition experiment on the ISEE 1 spacecraft has provided one of the largest and most varied sets of data on earth's energetic plasma environment, covering both the solar wind, well beyond the bow shock, and the near equatorial magnetosphere to a distance of almost 23 earth radii. This report is an overview of the last four years of data analysis and archiving. The archiving for NSSDC includes most data obtained during the initial 28-months of instrument operation, from early November 1977 through the end of February 1980. The data products are a combination of spectra (mass and energy angle) and velocity moments. A copy of the data user's guide and examples of the data products are attached as appendix A. The data analysis covers three major areas: solar wind ions upstream and downstream of the day side bowshock, especially He(++) ions; terrestrial ions flowing upward from the auroral regions, especially H(+), O(+), and He(+) ions; and ions of both solar and terrestrial origins in the tail plasma sheet and lobe regions. Copies of publications are attached.

  19. Solar energy development impacts on land cover change and protected areas

    PubMed Central

    Hernandez, Rebecca R.; Hoffacker, Madison K.; Murphy-Mariscal, Michelle L.; Wu, Grace C.; Allen, Michael F.

    2015-01-01

    Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE) [i.e., ≥1 megawatt (MW)] development requires large quantities of space and land; however, studies quantifying the effect of USSE on land cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type [photovoltaic (PV) vs. concentrating solar power (CSP)], area (in square kilometers), and capacity (in MW) within the global solar hot spot of the state of California (United States). Additionally, we used the Carnegie Energy and Environmental Compatibility model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Last, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrublands and scrublands, comprising 375 km2 of land cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km2 of change. Less than 15% of USSE installations are sited in “Compatible” areas. The majority of “Incompatible” USSE power plants are sited far from existing transmission infrastructure, and all USSE installations average at most 7 and 5 km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions. PMID:26483467

  20. Solar Energy Development Impacts on Land-Cover Change and Protected Areas

    NASA Astrophysics Data System (ADS)

    Hoffacker, M. K.; Hernandez, R. R.; Murphy-Mariscal, M. L.; Wu, G. C.; Allen, M. F.

    2015-12-01

    Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE; i.e., ≥ 1 megawatt [MW]) development requires large quantities of space and land; however, studies quantifying the effect of USSE on land-cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type (photovoltaic [PV] vs. concentrating solar power [CSP]), area (km2), and capacity (MW) within the global solar hotspot of the state of California (USA). Additionally, we utilized the Carnegie Energy and Environmental Compatibility Model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Lastly, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrub- and scrublands, comprising 375 km2 of land-cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km2 of change. Less than 15% of USSE installations are sited in compatible areas. The majority of incompatible USSE power plants are sited far from existing transmission infrastructure and all USSE installations average at most seven and five km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions.

  1. Solar energy development impacts on land cover change and protected areas.

    PubMed

    Hernandez, Rebecca R; Hoffacker, Madison K; Murphy-Mariscal, Michelle L; Wu, Grace C; Allen, Michael F

    2015-11-03

    Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE) [i.e., ≥ 1 megawatt (MW)] development requires large quantities of space and land; however, studies quantifying the effect of USSE on land cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type [photovoltaic (PV) vs. concentrating solar power (CSP)], area (in square kilometers), and capacity (in MW) within the global solar hot spot of the state of California (United States). Additionally, we used the Carnegie Energy and Environmental Compatibility model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Last, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrublands and scrublands, comprising 375 km(2) of land cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km(2) of change. Less than 15% of USSE installations are sited in "Compatible" areas. The majority of "Incompatible" USSE power plants are sited far from existing transmission infrastructure, and all USSE installations average at most 7 and 5 km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions.

  2. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  3. Proceedings of the First Semiannual Distributed Receiver Program Review

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Point focus and line focus distributed receiver solar thermal technology for the production of electric power and of industrial process heat is addressed. Concentrator, receiver, and power conversion development are covered along with hardware tests and evaluation. Mass production costing, parabolic dish applications, and trough and bowl systems are included.

  4. Workshop on Cosmogenic Nuclides

    NASA Technical Reports Server (NTRS)

    Reedy, R. C. (Editor); Englert, P. (Editor)

    1986-01-01

    Abstracts of papers presented at the Workshop on Cosmogenic Nuclides are compiled. The major topic areas covered include: new techniques for measuring nuclides such as tandem accelerator and resonance mass spectrometry; solar modulation of cosmic rays; pre-irradiation histories of extraterrestrial materials; terrestrial studies; simulations and cross sections; nuclide production rate calculations; and meteoritic nuclides.

  5. Multifarious temporal variations of low-energy relativistic cosmic-ray electrons.

    NASA Technical Reports Server (NTRS)

    Mcdonald, F. B.; Cline, T. L.; Simnett, G. M.

    1972-01-01

    Detailed examination of the intensity variations of 3- to 12-MeV interplanetary electrons. The data are from the Goddard cosmic-ray experiment on the Imp satellites and cover the period from just before the last solar minimum through the onset of the present solar maximum (i.e., from December 1963 through August 1969). A morphology for the intensity changes is tentatively proposed that includes solar-flare-associated events, solar co-rotating increases, Forbush decreases, quiet-time increases, and the long-term 11-year variation. It is contended that the electron components observed both during quiescent times and during quiet-time increases are galactic in origin. The quiet-time increases represent a completely new phenomenon that appears to be unique to the low-energy electron population. During a quiet-time increase the electron intensity is enhanced by a factor of 3 to 5 over a period of days, and, in general, these periods anticorrelate with low-energy solar particle events. Qualitatively, their amplitude diminishes with increasing solar activity.

  6. Anti-reflective and anti-soiling coatings for self-cleaning properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brophy, Brenor L.; Nair, Vinod; Dave, Bakul Champaklal

    The disclosure discloses abrasion resistant, persistently hydrophobic and oleophobic, anti-reflective and anti-soiling coatings for glass. The coatings described herein have wide application, including for example the front cover glass of solar modules. Methods of applying the coatings using various apparatus are disclosed. Methods for using the coatings in solar energy generation plants to achieve greater energy yield and reduced operations costs are disclosed. Coating materials are formed by combinations of hydrolyzed silane-base precursors through sol-gel processes. Several methods of synthesis and formulation of coating materials are disclosed.

  7. Analysis of Orbital Elements and Atmospheric Activity to Ascertain Possible Presence of an Ion Propulsion Capability Aboard Salyut 7/Cosmos 1686

    DTIC Science & Technology

    1991-12-01

    7, Cosmos 1686, and LDEF), although two of them (Salyut 7 and Cosmos 1686) were assumed to act as one as far as orbital behavior . The study covered...solar and geomagnetic activity were chosen to represent overall behavior . These included sunspot number, R, 10.7-cm solar radio flux, F10.7, and the...wide spectrum of wavelengths and behavior at different wavelengths varies greatly. As an example, F10.7 does not necessarily depict activity in the

  8. Numerical study on the effect of configuration of a simple box solar cooker for boiling water

    NASA Astrophysics Data System (ADS)

    Ambarita, H.

    2018-02-01

    In this work, a numerical study is carried out to investigate the effect of configuration of a simple box solar cooker. In order to validate the numerical results, a simple a simple solar box cooker with absorber area of 0.835 m × 0.835 m is designed and fabricated. The solar box cooker is employed to boil water by exposing to the solar radiation in Medan city of Indonesia. In the numerical method, a set of transient governing equations are developed. The governing equations are solved using forward time step marching technique. The main objective is to explore the effect of double glasses cover, dimensions of the cooking vessel, and depth of the box cooker to the performance of the solar box cooker. The results show that the experimental and numerical results show good agreement. The performance of the solar box cooker strongly affected by the distance of the double glass cover, the solar cooker depth, and the solar collector length.

  9. Skylab

    NASA Image and Video Library

    1970-01-01

    This is a photograph of a technician checking on a solar array wing for the Orbital Workshop as it is deployed. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory.

  10. 8 years of Solar Spectral Irradiance Variability Observed from the ISS with the SOLAR/SOLSPEC Instrument

    NASA Astrophysics Data System (ADS)

    Damé, Luc; Bolsée, David; Meftah, Mustapha; Irbah, Abdenour; Hauchecorne, Alain; Bekki, Slimane; Pereira, Nuno; Cessateur, Marchand; Gäel; , Marion; et al.

    2016-10-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its variability in the UV, as measured by SOLAR/SOLSPEC for 8 years. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  11. The EUV spectrophotometer on Atmosphere Explorer.

    NASA Technical Reports Server (NTRS)

    Hinteregger, H. E.; Bedo, D. E.; Manson, J. E.

    1973-01-01

    An extreme ultraviolet (EUV) spectrophotometer for measurements of solar radiation at wavelengths ranging from 140 to 1850 A will be included in the payload of each of the three Atmosphere-Explorer (AE) missions, AE-C, -D, and -E. The instrument consists of 24 grating monochromators, 12 of which can be telecommanded either to execute 128-step scans each covering a relatively small section of the total spectrophotometer wavelength range or to maintain fixed (command-selected) wavelength positions. The remaining 12 nonscan monochromators operate at permanently fixed wavelengths and view only a small fraction of the solar disk except for one viewing the whole sun in H Lyman alpha. Ten of the 12 scan-capable monochromators also view the entire solar disk since their primary function is to measure the total fluxes independent of the distribution of sources across the solar disk.

  12. Statistical analysis of midlatitude spread F using multi-station digisonde observations

    NASA Astrophysics Data System (ADS)

    Bhaneja, P.; Earle, G. D.; Bullett, T. W.

    2018-01-01

    A comprehensive statistical study of midlatitude spread F (MSF) is presented for five midlatitude stations in the North American sector. These stations include Ramey AFB, Puerto Rico (18.5°N, 67.1°W, -14° declination angle), Wallops Island, Virginia (37.95°N, 75.5°W, -11° declination angle), Dyess, Texas (32.4°N, 99.8°W, 6.9° declination angle), Boulder, Colorado (40°N, 105.3°W, 10° declination angle), and Vandenberg AFB, California (34.8°N, 120.5°W, 13° declination angle). Pattern recognition algorithms are used to determine the presence of both range and frequency spread F. Data from 1996 to 2011 are analyzed, covering all of Solar Cycle 23 and the beginning of Solar Cycle 24. Variations with respect to season and solar activity are presented, including the effects of the extended minimum between cycles 23 and 24.

  13. An analysis of space environment effects on performance and missions of a Solar Electric Propulsion Stage (SEPS)

    NASA Technical Reports Server (NTRS)

    Mcglathery, D. M.

    1975-01-01

    The development of an analysis which addresses the problems of degrading space environmental effects on the performance and missions of a Solar Electric Propulsion Stage (SEPS) is reported. A detailed study concerning the degrading effects of the Van Allen Belt charged-particle radiation on specific spacecraft subsystems is included, along with some of the thermal problems caused by electromagnetic radiation from the sun. The analytical methods used require the integration of two distinct analyses. The first, is a low-thrust trajectory analysis which uses analytical approximations to optimum steering for orbit raising, including three-dimensional plane change cases. The second is the conversion of the Vette time-averaged differential energy spectra for protons and electrons into a 1-MeV electron equivalent environment as a function of spatial position and thickness of various shielding materials and solar-cell cover slides.

  14. Development of an Electrostatically Clean Solar Array Panel

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.; Krumweide, Duane; Gaddy, Edward; Katz, Ira

    2000-01-01

    The results of design, analysis, and qualification of an Electrostatically Clean Solar Array (ECSA) panel are described. The objective of the ECSA design is to provide an electrostatic environment that does not interfere with sensitive instruments on scientific spacecraft. The ECSA design uses large, ITO-coated coverglasses that cover multiple solar cells, an aperture grid that covers the intercell areas, stress-relieved interconnects for connecting the aperture grid to the coverglasses, and edge clips to provides an electromagnetically shielded enclosure for the solar array active circuitry. Qualification coupons were fabricated and tested for photovoltaic response, conductivity, and survivability to launch acoustic and thermal cycling environments simulating LEO and GEO missions. The benefits of reducing solar panel interaction with the space environment are also discussed.

  15. MAX '91: An advanced payload for the exploration of high energy processes on the active sun

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The results of a NASA science working group established to study a follow-on to the Solar Maximum Mission are given. A complement of instruments is suggested, with the primary objective of studying the physics of energetic processes in cosmic plasmas by observing high-energy phenomena in solar flares. High-quality flare observations will be possible with these instruments during the next peak in solar activity expected to last from 1990 through at least 1995. The primary objective of MAX '91 is to study energetic processes in cosmic plasmas by observing high-energy phenomena in solar flares. These processes, which are of general astrophysical importance, include energy release, particle acceleration, and energy transport. Results from comprehensive observing programs conducted during the last solar cycle have demonstrated the great scientific potential of high-energy emissions for addressing these central physical processes. Consequently, a payload optimized for observations of high-energy solar flare phenomena is suggested for MAX '91. It consists of the following four specific instruments: (1) a Fourier-transform X-ray and gamma-ray imager covering the energy range from a few keV to 1 MeV with arcsecond spatial resolution; (2) a cooled germanium X-ray and gamma-ray spectrometer with keV spectral resolution covering the energy range from 10 keV to 50 MeV; (3) Bragg spectrometers with high spectral resolution at wavelengths between 1 and 9 angstrons; and (4) a soft X-ray, EUV, or UV imaging instrument with arcsecond spatial resolution.

  16. A Sounding Rocket Mission Concept to Acquire High-Resolution Radiometric Spectra Spanning the 9 nm - 31 nm Wavelength Range

    NASA Technical Reports Server (NTRS)

    Krause, L. Habash; Cirtain, Jonathan; McGuirck, Michael; Pavelitz, Steven; Weber, Ed.; Winebarger, Amy

    2012-01-01

    When studying Solar Extreme Ultraviolet (EUV) emissions, both single-wavelength, two- dimensional (2D) spectroheliograms and multi-wavelength, one-dimensional (1D) line spectra are important, especially for a thorough understanding of the complex processes in the solar magnetized plasma from the base of the chromosphere through the corona. 2D image data are required for a detailed study of spatial structures, whereas radiometric (i.e., spectral) data provide information on relevant atomic excitation/ionization state densities (and thus temperature). Using both imaging and radiometric techniques, several satellite missions presently study solar dynamics in the EUV, including the Solar Dynamics Observatory (SDO), Hinode, and the Solar-Terrestrial Relations Observatory (STEREO). The EUV wavelengths of interest typically span 9 nm to 31 nm, with the shorter wavelengths being associated with the hottest features (e.g., intense flares and bright points) and the longer wavelengths associated with cooler features (e.g., coronal holes and filaments). Because the optical components of satellite instruments degrade over time, it is not uncommon to conduct sounding rocket underflights for calibration purposes. The authors have designed a radiometric sounding rocket payload that could serve as both a calibration underflight for and a complementary scientific mission to the upcoming Solar Ultraviolet Imager (SUVI) mission aboard the GOES-R satellite (scheduled for a 2015 launch). The challenge to provide quality radiometric line spectra over the 9-31 nm range covered by SUVI was driven by the multilayer coatings required to make the optical components, including mirrors and gratings, reflective over the entire range. Typically, these multilayers provide useful EUV reflectances over bandwidths of a few nm. Our solution to this problem was to employ a three-telescope system in which the optical components were coated with multilayers that spanned three wavelength ranges to cover the three pairs of SUVI bands. The complete system was designed to fit within the Black Brandt-IX 22.-diameter payload skin envelope. The basic optical path is that of a simple parabolic telescope in which EUV light is focused onto a slit and shutter assembly and imaged onto a normal-incidence diffraction grating, which then disperses the light onto a 2048 2048 CCD sensor. The CCD thus records 1D spatial information along one axis and spectral information along the other. The slit spans 40 arc-minutes in length, thus covering a solar diameter out to +/- 1.3 solar radii. Our operations concept includes imaging at three distinct positions: the north-south meridian, the northeast-southwest diagonal, and real-time pointing at an active region. Six 10-second images will be obtained at each position. Fine pointing is provided by the SPARCS-VII attitude control system typically employed on Black Brandt solar missions. Both before and after launch, all three telescopes will be calibrated with the EUV line emission source and monochromater system at NASA's Stray Light Facility at Marshall Spaceflight Center. Details of the payload design, operations concept, and data application will be presented.

  17. Encapsulation task of the low-cost silicon solar array project. Investigation of test methods, material properties, and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.; Baum, B.; White, R. A.

    1978-01-01

    The results of an investigation of solar module encapsulation systems applicable to the Low-Cost Solar Array Project 1986 cost and performance goals are presented. Six basic construction elements were identified and their specific uses in module construction defined. A uniform coating basis was established for each element. The survey results were also useful in revealing price ranges for classes of materials and estimating the cost allocation for each element within the encapsulating cost goal. The six construction elements were considered to be substrates, superstrates, pottants, adhesives, outer covers and back covers.

  18. Potential solar radiation and land cover contributions to digital climate surface modeling

    NASA Astrophysics Data System (ADS)

    Puig, Pol; Batalla, Meritxell; Pesquer, Lluís; Ninyerola, Miquel

    2016-04-01

    Overview: We have designed a series of ad-hoc experiments to study the role of factors that a priori have a strong weight in developing digital models of temperature and precipitation, such as solar radiation and land cover. Empirical test beds have been designed to improve climate (mean air temperature and total precipitation) digital models using statistical general techniques (multiple regression) with residual correction (interpolated with inverse weighting distance). Aim: Understand what roles these two factors (solar radiation and land cover) play to incorporate them into the process of generating mapping of temperature and rainfall. Study area: The Iberian Peninsula and supported in this, Catalonia and the Catalan Pyrenees. Data: The dependent variables used in all experiments relate to data from meteorological stations precipitation (PL), mean temperature (MT), average temperature minimum (MN) and maximum average temperature (MX). These data were obtained monthly from the AEMET (Agencia Estatal de Meteorología). Data series of stations covers the period between 1950 to 2010. Methodology: The idea is to design ad hoc, based on a sample of more equitable space statistician, to detect the role of radiation. Based on the influence of solar radiation on the temperature of the air from a quantitative point of view, the difficulty in answering this lies in the fact that there are lots of weather stations located in areas where solar radiation is similar. This suggests that the role of the radiation variable remains "off" when, instead, we intuitively think that would strongly influence the temperature. We have developed a multiple regression analysis between these meteorological variables as the dependent ones (Temperature and rainfall), and some geographical variables: altitude (ALT), latitude (LAT), continentality (CON) and solar radiation (RAD) as the independent ones. In case of the experiment with land covers, we have used the NDVI index as a proxy of land covers and added this variable in to the independents to improve the models. Results: The role of solar radiation does not improve models only under certain conditions and areas, especially in the Pyrennes. The vegetation index NDVI and therefore the land cover on which the station is located, helps improve rainfall and temperature patterns, obtaining various degrees of improvement in terms of molded variables and months.

  19. Solar Conjunction Ends: Nirgal Vallis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    28 September 2004 For the past several weeks, Mars was on the other side of the Sun relative to Earth. During this period, known as solar conjunction, radio communication with spacecraft orbiting and roving on Mars was limited. As is always done during solar conjunction, on 7 September 2004, the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) was turned off. On Saturday, 25 September 2004, the MOC team gathered at Malin Space Science Systems to command the instrument to turn back on again. After a successful turn-on, MOC acquired its first narrow angle camera image, shown here, on orbit 24808 (24,808th orbit since the start of the Mapping phase of the MGS mission in March 1999).

    The 25 September image shows a portion of Nirgal Vallis, an ancient valley system in the Mare Erythraeum region of Mars. The valley floor is covered by large, ripple-like bedforms created by wind. This early southern winter image is located near 27.4oS, 42.9oW, and covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left.

    This was the 4th solar conjunction period that MGS and MOC have been through since the spacecraft reached the red planet in September 1997. The four solar conjunction periods, where MOC was turned off, were:

    First solar conjunction: 29 April - 1 June 1998 Second solar conjunction: 22 June - 12 July 2000 Third solar conjunction: 1 August - 18 August 2002 Fourth solar conjunction: 7 September - 25 September 2004.

    In late October, MGS MOC will mark the start of its fourth Mars year since the beginning of the Mapping Phase of the mission in March 1999. MGS and MOC have already been orbiting Mars for more than 4 Mars years, including the pre-Mapping aerobrake and science phasing orbit insertion periods.

  20. POSS(Registered TradeMark) Coatings for Solar Cells: An Update

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry; Isaacs-Smith, Tamara; Wells, Brian; Lichtenhan, Joseph D.; Fu, Bruce X.

    2007-01-01

    Presently, solar cells are covered with Ce-doped microsheet cover glasses that are attached with Dow Corning DC 93-500 silicone adhesive. Various antireflection coatings are often applied to the cover glass to increase cell performance. This general approach has been used from the beginning of space exploration. However, it is expensive and time consuming. Furthermore, as the voltage of solar arrays increases, significant arcing has occurred in solar arrays, leading to loss of satellite power. The cause has been traced to differential voltages between strings and the close spacing between them with no insulation covering the edges of the solar cells. In addition, this problem could be ameliorated if the cover glass extended over the edges of the cell, but this would impact packing density. An alternative idea that might solve all these issues and be less expensive and more protective is to develop a coating that could be applied over the entire array. Such a coating must be resistant to atomic oxygen for low earth orbits below about 700 km, it must be resistant to ultraviolet radiation for all earth and near-sun orbits and, of course, it must withstand the damaging effects of space radiation. Coating flexibility would be an additional advantage. Based on past experience, one material that has many of the desired attributes of a universal protective coating is the Dow Corning DC 93-500. Of all the potential optical plastics, it appears to be the most suitable for use in space. As noted above, DC 93-500 has been extensively used to attach cover glasses to crystalline solar cells and has worked exceptionally well over the years. It is flexible and generally resistant to electrons, protons and ultraviolet (UV and VUV) radiation; although a VUV-rejection coating or VUV-absorbing ceria-doped cover glass may be required for long mission durations. It can also be applied in a thin coating (< 25 m) by conventional liquid coating processes. Unfortunately, when exposed to atomic oxygen (AO) DC 93-500 develops a frosty surface. Such frosting can lead to a loss of light transmitted into the cells and destroy the essential clarity needed for a concentrator lens.

  1. Semi-transparent solar energy thermal storage device

    DOEpatents

    McClelland, John F.

    1986-04-08

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  2. Semi-transparent solar energy thermal storage device

    DOEpatents

    McClelland, John F.

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  3. Frequencies of solar p-mode oscillations

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Harvey, J. W.; Libbrecht, K. G.; Popp, B. D.; Pomerantz, M. A.

    1988-01-01

    A list is presented of frequencies that can be used as a basis for helioseismic investigations of the average structure of the solar interior as a function of depth. The list includes measurements of frequencies of p-mode multiplets covering the l range from 4 to 99. Two different data sets are employed: one based on Doppler shift measurements made in 1985 at the Big Bear Solar Observatory and another based on intensity measurements made in 1981 at the geographic South Pole. Frequencies from the two data sets are compared, and systematic frequency differences are found that range from less than 0.1 microHz at low values of l to about 0.6 microHz at l = 99; the uncertainty is + or - 0.1 microHz.

  4. A Mathematical Model of the Great Solar Eclipse of 1991.

    ERIC Educational Resources Information Center

    Lamb, John Jr.

    1991-01-01

    An activity that shows how mathematics can be used to model events in the real world is described. A way to calculate the area of the sun covered by the moon during a partial eclipse is presented. A computer program that will determine the coverage percentage is also included. (KR)

  5. Research and technology 1989

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Marshall Space Flight Center annual report summarizes their advanced studies, research programs, and technological developments. Areas covered include: transportation systems; space systems such as Gravity Probe-B and Gamma Ray Imaging Telescope; data systems; microgravity science; astronomy and astrophysics; solar, magnetospheric, and atomic physics; aeronomy; propulsion; materials and processes; structures and dynamics; automated systems; space systems; and avionics.

  6. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Littlefield, R. G. (Editor)

    1983-01-01

    Information concerning active and planned spacecraft and experiments is included. The information covers a wide range of scientific disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and fundng of individual countries as well as cooperative arrangements among different countries.

  7. The flow of plasma in the solar terrestrial environment

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Birmingham, T. J.

    1992-01-01

    The scientific goals of the program are outlined, and some of the papers submitted for publication within the last six months are briefly highlighted. Some of the topics covered include ionosphere-magnetosphere coupling, polar cap arcs, polar wind, convection vortices, ionosphere-plasmasphere coupling, and the validity of macroscopic plasma flow models.

  8. GPP Webinar: Solar Utilization in Higher Education Networking & Information Sharing Group: Financing Issues Discussion

    EPA Pesticide Factsheets

    This presentation from a Solar Utilization in Higher Education Networking and Information webinar covers financing and project economics issues related to solar project development in the higher education sector.

  9. Sun Heats, Cools Columbus Tech.

    ERIC Educational Resources Information Center

    American School and University, 1980

    1980-01-01

    Solar energy heats and cools the newest building on the campus of Columbus Technical Institute in Ohio. A solar demonstration project grant from the Department of Energy covered about 77 percent of the solar cost. (Author/MLF)

  10. R and T report: Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A. (Editor)

    1993-01-01

    The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.

  11. Performance study of a laboratory model shallow solar pond with and without single transparent glass cover for solar thermal energy conversion applications.

    PubMed

    Ganesh, S; Arumugam, S

    2016-12-01

    The thermal performance of a shallow solar pond with and without the single transparent glass cover has been investigated experimentally. This experiment has been performed during the summer season of 2014 under the operational condition for five different storage volumes of water upto a maximum of 10liter. The pond performance is investigated in terms of the rate of energy collected and its collection efficiency. A Low Density Polyethylene (LDPE) black sheet liner of 200μm thickness was laid on all the interior sides of the pond for solar energy absorption. A clear transparent PVC plastic sheet of 150μm thickness was laid over the water surface as evaporation suppressing membrane. Calibrated Copper constantan thermocouples were used to measure the temperatures of the system. A highest temperature of 81.5°C has been achieved for the stored volume of 2liter of water, when the pond was used with a single transparent glass cover of 5mm thickness. When the shallow solar pond was used without the transparent glass cover the system attained a maximum temperature of 62°C for the same stored volume of 2liter. A comparison between the two conditions of with and without the transparent glass cover, on the thermal performance of the SSP has been reported. A shallow solar pond system of the present type could be used us a source of warm water, of desired temperature, below 10°C which are required for the domestic and industrial utilities. The global warming is increased day by day; inorder to reduce global warming a typical method of small scale shallow solar pond has been used to absorb the radiation from the sun to convert it to useful heat energy by the source of water. The SSP is an eco friendly way to generate energy without polluting our environment and in an environment safety manner. Based on environmental safety this study has experimentally investigated the thermal performance of the shallow solar pond. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. SOLAR-ISS: A new reference spectrum based on SOLAR/SOLSPEC observations

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Damé, L.; Bolsée, D.; Hauchecorne, A.; Pereira, N.; Sluse, D.; Cessateur, G.; Irbah, A.; Bureau, J.; Weber, M.; Bramstedt, K.; Hilbig, T.; Thiéblemont, R.; Marchand, M.; Lefèvre, F.; Sarkissian, A.; Bekki, S.

    2018-03-01

    Context. Since April 5, 2008 and up to February 15, 2017, the SOLar SPECtrometer (SOLSPEC) instrument of the SOLAR payload on board the International Space Station (ISS) has performed accurate measurements of solar spectral irradiance (SSI) from the middle ultraviolet to the infrared (165 to 3088 nm). These measurements are of primary importance for a better understanding of solar physics and the impact of solar variability on climate. In particular, a new reference solar spectrum (SOLAR-ISS) is established in April 2008 during the solar minima of cycles 23-24 thanks to revised engineering corrections, improved calibrations, and advanced procedures to account for thermal and aging corrections of the SOLAR/SOLSPEC instrument. Aims: The main objective of this article is to present a new high-resolution solar spectrum with a mean absolute uncertainty of 1.26% at 1σ from 165 to 3000 nm. This solar spectrum is based on solar observations of the SOLAR/SOLSPEC space-based instrument. Methods: The SOLAR/SOLSPEC instrument consists of three separate double monochromators that use concave holographic gratings to cover the middle ultraviolet (UV), visible (VIS), and infrared (IR) domains. Our best ultraviolet, visible, and infrared spectra are merged into a single absolute solar spectrum covering the 165-3000 nm domain. The resulting solar spectrum has a spectral resolution varying between 0.6 and 9.5 nm in the 165-3000 nm wavelength range. We build a new solar reference spectrum (SOLAR-ISS) by constraining existing high-resolution spectra to SOLAR/SOLSPEC observed spectrum. For that purpose, we account for the difference of resolution between the two spectra using the SOLAR/SOLSPEC instrumental slit functions. Results: Using SOLAR/SOLSPEC data, a new solar spectrum covering the 165-3000 nm wavelength range is built and is representative of the 2008 solar minimum. It has a resolution better than 0.1 nm below 1000 nm and 1 nm in the 1000-3000 nm wavelength range. The new solar spectrum (SOLAR-ISS) highlights significant differences with previous solar reference spectra and with solar spectra based on models. The integral of the SOLAR-ISS solar spectrum yields a total solar irradiance of 1372.3 ± 16.9 Wm-2 at 1σ, that is yet 11 Wm-2 over the value recommended by the International Astronomical Union in 2015. The spectrum shown in Fig. B.1 is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A1

  13. Mariner 9 Solar Array Design, Manufacture, and Performance

    NASA Technical Reports Server (NTRS)

    Sequeira, E. A.

    1973-01-01

    The mission of Mariner 9, the first spacecraft to orbit another planet, was to make scientific observations of the surface of Mars. Throughout this unique mission, the Mariner 9 solar array successfully supported the power requirements of the spacecraft without experiencing anomalies. Basically, the design of the solar array was similar to those of Mariners 6 and 7; however, Mariner 9 had the additional flight operational requirement to perform in a Mars orbit environment mode. The array special tests provided information on the current-voltage characteristics and array space degradation. Tests indicated that total solar array current degradation was 3.5 percent, which could probably be attributed to the gradual degradation of the cover glass and/or the RTV 602 adhesive employed to cement the cover glass to the solar cell.

  14. Strategies on solar observation of Atacama Large Millimeter/submillimeter Array (ALMA) band-1 receiver

    NASA Astrophysics Data System (ADS)

    Chiong, Chau-Ching; Chiang, Po-Han; Hwang, Yuh-Jing; Huang, Yau-De

    2016-07-01

    ALMA covering 35-950 GHz is the largest existing telescope array in the world. Among the 10 receiver bands, Band-1, which covers 35-50 GHz, is the lowest. Due to its small dimension and its time-variant frequency-dependent gain characteristics, current solar filter located above the cryostat cannot be applied to Band-1 for solar observation. Here we thus adopt new strategies to fulfill the goals. Thanks to the flexible dc biasing scheme of the HEMT-based amplifier in Band-1 front-end, bias adjustment of the cryogenic low noise amplifier is investigated to accomplish solar observation without using solar filter. Large power handling range can be achieved by the de-tuning bias technique with little degradation in system performance.

  15. NASA Sun-Earth Connections Theory Program: The Structure and Dynamics of the Solar Corona and Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Grebowsky, Joseph M. (Technical Monitor)

    2001-01-01

    This report covers technical progress during the fourth quarter of the second year of NASA Sun-Earth Connections Theory Program (SECTP) contract 'The Structure and Dynamics of the Solar Corona and Inner Heliosphere,' NAS5-99188, between NASA and Science Applications International Corporation, and covers the period May 16,2001 to August 15, 2001. Under this contract SAIC and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model.

  16. The Structure and Dynamics of the Solar Corona and Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Grebowsky, J. (Technical Monitor)

    2002-01-01

    This report covers technical progress during the fourth quarter of the second year of NASA Sun-Earth Connections Theory Program (SECTP) contract "The Structure and Dynamics of the Solar Corona and Inner Heliosphere," NAS5-99188, between NASA and Science Applications International Corporation (SAIC), and covers the period May 16, 2001 to August 15, 2001. Under this contract SAIC and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD (magnetohydrodynamic) model.

  17. Solar Technology Options and Resource Assessment | State, Local, and Tribal

    Science.gov Websites

    Governments | NREL Technology Options and Resource Assessment Solar Technology Options and covers solar technology options, how they work, and how to determine whether your location is appropriate

  18. Particle-in-cell simulations of sheath formation around biased interconnectors in a low-earth-orbit plasma

    NASA Technical Reports Server (NTRS)

    Thiemann, H.; Schunk, R. W.

    1990-01-01

    The interaction between satellite solar arrays and the LEO plasma is presently studied with particle-in-cell simulations in which an electrical potential was suddenly applied to the solar cell interconnector. The consequent temporal response was followed for the real O(+)-electron mass ratio in the cases of 100- and 250-V solar cells, various solar cell thicknesses, and solar cells with secondary electron emission. Larger applied potentials and thinner solar cells lead to greater initial polarization surface charges, and therefore longer discharging and shielding times. When secondary electron emission from the cover glass is brought to bear, however, the potential structure is nearly planar, allowing constant interaction between plasma electrons and cover glass; a large fraction of the resulting secondary electrons is collected by the interconnector, constituting an order-of-magnitude increase in collected current.

  19. SEPEM: A tool for statistical modeling the solar energetic particle environment

    NASA Astrophysics Data System (ADS)

    Crosby, Norma; Heynderickx, Daniel; Jiggens, Piers; Aran, Angels; Sanahuja, Blai; Truscott, Pete; Lei, Fan; Jacobs, Carla; Poedts, Stefaan; Gabriel, Stephen; Sandberg, Ingmar; Glover, Alexi; Hilgers, Alain

    2015-07-01

    Solar energetic particle (SEP) events are a serious radiation hazard for spacecraft as well as a severe health risk to humans traveling in space. Indeed, accurate modeling of the SEP environment constitutes a priority requirement for astrophysics and solar system missions and for human exploration in space. The European Space Agency's Solar Energetic Particle Environment Modelling (SEPEM) application server is a World Wide Web interface to a complete set of cross-calibrated data ranging from 1973 to 2013 as well as new SEP engineering models and tools. Both statistical and physical modeling techniques have been included, in order to cover the environment not only at 1 AU but also in the inner heliosphere ranging from 0.2 AU to 1.6 AU using a newly developed physics-based shock-and-particle model to simulate particle flux profiles of gradual SEP events. With SEPEM, SEP peak flux and integrated fluence statistics can be studied, as well as durations of high SEP flux periods. Furthermore, effects tools are also included to allow calculation of single event upset rate and radiation doses for a variety of engineering scenarios.

