Preheating Water In The Covers Of Solar Water Heaters
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep
1995-01-01
Solar water heaters that include glass covers over absorber plates redesigned to increase efficiencies according to proposal. Redesign includes modification of single-layer glass cover into double-layer glass cover and addition of plumbing so cool water to be heated made to flow between layers of cover before entering absorber plate.
Soil Water Improvements with the Long Term Use of a Winter Rye Cover Crop
NASA Astrophysics Data System (ADS)
Basche, A.; Kaspar, T.; Archontoulis, S.; Jaynes, D. B.; Sauer, T. J.; Parkin, T.; Miguez, F.
2015-12-01
The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage, reducing the risks of flooding and runoff as well as drought-induced crop water stress. While some research indicates that a winter cover crop in a maize-soybean rotation increases soil water, producers continue to be concerned that water use by cover crops will reduce water for a following cash crop. We analyzed continuous in-field soil moisture measurements over from 2008-2014 at a Central Iowa research site that has included a winter rye cover crop in a maize-soybean rotation for thirteen years. This period of study included years in the top third of wettest years on record (2008, 2010, 2014) as well as years in the bottom third of driest years (2012, 2013). We found the cover crop treatment to have significantly higher soil water storage from 2012-2014 when compared to the no cover crop treatment and in most years greater soil water content later in the growing season when a cover crop was present. We further found that the winter rye cover crop significantly increased the field capacity water content and plant available water compared to the no cover crop treatment. Finally, in 2012 and 2013, we measured maize and soybean biomass every 2-3 weeks and did not see treatment differences in crop growth, leaf area or nitrogen uptake. Final crop yields were not statistically different between the cover and no cover crop treatment in any of the years of this analysis. This research indicates that the long-term use of a winter rye cover crop can improve soil water dynamics without sacrificing cash crop growth.
Spectral reflectance relationships to leaf water stress
NASA Technical Reports Server (NTRS)
Ripple, William J.
1986-01-01
Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.
Kissoon, La Toya T; Jacob, Donna L; Hanson, Mark A; Herwig, Brian R; Bowe, Shane E; Otte, Marinus L
2015-06-01
We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds.
Jacob, Donna L.; Hanson, Mark A.; Herwig, Brian R.; Bowe, Shane E.; Otte, Marinus L.
2015-01-01
We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds. PMID:26074657
New England's Drinking Water | Drinking Water in New ...
2017-07-06
Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.
Continental-scale Sensitivity of Water Yield to Changes in Impervious Cover
NASA Astrophysics Data System (ADS)
Caldwell, P.; Sun, G.; McNulty, S.; Cohen, E.; Moore Myers, J.
2012-12-01
Projected land conversion from native forest, grassland, and shrubland to urban impervious cover will alter watershed water balances by reducing groundwater recharge and evapotranspiration, increasing surface runoff, and potentially altering regional weather patterns. These hydrologic changes have important ecohydrological implications to local watersheds, including stream channel habitat degradation and the loss of aquatic biodiversity. Many observational studies have evaluated the impact of urbanization on water yield in small catchments downstream of specific urban areas. However it is often difficult to separate the impact of impervious cover from other impacts of urbanization such as leaking water infrastructure, irrigation runoff, water supply withdrawals, and effluent discharge. In addition, the impact of impervious cover has not been evaluated at scales large enough to assess spatial differences in water yield sensitivity to changes in impervious cover. The objective of this study was to assess the sensitivity of water yield to impervious cover across the conterminous U.S., and to identify locations where water yield will be most impacted by future urbanization. We used the Water Supply Stress Index (WaSSI) model to simulate monthly water yield as impacted by impervious cover for the approximately 82,000 12-digit HUC watersheds across the conterminous U.S. WaSSI computed infiltration, surface runoff, soil moisture, and baseflow processes explicitly for ten vegetative land cover classes and impervious cover in each watershed using the 2006 National Land Cover Dataset estimates of impervious cover. Our results indicate that impervious cover has increased total water yield in urban areas (relative to native vegetation), and that the increase was most significant during the growing season. The proportion of stream flow that occurred as baseflow decreased, even though total water yield increased as a result of impervious cover. Water yield was most sensitive to changes in impervious cover in areas where annual evapotranspiration is high relative to precipitation (e.g. the Southwestern States, Texas, and Florida). Water yield was less sensitive in areas with low evapotranspiration relative to precipitation (e.g. Pacific Northwest and Northeastern States). Additionally, water yield was most impacted when high evapotranspiration land cover types (e.g. forests) were converted to impervious cover than when lower evapotranspiration land cover types (e.g. grassland) were converted. Using projections of future impervious cover provided by the U.S. EPA Integrated Climate and Land Use Scenarios project, water yield in urban areas of the Southwest, Texas, and Florida will be the most impacted by 2050, in part because these areas are projected to have significant increases in impervious cover, but also because they are in areas where evapotranspiration is high relative to precipitation. Our study suggests that watershed management should consider the climate-driven sensitivity of water yield to increases in impervious cover and the type of land cover being converted in addition to the magnitude of projected increases in impervious cover when evaluating impacts of urbanization on water resources.
New England Drinking Water Program | US EPA
2017-07-06
Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.
Ash, W.J.; Pozzi, J.F.
1962-05-01
A retort cover is designed for use in the production of magnesium metal by the condensation of vaporized metal on a collecting surface. The cover includes a condensing surface, insulating means adjacent to the condensing surface, ind a water-cooled means for the insulating means. The irrangement of insulation and the cooling means permits the magnesium to be condensed at a high temperature and in massive nonpyrophoric form. (AEC)
Impact of cover crops on soil nitrate, crop yield and quality
USDA-ARS?s Scientific Manuscript database
There are multiple benefits of incorporating cover crops into current production systems including decreasing erosion, improving water infiltration, increasing soil organic matter and biological activity but in water limited areas caution should be utilized. A field study was established in the fal...
The impact of fall cover crops on soil nitrate and corn growth
USDA-ARS?s Scientific Manuscript database
Incorporating cover crops into current production systems can have many beneficial impacts on the current cropping system including decreasing erosion, improving water infiltration, increasing soil organic matter and biological activity but in water limited areas caution should be utilized. A fiel...
NASA Technical Reports Server (NTRS)
Coker, A. E.; Higer, A. L.; Rogers, R. H.; Shah, N. J.; Reed, L. E.; Walker, S.
1975-01-01
The techniques used and the results achieved in the successful application of Skylab Multispectral Scanner (EREP S-192) high-density digital tape data for the automatic categorizing and mapping of land-water cover types in the Green Swamp of Florida were summarized. Data was provided from Skylab pass number 10 on 13 June 1973. Significant results achieved included the automatic mapping of a nine-category and a three-category land-water cover map of the Green Swamp. The land-water cover map was used to make interpretations of a hydrologic condition in the Green Swamp. This type of use marks a significant breakthrough in the processing and utilization of EREP S-192 data.
Hot Topics/New Initiatives | Drinking Water in New England ...
2017-07-06
Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.
NASA Astrophysics Data System (ADS)
Liang, J.; Liu, D.
2017-12-01
Emergency responses to floods require timely information on water extents that can be produced by satellite-based remote sensing. As SAR image can be acquired in adverse illumination and weather conditions, it is particularly suitable for delineating water extent during a flood event. Thresholding SAR imagery is one of the most widely used approaches to delineate water extent. However, most studies apply only one threshold to separate water and dry land without considering the complexity and variability of different dry land surface types in an image. This paper proposes a new thresholding method for SAR image to delineate water from other different land cover types. A probability distribution of SAR backscatter intensity is fitted for each land cover type including water before a flood event and the intersection between two distributions is regarded as a threshold to classify the two. To extract water, a set of thresholds are applied to several pairs of land cover types—water and urban or water and forest. The subsets are merged to form the water distribution for the SAR image during or after the flooding. Experiments show that this land cover based thresholding approach outperformed the traditional single thresholding by about 5% to 15%. This method has great application potential with the broadly acceptance of the thresholding based methods and availability of land cover data, especially for heterogeneous regions.
Technologies for ECLSS Evolution
NASA Technical Reports Server (NTRS)
Diamant, Bryce L.
1990-01-01
Viewgraphs and discussion on technologies for Environmental Control and Life Support System (ECLSS) evolution are presented. Topics covered include: atmosphere revitalization including CO2 removal, CO2 reduction, O2 generation, and trace contaminant control; water recovery and management including urine processing, hygiene water processing, and potable water processing; and waste management. ECLSS technology schematics, process diagrams, and fluid interfaces are included.
NASA Astrophysics Data System (ADS)
Rover, J.; Goldhaber, M. B.; Holen, C.; Dittmeier, R.; Wika, S.; Steinwand, D.; Dahal, D.; Tolk, B.; Quenzer, R.; Nelson, K.; Wylie, B. K.; Coan, M.
2015-12-01
Multi-year land cover mapping from remotely sensed data poses challenges. Producing land cover products at spatial and temporal scales required for assessing longer-term trends in land cover change are typically a resource-limited process. A recently developed approach utilizes open source software libraries to automatically generate datasets, decision tree classifications, and data products while requiring minimal user interaction. Users are only required to supply coordinates for an area of interest, land cover from an existing source such as National Land Cover Database and percent slope from a digital terrain model for the same area of interest, two target acquisition year-day windows, and the years of interest between 1984 and present. The algorithm queries the Landsat archive for Landsat data intersecting the area and dates of interest. Cloud-free pixels meeting the user's criteria are mosaicked to create composite images for training the classifiers and applying the classifiers. Stratification of training data is determined by the user and redefined during an iterative process of reviewing classifiers and resulting predictions. The algorithm outputs include yearly land cover raster format data, graphics, and supporting databases for further analysis. Additional analytical tools are also incorporated into the automated land cover system and enable statistical analysis after data are generated. Applications tested include the impact of land cover change and water permanence. For example, land cover conversions in areas where shrubland and grassland were replaced by shale oil pads during hydrofracking of the Bakken Formation were quantified. Analytical analysis of spatial and temporal changes in surface water included identifying wetlands in the Prairie Pothole Region of North Dakota with potential connectivity to ground water, indicating subsurface permeability and geochemistry.
Salinity driven oceanographic upwelling
Johnson, D.H.
1984-08-30
The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water. 1 fig.
Salinity driven oceanographic upwelling
Johnson, David H.
1986-01-01
The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water.
DISINFECTION OF WATER: DRINKING WATER, RECREATIONAL WATER, AND WASTEWATER
This chapter describes and categorizes the methodology used for disinfection of drinking water, recreational water and wastewater including wastewater sludges. It largely is a literature summary and references articles covering the years of 1939 through 1999, with a few reference...
Code of Federal Regulations, 2012 CFR
2012-07-01
... employees. The facilities shall have: (i) Running water, including hot and cold or tepid water at a minimum... containers shall be clean, containing only water and ice, and shall be fitted with covers. (3) Common...
Code of Federal Regulations, 2014 CFR
2014-07-01
... employees. The facilities shall have: (i) Running water, including hot and cold or tepid water at a minimum... containers shall be clean, containing only water and ice, and shall be fitted with covers. (3) Common...
Code of Federal Regulations, 2013 CFR
2013-07-01
... employees. The facilities shall have: (i) Running water, including hot and cold or tepid water at a minimum... containers shall be clean, containing only water and ice, and shall be fitted with covers. (3) Common...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
..., including the natural environment, agriculture and forestry, energy, land cover and land use, water..., atmospheric science, land use and land cover change; assessment process experts, including people who are...; homeland security; environmental justice and cultural resources and indigenous perspectives. Persons with a...
USDA-ARS?s Scientific Manuscript database
Field experimental data of five experiments covering a wide range Field experimental data of five experiments covering a wide range of growing conditions are assembled for wheat growth and cropping systems modeling. The data include (i) an experiment on interactive effects of elevated CO2 by water a...
USDA-ARS?s Scientific Manuscript database
A knowledge of different types of land cover in urban residential landscapes is important for building social and economic city-wide policies including landscape ordinances and water conservation programs. Urban landscapes are typically heterogeneous, so classification of land cover in these areas ...
NASA Astrophysics Data System (ADS)
Mugo, R. M.; Limaye, A. S.; Nyaga, J. W.; Farah, H.; Wahome, A.; Flores, A.
2016-12-01
The water quality of inland lakes is largely influenced by land use and land cover changes within the lake's catchment. In Africa, some of the major land use changes are driven by a number of factors, which include urbanization, intensification of agricultural practices, unsustainable farm management practices, deforestation, land fragmentation and degradation. Often, the impacts of these factors are observable on changes in the land cover, and eventually in the hydrological systems. When the natural vegetation cover is reduced or changed, the surface water flow patterns, water and nutrient retention capacities are also changed. This can lead to high nutrient inputs into lakes, leading to eutrophication, siltation and infestation of floating aquatic vegetation. To assess the relationship between land use and land cover changes in part of the Lake Victoria Basin, a series of land cover maps were derived from Landsat imagery. Changes in land cover were identified through change maps and statistics. Further, the surface water chlorophyll-a concentration and turbidity were derived from MODIS-Aqua data for Lake Victoria. Chlrophyll-a and turbidity are good proxy indicators of nutrient inputs and siltation respectively. The trends in chlorophyll-a and turbidity concentrations were analyzed and compared to the land cover changes over time. Certain land cover changes related to agriculture and urban development were clearly identifiable. While these changes might not be solely responsible for variability in chlrophyll-a and turbidity concentrations in the lake, they are potentially contributing factors to this problem. This work illustrates the importance of addressing watershed degradation while seeking to solve water quality related problems.