  20. Book Reviews

    NASA Astrophysics Data System (ADS)

    Catalano, Anthony

    1986-10-01

    Amorphous Silicon Solar Cells by K. Takahashi and M. Konagai is one of the first books dealing exclusively with the subject of amorphous silicon solar cells. The book was first published in Japanese in 1983 and was translated and published in English in 1986. Part 1, covering 94 pages, is a general introduction to solar energy, including the basic concepts, the prospects for cost reduction of the various competing photovoltaic technologies, and a discussion of several types of solar power systems, while Part 2 deals exclusively with the technical issues surrounding the application of amorphous silicon to solar cells. Throughout, reference is made to the impact of photovoltaics on the Japanese economy, both as a business activity and as a domestic supply of electrical energy. As the authors point out, photovoltaics is a national priority for the Japanese, with increasing business as well as government support. Although this was also once the case in the U.S., as memories of the recent energy crises fade, the bulk of this activity is shifting toward the Far East.

  1. Results Of Insulation Resistance Between Solar Cell String Gaps Without RTV Adhesive Grout After Electrostatic Discharge Tests With Cover Glass Flashover

    NASA Astrophysics Data System (ADS)

    Hoang, Bao; Wong, Frankie; Redick, Tod; Masui, Hirokazu; Endo, Taishi; Toyoda, Kazuhiro; Cho, Mengu

    2011-10-01

    A series of electrostatic discharge (ESD) tests was performed on solar array test coupons consisting of Advanced Triple Junction InGaP2/InGaAs/Ge solar cells. The motivation for these tests was to evaluate the effects of ESD on solar array design without room temperature vulcanized (RTV) adhesive grout between the string-to-string parallel gaps. To investigate the threshold of permanently sustained secondary arcs, various combinations of gap width, load voltage and string current were tested in a vacuum chamber equipped with an electron beam gun. This ESD test program included the ESD test circuit with simulated panel coverglass flashover. Although ESD events did not result in permanent sustained arcs, the insulation resistance between strings was found to decrease as the number of secondary arcs accumulated in the gap.

  2. Real time outdoor exposure testing of solar cell modules and component materials

    NASA Technical Reports Server (NTRS)

    Anagnostou, E.; Forestieri, A. F.

    1977-01-01

    Plastic samples, solar cell modules, and sub-modules were exposed at test sites in Florida, Arizona, Puerto Rico, and Cleveland, Ohio, in order to determine materials suitable for use in solar cell modules with a proposed 20-year lifetime. Various environments were encountered including subtropical, subtropical with a sea air atmosphere, desert, rain forest, normal urban, and urban-polluted. The samples were exposed for periods up to six months. Materials found not suitable were polyurethane, polyester, Kapton, Mylar, and UV-stabilized Lexan. Suitable materials were acrylic, FEP-A, and glass. The results of exposure of polyvinylidene fluoride were dependent on the specific formulation, but several types appear suitable. RTV silicone rubber (clear) appears to pick up and hold dirt both as a free film and as a potting medium for modules. The results indicate that dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.

  3. Numerical modeling of the thin shallow solar dynamo

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Jarboe, T. R.

    2017-10-01

    Nonlinear, numerical computation with the NIMROD code is used to explore and validate the thin shallow solar dynamo model [T.R. Jarboe et al. 2017], which explains the observed global temporal evolution (e.g. magnetic field reversal) and local surface structures (e.g. sunspots) of the sun. The key feature of this model is the presence and magnetic self-organization of global magnetic structures (GMS) lying just below the surface of the sun, which resemble 1D radial Taylor states of size comparable to the supergranule convection cells. First, we seek to validate the thin shallow solar dynamo model by reproducing the 11 year timescale for reversal of the solar magnetic field. Then, we seek to model formation of GMS from convection zone turbulence. Our computations simulate a slab covering a radial depth 3Mm and include differential rotation and gravity. Density, temperature, and resistivity profiles are taken from the Christensen-Dalsgaard model.

  4. Electrostatic bonding of thin (approximately 3 mil) 7070 cover glass to Ta2O5 AR-coated thin (approximately 2 mil) silicon wafers and solar cells

    NASA Technical Reports Server (NTRS)

    Egelkrout, D. W.; Horne, W. E.

    1980-01-01

    Electrostatic bonding (ESB) of thin (3 mil) Corning 7070 cover glasses to Ta2O5 AR-coated thin (2 mil) silicon wafers and solar cells is investigated. An experimental program was conducted to establish the effects of variations in pressure, voltage, temperature, time, Ta2O5 thickness, and various prebond glass treatments. Flat wafers without contact grids were used to study the basic effects for bonding to semiconductor surfaces typical of solar cells. Solar cells with three different grid patterns were used to determine additional requirements caused by the raised metallic contacts.

  5. The ecology of prominences. [classification, morphology and significance to solar physics

    NASA Technical Reports Server (NTRS)

    Zirin, H.

    1979-01-01

    The paper discusses the roles of prominences in the solar scheme. Attention is given to classifications and the ways in which prominences exist: hydrostatic support, ballistic support, and magnetic support. In the case of ballistic support, surges are differentiated from sprays which involve the ejection of material that is already above the solar surface. Discussion also covers filimets and fibrils and the conditions for their appearance. It is proposed that most flares originate in prominence instabilities. In addition supergranulation is covered, noting the network is not seen on the boundary of unipolar regions. It is concluded that prominences play a critical role in flares and field reconnection, and the evolution of solar magnetic fields.

  6. Concentrating Solar Power Projects by Technology | Concentrating Solar

    Science.gov Websites

    ) technology from the list below. You can then select a specific project and review a profile covering project basics, participating organizations, and power plant configuration data for the solar field, power block

  7. Studies of the net surface radiative flux from satellite radiances during FIFE

    NASA Technical Reports Server (NTRS)

    Frouin, Robert

    1993-01-01

    Studies of the net surface radiative flux from satellite radiances during First ISLSCP Field Experiment (FIFE) are presented. Topics covered include: radiative transfer model validation; calibration of VISSR and AVHRR solar channels; development and refinement of algorithms to estimate downward solar and terrestrial irradiances at the surface, including photosynthetically available radiation (PAR) and surface albedo; verification of these algorithms using in situ measurements; production of maps of shortwave irradiance, surface albedo, and related products; analysis of the temporal variability of shortwave irradiance over the FIFE site; development of a spectroscopy technique to estimate atmospheric total water vapor amount; and study of optimum linear combinations of visible and near-infrared reflectances for estimating the fraction of PAR absorbed by plants.

  8. The Updated BaSTI Stellar Evolution Models and Isochrones. I. Solar-scaled Calculations

    NASA Astrophysics Data System (ADS)

    Hidalgo, Sebastian L.; Pietrinferni, Adriano; Cassisi, Santi; Salaris, Maurizio; Mucciarelli, Alessio; Savino, Alessandro; Aparicio, Antonio; Silva Aguirre, Victor; Verma, Kuldeep

    2018-04-01

    We present an updated release of the BaSTI (a Bag of Stellar Tracks and Isochrones) stellar model and isochrone library for a solar-scaled heavy element distribution. The main input physics that have been changed from the previous BaSTI release include the solar metal mixture, electron conduction opacities, a few nuclear reaction rates, bolometric corrections, and the treatment of the overshooting efficiency for shrinking convective cores. The new model calculations cover a mass range between 0.1 and 15 M ⊙, 22 initial chemical compositions between [Fe/H] = ‑3.20 and +0.45, with helium to metal enrichment ratio dY/dZ = 1.31. The isochrones cover an age range between 20 Myr and 14.5 Gyr, consistently take into account the pre-main-sequence phase, and have been translated to a large number of popular photometric systems. Asteroseismic properties of the theoretical models have also been calculated. We compare our isochrones with results from independent databases and with several sets of observations to test the accuracy of the calculations. All stellar evolution tracks, asteroseismic properties, and isochrones are made available through a dedicated web site.

  9. High altitude solar power platform. [aircraft design analysis

    NASA Technical Reports Server (NTRS)

    Bailey, M. D.; Bower, M. V.

    1992-01-01

    Solar power is a preeminent alternative to conventional aircraft propulsion. With the continued advances in solar cells, fuel cells, and composite materials technology, the solar powered airplane is no longer a simple curiosity constrained to flights of several feet in altitude or minutes of duration. A high altitude solar powered platform (HASPP) has several potential missions, including communications and agriculture. In remote areas, a HASPP could be used as a communication link. In large farming areas, a HASPP could perform remote sensing of crops. The impact of HASPP in continuous flight for one year on agricultural monitoring mission is presented. This mission provides farmers with near real-time data twice daily from an altitude which allows excellant resolution on water conditions, crop diseases, and insect infestation. Accurate, timely data will enable farmers to increase their yield and efficiency. A design for HASPP for the foregoing mission is presented. In the design power derived from solar cells covering the wings is used for propulsion, avionics, and sensors. Excess power produced midday will be stored in fuel cells for use at night to maintain altitude and course.

  10. Radiation measurements on the Mir Orbital Station.

    PubMed

    Badhwar, G D; Atwell, W; Reitz, G; Beaujean, R; Heinrich, W

    2002-10-01

    Radiation measurements made onboard the MIR Orbital Station have spanned nearly a decade and covered two solar cycles, including one of the largest solar particle events, one of the largest magnetic storms, and a mean solar radio flux level reaching 250 x 10(4) Jansky that has been observed in the last 40 years. The cosmonaut absorbed dose rates varied from about 450 microGy day-1 during solar minimum to approximately half this value during the last solar maximum. There is a factor of about two in dose rate within a given module, and a similar variation from module to module. The average radiation quality factor during solar minimum, using the ICRP-26 definition, was about 2.4. The drift of the South Atlantic Anomaly was measured to be 6.0 +/- 0.5 degrees W, and 1.6 +/- 0.5 degrees N. These measurements are of direct applicability to the International Space Station. This paper represents a comprehensive review of Mir Space Station radiation data available from a variety of sources. c2002 Elsevier Science Ltd. All rights reserved.

  11. Holographic Solar Photon Thrusters

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Matloff, Greg

    2006-01-01

    A document discusses a proposal to incorporate holographic optical elements into solar photon thrusters (SPTs). First suggested in 1990, SPTs would be systems of multiple reflective, emissive, and absorptive surfaces (solar sails) that would be attached to spacecraft orbiting the Earth to derive small propulsive forces from radiation pressures. An SPT according to the proposal would include, among other things, a main sail. One side of the sail would be highly emissive and would normally face away from the Earth. The other side would be reflective and would be covered by white-light holographic images that would alternately become reflective, transmissive, and absorptive with small changes in the viewing angle. When the spacecraft was at a favorable orbital position, the main sail would be oriented to reflect sunlight in a direction to maximize the solar thrust; when not in a favorable position, the main sail would be oriented to present a substantially absorptive/emissive aspect to minimize the solar drag. By turning the main sail slightly to alternate between the reflective and absorptive/ emissive extremes, one could achieve nearly a doubling or halving of the radiational momentum transfer and, hence, of the solar thrust.

  12. Commerical (terrestrial) and modified solar array design studies for low cost, low power space applications

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.; Riley, T. J.

    1980-01-01

    The suitability of commercial (terrestrial) solar arrays for use in low Earth orbit is examined. It is shown that commercial solar arrays degrade under thermal cycling because of material flexure, and that certain types of silicones used in the construction of these arrays outgas severely. Based on the results, modifications were made. The modified array retains the essential features of typical commercial arrays and can be easily built by commercial fabrication techniques at low cost. The modified array uses a metal tray for containment, but eliminates the high outgassing potting materials and glass cover sheets. Cells are individually mounted with an adhesive and individually covered with glass cover slips, or clear plastic tape. The modified array is found to withstand severe thermal cycling for long intervals of time.

  13. 33rd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler); Litty, Edward C. (Compiler); Sevilla, Donald R. (Compiler)

    1999-01-01

    The proceedings of the 33rd Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held at the Pasadena Conference and Exhibition Center, Pasadena, California, on May 19-21, 1999. Lockheed Martin Missiles and Space cosponsored the symposium. Technology areas covered include bearings and tribology; pointing, solar array and deployment mechanisms; orbiter/space station; and other mechanisms for spacecraft.

  14. Photovoltaic-thermal collectors

    DOEpatents

    Cox, III, Charles H.

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  15. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1990-01-01

    Archival reports on developments in programs managed by the JPL Office of Telecommunications and Data Acquisition (TDA) are provided. Topics covered include: DSN advanced systems (tracking and ground-based navigation; communications, spacecraft-ground; and station control and system technology) and DSN systems implementation (capabilities for existing projects; capabilities for new projects; TDA program management and analysis; and Goldstone solar system radar).

  16. NASA Tech Briefs, Summer 1978

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Solar Energy; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  17. NASA highlights, 1986 - 1988

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Highlights of NASA research from 1986 to 1988 are discussed. Topics covered include Space Shuttle flights, understanding the Universe and its origins, understanding the Earth and its environment, air and space transportation, using space to make America more competitive, using space technology an Earth, strengthening America's education in science and technology, the space station, and human exploration of the solar system.

  18. Researcher and Mechanic with Solar Collector in Solar Simulator Cell

    NASA Image and Video Library

    1976-08-21

    Researcher Susan Johnson and a mechanic examine a flat-plate solar collector in the Solar Simulator Cell in the High Temperature Composites Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Solar Simulator Cell allowed the researchers to control the radiation levels, air temperature, airflow, and fluid flow. The flat-plate collector, seen in a horizontal position here, was directed at the solar simulator, seen above Johnson, during the tests. Lewis researchers were studying the efficiency of various flat- plate solar collector designs in the 1970s for temperature control systems in buildings. The collectors consisted of a cover material, absorber plate, and parallel flow configuration. The collector’s absorber material and coating, covers, honeycomb material, mirrors, vacuum, and tube attachment could all be modified. Johnson’s study analyzed 35 collectors. Johnson, a lifelong pilot, joined NASA Lewis in 1974. The flat-plate solar collectors, seen here, were her first research project. Johnson also investigated advanced heat engines for general aviation and evaluated variable geometry combustors and liners. Johnson earned the Cleveland Technical Society’s Technical Achievement Award in 1984.

  19. Energetic Particles in the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Malandraki, Olga

    2016-07-01

    Solar Energetic Particle (SEP) events are a key ingredient of Solar-Terrestrial Physics both for fundamental research and space weather applications. SEP events are the defining component of solar radiation storms, contribute to radio blackouts in polar regions and are related to many of the fastest Coronal Mass Ejections (CMEs) driving major geomagnetic storms. In addition to CMEs, SEPs are also related to flares. In this work, the current state of knowledge on the SEP field will be reviewed. Key issues to be covered and discussed include: the current understanding of the origin, acceleration and transport processes of SEPs at the Sun and in the inner heliosphere, lessons learned from multi-spacecraft SEP observations, statistical quantification of the comparison of solar events and SEP events of the current solar cycle 24 with previous solar cycles, causes of the solar-cycle variations in SEP fluencies and composition, theoretical work and current SEP acceleration models. Furthermore, the outstanding issues that constitute a knowledge gap in the field will be presented and discussed, as well as future directions and expected advances from the observational and modeling perspective, also in view of the unique observations provided by the upcoming Solar Orbiter and Solar Probe Plus missions. Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.

  20. Methods for Cloud Cover Estimation

    NASA Technical Reports Server (NTRS)

    Glackin, D. L.; Huning, J. R.; Smith, J. H.; Logan, T. L.

    1984-01-01

    Several methods for cloud cover estimation are described relevant to assessing the performance of a ground-based network of solar observatories. The methods rely on ground and satellite data sources and provide meteorological or climatological information. One means of acquiring long-term observations of solar oscillations is the establishment of a ground-based network of solar observatories. Criteria for station site selection are: gross cloudiness, accurate transparency information, and seeing. Alternative methods for computing this duty cycle are discussed. The cycle, or alternatively a time history of solar visibility from the network, can then be input to a model to determine the effect of duty cycle on derived solar seismology parameters. Cloudiness from space is studied to examine various means by which the duty cycle might be computed. Cloudiness, and to some extent transparency, can potentially be estimated from satellite data.

  1. GPP Webinar: Solar Utilization in Higher Education Networking & Information Sharing Group: RFP, Contract, and Administrative Issues Discussion

    EPA Pesticide Factsheets

    This presentation from a Solar Utilization in Higher Education Networking and Information webinar covers contracts, Request for Proposals (RFPs), and administrative issues related to solar project development in the higher education sector.

  2. Design package for concentrating solar collector panels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The collector is a water/glycol/working fluid type, with a dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, and fiber glass insulation. It weights 98 pounds. A collector assembly includes four collector units within a tracking mount array.

  3. Accessing eSDO Solar Image Processing and Visualization through AstroGrid

    NASA Astrophysics Data System (ADS)

    Auden, E.; Dalla, S.

    2008-08-01

    The eSDO project is funded by the UK's Science and Technology Facilities Council (STFC) to integrate Solar Dynamics Observatory (SDO) data, algorithms, and visualization tools with the UK's Virtual Observatory project, AstroGrid. In preparation for the SDO launch in January 2009, the eSDO team has developed nine algorithms covering coronal behaviour, feature recognition, and global / local helioseismology. Each of these algorithms has been deployed as an AstroGrid Common Execution Architecture (CEA) application so that they can be included in complex VO workflows. In addition, the PLASTIC-enabled eSDO "Streaming Tool" online movie application allows users to search multi-instrument solar archives through AstroGrid web services and visualise the image data through galleries, an interactive movie viewing applet, and QuickTime movies generated on-the-fly.

  4. Monte Carlo calculation of the radiation field at aircraft altitudes.

    PubMed

    Roesler, S; Heinrich, W; Schraube, H

    2002-01-01

    Energy spectra of secondary cosmic rays are calculated for aircraft altitudes and a discrete set of solar modulation parameters and rigidity cut-off values covering all possible conditions. The calculations are based on the Monte Carlo code FLUKA and on the most recent information on the interstellar cosmic ray flux including a detailed model of solar modulation. Results are compared to a large variety of experimental data obtained on the ground and aboard aircraft and balloons, such as neutron, proton, and muon spectra and yields of charged particles. Furthermore, particle fluence is converted into ambient dose equivalent and effective dose and the dependence of these quantities on height above sea level, solar modulation, and geographical location is studied. Finally, calculated dose equivalent is compared to results of comprehensive measurements performed aboard aircraft.

  5. TIMED/GUVI Observations of Aurora, Ionosphere, Thermosphere and Solar EUV Variations

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paxton, L. J.; Schaefer, R. K.

    2017-12-01

    The FUV (100-200 nm) emissions from the ionosphere and thermosphere carry rich information of the density and composition of the IT system, aurora and solar EUV flux. The key emissions include atomic hydrogen line (121.6nm), atomic oxygen lines (e.g. 130.4, 135.6, 164.1 nm), atomic nitrogen lines (e.g. 120.0, 149.3, 174.3 nm), molecular nitrogen bands (LBH and VK bands) and nitric oxide ɛ bands. TIMED/GUVI data cover the nearly full FUV range and generate many space weather products (ionosphere, thermosphere, aurora and solar EUV) that extend the products from other missions (such as NASA GOLD and ICON) and help to solve some of MIT (Magnetosphere-Ionosphere-Thermosphere) science problems and serve as validation data sources for models.

  6. Proceedings of the 12th Space Photovoltaic Research and Technology Conference (SPRAT 12)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-05-01

    The Twelfth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from 20 to 22 Oct. 1992. The papers and workshops presented in this volume report substantial progress in a variety of areas in space photovoltaics. Topics covered include: high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, flexible amorphous and thin film solar cells (in the early stages of pilot production), high efficiency multiple bandgap cells, laser power converters, solar cell and array technology, heteroepitaxial cells, betavoltaic energy conversion, and space radiation effects in InP cells. Space flight data on amore » variety of cells were also presented. Separate abstracts have been prepared for articles from this report.« less

  7. The structure of the white-light corona and the large-scale solar magnetic field

    NASA Technical Reports Server (NTRS)

    Sime, D. G.; Mccabe, M. K.

    1990-01-01

    The large-scale density structure of the white-light solar corona is compared to the organization of the solar magnetic field as identified by the appearance of neutral lines in the photosphere to examine whether any consistent relationship exists between the two. During the period covering Carrington rotations 1717 to 1736 brightness enhancements in the low corona tend to lie over the global neutral sheet identified in the photospheric magnetic field. The brightest of these enhancements are associated with neutral lines throguh active regions. These associations are not 1-1, but do hold both in stable and evolving conditions of the corona. A significant number of long-lived neutral lines is found, including filaments seen in H-alpha, for which there are not coronal enhancements.

  8. Impacts of tilling and covering treatments on the biosolids solar drying conversion from Class B to Class A

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the effects of tillage and cover treatments of solar drying on the conversion of Class B treated sewage sludge to a Class A product. The experiments were performed over two years at Green Valley, Arizona in steel-constructed sand-filled drying beds of 1.0m...

  9. Computer Modelling and Simulation of Solar PV Array Characteristics

    NASA Astrophysics Data System (ADS)

    Gautam, Nalin Kumar

    2003-02-01

    The main objective of my PhD research work was to study the behaviour of inter-connected solar photovoltaic (PV) arrays. The approach involved the construction of mathematical models to investigate different types of research problems related to the energy yield, fault tolerance, efficiency and optimal sizing of inter-connected solar PV array systems. My research work can be divided into four different types of research problems: 1. Modeling of inter-connected solar PV array systems to investigate their electrical behavior, 2. Modeling of different inter-connected solar PV array networks to predict their expected operational lifetimes, 3. Modeling solar radiation estimation and its variability, and 4. Modeling of a coupled system to estimate the size of PV array and battery-bank in the stand-alone inter-connected solar PV system where the solar PV system depends on a system providing solar radiant energy. The successful application of mathematics to the above-m entioned problems entailed three phases: 1. The formulation of the problem in a mathematical form using numerical, optimization, probabilistic and statistical methods / techniques, 2. The translation of mathematical models using C++ to simulate them on a computer, and 3. The interpretation of the results to see how closely they correlated with the real data. Array is the most cost-intensive component of the solar PV system. Since the electrical performances as well as life properties of an array are highly sensitive to field conditions, different characteristics of the arrays, such as energy yield, operational lifetime, collector orientation, and optimal sizing were investigated in order to improve their efficiency, fault-tolerance and reliability. Three solar cell interconnection configurations in the array - series-parallel, total-cross-tied, and bridge-linked, were considered. The electrical characteristics of these configurations were investigated to find out one that is comparatively less susceptible to the mismatches due to manufacturer's tolerances in cell characteristics, shadowing, soiling and aging of solar cells. The current-voltage curves and the values of energy yield characterized by maximum-power points and fill factors for these arrays were also obtained. Two different mathematical models, one for smaller size arrays and the other for the larger size arrays, were developed. The first model takes account of the partial differential equations with boundary value conditions, whereas the second one involves the simple linear programming concept. Based on the initial information on the values of short-circuit current and open-circuit voltage of thirty-six single-crystalline silicon solar cells provided by a manufacturer, the values of these parameters for up to 14,400 solar cells were generated randomly. Thus, the investigations were done for three different cases of array sizes, i.e., (6 x 6), (36 x 8) and (720 x 20), for each configuration. The operational lifetimes of different interconnected solar PV arrays and the improvement in their life properties through different interconnection and modularized configurations were investigated using a reliability-index model. Under normal conditions, the efficiency of a solar cell degrades in an exponential manner, and its operational life above a lowest admissible efficiency may be considered as the upper bound of its lifetime. Under field conditions, the solar cell may fail any time due to environmental stresses, or it may function up to the end of its expected lifetime. In view of this, the lifetime of a solar cell in an array was represented by an exponentially distributed random variable. At any instant of time t, this random variable was considered to have two states: (i) the cell functioned till time t, or (ii) the cell failed within time t. It was considered that the functioning of the solar cell included its operation at an efficiency decaying with time under normal conditions. It was assumed that the lifetime of a solar cell had lack of memory or aging property, which meant that no matter how long (say, t) the cell had been operational, the probability that it would last an additional time ?t was independent of t. The operational life of the solar cell above a lowest admissible efficiency was considered as the upper bound of its expected lifetime. The value of the upper bound on the expected life of solar cell was evaluated using the information provided by the manufacturers of the single-crystalline silicon solar cells. Then on the basis of these lifetimes, the expected operational lifetimes of the array systems were obtained. Since the investigations of the effects of collector orientation on the performance of an array require the continuous values of global solar radiation on a surface, a method to estimate the global solar radiation on a surface (horizontal or tilted) was also proposed. The cloudiness index was defined as the fraction of extraterrestrial radiation that reached the earth's surface when the sky above the location of interest was obscured by the cloud cover. The cloud cover at the location of interest during any time interval of a day was assumed to follow the fuzzy random phenomenon. The cloudiness index, therefore, was considered as a fuzzy random variable that accounted for the cloud cover at the location of interest during any time interval of a day. This variable was assumed to depend on four other fuzzy random variables that, respectively, accounted for the cloud cover corresponding to the 1) type of cloud group, 2) climatic region, 3) season with most of the precipitation, and 4) type of precipitation at the location of interest during any time interval. All possible types of cloud covers were categorized into five types of cloud groups. Each cloud group was considered to be a fuzzy subset. In this model, the cloud cover at the location of interest during a time interval was considered to be the clouds that obscure the sky above the location. The cloud covers, with all possible types of clouds having transmissivities corresponding to values in the membership range of a fuzzy subset (i.e., a type of cloud group), were considered to be the membership elements of that fuzzy subset. The transmissivities of different types of cloud covers in a cloud group corresponded to the values in the membership range of that cloud group. Predicate logic (i.e., if---then---, else---, conditions) was used to set the relationship between all the fuzzy random variables. The values of the above-mentioned fuzzy random variables were evaluated to provide the value of cloudiness index for each time interval at the location of interest. For each case of the fuzzy random variable, heuristic approach was used to identify subjectively the range ([a, b], where a and b were real numbers with in [0, 1] such that a

  10. Spectral atlases of the Sun from 3980 to 7100 Å at the center and at the limb

    NASA Astrophysics Data System (ADS)

    Fathivavsari, H.; Ajabshirizadeh, A.; Koutchmy, S.

    2014-10-01

    In this work, we present digital and graphical atlases of spectra of both the solar disk-center and of the limb near the Solar poles using data taken at the UTS-IAP & RIAAM (the University of Tabriz Siderostat, telescope and spectrograph jointly developed with the Institut d'Astrophysique de Paris and Research Institute for Astronomy and Astrophysics of Maragha). High resolution and high signal-to-noise ratio (SNR) CCD-slit spectra of the sun for 2 different parts of the disk, namely for μ=1.0 (solar center) & for μ=0.3 (solar limb) are provided and discussed. While there are several spectral atlases of the solar disk-center, this is the first spectral atlas ever produced for the solar limb at this spectral range. The resolution of the spectra is about R˜70 000 (Δ λ˜0.09 Å) with the signal-to-noise ratio (SNR) of 400-600. The full atlas covers the 3980 to 7100 Å spectral regions and contains 44 pages with three partial spectra of the solar spectrum put on each page to make it compact. The difference spectrum of the normalized solar disk-center and the solar limb is also included in the graphic presentation of the atlas to show the difference of line profiles, including far wings. The identification of the most significant solar lines is included in the graphic presentation of the atlas. Telluric lines are producing a definite signature on the difference spectra which is easy to notice. At the end of this paper we present only two sample pages of the whole atlas while the graphic presentation of the whole atlas along with its ASCII file can be accessed via the ftp server of the CDS in Strasbourg via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via this link: http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/other/ApSS.

  11. Solar energy dust and soiling R&D progress: Literature review update for 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Suellen C. S.; Diniz, Antonia Sonia A. C.; Kazmerski, Lawrence L.

    The objective of this literature review and survey is to provide a compilation and assessment of recent published reports for solar-electric device soiling R&D, to extend and update the compendium covering 2012-2015 we published last year. This review provides a comprehensive listing of the publications with references for 2016 - with some preliminary 2017 publications that have appeared at the time of this writing. Photovoltaics (PV) and concentrating solar (thermal) power (CSP) technologies are covered. To guide the reader, tabulated information on the investigative focus of the studies, the location, the duration (if pertinent), the solar-device type, key findings andmore » other useful information within the report is presented.« less

  12. Solar energy dust and soiling R&D progress: Literature review update for 2016

    DOE PAGES

    Costa, Suellen C. S.; Diniz, Antonia Sonia A. C.; Kazmerski, Lawrence L.

    2017-11-26

    The objective of this literature review and survey is to provide a compilation and assessment of recent published reports for solar-electric device soiling R&D, to extend and update the compendium covering 2012-2015 we published last year. This review provides a comprehensive listing of the publications with references for 2016 - with some preliminary 2017 publications that have appeared at the time of this writing. Photovoltaics (PV) and concentrating solar (thermal) power (CSP) technologies are covered. To guide the reader, tabulated information on the investigative focus of the studies, the location, the duration (if pertinent), the solar-device type, key findings andmore » other useful information within the report is presented.« less

  13. Higher absorbed solar radiation partly offset the negative effects of water stress on the photosynthesis of Amazon forests during the 2015 drought

    NASA Astrophysics Data System (ADS)

    Li, Xing; Xiao, Jingfeng; He, Binbin

    2018-04-01

    Amazon forests play an important role in the global carbon cycle and Earth’s climate. The vulnerability of Amazon forests to drought remains highly controversial. Here we examine the impacts of the 2015 drought on the photosynthesis of Amazon forests to understand how solar radiation and precipitation jointly control forest photosynthesis during the severe drought. We use a variety of gridded vegetation and climate datasets, including solar-induced chlorophyll fluorescence (SIF), photosynthetic active radiation (PAR), the fraction of absorbed PAR (APAR), leaf area index (LAI), precipitation, soil moisture, cloud cover, and vapor pressure deficit (VPD) in our analysis. Satellite-derived SIF observations provide a direct diagnosis of plant photosynthesis from space. The decomposition of SIF to SIF yield (SIFyield) and APAR (the product of PAR and fPAR) reveals the relative effects of precipitation and solar radiation on photosynthesis. We found that the drought significantly reduced SIFyield, the emitted SIF per photon absorbed. The higher APAR resulting from lower cloud cover and higher LAI partly offset the negative effects of water stress on the photosynthesis of Amazon forests, leading to a smaller reduction in SIF than in SIFyield and precipitation. We further found that SIFyield anomalies were more sensitive to precipitation and VPD anomalies in the southern regions of the Amazon than in the central and northern regions. Our findings shed light on the relative and combined effects of precipitation and solar radiation on photosynthesis, and can improve our understanding of the responses of Amazon forests to drought.

  14. Combined Active and Passive Solar Space Heating and Solar Hot Water Systems for an Elementary School in Boise, Idaho.

    ERIC Educational Resources Information Center

    Smull, Neil A.; Armstrong, Gerald L.

    1979-01-01

    Amity Elementary School in Boise, Idaho, features a solar space heating and domestic hot water system along with an earth covering to accommodate the passive aspects of energy conservation. (Author/MLF)

  15. The Thermal Collector With Varied Glass Covers

    NASA Astrophysics Data System (ADS)

    Luminosu, I.; Pop, N.

    2010-08-01

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.

  16. Concentrating Solar Power Projects by Country | Concentrating Solar Power |

    Science.gov Websites

    NREL Country In this section, you can select a country from the map or the following list of countries. You can then select a specific concentrating solar power (CSP) project and review a profile covering project basics, participating organizations, and power plant configuration data for the solar

  17. Integrating a Data Center and Resident Archive into the Emerging Virtual Observatiry System: Practical experience and perspectives

    NASA Astrophysics Data System (ADS)

    Davis, A. J.; Kanekal, S. G.; Looper, M. D.; Mason, G. M.; Mewaldt, R. A.

    2006-12-01

    The SAMPEX Resident Archive is currently under construction, and will be co-hosted at Caltech with the ACE Science Center. With SAMPEX in low earth orbit, and ACE at L1, and a suite of instruments on each spacecraft, the combined data cover a very broad range in species, energy, location, and time. The data include solar wind, solar energetic particle, and galactic cosmic ray intensity and composition data, as well as solar wind and magnetic field parameters on a variety of time scales. We describe our recent efforts to provide enhanced access to these data via the emerging virtual observatory system, including work with the Space Physics Archive Search and Extract (SPASE) Consortium to ensure that the ACE and SAMPEX data can be adequately described using the SPASE data model, development of a SOAP web services interface between the ACE Science Center and the virtual observatories, and ideas for combining the ACE and SAMPEx data in useful ways.

  18. Southwest Project: resource/institutional requirements analysis. Volume III. Systems integration studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ormsby, L. S.; Sawyer, T. G.; Brown, Dr., M. L.

    The purpose of this project is to provide information to DOE which can be used to establish its plans for accelerated commercialization and market penetration of solar electric generating plants in the southwestern region of the United States. The area of interest includes Arizona, California, Colorado, Nevada, New Mexico, Utah, and sections of Oklahoma and Texas. The system integration study establishes the investment that utilities could afford to make in solar thermal, photovoltaic, and wind energy systems, and to assess the sensitivity of the break-even cost to critical variables including fuel escalation rates, fixed charge rates, load growth rates, cloudmore » cover, number of sites, load shape, and energy storage. This information will be used as input to Volume IV, Institutional Studies, one objective of which will be to determine the incentives required to close the gap between the break-even investment for the utilities of the Southwest and the estimated cost of solar generation.« less

  19. A New Solar Spectrum from 656 to 3088 nm

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Damé, L.; Bolsée, D.; Pereira, N.; Sluse, D.; Cessateur, G.; Irbah, A.; Sarkissian, A.; Djafer, D.; Hauchecorne, A.; Bekki, S.