NASA Astrophysics Data System (ADS)
Denfeld, B. A.; Wallin, M.; Sahlee, E.; Sobek, S.; Kokic, J.; Chmiel, H.; Weyhenmeyer, G. A.
2014-12-01
Global carbon dioxide (CO2) emission estimates from inland waters include emissions at ice melt that are based on simple assumptions rather than evidence. To account for CO2 accumulation below ice and potential emissions into the atmosphere at ice melt we combined continuous CO2 concentrations with spatial CO2 sampling in an ice-covered small boreal lake. From early ice cover to ice melt, our continuous surface water CO2 concentration measurements at 2 m depth showed a temporal development in four distinct phases: In early winter, CO2 accumulated continuously below ice, most likely due to biological in-lake and catchment inputs. Thereafter, in late winter, CO2 concentrations remained rather constant below ice, as catchment inputs were minimized and vertical mixing of hypolimnetic water was cut off. As ice melt began, surface water CO2 concentrations were rapidly changing, showing two distinct peaks, the first one reflecting horizontal mixing of CO2 from surface and catchment waters, the second one reflecting deep water mixing. We detected that 83% of the CO2 accumulated in the water during ice cover left the lake at ice melt which corresponded to one third of the total CO2 storage. Our results imply that CO2 emissions at ice melt must be accurately integrated into annual CO2 emission estimates from inland waters. If up-scaling approaches assume that CO2 accumulates linearly under ice and at ice melt all CO2 accumulated during ice cover period leaves the lake again, present estimates may overestimate CO2 emissions from small ice covered lakes. Likewise, neglecting CO2 spring outbursts will result in an underestimation of CO2 emissions from small ice covered lakes.
NASA Astrophysics Data System (ADS)
sugihara, K.; Nakatsugawa, M.
2013-12-01
The water quality characteristics of ice-covered, stagnant, eutrophic water bodies have not been clarified because of insufficient observations. It has been pointed out that climate change has been shortening the duration of ice-cover; however, the influence of climate change on water quality has not been clarified. This study clarifies the water quality characteristics of stagnant, eutrophic water bodies that freeze in winter, based on our surveys and simulations, and examines how climate change may influence those characteristics. We made fixed-point observation using self-registering equipment and vertical water sampling. Self-registering equipment measured water temperature and dissolved oxygen(DO).vertical water sampling analyzed biological oxygen demand(BOD), total nitrogen(T-N), nitrate nitrogen(NO3-N), nitrite nitrogen(NO2-N), ammonium nitrogen(NH4-N), total phosphorus(TP), orthophosphoric phosphorus(PO4-P) and chlorophyll-a(Chl-a). The survey found that climate-change-related increases in water temperature were suppressed by ice covering the water area, which also blocked oxygen supply. It was also clarified that the bottom sediment consumed oxygen and turned the water layers anaerobic beginning from the bottom layer, and that nutrient salts eluted from the bottom sediment. The eluted nutrient salts were stored in the water body until the ice melted. The ice-covered period of water bodies has been shortening, a finding based on the analysis of weather and water quality data from 1998 to 2008. Climate change was surveyed as having caused decreases in nutrient salts concentration because of the shortened ice-covered period. However, BOD in spring showed a tendency to increase because of the proliferation of phytoplankton that was promoted by the climate-change-related increase in water temperature. To forecast the water quality by using these findings, particularly the influence of climate change, we constructed a water quality simulation model that incorporates the freezing-over of water bodies. The constructed model shows good temporal and spatial reproducibility and enables water quality to be forecast throughout the year, including during the ice-covered period. The forecasts using the model agree well with the survey results of shortened ice period and climate-change-related increase in the BOD in spring. From the result of calculations and observations, it is suggested that water quality of spring has been deteriorate because of freezing period to be shortened due to temperature rising.
Enhanced Cover Assessment Project:Soil Manipulation and Revegetation Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waugh, W. Joseph; Albright, Dr. Bill; Benson, Dr. Craig
2014-02-01
The U.S. Department of Energy Office of Legacy Management is evaluating methods to enhance natural changes that are essentially converting conventional disposal cell covers for uranium mill tailings into water balance covers. Conventional covers rely on a layer of compacted clayey soil to limit exhalation of radon gas and percolation of rainwater. Water balance covers rely on a less compacted soil “sponge” to store rainwater, and on soil evaporation and plant transpiration (evapotranspiration) to remove stored water and thereby limit percolation. Over time, natural soil-forming and ecological processes are changing conventional covers by increasing hydraulic conductivity, loosening compaction, and increasingmore » evapotranspiration. The rock armor on conventional covers creates a favorable habitat for vegetation by slowing soil evaporation, increasing soil water storage, and trapping dust and organic matter, thereby providing the water and nutrients needed for plant germination, survival, and sustainable transpiration. Goals and Objectives Our overall goal is to determine if allowing or enhancing these natural changes could improve cover performance and reduce maintenance costs over the long term. This test pad study focuses on cover soil hydrology and ecology. Companion studies are evaluating effects of natural and enhanced changes in covers on radon attenuation, erosion, and biointrusion. We constructed a test cover at the Grand Junction disposal site to evaluate soil manipulation and revegetation methods. The engineering design, construction, and properties of the test cover match the upper three layers of the nearby disposal cell cover: a 1-foot armoring of rock riprap, a 6-inch bedding layer of coarse sand and gravel, and a 2-foot protection layer of compacted fine soil. The test cover does not have a radon barrier—cover enhancement tests leave the radon barrier intact. We tested furrowing and ripping as means for creating depressions parallel to the slope contour, bringing soil up into the rock riprap layer, and loosening and blending compacted fine soil with coarse sand and gravel layers. Objectives of these manipulations include (1) enhancing root growth, (2) increasing seed-soil contact, (3) catching runoff water for plant germination and growth, (4) increasing soil water storage capacity, and (5) enhancing deep drying by disrupting the capillary barrier at the interface of the bedding and protection layers.« less
Case study of a full-scale evapotranspiration cover
McGuire, Patrick E.; Andraski, Brian J.; Archibald, Ryan E.
2009-01-01
The design, construction, and performance analyses of a 6.1ha evapotranspiration (ET) landfill cover at the semiarid U.S. Army Fort Carson site, near Colorado Springs, Colo. are presented. Initial water-balance model simulations, using literature reported soil hydraulic data, aided selection of borrow-source soil type(s) that resulted in predictions of negligible annual drainage (⩽1mm∕year). Final construction design was based on refined water-balance simulations using laboratory determined soil hydraulic values from borrow area natural soil horizons that were described with USDA soil classification methods. Cover design components included a 122cmthick clay loam (USDA), compaction ⩽80% of the standard Proctor maximum dry density (dry bulk density ∼1.3Mg∕m3), erosion control measures, top soil amended with biosolids, and seeding with native grasses. Favorable hydrologic performance for a 5year period was documented by lysimeter-measured and Richards’-based calculations of annual drainage that were all <0.4mm∕year. Water potential data suggest that ET removed water that infiltrated the cover and contributed to a persistent driving force for upward flow and removal of water from below the base of the cover.
WATER ANALYSIS: EMERGING CONTAMINANTS AND CURRENT ISSUES, 2005 REVIEW
This biennial review covers developments in Water Analysis over the period of 2003-2004. A few significant references that appeared between January and February 2005 are also included. Analytical Chemistry's current policy is to limit reviews to include 100-200 significant refe...
WATER ANALYSIS: EMERGING CONTAMINANTS AND CURRENT ISSUES: 2007 REVIEW
This biennial review covers developments in Water Analysis over the period of 2005-2006. A few significant references that appeared between January and March 2007 are also included. Analytical Chemistry's current policy is to limit reviews to include 200-250 significant referen...
Permeable Reactive Zones for Groundwater Remediation
The presentation will cover aspects of the application of permeable reactive zones to treat contaminated ground water. Specific field studies will be discussed covering both granular iron-based and organic carbon-based reactive barriers. Specific contaminants addressed include:...
ERIC Educational Resources Information Center
Sanville, W. D.; And Others
1978-01-01
Presents a literature review of aquatic sediments and its effect upon water quality, covering publications of 1976-77. This review includes: (1) sediment water interchange; (2) chemical and physical characterization; and (3) heavy water in sediments. A list of 129 references is also presented. (HM)
ERIC Educational Resources Information Center
James, L. D.
1978-01-01
Presents a literature review of the economic aspects of water pollution control covering publications of 1976-77. This review also includes the policy issues of water management. A list of 77 references is presented. (HM)
A Model for the Formation and Melting of Ice on Surface Waters.
NASA Astrophysics Data System (ADS)
de Bruin, H. A. R.; Wessels, H. R. A.
1988-02-01
Ice covers have an important influence on the hydrology of surface waters. The growth of ice layer on stationary waters, such as lakes or canals, depends primarily on meteorological parameters like temperature and humidity of the air, windspeed and radiation balance. The more complicated ice formation in rapidly flowing rivers is not considered in this study. A model is described that simulates ice growth and melting utilizing observed or forecast weather data. The model includes situations with a snow cover. Special attention is given to the optimal estimation of the net radiation and to the role of the stability of the near-surface air. Since a major practical application in the Netherlands is the use of frozen waters for recreation skating, the model is extended to include artificial ice tracks.
Stallard, Robert F.; Hall, Jefferson S.; Kirn, Vanessa; Yanguas-Fernandez, Estrella
2015-01-01
This chapter serves to introduce the geophysics of Neotropical steeplands. Topics are covered in a general manner with hyperlinks to active research and monitoring sites (such as the National Hurricane Center and US Geological Survey publication). Topics covered include ‘tropical climate and weather,’ ‘climate variations and trends,’ Neotropical ‘geology, and soils,’ ‘hillslopes and erosion,’ ‘lakes and reservoirs,’ and ‘effects of land cover on water quality and quantity.’ Obviously, this is a lot of information to cover in a short chapter, hence the use of hyperlinks. The last theme ‘effects of land cover on water quality and quantity’ is covered by case studies, in all of which I have been centrally involved. These studies were chosen because they are among the few studies with sufficient data of high enough quality to reach definitive conclusions.
LINKING LAND COVER AND WATER QUALITY IN NEW YORK CITY'S WATER SUPPLY WATERSHEDS
The Catskill/Delaware reservoirs supply 90% of New York City's drinking water. The City has implemented as series of watershed protection measures, including land acquisition, aimed at preserving water quality in the Catskill/Delaware watersheds. The objective of this study was...
Code of Federal Regulations, 2013 CFR
2013-07-01
... water, including hot and cold or tepid water, at a minimum of one accessible location (when longshoring... shall be fitted with covers. (3) Common drinking cups are prohibited. (c) Prohibited eating areas...
Code of Federal Regulations, 2012 CFR
2012-07-01
... water, including hot and cold or tepid water, at a minimum of one accessible location (when longshoring... shall be fitted with covers. (3) Common drinking cups are prohibited. (c) Prohibited eating areas...
Code of Federal Regulations, 2014 CFR
2014-07-01
... water, including hot and cold or tepid water, at a minimum of one accessible location (when longshoring... shall be fitted with covers. (3) Common drinking cups are prohibited. (c) Prohibited eating areas...
WATER ANALYSIS: EMERGING CONTAMINANTS AND CURRENT ISSUES
This review covers developments in Water Analysis over the period of 2001-2002. A few significant references that appeared between January and February 2003 are also included. Previous Water Analysis reviews have been very comprehensive; however, in 2001, Analytical Chemistry c...
Estimation of composite hydraulic resistance in ice-covered alluvial streams
NASA Astrophysics Data System (ADS)
Ghareh Aghaji Zare, Soheil; Moore, Stephanie A.; Rennie, Colin D.; Seidou, Ousmane; Ahmari, Habib; Malenchak, Jarrod
2016-02-01
Formation, propagation, and recession of ice cover introduce a dynamic boundary layer to the top of rivers during northern winters. Ice cover affects water velocity magnitude and distribution, water level and consequently conveyance capacity of the river. In this research, total resistance, i.e., "composite resistance," is studied for a 4 month period including stable ice cover, breakup, and open water stages in Lower Nelson River (LNR), northern Manitoba, Canada. Flow and ice characteristics such as water velocity and depth and ice thickness and condition were measured continuously using acoustic techniques. An Acoustic Doppler Current Profiler (ADCP) and Shallow Water Ice Profiling Sonar (SWIPS) were installed simultaneously on a bottom mount and deployed for this purpose. Total resistance to the flow and boundary roughness are estimated using measured bulk hydraulic parameters. A novel method is developed to calculate composite resistance directly from measured under ice velocity profiles. The results of this method are compared to the measured total resistance and to the calculated composite resistance using formulae available in literature. The new technique is demonstrated to compare favorably to measured total resistance and to outperform previously available methods.
NASA Technical Reports Server (NTRS)
May, G. A.; Holko, M. L.; Anderson, J. E.
1983-01-01
Ground-gathered data and LANDSAT multispectral scanner (MSS) digital data from 1981 were analyzed to produce a classification of Kansas land areas into specific types called land covers. The land covers included rangeland, forest, residential, commercial/industrial, and various types of water. The analysis produced two outputs: acreage estimates with measures of precision, and map-type or photo products of the classification which can be overlaid on maps at specific scales. State-level acreage estimates were obtained and substate-level land cover classification overlays and estimates were generated for selected geographical areas. These products were found to be of potential use in managing land and water resources.
Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model
NASA Astrophysics Data System (ADS)
Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.
2013-11-01
Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991-2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha-1, but it decreased to 4.6-10.1 kg ha-1 with winter cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha-1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implement of winter cover crop programs, in part by helping to target critical pollution source areas for winter cover crop implementation.