    2017-08-01

    The solar spectrum is a key parameter for different scientific disciplines such as solar physics, climate research, and atmospheric physics. The SOLar SPECtrometer (SOLSPEC) instrument of the Solar Monitoring Observatory (SOLAR) payload onboard the International Space Station (ISS) has been built to measure the solar spectral irradiance (SSI) from 165 to 3088 nm with high accuracy. To cover the full wavelength range, three double-monochromators with concave gratings are used. We present here a thorough analysis of the data from the third channel/double-monochromator, which covers the spectral range between 656 and 3088 nm. A new reference solar spectrum is therefore obtained in this mainly infrared wavelength range (656 to 3088 nm); it uses an absolute preflight calibration performed with the blackbody of the Physikalisch-Technische Bundesanstalt (PTB). An improved correction of temperature effects is also applied to the measurements using in-flight housekeeping temperature data of the instrument. The new solar spectrum (SOLAR-IR) is in good agreement with the ATmospheric Laboratory for Applications and Science (ATLAS 3) reference solar spectrum from 656 nm to about 1600 nm. However, above 1600 nm, it agrees better with solar reconstruction models than with spacecraft measurements. The new SOLAR/SOLSPEC measurement of solar spectral irradiance at about 1600 nm, corresponding to the minimum opacity of the solar photosphere, is 248.08 ± 4.98 mW m-2 nm-1 (1 σ), which is higher than recent ground-based evaluations.

  20. Integrating solar energy and climate research into science education

    NASA Astrophysics Data System (ADS)

    Betts, Alan K.; Hamilton, James; Ligon, Sam; Mahar, Ann Marie

    2016-01-01

    This paper analyzes multi-year records of solar flux and climate data from two solar power sites in Vermont. We show the inter-annual differences of temperature, wind, panel solar flux, electrical power production, and cloud cover. Power production has a linear relation to a dimensionless measure of the transmission of sunlight through the cloud field. The difference between panel and air temperatures reaches 24°C with high solar flux and low wind speed. High panel temperatures that occur in summer with low wind speeds and clear skies can reduce power production by as much as 13%. The intercomparison of two sites 63 km apart shows that while temperature is highly correlated on daily (R2=0.98) and hourly (R2=0.94) timescales, the correlation of panel solar flux drops markedly from daily (R2=0.86) to hourly (R2=0.63) timescales. Minimum temperatures change little with cloud cover, but the diurnal temperature range shows a nearly linear increase with falling cloud cover to 16°C under nearly clear skies, similar to results from the Canadian Prairies. The availability of these new solar and climate datasets allows local student groups, a Rutland High School team here, to explore the coupled relationships between climate, clouds, and renewable power production. As our society makes major changes in our energy infrastructure in response to climate change, it is important that we accelerate the technical education of high school students using real-world data.

  1. A Changing Arctic Sea Ice Cover and the Partitioning of Solar Radiation

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.; Light, B.; Polashenski, C.; Nghiem, S. V.

    2010-12-01

    Certain recent changes in the Arctic sea ice cover are well established. There has been a reduction in sea ice extent, an overall thinning of the ice cover, reduced prevalence of perennial ice with accompanying increases in seasonal ice, and a lengthening of the summer melt season. Here we explore the effects of these changes on the partitioning of solar energy between reflection to the atmosphere, absorption within the ice, and transmission to the ocean. The physical changes in the ice cover result in less light reflected and more light absorbed in the ice and transmitted to the ocean. These changes directly affect the heat and mass balance of the ice as well as the amount of light available for photosynthesis within and beneath the ice cover. The central driver is that seasonal ice covers tend to have lower albedo than perennial ice throughout the melt season, permitting more light to penetrate into the ice and ocean. The enhanced light penetration increases the amount of internal melting of the ice and the heat content of the upper ocean. The physical changes in the ice cover mentioned above have affected both the amount and the timing of the photosynthetically active radiation (PAR) transmitted into the ice and ocean, increasing transmitted PAR, particularly in the spring. A comparison of the partitioning of solar irradiance and PAR for both historical and recent ice conditions will be presented.

  2. The 1991 research and technology report, Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Ottenstein, Howard (Editor); Montgomery, Harry (Editor); Truszkowski, Walter (Editor); Frost, Kenneth (Editor); Sullivan, Walter (Editor); Boyle, Charles (Editor)

    1991-01-01

    The 1991 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) earth sciences including upper atmosphere, lower atmosphere, oceans, hydrology, and global studies; (2) space sciences including solar studies, planetary studies, Astro-1, gamma ray investigations, and astrophysics; (3) flight projects; (4) engineering including robotics, mechanical engineering, electronics, imaging and optics, thermal and cryogenic studies, and balloons; and (5) ground systems, networks, and communications including data and networks, TDRSS, mission planning and scheduling, and software development and test.

  3. Coronal and chromospheric physics

    NASA Technical Reports Server (NTRS)

    Jefferies, J. T.; Landman, D. A.; Orrall, F. Q.

    1983-01-01

    Achievements and completed results are discussed for investigations covering solar activity during the solar maximum mission and the solar maximum year; other studies of solar activity and variability; infrared and submillimeter photometry; solar-related atomic physics; coronal and transition region studies; prominence research; chromospheric research in quiet and active regions; solar dynamics; eclipse studies; and polarimetry and magnetic field measurements. Contributions were also made in defining the photometric filterograph instrument for the solar optical telescope, designing the combined filter spectrograph, and in expressing the scientific aims and implementation of the solar corona diagnostic mission.

  4. Satellite-Based Solar Resource Data Sets for India 2002-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, M.; Perez, R.; Gueymard, C.

    A new 10-km hourly solar resource product was created for India. This product was created using satellite radiances from the Meteosat series of satellites. The product contains global horizontal irradiances (GHI) and direct normal irradiances (DNI) for the period from 2002 to 2011. An additional solar resource data set covering the period from January 2012 to June 2012 was created solely for validation because this period overlaps ground measurements that were made available from the Indian Ministry of New and Renewable Energy's (MNRE's) National Institute for Solar Energy for five stations that are part of MNRE's solar resource network. Thesemore » measurements were quality checked using the SERI QC software and used to validate the satellite product. A comparison of the satellite product to the ground measurements for the five stations shows good agreement. This report also presents a comparison of the new version of solar resource data to the previous version, which covered the period from 2002 to 2008.« less

  5. Advancing solar energy forecasting through the underlying physics

    NASA Astrophysics Data System (ADS)

    Yang, H.; Ghonima, M. S.; Zhong, X.; Ozge, B.; Kurtz, B.; Wu, E.; Mejia, F. A.; Zamora, M.; Wang, G.; Clemesha, R.; Norris, J. R.; Heus, T.; Kleissl, J. P.

    2017-12-01

    As solar power comprises an increasingly large portion of the energy generation mix, the ability to accurately forecast solar photovoltaic generation becomes increasingly important. Due to the variability of solar power caused by cloud cover, knowledge of both the magnitude and timing of expected solar power production ahead of time facilitates the integration of solar power onto the electric grid by reducing electricity generation from traditional ancillary generators such as gas and oil power plants, as well as decreasing the ramping of all generators, reducing start and shutdown costs, and minimizing solar power curtailment, thereby providing annual economic value. The time scales involved in both the energy markets and solar variability range from intra-hour to several days ahead. This wide range of time horizons led to the development of a multitude of techniques, with each offering unique advantages in specific applications. For example, sky imagery provides site-specific forecasts on the minute-scale. Statistical techniques including machine learning algorithms are commonly used in the intra-day forecast horizon for regional applications, while numerical weather prediction models can provide mesoscale forecasts on both the intra-day and days-ahead time scale. This talk will provide an overview of the challenges unique to each technique and highlight the advances in their ongoing development which come alongside advances in the fundamental physics underneath.

  6. Solar UV exposures measured simultaneously to all arbitrarily oriented leaves on a plant.

    PubMed

    Parisi, Alfio V; Schouten, Peter; Downs, Nathan J; Turner, Joanna

    2010-05-03

    The possible ramifications of climate change include the influence it has upon the amount of cloud cover in the atmosphere. Clouds cause significant variation in the solar UV radiation reaching the earth's surface and in turn the amount incident on ecosystems. The consequences of changes in solar UV radiation delivered to ecosystems due to climate change may be significant and should be investigated. Plants are an integral part of the world wide ecological balance, and research has shown they are affected by variations in solar UV radiation. Therefore research into the influence of solar UV radiation on plants is of particular significance. However, this requires a means of obtaining detailed information on the solar UV radiation received by plants. This research describes a newly developed dosimetric technique employed to gather information on solar UV radiation incident to the leaves of plants in combination with the measurement of spectral irradiances in order to provide an accurate method of collecting detailed information on the solar UV radiation affecting the canopy and lower leaf layers of individual plants. Variations in the measurements take into account the inclination and orientation of each leaf investigated, as well as the influence of shading by other leaves in the plant canopy. Copyright 2010 Elsevier B.V. All rights reserved.

  7. The budget of biologically active ultraviolet radiation in the earth-atmosphere system

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Lubin, Dan

    1988-01-01

    This study applies the concept of a budget to describe the interaction of solar ultraviolet (UV) radiation with the earth-atmosphere system. The wavelength ranges of interest are the biologically relevant UV-B between 280 and 320 nm and the UV-A from 32000 to 400 nm. The Nimbus 7 solar backscattered ultraviolet (SBUV) instrument provides measurements of total column ozone and information concerning cloud cover which, in combination with a simple model of radiation transfer, define the fractions of incident solar irradiance absorbed in the atmosphere, reflected to space, and absorbed at the ground. Results for the month of July quantify the contribution of fractional cloud cover and cloud optical thickness to the radiation budget's three components. Scattering within a thick cloud layer makes the downward radiation field at the cloud base more isotropic than is the case for clear skies. For small solar zenith angles, typical of summer midday conditions, the effective pathlength of this diffuse irradiance through tropospheric ozone is greater than that under clear-sky conditions. The result is an enhanced absorption of UV-B radiation in the troposphere during cloud-covered conditions. Major changes in global cloud cover or cloud optical thicknesses could alter the ultraviolet radiation received by the biosphere by an amount comparable to that predicted for long-term trends in ozone.

  8. Phase 1 of the First Solar Small Power System Experiment (experimental System No. 1). Volume 3: Appendix E - N

    NASA Technical Reports Server (NTRS)

    Clark, T. B. (Editor)

    1979-01-01

    The design of a solar electric power plant for a small community is reported. Topics covered include: (1) control configurations and interface requirements for the baseline power system; (2) annual small power system output; (3) energy requirements for operation of the collectors and control building; (4) life cycle costs and reliability predictions; (5) thermal conductivities and costs of receiver insulation materials; (6) transient thermal modelling for the baseline receiver/thermal transport system under normal and inclement operating conditions; (7) high temperature use of sodium; (8) shading in a field of parabolic collectors; and (9) buffer storage materials.

  9. Solar thermal central receivers for industrial process heat generation: User views and recommendations for commercialization

    NASA Astrophysics Data System (ADS)

    Fish, M. J.

    1981-08-01

    Results of recent meetings with several private industrial groups in which solar thermal central receivers were discussed in depth as a potential for industrial process heat generation are summarized. Topics covering potential economics, technical requirements, and actions to promote commercialization of the technology are presented. These findings are then translated into recommendations for commercialization in private industrial markets. Key points include the need for small scale systems integration projects in addition to the 10 MW/sub e/ plant under construction at Barstow, CA, and the adoption of financial incentives, such as tax credits, for getting the early commercial plants built.

  10. Energy: An annotated selected bibliography

    NASA Technical Reports Server (NTRS)

    Blow, S. J. (Compiler); Peacock, R. W. (Compiler); Sholy, J. J. (Compiler)

    1979-01-01

    This updated bibliography contains approximately 7,000 selected references on energy and energy related topics from bibliographic and other data sources from June 1977. Under each subject heading the entries are arranged by the date, with the latest works first. Geothermal, solar, wind, and ocean/water power sources are included. Magnetohydrodynamics and electrohydrodynamics, electric power engineering, automotive power plants, and energy storage are also covered.

  11. 35th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler); Doty, Laura W. (Technical Monitor)

    2001-01-01

    The proceedings of the 35th Aerospace Mechanisms Symposium are reported. Ames Research Center hosted the conference, which was held at the Four Points Sheraton, Sunnyvale, California, on May 9-11, 2001. The symposium was sponsored by the Mechanisms Education Association. Technology areas covered included bearings and tribology; pointing, solar array, and deployment mechanisms; and other mechanisms for spacecraft and large space structures.

  12. 30th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Bradley, Obie H., Jr. (Compiler); Rogers, John F. (Compiler)

    1996-01-01

    The proceedings of the 30th Aerospace Mechanisms Symposium are reported. NASA Langley Research Center hosted the proceedings held at the Radisson Hotel in Hampton, Virginia on May 15-17, 1996, and Lockheed Martin Missiles and Space Company, Inc. co-sponsored the symposium. Technological areas covered include bearings and tribology; pointing, solar array, and deployment mechanisms; orbiter/space station; and other mechanisms for spacecraft.

  13. Third SEI Technical Interchange: Proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Given here are the proceedings of the 3rd Space Exploration Initiative (SEI) Technical Interchange. Topics covered include the First Lunar Outpost (FLO), the Lunar Resource Mapper, lunar rovers, lunar habitat concepts, lunar shelter construction analysis, thermoelectric nuclear power systems for SEI, cryogenic storage, a space network for lunar communications, the moon as a solar power satellite, and off-the-shelf avionics for future SEI missions.

  14. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Results of planetary advanced studies and planning support provided by Science Applications, Inc. staff members to Earth and Planetary Exploration Division, OSSA/NASA, for the period 1 February 1981 to 30 April 1982 are summarized. The scope of analyses includes cost estimation, planetary missions performance, solar system exploration committee support, Mars program planning, Galilean satellite mission concepts, and advanced propulsion data base. The work covers 80 man-months of research. Study reports and related publications are included in a bibliography section.

  15. Standarized performance tests of collectors of solar thermal energy: A steel flat-plate collector with two transparent covers and a proprietary coating

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator are given. The collector was tested over ranges of inlet temperature and flux level.

  16. Astrobiology: The Case for Venus

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2003-01-01

    The scientific discipline of astrobiology addresses one of the most fundamental unanswered questions of science: are we alone? Is there life elsewhere in the universe, or is life unique to Earth? The field of astrobiology includes the study of the chemical precursors for life in the solar system; it also includes the search for both presently existing life and fossil signs of previously existing life elsewhere in our own solar system, as well as the search for life outside the solar system. Two of the promising environments within the solar system being currently considered are the surface of the planet Mars, and the hypothesized oceans underneath the ice covering the moon Europa. Both of these environments differ in several key ways from the environments where life is found on Earth; the Mars environment in most places too cold and at too low pressure for liquid water to be stable, and the sub-ice environment of Europa lacking an abundance of free energy in the form of sunlight. The only place in the solar system where we know that life exists today is the Earth. To look for life elsewhere in the solar system, one promising search strategy would be to find and study the environment in the solar system with conditions that are most similar to the environmental conditions where life thrives on the Earth. Specifically, we would like to study a location in the solar system with atmospheric pressure near one bar; temperature in the range where water is liquid, 0 to 100 C; abundant solar energy; and with the primary materials required for life, carbon, oxygen, nitrogen, and hydrogen, present. Other than the surface of the Earth, the only other place where these conditions exist is the atmosphere of Venus, at an altitude of about fifty kilometers above the surface.

  17. Survey of Thermoelectric and Solar Technologies as Alternative Energy Solutions

    DTIC Science & Technology

    2012-02-01

    Survey of Thermoelectric and Solar Technologies as Alternative Energy Solutions by Kendall Bianchi, Jay R. Maddux, Kimberly Sablon-Ramsey...Research Laboratory Adelphi, MD 20783-1197 ARL-TR-5920 February 2012 Survey of Thermoelectric and Solar Technologies as Alternative Energy...Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Survey of Thermoelectric and Solar Technologies as Alternative Energy Solutions 5a

  18. Study Guide for Fundamentals of Solar Heating: A Correspondence Course for the Airconditioning Industry.

    ERIC Educational Resources Information Center

    Sheet Metal and Air Conditioning Contractors National Association, Vienna, VA.

    This study guide groups eleven lessons into four study units. The first unit discusses the development and basic concepts of solar heating. The second unit deals with the nomenclature of the solar heating system. The third study unit covers sizing of the solar heating system to meet demand and discusses the operation of the total system. The…

  19. Fluid flow and heat transfer characteristics of an enclosure with fin as a top cover of a solar collector

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Ronowikarto, A. D.; Siregar, R. E. T.; Setyawan, E. Y.

    2018-03-01

    To reduce heat loses in a flat plate solar collector, double glasses cover is employed. Several studies show that the heat loss from the glass cover is still very significant in comparison with other losses. Here, double glasses cover with attached fins is proposed. In the present work, the fluid flow and heat transfer characteristics of the enclosure between the double glass cover are investigated numerically. The objective is to examine the effect of the fin to the heat transfer rate of the cover. Two-dimensional governing equations are developed. The governing equations and the boundary conditions are solved using commercial Computational Fluid Dynamics code. The fluid flow and heat transfer characteristics are plotted, and numerical results are compared with empirical correlation. The results show that the presence of the fin strongly affects the fluid flow and heat transfer characteristics. The fin can reduce the heat transfer rate up to 22.42% in comparison with double glasses cover without fins.

  20. More Frequent Cloud Free Sky and Less Surface Solar Radiation in China from 1955-2000

    NASA Technical Reports Server (NTRS)

    Qian, Yun; Kaiser, Dale P.; Leung, L. Ruby; Xu, Ming

    2006-01-01

    In this study, we used newly available data frorn extended weather stations and time period to reveal that much of China has experienced significant decreases in cloud cover over the last half of the Twentieth century. This conclusion is supported by analysis of the more reliably observed frequency of cloud-free sky and overcast sky. We estimated that the total cloud cover and low cloud cover in China have decreased 0.88% and 0.33% per decade, respectively, and cloud-free days have increased 0.60% and overcast days decreased 0.78% per decade from 1954-2001. Meanwhile, both solar radiation and pan evaporation have decreased in China, with'solar radiation decreasing 3.1 w/square m and pan evaporation decreasing 39 mm per decade. Combining these results with findings of previous studies, we speculated that increased air pollution may have produced a fog-like haze that reflected/absorbed radiation from the sun and resulted in less solar radiation reaching the surface, despite concurrent increasing trends in cloud-free sky over China.

  1. The Thermal Collector With Varied Glass Covers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luminosu, I.; Pop, N.

    2010-08-04

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collectionmore » area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.« less

  2. Solar pond

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1978-01-01

    Shallow pools of liquid to collect low-temperature solar generated thermal energy are described. Narrow elongated trenches, grouped together over a wide area, are lined with a heat-absorbing black liner. The heat-absorbing liquid is kept separate from the thermal energy removing fluid by means such as clear polyethylene material. The covering for the pond may be a fluid or solid. If the covering is a fluid, fire fighting foam, continuously generated, or siloons are used to keep the surface covering clean and insulated. If the thermal energy removing fluid is a gas, a fluid insulation layer contained in a flat polyethlene tubing is used to cover the pond. The side of the tube directed towards the sun is treated to block out ultraviolet radiation and trap in infrared radiation.

  3. Contribution of Nanostructures in High Performance Solar Cells

    NASA Astrophysics Data System (ADS)

    Aly, Abouelmaaty M.; Ebrahim, Essamudin A.; Sweelem, Emad

    2017-11-01

    Nanotechnology has great contributions in various fields, especially in solar energy conversion through solar cells (SCs). Nanostructured SCs can provide high performance with lower fabrication costs. The transition from fossil fuel energy to renewable sustainable energy represents a major technological challenge for the world. In the last years, the industry of SCs has grown rapidly due to strong attention in renewable energy in order to handle the problem of global climate change that is now believed to occur due to use of the fossil fuels. Cost is an influential factor in the eventual success of any solar technology, since inexpensive SCs are needed to produce electricity, especially for rural areas and for third world countries. Therefore, new developments in nanotechnology may open the door for the production of inexpensive and more efficient SCs by reducing the manufacturing costs of SCs. Utilizing nanotechnology in cheaper SCs will help maintain the environment. This article covers a review of the progress that has been made to-date to enhance efficiencies of various nanostructures used in SCs, including utilizations of all the wavelengths present in of the solar spectrum.

  4. Use of MERRA-2 in the National Solar Radiation Database and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Lopez, Anthony; Habte, Aron

    The National Solar Radiation Database (NSRDB) is a flagship product of NREL that provides solar radiation and ancillary meteorological information through a GIS based portal. This data is provided at a 4kmx4km spatial and 30 minute temporal resolution covering the period between 1998-2015. The gridded data that is distributed by the NSRDB is derived from satellite measurements using the Physical Solar Model (PSM) that contains a 2-stage approach. This 2-stage approach consists of first retrieving cloud properties using measurement from the GOES series of satellites and using that information in a radiative transfer model to estimate solar radiation at themore » surface. In addition to the satellite data the model requires ancillary meteorological information that is provided mainly by NASA's Modern Era Retrospecitve Analysis for Research and Applications (MERRA-2) 2 model output. This presentation provides an insight into how the NSRDB is developed using the PSM and how the various sources of data including the MERRA-2 data is used during the process.« less

  5. Modelling and fabrication of high-efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Rohatgi, A.; Smith, A. W.; Salami, J.

    1991-10-01

    This report covers the research conducted on modelling and development of high efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. The third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high efficiency silicon cells.

  6. Model for Solar Proton Risk Assessment

    NASA Technical Reports Server (NTRS)

    Xapos, M. A.; Stauffer, C.; Gee, G. B.; Barth, J. L.; Stassinopoulos, E. G.; McGuire, R. E.

    2004-01-01

    A statistical model for cumulative solar proton event fluences during space missions is presented that covers both the solar minimum and solar maximum phases of the solar cycle. It is based on data from the IMP and GOES series of satellites that is integrated together to allow the best features of each data set to be taken advantage of. This allows fluence-energy spectra to be extended out to energies of 327 MeV.

  7. Phase space representation of neutron monitor count rate and atmospheric electric field in relation to solar activity in cycles 21 and 22.

    PubMed

    Silva, H G; Lopes, I

    Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.

  8. Ninteenth International Cosmic Ray Conference. SH Sessions, Volume 4

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume covers solar and heliospheric phenomena, specifically, particle acceleration; cosmic ray compsotion, spectra, and anisotropy; propagation of solar and interplanetary energetic particles; solar-cycle modulation; and propagation of galactic particles in the heliosphere.

  9. Design, development, manufacture, testing, and delivery of devices for connection of solar cell panel circuitry to flat conductor cable solar cell array harness

    NASA Technical Reports Server (NTRS)

    Dillard, P. A.; Waddington, D.

    1971-01-01

    The technology status and problem areas which exist for the application of flat conductor cabling to solar cell arrays are summarized. Details covering the design, connector manufacture, and prototype test results are also summarized.

  10. The effect of sunshine testing on terrestrial solar cell system components

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Anagnostou, E.

    1975-01-01

    Samples of FEP encapsulated silicon solar cells and various potential encapsulation or cover materials were subjected to accelerated and real time testing. By measuring changes in solar cell output or optical transmission as a function of exposure the durability of the samples was evaluated. Results are presented.

  11. Nimbus 7 Solar Backscatter Ultraviolet (SBUV) spectral scan solar irradiance and Earth radiance product user's guide

    NASA Technical Reports Server (NTRS)

    Schlesinger, Barry M.; Cebula, Richard P.; Heath, Donald F.; Fleig, Albert J.

    1988-01-01

    The archived tape products from the spectral scan mode measurements of solar irradiance (SUNC tapes) and Earth radiance (EARTH tapes) by the Solar Backscatter UV (SBUV) instrument aboard Nimbus 7 are described. Incoming radiation from 160 to 400 nm is measured at intervals of 0.2 nm. The scan-to-scan repeatability of the solar irradiance measurements ranges from approximately 0.5 to 1 percent longward of 280 nm, to 2 percent around 210 nm and 4 percent near 175 nm. The repeatability of the Earth radiance values ranges from 2 to 3 percent at longer wavelengths and low zenith angles to 10 percent at shorter wavelengths and high zenith angles. The tape formats are described in detail, including file structure and contents of each type of record. Catalogs of the tapes and the time period covered are provided, along with lists of the days lacking solar irradiance measurements and the days dedicated to Earth radiance measurements. The method for production of the tapes is outlined and quality control measures are described. How radiances and irradiances are derived from the raw counts, the corrections for changes in instrument sensitivity, and related uncertainties are discussed.

  12. Updated Model of the Solar Energetic Proton Environment in Space

    NASA Astrophysics Data System (ADS)

    Jiggens, Piers; Heynderickx, Daniel; Sandberg, Ingmar; Truscott, Pete; Raukunen, Osku; Vainio, Rami

    2018-05-01

    The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) model provides environment specification outputs for all aspects of the Solar Energetic Particle (SEP) environment. The model is based upon a thoroughly cleaned and carefully processed data set. Herein the evolution of the solar proton model is discussed with comparisons to other models and data. This paper discusses the construction of the underlying data set, the modelling methodology, optimisation of fitted flux distributions and extrapolation of model outputs to cover a range of proton energies from 0.1 MeV to 1 GeV. The model provides outputs in terms of mission cumulative fluence, maximum event fluence and peak flux for both solar maximum and solar minimum periods. A new method for describing maximum event fluence and peak flux outputs in terms of 1-in-x-year SPEs is also described. SAPPHIRE proton model outputs are compared with previous models including CREME96, ESP-PSYCHIC and the JPL model. Low energy outputs are compared to SEP data from ACE/EPAM whilst high energy outputs are compared to a new model based on GLEs detected by Neutron Monitors (NMs).

  13. Accessing Solar Irradiance Data Products From the LASP Interactive Solar IRradiance Datacenter (LISIRD)

    NASA Astrophysics Data System (ADS)

    Ware Dewolfe, A.; Wilson, A.; Lindholm, D. M.; Pankratz, C. K.; Snow, M.; Woods, T. N.

    2009-12-01

    The Laboratory for Atmospheric and Space Physics (LASP) is enhancing the LASP Interactive Solar IRradiance Datacenter (LISIRD) to provide access to a comprehensive set of solar spectral irradiance measurements. LISIRD has recently been updated to serve many new datasets and models, including sunspot index, photometric sunspot index, Lyman-alpha, and magnesium-II core-to-wing ratio. A new user interface emphasizes web-based interactive visualizations, allowing users to explore and compare this data before downloading it for analysis. The data provided covers a wavelength range from soft X-ray (XUV) at 0.1 nm up to the near infrared (NIR) at 2400 nm, as well as wavelength-independent Total Solar Irradiance (TSI). Combined data from the SORCE, TIMED-SEE, UARS-SOLSTICE, and SME instruments provide almost continuous coverage from 1981 to the present, while Hydrogen Lyman-alpha (121.6 nm) measurements / models date from 1947 to the present. This poster provides an overview of the LISIRD system, summarizes the data sets currently available, describes future plans and capabilities, and provides details on how to access solar irradiance data through LISIRD interfaces at http://lasp.colorado.edu/lisird/.

  14. Solar Irradiance Data Products at the LASP Interactive Solar IRradiance Datacenter (LISIRD)

    NASA Astrophysics Data System (ADS)

    Ware Dewolfe, A.; Wilson, A.; Lindholm, D. M.; Pankratz, C. K.; Snow, M. A.; Woods, T. N.

    2010-12-01

    The Laboratory for Atmospheric and Space Physics (LASP) has developed the LASP Interactive Solar IRradiance Datacenter (LISIRD) to provide access to a comprehensive set of solar irradiance measurements. LISIRD has recently been updated to serve many new datasets and models, including data from SORCE, UARS-SOLSTICE, SME, and TIMED-SEE, and model data from the Flare Irradiance Spectral Model (FISM). The user interface emphasizes web-based interactive visualizations, allowing users to explore and compare this data before downloading it for analysis. The data provided covers a wavelength range from soft X-ray (XUV) at 0.1 nm up to the near infrared (NIR) at 2400 nm, as well as wavelength-independent Total Solar Irradiance (TSI). Combined data from the SORCE, TIMED-SEE, UARS-SOLSTICE, and SME instruments provide continuous coverage from 1981 to the present, while Lyman-alpha measurements, FISM daily data, and TSI models date from the 1940s to the present. LISIRD will also host Glory TSI data as part of the SORCE data system. This poster provides an overview of the LISIRD system, summarizes the data sets currently available, describes future plans and capabilities, and provides details on how to access solar irradiance data through LISIRD’s interfaces.

  15. A new concept of hybrid photovoltaic thermal (PVT) collector with natural circulation

    NASA Astrophysics Data System (ADS)

    Lu, Longsheng; Wang, Xiaowu; Wang, Shuai; Liu, Xiaokang

    2017-07-01

    Hybrid photovoltaic thermal (PVT) technology refers to the integration of a photovoltaic module into a conventional solar thermal collector. Generally, the traditional design of a PVT collector has solar cells fixed on the top surface of an absorber in a flat-plate solar thermal collector. In this work, we presented a new concept of water-based PVT collector in which solar cells were directly placed on the bottom surface of its glass cover. A dynamic numerical model of this new PVT is developed and validated by experimental tests. With numerical analysis, it is found that at same covering factor, the electricity conversion efficiency of solar cells of the new PVT exceed that of the traditional PVT by nearly 10% while its thermal efficiency is approximately 30% lower than that of the traditional PVT. When the covering factor changes from 0.05 to 1, the thermal efficiency of the new PVT drops nearly 70%. The thermal efficiency of both the new PVT and the traditional PVT rise up as the water mass in tank increases. Meanwhile, the final water temperature in tank of the traditional PVT collector declines more than 17 °C, whereas that of the new PVT declines less than 6 °C, when the water mass increases from 100 to 300 kg.

  16. Compendium of information on identification and testing of materials for plastic solar thermal collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinniss, V.D.; Sliemers, F.A.; Landstrom, D.K.

    1980-07-31

    This report is intended to organize and summarize prior and current literature concerning the weathering, aging, durability, degradation, and testing methodologies as applied to materials for plastic solar thermal collectors. Topics covered include (1) rate of aging of polymeric materials; (2) environmental factors affecting performance; (3) evaluation and prediction of service life; (4) measurement of physical and chemical properties; (5) discussion of evaluation techniques and specific instrumentation; (6) degradation reactions and mechanisms; (7) weathering of specific polymeric materials; and (8) exposure testing methodology. Major emphasis has been placed on defining the current state of the art in plastics degradation andmore » on identifying information that can be utilized in applying appropriate and effective aging tests for use in projecting service life of plastic solar thermal collectors. This information will also be of value where polymeric components are utilized in the construction of conventional solar collectors or any application where plastic degradation and weathering are prime factors in material selection.« less

  17. Synthetic-rubber extrusions form low cost roll-on solar collector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smay, V.E.

    1979-06-01

    Synthetic rubber extrusions composed of ethylene propylene diene monomer (EPDM) have been developed in 4.4-inch-wide mats as solar absorbers that are light weight and simple to install. The mats, which come in rolls up to 600 ft long, have 6 small tubes alternating with thin webbing. EPDM has a lifespan of 30-50 yrs and maintains its flexibility within a temperature range of -80 to 375/sup 0/F. The mats are laid over rigid insulation and covered with glazing, detailed assembly instructions are provided. EPDM is not subject to corrosion and is not damaged by freezing water, a second EPDM extrusion ismore » used for glazed solar collectors. The efficiency of the design is attributed to the greater surface-to-mass ratio, permitting more heat collection, and the smaller mass of the synthetic rubber, which allows faster heat-up. The total cost for a complete, installed solar heating system of this type, including pumps, tanks, and plumbing, is about $12/ft/sup 2/.« less

  18. Solar module having reflector between cells

    DOEpatents

    Kardauskas, Michael J.

    1999-01-01

    A photovoltaic module comprising an array of electrically interconnected photovoltaic cells disposed in a planar and mutually spaced relationship between a light-transparent front cover member in sheet form and a back sheet structure is provided with a novel light-reflecting means disposed between adjacent cells for reflecting light falling in the areas between cells back toward said transparent cover member for further internal reflection onto the solar cells. The light-reflecting comprises a flexible plastic film that has been embossed so as to have a plurality of small V-shaped grooves in its front surface, and a thin light-reflecting coating on said front surface, the portions of said coating along the sides of said grooves forming light-reflecting facets, said grooves being formed so that said facets will reflect light impinging thereon back into said transparent cover sheet with an angle of incidence greater than the critical angle, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to said solar modules, thereby increasing the current output of the module.

  19. Loss of sea ice in the Arctic.

    PubMed

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2009-01-01

    The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.

  20. Fabrication of Integral Solar Cell Covers by the Plasma Activated Source.

    DTIC Science & Technology

    1981-01-01

    1 Average Intrinsic Deposition Stress of Pyrolitic Silicon Oxynitride Films vs. Composition ................................... 7 2 Coefficient of...source for activated oxygen molecules which were reacted with, for example, silane at a solar cell surface to deposit amorphous silicon dioxide on the... Silicon Solar Cells ........ 51 44.6 SiO 2 Coatings in GaAs Solar Cells ........... 58 5.0 CONCLUSIONS..................................... 61 5.1

  1. Solar Spectral Irradiance Variations in 240 - 1600 nm During the Recent Solar Cycles 21 - 23

    NASA Astrophysics Data System (ADS)

    Pagaran, J.; Weber, M.; Deland, M. T.; Floyd, L. E.; Burrows, J. P.

    2011-08-01

    Regular solar spectral irradiance (SSI) observations from space that simultaneously cover the UV, visible (vis), and the near-IR (NIR) spectral region began with SCIAMACHY aboard ENVISAT in August 2002. Up to now, these direct observations cover less than a decade. In order for these SSI measurements to be useful in assessing the role of the Sun in climate change, records covering more than an eleven-year solar cycle are required. By using our recently developed empirical SCIA proxy model, we reconstruct daily SSI values over several decades by using solar proxies scaled to short-term SCIAMACHY solar irradiance observations to describe decadal irradiance changes. These calculations are compared to existing solar data: the UV data from SUSIM/UARS, from the DeLand & Cebula satellite composite, and the SIP model (S2K+VUV2002); and UV-vis-IR data from the NRLSSI and SATIRE models, and SIM/SORCE measurements. The mean SSI of the latter models show good agreement (less than 5%) in the vis regions over three decades while larger disagreements (10 - 20%) are found in the UV and IR regions. Between minima and maxima of Solar Cycles 21, 22, and 23, the inferred SSI variability from the SCIA proxy is intermediate between SATIRE and NRLSSI in the UV. While the DeLand & Cebula composite provide the highest variability between solar minimum and maximum, the SIP/Solar2000 and NRLSSI models show minimum variability, which may be due to the use of a single proxy in the modeling of the irradiances. In the vis-IR spectral region, the SCIA proxy model reports lower values in the changes from solar maximum to minimum, which may be attributed to overestimations of the sunspot proxy used in modeling the SCIAMACHY irradiances. The fairly short timeseries of SIM/SORCE shows a steeper decreasing (increasing) trend in the UV (vis) than the other data during the descending phase of Solar Cycle 23. Though considered to be only provisional, the opposite trend seen in the visible SIM data challenges the validity of proxy-based linear extrapolation commonly used in reconstructing past irradiances.

  2. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    NASA Technical Reports Server (NTRS)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  3. Heat Pipe Technology: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This bibliography lists 149 references with abstracts and 47 patents dealing with applications of heat pipe technology. Topics covered include: heat exchangers for heat recovery; electrical and electronic equipment cooling; temperature control of spacecraft; cryosurgery; cryogenic, cooling; nuclear reactor heat transfer; solar collectors; laser mirror cooling; laser vapor cavitites; cooling of permafrost; snow melting; thermal diodes variable conductance; artery gas venting; and venting; and gravity assisted pipes.

  4. The Global Radiative Impact of the Sea-Ice-Albedo Feedback in the Arctic

    NASA Astrophysics Data System (ADS)

    Hudson, S. R.

    2009-12-01

    The sea-ice-albedo feedback is known to be an important element of climatic changes over and near regions of ocean with ice cover. It is one of several feedbacks that lead to the polar enhancement of observed and projected global warming. Many studies in the past have used climate models to look at the regional and global impact of the albedo feedback on specific climate variables, most often temperature. These studies generally report a strong regional effect, but also some global effects due to the feedback. Recent changes in Arctic sea ice have led to increased reference to the importance of the sea-ice-albedo feedback, but few studies have examined the global impact of the feedback specifically associated with changes to sea ice in the Arctic; most have included changes to sea ice in both hemispheres, and in many cases, also to snow. That reduced sea ice cover will have a local warming effect is clear from modeling studies. On the other hand, given the relatively small area of the globe that is covered by Arctic sea ice, and the relatively small amounts of sunlight incident on these areas annually, it should be investigated how important reductions in sea ice are to the global solar radiation budget. In this study I present calculations of the global radiative impact of the reduction in Earth’s albedo resulting from reduced sea-ice cover in the Arctic. The intended result is a number, in W m-2, that represents the total increase in absorbed solar radiation due to the reduction in Arctic sea-ice cover, averaged over the globe and over the year. This number is relevant to assessing the long-term, global importance of the sea-ice-albedo feedback to climate change, and can help put it into context by allowing a comparison of this radiative forcing with other forcings, such as those due to CO2 increases and to aerosols, as given in Figure SPM.2 from the IPCC AR4 WG1. Rather than try to determine this forcing with a model, in which the assumptions and approximations are difficult to see and understand, I use representative datasets and calculate the effect with relatively simple math. The solar zenith angle is calculated as a function of latitude and time for an entire year, giving the top-of-atmosphere (ToA) incident flux; the ToA albedo, as a function of solar zenith angle, is taken from observations by CERES, for clear and cloudy skies over sea ice (cold and melting) and ocean; cloud cover data are taken from the cloud atlas of Warren and Hahn; monthly gridded sea ice concentrations from passive microwave data were downloaded from NSIDC and are interpolated to daily concentrations. The total energy absorbed in each grid cell is then calculated in a very straightforward way for 2.5-minute time steps throughout the year. This is done both with the mean ice concentration from 1979 to 1998, and then with various modified concentration fields, including realistic current and future fields, as well as a permanently ice-free Arctic. Clouds are left unchanged, though because of their importance, their effect is investigated. The details of the calculation, including assumptions and approximations will be presented, along with a range of results for current and future changes, as well as for an estimate on the upper bound: a global-annual mean of about 0.7 W m-2.

  5. Greenland Inland Traverse (GrIT): 2010 Mobility Performance and Implications

    DTIC Science & Technology

    2011-10-01

    solar irradiance were also measured. The right-hand bladder sled (Fig. 5), designated Sled2, had black- rubber covers ( EPDM roofing material) wrapped...CRREL TR-11-16 ix tion only). Sled2 had thin, black- rubber covers over the bladders to in- crease solar gain. Some performance improvement...Pole Station from McMurdo Station, a distance of 1030 miles, using large, rubber -track tractors to haul fuel and cargo over the snow on flexible

  6. 24 CFR 201.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... mortgages or deeds of trust covering the home and lot. Solar energy system means any addition, alteration or... utilize wind or solar energy to reduce the energy requirements of that structure from other energy sources...

  7. 24 CFR 201.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... mortgages or deeds of trust covering the home and lot. Solar energy system means any addition, alteration or... utilize wind or solar energy to reduce the energy requirements of that structure from other energy sources...

  8. TESIS experiment on EUV imaging spectroscopy of the Sun

    NASA Astrophysics Data System (ADS)

    Kuzin, S. V.; Bogachev, S. A.; Zhitnik, I. A.; Pertsov, A. A.; Ignatiev, A. P.; Mitrofanov, A. M.; Slemzin, V. A.; Shestov, S. V.; Sukhodrev, N. K.; Bugaenko, O. I.

    2009-03-01

    TESIS is a set of solar imaging instruments in development by the Lebedev Physical Institute of the Russian Academy of Science, to be launched aboard the Russian spacecraft CORONAS-PHOTON in December 2008. The main goal of TESIS is to provide complex observations of solar active phenomena from the transition region to the inner and outer solar corona with high spatial, spectral and temporal resolution in the EUV and Soft X-ray spectral bands. TESIS includes five unique space instruments: the MgXII Imaging Spectroheliometer (MISH) with spherical bent crystal mirror, for observations of the Sun in the monochromatic MgXII 8.42 Å line; the EUV Spectoheliometer (EUSH) with grazing incidence difraction grating, for the registration of the full solar disc in monochromatic lines of the spectral band 280-330 Å; two Full-disk EUV Telescopes (FET) with multilayer mirrors covering the band 130-136 and 290-320 Å; and the Solar EUV Coronagraph (SEC), based on the Ritchey-Chretien scheme, to observe the inner and outer solar corona from 0.2 to 4 solar radii in spectral band 290-320 Å. TESIS experiment will start at the rising phase of the 24th cycle of solar activity. With the advanced capabilities of its instruments, TESIS will help better understand the physics of solar flares and high-energy phenomena and provide new data on parameters of solar plasma in the temperature range 10-10K. This paper gives a brief description of the experiment, its equipment, and its scientific objectives.

  9. Recent progress in high-output-voltage silicon solar cells

    NASA Technical Reports Server (NTRS)

    Muelenberg, A.; Arndt, R. A.; Allison, J. F.; Weizer, V.

    1980-01-01

    The status of the technology associated with the development of high output voltage silicon solar cells is reported. The energy conversion efficiency of a double diffusion process is compared to that of a single diffusion process. The efficiency of a 0.1 ohm/cm solar cell is characterized both before and after covering.

  10. Leaves: Nature's Solar Collectors

    ERIC Educational Resources Information Center

    Isabelle, Aaron D.; de Groot, Cornelis

    2009-01-01

    One of the most captivating things about plants is the way they capture the Sun's energy, but this can be a difficult topic to cover with elementary students. Therefore, to help students to make a concrete connection to this abstract concept, this series of solar-energy lessons focuses on leaves and how they act as "solar collectors." As students…

  11. Standardized performance tests of collectors of solar thermal energy: A selectively coated, steel collector with one transparent cover

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Basic test results are presented of a flat-plate solar collector whose performance was determined in solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency was correlated in terms of inlet temperature and flux level.

  12. International Cosmic Ray Conference, 13th, University of Denver, Denver, Colo., August 17-30, 1973, Proceedings. Volume 5

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An X-ray observation of the Norma-Lupus region, charge and isotope measurements of heavy cosmic ray nuclei and their role in the determination of cosmic ray age, and the possibility of a contribution to primary cosmic ray spectra from pulsars are among the topics covered in papers concerned with some of the results of recent cosmic ray research. Other topics covered include multiple scattering of charged particles in magnetic fields, absorption of primary cosmic rays in the atmosphere, and phase lag effects on cosmic ray modulation during a recent solar cycle. Individual items are announced in this issue.

  13. NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS); Golden, Colorado (Data)

    DOE Data Explorer

    Stoffel, T.; Andreas, A.

    1981-07-15

    The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR).

  14. Cloud cover and solar disk state estimation using all-sky images: deep neural networks approach compared to routine methods

    NASA Astrophysics Data System (ADS)

    Krinitskiy, Mikhail; Sinitsyn, Alexey

    2017-04-01

    Shortwave radiation is an important component of surface heat budget over sea and land. To estimate them accurate observations of cloud conditions are needed including total cloud cover, spatial and temporal cloud structure. While massively observed visually, for building accurate SW radiation parameterizations cloud structure needs also to be quantified using precise instrumental measurements. While there already exist several state of the art land-based cloud-cameras that satisfy researchers needs, their major disadvantages are associated with inaccuracy of all-sky images processing algorithms which typically result in the uncertainties of 2-4 octa of cloud cover estimates with the resulting true-scoring cloud cover accuracy of about 7%. Moreover, none of these algorithms determine cloud types. We developed an approach for cloud cover and structure estimating, which provides much more accurate estimates and also allows for measuring additional characteristics. This method is based on the synthetic controlling index, namely the "grayness rate index", that we introduced in 2014. Since then this index has already demonstrated high efficiency being used along with the technique namely the "background sunburn effect suppression", to detect thin clouds. This made it possible to significantly increase the accuracy of total cloud cover estimation in various sky image states using this extension of routine algorithm type. Errors for the cloud cover estimates significantly decreased down resulting the mean squared error of about 1.5 octa. Resulting true-scoring accuracy is more than 38%. The main source of this approach uncertainties is the solar disk state determination errors. While the deep neural networks approach lets us to estimate solar disk state with 94% accuracy, the final result of total cloud estimation still isn`t satisfying. To solve this problem completely we applied the set of machine learning algorithms to the problem of total cloud cover estimation directly. The accuracy of this approach varies depending on algorithm choice. Deep neural networks demonstrated the best accuracy of more than 96%. We will demonstrate some approaches and the most influential statistical features of all-sky images that lets the algorithm reach that high accuracy. With the use of our new optical package a set of over 480`000 samples has been collected in several sea missions in 2014-2016 along with concurrent standard human observed and instrumentally recorded meteorological parameters. We will demonstrate the results of the field measurements and will discuss some still remaining problems and the potential of the further developments of machine learning approach.

  15. Effects of the inclination angle on the performance of flat plate solar collector

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Siregar, R. E. T.; Ronowikarto, A. D.; Setyawan, E. Y.

    2018-03-01

    Double glasses cover is typically used in a flat plate solar collector to decrease heat losses to ambient. The working principal of the cover is to allow the solar irradiation hit the plate absorber and blocks it using natural convection mechanism in the enclosure between the glasses. The performance of the enclosure to block the heat loss to the surrounding affected by the inclination angle of the collector. The objective of this study is to explore the effect of the inclination angle to the performance of the solar collector. Numerical simulation using commercial code Computational Fluid Dynamic (CFD) has been carried out to explore the fluid flow and heat transfer characteristics in the enclosure. In the result, streamline, vector velocity, and contour temperature are plotted. It was shown that the inclination angle strongly affects the performance of the collector. The average heat transfer coefficient decreases with increasing inclination angle. This fact suggests that too high inclination angle is not recommended for solar collector.

  16. Land cover mapping of the upper Kuskokwim Resource Managment Area using LANDSAT and a digital data base approach

    USGS Publications Warehouse

    Markon, Carl J.

    1988-01-01

    Digital land cover and terrain data for the Upper Kuskokwim Resource Hanagement Area (UKRMA) were produced by the U.S. Geological Survey, Earth Resources Observation Systems Field Office, Anchorage, Alaska for the Bureau of Land Management. These and other environmental data, were incorporated into a digital data base to assist in the management and planning of the UKRMA. The digital data base includes land cover classifications, elevation, slope, and aspect data centering on the UKRMA boundaries. The data are stored on computer compatible tapes at a 50-m pixel size. Additional digital data in the data base include: (a) summer and winter Landsat multispectral scanner (MSS) data registered to a 50-m Universal Transverse Mercator grid; (b) elevation, slope, aspect, and solar illumination data; (c) soils and surficial geology; and (e) study area boundary. The classification of Landsat MSS data resulted in seven major classes and 24 subclasses. Major classes include: forest, shrubland, dwarf scrub, herbaceous, barren, water, and other. The final data base will be used by resource personnel for management and planning within the UKRMA.

  17. Hazards protection for space suits and spacecraft

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J. (Inventor); Dawn, Frederic S. (Inventor)

    1990-01-01

    A flexible multi-layered covering article for protection against the hazards of exposure to the environment of outer space is disclosed. The covering includes an outer layer section comprising an outermost lamina of woven expanded tetrafluoroethylene yarns (Gore Tex) for protecting against abrasion and tearing, an underlying weave of meta-aramid yarns (Nomex) and para-aramid yarns (Kevlar) for particle impart protection, and electrostatic charge dissipation and control system incorporated therein, and a chemical contaminants control barrier applied as a coating. A middle section includes a succession of thermal insulating layers of polymeric thermoplastic or thermoforming material, each of which is coated with a metal deposit of high infra-red emissivity and low solar radiation absorption characteristics and separated from adjacent insulating layers by a low thermal conductance material. The covering further includes a radiation attenuating layer of a tungsten-loaded polymeric elastomer binder for protecting against bremsstrahlung radiation and an inner layer of rip-stop polyester material for abrasion protection. A chloroprene coating may be supplied the polyester-material for added micrometeroid protection. Securing means of low heat conductance material secures the multi-layers together as a laminar composite.

  18. Solar-Terrestrial Predictions

    NASA Astrophysics Data System (ADS)

    Thompson, R. J.; Cole, D. G.; Wilkinson, P. J.; Shea, M. A.; Smart, D.

    1990-11-01

    Volume 1: The following subject areas are covered: the magnetosphere environment; forecasting magnetically quiet periods; radiation hazards to human in deep space (a summary with special reference to large solar particle events); solar proton events (review and status); problems of the physics of solar-terrestrial interactions; prediction of solar proton fluxes from x-ray signatures; rhythms in solar activity and the prediction of episodes of large flares; the role of persistence in the 24-hour flare forecast; on the relationship between the observed sunspot number and the number of solar flares; the latitudinal distribution of coronal holes and geomagnetic storms due to coronal holes; and the signatures of flares in the interplanetary medium at 1 AU. Volume 2: The following subject areas were covered: a probability forecast for geomagnetic activity; cost recovery in solar-terrestrial predictions; magnetospheric specification and forecasting models; a geomagnetic forecast and monitoring system for power system operation; some aspects of predicting magnetospheric storms; some similarities in ionospheric disturbance characteristics in equatorial, mid-latitude, and sub-auroral regions; ionospheric support for low-VHF radio transmission; a new approach to prediction of ionospheric storms; a comparison of the total electron content of the ionosphere around L=4 at low sunspot numbers with the IRI model; the French ionospheric radio propagation predictions; behavior of the F2 layer at mid-latitudes; and the design of modern ionosondes.

  19. Stellar occultation studies of the solar system

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.

    1979-01-01

    The paper covers the principles, observational procedures, and results relating to occultations of stars by solar system bodies other than the moon. Physical processes involved in occultations are presented including (1) extinction by ring material, (2) differential refraction by a planetary atmosphere, (3) extinction by a planetary atmosphere, and (4) Fresnel diffraction by sharp edges. It is noted that from a sufficient number of immersion and emersion timings of a stellar occultation, the radius and ellipticity of the occulting body can be accurately determined. From an occultation by a planet having an atmosphere, temperature, pressure, and number density profiles can be obtained along with information about the composition of the atmosphere and the extinction.

  20. Coronal abundances and their variation

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.

    1994-01-01

    This contract supports the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution software X-ray spectra from the Flat Crystal Spectrometer on NASA's Solar Maximum Mission. The goals of the study are a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This report is a summation of the data analysis and reporting activities which occurred since the last report, submitted two months early, in April 1994, to facilitate evaluation of the first year's progress for contract renewal. Hence this report covers the period 15 April 1994 - 15 December 1994. A list of publications resulting from this research is included.

  1. Understanding Coupling of Global and Diffuse Solar Radiation with Climatic Variability

    NASA Astrophysics Data System (ADS)

    Hamdan, Lubna

    Global solar radiation data is very important for wide variety of applications and scientific studies. However, this data is not readily available because of the cost of measuring equipment and the tedious maintenance and calibration requirements. Wide variety of models have been introduced by researchers to estimate and/or predict the global solar radiations and its components (direct and diffuse radiation) using other readily obtainable atmospheric parameters. The goal of this research is to understand the coupling of global and diffuse solar radiation with climatic variability, by investigating the relationships between these radiations and atmospheric parameters. For this purpose, we applied multilinear regression analysis on the data of National Solar Radiation Database 1991--2010 Update. The analysis showed that the main atmospheric parameters that affect the amount of global radiation received on earth's surface are cloud cover and relative humidity. Global radiation correlates negatively with both variables. Linear models are excellent approximations for the relationship between atmospheric parameters and global radiation. A linear model with the predictors total cloud cover, relative humidity, and extraterrestrial radiation is able to explain around 98% of the variability in global radiation. For diffuse radiation, the analysis showed that the main atmospheric parameters that affect the amount received on earth's surface are cloud cover and aerosol optical depth. Diffuse radiation correlates positively with both variables. Linear models are very good approximations for the relationship between atmospheric parameters and diffuse radiation. A linear model with the predictors total cloud cover, aerosol optical depth, and extraterrestrial radiation is able to explain around 91% of the variability in diffuse radiation. Prediction analysis showed that the linear models we fitted were able to predict diffuse radiation with efficiency of test adjusted R2 values equal to 0.93, using the data of total cloud cover, aerosol optical depth, relative humidity and extraterrestrial radiation. However, for prediction purposes, using nonlinear terms or nonlinear models might enhance the prediction of diffuse radiation.

  2. Instrumentation and First Results of the Reflected Solar Demonstration System for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Thome, Kurtis; Hair, Jason; McAndrew, Brendan; Jennings, Don; Rabin, Douglas; Daw, Adrian; Lundsford, Allen

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission key goals include enabling observation of high accuracy long-term climate change trends, use of these observations to test and improve climate forecasts, and calibration of operational and research sensors. The spaceborne instrument suites include a reflected solar spectroradiometer, emitted infrared spectroradiometer, and radio occultation receivers. The requirement for the RS instrument is that derived reflectance must be traceable to Sl standards with an absolute uncertainty of <0.3% and the error budget that achieves this requirement is described in previo1L5 work. This work describes the Solar/Lunar Absolute Reflectance Imaging Spectroradiometer (SOLARIS), a calibration demonstration system for RS instrument, and presents initial calibration and characterization methods and results. SOLARIS is an Offner spectrometer with two separate focal planes each with its own entrance aperture and grating covering spectral ranges of 320-640, 600-2300 nm over a full field-of-view of 10 degrees with 0.27 milliradian sampling. Results from laboratory measurements including use of integrating spheres, transfer radiometers and spectral standards combined with field-based solar and lunar acquisitions are presented. These results will be used to assess the accuracy and repeatability of the radiometric and spectral characteristics of SOLARIS, which will be presented against the sensor-level requirements addressed in the CLARREO RS instrument error budget.

  3. Development of Low-cost, High Energy-per-unit-area Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Jones, G. T.; Chitre, S.; Rhee, S. S.

    1978-01-01

    The development of two hexagonal solar cell process sequences, a laserscribing process technique for scribing hexagonal and modified hexagonal solar cells, a large through-put diffusion process, and two surface macrostructure processes suitable for large scale production is reported. Experimental analysis was made on automated spin-on anti-reflective coating equipment and high pressure wafer cleaning equipment. Six hexagonal solar cell modules were fabricated. Also covered is a detailed theoretical analysis on the optimum silicon utilization by modified hexagonal solar cells.

  4. High Resolution Spatial Analysis of Habitat Preference of Aedes Albopictus (Diptera: Culicidae) in an Urban Environment.

    PubMed

    Cianci, Daniela; Hartemink, Nienke; Zeimes, Caroline B; Vanwambeke, Sophie O; Ienco, Annamaria; Caputo, Beniamino

    2015-05-01

    Over the past decades, the Asian tiger mosquito (Aedes albopictus (Skuse, 1895)) has emerged in many countries, and it has colonized new environments, including urban areas. The species is a nuisance and a potential vector of several human pathogens, and a better understanding of the habitat preferences of the species is needed for help in successful prevention and control. So far, the habitat preference in urban environments has not been studied in Southern European cities. In this paper, spatial statistical models were used to evaluate the relationship between egg abundances and land cover types on the campus of Sapienza University in Rome, which is taken as an example of a European urban habitat. Predictor variables included land cover types, classified in detail on a high resolution image, as well as solar radiation and month of capture. The models account for repeated measures in the same trap and are adjusted for meteorological circumstances. Vegetation and solar radiation were found to be positively related to the number of eggs. More specifically, trees were positively related to the number of eggs and the relationship with grass was negative. These findings are consistent with the species' known preference for shaded areas. The unexpected positive relationship with solar radiation is amply discussed in the paper. This study represents a first step toward a better understanding of the spatial distribution of Ae. albopictus in urban environments. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. The « 3-D donut » electrostatic analyzer for millisecond timescale electron measurements in the solar wind

    NASA Astrophysics Data System (ADS)

    Berthomier, M.; Techer, J. D.

    2017-12-01

    Understanding electron acceleration mechanisms in planetary magnetospheres or energy dissipation at electron scale in the solar wind requires fast measurement of electron distribution functions on a millisecond time scale. Still, since the beginning of space age, the instantaneous field of view of plasma spectrometers is limited to a few degrees around their viewing plane. In Earth's magnetosphere, the NASA MMS spacecraft use 8 state-of-the-art sensor heads to reach a time resolution of 30 milliseconds. This costly strategy in terms of mass and power consumption can hardly be extended to the next generation of constellation missions that would use a large number of small-satellites. In the solar wind, using the same sensor heads, the ESA THOR mission is expected to reach the 5ms timescale in the thermal energy range, up to 100eV. We present the « 3-D donut » electrostatic analyzer concept that can change the game for future space missions because of its instantaneous hemispheric field of view. A set of 2 sensors is sufficient to cover all directions over a wide range of energy, e.g. up to 1-2keV in the solar wind, which covers both thermal and supra-thermal particles. In addition, its high sensitivity compared to state of the art instruments opens the possibility of millisecond time scale measurements in space plasmas. With CNES support, we developed a high fidelity prototype (a quarter of the full « 3-D donut » analyzer) that includes all electronic sub-systems. The prototype weights less than a kilogram. The key building block of the instrument is an imaging detector that uses EASIC, a low-power front-end electronics that will fly on the ESA Solar Orbiter and on the NASA Parker Solar Probe missions.

  6. Solar Heating System installed at Belz Investment Company, Memphis, Tennessee

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A hot air solar system which utilizes flat plate air collectors is discussed. Collector areas for each of four buildings cover 780 sq ft, with storage capacity of 390 cu ft per building. The air system has a special air handling unit to move air through the collectors and into and out of the rock storage, with connection to the air duct distribution system. The heat of the motor is added to the heat delivered to the system. The solar system also includes four motorized special low leakage dampers and two gravity fabric dampers. The system is automatically controlled by a solid state controller with three thermistors: one located in the collectors, one in the rock box to plenum, one in the return air duct from the heated space. A three stage heating thermostat, located in the conditioned space, controls the operation.

  7. Progress on Updating the 1961-1990 National Solar Radiation Database

    NASA Technical Reports Server (NTRS)

    Renne, D.; Wilcox, S.; Marion, B.; George, R.; Myers, D.

    2003-01-01

    The 1961-1990 National Solar Radiation Data Base (NSRDB) provides a 30-year climate summary and solar characterization of 239 locations throughout the United States. Over the past several years, the National Renewable Energy Laboratory (NREL) has received numerous inquiries from a range of constituents as to whether an update of the database to include the 1990s will be developed. However, there are formidable challenges to creating an update of the serially complete station-specific database for the 1971-2000 period. During the 1990s, the National Weather Service changed its observational procedures from a human-based to an automated system, resulting in the loss of important input variables to the model used to complete the 1961-1990 NSRDB. As a result, alternative techniques are required for an update that covers the 1990s. This paper examines several alternative approaches for creating this update and describes preliminary NREL plans for implementing the update.

  8. Method of making a modular off-axis solar concentrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plesniak, Adam P.; Hall, John C.

    A method of making a solar concentrator may include forming a receiving wall having an elongated wall, a first side wall and a second side wall; attaching the first side wall and the second side wall to a reflecting wall to form a housing having an internal volume with an opening; forming a lip on the receiving wall and the reflecting wall; attaching a cover to the receiving wall and the reflecting wall at the lip to seal the opening into the internal volume, thereby creating a rigid structure; and mounting at least one receiver having at least one photovoltaicmore » cell on the elongated wall to receive solar radiation entering the housing and reflected by the receiving wall, the receiver having an axis parallel with a surface normal of the photovoltaic cell, such that the axis is disposed at a non-zero angle relative to the vertical axis of the opening.« less

  9. Dot-Projection Photogrammetry and Videogrammetry of Gossamer Space Structures

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Black, Jonathan T.; Blandino, Joseph R.; Jones, Thomas W.; Danehy, Paul M.; Dorrington, Adrian A.

    2003-01-01

    This paper documents the technique of using hundreds or thousands of projected dots of light as targets for photogrammetry and videogrammetry of gossamer space structures. Photogrammetry calculates the three-dimensional coordinates of each target on the structure, and videogrammetry tracks the coordinates versus time. Gossamer structures characteristically contain large areas of delicate, thin-film membranes. Examples include solar sails, large antennas, inflatable solar arrays, solar power concentrators and transmitters, sun shields, and planetary balloons and habitats. Using projected-dot targets avoids the unwanted mass, stiffness, and installation costs of traditional retroreflective adhesive targets. Four laboratory applications are covered that demonstrate the practical effectiveness of white-light dot projection for both static-shape and dynamic measurement of reflective and diffuse surfaces, respectively. Comparisons are made between dot-projection videogrammetry and traditional laser vibrometry for membrane vibration measurements. The paper closes by introducing a promising extension of existing techniques using a novel laser-induced fluorescence approach.

  10. Variances in solar collector performance predictions due to different methods of evaluating wind heat transfer coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, J.W.; Charmchi, M.

    1980-11-01

    The performance of several solar collector configurations has been predicted using both inappropriate and appropriate relations to evaluate the wind-related heat transfer coefficient. The combinations analyzed are: one or two covers and a selectively absorbing surface coating, and one or two covers and a nonselectively absorbing surface coating all collectors are of the basic liquid heating type. It is shown that the optimum results are obtained by using a global correlation equation proposed by Sparrow et al. (1979).

  11. A Battlefield Obscuration Model (Smoke & Dust)

    DTIC Science & Technology

    1979-10-01

    ia £ utace of clouds, izsclacioon (incoming radiation) during :he day ts dependent upon solar ali.::ude, which is a fuc nof time of: d&7 and time of...year. ’Irnn clouds exisc, chai~r cover and :b*ickness decrease incoming and ouzgoingS radiation. Z-a this syscea iasola:ion ts estimated b7 solar ...alzictude and =odi44ed -or existing condi:±ons of total cloud cover and cloud ceiling height. kc zig~ic, estimates of oucgoing radiacion are =ade by

  12. Environmental impacts of utility-scale solar energy

    USGS Publications Warehouse

    Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M. L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; Allen, M.F.

    2014-01-01

    Renewable energy is a promising alternative to fossil fuel-based energy, but its development can require a complex set of environmental tradeoffs. A recent increase in solar energy systems, especially large, centralized installations, underscores the urgency of understanding their environmental interactions. Synthesizing literature across numerous disciplines, we review direct and indirect environmental impacts – both beneficial and adverse – of utility-scale solar energy (USSE) development, including impacts on biodiversity, land-use and land-cover change, soils, water resources, and human health. Additionally, we review feedbacks between USSE infrastructure and land-atmosphere interactions and the potential for USSE systems to mitigate climate change. Several characteristics and development strategies of USSE systems have low environmental impacts relative to other energy systems, including other renewables. We show opportunities to increase USSE environmental co-benefits, the permitting and regulatory constraints and opportunities of USSE, and highlight future research directions to better understand the nexus between USSE and the environment. Increasing the environmental compatibility of USSE systems will maximize the efficacy of this key renewable energy source in mitigating climatic and global environmental change.

  13. Solar or UVA-Visible Photocatalytic Ozonation of Water Contaminants.

    PubMed

    Beltrán, Fernando J; Rey, Ana

    2017-07-14

    An incipient advanced oxidation process, solar photocatalytic ozonation (SPO), is reviewed in this paper with the aim of clarifying the importance of this process as a more sustainable water technology to remove priority or emerging contaminants from water. The synergism between ozonation and photocatalytic oxidation is well known to increase the oxidation rate of water contaminants, but this has mainly been studied in photocatalytic ozonation systems with lamps of different radiation wavelength, especially of ultraviolet nature (UVC, UVB, UVA). Nowadays, process sustainability is critical in environmental technologies including water treatment and reuse; the application of SPO systems falls into this category, and contributes to saving energy and water. In this review, we summarized works published on photocatalytic ozonation where the radiation source is the Sun or simulated solar light, specifically, lamps emitting radiation to cover the UVA and visible light spectra. The main aspects of the review include photoreactors used and radiation sources applied, synthesis and characterization of catalysts applied, influence of main process variables (ozone, catalyst, and pollutant concentrations, light intensity), type of water, biodegradability and ecotoxicity, mechanism and kinetics, and finally catalyst activity and stability.

  14. Solar Cell Panel and the Method for Manufacturing the Same

    NASA Technical Reports Server (NTRS)

    Sarver, Charles F. (Inventor); Richards, Benjamin C. (Inventor); Naidenkova, Maria (Inventor)

    2016-01-01

    According to an aspect of an embodiment of the present disclosure, there is provided a solar cell panel and a method for manufacturing the same. The solar cell panel comprises: a solar cell for generating electric power from sunlight; a coverglass for covering the solar cell; transparent shims, which are disposed between the solar cell and the coverglass at the points where the distance between the solar cell and the coverglass needs to be controlled, and form a space between the solar cell and the coverglass; and adhesive layer, which fills the space between the solar cell and the coverglass and has the thickness the same as that of the transparent shims.

  15. Solar cycle variations in mesospheric carbon monoxide

    NASA Astrophysics Data System (ADS)

    Lee, Jae N.; Wu, Dong L.; Ruzmaikin, Alexander; Fontenla, Juan

    2018-05-01

    As an extension of Lee et al. (2013), solar cycle variation of carbon monoxide (CO) is analyzed with MLS observation, which covers more than thirteen years (2004-2017) including maximum of solar cycle 24. Being produced primarily by the carbon dioxide (CO2) photolysis in the lower thermosphere, the variations of the mesospheric CO concentration are largely driven by the solar cycle modulated ultraviolet (UV) variation. This solar signal extends down to the lower altitudes by the dynamical descent in the winter polar vortex, showing a time lag that is consistent with the average descent velocity. To characterize a global distribution of the solar impact, MLS CO is correlated with the SORCE measured total solar irradiance (TSI) and UV. As high as 0.8 in most of the polar mesosphere, the linear correlation coefficients between CO and UV/TSI are more robust than those found in the previous work. The photochemical contribution explains most (68%) of the total variance of CO while the dynamical contribution accounts for 21% of the total variance at upper mesosphere. The photochemistry driven CO anomaly signal is extended in the tropics by vertical mixing. The solar cycle signal in CO is further examined with the Whole Atmosphere Community Climate Model (WACCM) 3.5 simulation by implementing two different modeled Spectral Solar Irradiances (SSIs): SRPM 2012 and NRLSSI. The model simulations underestimate the mean CO amount and solar cycle variations of CO, by a factor of 3, compared to those obtained from MLS observation. Different inputs of the solar spectrum have small impacts on CO variation.

  16. Solar-Iss a New Solar Reference Spectrum Covering the Far UV to the Infrared (165 to 3088 Nm) Based on Reanalyzed Solar/solspec Cycle 24 Observations

    NASA Astrophysics Data System (ADS)

    Damé, L.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Bolsée, D.; Pereira, N.; Sluse, D.; Cessateur, G.

    2017-12-01

    Since April 5, 2008 and until February 15, 2017, the SOLSPEC (SOLar SPECtrometer) spectro-radiometer of the SOLAR facility on the International Space Station performed accurate measurements of Solar Spectral Irradiance (SSI) from the far ultraviolet to the infrared (165 nm to 3088 nm). These measurements, unique by their large spectral coverage and long time range, are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry), noticeably through the "top-down" mechanism amplifying ultraviolet (UV) solar forcing effects on the climate (UV affects stratospheric dynamics and temperatures, altering interplanetary waves and weather patterns both poleward and downward to the lower stratosphere and troposphere regions). SOLAR/SOLSPEC, with almost 9 years of observations covering the essential of the unusual solar cycle 24 from minimum in 2008 to maximum, allowed to establish new reference solar spectra from UV to IR (165 to 3088 nm) at minimum (beginning of mission) and maximum of activity. The complete reanalysis was possible thanks to revised engineering corrections, improved calibrations and advanced procedures to account for thermal, aging and pointing corrections. The high quality and sensitivity of SOLSPEC data allow to follow temporal variability in UV but also in visible along the cycle. Uncertainties on these measurements are evaluated and results, absolute reference spectra and variability, are compared with other measurements (WHI, ATLAS-3, SCIAMACHY, SORCE/SOLSTICE, SORCE/SIM) and models (SATIRE-S, NRLSSI, NESSY)

  17. LED Solar Simulator

    NASA Image and Video Library

    2016-11-18

    NASA Glenn's new LED solar simulator was developed by Angstrom Designs and UC Santa Barbara under a Small Business Innovative Research program to test the next generation of high-efficiency space solar cells for future missions. The new simulator contains over 1500 individually adjustable light sources, most of which emit light invisible to the human eye, to cover a 10 x10 foot area.