Solar Water Heater Installation Package
NASA Technical Reports Server (NTRS)
1982-01-01
A 48-page report describes water-heating system, installation (covering collector orientation, mounting, plumbing and wiring), operating instructions and maintenance procedures. Commercial solar-powered water heater system consists of a solar collector, solar-heated-water tank, electrically heated water tank and controls. Analysis of possible hazards from pressure, electricity, toxicity, flammability, gas, hot water and steam are also included.
Brightbill, Robin A.; Riva-Murray, Karen; Bilger, Michael D.; Byrnes, John D.
2004-01-01
Within the Delaware River Basin, fish-tissue samples were analyzed for total mercury (tHg). Water and bed-sediment samples were analyzed for tHg and methylmercury (MeHg), and methylation efficiencies were calculated. This study was part of a National Mercury Pilot Program conducted by the U.S. Geological Survey (USGS). The Delaware River Basin was chosen because it is part of the USGS National Water-Quality Assessment Program that integrates physical, chemical, and biological sampling efforts to determine status and trends in surface-water and ground-water resources. Of the 35 sites in the study, 31 were sampled for fish. The species sampled at these sites include smallmouth bass (Micropterus dolomieu), the target species, and where smallmouth bass could not be collected, brown trout (Salmo trutta), chain pickerel (Esox niger), largemouth bass (Micropterus salmoides), and rock bass (Ambloplites rupestris). There were a total of 32 fish samples; 7 of these exceeded the 0.3 ?g/g (micrograms per gram) wet-weight mercury (Hg) concentration set for human health by the U.S. Environmental Protection Agency and 27 of these exceeded the U.S. Fish and Wildlife Service criteria of 0.1 ?g/g wet weight for the protection of fish-eating birds and wildlife. Basinwide analysis of Hg in fish, water, and bed sediment showed tHg concentration in fillets correlated positively with population density, urban land cover, and impervious land surface. Negative correlations included wetland land cover, septic density, elevation, and latitude. Smallmouth bass from the urban sites had a higher median concentration of tHg than fish from agricultural, low intensity-agricultural, or forested sites. Concentrations of tHg and MeHg in water were higher in samples from the more urbanized areas of the basin and were positively correlated with urbanization and negatively correlated with forested land cover. Methylation efficiency of water was negatively correlated with urbanization. Bed-sediment patterns were similar to those observed in water. Concentrations of tHg were higher in samples from the urbanized areas. In the more forested areas, MeHg concentrations were higher than in other land-use areas. Concentrations of tHg in bed sediment were positively correlated with urbanization factors (population, urban land cover, and impervious land surface) and negatively correlated with forested land cover and elevation. Forested land cover and latitude were positively correlated with concentrations of MeHg. The methylation efficiency was higher in samples from the forested areas and was negatively correlated with urbanization. Analyses within land-use groups showed that tHg concentrations in fish fillets from the urban sites were positively correlated with forested land cover and wetland cover. Urbanization factors within the agricultural group were positively correlated with tHg in fish; concentrations of tHg in fish from sites in the low intensity-agricultural group were negatively correlated with urbanization factors. Within the agricultural land-use group, tHg concentrations in water were negatively correlated with septic density, and MeHg concentrations were negatively correlated with elevation. In the forested and low intensity-agricultural groups, MeHg in water was negatively correlated with forested and agricultural land cover. Methylation efficiency in water also was negatively correlated with forested land cover but positively correlated with agricultural land cover. Bed sediment concentrations of tHg in the forested and low-agricultural groups were positively correlated with agricultural land cover and negatively correlated with forested land cover. Concentrations of MeHg in bed sediment were positively correlated with septic density and drainage area and negatively correlated with forested land cover. Methylation efficiency was negatively correlated with population density, a
Supraglacial lakes on Himalayan debris-covered glacier (Invited)
NASA Astrophysics Data System (ADS)
Sakai, A.; Fujita, K.
2013-12-01
Debris-covered glaciers are common in many of the world's mountain ranges, including in the Himalayas. Himalayan debris-covered glacier also contain abundant glacial lakes, including both proglacial and supraglacial types. We have revealed that heat absorption through supraglacial lakes was about 7 times greater than that averaged over the whole debris-covered zone. The heat budget analysis elucidated that at least half of the heat absorbed through the water surface was released with water outflow from the lakes, indicating that the warm water enlarge englacial conduits and produce internal ablation. We observed some portions at debris-covered area has caved at the end of melting season, and ice cliff has exposed at the side of depression. Those depression has suggested that roof of expanded water channels has collapsed, leading to the formation of ice cliffs and new lakes, which would accelerate the ablation of debris-covered glaciers. Almost glacial lakes on the debris-covered glacier are partially surrounded by ice cliffs. We observed that relatively small lakes had non-calving, whereas, calving has occurred at supraglacial lakes with fetch larger than 80 m, and those lakes expand rapidly. In the Himalayas, thick sediments at the lake bottom insulates glacier ice and lake water, then the lake water tends to have higher temperature (2-4 degrees C). Therefore, thermal undercutting at ice cliff is important for calving processes in the glacial lake expansion. We estimated and subaqueous ice melt rates during the melt and freeze seasons under simple geomorphologic conditions. In particular, we focused on valley wind-driven water currents in various fetches during the melt season. Our results demonstrate that the subaqueous ice melt rate exceeds the ice-cliff melt rate above the water surface when the fetch is larger than 20 m with the water temperature of 2-4 degrees C. Calculations suggest that onset of calving due to thermal undercutting is controlled by water currents driven by winds at the lake surface with a positive feedback process. The risk of GLOFs (glacial lake outburst flood) are analysed for Himalayan glacial lakes. We proposed an objective index for GLOF probability, based on depression angle from the lakeshore, which allows the lakes to be assessed using remotely sensed digital elevation models (DEMs). The index was verified by pre-GLOF topography derived by spy satellite imageries. We screened 2800 Himalayan glacial lakes and identified 49 lakes with potential flood volumes over 10 million m3.
NASA Astrophysics Data System (ADS)
Murphy, L.; Al-Hamdan, M. Z.; Crosson, W. L.; Barik, M.
2017-12-01
Land-cover change over time to urbanized, less permeable surfaces, leads to reduced water infiltration at the location of water input while simultaneously transporting sediments, nutrients and contaminants farther downstream. With an abundance of agricultural fields bordering the greater urban areas of Milwaukee, Detroit, and Chicago, water and nutrient transport is vital to the farming industry, wetlands, and communities that rely on water availability. Two USGS stream gages each located within a sub-basin near each of these Great Lakes Region cities were examined, one with primarily urban land-cover between 1992 and 2011, and one with primarily agriculture land-cover. ArcSWAT, a watershed model and soil and water assessment tool used in extension with ArcGIS, was used to develop hydrologic models that vary the land-covers to simulate surface runoff during a model run period from 2004 to 2008. Model inputs that include a digital elevation model (DEM), Landsat-derived land-use/land-cover (LULC) satellite images from 1992, 2001, and 2011, soil classification, and meteorological data were used to determine the effect of different land-covers on the water runoff, nutrients and sediments. The models were then calibrated and validated to USGS stream gage data measurements over time. Additionally, the watershed model was run based on meteorological data from an IPCC CMIP5 high emissions climate change scenario for 2050. Model outputs from the different LCLU scenarios were statistically evaluated and results showed that water runoff, nutrients and sediments were impacted by LULC change in four out of the six sub-basins. In the 2050 climate scenario, only one out of the six sub-basin's water quantity and quality was affected. These results contribute to the importance of developing hydrologic models as the dependence on the Great Lakes as a freshwater resource competes with the expansion of urbanization leading to the movement of runoff, nutrients, and sediments off the land.
Consequences of land use and land cover change
Slonecker, E. Terrence; Barnes, Christopher; Karstensen, Krista; Milheim, Lesley E.; Roig-Silva, Coral M.
2013-01-01
The U.S. Geological Survey (USGS) Climate and Land Use Change Mission Area is one of seven USGS mission areas that focuses on making substantial scientific "...contributions to understanding how Earth systems interact, respond to, and cause global change". Using satellite and other remotely sensed data, USGS scientists monitor patterns of land cover change over space and time at regional, national, and global scales. These data are analyzed to understand the causes and consequences of changing land cover, such as economic impacts, effects on water quality and availability, the spread of invasive species, habitats and biodiversity, carbon fluctuations, and climate variability. USGS scientists are among the leaders in the study of land cover, which is a term that generally refers to the vegetation and artificial structures that cover the land surface. Examples of land cover include forests, grasslands, wetlands, water, crops, and buildings. Land use involves human activities that take place on the land. For example, "grass" is a land cover, whereas pasture and recreational parks are land uses that produce a cover of grass.
Evidence for Near-Road Air Pollution Abatement by Tree Cover
Urbanized areas represent concentrated demand for ecosystem services to buffer hazards and promote healthful lifestyles. Urban tree cover has been linked to multiple local health benefits including clean air and water, flood and drought protection, heat mitigation, and opportuni...
Shupe, Scott M
2017-12-15
Changing land cover and climate regimes modify water quantity and quality in natural stream systems. In regions undergoing rapid change, it is difficult to effectively monitor and quantify these impacts at local to regional scales. In Vancouver, British Columbia, one of the most rapidly urbanizing areas in Canada, 750 measurements were taken from a total of 81 unique sampling sites representing 49 streams located in urban, forest, and agricultural-dominant watersheds at a frequency of up to 12 times per year between 2013 and 2016. Dissolved nitrate (NO 3 -N) and phosphate (PO 4 -P) concentrations, turbidity, water temperature, pH and conductivity were measured by citizen scientists in addition to observations of hydrology, vegetation, land use, and visible stream impacts. Land cover was mapped at a 15-m resolution using Landsat 8 OLI imagery and used to determine dominant land cover for each watershed in which a sample was recorded. Regional, seasonal, and catchment-type trends in measurements were determined using statistical analyses. The relationships of nutrients to land cover varied seasonally and on a catchment-type basis. Nitrate showed seasonal highs in winter and lows in summer, though phosphate had less seasonal variation. Overall, nitrate concentrations were positively associated to agriculture and deciduous forest and negatively associated with coniferous forest. In contrast, phosphate concentrations were positively associated with agricultural, deciduous forest, and disturbed land cover and negatively associated with urban land cover. Both urban and agricultural land cover were significantly associated with an increase in water conductivity. Increased forest land cover was associated with better water quality, including lower turbidity, conductivity, and water temperature. This study showed the importance of high resolution sampling in understanding seasonal and spatial dynamics of stream water quality, made possible with the large number of measurements taken with the help of trained volunteers. The results underscore the value of citizen science in freshwater research. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessing the Impact of Land Use and Land Cover Change on Global Water Resources
NASA Astrophysics Data System (ADS)
Batra, N.; Yang, Y. E.; Choi, H. I.; Islam, A.; Charlotte, D. F.; Cai, X.; Kumar, P.
2007-12-01
Land use and land cover changes (LULCC) significantly modify the hydrological regime of the watersheds, affecting water resources and environment from regional to global scale. This study seeks to advance and integrate water and energy cycle observation, scientific understanding, and human impacts to assess future water availability. To achieve the research objective, we integrate and interpret past and current space based and in situ observations into a global hydrologic model (GHM). GHM is developed with enhanced spatial and temporal resolution, physical complexity, hydrologic theory and processes to quantify the impact of LULCC on physical variables: surface runoff, subsurface flow, groundwater, infiltration, ET, soil moisture, etc. Coupled with the common land model (CLM), a 3-dimensional volume averaged soil-moisture transport (VAST) model is expanded to incorporate the lateral flow and subgrid heterogeneity. The model consists of 11 soil-hydrology layers to predict lateral as well as vertical moisture flux transport based on Richard's equations. The primary surface boundary conditions (SBCs) include surface elevation and its derivatives, land cover category, sand and clay fraction profiles, bedrock depth and fractional vegetation cover. A consistent global GIS-based dataset is constructed for the SBCs of the model from existing observational datasets comprising of various resolutions, map projections and data formats. Global ECMWF data at 6-hour time steps for the period 1971 through 2000 is processed to get the forcing data which includes incoming longwave and shortwave radiation, precipitation, air temperature, pressure, wind components, boundary layer height and specific humidity. Land use land cover data, generated using IPCC scenarios for every 10 years from 2000 to 2100 is used for future assessment on water resources. Alterations due to LULCC on surface water balance components: ET, groundwater recharge and runoff are then addressed in the study. Land use change disrupts the hydrological cycle through increasing the water yield at some places leading to floods while diminishing, or even eliminating the low flow at other places.
Effects of reduced water quality on coral reefs in and out of no-take marine reserves.
Wenger, Amelia S; Williamson, David H; da Silva, Eduardo T; Ceccarelli, Daniela M; Browne, Nicola K; Petus, Caroline; Devlin, Michelle J
2016-02-01
Near-shore marine environments are increasingly subjected to reduced water quality, and their ability to withstand it is critical to their persistence. The potential role marine reserves may play in mitigating the effects of reduced water quality has received little attention. We investigated the spatial and temporal variability in live coral and macro-algal cover and water quality during moderate and major flooding events of the Fitzroy River within the Keppel Bay region of the Great Barrier Reef Marine Park from 2007 to 2013. We used 7 years of remote sensing data on water quality and data from long-term monitoring of coral reefs to quantify exposure of coral reefs to flood plumes. We used a distance linear model to partition the contribution of abiotic and biotic factors, including zoning, as drivers of the observed changes in coral and macro-algae cover. Moderate flood plumes from 2007 to 2009 did not affect coral cover on reefs in the Keppel Islands, suggesting the reef has intrinsic resistance against short-term exposure to reduced water quality. However, from 2009 to 2013, live coral cover declined by ∼ 50% following several weeks of exposure to turbid, low salinity water from major flood plume events in 2011 and subsequent moderate events in 2012 and 2013. Although the flooding events in 2012 and 2013 were smaller than the flooding events between 2007 to 2009, the ability of the reefs to withstand these moderate floods was lost, as evidenced by a ∼ 20% decline in coral cover between 2011 to 2013. Although zoning (no-take reserve or fished) was identified a significant driver of coral cover, we recorded consistently lower coral cover on reserve reefs than on fished reefs throughout the study period and significantly lower cover in 2011. Our findings suggest that even reefs with an inherent resistance to reduced water quality are not able to withstand repeated disturbance events. The limitations of reserves in mitigating the effects of reduced water quality on near-shore coral reefs underscores the importance of integrated management approaches that combine effective land-based management with networks of no-take reserves. © 2015 Society for Conservation Biology.
JSC ECLSS R/T Program Overview
NASA Technical Reports Server (NTRS)
Behrend, A. F.
1990-01-01
Viewgraphs on Johnson Space Center Environmental Control and Life Support System (ECLSS) research and technology program overview are presented. Topics covered include: advancements in electrochemical CO2 removal; supercritical water waste oxidation; electrooxidation for post-treatment of reclaimed water; and photocatalytic post-treatment of reclaimed water.
USDA-ARS?s Scientific Manuscript database
A fall-planted cover crop is a management practice with multiple benefits including reducing nitrate losses from artificially drained fields. We used the Root Zone Water Quality Model (RZWQM) to simulate the impact of a cereal rye cover crop on reducing nitrate losses from drained fields across five...
NASA Astrophysics Data System (ADS)
Bertol, I.; Barbosa, F. T.; Vidal Vázquez, E.; Paz Ferreiro, J.
2009-04-01
Water erosion involves three main processes: detachment, transport and deposition of soil particles. The main factors affecting water erosion are rainfall, soil, topography, soil management and land cover and use. Soil erosion potential is increased if the soil has no or very little vegetative cover of plants and/or crop residues, whereas plant and residue cover substantially decrease rates of soil erosion. Plant and residue cover protects the soil from raindrop impact and splash, tends to slow down the movement of surface runoff and allows excess surface water to infiltrate. Moreover, plant and residue cover improve soil physical, chemical and biological properties. Soils with improved structure have a greater resistance to erosion. By contrast, accelerated soil erosion is accentuated by deforestation, biomass burning, plowing and disking, cultivation of open-row crops, etc. The erosion-reducing effectiveness of plant and/or residue covers depends on the type, extent and quantity of cover. Vegetation and residue combinations that completely cover the soil are the most efficient in controlling soil. Partially incorporated residues and residual roots are also important, as these provide channels that allow surface water to move into the soil. The effectiveness of any crop, management system or protective cover also depends on how much protection is available at various periods during the year, relative to the amount of erosive rainfall that falls during these periods. Most of the erosion on annual row crop land can be reduced by leaving a residue cover greater after harvest and over the winter months, or by inter-seeding a forage crop. Soil erosion potential is also affected by tillage operations and tillage system. Conservation tillage reduces water erosion in relation to conventional tillage by increasing soil cover and soil surface roughness. Here, we review the effect of vegetation on soil erosion in the Santa Catarina highlands, south of Brazil, under subtropical climatic conditions. The area cropped under no tillage in Brazil has increased rapidly since 1990, especially in the southern region. This practice was first introduced in the 1970s as a strategy to control soil erosion and continuous declines in land productivity under conventional tillage systems. No tillage almost entirely keeps the previous crop residue on the surface. In the last 15 years soil and water losses by water erosion have been quantified for different soil tillage systems, diverse crop rotations and successive crop stages under simulated and natural rain conditions. Plot experiments showed that soil losses under no tillage systems with a vegetative cover were 98% lower when compared with conventionally tilled bare soil. Moreover water losses were 60% lower for these conditions. Conventional tillage (plowing + harrowing) in the presence of vegetative cover reduced soil losses and water losses by 80% and 50%, respectively, taken the uncultivated bare soil as a reference. The review includes the effect of vegetative cover on nutrient losses at the studied sites in the Santa Catarina highlands.
Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model
NASA Astrophysics Data System (ADS)
Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.
2014-12-01
Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990-2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha-1, but decreased to 4.6-10.1 kg ha-1 with cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~ 2 kg ha-1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implementation of cover crop programs, in part by helping to target critical pollution source areas for cover crop implementation.
NASA Astrophysics Data System (ADS)
Caldwell, P. V.; Sun, G.; McNulty, S. G.; Cohen, E. C.; Moore Myers, J. A.
2012-08-01
Rivers are essential to aquatic ecosystem and societal sustainability, but are increasingly impacted by water withdrawals, land-use change, and climate change. The relative and cumulative effects of these stressors on continental river flows are relatively unknown. In this study, we used an integrated water balance and flow routing model to evaluate the impacts of impervious cover and water withdrawal on river flow across the conterminous US at the 8-digit Hydrologic Unit Code (HUC) watershed scale. We then estimated the impacts of projected change in withdrawals, impervious cover, and climate under the B1 "Low" and A2 "High" emission scenarios on river flows by 2060. Our results suggest that compared to no impervious cover, 2010 levels of impervious cover increased river flows by 9.9% on average with larger impacts in and downstream of major metropolitan areas. In contrast, compared to no water withdrawals, 2005 withdrawals decreased river flows by 1.4% on average with larger impacts in heavily irrigated arid regions of Western US. By 2060, impacts of climate change were predicted to overwhelm the potential gain in river flow due to future changes in impervious cover and add to the potential reduction in river flows from withdrawals, decreasing mean annual river flows from 2010 levels by 16% on average. However, increases in impervious cover by 2060 may offset the impact of climate change during the growing season in some watersheds. Large water withdrawals will aggravate the predicted impact of climate change on river flows, particularly in the Western US. Predicted ecohydrological impacts of land cover, water withdrawal, and climate change will likely include alteration of the terrestrial water balance, stream channel habitat, riparian and aquatic community structure in snow-dominated basins, and fish and mussel extirpations in heavily impacted watersheds. These changes may also require new infrastructure to support increasing anthropogenic demand for water, relocation of agricultural production, and/or water conservation measures. Given that the impacts of land use, withdrawals and climate may be either additive or offsetting in different magnitudes, integrated and spatially explicit modeling and management approaches are necessary to effectively manage water resources for aquatic life and human use in the face of global change.
U.S. Supreme Court rulings have created uncertainty regarding federal Clean Water Act (CWA) authority over certain waters, including ephemeral and intermittent streams, and established new data and analytical requirements for determining whether a water body is covered under the ...
NASA's mission to planet Earth: Earth observing system
NASA Technical Reports Server (NTRS)
1993-01-01
The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.
Diminished mercury emission from waters with duckweed cover
NASA Astrophysics Data System (ADS)
Wollenberg, Jennifer L.; Peters, Stephen C.
2009-06-01
Duckweeds (Lemnaceae) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and limits gas exchange at the water-air interface by decreasing the area of open water surface. Experiments were conducted to determine whether duckweed decreases mercury emission by limiting gas diffusion across the water-air interface and attenuating light, or, conversely, enhances emission via transpiration of mercury vapor. Microcosm flux chamber experiments indicate that duckweed decreases mercury emission from the water surface compared to open water controls. Fluxes under duckweed were 17-67% lower than in controls, with lower fluxes occurring at higher percent cover. The decrease in mercury emission suggests that duckweed may limit emission through one of several mechanisms, including limited gas transport across the air-water interface, decreased photoreactions due to light attenuation, and plant-mercury interactions. The results of this experiment were applied to a model lake system to illustrate the magnitude of potential effects on mercury cycling. The mercury retained in the lake as a result of hindered emission may increase bioaccumulation potential in lakes with duckweed cover.
NASA Astrophysics Data System (ADS)
Stevens, C. L.; Phillips, A.; Young, S.; Counts, A.
2017-12-01
Sustained drought conditions have contributed to a significant decrease in the volume of the Colorado River in the Lake Mead reservoir and lower portion of the Grand Canyon. As a result, changes in riparian conditions have occurred in the region, such as sediment exposure and receding vegetation. These changes have large negative impacts on ecological health, including water and air pollution, aquatic, terrestrial and avian habitat alterations, and invasive species introduction. Scientists at Grand Canyon National Park seek to quantify changes in water surface and land cover area in the Lower Grand Canyon from 1998 to 2016 to better understand the effects of these changing conditions within the park. Landsat imagery was used to detect changes of the water surface and land cover area across this time period to assess the effects of long-term drought on the riparian zone. The resulting land cover and water surface time-series from this project will assist in monitoring future changes in water, sediment, and vegetation extent, increasing the ability of park scientists to create adaptation strategies for the ecosystem in the Lower Grand Canyon.
Pratt, Bethany; Chang, Heejun
2012-03-30
The relationship among land cover, topography, built structure and stream water quality in the Portland Metro region of Oregon and Clark County, Washington areas, USA, is analyzed using ordinary least squares (OLS) and geographically weighted (GWR) multiple regression models. Two scales of analysis, a sectional watershed and a buffer, offered a local and a global investigation of the sources of stream pollutants. Model accuracy, measured by R(2) values, fluctuated according to the scale, season, and regression method used. While most wet season water quality parameters are associated with urban land covers, most dry season water quality parameters are related topographic features such as elevation and slope. GWR models, which take into consideration local relations of spatial autocorrelation, had stronger results than OLS regression models. In the multiple regression models, sectioned watershed results were consistently better than the sectioned buffer results, except for dry season pH and stream temperature parameters. This suggests that while riparian land cover does have an effect on water quality, a wider contributing area needs to be included in order to account for distant sources of pollutants. Copyright © 2012 Elsevier B.V. All rights reserved.
Monthly fractional green vegetation cover associated with land cover classes of the conterminous USA
Gallo, Kevin P.; Tarpley, Dan; Mitchell, Ken; Csiszar, Ivan; Owen, Timothy W.; Reed, Bradley C.
2001-01-01
The land cover classes developed under the coordination of the International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS) have been analyzed for a study area that includes the Conterminous United States and portions of Mexico and Canada. The 1-km resolution data have been analyzed to produce a gridded data set that includes within each 20-km grid cell: 1) the three most dominant land cover classes, 2) the fractional area associated with each of the three dominant classes, and 3) the fractional area covered by water. Additionally, the monthly fraction of green vegetation cover (fgreen) associated with each of the three dominant land cover classes per grid cell was derived from a 5-year climatology of 1-km resolution NOAA-AVHRR data. The variables derived in this study provide a potential improvement over the use of monthly fgreen linked to a single land cover class per model grid cell.
Argentina, Jane E.; Freeman, Mary C.; Freeman, Byron J.
2010-01-01
The aquatic macrophyte Podostemum ceratophyllum (Hornleaf Riverweed) commonly provides habitat for invertebrates and fishes in flowing-water portions of Piedmont and Appalachian streams in the eastern US. We quantified variation in percent cover by P. ceratophyllum in a 39-km reach of the Conasauga River, TN and GA, to test the hypothesis that cover decreased with increasing non-forest land use. We estimated percent P. ceratophyllum cover in quadrats (0.09 m2) placed at random coordinates within 20 randomly selected shoals. We then used hierarchical logistic regression, in an information-theoretic framework, to evaluate relative support for models incorporating alternative combinations of microhabitat and shoal-level variables to predict the occurrence of high (≥50%)P. ceratophyllum cover. As expected, bed sediment size and measures of light availability (location in the center of the channel, canopy cover) were included in best-supported models and had similar estimated-effect sizes across models. Podostemum ceratophyllum cover declined with increasing watershed size (included in 8 of 13 models in the confidence set of models); however, this decrease in cover was not well predicted by variation in land use. Focused monitoring of temporal and spatial trends in status of P. ceratophyllum are important due to its biotic importance in fast-flowing waters and its potential sensitivity to landscape-level changes, such as declines in forested land cover and homogenization of benthic habitats.
Measurements of slip length for flows over graphite surface with gas domains
NASA Astrophysics Data System (ADS)
Li, Dayong; Wang, Yuliang; Pan, Yunlu; Zhao, Xuezeng
2016-10-01
We present the measurements of slip lengths for the flows of purified water over graphite surface covered with surface nanobubbles or nano/micropancakes, which can be produced after using high temperature water to replace low temperature water. The slip length values measured on bare graphite surface, nano/micropancake or nanobubble covered graphite surfaces are about 8 nm, 27 nm, and 63 nm, respectively. Our results indicate that the gaseous domains formed at the solid-liquid interface, including surface nanobubbles and nano/micropancakes, could act as a lubricant and significantly increase slip length.
Linking land cover and water quality in New York City's water supply watersheds.
Mehaffey, M H; Nash, M S; Wade, T G; Ebert, D W; Jones, K B; Rager, A
2005-08-01
The Catskill/Delaware reservoirs supply 90% of New York City's drinking water. The City has implemented a series of watershed protection measures, including land acquisition, aimed at preserving water quality in the Catskill/Delaware watersheds. The objective of this study was to examine how relationships between landscape and surface water measurements change between years. Thirty-two drainage areas delineated from surface water sample points (total nitrogen, total phosphorus, and fecal coliform bacteria concentrations) were used in step-wise regression analyses to test landscape and surface-water quality relationships. Two measurements of land use, percent agriculture and percent urban development, were positively related to water quality and consistently present in all regression models. Together these two land uses explained 25 to 75% of the regression model variation. However, the contribution of agriculture to water quality condition showed a decreasing trend with time as overall agricultural land cover decreased. Results from this study demonstrate that relationships between land cover and surface water concentrations of total nitrogen, total phosphorus, and fecal coliform bacteria counts over a large area can be evaluated using a relatively simple geographic information system method. Land managers may find this method useful for targeting resources in relation to a particular water quality concern, focusing best management efforts, and maximizing benefits to water quality with minimal costs.