  18. LED Solar Simulator

    NASA Image and Video Library

    2016-11-16

    NASA Glenn's new LED solar simulator was developed by Angstrom Designs and UC Santa Barbara under a Small Business Innovative Research program to test the next generation of high-efficiency space solar cells for future missions. The new simulator contains over 1500 individually adjustable light sources, most of which emit light invisible to the human eye, to cover a 10 x10 foot area.

  19. 77 FR 12873 - Notice of Segregation of Public Lands in the State of Arizona Associated With the Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Quartzsite Solar Energy Project, La Paz County, AZ AGENCY: Bureau of Land Management, Interior. ACTION... connection with the BLM's processing of a right-of-way (ROW) application for Quartzsite Solar Energy, LLC's Quartzsite Solar Energy Project (Proposed Project). This segregation covers approximately 2,013.76 acres of...

  20. Ohm's Law and Solar Energy. Courseware Evaluation for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Gates, Earl; And Others

    This courseware evaluation rates the Ohm's Law and Solar Energy program developed by the Iowa Department of Public Instruction. (The program--not contained in this document--covers Ohm's law and resistance problems, passive solar energy, and project ideas and sources.) Part A describes the program in terms of subject area (construction and…

  1. Solar Energy School Heating Augmentation Experiment. Sections I, II, and III.

    ERIC Educational Resources Information Center

    InterTechnology Corp., Warrenton, VA.

    An experimental solar heating system heats five modular classrooms at the Fauquier County High School in Warrenton, Virginia. The present report covers the operation, maintenance, and modifications to the system over the 1974-75 and 1975-76 heating seasons. The solar system has shown the capability of providing essentially 100 percent of the…

  2. Concentrating Solar Power Projects by Status | Concentrating Solar Power |

    Science.gov Websites

    currently non-operational. You can then select a specific project and review a profile covering project agreement. Currently Non-Operational-projects that were operational but are now defunct or that were

  3. Coronal and Prominence Plasmas

    NASA Technical Reports Server (NTRS)

    Poland, Arthur I. (Editor)

    1986-01-01

    Various aspects of solar prominences and the solar corona are discussed. The formation of prominences, prominence diagnostics and structure, prominence dissappearance, large scale coronal structure, coronal diagnostics, small scale coronal structure, and non-equilibrium/coronal heating are among the topics covered.

  4. Photovoltaic module and laminate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunea, Gabriela E.; Kim, Sung Dug; Kavulak, David F.J.

    A photovoltaic module is disclosed. The photovoltaic module has a first side directed toward the sun during normal operation and a second, lower side. The photovoltaic module comprises a perimeter frame and a photovoltaic laminate at least partially enclosed by and supported by the perimeter frame. The photovoltaic laminate comprises a transparent cover layer positioned toward the first side of the photovoltaic module, an upper encapsulant layer beneath and adhering to the cover layer, a plurality of photovoltaic solar cells beneath the upper encapsulant layer, the photovoltaic solar cells electrically interconnected, a lower encapsulant layer beneath the plurality of photovoltaicmore » solar cells, the upper and lower encapsulant layers enclosing the plurality of photovoltaic solar cells, and a homogenous rear environmental protection layer, the rear environmental protection layer adhering to the lower encapsulant layer, the rear environmental protection layer exposed to the ambient environment on the second side of the photovoltaic module.« less

  5. 25 CFR 162.501 - What types of leases does this subpart cover?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., operating, and maintaining instrumentation, facilities, and associated infrastructure, such as wind turbines... PERMITS Wind and Solar Resource Leases General Provisions Applicable to Weels and Wsr Leases § 162.501 What types of leases does this subpart cover? (a) This subpart covers: (1) Wind energy evaluation...

  6. 25 CFR 162.501 - What types of leases does this subpart cover?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., operating, and maintaining instrumentation, facilities, and associated infrastructure, such as wind turbines... PERMITS Wind and Solar Resource Leases General Provisions Applicable to Weels and Wsr Leases § 162.501 What types of leases does this subpart cover? (a) This subpart covers: (1) Wind energy evaluation...

  7. Cloud cover and horizontal plane eye damaging solar UV exposures.

    PubMed

    Parisi, A V; Downs, N

    2004-11-01

    The spectral UV and the cloud cover were measured at intervals of 5 min with an integrated cloud and spectral UV measurement system at a sub-tropical Southern Hemisphere site for a 6-month period and solar zenith angle (SZA) range of 4.7 degrees to approximately 80 degrees . The solar UV spectra were recorded between 280 nm and 400 nm in 0.5 nm increments and weighted with the action spectra for photokeratitis and cataracts in order to investigate the effect of cloud cover on the horizontal plane biologically damaging UV irradiances for cataracts (UVBE(cat)) and photokeratitis (UVBE(pker)). Eighty five percent of the recorded spectra produced a measured irradiance to a cloud free irradiance ratio of 0.6 and higher while 76% produced a ratio of 0.8 and higher. Empirical non-linear expressions as a function of SZA have been developed for all sky conditions to allow the evaluation of the biologically damaging UV irradiances for photokeratitis and cataracts from a knowledge of the unweighted UV irradiances.

  8. Simultaneous UV and X-ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I: Physical Conditions in the UV Absorbers

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.

    2003-01-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km/s), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models, and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers.

  9. Search for evidence of low energy protons in solar flares

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.; Wuelser, Jean-Pierre; Canfield, Richard C.; Hudson, Hugh S.

    1992-01-01

    We searched for linear polarization in the H alpha line using the Stokes Polarimeter at Mees Solar Observatory and present observations of a flare from NOAA active region 6659 which began at 01:30 UT on 14 Jun. 1991. Our dataset also includes H alpha spectra from the Mees charge coupled device (MCCD) imaging spectrograph as well as hard x ray observations from the Burst and Transient Source Experiment (BATSE) instrument on board the Gamma Ray Observatory (GRO). The polarimeter scanned a 40 x 40 inch field of view using 16 raster points in a 4 x 4 grid. Each scan took about 30 seconds with 2 seconds at each raster point. The polarimeter stopped 8.5 inches between raster points and each point covered a 6 inch region. This sparse sampling increased the total field of view without reducing the temporal cadence. At each raster point, an H alpha spectrum with 20 mA spectral sampling is obtained covering 2.6 A centered on H alpha line center. The preliminary conclusions from the research are presented.

  10. Methods of improving the efficiency of photovoltaic cells. [including X ray analysis

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.; Roessler, B.; Crisman, E. E.; Chen, L. Y.; Kaul, R.

    1974-01-01

    Work on aluminum-alloyed silicon grating cells is continued. Optimization of the geometry (grating line width and spacing) confirms the analysis of such cells. A 1 sq cm grating cell was fabricated and its i-V characteristic was measured under an AMO solar simulator. It is found that the efficiency of this cell would be about 7.9%, if it were covered by the usual antireflection coating. The surface of the cell is not covered by a diffused junction. The response is blue shifted; the current is somewhat higher than that produced by a commercial Si cell. However, the open circuit voltage is low, and attempts to optimize the open circuit voltage of the aluminum-alloy junctions are described. A preliminary X-ray topographic examination of GaAs specimens of the type commonly used to make solar cells is studied. The X-ray study shows that the wafers are filled with regions having strain gradients, possibly caused by precipitates. It is possible that a correlation exists between the presence of low mechanical perfection and minority carrier diffusion lengths of GaAs crystals.

  11. Dynamic conversion of solar generated heat to electricity

    NASA Technical Reports Server (NTRS)

    Powell, J. C.; Fourakis, E.; Hammer, J. M.; Smith, G. A.; Grosskreutz, J. C.; Mcbride, E.

    1974-01-01

    The effort undertaken during this program led to the selection of the water-superheated steam (850 psig/900 F) crescent central receiver as the preferred concept from among 11 candidate systems across the technological spectrum of the dynamic conversion of solar generated heat to electricity. The solar power plant designs were investigated in the range of plant capacities from 100 to 1000 Mw(e). The investigations considered the impacts of plant size, collector design, feed-water temperature ratio, heat rejection equipment, ground cover, and location on solar power technical and economic feasibility. For the distributed receiver systems, the optimization studies showed that plant capacities less than 100 Mw(e) may be best. Although the size of central receiver concepts was not parametrically investigated, all indications are that the optimal plant capacity for central receiver systems will be in the range from 50 to 200 Mw(e). Solar thermal power plant site selection criteria and methodology were also established and used to evaluate potentially suitable sites. The result of this effort was to identify a site south of Inyokern, California, as typically suitable for a solar thermal power plant. The criteria used in the selection process included insolation and climatological characteristics, topography, and seismic history as well as water availability.

  12. NASA's search for the solar connection. I. [OSO Skylab, Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Chapman, R. W.

    1979-01-01

    NASA's solar research, which leans toward the study of the sun as a star, is surveyed. The Orbiting Solar Observatory (OSO) program is covered, which yielded data such as spectras of 140-400 A wavelength of the entire solar disk. Attention is also given to the results obtained by Skylab, such as data showing that whenever a large coronal hole exists near the sun's equator, a stream of high-speed solar wind will be observed at the earth. Finally areas of future research, such as a concerted study of flare phenomenon, are discussed.

  13. Solar Eclipse

    Atmospheric Science Data Center

    2013-04-16

    ... View Larger Image Within that narrow window during a solar eclipse where an observer on Earth can watch the Moon's shadow obscure ... of the imagery acquired during Terra orbit 20920. The panels cover an area of about 380 kilometers x 2909 kilometers and use data ...

  14. Recognition of Time Stamps on Full-Disk Hα Images Using Machine Learning Methods

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Huang, N.; Jing, J.; Liu, C.; Wang, H.; Fu, G.

    2016-12-01

    Observation and understanding of the physics of the 11-year solar activity cycle and 22-year magnetic cycle are among the most important research topics in solar physics. The solar cycle is responsible for magnetic field and particle fluctuation in the near-earth environment that have been found increasingly important in affecting the living of human beings in the modern era. A systematic study of large-scale solar activities, as made possible by our rich data archive, will further help us to understand the global-scale magnetic fields that are closely related to solar cycles. The long-time-span data archive includes both full-disk and high-resolution Hα images. Prior to the widely use of CCD cameras in 1990s, 35-mm films were the major media to store images. The research group at NJIT recently finished the digitization of film data obtained by the National Solar Observatory (NSO) and Big Bear Solar Observatory (BBSO) covering the period of 1953 to 2000. The total volume of data exceeds 60 TB. To make this huge database scientific valuable, some processing and calibration are required. One of the most important steps is to read the time stamps on all of the 14 million images, which is almost impossible to be done manually. We implemented three different methods to recognize the time stamps automatically, including Optical Character Recognition (OCR), Classification Tree and TensorFlow. The latter two are known as machine learning algorithms which are very popular now a day in pattern recognition area. We will present some sample images and the results of clock recognition from all three methods.

  15. Combined Silicon and Gallium Arsenide Solar Cell UV Testing

    NASA Technical Reports Server (NTRS)

    Willowby, Douglas

    2005-01-01

    The near and long-term effect of UV on silicon solar cells is relatively understood. In an effort to learn more about the effects of UV radiation on the performance of GaAs/Ge solar cells, silicon and gallium arsenide on germanium (GaAs/Ge) solar cells were placed in a vacuum chamber and irradiated with ultraviolet light by a Spectrolab XT 10 solar simulator. Seventeen GaAs/Ge and 8 silicon solar cells were mounted on an 8 inch copper block. By having all the cells on the same test plate we were able to do direct comparison of silicon and GaAs/Ge solar cell degradation. The test article was attached to a cold plate in the vacuum chamber to maintain the cells at 25 degrees Celsius. A silicon solar cell standard was used to measure beam uniformity and any degradation of the ST-10 beam. The solar cell coverings tested included cells with AR-0213 coverglass, fused silica coverglass, BRR-0213 coverglass and cells without coverglass. Of interest in the test is the BRR-0213 coverglass material manufactured by OCLI. It has an added Infrared rejection coating to help reduce the solar cell operating temperature. This coverglass is relatively new and of interest to several current and future programs at Marshall. Due to moves of the laboratory equipment and location only 350 hours of UV degradation have been completed. During this testing a significant leveling off in the rate of degradation was reached. Data from the test and comparisons of the UV effect of the bare cells and cells with coverglass material will be presented.

  16. Application of lightweight materials in structure concept design of large-scale solar energy unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Lv, Shengli; Guan, XiQi

    2017-09-01

    Carbon fiber composites and film materials can be effectively used in light aircraft structures, especially for solar unmanned aerial vehicles. The use of light materials can reduce the weight of the aircraft, but also can effectively improve the aircraft's strength and stiffness. The structure of the large aspect ratio solar energy UAV was analyzed in detail, taking Solar-impulse solar aircraft as an example. The solar energy UAV has a wing aspect ratio greater than 20, and the detailed digital model of the wing structure including beam, ribs and skin was built, also the Finite Element Method was applied to analyze the static and dynamic performance of the structure. The upper skin of the wing is covered with silicon solar cells, while the lower skin is light and transparent film. The single beam truss form of carbon fiber lightweight material is used in the wing structure. The wing beam is a box beam with rectangular cross sections. The box beam connected the front parts and after parts of the ribs together. The fuselage of the aircraft was built by space truss structure. According to the static and dynamic analysis with Finite Element method, it was found that the aircraft has a small wingtip deflection relative to the wingspan in the level flight state. The first natural frequency of the wing structure is pretty low, which is closed to the gust load.

  17. Satellite-based trends of solar radiation and cloud parameters in Europe

    NASA Astrophysics Data System (ADS)

    Pfeifroth, Uwe; Bojanowski, Jedrzej S.; Clerbaux, Nicolas; Manara, Veronica; Sanchez-Lorenzo, Arturo; Trentmann, Jörg; Walawender, Jakub P.; Hollmann, Rainer

    2018-04-01

    Solar radiation is the main driver of the Earth's climate. Measuring solar radiation and analysing its interaction with clouds are essential for the understanding of the climate system. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based, high-quality climate data records, with a focus on the energy balance and water cycle. Here, multiple of these data records are analyzed in a common framework to assess the consistency in trends and spatio-temporal variability of surface solar radiation, top-of-atmosphere reflected solar radiation and cloud fraction. This multi-parameter analysis focuses on Europe and covers the time period from 1992 to 2015. A high correlation between these three variables has been found over Europe. An overall consistency of the climate data records reveals an increase of surface solar radiation and a decrease in top-of-atmosphere reflected radiation. In addition, those trends are confirmed by negative trends in cloud cover. This consistency documents the high quality and stability of the CM SAF climate data records, which are mostly derived independently from each other. The results of this study indicate that one of the main reasons for the positive trend in surface solar radiation since the 1990's is a decrease in cloud coverage even if an aerosol contribution cannot be completely ruled out.

  18. Installation, operation, and maintenance for the pyramidal optics solar system installed at Yacht Cover, Columbia, South Carolina

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Information concerning the installation, operation, and maintenance of the pyramidal Solar System for space heating and domestic hot water is presented. Principles of operation, sequence of installation, and procedures for the operation and maintenance of each subsystem making up the solar system are presented. Troubleshooting charts and maintenance schedules are presented.

  19. The magic of solar adobe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, B.M.

    1996-01-01

    This article describes the energy efficient features of a house in Santa Fe. It is a modern version of ancient adobe house of the area. The homes solar features added no net cost to its construction and save more than 80% on conventional energy use. Topic areas covered are as follows: art of adobe; solar design; back-up heat; energy and cost performance.

  20. Installation, operation, and maintenance for the pyramidal optics solar system installed at Yacht Cover, Columbia, South Carolina

    NASA Astrophysics Data System (ADS)

    1980-09-01

    Information concerning the installation, operation, and maintenance of the pyramidal Solar System for space heating and domestic hot water is presented. Principles of operation, sequence of installation, and procedures for the operation and maintenance of each subsystem making up the solar system are presented. Troubleshooting charts and maintenance schedules are presented.

  1. Timonium Elementary School Solar Energy Heating and Cooling Augmentation Experiment. Final Engineering Report. Executive Summary.

    ERIC Educational Resources Information Center

    AAI Corp., Baltimore, MD.

    This report covers a two-year and seven-month solar space heating and cooling experiment conducted at the Timonium Elementary School, Timonium, Maryland. The system was designed to provide a minimum of 50 percent of the energy required during the heating season and to determine the feasibility of using solar energy to power absorption-type…

  2. Numerical two-dimensional calculations of the formation of the solar nebula

    NASA Technical Reports Server (NTRS)

    Bodenheimer, Peter H.

    1991-01-01

    Numerical two dimensional calculations of the formation of the solar nebula are presented. The following subject areas are covered: (1) observational constraints of the properties of the initial solar nebula; (2) the physical problem; (3) review if two dimensional calculations of the formation phase; (4) recent models with hydrodynamics and radiative transport; and (5) further evolution of the system.

  3. Metal Nanoshells for Plasmonically Enhanced Solar-to-Fuel Photocatalytic Conversion

    DTIC Science & Technology

    2014-05-09

    Final 3. DATES COVERED (From - To) 04/16/2013 – 04/15/2014 4. TITLE AND SUBTITLE Metal Nanoshells for Plasmonically Enhanced Solar -to...following experiments, the core-shell of nanoshell@SiO2, as well as the nanostructure of photocatalyst, were further investigated. Solar energy in the...nanoshells as the core can absorb the solar energy in the IR and visible-light region ranging from 500 nm to 900 nm. Our data showed that the plasmonic

  4. Cost study of solar cell space power systems

    NASA Technical Reports Server (NTRS)

    Bernatowicz, D. T.

    1972-01-01

    Historical costs for solar cell space power systems were evaluated. The study covered thirteen missions that represented a broad cross section of flight projects over the past decade. Fully burdened costs in terms of 1971 dollars are presented for the system and the solar array. The costs correlate reasonably well with array area and do not increase in proportion to array area. The trends for array costs support the contention that solar cell and module standardization reduce costs.

  5. Banking on Solar: An Analysis of Banking Opportunities in the U.S. Distributed Photovoltaic Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, D.; Lowder, T.

    This report provides a high-level overview of the developing U.S. solar loan product landscape, from both a market and economic perspective. It covers current and potential U.S. solar lending institutions; currently available loan products; loan program structures and post-loan origination options; risks and uncertainties of the solar asset class as it pertains to lenders; and an economic analysis comparing loan products to third party-financed systems in California.

  6. Long-term weathering effects on the thermal performance of the solargenics (liquid) solar collector at outdoor conditions. [Marshall Space Flight Center Solar test facility

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures and the results obtained during the evaluation of a single-covered liquid solar collector are presented. The tests were performed under outdoor natural conditions. The collector was under stagnation conditions for a total of approximately ten months. The solar collector is a liquid, single-glazed, flat plate collector, and is about 240 inches long, and 3.8 inches in depth.

  7. Standardized solar simulator tests of flat plate solar collectors. 1: Soltex collector with two transparent covers

    NASA Technical Reports Server (NTRS)

    Simon, F.

    1975-01-01

    A Soltex flat plate solar collector was tested with a solar simulator for inlet temperatures of 77 to 201 F, flux levels of 240 and 350 Btu/hr-sq ft, a collant flow rate of 10.5 lb/hr sq ft, and incident angles of 0 deg, 41.5 deg, and 65.2 deg. Collector performance is correlated in terms of inlet temperature, flux level, and incident angle.

  8. Lecture on Thermal Radiation

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.

    2006-01-01

    This lecture will cover solar thermal radiation, particularly as it relates to the high energy solar processes that are the subject of this summer school. After a general review of thermal radiation from the Sun and a discussion of basic definitions, the various emission and absorption mechanisms will be described including black-body emission, bremsstrahlung, free-bound, and atomic line emissions of all kinds. The bulk of the time will be spent discussing the observational characteristics of thermal flare plasma and what can be learned about the flare energy release process from observations of the thermal radiation at all wavelengths. Information that has been learned about the morphology, temperature distribution, and composition of the flare plasma will be presented. The energetics of the thermal flare plasma will be discussed in relation to the nonthermal energy of the particles accelerated during the flare. This includes the total energy, the radiated and conductive cooling processes, and the total irradiated energy.

  9. Intercalibration and Cross-Correlation of Ace and Wind Solar Wind Data

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This report covers activities funded from October 1, 1998 through September 30, 2002. Two yearly status reports have been filed on this grant, and they are included as Appendix 1. The purpose of this grant was to compare ACE and Wind solar wind parameters when the two spacecraft were near to one another and then to use the intercalibrated parameters to carry out scientific investigations. In September, 2001 a request for a one-year, no-cost extension until September 30, 2002 was submitted and approved. The statement of work for that extension included adjustment of ACE densities below wind speeds of 350 km/s, a study of shock normal orientations using travel time delays between the two spacecraft, comparison of density jumps at shocks, and a study of temperature anisotropies and double streaming to see if such features evolved between the spacecraft.

  10. The Ice-Covered Lakes Hypothesis in Gale Crater: Implications for the Early Hesperian Climate

    NASA Technical Reports Server (NTRS)

    Kling, Alexandre M.; Haberle, Robert M.; McKay, Christopher P.; Bristow, Thomas F.; Rivera-Hernandez, Frances

    2017-01-01

    Recent geological discoveries from the Mars Science Laboratory (MSL), including stream and lake sedimentary deposits, provide evidence that Gale crater may have intermittently hosted a fluviol-acustine environment during the Hesperian, with individual lakes lasting for a period of tens to hundreds of thousands of years. Estimates of the CO2 content of the atmosphere at the time the Gale sediments formed are far less than needed by any climate model to warm early Mars, given the low solar energy input available at Mars 3.5 Gya. We have therefore explored the possibility that the lakes in Gale during the Hesperian were perennially covered with ice using the Antarctic lakes as analogs.

  11. Obliquity-paced climate change recorded in Antarctic debris-covered glaciers

    PubMed Central

    Mackay, Sean L.; Marchant, David R.

    2017-01-01

    The degree to which debris-covered glaciers record past environmental conditions is debated. Here we describe a novel palaeoclimate archive derived from the surface morphology and internal debris within cold-based debris-covered glaciers in Antarctica. Results show that subtle changes in mass balance impart major changes in the concentration of englacial debris and corresponding surface topography, and that over the past ∼220 ka, at least, the changes are related to obliquity-paced solar radiation, manifest as variations in total summer energy. Our findings emphasize solar radiation as a significant driver of mass balance changes in high-latitude mountain systems, and demonstrate that debris-covered glaciers are among the most sensitive recorders of obliquity-paced climate variability in interior Antarctica, in contrast to most other Antarctic archives that favour eccentricity-paced forcing over the same time period. Furthermore, our results open the possibility that similar-appearing debris-covered glaciers on Mars may likewise hold clues to environmental change. PMID:28186094

  12. Atlas of albedo and absorbed solar radiation derived from Nimbus 7 earth radiation budget data set, November 1985 to October 1987

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Rutan, David; Bess, T. Dale

    1992-01-01

    An atlas of monthly mean global contour maps of albedo and absorbed solar radiation is presented for 21 months from Nov. 1985 to Oct. 1987. These data were retrieved from measurements made by the shortwave wide-field-of-view radiometer of the Earth Radiation Budget (ERB) instrument aboard the Nimbus 7 spacecraft. Profiles of zonal mean albedos and absorbed solar radiation were tabulated. These geographical distributions are provided as a resource for researchers studying the radiation budget of the Earth. The El Nino/Southern Oscillation event of 1986-1987 is included in this data set. This atlas of albedo and absorbed solar radiation extends to 12 years the period covered by two similar atlases: NASA RP-1230 (Jul. 1975 - Oct. 1978) and NASA RP-1231 (Nov. 1978 - Oct. 1985). These three compilations complement the atlases of outgoing longwave radiation by Bess and Smith in NASA RP-1185, RP-1186, and RP-1261, which were also based on the Nimbus 6 and 7 ERB data.

  13. Automated enclosure and protection system for compact solar-tracking spectrometers

    NASA Astrophysics Data System (ADS)

    Heinle, Ludwig; Chen, Jia

    2018-04-01

    A novel automated enclosure for protecting solar-tracking atmospheric instruments was designed, constructed, and successfully tested under various weather conditions. A complete automated measurement system, consisting of a compact solar-tracking Fourier transform infrared (FTIR) spectrometer (EM27/SUN) and the enclosure, has been deployed in central Munich to monitor greenhouse gases since 2016 and withstood all critical weather conditions, including rain, storms, and snow. It provided ground-based measurements of column-averaged concentrations of CO2, CH4, O2, and H2O throughout this time.The enclosure protects the instrument from harmful environmental influences while allowing open-path measurements in sunny weather. The newly developed and patented cover, a key component of the enclosure, permits unblocked solar measurements while reliably protecting the instrument. This enables dynamic decision regarding taking measurements, and thus increases the number of data samples. This enclosure leads to a fully automated measurement system, which collects data whenever possible without any human interaction. In the long term, the enclosure will provide the foundation for a permanent greenhouse gas monitoring sensor network.

  14. Dynamical Evolution of the Inner Heliosphere Approaching Solar Activity Maximum: Interpreting Ulysses Observations Using a Global MHD Model. Appendix 1

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Mikic, Z.; Linker, J. A.

    2003-01-01

    In this study we describe a series of MHD simulations covering the time period from 12 January 1999 to 19 September 2001 (Carrington Rotation 1945 to 1980). This interval coincided with: (1) the Sun s approach toward solar maximum; and (2) Ulysses second descent to the southern polar regions, rapid latitude scan, and arrival into the northern polar regions. We focus on the evolution of several key parameters during this time, including the photospheric magnetic field, the computed coronal hole boundaries, the computed velocity profile near the Sun, and the plasma and magnetic field parameters at the location of Ulysses. The model results provide a global context for interpreting the often complex in situ measurements. We also present a heuristic explanation of stream dynamics to describe the morphology of interaction regions at solar maximum and contrast it with the picture that resulted from Ulysses first orbit, which occurred during more quiescent solar conditions. The simulation results described here are available at: http://sun.saic.com.

  15. Increasing the collected energy and reducing the water requirements in salt-gradient solar ponds

    NASA Astrophysics Data System (ADS)

    Suarez, F. I.; Ruskowitz, J. A.; Tyler, S. W.; Childress, A. E.

    2013-12-01

    Salt-gradient solar ponds are low-cost, large-scale solar collectors with integrated storage that can be used as an energy source in many thermal systems. For instance, solar ponds have proven to be a promising solution to drive thermal desalination in arid zones. However, in zones with limited water availability, where evaporation constrains the use of solar ponds in areas with the greatest potential for solar energy development, evaporation losses at the surface of the pond constrain their use. Therefore, evaporation represents a significant challenge for development of these low-cost solar systems in arid settings. In this investigation, different transparent floating elements were tested to suppress evaporation: flat discs, hemispheres, and a continuous cover. Flat discs were the most effective evaporation suppression element. Evaporation decreased from 4.8 to 2.5 mm/day when 88% of the pond was covered with the flat discs. In addition, the highest temperature increased from 34 to 43°C and the heat content increased from 179 to 220 MJ (a 22% increase). Reduced evaporative losses at the surface of the pond resulted in lower conductive losses from the storage zone and increased the collected energy. The magnitude of evaporation reduction observed in this work is important as it allows solar pond operation in locations with limited water supply for replenishment. The increase in stored heat allows more energy to be withdrawn from the pond for use in external applications, which significantly improves the thermal efficiencies of solar ponds.

  16. The Structure and Dynamics of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    1998-01-01

    This report covers technical progress during the first year of the NASA Space Physics Theory contract between NASA and Science Applications International Corporation. Under this contract SAIC, the University of California, Irvine (UCI), and the Jet Propulsion Laboratory (JPL), have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model. During the period covered by this report we have published 26 articles in the scientific literature. These publications are listed in Section 4 of this report. In the Appendix we have attached reprints of selected articles.

  17. Mariner Jupiter/Saturn 1977 - The mission frame.

    NASA Technical Reports Server (NTRS)

    Bourke, R. D.; Miles, R. F., Jr.; Penzo, P. A.; Van Dillen, S. L.; Wallace, R. A.

    1972-01-01

    Following the cancellation of the Outer Planet Grand Tour Project, NASA and JPL examined less ambitious, alternative missions for exploring the outer planets. The mission that proved most attractive scientifically and fits within the projected NASA budget constraints embraces dual flights to Jupiter and Saturn, with launch in 1977. NASA has implemented it as the Mariner Jupiter/Saturn 1977 (MJS77) Project. The MJS77 mission covers exploratory investigations of the Jupiter and Saturn planetary systems and the interplanetary medium out to Saturn. Items of special interest include Jupiter's great red spot, the question of Io's anomalous brightening and phenomena associated with its EM behavior. After Saturn encounter, the spacecraft will escape the solar system in the general direction of the solar apex.

  18. An economic and performance design study of solar preheaters for domestic hot water heaters in North Carolina

    NASA Technical Reports Server (NTRS)

    Jones, C. B.; Smetana, F. O.

    1977-01-01

    The performance and estimated material costs for several solar preheaters for domestic hot water heaters using isolation levels present in North Carolina are presented. The effects of monthly variations in isolation and the direction of incident radiation are included. Demand is assumed at 13 gallons (49.2 liters) per day per person. The study shows that a closed circulation system with 82 gallons (310 liters) of preheated storage and 53.4 cu ft (4.94 cu m) of collector surface with single cover can be expected to cost about $800 and to repay it capital cost and interest (at 8%) in 5.2 years, assuming present electric rates increase at 5% per year.

  19. Silver-Teflon contamination UV radiation study

    NASA Technical Reports Server (NTRS)

    Muscari, J. A.

    1978-01-01

    Silver-Teflon (Ag/FEP) is planned to be used as the thermal control material covering the radiator surfaces on the shuttle orbiter payload bay doors. These radiators require the use of materials that have a very low solar absorptance and a high emittance for heat rejection. However, operationally, materials used on these critical radiator surfaces, such as silver-Teflon, will be exposed to a variety of conditions which include both the natural as well as the induced environments from the Shuttle Orbiter. A complete test facility was assembled, and detailed test procedures and a test matrix were developed. Measurements of low solar absorptance were taken before and after contamination, at intervals during irradiation, and after sample cleaning to fulfill all the requirements.

  20. Summary of Sessions: Ionosphere - Thermosphere - Mesosphere Working Group

    NASA Technical Reports Server (NTRS)

    Spann, J. F.; Bhattacharyya, A.

    2006-01-01

    The topics covered by the sessions under the working group on Ionosphere-Thermosphere-Mesosphere dealt with various aspects of the response of the ionosphere-thermosphere coupled system and the middle atmosphere to solar variability. There were four plenary talks related to the theme of this working group, thirteen oral presentations in three sessions and six poster presentations. A number of issues related to effects of solar variability on the ionosphere-thermosphere, observed using satellite and ground-based data including ground magnetometer observations, radio beacon studies of equatorial spread F, and modeling of some of these effects, were discussed. Radar observations of the mesosphere-lower thermosphere region and a future mission to study the coupling of thunderstorm processes to this region, the ionosphere, and magnetosphere were also presented.

  1. Feasibility Study for Paragon - Bisti Solar Ranch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benally, Thomas

    2015-06-01

    The Navajo Hopi Land Commission Office (NHLCO) and Navajo Nation (NN) plan to develop renewable energy (RE) projects on the Paragon-Bisti Ranch (PBR) lands, set aside under the Navajo Hopi Land Settlement Act (NHLSA) for the benefit of Relocatees. This feasibility study (FS), which was funded under a grant from DOE’s Tribal Energy Program (TEP), was prepared in order to explore the development of the 22,000-acre PBR in northwestern New Mexico for solar energy facilities. Topics covered include: • Site Selection • Analysis of RE, and a Preliminary Design • Transmission, Interconnection Concerns and Export Markets • Financial and Economicmore » Analysis • Environmental Study • Socioeconomic and Cultural Factors • Next Steps.« less

  2. Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A cost effective encapsulant system was identified and a silicone acrylic cover material containing a durable ultraviolet screening agent was prepared. The effectiveness of the cover material in protecting photo-oxidatively sensitive polymers was demonstrated.

  3. Large space structures and systems in the space station era: A bibliography with indexes (supplement 05)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Bibliographies and abstracts are listed for 1363 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and July 31, 1992. Topics covered include technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion and solar power satellite systems.

  4. FY 2016 Research Highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This fact sheet summarizes the research highlights for the Clean Energy Manufacturing Analysis Center (CEMAC) for Fiscal Year 2106. Topics covered include additive manufacturing for the wind industry, biomass-based chemicals substitutions, carbon fiber manufacturing facility siting, geothermal power plant turbines, hydrogen refueling stations, hydropower turbines, LEDs and lighting, light-duty automotive lithium-ion cells, magnetocaloric refrigeration, silicon carbide power electronics for variable frequency motor drives, solar photovoltaics, and wide bandgap semiconductor opportunities in power electronics.

  5. Large space structures and systems in the space station era: A bibliography with indexes (supplement 05)

    NASA Astrophysics Data System (ADS)

    1993-03-01

    Bibliographies and abstracts are listed for 1363 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and July 31, 1992. Topics covered include technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion and solar power satellite systems.

  6. Twenty-Third Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Presented here is a collection of papers from the Twenty-Third Lunar and Planetary Science Conference that were chosen for having the greatest potential interest for the general reading public. The presentations avoid jargon and unnecessarily complex terms. Topics covered include electron microscopy studies of a circumstellar rock, the fractal analysis of lava flows, volcanic activity on Venus, the isotopic signature of recent solar wind nitrogen, and the implications of impact crater distribution on Venus.

  7. Lessons learned in control center technologies and non-technologies

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.

    1991-01-01

    Information is given in viewgraph form on the Solar Mesosphere Explorer (SME) Control Center and the Oculometer and Automated Space Interface System (OASIS). Topics covered include SME mission operations functions; technical and non-technical features of the SME control center; general tasks and objects within the Space Station Freedom (SSF) ground system nodes; OASIS-Real Time for the control and monitoring of of space systems and subsystems; and OASIS planning, scheduling, and PC architecture.

  8. Evaluation of regression and neural network models for solar forecasting over different short-term horizons

    DOE PAGES

    Inanlouganji, Alireza; Reddy, T. Agami; Katipamula, Srinivas

    2018-04-13

    Forecasting solar irradiation has acquired immense importance in view of the exponential increase in the number of solar photovoltaic (PV) system installations. In this article, analyses results involving statistical and machine-learning techniques to predict solar irradiation for different forecasting horizons are reported. Yearlong typical meteorological year 3 (TMY3) datasets from three cities in the United States with different climatic conditions have been used in this analysis. A simple forecast approach that assumes consecutive days to be identical serves as a baseline model to compare forecasting alternatives. To account for seasonal variability and to capture short-term fluctuations, different variants of themore » lagged moving average (LMX) model with cloud cover as the input variable are evaluated. Finally, the proposed LMX model is evaluated against an artificial neural network (ANN) model. How the one-hour and 24-hour models can be used in conjunction to predict different short-term rolling horizons is discussed, and this joint application is illustrated for a four-hour rolling horizon forecast scheme. Lastly, the effect of using predicted cloud cover values, instead of measured ones, on the accuracy of the models is assessed. Results show that LMX models do not degrade in forecast accuracy if models are trained with the forecast cloud cover data.« less

  9. Evaluation of regression and neural network models for solar forecasting over different short-term horizons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inanlouganji, Alireza; Reddy, T. Agami; Katipamula, Srinivas

    Forecasting solar irradiation has acquired immense importance in view of the exponential increase in the number of solar photovoltaic (PV) system installations. In this article, analyses results involving statistical and machine-learning techniques to predict solar irradiation for different forecasting horizons are reported. Yearlong typical meteorological year 3 (TMY3) datasets from three cities in the United States with different climatic conditions have been used in this analysis. A simple forecast approach that assumes consecutive days to be identical serves as a baseline model to compare forecasting alternatives. To account for seasonal variability and to capture short-term fluctuations, different variants of themore » lagged moving average (LMX) model with cloud cover as the input variable are evaluated. Finally, the proposed LMX model is evaluated against an artificial neural network (ANN) model. How the one-hour and 24-hour models can be used in conjunction to predict different short-term rolling horizons is discussed, and this joint application is illustrated for a four-hour rolling horizon forecast scheme. Lastly, the effect of using predicted cloud cover values, instead of measured ones, on the accuracy of the models is assessed. Results show that LMX models do not degrade in forecast accuracy if models are trained with the forecast cloud cover data.« less

  10. On the Integration of Wind and Solar Energy to Provide a Total Energy Supply in the U.S

    NASA Astrophysics Data System (ADS)

    Liebig, E. C.; Rhoades, A.; Sloggy, M.; Mills, D.; Archer, C. L.

    2009-12-01

    This study examines the feasibility of using renewable energy - mostly wind and solar radiation - as the primary sources of energy in the U.S., under the assumption that a nationwide electric transmission grid is in place. Previous studies have shown that solar output from California and Texas using energy storage is well correlated with the state energy load on an hour by hour basis throughout the year and with the US national load on a monthly basis. Other studies have shown that solar or wind alone can power the present US grid on average. This study explores scenarios for use of wind and solar energy together at the national scale on an hour by hour basis to determine if such a combination is a better match to national seasonal load scenarios than either of the two alone on an hour-by-hour basis. Actual hour by hour national load data from a particular year will be used as a basis, with some scenarios incorporating vehicle sector electrification and building heating and cooling using electric heat pumps. Hydro and geothermal generation can provide additional controllable output, when needed, to fulfill the hourly electricity and/or energy needs. Hourly wind speed data were calculated at the hub height of 80 m above the ground for the year 2006 at over 150 windy locations in the continental US using an extrapolation technique based on 10-m wind speed measurements and vertical sounding profiles. Using a 1.5 MW wind turbine as benchmark, the hourly wind power production nationwide was determined at all locations. Similarly, the hourly output from solar plants, with and without thermal storage, was calculated based on Ausra’s model assuming that the solar production would occur in the Southwest, the area with the greatest solar radiation density in the U.S. Hourly electricity demand for the year 2006 was obtained nationwide from a variety of sources, including the Federal Energy Regulation Commission. Hourly residential heating and cooking, industrial heat processing, and future electrified transportation loads were calculated from monthly energy consumption data from the Energy Information Administration. Using different scenarios of wind power penetration (10%, 20%, 30%, 50%, 80%, 100% of the average national electricity and/or energy demand), the remaining hourly electricity and/or energy load was covered by various combinations of solar, hydro, and geothermal generation. Statistics of the reliability of the various scenarios, as well as details on the area covered by wind and solar farms per each scenario, will be analyzed and presented.

  11. Cloud Induced Enhancement of Ground Level Solar Radiation

    NASA Astrophysics Data System (ADS)

    Inman, R.; Chu, Y.; Coimbra, C.

    2013-12-01

    Atmospheric aerosol and cloud cover are typically associated with long and short-term variability of all three solar radiation components at the ground level. Although aerosol attenuation can be a substantial factor for Direct Normal Irradiance (DNI) in some microclimates, the strongest factor for ground level irradiance attenuation is cloud cover which acts on time-scales associated with strong solar power generation fluctuations. Furthermore, the driving effects of clouds on radiative energy budgets include shortwave cooling, as a result of absorption of incoming solar radiation, and longwave heating, due to reduced emission of thermal radiation by relatively cool cloud tops. Under special circumstances, the presence of clouds in the circumsolar region may lead to the reverse; a local increase in the diffuse downwelling solar radiation due to directional scattering from clouds. This solar beam effect exceed the losses resulting from the backscattering of radiation into space. Such conditions result in radiation levels that temporarily exceed the localized clear sky values. These phenomena are referred to as Cloud Enhancement Events (CEEs). There are currently two fundamental CEE mechanisms discussed in the literature. The first involves well-defined, and optically thick cloud edges close to, but not obscuring, the solar disk. The effect here is of producing little or no change in the normal beam radiation. In this case, cloud edges in the vicinity of the sun create a non-isotropic increase in the local diffuse radiation field with respect to the isotropic scattering of a clear-sky atmosphere. The second type of CEE allows for partial or full obstruction of the solar disk by an optically thin diffuser such as fine clouds, haze or fog; which results in an enhanced but still nearly isotropic diffuse radiation field. In this study, an entire year of solar radiation data and total sky images taken at 30 second resolution at the University of California, Merced (UCM) is used in conjunction with optimized clear sky models, statistical analysis, and wavelet transform methods to investigate the solar radiation Ramp Rates (RRs) associated with both of the fundamental CEE mechanisms. Results indicate that CEEs account for nearly 5% of the total daytime hours in this dataset and produce nearly 4% of the total energy over the year. In addition, wavelet transform techniques suggest that CEEs at UCM location operate on timescales ranging from 2 to 4 minutes. Our results allow estimation of the probability and magnitude of these RRs as well the percentage of annual excess energy production resulting from CEEs which could be used to offset ancillary services required to operate PV power systems.

  12. 75 FR 20377 - Notice of Availability of the Draft Environmental Impact Statement for the Proposed Sonoran Solar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... the Arizona State Land Department (approximately 5.3 acres) and private land owners (approximately 9.4... solar conditions existed (night time, cloud cover, etc.), and would provide up to 25 percent of annual...

  13. Hydrodynamic Modeling of Diego Garcia Lagoon

    DTIC Science & Technology

    2014-08-01

    relative humidity, rainfall rate (m/s), evapotranspiration rate (m/s), net solar shortwave radiation (J/m2/s), cloud cover, wind speed (m/s), and... Evapotranspiration estimates were made using a version of the Modified Penman Equation (CIMIS, 2014). Solar radiation measurements were obtained from

  14. We'd rather be solar sailing

    NASA Astrophysics Data System (ADS)

    Kuznik, Frank

    1994-06-01

    On 4 Feb. 1993 a solar sail that traveled piggyback on a Progress resupply rocket to the Mir Space Station was deployed after undocking from the Mir. It was the first sun-propelled spacecraft, and it attempted to reflect a patch of sunlight onto the night side of Earth, but wasn't very successful because of extensive cloud cover. Solar sail technology and its historical development are briefly discussed. NASA'a views and the World Space Foundation's involvement in solar sail development are presented.

  15. Considerations with respect to the design of solar photovoltaic power systems for terrestrial applications

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1972-01-01

    The various factors involved in the development of solar photovoltaic power systems for terrestrial application are discussed. The discussion covers the tradeoffs, compromises, and optimization studies which must be performed in order to develop a viable terrestrial solar array system. It is concluded that the technology now exists for the fabrication of terrestrial solar arrays but that the economics are prohibitive. Various approaches to cost reduction are presented, and the general requirements for materials and processes to be used are delineated.

  16. Evaluation of Moderate-Resolution Imaging Spectroradiometer (MODIS) Snow Albedo Product (MCD43A) over Tundra

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Schaaf, Crystal B.; Chopping, Mark J.; Strahler, Alan H.; Wang, Jindi; Roman, Miguel O.; Rocha, Adrian V.; Woodcock, Curtis E.; Shuai, Yanmin

    2012-01-01

    This study assesses the MODIS standard Bidirectional Reflectance Distribution Function (BRDF)/Albedo product, and the daily Direct Broadcast BRDF/Albedo algorithm at tundra locations under large solar zenith angles and high anisotropic diffuse illumination and multiple scattering conditions. These products generally agree with ground-based albedo measurements during the snow cover period when the Solar Zenith Angle (SZA) is less than 70deg. An integrated validation strategy, including analysis of the representativeness of the surface heterogeneity, is performed to decide whether direct comparisons between field measurements and 500- m satellite products were appropriate or if the scaling of finer spatial resolution airborne or spaceborne data was necessary. Results indicate that the Root Mean Square Errors (RMSEs) are less than 0.047 during the snow covered periods for all MCD43 albedo products at several Alaskan tundra areas. The MCD43 1- day daily albedo product is particularly well suited to capture the rapidly changing surface conditions during the spring snow melt. Results also show that a full expression of the blue sky albedo is necessary at these large SZA snow covered areas because of the effects of anisotropic diffuse illumination and multiple scattering. In tundra locations with dark residue as a result of fire, the MODIS albedo values are lower than those at the unburned site from the start of snowmelt.

  17. First Colombian Solar Radio Interferometer: current stage

    NASA Astrophysics Data System (ADS)

    Guevara Gómez, J. C.; Martínez Oliveros, J. C.; Calvo-Mozo, B.

    2017-10-01

    Solar radio astronomy is a fast developing research field in Colombia. Here, we present the scientific goals, specifications and current state of the First Colombian Solar Radio Interferometer consisting of two log-periodic antennas covering a frequency bandwidth op to 800 MHz. We describe the importance and benefits of its development to the radioastronomy in Latin America and its impact on the scientific community and general public.

  18. Solar water-heating performance evaluation-San Diego, California

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report describes energy saved by replacing domestic, conventional natural gas heater with solar-energy subsystem in single-family residence near San Diego, California. Energy savings for 6 month test period averaged 1.089 million Btu. Collector array covered 65 square feet and supplied hot water to both 66-gallon solar storage tank and 40-gallon tank for domestic use. Natural gas supplied house's auxiliary energy.

  19. Low cost solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephans, J. B. (Inventor)

    1977-01-01

    A fixed, linear, ground-based primary reflector having an extended, curved sawtooth contoured surface covered with a metallized polymeric reflecting material, reflected solar energy to a movably supported collector that was kept at the concentrated line focus of the reflector primary. Efficient utilization leading to high temperatures from the reflected solar energy was obtained by cylindrical shaped secondary reflectors that directed off-angle energy to the absorber pipe.

  20. User's guide for the Nimbus 7 ERB Solar Analysis Tape (ESAT)

    NASA Technical Reports Server (NTRS)

    Hickey, J. R.; Major, E. R.; Kyle, H. L.

    1984-01-01

    Five years of Nimbus 7 ERB solar data is available in compact form on a single ERB solar analysis tape (ESAT). The period covered is November 16, 1978 through October 31, 1983. The Nimbus 7 satellite performs just under 14 orbits a day and the ERB solar telescope observe the Sun once per orbit as the satellite passes + or - near the south pole. The data were carefully calibrated and screened. Mean orbital and daily values are given for the total solar irradiance plus selected spectral intervals. In addition, selected solar activity indicators are on the tape. The ERB experiment, the solar data calibration and screening procedures, the solar activity indicators, and the tape format are described briefly.

  1. Reconstructions of solar irradiance on centennial time scales

    NASA Astrophysics Data System (ADS)

    Krivova, Natalie; Solanki, Sami K.; Dasi Espuig, Maria; Kok Leng, Yeo

    Solar irradiance is the main external source of energy to Earth's climate system. The record of direct measurements covering less than 40 years is too short to study solar influence on Earth's climate, which calls for reconstructions of solar irradiance into the past with the help of appropriate models. An obvious requirement to a competitive model is its ability to reproduce observed irradiance changes, and a successful example of such a model is presented by the SATIRE family of models. As most state-of-the-art models, SATIRE assumes that irradiance changes on time scales longer than approximately a day are caused by the evolving distribution of dark and bright magnetic features on the solar surface. The surface coverage by such features as a function of time is derived from solar observations. The choice of these depends on the time scale in question. Most accurate is the version of the model that employs full-disc spatially-resolved solar magnetograms and reproduces over 90% of the measured irradiance variation, including the overall decreasing trend in the total solar irradiance over the last four cycles. Since such magnetograms are only available for about four decades, reconstructions on time scales of centuries have to rely on disc-integrated proxies of solar magnetic activity, such as sunspot areas and numbers. Employing a surface flux transport model and sunspot observations as input, we have being able to produce synthetic magnetograms since 1700. This improves the temporal resolution of the irradiance reconstructions on centennial time scales. The most critical aspect of such reconstructions remains the uncertainty in the magnitude of the secular change.

  2. FIVE YEARS OF SYNTHESIS OF SOLAR SPECTRAL IRRADIANCE FROM SDID/SISA AND SDO /AIA IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontenla, J. M.; Codrescu, M.; Fedrizzi, M.

    In this paper we describe the synthetic solar spectral irradiance (SSI) calculated from 2010 to 2015 using data from the Atmospheric Imaging Assembly (AIA) instrument, on board the Solar Dynamics Observatory spacecraft. We used the algorithms for solar disk image decomposition (SDID) and the spectral irradiance synthesis algorithm (SISA) that we had developed over several years. The SDID algorithm decomposes the images of the solar disk into areas occupied by nine types of chromospheric and 5 types of coronal physical structures. With this decomposition and a set of pre-computed angle-dependent spectra for each of the features, the SISA algorithm ismore » used to calculate the SSI. We discuss the application of the basic SDID/SISA algorithm to a subset of the AIA images and the observed variation occurring in the 2010–2015 period of the relative areas of the solar disk covered by the various solar surface features. Our results consist of the SSI and total solar irradiance variations over the 2010–2015 period. The SSI results include soft X-ray, ultraviolet, visible, infrared, and far-infrared observations and can be used for studies of the solar radiative forcing of the Earth’s atmosphere. These SSI estimates were used to drive a thermosphere–ionosphere physical simulation model. Predictions of neutral mass density at low Earth orbit altitudes in the thermosphere and peak plasma densities at mid-latitudes are in reasonable agreement with the observations. The correlation between the simulation results and the observations was consistently better when fluxes computed by SDID/SISA procedures were used.« less

  3. Optimization of Water Output by Experimental Analysis on Passive Solar Still

    NASA Astrophysics Data System (ADS)

    Parekh, Winners; Patel, Mrugen; Patel, Nikunj; Prajapati, Jaimin; Patel, Maitrik

    2018-02-01

    This paper presents experimental analysis obtained using the single slope passive solar still. The experiments were conducted in Ahmedabad (23°03’ N, 72°40’ E) using a passive solar still with different water depths and basin materials. Salt was added to study the effect of salinity of water on solar distillation. An extra clear glass is used as cover plate as it transmits 91% light into solar still. Rubber plate and Styrofoam were used as insulating material. So, the productivity of solar still was determined by increasing the temperature of water in the basin and glass temperature.

  4. IMS/Satellite Situation Center report: Predicted orbit plots for IMP-J-1976

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Predicted orbit plots for the IMP-J satellite were given for the time period January-December 1976. These plots are shown in three projections. The time period covered by each set of projections is 12 days and 6 hours, corresponding approximately to the period of IMP-J. The three coordinate systems used are the Geocentric Solar Ecliptic system (GSE), the Geocentric Solar Magnetospheric system (GSM), and the Solar Magnetic system (SM). For each of the three projections, time ticks and codes are given on the satellite trajectories. The codes are interpreted in the table at the base of each plot. Time is given in the table as year/day/decimal hour, and the total time covered by each plot is shown at the bottom of each table.

  5. The Structure and Dynamics of the Solar Corona and Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Grebowsky, J. (Technical Monitor)

    2001-01-01

    This report covers technical progress during the third quarter of the second year of NASA Sun-Earth Connections Theory Program (SECTP) contract 'The Structure and Dynamics of the Solar Corona and Inner Heliosphere,' NAS5-99188, between NASA and Science Applications International Corporation, and covers the period February 16, 2001 to May 15, 2001. Under this contract SAIC and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model.In this report we summarize the accomplishments made by our group during the first seven quarters of our Sun-Earth Connection Theory Program contract. The descriptions are intended to illustrate our principal results. A full account can be found in the referenced publications.

  6. Scale Height variations with solar cycle in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Sanchez-Cano, Beatriz; Lester, Mark; Witasse, Olivier; Milan, Stephen E.; Hall, Benjamin E. S.; Cartacci, Marco; Radicella, Sandro M.; Blelly, Pierre-Louis

    2015-04-01

    The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board the Mars Express spacecraft has been probing the topside of the ionosphere of Mars since June 2005, covering currently almost one solar cycle. A good knowledge of the behaviour of the ionospheric variability for a whole solar period is essential since the ionosphere is strongly dependent on solar activity. Using part of this dataset, covering the years 2005 - 2012, differences in the shape of the topside electron density profiles have been observed. These variations seem to be linked to changes in the ionospheric temperature due to the solar cycle variation. In particular, Mars' ionospheric response to the extreme solar minimum between end-2007 and end-2009 followed a similar pattern to the response observed in the Earth's ionosphere, despite the large differences related to internal origin of the magnetic field between both planets. Plasma parameters such as the scale height as a function of altitude, the main peak characteristics (altitude, density), the total electron content (TEC), the temperatures, and the ionospheric thermal pressures show variations related to the solar cycle. The main changes in the topside ionosphere are detected during the period of very low solar minimum, when ionospheric cooling occurs. The effect on the scale height is analysed in detail. In contrast, a clear increase of the scale height is observed during the high solar activity period due to enhanced ionospheric heating. The scale height variation during the solar cycle has been empirically modelled. The results have been compared with other datasets such as radio-occultation and retarding potential analyser data from old missions, especially in low solar activity periods (e.g. Mariner 4, Viking 1 and 2 landers), as well as with numerical modelling.

  7. A Continental United States High Resolution NLCD Land Cover – MODIS Albedo Database to Examine Albedo and Land Cover Change Relationships

    EPA Science Inventory

    Surface albedo influences climate by affecting the amount of solar radiation that is reflected at the Earth’s surface, and surface albedo is, in turn, affected by land cover. General Circulation Models typically use modeled or prescribed albedo to assess the influence of land co...

  8. The Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS)

    NASA Technical Reports Server (NTRS)

    Oegerle, William (Technical Monitor); Rabin, D.; Davila, J.; Thomas, R. J.; Engler, C.; Irish, S.; Keski-Kuha, R.; Novello, J.; Nowak, M.; Payne, L.; hide

    2003-01-01

    EUNIS (Extreme Ultraviolet Normal Incidence Spectrograph) is a high-efficiency extreme ultraviolet spectrometer that is expected to fly for the first time in 2004 as a sounding rocket payload. Using two independent optical systems, EUNIS will probe the structure and dynamics of the inner solar corona high spectral resolution in two wavelength regions: 17-21 nm with 3.5 pm resolution and 30-37 nm with 7 pm resolution. The long wavelength channel includes He II 30.4 nm and strong lines from Fe XI-XVI; the short wavelength channel includes strong lines of Fe IX-XIII. Angular resolution of 2 arcsec is maintained along a slit covering a full solar radius. EUNIS will have 100 times the throughput of the highly successful SERTS payloads that have preceded it. There are only two reflections in each optical channel, from the superpolished, off-axis paraboloidal primary and the toroidal grating. Each optical element is coated with a high-efficiency multilayer coating optimized for its spectral bandpass. The detector in each channel is a microchannel plate image intensifier fiber- coupled to three 1K x 1K active pixel sensors. EUNIS will obtain spectra with a cadence as short as 1 sec, allowing unprecedented studies of the physical properties of evolving and transient structures. Diagnostics of wave heating and reconnection wil be studied at heights above 2 solar radii, in the wind acceleration region. The broad spectral coverage and high spectral resolution will provide superior temperature and density diagnostics and will enable underflight calibration of several orbital instruments, including SOHO/CDS and EIT, TRACE, Solar-B/EIS, and STEREO/EUVI. EUNIS is supported by NASA through the Low Cost Access to Space Program in Solar and Heliospheric Physics.

  9. Mathematical Modeling and Numerical Analysis of Thermal Distribution in Arch Dams considering Solar Radiation Effect

    PubMed Central

    Mirzabozorg, H.; Hariri-Ardebili, M. A.; Shirkhan, M.; Seyed-Kolbadi, S. M.

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams. PMID:24695817

  10. KSC-97PC1236

    NASA Image and Video Library

    1997-08-12

    The Advanced Composition Explorer (ACE) undergoes final prelaunch processing in KSC’s Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) before being transported to Pad A at Launch Complex 17, Cape Canaveral Air Station, for mating to the Delta II launch vehicle. This photo was taken during a news media opportunity. The worker at right is installing protective covering over one of the spacecraft’s solar arrays. ACE with its combination of nine sensors and instruments will investigate the origin and evolution of solar phenomenon, the formation of solar corona, solar flares and acceleration of the solar wind. Launch is targeted for Aug. 24

  11. Mathematical modeling and numerical analysis of thermal distribution in arch dams considering solar radiation effect.

    PubMed

    Mirzabozorg, H; Hariri-Ardebili, M A; Shirkhan, M; Seyed-Kolbadi, S M

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams.

  12. Solar power plant and still

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, W.P.

    This patent describes a solar energy system. It comprises: a water pond which is heated by solar energy; a cover above the pond which transmits solar energy; an air space between the pond and the cover through which warm air and vaporized water move; a chimney which induces the rapid flow of warm humid air into its lower end and delivers such air at its upper end; a fresh water heat sink which receives condensed vapor from the chimney-induced flow; a heat energy driven engine, the power output of which is a function of the temperature difference between higher andmore » lower temperature levels; a first heat exchanger in the engine connected to the top of the chimney, and arranged to convert the vapor condensation energy into the higher temperature level of th engine; a second heat exchanger in the engine arranged to provide the lower temperature of the engine by connection to the heat sink; and power transfer means driven by the temperature differential energy of the engine.« less

  13. Search for water and life's building blocks in the Universe

    NASA Astrophysics Data System (ADS)

    Kwok, Sun; Bergin, Edwin; Ehrenfreund, Pascale

    Water is the common ground between astronomy and planetary science as the presence of water on a planet is universally accepted as essential for its potential habitability. Water assists many biological chemical reactions leading to complexity by acting as an effective solvent. It shapes the geology and climate on rocky planets, and is a major or primary constituent of the solid bodies of the outer solar system. Water ice seems universal in space and is by far the most abundant condensed-phase species in our universe. Water-rich icy layers cover dust particles within the cold regions of the interstellar medium and molecular ices are widespread in the solar system. The poles of terrestrial planets (e.g. Earth, Mars) and most of the outer-solar-system satellites are covered with ice. Smaller solar system bodies, such as comets and Kuiper Belt Objects (KBOs), contain a significant fraction of water ice and trace amounts of organics. Beneath the ice crust of several moons of Jupiter and Saturn liquid water oceans probably exist.

  14. A new kind of transparent and self-cleaning film for solar cells.

    PubMed

    Xu, Qi; Zhao, Qi; Zhu, Xiaofei; Cheng, Li; Bai, Suo; Wang, Zenghua; Meng, Leixing; Qin, Yong

    2016-10-20

    A kind of one step and in situ etching method is developed to fabricate a highly optically transparent and flexible self-cleaning superhydrophobic film (SSF). This SSF exhibits a very rough surface morphology with hierarchical structure, which makes it have a contact angle of 154.6° and a sliding angle of smaller than 1°. And the SSF can also be self-cleaned in the wind. The SSF hierarchical structure scatters the incident light, but it almost doesn't attenuate the light. So the SSF has antireflection properties and a high light transmittance of 94%. The excellent self-cleaning property, high light transmittance and antireflection property mean that the SSF greatly enhances the performance of solar cells in practical working conditions. The solar cell's efficiency maintains at 95.8% of its initial value after covering with the SSF, which is about 1.7 times higher than that of the solar cell covered with dust, as in practical conditions.

  15. The Herschel DUNES Open Time Key Programme

    NASA Technical Reports Server (NTRS)

    Danchi, William C.

    2009-01-01

    We will use the unique photometric capabilities provided by Herschel to perform a deep and systematic survey for faint, cold debris disks around nearby stars. Our sensitivity-limited Open Time Key Programme (OTKP) aims at finding and characterizing faint extrasolar analogues to the Edgeworth-Kuiper Belt (EKB) in an unbiased, statistically significant sample of nearby FGK main-sequence stars. Our target set spans a broad range of stellar ages (from 0.1 to 10 Gyr) and is volume-limited (distances < 20 pc). All stars with known extrasolar planets within this distance are included; additionally, some M- and A-type stars will be observed in collaboration with the Herschel DEBRIS OTKP, so that the entire sample covers a decade in stellar mass, from 0.2 to 2 solar masses. We will perform PACS and SPIRE photometric observations covering the wavelength range from 70 to 500 microns. The PACS observations at 100 microns have been designed to detect the stellar photospheres down to the confusion limit with a signal-to-noise ratio > 5. The observations in the other Herschel bands will allow us to characterize, model, and constrain the disks. As a result, it will be possible for us to reach fractional dust luminosities of a few times 10-7, close to the EKB level in the Solar System. This will provide an unprecedented lower limit to the fractional abundance of planetesimal systems and allow us to assess the presence of giant planets, which would play dynamical roles similar to those played by Jupiter and Neptune in the Solar System. The proposed observations will provide new and unique evidence for the presence of mature planetary systems in the solar neighbourhood and, in turn, will address the universality of planet/planetary system formation in disks around young stars.

  16. Reflectance spectroscopy of oxalate minerals and relevance to Solar System carbon inventories

    NASA Astrophysics Data System (ADS)

    Applin, Daniel M.; Izawa, Matthew R. M.; Cloutis, Edward A.

    2016-11-01

    The diversity of oxalate formation mechanisms suggests that significant concentrations of oxalic acid and oxalate minerals could be widely distributed in the Solar System. We have carried out a systematic study of the reflectance spectra of oxalate minerals and oxalic acid, covering the 0.2-16 μm wavelength region. Our analyses show that oxalates exhibit unique spectral features that enable discrimination between oxalate phases and from other commonly occurring compounds, including carbonates, in all regions of the spectrum except for the visible. Using these spectral data, we consider the possible contribution of oxalate minerals to previously observed reflectance spectra of many objects throughout the Solar System, including satellites, comets, and asteroids. We find that polycarboxylic acid dimers and their salts may explain the reflectance spectra of many carbonaceous asteroids in the 3 μm spectral region. We suggest surface concentration of these compounds may be a type of space weathering from the photochemical and oxidative decomposition of the organic macromolecular material found in carbonaceous chondrites. The stability and ubiquity of these minerals on Earth, in extraterrestrial materials, and in association with biological processes make them useful for many applications in Earth and planetary sciences.

  17. On the Analysis of the Climatology of Cloudiness of the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Yousef, L. A.; Temimi, M.

    2015-12-01

    This study aims to determine the climatology of cloudiness over the Arabian Peninsula. The determined climatology will assist solar energy resource assessment in the region. The seasonality of cloudiness and its spatial variability will also help guide several cloud seeding operational experiments in the region. Cloud properties from the International Satellite Cloud Climatology Project (ISCCP) database covering the time period from 1983 through 2009 are analyzed. Time series of low, medium, high, and total cloud amounts are investigated, in addition to cloud optical depth and total column water vapor. Initial results show significant decreasing trends in the total and middle cloud amounts, both annually and seasonally, at a 95% confidence interval. The relationship between cloud amounts and climate oscillations known to affect the region is explored. Climate indices exhibiting significant correlations with the total cloud amounts include the Pacific Decadal Oscillation (PDO) index. The study also includes a focus on the United Arab Emirates (UAE), comparing the inferred cloudiness data to in situ rainfall measurements taken from rain gauges across the UAE. To assess the impact of cloudiness on solar power resources in the country, time series of cloud amounts and Direct Normal Irradiance (DNI), obtained from the UAE Solar Atlas, are compared.

  18. Standard performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 3-7/8 inches

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Basic test results are given of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes, and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  19. The High Energy Solar Physics mission (HESP): Scientific objectives and technical description

    NASA Technical Reports Server (NTRS)

    Crannell, Carol; Dennis, Brian; Davis, John; Emslie, Gordon; Haerendel, Gerhard; Hudson, High; Hurford, Gordon; Lin, Robert; Ling, James; Pick, Monique

    1991-01-01

    The High Energy Solar Physics mission offers the opportunity for major breakthroughs in the understanding of the fundamental energy release and particle acceleration processes at the core of the solar flare problem. The following subject areas are covered: the scientific objectives of HESP; what we can expect from the HESP observations; the high energy imaging spectrometer (HEISPEC); the HESP spacecraft; and budget and schedule.

  20. The Oort cloud

    NASA Technical Reports Server (NTRS)

    Marochnik, Leonid S.; Mukhin, Lev M.; Sagdeev, Roald Z.

    1991-01-01

    Views of the large-scale structure of the solar system, consisting of the Sun, the nine planets and their satellites, changed when Oort demonstrated that a gigantic cloud of comets (the Oort cloud) is located on the periphery of the solar system. The following subject areas are covered: (1) the Oort cloud's mass; (2) Hill's cloud mass; (3) angular momentum distribution in the solar system; and (4) the cometary cloud around other stars.

  1. Environmental Interactions Technology Status

    DTIC Science & Technology

    1986-10-01

    4 1 - 3 - - 3 - High-Voltage Interactions 4 4 1 3 3 1 3 3 1 HIGH ENERGY RADIATION: - Radiation Damage to: - Electronics - 4 4 - 4 4 - 4 4 - Solar ...3), High Energy Radiation Environments (Section 4), Neutral Environments (Section 5), Particle Environments (Section 6), Solar Radiation Environments...secondary mirror, and light collector surrounding the small solar cell. No cover glass is required. Only recently has a study been undertaken to evaluate the

  2. Small- Geo Solar Array: New Generation Of Solar Arrays For Commercial Telecom Satellites For Power Ranges Between 2,5 KW And 7,5 KW

    NASA Astrophysics Data System (ADS)

    Paarmann, Carola; Muller, Jens; Mende, Thomas; Borner, Carsten; Mascher, Rolf

    2011-10-01

    In the frame of the ESA supported Artes 11 program a new generation of GEO telecommunication satellites is under development. This platform will cover the power range from 2 to 5 kW. ASTRIUM GmbH is contracted to develop and design the Solar Array for this platform. Furthermore the manufacturing and the qualification of a PFM wing for the first flight model is foreseen. The satellite platform, called Small-GEO, is developed under the responsibility of OHB System. This first Small-GEO satellite is designated to be delivered to HISPASAT for operation. The concept of ASTRIUM GmbH is to use all the experiences from the very successful EUROSTAR 2000+, EUROSTAR-3000 and the ALPHABUS platform and to adapt the technologies to the Small- GEO Solar Array. With the benefit of the huge in-orbit heritage of these programs, the remaining risks for the Small-GEO Solar Array can be minimized. The development of the Small-GEO Solar Array extends the ASTRIUM GmbH product portfolio by covering now the complete power range between 2 kW and 31 kW. This paper provides an overview of the different configurations, their main design features and parameters.

  3. Bioengineering aspects of inorganic carbon supply to mass algal cultures. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, J.C.