DC Water located in Washington, DC incurred costs for activities related to the Presidential Inauguration in January 2009. Support included the purchase and installation of special manhole covers with security features.
Getting the lead out: understanding risks in the distribution ...
This presentation discusses the importance of the water distribution system as a component of the source-to-tap continuum in public health protection. Issues covered include: understanding source water quality changes and their impacts throughout the system; use of mitigation measures such as filters); and holistic approaches and/or strategies that could be used to avoid unintended consequences of decisions from source to tap. Invited presentation on topics indicated as of interest. With exposure to lead as the context, this presentation discusses the importance of the water distribution system as a component of the source-to-tap continuum in public health protection. Issues covered include: understanding source water quality changes and their impacts throughout the system; use of mitigation measures such as filters); and holistic approaches and/or strategies that could be used to avoid unintended consequences of decisions from source to tap.
Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model
Yeo, In-Young; Lee, Sangchui; Sadeghi, Ali M.; Beeson, Peter C.; Hively, W. Dean; McCarty, Greg W.; Lang, Megan W.
2013-01-01
Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implement of winter cover crop programs, in part by helping to target critical pollution source areas for winter cover crop implementation.
Effect of water content and organic carbon on remote sensing of crop residue cover
NASA Astrophysics Data System (ADS)
Serbin, G.; Hunt, E. R., Jr.; Daughtry, C. S. T.; McCarty, G. W.; Brown, D. J.; Doraiswamy, P. C.
2009-04-01
Crop residue cover is an important indicator of tillage method. Remote sensing of crop residue cover is an attractive and efficient method when compared with traditional ground-based methods, e.g., the line-point transect or windshield survey. A number of spectral indices have been devised for residue cover estimation. Of these, the most effective are those in the shortwave infrared portion of the spectrum, situated between 1950 and 2500 nm. These indices include the hyperspectral Cellulose Absorption Index (CAI), and advanced multispectral indices, i.e., the Lignin-Cellulose Absorption (LCA) index and the Shortwave Infrared Normalized Difference Residue Index (SINDRI), which were devised for the NASA Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. Spectra of numerous soils from U.S. Corn Belt (Indiana and Iowa) were acquired under wetness conditions varying from saturation to oven-dry conditions. The behavior of soil reflectance with water content was also dependent on the soil organic carbon content (SOC) of the soils, and the location of the spectral bands relative to significant water absorptions. High-SOC soils showed the least change in spectral index values with increase in soil water content. Low-SOC soils, on the other hand, showed measurable difference. For CAI, low-SOC soils show an initial decrease in index value followed by an increase, due to the way that water content affects CAI spectral bands. Crop residue CAI values decrease with water content. For LCA, water content increases decrease crop residue index values and increase them for soils, resulting in decreased contrast. SINDRI is also affected by SOC and water content. As such, spatial information on the distribution of surface soil water content and SOC, when used in a geographic information system (GIS), will improve the accuracy of remotely-sensed crop residue cover estimates.
NASA Astrophysics Data System (ADS)
Hokanson, K. J.; Devito, K.; Mendoza, C. A.
2017-12-01
The Boreal Plain (BP) region of Canada, a landscape characterized by low-relief, a sub-humid climate and heterogeneous glacial landforms, is experiencing unprecedented anthropogenic and natural disturbance, including climate change and oil & gas operations. Understanding the controls on and the natural variability of water table position, and subsequently predicting changes in water table position under varying physical and climatic scenarios will become important as water security becomes increasingly threatened. The BP is composed of a mosaic of forestland, wetland, and aquatic land covers that contrast in dominant vegetation cover, evapotranspiration, and soil storage that, in turn, influence water table configurations. Additionally, these land-covers overlie heterogeneous glacial landforms with large contrasts in storage and hydraulic properties which, when coupled with wet-dry climate cycles, result in complex water table distributions in time and space. Several forestland-wetland-pond complexes were selected at the Utikuma Research Study Area (URSA) over three distinct surficial geologic materials (glacial fluvial outwash, stagnant ice moraine, lacustrine clay plain) to explore the roles of climate (cumulative departure from the long term yearly mean precipitation), geology, topographic position, and land cover on water table configurations over 15 years (2002 - 2016). In the absence of large groundwater flow systems, local relief and shallow low conductivity substrates promote the formation of near-surface water tables that are less susceptible to climate variation, regardless of topography. Furthermore, in areas of increased storage, wet and dry climate conditions can result in appreciably different water table configurations over time, ranging from mounds to hydraulic depressions, depending on the arrangement of land-covers, dominant surficial geology, and substrate layering.
Stormwater dissolved organic matter: influence of land cover and environmental factors.
McElmurry, Shawn P; Long, David T; Voice, Thomas C
2014-01-01
Dissolved organic matter (DOM) plays a major role in defining biological systems and it influences the fate and transport of many pollutants. Despite the importance of DOM, understanding of how environmental and anthropogenic factors influence its composition and characteristics is limited. This study focuses on DOM exported as stormwater from suburban and urban sources. Runoff was collected before entering surface waters and DOM was characterized using specific ultraviolet absorbance at 280 nm (a proxy for aromaticity), molecular weight, polydispersity and the fraction of DOM removed from solution via hydrophobic and H-bonding mechanisms. General linear models (GLMs) incorporating land cover, precipitation, solar radiation and selected aqueous chemical measurements explained variations in DOM properties. Results show (1) molecular characteristics of DOM differ as a function of land cover, (2) DOM produced by forested land is significantly different from other landscapes, particularly urban and suburban areas, and (3) DOM from land cover that contains paved surfaces and sewers is more hydrophobic than from other types of land cover. GLMs incorporating environmental factors and land cover accounted for up to 86% of the variability observed in DOM characteristics. Significant variables (p < 0.05) included solar radiation, water temperature and water conductivity.
Sea Ice and Oceanographic Conditions.
ERIC Educational Resources Information Center
Oceanus, 1986
1986-01-01
The coastal waters of the Beaufort Sea are covered with ice three-fourths of the year. These waters (during winter) are discussed by considering: consolidation of coastal ice; under-ice water; brine circulation; biological energy; life under the ice (including kelp and larger animals); food chains; and ice break-up. (JN)
Methods for the Determination of Chemical Contaminants in Drinking Water. Training Manual.
ERIC Educational Resources Information Center
Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.
This training manual, intended for chemists and technicians with little or no experience in chemical procedures required to monitor drinking water, covers analytical methods for inorganic and organic chemical contaminants listed in the interim primary drinking water regulations. Topics include methods for heavy metals, nitrate, and organic…
Nuclear Energy for Water Desalting, A Bibliography.
ERIC Educational Resources Information Center
Kuhns, Helen F., Comp.; And Others
This bibliography includes 215 abstracts of publications on the use of nuclear energy in the production of potable water from saline or brackish waters. The uses of nuclear reactors, radioisotopic heat sources, and nuclear explosives are covered in relation to the various desalination methods available. Literature through April 1967 has been…
Chamber for Growing and Observing Fungi
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Molina, Thomas C.
2005-01-01
A chamber has been designed to enable growth and observation of microcolonies of fungi in isolation from the external environment. Unlike prior fungus-growing apparatuses, this chamber makes it possible to examine a fungus culture without disrupting it. Partly resembling a small picture frame, the chamber includes a metal plate having a rectangular through-thethickness opening with recesses for a top and a bottom cover glass, an inlet for air, and an inlet for water. The bottom cover glass is put in place and held there by clips, then a block of nutrient medium and a moisture pad are placed in the opening. The block is inoculated, then the top cover glass is put in place and held there by clips. Once growth is evident, the chamber can be sealed with tape. Little (if any) water evaporates past the edges of the cover glasses, and, hence there is little (if any) need to add water. A microscope can be used to observe the culture through either cover glass. Because the culture is sealed in the chamber, it is safe to examine the culture without risking contamination. The chamber can be sterilized and reused.
Modeling cover Crop Effectiveness on Maryland's Eastern Shore
USDA-ARS?s Scientific Manuscript database
Cover cropping has become a widely used conservation practice on Maryland’s Eastern shore. It is one of the main practices funded by the Maryland Department of Agriculture’s (MDA) Maryland Agricultural Water Quality Cost Share (MACS) program. The major benefits of this practice include reduction of ...
Fall cover crops boost soil arbuscular mycorrhizal fungi which can lead to reduced inputs
USDA-ARS?s Scientific Manuscript database
Fall cover crops provide multiple benefits to producers. These benefits include pathogen and pest protection, drought protection, weed control, reduced soil erosion, nutrient acquisition and retention, increased soil organic matter, and conservation of soil water by improvement of soil structure th...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
... proposing to amend the federal regulations to withdraw human health and aquatic life water quality criteria... to its surface water quality standards (New Jersey Administrative Code 7:9B), including aquatic life... pollutants covered in the 2002 and 2006 actions, New Jersey adopted water quality criteria for aquatic life...
Surface water data at Los Alamos National Laboratory: 2009 water year
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, David; McCullough, Betsy
2010-05-01
The principal investigators collected and computed surface water discharge data from 73 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.
Surface water data at Los Alamos National Laboratory: 2008 water year
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, David; Cata, Betsy; Kuyumjian, Gregory
2009-09-01
The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.
Su, Wang; Zhang, Yan-Ping; Qu, Yang; Li, Cui; Miao, Jia-Yuan; Gao, Xiao-Li; Liu, Jian-Hua; Feng, Bai-Li
2014-11-01
The objective of this study was to explore the effects of mulching patterns on soil water, growth, photosynthetic characteristics, grain yield and water use efficiency (WUE) of broomcorn millet in the dryland of Loess Plateau in China. In a three-year field experiment from 2011 to 2013, we compared four different mulching patterns with traditional plat planting (no mulching) as the control (CK). The mulching patterns included W ridge covered with common plastic film + intredune covered with straw (SG), common ridge covered with common plastic film + intredune covered with straw (LM), double ridges covered with common plastic film + intredune covered with straw (QM), and the traditional plat planting covered with straw (JG). The results showed that the soil water storage in 0-100 cm layer was significantly higher in all mulching patterns than in CK, particularly in SG then followed by LM, QM and JG, and the differences among the mulching patterns reached a significant level at the different growth stages of broomcorn millet. Among all mulching patterns, SG had the greatest effect on the growth and photosynthesis of broomcorn millet, respectively increasing the yield and WUE by 55.9% and 64.9% over CK, and the differences among the mulching patterns also reached a significant level. Therefore, SG was recommended as an efficient planting pattern for broomcorn millet production in the dryland of Loess Plateau in China.
Oil palm plantation effects on water quality in Kalimantan, Indonesia
NASA Astrophysics Data System (ADS)
Carlson, K. M.; Curran, L. M.
2011-12-01
Global demand for palm oil has stimulated a 7-fold increase in oil palm (Elaeis guineensis) plantation area in Indonesia since 1990. Expansion will continue as Indonesia plans to double current production by 2020. Oil palm fertilizers, effluent from oil palm mills, and erosion from land clearing and roads threaten river water quality near plantations. These rivers provide essential ecosystem services including water for drinking, cooking, and washing. Robust empirical measurements of plantation expansion impacts on water resources are necessary to discern the effects of agribusiness on local livelihoods and ecosystems. In Ketapang District, West Kalimantan, Indonesian Borneo, we evaluated the effects of land cover change on water quality by assessing water chemistry in streams draining four end-member watersheds ( ~600-1900 ha watershed-1): Logged forest, mixed agro-forest dominated by rubber and upland rice fallows, young oil palm forest (0-5 years), and old oil palm forest (10-15 years). To assess land cover change, we used CLASLite software to derive fractional cover from a time series (1989-2008) of Landsat data. Nearest neighbor classification and post-classification change detection yielded classes including primary forest, logged forest, secondary forest regrowth, smallholder agriculture, and oil palm. Stream water quality (temperature, dissolved oxygen, turbidity, optical chlorphyll, and pH) and quantity (discharge) were quantified with the YSI 6600-V2 sonde. The sonde was deployed in each stream for month-long intervals 2-3 times from 2009-2010. Such extended deployment captures episodic events such as intense storms and allows examination of interdiel dynamics by sampling continuously and at high frequency, every 10 minutes. We find that across the Ketapang District study region (~12,000 km2), oil palm has cleared mostly forests (49%) and agroforests (39%). What are the impacts of such land cover changes on water quality? Compared to forests and agroforests, streams draining oil palm show greater biological activity, as indicated by elevated pH and reduced dissolved oxygen levels. Moreover, turbidity is elevated in young oil palm plantations watersheds compared to forest, agroforest, and old oil palm land covers. We discuss the implications of these findings for communities and ecosystems.
NASA Astrophysics Data System (ADS)
Pierini, N.; Vivoni, E. R.; Schreiner-McGraw, A.; Lopez-Castrillo, I.