    1980-06-01

    The work included in this report is part of an ongoing study (currently funded by the Solar Energy Research Institute - Subcontract No. XR-9-8144-1) on the inorganic carbon requirements of microalgae under mass culture conditions and covers the period June 1, 1978 through May 31, 1979. It is divided into two parts appended herein. The first part is a literature review on the inorganic carbon chemical system in relation to algal growth requirements, and the second part deals with the kinetics of inorganic carbon-limited growth of two freshwater chlorophytes including the effect of carbon limitation on cellular chemical composition. Additionalmore » experiment research covered under this contract was reported in the Proceedings of the 3rd Annual Biomass Energy Systems Conferences, pp. 25-32, Bioengineering aspects of inorganic carbon supply to mass algal cultures. Report No. SERI/TP-33-285.« less

  4. Daniel K. Inouye Solar Telescope: High-resolution observing of the dynamic Sun

    NASA Astrophysics Data System (ADS)

    Tritschler, A.; Rimmele, T. R.; Berukoff, S.; Casini, R.; Kuhn, J. R.; Lin, H.; Rast, M. P.; McMullin, J. P.; Schmidt, W.; Wöger, F.; DKIST Team

    2016-11-01

    The 4-m aperture Daniel K. Inouye Solar Telescope (DKIST) formerly known as the Advanced Technology Solar Telescope (ATST) is currently under construction on Haleakalā (Maui, Hawai'i) projected to start operations in 2019. At the time of completion, DKIST will be the largest ground-based solar telescope providing unprecedented resolution and photon collecting power. The DKIST will be equipped with a set of first-light facility-class instruments offering unique imaging, spectroscopic and spectropolarimetric observing opportunities covering the visible to infrared wavelength range. This first-light instrumentation suite will include: a Visible Broadband Imager (VBI) for high-spatial and -temporal resolution imaging of the solar atmosphere; a Visible Spectro-Polarimeter (ViSP) for sensitive and accurate multi-line spectropolarimetry; a Fabry-Pérot based Visible Tunable Filter (VTF) for high-spatial resolution spectropolarimetry; a fiber-fed Diffraction-Limited Near Infra-Red Spectro-Polarimeter (DL-NIRSP) for two-dimensional high-spatial resolution spectropolarimetry (simultaneous spatial and spectral information); and a Cryogenic Near Infra-Red Spectro-Polarimeter (Cryo-NIRSP) for coronal magnetic field measurements and on-disk observations of, e.g., the CO lines at 4.7 μm. We will provide an overview of the DKIST's unique capabilities with strong focus on the first-light instrumentation suite, highlight some of the additional properties supporting observations of transient and dynamic solar phenomena, and touch on some operational strategies and the DKIST critical science plan.

  5. Evolutionary process development towards next generation crystalline silicon solar cells : a semiconductor process toolbox application

    NASA Astrophysics Data System (ADS)

    John, J.; Prajapati, V.; Vermang, B.; Lorenz, A.; Allebe, C.; Rothschild, A.; Tous, L.; Uruena, A.; Baert, K.; Poortmans, J.

    2012-08-01

    Bulk crystalline Silicon solar cells are covering more than 85% of the world's roof top module installation in 2010. With a growth rate of over 30% in the last 10 years this technology remains the working horse of solar cell industry. The full Aluminum back-side field (Al BSF) technology has been developed in the 90's and provides a production learning curve on module price of constant 20% in average. The main reason for the decrease of module prices with increasing production capacity is due to the effect of up scaling industrial production. For further decreasing of the price per wattpeak silicon consumption has to be reduced and efficiency has to be improved. In this paper we describe a successive efficiency improving process development starting from the existing full Al BSF cell concept. We propose an evolutionary development includes all parts of the solar cell process: optical enhancement (texturing, polishing, anti-reflection coating), junction formation and contacting. Novel processes are benchmarked on industrial like baseline flows using high-efficiency cell concepts like i-PERC (Passivated Emitter and Rear Cell). While the full Al BSF crystalline silicon solar cell technology provides efficiencies of up to 18% (on cz-Si) in production, we are achieving up to 19.4% conversion efficiency for industrial fabricated, large area solar cells with copper based front side metallization and local Al BSF applying the semiconductor toolbox.

  6. Study of Magnetic Structure in the Solar Photosphere and Chromosphere

    NASA Technical Reports Server (NTRS)

    Noyes, Robert W.; Avrett, Eugene; Nisenson, Peter; Uitenbroek, Han; vanBallegooijen, Adriaan

    1998-01-01

    This grant funded an observational and theoretical program to study the structure and dynamics of the solar photosphere and low chromosphere, and the spectral signatures that result. The overall goal is to learn about mechanisms that cause heating of the overlying atmosphere, and produce variability of solar emission in spectral regions important for astrophysics and space physics. The program exploited two new ground-based observational capabilities: one using the Swedish Solar Telescope on La Palma for very high angular resolution observations of the photospheric intensity field (granulation) and proxies of the magnetic field (G-band images); and the other using the Near Infrared Magnetograph at the McMath-Pierce Solar Facility to map the spatial variation and dynamic behavior of the solar temperature minimum region using infrared CO lines. We have interpreted these data using a variety of theoretical and modelling approaches, some developed especially for this project. Previous annual reports cover the work done up to 31 May 1997. This final report summarizes our work for the entire period, including the period of no-cost extension from 1 June 1997 through September 30 1997. In Section 2 we discuss observations and modelling of the photospheric flowfields and their consequences for heating of the overlying atmosphere, and in Section 3 we discuss imaging spectroscopy of the CO lines at 4.67 mu.

  7. SMILE: A new approach to exploring solar-terrestrial relationships

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, Graziella; Wang, Chi; Steven, Sembay; Dai, Lei; Li, Lei; Donovan, Eric; Sun, Tianran; Kataria, Dhiren; Yang, Huigen; Read, Andrew; Whittaker, Ian; Spanswick, Emma; Sibeck, David; Kuntz, Kip; Escoubet, Philippe; Agnolon, David; Raab, Walfried; Zheng, Janhua

    2017-04-01

    SMILE (Solar wind Magnetosphere Ionosphere Link Explorer) aims to investigate the coupling of the solar wind with the Earth's magnetosphere, and the geospace dynamics that ensue, in a novel and global manner never tried so far. From a highly elliptical and highly inclined polar orbit, SMILE will simultaneously image the soft X-rays produced by solar wind charge exchange to delineate the Earth's magnetic boundaries and polar cusps, image the northern auroral oval in ultraviolet emissions, and measure the solar wind/magnetosheath plasma and magnetic field input. SMILE measurements will inform the science underpinning our still limited understanding of solar-terrestrial relationships and of their fundamental drivers, and will validate both global empirical and first-principle models. For the first time we will be able to trace and link the processes governing magnetopause interactions to those causing charged particle precipitation into the cusps and the remainder of the auroral oval, mapping aspects of the global interaction including the evolution of energy and mass transport. SMILE is a joint space mission between the European Space Agency and the Chinese Academy of Sciences due for launch at the end of 2021. This presentation will cover the science that will be delivered by SMILE and will provide an overview of SMILE's payload and mission development, demonstrating the scientific potential of SMILE through simulations of the data that it will return.

  8. Optical analysis of solar energy tubular absorbers.

    PubMed

    Saltiel, C; Sokolov, M

    1982-11-15

    The energy absorbed by a solar energy tubular receiver element for a single incident ray is derived. Two types of receiver elements were analyzed: (1) an inner tube with an absorbing coating surrounded by a semitransparent cover tube, and (2) a semitransparent inner tube filled with an absorbing fluid surrounded by a semitransparent cover tube. The formation of ray cascades in the semitransparent tubes is considered. A numerical simulation to investigate the influence of the angle of incidence, sizing, thickness, and coefficient of extinction of the tubes was performed. A comparison was made between receiver elements with and without cover tubes. Ray tracing analyses in which rays were followed within the tubular receiver element as well as throughout the rest of the collector were performed for parabolic and circular trough concentrating collectors.

  9. Downwelling spectral irradiance during evening twilight as a function of the lunar phase.

    PubMed

    Palmer, Glenn; Johnsen, Sönke

    2015-02-01

    We measured downwelling spectral vector irradiance (from 350 to 800 nm) during evening civil and nautical twilight (solar elevation down to -12°). Nine sets of measurements were taken to cover the first half of the lunar cycle (from the new to full moon) and were also used to calculate chromaticity (CIE 1976 u'v'). The lunar phase had no consistent effect on downwelling irradiance until solar elevation was less than -8°. For lower solar elevations, the effect of the moon increased with the fraction of the illuminated lunar disk until the fraction was approximately 50%. For fractions greater than 50%, the brightness and chromaticity of the downwelling irradiance were approximately independent of the fraction illuminated, likely because the greater brightness of a fuller moon was offset by its lower elevation during twilight. Given the importance of crepuscular periods to animal activity, including predation, reproductive cycles, and color vision in dim light, these results may have significant implications for animal ecology.

  10. Berkeley extreme-ultraviolet airglow rocket spectrometer: BEARS.

    PubMed

    Cotton, D M; Chakrabarti, S

    1992-09-20

    We describe the Berkeley extreme-UV airglow rocket spectrometer, which is a payload designed to test several thermospheric remote-sensing concepts by measuring the terrestrial O I far-UV and extreme-UV dayglow and the solar extreme-UV spectrum simultaneously. The instrument consisted of two near-normal Rowland mount spectrometers and a Lyman-alpha photometer. The dayglow spectrometer covered two spectral regions from 980 to 1040 A and from 1300 to 1360 A with 1.5-A resolution. The solar spectrometer had a bandpass of 250-1150 A with an ~ 10-A resolution. All three spectra were accumulated by using a icrochannel-plate-intensified, two-dimensional imaging detector with three separate wedge-and strip anode readouts. The hydrogen Lyman-alpha photometer was included to monitor the solar Lyman-alpha irradiance and geocoronal Lyman-alpha emissions. The instrument was designed, fabricated, and calibrated at the University of California, Berkeley and was successfully launched on 30 September 1988 aboard the first test flight of a four-stage sounding rocket, Black Brant XII.

  11. (abstract) A Geomagnetic Contribution to Climate Change in this Century

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Ruzmaikin, A.; Lawrence, J.

    1996-01-01

    There is a myth that all solar effects can be parameterized by the sun spot number. This is not true. For example, the level of geomagnetic activity during this century was not proportional to the sunspot number. Instead there is a large systematic increase in geomagnetic activity, not reflected in the sunspot number. This increase occurred gradually over at least 60 years. The 11 year solar cycle variation was superimposed on this systematic increase. Here we show that this systematic increase in activity is well correlated to the simultaneous increase in terrestrial temperature that occurred during the first half of this century. We discuss these findings in terms of mechanisms by which geomagnetics can be coupled to climate. These mechanisms include possible changes in weather patterns and cloud cover due to increased cosmic ray fluxes, or to increased fluxes of high energy electrons. We suggest that this systematic increase in geomagnetic activity contributed (along with anthropogenic effects and possible changes in solar irradiance) to the changes in climate recorded during this period.

  12. NASA Prediction of Worldwide Energy Resource High Resolution Meteorology Data For Sustainable Building Design

    NASA Technical Reports Server (NTRS)

    Chandler, William S.; Hoell, James M.; Westberg, David; Zhang, Taiping; Stackhouse, Paul W., Jr.

    2013-01-01

    A primary objective of NASA's Prediction of Worldwide Energy Resource (POWER) project is to adapt and infuse NASA's solar and meteorological data into the energy, agricultural, and architectural industries. Improvements are continuously incorporated when higher resolution and longer-term data inputs become available. Climatological data previously provided via POWER web applications were three-hourly and 1x1 degree latitude/longitude. The NASA Modern Era Retrospective-analysis for Research and Applications (MERRA) data set provides higher resolution data products (hourly and 1/2x1/2 degree) covering the entire globe. Currently POWER solar and meteorological data are available for more than 30 years on hourly (meteorological only), daily, monthly and annual time scales. These data may be useful to several renewable energy sectors: solar and wind power generation, agricultural crop modeling, and sustainable buildings. A recent focus has been working with ASHRAE to assess complementing weather station data with MERRA data. ASHRAE building design parameters being investigated include heating/cooling degree days and climate zones.

  13. Carbon and nitrogen abundances in F- and G-type stars

    NASA Technical Reports Server (NTRS)

    Clegg, R. E. S.

    1977-01-01

    Carbon and nitrogen abundances have been obtained for a sample of 11-F- and G-type dwarfs covering a range in Fe/H abundance ratio from -0.8 to +0.3. Model atmospheres, which included the effects of convection and line blanketing, were used to calculate synthetic spectra of the CH, CN, and NH molecular bands. Effective oscillator strengths for the bands studied were found by matching synthetic spectra calculated from a model solar atmosphere with the observed solar bands. Many of the metal-poor stars, and particularly the high-velocity stars, were found to have substantial nitrogen over-deficiencies, suggesting that N is manufactured mostly in a secondary manner. The carbon-to-iron ratios were similar to the solar ratio, although there may be slight C over-deficiencies in metal-poor stars. However, the variation in C/Fe is not as marked as that found recently by Hearnshaw (1974). A comprehensive discussion of the theoretical errors is given, and some applications to Galactic evolution are noted.

  14. Photovoltaic: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    ERIC Educational Resources Information Center

    Auer, Herbert J.

    This instructional manual contains 11 learning activity packets for use in a workshop on photovoltaic converters. The lessons cover the following topics: introduction; solar radiation--input for photovoltaic converters; photovoltaic cells; solar electric generator systems; characteristics of silicon cells; photovoltaic module source resistance;…

  15. Solar Energy Experiments for High School and College Students.

    ERIC Educational Resources Information Center

    Norton, Thomas W.; And Others

    This publication contains eighteen experiments and eight classroom activities. The experiments are of varying difficulty and cover the important aspects of solar energy utilization. Each experiment is self-contained, with its own introduction and background information. Energy measurements are emphasized and techniques for collector efficiency…

  16. Models of Solar Wind Structures and Their Interaction with the Earth's Space Environment

    NASA Astrophysics Data System (ADS)

    Watermann, J.; Wintoft, P.; Sanahuja, B.; Saiz, E.; Poedts, S.; Palmroth, M.; Milillo, A.; Metallinou, F.-A.; Jacobs, C.; Ganushkina, N. Y.; Daglis, I. A.; Cid, C.; Cerrato, Y.; Balasis, G.; Aylward, A. D.; Aran, A.

    2009-11-01

    The discipline of “Space Weather” is built on the scientific foundation of solar-terrestrial physics but with a strong orientation toward applied research. Models describing the solar-terrestrial environment are therefore at the heart of this discipline, for both physical understanding of the processes involved and establishing predictive capabilities of the consequences of these processes. Depending on the requirements, purely physical models, semi-empirical or empirical models are considered to be the most appropriate. This review focuses on the interaction of solar wind disturbances with geospace. We cover interplanetary space, the Earth’s magnetosphere (with the exception of radiation belt physics), the ionosphere (with the exception of radio science), the neutral atmosphere and the ground (via electromagnetic induction fields). Space weather relevant state-of-the-art physical and semi-empirical models of the various regions are reviewed. They include models for interplanetary space, its quiet state and the evolution of recurrent and transient solar perturbations (corotating interaction regions, coronal mass ejections, their interplanetary remnants, and solar energetic particle fluxes). Models of coupled large-scale solar wind-magnetosphere-ionosphere processes (global magnetohydrodynamic descriptions) and of inner magnetosphere processes (ring current dynamics) are discussed. Achievements in modeling the coupling between magnetospheric processes and the neutral and ionized upper and middle atmospheres are described. Finally we mention efforts to compile comprehensive and flexible models from selections of existing modules applicable to particular regions and conditions in interplanetary space and geospace.

  17. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance

    NASA Astrophysics Data System (ADS)

    Desta, Derese; Ram, Sanjay K.; Rizzoli, Rita; Bellettato, Michele; Summonte, Caterina; Jeppesen, Bjarke R.; Jensen, Pia B.; Tsao, Yao-Chung; Wiggers, Hartmut; Pereira, Rui N.; Balling, Peter; Larsen, Arne Nylandsted

    2016-06-01

    A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering. The n-i-p amorphous silicon thin-film solar cells grown on such a back-reflector show enhanced light absorption resulting in improved external quantum efficiency. The benefit of the light trapping in those solar cells is evidenced by the gains in short-circuit current density and efficiency up to 15.6% and 19.3% respectively, compared to the reference flat solar cells. This improvement in the current generation in the solar cells grown on the flat-topped (buried pyramid) back-reflector is observed even when the irradiation takes place at large oblique angles of incidence. Finite-difference-time-domain simulation results of optical absorption and ideal short-circuit current density values agree well with the experimental findings. The proposed approach uses a low cost and simple fabrication technique and allows effective light manipulation by utilizing the optical properties of micro-scale structures and nanoscale constituent particles.

  18. A Short Progress Report on High-Efficiency Perovskite Solar Cells.

    PubMed

    Tang, He; He, Shengsheng; Peng, Chuangwei

    2017-12-01

    Faced with the increasingly serious energy and environmental crisis in the world nowadays, the development of renewable energy has attracted increasingly more attention of all countries. Solar energy as an abundant and cheap energy is one of the most promising renewable energy sources. While high-performance solar cells have been well developed in the last couple of decades, the high module cost largely hinders wide deployment of photovoltaic devices. In the last 10 years, this urgent demand for cost-effective solar cells greatly facilitates the research of solar cells. This paper reviews the recent development of cost-effective and high-efficient solar cell technologies. This report paper covers low-cost and high-efficiency perovskite solar cells. The development and the state-of-the-art results of perovskite solar cell technologies are also introduced.

  19. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  20. Solar panel cleaning robot

    NASA Astrophysics Data System (ADS)

    Nalladhimmu, Pavan Kumar Reddy; Priyadarshini, S.

    2018-04-01

    As the demand of electricity is increasing, there is need to using the renewable sources to produce the energy at present of power shortage, the use of solar energy could be beneficial to great extent and easy to get the maximum efficiency. There is an urgent in improving the efficiency of solar power generation. Current solar panels setups take a major power loss when unwanted obstructions cover the surface of the panels. To make solar energy more efficiency of solar array systems must be maximized efficiency evaluation of PV panels, that has been discussed with particular attention to the presence of dust on the efficiency of the PV panels have been highlighted. This paper gives the how the solar panel cleaning system works and designing of the cleaning system.

  1. The GONG Site Survey. [solar oscillations

    NASA Technical Reports Server (NTRS)

    Hill, Frank; Ambastha, Ashok; Ball, Warren; Duhalde, Oscar; Farris, Don; Fischer, George; Hieda, Les; Zhen, Huang; Ingram, Bob; Jackson, Patty

    1988-01-01

    The Global Oscillation Network Group (GONG) project is planning to place six observing stations around the world to observe the solar oscillations as continuously as possible. The procedures that are being used to select the six sites are described. Results of measurements of cloud cover obtained by networks of 6 (out of 10) radiometers show a duty cycle of over 93 percent, with the first diurnal sidelobe in the window power spectrum suppressed by a factor of 400. The results are in good agreement with the predictions of a computer model of the expected cloud cover at individual sites.

  2. The Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) yo-yo despin and solar array deployment mechanism

    NASA Technical Reports Server (NTRS)

    Kellogg, James W.

    1993-01-01

    The SAMPEX spacecraft, successfully launched in July 1992, carried a yo-yo despin system and deployable solar arrays. The despin and solar array mechanisms formed an integral system as the yo-yo cables held the solar array release mechanism in place. The SAMPEX design philosophy was to minimize size and weight through the use of a predominantly single string system. The design challenge was to build a system in a limited space, which was reliable with minimal redundancy. This paper covers the design and development of the SAMPEX yo-yo despin and solar array deployment mechanisms. The problems encountered during development and testing will also be discussed.

  3. foF2 vs solar indices for the Rome station: Looking for the best general relation which is able to describe the anomalous minimum between cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Perna, L.; Pezzopane, M.

    2016-10-01

    Analyses of the dependence of the F2layer critical frequency, foF2, on five widely used solar activity indices (F10.7, Lym-α, MgII, R and EUV0.1-50)are carried out considering noon values manually validated at the ionospheric station of Rome (41.8°N, 12.5°E, Italy) between January 1976 and December 2013, a period of time covering the last three solar cycles and including the prolonged and anomalous minimum of solar cycle 23/24 (years 2008-2009). After applying a 1-year running mean to both foF2 and solar activity indices time series, a second order polynomial fitting proves to perform better than a linear one, and this is specifically due to the very low solar activity of the last solar minimum and to the remaining saturation effect characterizing the high solar activity. A comparison between observed and synthetic foF2 values, the latter calculated by using the analytical relations found for every index, and some considerations made on the R parameter introduced by Solomon et al. (2013), suggest that MgII is the best index to describe the dependence of foF2 on the solar activity. Three main reasons justify this result: (1) the good sensibility of MgII to the variations of foF2 for low solar activity; (2) the reduced saturation effect characterizing MgII at high solar activity; (3) the poor influence of the hysteresis effect characterizing MgII at medium solar activity. On the other hand, the F10.7 index, widely used as input parameter for numerous ionospheric models, does not represent properly the last minimum; specifically, it is not able to describe the variations of foF2 under a solar activity level of F10.7=82·10-22 [J Hz-1 s-1 m-2].

  4. Investigation of energy transfer mechanisms between Bi(2+) and Tm(3+) by time-resolved spectrum.

    PubMed

    Li, Yang; Sharafudeen, Kaniyarakkal; Dong, Guoping; Ma, Zhijun; Qiu, Jianrong

    2013-11-01

    Here, we report for the first time the optical properties of Bi(2+) and Tm(3+) co-doped germanate glasses and elucidate the potential of this material as substrates to improve the performance of CdTe solar cell. A strong emission peak at 800nm is observed under the excitation of 450-700nm in this material. The energy transfer processes from the transitions of Bi(2+) [(2)P3/2(1)→(2)P1/2]: Tm(3+) [(3)H6→(3)H4] are investigated by time-resolved luminescence spectroscopy. A cover glass exhibiting an ultra-broadband response spectrum covering the entire solar visible wavelength region is suggested to enhance the conversion efficiency of CdTe solar cells significantly. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. California Solar Farms

    NASA Image and Video Library

    2015-04-02

    On February 15, 2015 the Desert Sunlight solar project in California’s Mojave Desert became operational. This image from NASA Terra spacecraft shows the 550-megawatt plant generates enough electricity to power 160,000 average homes. Covering an area of 16 km2, the 8.8 million cadmium telluride photovoltaic modules take advantage of the more than 300 days of sunshine. Desert Sunlight joins the similar-sized Topaz Solar Farm in San Luis Obispo County, CA, that became operational in June, 2014. The Desert Sunlight image (left) was acquired March 12, 2015 and is located at 33.8 degrees north, 115.4 degrees west; the Topaz image (right) was acquired September 11, 2014 and is located at 35.4 degrees north, 120.1 degrees west. Each image covers an area of 10.5 x 12 km. http://photojournal.jpl.nasa.gov/catalog/PIA19268

  6. Mars Array Technology Experiment Developed to Test Solar Arrays on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2001-01-01

    Solar arrays will be the power supply for future missions to the planet Mars, including landers, rovers, and eventually human missions to explore the Martian surface. Until Mars Pathfinder landed in July 1997, no solar array had been used on the surface. The MATE package is intended to measure the solar energy reaching the surface, characterize the Martian environment to gather the baseline information required for designing power systems for long-duration missions, and to quantify the performance and degradation of advanced solar cells on the Martian surface. To measure the properties of sunlight reaching the Martian surface, MATE incorporates two radiometers and a visible/NIR spectrometer. The radiometers consist of multiple thermocouple junctions using thin-film technology. These devices generate a voltage proportional to the solar intensity. One radiometer measures the global broadband solar intensity, including both the direct and scattered sunlight, with a field of view of approximately 130. The second radiometer incorporates a slit to measure the direct (unscattered) intensity radiation. The direct radiometer can only be read once per day, with the Sun passing over the slit. The spectrometer measures the global solar spectrum with two 256-element photodiode arrays, one Si sensitive in the visible range (300 to 1100 nm), and a second InGaAs sensitive to the near infrared (900 to 1700 nm). This range covers 86 percent of the total energy from the Sun, with approximately 5-nm resolution. Each photodiode array has its own fiber-optic feed and grating. Although the purpose of the MATE is to gather data useful in designing solar arrays for Mars surface power systems, the radiometer and spectrometer measurements are expected to also provide important scientific data for characterizing the properties of suspended atmospheric dust. In addition to measuring the solar environment of Mars, MATE will measure the performance of five different individual solar cell types and two different solar cell strings, to qualify advanced solar cell types for future Mars missions. The MATE instrument, designed for the Mars-2001 Surveyor Lander mission, contains a capable suite of sensors that will provide both scientific information as well as important engineering data on the operation of solar power systems on Mars. MATE will characterize the intensity and spectrum of the solar radiation on Mars and measure the performance of solar arrays in the Mars environment. MATE flight hardware was built and tested at the NASA Glenn Research Center and is ready for flight.

  7. Flat-plate solar array project. Volume 6: Engineering sciences and reliability

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Smokler, M. I.

    1986-01-01

    The Flat-Plate Solar Array (FSA) Project activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety, and reliability requirements of large scale terrestrial photovoltaic systems applications are reported. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis of define design shortfalls and, thus, areas requiring additional research and development. A summary of the approach and technical outcome of these activities are provided along with a complete bibliography of the published documentation covering the detailed accomplishments and technologies developed.

  8. The solar power satellite concepts: The past decade and the next decade

    NASA Technical Reports Server (NTRS)

    Kraft, C. C., Jr.

    1979-01-01

    Results of studies on the solar power satellite concept are summarized. The basic advantages are near continuous access to sunlight and freedom from atmospheric effects and cloud cover. The systems definition studies consider photovoltaic and thermal energy conversion systems and find both to be technically feasible, with the photovoltaic approach preferred. A microwave test program is under way which will provide quantitative data on critical parameters, including beam forming and steering accuracy. Ballistic and winged launch vehicles are defined for the transportation of construction materials, with the shuttle expected to provide low cost transportation to and from space. A reference system is outlined for evaluating the concept in terms of environmental and other considerations. Preliminary estimates of natural resource requirements and energy payback intervals are encouraging.

  9. Atlas of reflectance spectra of terrestrial, lunar, and meteoritic powders and frosts from 92 to 1800 nm

    NASA Technical Reports Server (NTRS)

    Wagner, Jeffrey K.; Hapke, Bruce W.; Wells, Eddie N.

    1987-01-01

    The spectra of samples of several powder and frost materials are presented to serve in a reference database for future far-UV scans of solar system bodies. The spectra cover in the 92-1800 nm wavelengths, i.e., wavenumbers 110,000-5600/cm and photon energies from 13.5-1.5 eV. Preparation procedures for the particulates are delineated. The survey includes feldspars, orthopyroxenes, clinopyroxenes, olivines, assorted minerals, achondrites, carbonaceous chondrites and ordinary chondrites, lunar soils and rocks. Frosts of H2O, CO2, NH3 and SO2 gases were also examined. The data are expected to aid in obtaining spectral matches for asteroids and meteoroids when far-UV telescopy of solar system bodies is performed.

  10. Forma y acción de la liberación de energía en la atmósfera solar

    NASA Astrophysics Data System (ADS)

    Mandrini, C. H.

    2016-08-01

    We briefly describe the lines of work developed over more than twenty years and their relevant results. Our scope is essentially that of active events that occur in the solar atmosphere covering wide temporal and spatial scales and energy range. We present results derived from the comparative analysis of active events and their interplanetary counterparts, as well as of aspects related to the quiet solar atmosphere, such as the heating of the corona and the origin of the slow solar wind.

  11. Cost study of solar cell space power systems.

    NASA Technical Reports Server (NTRS)

    Bernatowicz, D. T.

    1972-01-01

    A study of historical costs for solar cell space power systems was made by a NASA ad hoc study group. The study covered thirteen missions that represented a broad cross-section of flight projects over the past decade. Fully burdened costs in terms of 1971 dollars are presented for the system and the solar array. The costs correlate reasonably well with array area and do not increase in proportion to array area. The trends for array costs support the contention that solar cell and module standardization would reduce costs.

  12. Scientific American Inventions From Outer Space: Everyday Uses For NASA Technology

    NASA Technical Reports Server (NTRS)

    Baker, David

    2000-01-01

    The purpose of this book is to present some of the inventions highlighted in the yearly publication of the National Aeronautics and Space Administration (NASA) Spinoff. These inventions cover a wide range, some of which include improvements in health, medicine, public safety, energy, environment, resource management, computer technology, automation, construction, transportation, and manufacturing technology. NASA technology has brought forth thousands of commercial products which include athletic shoes, portable x-ray machines, and scratch-resistant sunglasses, guidance systems, lasers, solar power, robotics and prosthetic devices. These products are examples of NASA research innovations which have positively impacted the community.

  13. Elementary school aerospace activities: A resource for teachers

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The chronological development of the story of man and flight, with emphasis on space flight, is presented in 10 units designed as a resource for elementary school teachers. Future exploration of space and the utlization of space flight capabilities are included. Each unit contains an outline, a list of suggested activities for correlation, a bibliography, and a list of selected audiovisual materials. A glossary of aerospace terms is included. Topics cover: earth characteristics that affect flight; flight in atmosphere, rockets, technological advances, unmanned Earth satellites, umanned exploration of the solar system, life support systems; astronauts, man in space, and projections for the future.

  14. Effects of the Integration of Sunn Hemp and Soil Solarization on Plant-Parasitic and Free-Living Nematodes

    PubMed Central

    Marahatta, Sharadchandra P.; Wang, Koon-Hui; Sipes, Brent S.; Hooks, Cerruti R. R.

    2012-01-01

    Sunn hemp (SH), Crotolaria juncea, is known to suppress Rotylenchulus reniformis and weeds while enhancing free-living nematodes involved in nutrient cycling. Field trials were conducted in 2009 (Trial I) and 2010 (Trial II) to examine if SH cover cropping could suppress R. reniformis and weeds while enhancing free-living nematodes if integrated with soil solarization (SOL). Cover cropping of SH, soil solarization, and SH followed by SOL (SHSOL) were compared to weedy fallow control (C). Rotylenchulus reniformis population was suppressed by SHSOL at the end of cover cropping or solarization period (Pi) in Trial I, but not in Trial II. However, SOL and SHSOL did not suppress R. reniformis compared to SH in either trial. SH enhanced abundance of bacterivores and suppressed the % herbivores only at Pi in Trial II. At termination of the experiment, SH resulted in a higher enrichment index indicating greater soil nutrient availability, and a higher structure index indicating a less disturbed nematode community compared to C. SOL suppressed bacterivores and fungivores only in Trial II but not in Trial I. On the other hand, SHSOL enhanced bacterivores and fungivores only at Pi in Trial I. Weeds were suppressed by SH, SOL and SHSOL throughout the experiment. SHSOL suppressed R. reniformis and enhanced free-living nematodes better than SOL, and suppressed weeds better than SH. PMID:23482700

  15. Libbey-Owens-Ford solar collector static load test

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test article is a flat plate solar collector that uses liquid as the heat transfer medium. The absorber plate is copper and has a double tempered glass cover. Test requirements and procedures are described and results are presented in a table. Results demonstrate that the collector performed satisfactorily.

  16. A Glimpse of the Solar Eclipse from NREL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-08-22

    On August 21, the NREL campus in Golden, Colorado experience a near-complete eclipse of the sun. This video, recorded from NREL’s Solar Radiation Research Laboratory, where researchers carefully measure the sun’s energy, captures the moon crossing the sun before clouds move in and cover the sun.

  17. Proceedings of the Flat-Plate Solar Array Project Research Forum on Photovoltaic Metallization Systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A photovoltaic Metallization Research forum, under the sponsorship of the Flat-Plate Solar Array Project consisted of five sessions, covering: (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques, and (5) future metallization challenges.

  18. Spacecraft instrument calibration and stability

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Feldman, P.; Hudson, R.; Lean, J.; Madden, R.; Mcmaster, L.; Mount, G.; Rottman, G.; Simon, P. C.

    1989-01-01

    The following topics are covered: instrument degradation; the Solar Backscatter Ultraviolet (SBUV) Experiment; the Total Ozone Mapping Spectrometer (TOMS); the Stratospheric Aerosol and Gas Experiment 1 (SAGE-1) and SAGE-2 instruments; the Solar Mesosphere Explorer (SME) UV ozone and near infrared airglow instruments; and the Limb Infrared Monitor of the Stratosphere (LIMS).

  19. 24 CFR 201.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the property are secured by mortgages or deeds of trust covering the home and lot. Solar energy system... residential use which is designed to utilize wind or solar energy to reduce the energy requirements of that structure from other energy sources, and which complies with standards prescribed by the Secretary. Special...

  20. Remote sensing-a geophysical perspective.

    USGS Publications Warehouse

    Watson, K.

    1985-01-01

    In this review of developments in the field of remote sensing from a geophysical perspective, the subject is limited to the electromagnetic spectrum from 0.4 mu m to 25cm. Three broad energy categories are covered: solar reflected, thermal infrared, and microwave.-from Authorremote sensing electromagnetic spectrum solar reflected thermal infrared microwave geophysics

  1. China experiments with solar-thermal power production

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2009-04-01

    Construction is due to start later this month on an experimental solar-thermal power plant in the shadow of China's Great Wall that will bring clean energy to 30 000 households by 2010. Built on the outskirts of Beijing at a cost of £10m, the 1.5MW Dahan plant will cover an area the size of 10 football pitches, and will serve as a platform for experiments on different solar-power technologies.

  2. Piezoelectric, Solar and Thermal Energy Harvesting for Hybrid Low-Power Generator Systems With Thin-Film Batteries

    DTIC Science & Technology

    2012-01-01

    research has investigated simultaneous harvesting of vibration energy using the direct piezoelectric effect and harvesting of magnetic energy (alternating... Piezoelectric , solar and thermal energy harvesting for hybrid low-power generator systems with thin-film batteries This article has been downloaded...TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Piezoelectric , solar and thermal energy harvesting for hybrid low-power

  3. Standardized performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 5 5/8 inches

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  4. High Temperature Latent Heat Thermal Energy Storage to Augment Solar Thermal Propulsion for Microsatellites

    DTIC Science & Technology

    2014-03-01

    Charts 3. DATES COVERED (From - To) Mar 2014- May 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER In-House High Temperature Latent Heat Thermal ...Energy Storage to Augment Solar Thermal Propulsion for Microsats 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...High Temperature Latent Heat Thermal Energy Storage to Augment Solar Thermal Propulsion for Microsatellites Presentation Subtitle Matthew R. Gilpin

  5. Experimental Investigation of Latent Heat Thermal Energy Storage for Bi-Modal Solar Thermal Propulsion (Briefing Charts)

    DTIC Science & Technology

    2014-07-01

    applications • Mentioned as a potential buffer / storage material for TPVs • Brief mentions in the solar thermal literature...Charts 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Experimental Investigation of Latent Heat Thermal Energy Storage for 5a. CONTRACT...NUMBER In-House Bi-Modal Solar Thermal Propulsion 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew R. Gilpin, David B. Scharfe

  6. Mapping Topoclimate and Microclimate in the Monarch Butterfly Biosphere Reserve, Mexico

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.