2015-12-01
The urbanization process transforms a natural landscape into a built environment with many engineered surfaces, leading to significant impacts on surface energy and water fluxes across multiple spatial and temporal scales. Nevertheless, the effects of different urban land covers on energy and water fluxes has been rarely quantified across the large varieties of construction materials, landscaping and vegetation types, and industrial, commercial and residential areas in cities. In this study, we deployed a mobile eddy covariance tower at three different locations in the Phoenix, Arizona, metropolitan area to capture a variety of urban land covers. The three locations each represent a common urban class in Phoenix: 1) a dense, xeric landscape (gravel cover and native plants with drip-irrigation systems near tall buildings); 2) a high-density urban site (asphalt-paved parking lot near a high-traffic intersection); and 3) a suburban mesic landscape (sprinkler-irrigated turf grass in a suburban neighborhood). At each site, we measured meteorological variables, including air temperature and relative humidity at three heights, precipitation and pressure, surface temperature, and soil moisture and temperature (where applicable), to complement the eddy covariance measurements of radiation, energy, carbon dioxide and water vapor fluxes. We evaluated the tower footprint at each site to characterize the contributing surface area to the flux measurements, including engineered and landscaping elements, as a function of time for each deployment. The different sites allowed us to compare how turbulent fluxes of water vapor and carbon dioxide vary for these representative urban land covers, in particular with respect to the role of precipitation events and irrigation. While the deployments covered different seasons, from winter to summer in 2015, the variety of daily conditions allowed quantification of the differential response to precipitation events during the winter, pre-monsoon, and monsoon seasons in relation to irrigation input or lack thereof. As desert urban areas continue to grow worldwide, it is essential to gain an improved understanding of how the energy and water balances vary across the built environment and their implications on urban climate, energy, hydrologic conditions, and air quality.
... chemical water quality conditions able to support healthy biological communities. Natural vegetative cover in the landscape, including ... habitat habitat A place where the physical and biological elements of ecosystems provide a suitable environment including ...
Kallon, Senesie B; Jabati, Ansu M; Samura, Alusine
2011-01-01
The study discussed here assessed Sierra Rutile Ltd.'s (SRLs) water-cover sulfide tails management method. Monthly and quarterly water samples from SRLs Sulfide Tails Pond (STP), Total Tails Pond (TTP), and the Titan Domestic Pond (TDP) were analyzed for 15 months. Results indicated acceptable quality for the STP. From Student's t-test analysis, it was found that the mean pH of the TTP was significantly lower than that of the TDP (p < .05). Results did not indicate pollution of the TDP by SRLs tailings management. The water-cover method significantly suppressed sulfide oxidation in the STP. Concerns to be addressed, however, include potential overtopping of the pond, water level fluctuations, and the need for periodic reinforcement of the tailings embankments. A dedicated environmental monitoring campaign that includes other proximate water bodies is suggested; this should inform timely mitigation of any environmental contamination and promote sound environmental and public health outcomes.
Radium and Other Radiological Chemicals: Drinking Water Treatment Strategies
Radium and Other Radiological Chemicals: Drinking Water Treatment Technologies Topics include: Introduction to Rad Chemistry, Summary of the Rad, Regulations Treatment Technology, and Disposal. The introductions cover atoms, ions, radium and uranium and the removal of radioac...
NASA Astrophysics Data System (ADS)
Syam, Bustami; Sebayang, Alexander; Sebayang, Septian; Muttaqin, Maraghi; Darmadi, Harry; Basuki, WS; Sabri, M.; Abda, S.
2018-03-01
Open channel conduit is designed and produced with the aims to reduce excess water, whether from rain, seepage, or excess irrigation water in an area. It is also included in one of the important components of urban infrastructure in tackling the problem of flooding and waterlogging. On the roadway, e.g. housing complex the open channel conduits should function the same, however conduit covers are needed. The covers should be also designed to function as parking bumper. This paper discusses the design and production of the stoppers using our newly invented materials; the stoppers are structurally tested under static, dynamic, and bump test. Response of the conduit cover are found from structural analysis using finite element software ANSYS MECHANICAL version 17.5. Two types of stoppers are introduced: flat and curvy configuration. It was obtained that both types are suitable for open channel conduit cover and parking bumper.
An Oceanographic Curriculum for High Schools.
ERIC Educational Resources Information Center
Taber, Robert W.; And Others
Contained are outlines for 18 one-hour lectures on oceanology. Each outline lists topics to be covered, suggestions on which topics should be covered most thoroughly, and books for further reading and related films. Lecture topics include: oceanographic surveying and research; geology of the oceans; physical properties of sea water; waves, tides…
Coordination and standardization of federal sedimentation activities
Glysson, G. Douglas; Gray, John R.
1997-01-01
- precipitation information critical to water resources management. Memorandum M-92-01 covers primarily freshwater bodies and includes activities, such as "development and distribution of consensus standards, field-data collection and laboratory analytical methods, data processing and interpretation, data-base management, quality control and quality assurance, and water- resources appraisals, assessments, and investigations." Research activities are not included.
50 CFR 18.122 - In what specified geographic region does this subpart apply?
Code of Federal Regulations, 2010 CFR
2010-10-01
..., Alaska, and includes all Alaska coastal areas, State waters, and Outer Continental Shelf waters east of that line to the Canadian border and an area 25 miles inland from Barrow on the west to the Canning River on the east. The Arctic National Wildlife Refuge is not included in the area covered by this...
Excessive Afforestation and Soil Drying on China's Loess Plateau
NASA Astrophysics Data System (ADS)
Zhang, Shuilei; Yang, Dawen; Yang, Yuting; Piao, Shilong; Yang, Hanbo; Lei, Huimin; Fu, Bojie
2018-03-01
Afforestation and deforestation as human disturbances to vegetation have profound impacts on ecohydrological processes influencing both water and carbon cycles and ecosystem sustainability. Since 1999, large-scale revegetation activities such as "Grain-to-Green Program" have been implemented across China's Loess Plateau. However, negative ecohydrological consequences, including streamflow decline and soil drying have emerged. Here we estimate the equilibrium vegetation cover over the Loess Plateau based on an ecohydrological model and assess the water balance under the equilibrium and actual vegetation cover over the past decade. Results show that the current vegetation cover (0.48 on average) has already exceeded the climate-defined equilibrium vegetation cover (0.43 on average) in many parts of the Loess Plateau, especially in the middle-to-east regions. This indicates a widespread overplanting, which is found to primarily responsible for soil drying in the area. Additionally, both the equilibrium vegetation cover and soil moisture tend to decrease under future (i.e., 2011-2050) climate scenarios due to declined atmospheric water supply (i.e., precipitation) and increased atmospheric water demand (i.e., potential evapotranspiration). Our findings suggest that further revegetation on the Loess Plateau should be applied with caution. To maintain a sustainable ecohydrological environment in the region, a revegetation threshold is urgently needed to guide future revegetation activities.
Design and Installation of a Disposal Cell Cover Field Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, C.H.; Waugh, W.J.; Albright, W.H.
2011-02-27
The U.S. Department of Energy’s Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed atmore » the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.« less
Multidecadal Land Cover Change in the Los Angeles Basin and its Water Consumption Implications
NASA Astrophysics Data System (ADS)
Colombi, N. K.; Lettenmaier, D. P.; Marlier, M. E.
2017-12-01
Urban irrigation is an important component of the hydrologic cycle in areas with arid and semi-arid climates. In Los Angeles, outdoor irrigation has the largest potential for water conservation. However, there are significant uncertainties in predicting and quantifying irrigated water use due to unavailability of crucial landcover data. Irrigated vegetation must first be identified and mapped before irrigated water use can be modeled, and steps can be taken towards conservation. We utilized Landsat data at 30m spatial resolution from 1985 to present to quantify temporal dynamics of vegetation cover on a seasonal basis in the Los Angeles Basin based on the Normalized Difference Vegetation Index (NDVI). Previous vegetation surveys have estimated tree cover and other vegetation types as isolated "snapshots", but are of limited use in monitoring fine-scale temporal variations, and their implications for municipal water consumption in particular. When the temporal resolution of images is low, it becomes more difficult to distinguish between natural, as contrasted with irrigated, vegetation. Our work therefore should provide a better basis for identifying irrigated vegetation. In addition, we quantified NDVI changes within specific land cover classifications including, but not limited to, grassland, shrub, and developed land classes. These results will be useful in comparing natural and irrigated vegetation within urban and partially urban areas. They will also help us to understand relationships between NDVI and irrigated water use at fine temporal resolutions. Finally, we have created land cover change maps that allow us to examine the impact of historical urban ecosystem changes on the water balance of the Los Angeles Basin (LAB) over the last 30 years. Understanding historical changes is a first step in determining the most practical ways of improving water use sustainability in the Los Angeles urban area.
Engineering water repellency in granular materials for ground applications
NASA Astrophysics Data System (ADS)
Lourenco, Sergio; Saulick, Yunesh; Zheng, Shuang; Kang, Hengyi; Liu, Deyun; Lin, Hongjie
2017-04-01
Synthetic water repellent granular materials are a novel technology for constructing water-tight barriers and fills that is both inexpensive and reliant on an abundant local resource - soils. Our research is verifying its stability, so that perceived risks to practical implementation are identified and alleviated. Current ground stabilization measures are intrusive and use concrete, steel, and glass fibres as reinforcement elements (e.g. soil nails), so more sustainable approaches that require fewer raw materials are strongly recommended. Synthetic water repellent granular materials, with persistent water repellency, have been tested for water harvesting and proposed as landfill and slope covers. By chemically, physically and biologically adjusting the magnitude of water repellency, they offer the unique advantage of controlling water infiltration and allow their deployment as semi-permeable or impermeable materials. Other advantages include (1) volumetric stability, (2) high air permeability and low water permeability, (3) suitability for flexible applications (permanent and temporary usage), (4) improved adhesion aggregate-bitumen in pavements. Application areas include hydraulic barriers (e.g. for engineered slopes and waste containment), pavements and other waterproofing systems. Chemical treatments to achieve water repellency include the use of waxes, oils and silicone polymers which affect the soil particles at sub-millimetric scales. To date, our research has been aimed at demonstrating their use as slope covers and establishing the chemical compounds that develop high and stable water repellency. Future work will determine the durability of the water repellent coatings and the mechanics and modelling of processes in such soils.
Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data
DOE Office of Scientific and Technical Information (OSTI.GOV)
H.L. Shindel; J.H. Klingler; J.P. Mangus
Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of themore » National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)« less
Gremer, Jennifer; Bradford, John B.; Munson, Seth M.; Duniway, Michael C.
2015-01-01
Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long-term (20 to 56 years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30 cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40 to 60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and predict the future of desert grasslands.
Gremer, Jennifer R; Bradford, John B; Munson, Seth M; Duniway, Michael C
2015-11-01
Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long-term (20-56 years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30 cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40-60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and predict the future of desert grasslands. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
This presentation is an overview of the most important water treatment strategies for the control of lead and copper release from drinking water corrosion. In addition to the sections specifically on lead and copper treatment, sections are included that cover sampling to find le...
NASA Technical Reports Server (NTRS)
Burgy, R. H.
1972-01-01
Data relating to hydrologic and water resource systems and subsystems management are reported. Systems models, user application, and remote sensing technology are covered. Parameters governing water resources include evaportranspiration, vegetation, precipitation, streams and estuaries, reservoirs and lakes, and unsaturate and saturated soil zones.
This compendium includes descriptions of methods for analyzing metals, pesticides and volatile organic compounds (VOCs) in water. The individual methods covered are these: (1) Method 200.8: determination of trace elements in waters and wastes by inductively coupled plasma-mass s...
Surface Water Data at Los Alamos National Laboratory: 2002 Water Year
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.A. Shaull; D. Ortiz; M.R. Alexander
2003-03-03
The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.
Surface Water Data at Los Alamos National Laboratory 2006 Water Year
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.P. Romero, D. Ortiz, G. Kuyumjian
2007-08-01
The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.
NASA Astrophysics Data System (ADS)
Hughes, J. D.; Metz, P. A.
2014-12-01
Most watershed studies include observation-based water budget analyses to develop first-order estimates of significant flow terms. Surface-water/groundwater (SWGW) exchange is typically assumed to be equal to the residual of the sum of inflows and outflows in a watershed. These estimates of SWGW exchange, however, are highly uncertain as a result of the propagation of uncertainty inherent in the calculation or processing of the other terms of the water budget, such as stage-area-volume relations, and uncertainties associated with land-cover based evapotranspiration (ET) rate estimates. Furthermore, the uncertainty of estimated SWGW exchanges can be magnified in large wetland systems that transition from dry to wet during wet periods. Although it is well understood that observation-based estimates of SWGW exchange are uncertain it is uncommon for the uncertainty of these estimates to be directly quantified. High-level programming languages like Python can greatly reduce the effort required to (1) quantify the uncertainty of estimated SWGW exchange in large wetland systems and (2) evaluate how different approaches for partitioning land-cover data in a watershed may affect the water-budget uncertainty. We have used Python with the Numpy, Scipy.stats, and pyDOE packages to implement an unconstrained Monte Carlo approach with Latin Hypercube sampling to quantify the uncertainty of monthly estimates of SWGW exchange in the Floral City watershed of the Tsala Apopka wetland system in west-central Florida, USA. Possible sources of uncertainty in the water budget analysis include rainfall, ET, canal discharge, and land/bathymetric surface elevations. Each of these input variables was assigned a probability distribution based on observation error or spanning the range of probable values. The Monte Carlo integration process exposes the uncertainties in land-cover based ET rate estimates as the dominant contributor to the uncertainty in SWGW exchange estimates. We will discuss the uncertainty of SWGW exchange estimates using an ET model that partitions the watershed into open water and wetland land-cover types. We will also discuss the uncertainty of SWGW exchange estimates calculated using ET models partitioned into additional land-cover types.
The Value of Forest and Pasture to Water Supply in Kona, HI
NASA Astrophysics Data System (ADS)
Brauman, K. A.; Daily, G. C.; Freyberg, D. L.
2007-12-01
By quantifying the supply and value of ecosystem services flowing from private land, we can provide a mechanism for sustaining ecosystem services by compensating landowners for their supply. In order for compensation to occur, however, both suppliers and users of ecosystem services require information about the way different land management scenarios will affect ecosystem service flows. This case study in Kona, HI, takes advantage of the direct link between upland water source areas and municipal drinking water users in Kailua-Kona to explore the value of one type of hydrologic service. By quantifying the difference in aquifer recharge under paired forest and pasture sites, we assess the impact of each land-cover type on the volume of water potentially available to municipal water users. We use a water balance approach - measuring rainfall interception and water use by plants, then calculating the balance to be aquifer recharge because of the absence of surface runoff. We aim to integrate these biophysical measurements with information, including costs of pumping, well construction, and land-cover maintenance, provided by the water utility and landowners to ascertain the value of forest and pasture to water supply. By determining the value to water users in Kailua-Kona of the increase or decrease in water quantity that would result from upland land-cover change, we aim both to protect drinking water quantity and to help landowners offset financial pressure to convert their land.
An integrated approach to the remote sensing of floating ice
NASA Technical Reports Server (NTRS)
Campbell, W. J.; Ramseier, R. O.; Weeks, W. F.; Gloersen, P.
1976-01-01
Review article on remote sensing applications to glaciology. Ice parameters sensed include: ice cover vs open water, ice thickness, distribution and morphology of ice formations, vertical resolution of ice thickness, ice salinity (percolation and drainage of brine; flushing of ice body with fresh water), first-year ice and multiyear ice, ice growth rate and surface heat flux, divergence of ice packs, snow cover masking ice, behavior of ice shelves, icebergs, lake ice and river ice; time changes. Sensing techniques discussed include: satellite photographic surveys, thermal IR, passive and active microwave studies, microwave radiometry, microwave scatterometry, side-looking radar, and synthetic aperture radar. Remote sensing of large aquatic mammals and operational ice forecasting are also discussed.
MODSNOW-Tool: an operational tool for daily snow cover monitoring using MODIS data
NASA Astrophysics Data System (ADS)
Gafurov, Abror; Lüdtke, Stefan; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Schöne, Tilo; Schmidt, Sebastian; Kalashnikova, Olga; Merz, Bruno
2017-04-01
Spatially distributed snow cover information in mountain areas is extremely important for water storage estimations, seasonal water availability forecasting, or the assessment of snow-related hazards (e.g. enhanced snow-melt following intensive rains, or avalanche events). Moreover, spatially distributed snow cover information can be used to calibrate and/or validate hydrological models. We present the MODSNOW-Tool - an operational monitoring tool offers a user-friendly application which can be used for catchment-based operational snow cover monitoring. The application automatically downloads and processes freely available daily Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data. The MODSNOW-Tool uses a step-wise approach for cloud removal and delivers cloud-free snow cover maps for the selected river basins including basin specific snow cover extent statistics. The accuracy of cloud-eliminated MODSNOW snow cover maps was validated for 84 almost cloud-free days in the Karadarya river basin in Central Asia, and an average accuracy of 94 % was achieved. The MODSNOW-Tool can be used in operational and non-operational mode. In the operational mode, the tool is set up as a scheduled task on a local computer allowing automatic execution without user interaction and delivers snow cover maps on a daily basis. In the non-operational mode, the tool can be used to process historical time series of snow cover maps. The MODSNOW-Tool is currently implemented and in use at the national hydrometeorological services of four Central Asian states - Kazakhstan, Kyrgyzstan, Uzbekistan and Turkmenistan and used for seasonal water availability forecast.
Disease Outbreaks Caused by Water.
ERIC Educational Resources Information Center
Craun, Gunther F.
1978-01-01
Presents a literature review of the disease outbreaks caused by drinking polluted water, covering publications of 1976-77. Some of the waterborn outbreaks included are: (1) cholera; (2) gastroenteritis; (3) giardiasis; and (4) typhoid fever and salmonellosis. A list of 66 references is also presented. (HM)
Lead and Copper Control 101-slides
This presentation is an overview of the most important water treatment strategies for the control of lead and copper release from drinking water corrosion. In addition to the sections specifically on lead and copper treatment, sections are included that cover sampling to find le...
Water Analysis: Emerging Contaminants and Current Issues (2009 Review)
This biennial review covers developments in Water Analysis for Emerging Environmental Contaminants over the period of 2007-2008. A few significant references that appeared between January and February 2009 are also included. Analytical Chemistry’s current policy is to limit rev...
Getting the lead out: understanding risks in the distribution system
This presentation discusses the importance of the water distribution system as a component of the source-to-tap continuum in public health protection. Issues covered include: understanding source water quality changes and their impacts throughout the system; use of mitigation me...
Remote sensing of snow and ice: A review of the research in the United States 1975 - 1978
NASA Technical Reports Server (NTRS)
Rango, A.
1979-01-01
Research work in the United States from 1975-1978 in the field of remote sensing of snow and ice is reviewed. Topics covered include snowcover mapping, snowmelt runoff forecasting, demonstration projects, snow water equivalent and free water content determination, glaciers, river and lake ice, and sea ice. A bibliography of 200 references is included.
Pilgrim, C M; Mikhailova, E A; Post, C J; Hains, J J
2014-11-01
Monitoring changes in land cover and the subsequent environmental responses are essential for water quality assessment, natural resource planning, management, and policies. Over the last 75 years, the Lake Issaqueena watershed has experienced a drastic shift in land use. This study was conducted to examine the changes in land cover and the implied changes in land use that have occurred and their environmental, water quality impacts. Aerial photography of the watershed (1951, 1956, 1968, 1977, 1989, 1999, 2005, 2006, and 2009) was analyzed and classified using the geographic information system (GIS) software. Seven land cover classes were defined: evergreen, deciduous, bare ground, pasture/grassland, cultivated, and residential/other development. Water quality data, including sampling depth, water temperature, dissolved oxygen content, fecal coliform levels, inorganic nitrogen concentrations, and turbidity, were obtained from the South Carolina (SC) Department of Health and Environmental Control (SCDHEC) for two stations and analyzed for trends as they relate to land cover change. From 1951 to 2009, the watershed experienced an increase of tree cover and bare ground (+17.4 % evergreen, +62.3 % deciduous, +9.8 % bare ground) and a decrease of pasture/grassland and cultivated land (-42.6 % pasture/grassland and -57.1 % cultivated). From 2005 to 2009, there was an increase of 21.5 % in residential/other development. Sampling depth ranged from 0.1 to 0.3 m. Water temperature fluctuated corresponding to changing air temperatures, and dissolved oxygen content fluctuated as a factor of water temperature. Inorganic nitrogen content was higher from December to April possibly due to application of fertilizers prior to the growing season. Turbidity and fecal coliform bacteria levels remained relatively the same from 1962 to 2005, but a slight decline in pH can be observed at both stations. Prior to 1938, the area consisted of single-crop cotton farms; after 1938, the farms were abandoned, leaving large bare areas with highly eroded soil. Starting in 1938, Clemson reforested almost 30 % of the watershed. Currently, three fourths of the watershed is forestland, with a limited coverage of small farms and residential developments. Monitoring water quality is essential in maintaining adequate freshwater supply. Water quality monitoring focuses mainly on the collection of field data, but current water quality conditions depend on the cumulative impacts of land cover change over time.
The natural land cover patterns that characterize the southern part of Wisconsin are legacies of a
glaciated past. Land cover pattern and geomorphology control the hydrologic connections between water
resources and the land by which ecosystems, including lakes are o...
A Hydrostatic Paradox Revisited
ERIC Educational Resources Information Center
Ganci, Salvatore
2012-01-01
This paper revisits a well-known hydrostatic paradox, observed when turning upside down a glass partially filled with water and covered with a sheet of light material. The phenomenon is studied in its most general form by including the mass of the cover. A historical survey of this experiment shows that a common misunderstanding of the phenomenon…
NASA Data for Water Resources Applications
NASA Technical Reports Server (NTRS)
Toll, David; Houser, Paul; Arsenault, Kristi; Entin, Jared
2004-01-01
Water Management Applications is one of twelve elements in the Earth Science Enterprise National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1) estimating water storage including snowpack and soil moisture, 2) modeling and predicting water fluxes such as evapotranspiration (ET), precipitation and river runoff, and 3) remote sensing of water quality, including both point source (e.g., turbidity and productivity) and non-point source (e.g., land cover conversion such as forest to agriculture yielding higher nutrient runoff). The objectives of the partnering cover three steps of: 1) Evaluation, 2) Verification and Validation, and 3) Benchmark Report. We are working with the U.S. federal agencies including the Environmental Protection Agency (EPA), the Bureau of Reclamation (USBR) and the Department of Agriculture (USDA). We are using several of their Decision Support Systems (DSS) tools. This includes the DSS support tools BASINS used by EPA, Riverware and AWARDS ET ToolBox by USBR and SWAT by USDA and EPA. Regional application sites using NASA data across the US. are currently being eliminated for the DSS tools. The current NASA data emphasized thus far are from the Land Data Assimilation Systems WAS) and MODIS satellite products. We are currently in the first two steps of evaluation and verification validation. Water Management Applications is one of twelve elements in the Earth Science Enterprise s National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1) estimating water storage including snowpack and soil moisture, 2) modeling and predicting water fluxes such as evapotranspiration (ET), precipitation and river runoff, and 3) remote sensing of water quality, including both point source (e.g., turbidity and productivity) and non-point source (e.g., land cover conversion such as forest to agriculture yielding higher nutrient runoff). The objectives of the partnering cover three steps of 1) Evaluation, 2) Verification and Validation, and 3) Benchmark Report. We are working with the U.S. federal agencies the Environmental Protection Agency (EPA), the Bureau of Reclamation (USBR) and the Department of Agriculture (USDA). We are using several of their Decision Support Systems (DSS) tools. T us includes the DSS support tools BASINS used by EPA, Riverware and AWARDS ET ToolBox by USBR and SWAT by USDA and EPA. Regional application sites using NASA data across the US. are currently being evaluated for the DSS tools. The current NASA data emphasized thus far are from the Land Data Assimilation Systems (LDAS) and MODIS satellite products. We are currently in the first two steps of evaluation and verification and validation.
Evapotranspiration (ET) covers.
Rock, Steve; Myers, Bill; Fiedler, Linda
2012-01-01
Evapotranspiration (ET) cover systems are increasingly being used at municipal solid waste (MSW) landfills, hazardous waste landfills, at industrial monofills, and at mine sites. Conventional cover systems use materials with low hydraulic permeability (barrier layers) to minimize the downward migration of water from the surface to the waste (percolation), ET cover systems use water balance components to minimize percolation. These cover systems rely on soil to capture and store precipitation until it is either transpired through vegetation or evaporated from the soil surface. Compared to conventional membrane or compacted clay cover systems, ET cover systems are expected to cost less to construct. They are often aesthetic because they employ naturalized vegetation, require less maintenance once the vegetative system is established, including eliminating mowing, and may require fewer repairs than a barrier system. All cover systems should consider the goals of the cover in terms of protectiveness, including the pathways of risk from contained material, the lifecycle of the containment system. The containment system needs to be protective of direct contact of people and animals with the waste, prevent surface and groundwater water pollution, and minimize release of airborne contaminants. While most containment strategies have been based on the dry tomb strategy of keeping waste dry, there are some sites where adding or allowing moisture to help decompose organic waste is the current plan. ET covers may work well in places where complete exclusion of precipitation is not needed. The U.S. EPA Alternative Cover Assessment Program (ACAP), USDOE, the Nuclear Regulatory Commission, and others have researched ET cover design and efficacy, including the history of their use, general considerations in their design, performance, monitoring, cost, current status, limitations on their use, and project specific examples. An on-line database has been developed with information about specific projects using ET covers. There are three general approaches for non-conventional cover systems to achieve approval for installation; the first is when equivalent performance to conventional final cover systems can be demonstrated directly on site. This is the approach used by the Sandia study, by most ACAP sites, and the Rocky Mountain Arsenal. A second approach is used when there are data from a site specific study such as an ACAP installation at a site that has analogous soil and climate conditions. Several sites in Colorado and Southern California have achieved approval based on data from similar sites. The third most common approach for regulatory approval is by installation of data collection systems with the agreement that the permanence of the ET cover installation is contingent on success of the cover in meeting certain performance goals. This article is intended as an introduction to the topic and is not intended to serve as guidance for design or construction, nor indicate the appropriateness of using an ET cover systems at a particular site.
Trends in sea ice cover within habitats used by bowhead whales in the western Arctic.
Moore, Sue E; Laidre, Kristin L
2006-06-01
We examined trends in sea ice cover between 1979 and 2002 in four months (March, June, September, and November) for four large (approximately 100,000 km2) and 12 small (approximately 10,000 km2) regions of the western Arctic in habitats used by bowhead whales (Balaena mysticetus). Variation in open water with year was significant in all months except March, but interactions between region and year were not. Open water increased in both large and small regions, but trends were weak with least-squares regression accounting for < or =34% of the total variation. In large regions, positive trends in open water were strongest in September. Linear fits were poor, however, even in the East Siberian, Chukchi, and Beaufort seas, where basin-scale analyses have emphasized dramatic sea ice loss. Small regions also showed weak positive trends in open water and strong interannual variability. Open water increased consistently in five small regions where bowhead whales have been observed feeding or where oceanographic models predict prey entrainment, including: (1) June, along the northern Chukotka coast, near Wrangel Island, and along the Beaufort slope; (2) September, near Wrangel Island, the Barrow Arc, and the Chukchi Borderland; and (3) November, along the Barrow Arc. Conversely, there was very little consistent change in sea ice cover in four small regions considered winter refugia for bowhead whales in the northern Bering Sea, nor in two small regions that include the primary springtime migration corridor in the Chukchi Sea. The effects of sea ice cover on bowhead whale prey availability are unknown but can be modeled via production and advection pathways. Our conceptual model suggests that reductions in sea ice cover will increase prey availability along both pathways for this population. This analysis elucidates the variability inherent in the western Arctic marine ecosystem at scales relevant to bowhead whales and contrasts basin-scale depictions of extreme sea ice retreats, thinning, and wind-driven movements.