    2006-12-01

    Overwintering monarch butterflies in Mexico select areas of the high elevation Oyamel fir -pine forest providing a canopy that protects them from extremes of cold, heat, sun, and wind. These exacting microclimatic conditions are found in relatively small areas of forest with appropriate topography and canopy cover. The major goal of this investigation is to map topoclimatic and microclimatic conditions within the Monarch Butterfly Biosphere Reserve by combining temperature monitoring (iButton Thermochrons), hemispherical canopy photography, multiple regression, and GIS modeling. Temperature measurements included base weather stations and arrays of Thermochrons (on the north-side of trees at 2m height) across local topographic and canopy cover gradients. Topoclimatic models of minimum temperatures included topographic position, slope, and elevation, and predicted that thermal belts on slopes and cold air drainage into canyons create local minimum temperature gradients of 2°C. Topoclimatic models of maximum temperatures models included elevation, topographic position, and relative solar exposure, with local gradients of 3°C. These models, which are independent of forest canopy structure, were then projected across the entire region. Forest canopy structure, including direct and diffuse solar radiation, was assessed with hemispherical photography at each Thermochron site. Canopy cover affected minimum temperatures primarily on the calmest, coldest nights. Maximum temperatures were predicted by direct radiation below the canopy. Fine- scale grids (25 m spacing) at three overwintering sites characterized effects of canopy gaps and edges on temperature and wind exposure. The effects of temperature variation were considered for lipid loss rates, ability to take flight, and freezing mortality. Lipid loss rates were estimated by measured hourly temperatures. Many of the closed canopy sites allowed for substantial lipid reserves at the end of the season (March 15), but increases in average temperature could effectively deplete lipids by that time. The large influence of canopy cover on daytime maximum temperatures demonstrates that forest thinning directly reduces habitat suitability. Monarchs' flight behavior under warmer conditions suggests that daytime temperatures drive the dynamics of monarch distribution within colonies. Thinning also decreases nighttime minimum temperatures, and increases wind exposure. These results create a basis for quantitative understanding of the combinations of topography and forest structure that provide high quality overwintering habitat.

  7. Inter-Agency Consultative Group for Space Science (IACG): Handbook of Missions and Payloads

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The ACE spacecraft design is based on the Charge Composition Explorer (CCE) built by Johns Hopkins University (JHU) and the Applied Physics Lab (APL) for the AMPTE program. ACE is designed as a spinning spacecraft with its spin axis aligned to the Earth-Sun axis. The ACE launch weight will be approx. 633 kg, including 105 kg of scientific instruments and 184 kg of propellant. Using a Delta-class expendable launch vehicle, ACE will be launched into an L1 libration point (240 R(sub e)) orbit. Telemetry will be 6.7 kbps average, using tape recorder storage with daily readout to DSN. The experiment power requirement is approximately 76 W nominal and 96 W peak. The prime objective of the ACE mission is: (1) to determine accurate elemental and isotropic abundances including solar matter, local interstellar matter and local galactic matter; (2) to study the origin of elements and evolutionary processing in galactic nucleosynthesis, galactic evolution, origin and evolution of the solar system; (3) to study coronal formation and solar-wind acceleration processes; and (4) to study particle acceleration and transport, including coronal shock acceleration, stochastic flare acceleration, interplanetary shock acceleration, and interstellar acceleration and propagation. To accomplish this objective, ACE will perform comprehensive and coordinated determinations of the elemental and isotopic composition of energetic nuclei accelerated on the Sun, in interplanetary space, and from galactic sources. These observations will span five decades in energy, from solar wind to galactic cosmic ray energies, and will cover the element range from H-1 to Zr-40. Comparison of these samples of matter will be used to study the origin and subsequent evolution of both solar system and galactic material by isolating the effects of fundamental processes that include nucleosynthesis, charged and neutral particle separation, bulk plasma acceleration, and the acceleration of suprathermal and high-energy particles.

  8. Indoor test and long-term weathering effects on the thermal performance of the solar energy system (liquid) solar collector. [Marshall Space Flight Center solar test facility and solar simulator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The procedures used and the results obtained during the evaluation test program on a liquid solar collector are presented. The narrow flat plate collector with reflective concentrating mirrors uses water as the working fluid. The double-covered collector weighs 137 pounds and has overall dimensions of about 35" by 77" by 6.75". The test program was conducted to obtain the following information: thermal performance data under simulated conditions, structural behavior under static load, and the effects of long term exposure to natural weathering.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Jiangye

    Up-to-date maps of installed solar photovoltaic panels are a critical input for policy and financial assessment of solar distributed generation. However, such maps for large areas are not available. With high coverage and low cost, aerial images enable large-scale mapping, bit it is highly difficult to automatically identify solar panels from images, which are small objects with varying appearances dispersed in complex scenes. We introduce a new approach based on deep convolutional networks, which effectively learns to delineate solar panels in aerial scenes. The approach has successfully mapped solar panels in imagery covering 200 square kilometers in two cities, usingmore » only 12 square kilometers of training data that are manually labeled.« less

  10. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1979-01-01

    A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency.

  11. Magnification of starting torques of dc motors by maximum power point trackers in photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Singer, S.

    1989-01-01

    Direct current (dc) motors are used in terrestrial photovoltaic (PV) systems such as in water-pumping systems for irrigation and water supply. Direct current motors may also be used for space applications. Simple and low weight systems including dc motors may be of special interest in space where the motors are directly coupled to the solar cell array (with no storage). The system will operate only during times when sufficient insolation is available. An important performance characteristic of electric motors is the starting to rated torque ratio. Different types of dc motors have different starting torque ratios. These ratios are dictated by the size of solar cell array, and the developed motor torque may not be sufficient to overcome the load starting torque. By including a maximum power point tracker (MPPT) in the PV system, the starting to rated torque ratio will increase, the amount of which depends on the motor type. The starting torque ratio is calculated for the permanent magnet, series and shunt excited dc motors when powered by solar cell arrays for two cases: with and without MPPT's. Defining a motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 was obtained for the permanent magnet motor and a magnification of 7 for both the series and shunt motors. The effect of the variation of solar insolation on the motor starting torque was covered. All motor types are less sensitive to insolation variation in systems including MPPT's as compared to systems with MPPT's. The analysis of this paper will assist the PV system designed to determine whether or not to include an MPPT in the system for a specific motor type.

  12. What land covers are effective in mitigating a heat island in urban building rooftop?

    NASA Astrophysics Data System (ADS)

    Lee, S.; Ryu, Y.

    2014-12-01

    Since the 20th century, due to the rapid urbanization many urban environment problems have got blossomed and above all heat island has been recognized as an important issue. There are several causes of urban heat island, but land cover change occupies the largest portion of them. Owing to urban expansion, vegetation is changed into asphalt pavements and concrete buildings, which reduces latent heat flux. To mitigate the problems, people enlarge vegetation covers such as planting street trees, making rooftop gardens and constructing parks or install white roofs that feature high albedo on a building. While the white roofs reflect about 70% of solar radiation and absorb less radiation, vegetation has low albedo but cools the air through transpiration and fixes carbon dioxide through photosynthesis. There are some studies concerning which one is more effective to mitigate heat island between the green roof and white roof. This study compares the green roof and white roof and additionally considers carbon fixation that has not been treated in other studies. Furthermore, this study ascertains an efficiency of solar-cell panel that is used for building roof recently. The panel produces electric power but has low albedo which could warm the air. The experiment is conducted at the rooftop in Seoul, Korea and compares green roof (grass), white roof (painted cover), black roof (solar panel) and normal painted roof. Surface temperature and albedo are observed for the four roof types and incoming shortwave, outgoing longwave and carbon flux are measured in green roof solely. In the case of solar panels, the electricity generation is calculated from the incoming radiation. We compute global warming potentials for the four roof types and test which roof type is most effective in reducing global warming potential.

  13. Solar system formation and the distribution of volatile species

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1994-01-01

    To understand how the solar system formed we must understand the compositional distribution of the current system. Volatile species are particularly important in that their stability as condensed phases is limited in temperature-pressure space, and hence variations in their distribution at present potentially contain an imprint of processes by which temperature and pressure varied in the solar nebula. In this talk we restrict ourselves to species more volatile than water ice, and address issues related to processes in the outer solar system and the formation of bodies there; others in this conference will cover volatile species relevant to inner solar system processes. Study of the outer solar system is relevant both to understanding the interface between the solar nebula and the progenitor giant molecular cloud (since the chemical links to present-day observables in molecular clouds are species like methane, carbon monoxide, etc.), as well as the origin of terrestrial planet atmospheres and oceans (the latter to be covered by Owen). The wealth of compositional information on outer solar system bodies which has become available from spacecraft and ground-based observations challenges traditional simplistic views of the composition and hence dynamics of the solar nebula. The basic assumption of thermochemical equilibrium, promulgated in the 1950's, in which methane and ammonia dominate nitrogen- and carbon-bearing species, is demonstrably incorrect on both observational and theoretical grounds. However, the kinetic inhibition model which replaced it, in which carbon monoxide and molecular nitrogen dominate a nebula which is fully mixed and hence cycles outer solar system gases through a hot, chemically active zone near the disk center, is not supported either by observations. Instead, a picture of the outer solar system emerges in which the gas and grains are a mixture of relatively unaltered, or modestly altered, molecular cloud material, along with a fraction which has been chemically altered in the solar nebula itself (and perhaps giant planet nebulae).

  14. Climate responses to SATIRE and SIM-based spectral solar forcing in a 3D atmosphere-ocean coupled GCM

    NASA Astrophysics Data System (ADS)

    Wen, Guoyong; Cahalan, Robert F.; Rind, David; Jonas, Jeffrey; Pilewskie, Peter; Wu, Dong L.; Krivova, Natalie A.

    2017-03-01

    We apply two reconstructed spectral solar forcing scenarios, one SIM (Spectral Irradiance Monitor) based, the other the SATIRE (Spectral And Total Irradiance REconstruction) modeled, as inputs to the GISS (Goddard Institute for Space Studies) GCMAM (Global Climate Middle Atmosphere Model) to examine climate responses on decadal to centennial time scales, focusing on quantifying the difference of climate response between the two solar forcing scenarios. We run the GCMAM for about 400 years with present day trace gas and aerosol for the two solar forcing inputs. We find that the SIM-based solar forcing induces much larger long-term response and 11-year variation in global averaged stratospheric temperature and column ozone. We find significant decreasing trends of planetary albedo for both forcing scenarios in the 400-year model runs. However the mechanisms for the decrease are very different. For SATIRE solar forcing, the decreasing trend of planetary albedo is associated with changes in cloud cover. For SIM-based solar forcing, without significant change in cloud cover on centennial and longer time scales, the apparent decreasing trend of planetary albedo is mainly due to out-of-phase variation in shortwave radiative forcing proxy (downwelling flux for wavelength >330 nm) and total solar irradiance (TSI). From the Maunder Minimum to present, global averaged annual mean surface air temperature has a response of 0.1 °C to SATIRE solar forcing compared to 0.04 °C to SIM-based solar forcing. For 11-year solar cycle, the global surface air temperature response has 3-year lagged response to either forcing scenario. The global surface air 11-year temperature response to SATIRE forcing is about 0.12 °C, similar to recent multi-model estimates, and comparable to the observational-based evidence. However, the global surface air temperature response to 11-year SIM-based solar forcing is insignificant and inconsistent with observation-based evidence.

  15. Assessment of MODIS and VIIRS Solar Diffuser On-Orbit Degradation

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Fulbright, Jon; Angal, Amit; Wang, Zhipeng; Geng, Xu; Butler, Jim

    2015-01-01

    Both MODIS and VIIRS instruments use a solar diffuser (SD) for their reflective solar bands (RSB) on-orbit calibration. On-orbit changes in SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM) using its alternate measurements of the sunlight reflected off the SD panel and direct sunlight through a fixed attenuation screen. The SDSM calibration data are collected by a number of filtered detectors, covering wavelengths from 0.41 to 0.94 micrometers. In this paper we describe briefly the Terra and Aqua MODIS and S-NPP VIIRS SDSM on-orbit operation and calibration activities and strategies, provide an overall assessment of their SDSM on-orbit performance, including wavelength-dependent changes in the SDSM detector responses and changes in their SD BRF, and discuss remaining challenging issues and their potential impact on RSB calibration quality. Due to different launch dates, operating configurations, and calibration frequencies, the Terra and Aqua MODIS and S-NPP VIIRS SD have experienced different amount of SD degradation. However, in general the shorter the wavelength, the larger is the SD on-orbit degradation. On the other hand, the larger changes in SDSM detector responses are observed at longer wavelengths in the near infrared (NIR).

  16. Assessment of MODIS and VIIRS solar diffuser on-orbit degradation

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Fulbright, Jon; Angal, Amit; Wang, Zhipeng; Geng, Xu; Butler, Jim

    2015-09-01

    Both MODIS and VIIRS instruments use a solar diffuser (SD) for their reflective solar bands (RSB) on-orbit calibration. On-orbit changes in SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM) using its alternate measurements of the sunlight reflected off the SD panel and direct sunlight through a fixed attenuation screen. The SDSM calibration data are collected by a number of filtered detectors, covering wavelengths from 0.41 to 0.94μm. In this paper we describe briefly the Terra and Aqua MODIS and S-NPP VIIRS SDSM on-orbit operation and calibration activities and strategies, provide an overall assessment of their SDSM on-orbit performance, including wavelength-dependent changes in the SDSM detector responses and changes in their SD BRF, and discuss remaining challenging issues and their potential impact on RSB calibration quality. Due to different launch dates, operating configurations, and calibration frequencies, the Terra and Aqua MODIS and S-NPP VIIRS SD have experienced different amount of SD degradation. However, in general the shorter the wavelength, the larger is the SD on-orbit degradation. On the other hand, the larger changes in SDSM detector responses are observed at longer wavelengths in the near infrared (NIR).

  17. Development of advanced silicon solar cells for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Lillington, David R.

    1990-01-01

    This report describes the development of large area high efficiency wrapthrough solar cells for Space Station Freedom. The goal of this contract was the development and fabrication of 8 x 8 cm coplanar back contact solar cells with a minimum output of 1.039 watts/cell. The first task in this program was a modeling study to determine the optimum configuration of the cell and to study the effects of surface passivation, substrate resistivity, and back surface field on the BOL and EOL performance. In addition, the optical stack, including the cell cover, AR coatings, and Kapton blanket, was modeled to optimize 'on orbit' operation. The second phase was a manufacturing development phase to develop high volume manufacturing processes for the reliable production of low recombination velocity boron back surface fields, techniques to produce smooth, low leakage wrapthrough holes, passivation, photoresist application methods, and metallization schemes. The final portion of this program was a pilot production phase. Seven hundred solar cells were delivered in this phase. At the end of the program, cells with average efficiencies over 13 percent were being produced with power output in excess of 1.139 watts/cell, thus substantially exceeding the program goal.

  18. Planning the 8-meter Chinese Giant Solar Telescope

    NASA Astrophysics Data System (ADS)

    Beckers, Jacques M.; Liu, Z.; Deng, Y.; Ji, H.

    2013-07-01

    The Chinese Giant Solar Telescope (CGST) will be a diffraction limited solar telescope optimized for the near-infrared (NIR) spectral region (0.8 - 2.5 microns). Its diffraction limit will be reached by the incorporation of Multi-Conjugate Adaptive Optics (MCAO) enhanced by image restoration techniques to achieve uniform (u.v) plane coverage over the angular spatial frequency region allowed by its 8-meter aperture. Thus it will complement the imaging capabilities of 4-meter telescopes being planned elsewhere which are optimized for the visible (VIS) spectral region (300 - 1000 nm) In the NIR spectral regions the CGST will have access to unique spectral features which will improve the diagnostics of the solar atmosphere. These include the CaII lines near 860 nm , the HeI lines near 1083 nm, the 1074 nm FeXIII coronal lines, the large Zeeman-split FeI line at 1548 nm, and (v) the H- continuum absorption minimum at 1.6 micron. Especially in sunspot umbrae the simultaneous observation of continua and lines across the NIR spectral range will cover a substantial depth range in the solar atmosphere. Of course the mid- and far- infrared regions are also available for unequalled high-angular resolution solar observations, for example, in the Hydrogen Bracket lines, CO molecular bands, and the MgI emission line at 12.3 microns. The CGST is a so-called ring telescope in which the light is captured by a 1 meter wide segmented ring or by a ring of 7 smaller off-axis aperture telescopes. The open central area of the telescope is large. The advantages of such a ring configuration is that (a) it covers all the spatial frequencies out to those corresponding to its outer diameter, (b) its circular symmetry makes it polarization neutral, (c) its large central hole helps thermal control, and (d) it provides ample space for the MCAO system and instrumentation in the Gregorian focus. Even though optimized for the NIR, we expect to use the CGST also at visible wavelengths in the so-called “Partial Adaptive Optics” (PAO) mode (Applied Optics 31,424,1992) to obtain angular resolution twice that of a 4-meter telescope if their observations indicate that higher resolution is desirable. The CGST is a Chinese solar community project.

  19. A cloud cover model based on satellite data

    NASA Technical Reports Server (NTRS)

    Somerville, P. N.; Bean, S. J.

    1980-01-01

    A model for worldwide cloud cover using a satellite data set containing infrared radiation measurements is proposed. The satellite data set containing day IR, night IR and incoming and absorbed solar radiation measurements on a 2.5 degree latitude-longitude grid covering a 45 month period was converted to estimates of cloud cover. The global area was then classified into homogeneous cloud cover regions for each of the four seasons. It is noted that the developed maps can be of use to the practicing climatologist who can obtain a considerable amount of cloud cover information without recourse to large volumes of data.

  20. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, K. S.

    1985-01-01

    This semiannual progress report covers the period from April 1, 1985 to Sept. 30, 1985 under NASA grant NAS1-441 entitled direct solar pumped iodine laser amplifier. During this period the parametric studies of the iodine laser oscillator pumped by a Vortek simulator was carried out before the amplifier studies. The amplifier studies are postponed to the extended period following completion of the parametric studies. In addition, the kinetic modeling of a solar pumped iodine laser amplifier, and the experimental work for a solar pumped dye laser amplifier are in progress. This report contains three parts: (1) the radiation characteristics of solar simulator and the parametric characteristics of photodissociation iodine laser continuously pumped by a Vortek solar simulator; (2) kinetic modeling of a solar pumped iodine laser amplifier; and (3) the study of the dye laser amplifier pumped by a Tamarack solar simulator.

  1. ESTIMATE OF SOLAR MAXIMUM USING THE 1-8 Å GEOSTATIONARY OPERATIONAL ENVIRONMENTAL SATELLITES X-RAY MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, L. M.; Balasubramaniam, K. S., E-mail: lwinter@aer.com

    We present an alternate method of determining the progression of the solar cycle through an analysis of the solar X-ray background. Our results are based on the NOAA Geostationary Operational Environmental Satellites (GOES) X-ray data in the 1-8 Å band from 1986 to the present, covering solar cycles 22, 23, and 24. The X-ray background level tracks the progression of the solar cycle through its maximum and minimum. Using the X-ray data, we can therefore make estimates of the solar cycle progression and the date of solar maximum. Based upon our analysis, we conclude that the Sun reached its hemisphere-averagedmore » maximum in solar cycle 24 in late 2013. This is within six months of the NOAA prediction of a maximum in spring 2013.« less

  2. Thin Thermal-Insulation Blankets for Very High Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2003-01-01

    Thermal-insulation blankets of a proposed type would be exceptionally thin and would endure temperatures up to 2,100 C. These blankets were originally intended to protect components of the NASA Solar Probe spacecraft against radiant heating at its planned closest approach to the Sun (a distance of 4 solar radii). These blankets could also be used on Earth to provide thermal protection in special applications (especially in vacuum chambers) for which conventional thermal-insulation blankets would be too thick or would not perform adequately. A blanket according to the proposal (see figure) would be made of molybdenum, titanium nitride, and carbon- carbon composite mesh, which melt at temperatures of 2,610, 2,930, and 2,130 C, respectively. The emittance of molybdenum is 0.24, while that of titanium nitride is 0.03. Carbon-carbon composite mesh is a thermal insulator. Typically, the blanket would include 0.25-mil (.0.00635-mm)-thick hot-side and cold-side cover layers of molybdenum. Titanium nitride would be vapor-deposited on both surfaces of each cover layer. Between the cover layers there would be 10 inner layers of 0.15-mil (.0.0038-mm)-thick molybdenum with vapor-deposited titanium nitride on both sides of each layer. The thickness of each titanium nitride coat would be about 1,000 A. The cover and inner layers would be interspersed with 0.25-mil (0.00635-mm)-thick layers of carbon-carbon composite mesh. The blanket would have total thickness of 4.75 mils (approximately equal to 0.121 mm) and an areal mass density of 0.7 kilograms per square meter. One could, of course, increase the thermal- insulation capability of the blanket by increasing number of inner layers (thereby unavoidably increasing the total thickness and mass density).

  3. Observational capabilities of solar satellite "Coronas-Photon"

    NASA Astrophysics Data System (ADS)

    Kotov, Yu.

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation The main goal of the Coronas-Photon is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation sim 2000MeV Scientific payload for solar radiation observation consists of three type of instruments 1 monitors Natalya-2M Konus-RF RT-2 Penguin-M BRM Phoka Sphin-X Sokol for spectral and timing measurements of full solar disk radiation with timing in flare burst mode up to one msec Instruments Natalya-2M Konus-RF RT-2 will cover the wide energy range of hard X-rays and soft Gamma rays 15keV to 2000MeV and will together constitute the largest area detectors ever used for solar observations Detectors of gamma-ray monitors are based on structured inorganic scintillators with energy resolution sim 5 for nuclear gamma-line band to 35 for GeV-band PSD analysis is used for gamma neutron separation for solar neutron registration T 30MeV Penguin-M has capability to measure linear polarization of hard X-rays using azimuth are measured by Compton scattering asymmetry in case of polarization of an incident flux For X-ray and EUV monitors the scintillation phoswich detectors gas proportional counter CZT assembly and Filter-covered Si-diodes are used 2 Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays with angular resolution up to 1 in three spectral lines and RT-2 CZT assembly of CZT

  4. Silicon Web Process Development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1978-01-01

    Progress in the development of techniques to grow silicon web at 25 wq cm/min output rate is reported. Feasibility of web growth with simultaneous melt replenishment is discussed. Other factors covered include: (1) tests of aftertrimmers to improve web width; (2) evaluation of growth lid designs to raise speed and output rate; (3) tests of melt replenishment hardware; and (4) investigation of directed gas flow systems to control unwanted oxide deposition in the system and to improve convective cooling of the web. Compatibility with sufficient solar cell performance is emphasized.

  5. Photovoltaic pilot projects in the European community

    NASA Astrophysics Data System (ADS)

    Treble, F. C.; Grassi, G.; Schnell, W.

    The paper presents proposals received for the construction of photovoltaic pilot plants as part of the Commission of the European Communities' second 4-year solar energy R and D program. The proposed plants range from 30 to 300 kWp and cover a variety of applications including rural electrification, water pumping, desalination, dairy farming, factories, hospitals, schools and vacation centers. Fifteen projects will be accepted with a total generating capacity of 1 MWp, with preference given to those projects involving the development of new techniques, components and systems.

  6. Cooperative research in high energy astrophysics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Details of the activities conducted under the joint effort of the University of Maryland and NASA Goddard Space Flight Center Laboratory for High Energy Astrophysics are detailed for the period July 1989 through April 1994. The research covered a variety of topics including: (1) detection of cosmic rays and studies of the solar modulation of galactic cosmic rays; (2) support work for several x-ray satellites; (3) high resolution gamma-ray spectroscopy of celestial sources; (4)theoretical astrophysics; and (5) active galaxies.

  7. A catalog of atmospheric densities from the drag on five balloon satellites

    NASA Technical Reports Server (NTRS)

    Jacchia, L. G.; Slowey, J. W.

    1975-01-01

    A catalog of atmospheric densities derived for the drag on five balloon satellites is presented. Much of the catalog was based on precisely reduced Baker-Nunn observations and, for that reason, provides much improved time resolution. The effect of direct solar radiation pressure was precisely evaluated, and that of terrestrial radiation pressure was included in every case. The interval covered for each satellite varies between 3.1 and 7.6 years, with the data extending from early 1961 to early 1973.

  8. Why Cold-Wet Makes One Feel Chilled: A Literature Review

    DTIC Science & Technology

    1988-06-01

    froid et mouill6. On examine aussi l’effet de la radiation solaire , l’interaction entre la peau at l’humidit6, entre la peau et la temp~rature de mgme...directions, including back out into space. Aerosols of water in clouds reflect incident solar energy . The upper surface of a stratus cloud cover can reflect...earth than under clear conditions. Albedo, the fraction of the incident energy which is reflected by a surface, varies considerably with the terrain

  9. National Aeronautics and Space Administration (nasa)/american Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1991, Volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1991-01-01

    Presented here is a compilation of the final reports of the research projects done by the faculty members during the summer of 1991. Topics covered include optical correlation; lunar production and application of solar cells and synthesis of diamond film; software quality assurance; photographic image resolution; target detection using fractal geometry; evaluation of fungal metabolic compounds released to the air in a restricted environment; and planning and resource management in an intelligent automated power management system.

  10. Conservation and Renewable Energy Program: Bibliography, 1988 edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, K.H.

    The 831 references covering the period 1980 through Feb. 1988, are arranged under the following: analysis and evaluation, building equipment, building thermal envelope systems and materials, community systems and cogeneration, residential conservation service, retrofit, advanced heat engine ceramics, alternative fuels, microemulsion fuels, industrial chemical heat pumps, materials for waste heat utilization, energy conversion and utilization materials, tribology, emergency energy conservation,inventions, electric energy systems, thermal storage, biofuels production, biotechnology, solar technology, geothermal, and continuous chromatography in multicomponent separations. An author index is included.

  11. Significant reduction in arc frequency biased solar cells: Observations, diagnostics, and mitigation technique(s)

    NASA Technical Reports Server (NTRS)

    Upschulte, B. L.; Weyl, G. M.; Marinelli, W. J.; Aifer, E.; Hastings, D.; Snyder, D.

    1991-01-01

    A variety of experiments were performed which identify key factors contributing to the arcing of negatively biased high voltage solar cells. These efforts have led to reduction of greater than a factor of 100 in the arc frequency of a single cell following proper remediation procedures. Experiments naturally lead to and focussed on the adhesive/encapsulant that is used to bond the protective cover slip to the solar cell. An image-intensified charge coupled device (CCD) camera system recorded UV emission from arc events which occurred exclusively along the interfacial edge between the cover slip and the solar cell. Microscopic inspection of this interfacial region showed a bead of encapsulant along this entire edge. Elimination of this encapsulant bead reduced the arc frequency by two orders of magnitude. Water contamination was also identified as a key contributor which enhances arcing of the encapsulant bead along the solar cell edge. Spectrally resolved measurements of the observable UV light shows a feature assignable to OH(A-X) electronic emission, which is common for water contaminated discharges. Experiments in which the solar cell temperature was raised to 85 C showed a reduced arcing frequency, suggesting desorption of H2O. Exposing the solar cell to water vapor was shown to increase the arcing frequency. Clean dry gases such as O2, N2, and Ar show no enhancement of the arcing rate. Elimination of the exposed encapsulant eliminates any measurable sensitivity to H2O vapor.

  12. Fabrication and comparison of selective, transparent optics for concentrating solar systems

    NASA Astrophysics Data System (ADS)

    Taylor, Robert A.; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P.

    2015-09-01

    Concentrating optics enable solar thermal energy to be harvested at high temperature (<100oC). As the temperature of the receiver increases, radiative losses can become dominant. In many concentrating systems, the receiver is coated with a selectively absorbing surface (TiNOx, Black Chrome, etc.) to obtain higher efficiency. Commercial absorber coatings are well-developed to be highly absorbing for short (solar) wavelengths, but highly reflective at long (thermal emission) wavelengths. If a solar system requires an analogous transparent, non-absorbing optic - i.e. a cover material which is highly transparent at short wavelengths, but highly reflective at long wavelengths - the technology is simply not available. Low-e glass technology represents a commercially viable option for this sector, but it has only been optimized for visible light transmission. Optically thin metal hole-arrays are another feasible solution, but are often difficult to fabricate. This study investigates combinations of thin film coatings of transparent conductive oxides and nanoparticles as a potential low cost solution for selective solar covers. This paper experimentally compares readily available materials deposited on various substrates and ranks them via an `efficiency factor for selectivity', which represents the efficiency of radiative exchange in a solar collector. Out of the materials studied, indium tin oxide and thin films of ZnS-Ag-ZnS represent the most feasible solutions for concentrated solar systems. Overall, this study provides an engineering design approach and guide for creating scalable, selective, transparent optics which could potentially be imbedded within conventional low-e glass production techniques.

  13. Shuttle radiation dose measurements in the International Space Station orbits

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2002-01-01

    The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions.

  14. Millimeter and hard x ray/gamma ray observations of solar flares during the June 1991 GRO campaign

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; White, S. M.; Gopalswamy, N.; Lim, J.

    1992-01-01

    We have carried out high-spatial-resolution millimeter observations of solar flares using the Berkeley-Illinois-Maryland Array (BIMA). At the present time, BIMA consists of only three elements, which is not adequate for mapping highly variable solar phenomena, but is excellent for studies of the temporal structure of flares at millimeter wavelengths at several different spatial scales. We present BIMA observations made during the Gamma Ray Observatories (GRO)/Solar Max 1991 campaign in Jun. 1991 when solar activity was unusually high. Our observations covered the period 8-9 Jun. 1991; this period overlapped the period 4-15 Jun. when the Compton Telescope made the Sun a target of opportunity because of the high level of solar activity.

  15. Deriving Snow-Cover Depletion Curves for Different Spatial Scales from Remote Sensing and Snow Telemetry Data

    NASA Technical Reports Server (NTRS)

    Fassnacht, Steven R.; Sexstone, Graham A.; Kashipazha, Amir H.; Lopez-Moreno, Juan Ignacio; Jasinski, Michael F.; Kampf, Stephanie K.; Von Thaden, Benjamin C.

    2015-01-01

    During the melting of a snowpack, snow water equivalent (SWE) can be correlated to snow-covered area (SCA) once snow-free areas appear, which is when SCA begins to decrease below 100%. This amount of SWE is called the threshold SWE. Daily SWE data from snow telemetry stations were related to SCA derived from moderate-resolution imaging spectro radiometer images to produce snow-cover depletion curves. The snow depletion curves were created for an 80,000 sq km domain across southern Wyoming and northern Colorado encompassing 54 snow telemetry stations. Eight yearly snow depletion curves were compared, and it is shown that the slope of each is a function of the amount of snow received. Snow-cover depletion curves were also derived for all the individual stations, for which the threshold SWE could be estimated from peak SWE and the topography around each station. A stations peak SWE was much more important than the main topographic variables that included location, elevation, slope, and modelled clear sky solar radiation. The threshold SWE mostly illustrated inter-annual consistency.

  16. High Efficiency Thin Film CdTe and a-Si Based Solar Cells: Final Technical Report, 4 March 1998--15 October 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Compaan, A. D.; Deng, X.; Bohn, R. G.

    2003-10-01

    This is the final report covering about 42 months of this subcontract for research on high-efficiency CdTe-based thin-film solar cells and on high-efficiency a-Si-based thin-film solar cells. Phases I and II have been extensively covered in two Annual Reports. For this Final Report, highlights of the first two Phases will be provided and then detail will be given on the last year and a half of Phase III. The effort on CdTe-based materials is led by Prof. Compaan and emphasizes the use of sputter deposition of the semiconductor layers in the fabrication of CdS/CdTe cells. The effort on high-efficiency a-Simore » materials is led by Prof. Deng and emphasizes plasma-enhanced chemical vapor deposition for cell fabrication with major efforts on triple-junction devices.« less

  17. The Structure and Dynamics of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    2000-01-01

    This report covers technical progress during the third year of the NASA Space Physics Theory contract "The Structure and Dynamics of the Solar Corona," between NASA and Science Applications International Corporation, and covers the period June 16, 1998 to August 15, 1999. This is also the final report for this contract. Under this contract SAIC, the University of California, Irvine (UCI), and the Jet Propulsion Laboratory (JPL), have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model. During the three-year duration of this contract we have published 49 articles in the scientific literature. These publications are listed in Section 3 of this report. In the Appendix we have attached reprints of selected articles. We summarize our progress during the third year of the contract. Full descriptions of our work can be found in the cited publications, a few of which are attached to this report.

  18. IMS/Satellite Situation Center report. Predicted orbit plots for Hawkeye 1, 1976

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The predicted orbit plots are shown in three projections. The time period covered by each set of projections is 2 days 1 hour, corresponding approximately to the period of Hawkeye 1. The three coordinate systems used are the Geocentric Solar Ecliptic system (GSE), the Geocentric Solar Magnetospheric system (GSM), and the Solar Magnetic system (SM). For each of the three projections, time ticks and codes are given on the satellite trajectories. The codes are interpreted in the table at the base of each plot. Time is given in the table as year/day/decimal hour. The total time covered by each plot is shown at the bottom of each table, and an additional variable is given in the table for each time tick. For the GSM and SM projection this variable is the geocentric distance to the satellite in earth radii, and for the GSE projection the variable is satellite ecliptic latitude in degrees.

  19. Pathfinder aircraft taking off - setting new solar powered altitude record

    NASA Image and Video Library

    1995-09-11

    The Pathfinder solar-powered remotely piloted aircraft climbs to a record-setting altitude of 50,567 feet during a flight Sept. 11, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The flight was part of the NASA ERAST (Environmental Research Aircraft and Sensor Technology) program. The Pathfinder was designed and built by AeroVironment Inc., Monrovia, California. Solar arrays cover nearly all of the upper wing surface and produce electricity to power the aircraft's six motors.

  20. Low cloud properties influenced by cosmic rays

    PubMed

    Marsh; Svensmark

    2000-12-04

    The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Surprisingly the influence of solar variability is strongest in low clouds (

Top