Contribution of wetlands to nitrate removal at the watershed scale
NASA Astrophysics Data System (ADS)
Hansen, Amy T.; Dolph, Christine L.; Foufoula-Georgiou, Efi; Finlay, Jacques C.
2018-02-01
Intensively managed row crop agriculture has fundamentally changed Earth surface processes within the Mississippi River basin through large-scale alterations of land cover, hydrology and reactive nitrogen availability. These changes have created leaky landscapes where excess agriculturally derived nitrate degrades riverine water quality at local, regional and continental scales. Individually, wetlands are known to remove nitrate but the conditions under which multiple wetlands meaningfully reduce riverine nitrate concentration have not been established. Only one region of the Mississippi River basin—the 44,000 km2 Minnesota River basin—still contains enough wetland cover within its intensively agriculturally managed watersheds to empirically address this question. Here we combine high-resolution land cover data for the Minnesota River basin with spatially extensive repeat water sampling data. By clearly isolating the effect of wetlands from crop cover, we show that, under moderate-high streamflow, wetlands are five times more efficient per unit area at reducing riverine nitrate concentration than the most effective land-based nitrogen mitigation strategies, which include cover crops and land retirement. Our results suggest that wetland restorations that account for the effects of spatial position in stream networks could provide a much greater benefit to water quality then previously assumed.
Astrobiology of Antarctic ice Covered Lakes
NASA Astrophysics Data System (ADS)
Doran, P. T.; Fritsen, C. H.
2005-12-01
Antarctica contains a number of permanently ice-covered lakes which have often been used as analogs of purported lakes on Mars in the past. Antarctic subglacial lakes, such as Lake Vostok, have also been viewed as excellent analogs for an ice covered ocean on the Jovian moon Europa, and to a lesser extend on Mars. Lakes in the McMurdo Dry Valleys of East Antarctica have ice covers that range from 3 to 20 meters thick. Water salinities range from fresh to hypersaline. The thinner ice-covered lakes have a well-documented ecology that relies on the limited available nutrients and the small amount of light energy that penetrates the ice covers. The thickest ice-covered lake (Lake Vida in Victoria Valley) has a brine beneath 20 m of ice that is 7 times sea water and maintains a temperature below -10 degrees Celsius. This lake is vastly different from the thinner ice-covered lakes in that there is no communication with the atmosphere. The permanent ice cover is so thick, that summer melt waters can not access the sub-ice brine and so the ice grows from the top up, as well as from the bottom down. Brine trapped beneath the ice is believed to be ancient, stranded thousands of years ago when the ice grew thick enough to isolate it from the surface. We view Lake Vida as an excellent analog for the last aquatic ecosystem to have existed on Mars under a planetary cooling. If, as evidence is now increasingly supporting, standing bodies of water existed on Mars in the past, their fate under a cooling would be to go through a stage of permanent ice cover establishment, followed by a thickening of that ice cover until the final stage just prior to a cold extinction would be a Lake Vida-like lake. If dust storms or mass movements covered these ancient lakes, remnants may well be in existence in the subsurface today. A NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) project will drill the Lake Vida ice cover and access the brine and sediments beneath in November 2005. This presentation will include an update from the field.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-15
... channel banks and shorelines and provided additional criteria to establish cover on the stream banks and...-written to include erosion and sedimentation, water quality, and water quantity. Shallow Water Development... standards that may be used. Channel Bank Vegetation (Code 322)--Rescission of this practice will be [[Page...
Impacts of forest restoration on water yield: A systematic review
Filoso, Solange; Bezerra, Maíra Ometto; Weiss, Katherine C. B.; Palmer, Margaret A.
2017-01-01
Background Enhancing water provision services is a common target in forest restoration projects worldwide due to growing concerns over freshwater scarcity. However, whether or not forest cover expansion or restoration can improve water provision services is still unclear and highly disputed. Purpose The goal of this review is to provide a balanced and impartial assessment of the impacts of forest restoration and forest cover expansion on water yields as informed by the scientific literature. Potential sources of bias on the results of papers published are also examined. Data sources English, Spanish and Portuguese peer-review articles in Agricola, CAB Abstracts, ISI Web of Science, JSTOR, Google Scholar, and SciELO. Databases were searched through 2015. Search terms Intervention terms included forest restoration, regeneration/regrowth, forest second-growth, forestation/afforestation, and forestry. Target terms included water yield/quantity, streamflow, discharge, channel runoff, and annual flow. Study selection and eligibility criteria Articles were pre-selected based on key words in the title, abstract or text. Eligible articles addressed relevant interventions and targets and included quantitative information. Results Most studies reported decreases in water yields following the intervention, while other hydrological benefits have been observed. However, relatively few studies focused specifically on forest restoration, especially with native species, and/or on projects done at large spatial or temporal scales. Information is especially limited for the humid tropics and subtropics. Conclusions and implications of key findings While most studies reported a decrease in water yields, meta-analyses from a sub-set of studies suggest the potential influence of temporal and/or spatial scales on the outcomes of forest cover expansion or restoration projects. Given the many other benefits of forest restoration, improving our understanding of when and why forest restoration can lead to recovery of water yields is crucial to help improve positive outcomes and prevent unintended consequences. Our study identifies the critical types of studies and associated measurements needed. PMID:28817639
NASA Astrophysics Data System (ADS)
Ewers, B. E.; Mackay, D. S.; Ahl, D. E.; Burrows, S. N.; Samanta, S. S.; Gower, S. T.
2001-05-01
Land use change has created a diversity of forest cover types in northern Wisconsin. Our objective was to determine if changes in forest cover would result in a significant change in regional water flux. To adequately sample these forest cover types we chose four cover types red pine, sugar maple/basswood, quaking aspen/balsam fir, and northern white-cedar/balsam fir/green alder that represent more than 80 percent of the ground area. The remainder of the ground area is mostly non-forested grassland, shrubland, and open water. Within each cover type we measured sap flux of 8 trees of each species. We scaled point measurements of sap flux to tree transpiration using sensors positioned radially into the conducting sapwood and on both the north and south sides of the tree. We found that aspen/balsam fir had the highest average daily transpiration rates. There was no difference in the northern white-cedar/balsam fir/green alder and red pine cover types. The sugar maple/basswood cover type had the lowest daily average transpiration rate. These changes in transpiration could not be explained by differences in leaf area index. Thus, we calculated canopy average stomatal conductance (GS) using an inversion of the Penman-Monteith equation and tree leaf area. We modified a regional hydrology model to include a simple tree hydraulic sub-model that assumes stomatal regulation of leaf water potential. We tested the behavior of the sub-model by evaluating GS response to vapor pressure deficit, radiation, temperature, and soil moisture for each species. We hypothesize that species with a high canopy average stomatal conductance at low vapor pressure deficit will have to have greater sensitivity to vapor pressure deficit in order to maintain minimal leaf water potential as suggested by the model. Our results indicate that changes to forest cover such as conversion from low transpiring sugar maple/basswood to high transpiring aspen/fir will result in predictable changes to the regional water balance of northern Wisconsin.
Effect of land cover, stream discharge, and precipitation on water quality in Puerto Rico
NASA Astrophysics Data System (ADS)
Hall, J. S.; Uriarte, M.
2017-12-01
In 2015, Puerto Rico experienced one of the worst droughts in its history, causing widespread water rationing and sparking concerns for future resources. The drought represents precipitation extremes that provide valuable insight into the effects of land cover (LC), on modulating discharge and water quality indices at varying spatial scales. We used data collected from 38 water quality and 55 precipitation monitoring stations in Puerto Rico from 2005 to 2016, paired with a 2010 land cover map to (1) determine whether temporal variability in discharge, precipitation, or antecedent precipitation was a better predictor of water quality, (2) find the spatial scale where LC has the greatest impact on water quality, and (3) quantify impacts of LC on water quality indices, including dissolved oxygen (mg/L), total nitrogen (mg/L), phosphorous (mg/L), turbidity (NTRU), fecal coliforms (colony units/100mL) and instantaneous discharge (ft3/s). The resulting linear mixed effects models account for between 36-68% of the variance in water quality. Preliminary results indicate that phosphorous and nitrogen were best predicted from instantaneous stream discharge, the log of discharge was the better predictor for turbidity and fecal coliforms, and summed 2 and 14-day antecedent precipitation indices were better predictors for dissolved oxygen and discharge, respectively. Increased urban and pasture area reliably decreased water quality in relation to forest cover, while agriculture and wetlands had little or mixed effects. Turbidity and nitrogen responded to a watershed level LC, while phosphorous, fecal coliforms, and discharge responded to LC in 60 m riparian buffers at the watershed scale. Our results indicate that LC modulates changing precipitation regimes and the ensuing impacts on water quality at a range of spatial scales.
ERIC Educational Resources Information Center
Menoche, Terri; And Others
This guide contains a series of lessons for elementary school students covering environmental issues including waste reduction and recycling, decomposition and composting, landfills, natural resources, energy sources and conservation, and water quality. The lessons include an objective, background information, method, and activities for…
ERIC Educational Resources Information Center
Rowbotham, N.
1973-01-01
Presents the material given in one class period in a course on Environmental Studies at Chesterfield School, England. The topics covered include air pollution, water pollution, fertilizers, and insecticides. (JR)
NASA Astrophysics Data System (ADS)
Cornelisen, Christopher D.; Thomas, Florence I. M.
2004-08-01
Seagrasses rely on the uptake of dissolved inorganic nitrogen (DIN) from both sediment pore water and the water column for metabolic processes. Rates at which their leaves remove nutrients from the water column may be influenced by physiological factors, such as enzyme kinetics, and physical factors, including water flow and the presence of epiphytes on the leaf surface. While there is some evidence of the individual effects of these factors on uptake rates for individual plants, there is little information on the effects of these factors on seagrasses that are situated in their natural environment. In order to isolate the combined effects of water flow and epiphyte cover on uptake rates for Thalassia testudinum leaves while they were situated in a natural canopy we applied 15N-labeled ammonium and 15N-labeled nitrate in a series of field flume experiments. Hydrodynamic parameters related to thickness of diffusive boundary layers, including bottom shear stress and the rate of turbulent energy dissipation, were estimated from velocity profiles collected with an acoustic Doppler velocimeter. Rates of NH 4+ uptake for leaves with and without epiphyte cover were proportional to bottom shear stress and energy dissipation rate, while rates of NO 3- uptake were not. For epiphytes, rates of both NH 4+ and NO 3- uptake were dependent on hydrodynamic parameters. Epiphytes covering the leaf surface reduced rates of NH 4+ uptake for seagrass leaves by an amount proportional to the spatial area covered by the epiphytes (˜90%) and although epiphytes reduced NO 3- uptake rates, the amount was not proportional to the extent of epiphyte cover. Results suggest that the rate at which seagrass leaves removed ammonium was limited by the rate of delivery to the surface of the leaves and was greatly reduced due to blockage of active uptake sites by epiphytes. Conversely, rates of nitrate uptake for the seagrass leaves were limited by the rate at which the leaves could process nitrate rather than the rate of delivery. Our findings quantitatively demonstrate the potential impact of hydrodynamic regime and epiphyte cover on rates of DIN uptake by T. testudinum leaves and how the importance of these factors in affecting uptake rates can vary depending on the form of DIN being assimilated.
Evaluating Satellite and Supercomputing Technologies for Improved Coastal Ecosystem Assessments
NASA Astrophysics Data System (ADS)
McCarthy, Matthew James
Water quality and wetlands represent two vital elements of a healthy coastal ecosystem. Both experienced substantial declines in the U.S. during the 20th century. Overall coastal wetland cover decreased over 50% in the 20th century due to coastal development and water pollution. Management and legislative efforts have successfully addressed some of the problems and threats, but recent research indicates that the diffuse impacts of climate change and non-point source pollution may be the primary drivers of current and future water-quality and wetland stress. In order to respond to these pervasive threats, traditional management approaches need to adopt modern technological tools for more synoptic, frequent and fine-scale monitoring and assessment. In this dissertation, I explored some of the applications possible with new, commercial satellite imagery to better assess the status of coastal ecosystems. Large-scale land-cover change influences the quality of adjacent coastal water. Satellite imagery has been used to derive land-cover maps since the 1960's. It provides multiple data points with which to evaluate the effects of land-cover change on water quality. The objective of the first chapter of this research was to determine how 40 years of land-cover change in the Tampa Bay watershed (6,500 km2) may have affected turbidity and chlorophyll concentration - two proxies for coastal water quality. Land cover classes were evaluated along with precipitation and wind stress as explanatory variables. Results varied between analyses for the entire estuary and those of segments within the bay. Changes in developed land percent cover best explained the turbidity and chlorophyll-concentration time series for the entire bay (R2 > 0.75, p < 0.02). The paucity of official land-cover maps (i.e. five maps) restricted the temporal resolution of the assessments. Furthermore, most estuaries along the Gulf of Mexico do not have forty years of water-quality time series with which to perform evaluations against land-cover change. Ocean-color satellite imagery was used to derive proxies for coastal water with near-daily satellite observations since 2000. The goal of chapter two was to identify drivers of turbidity variability for 11 National Estuary Program water bodies along the Gulf of Mexico. Land cover assessments could not be used as an explanatory variable because of the low temporal resolution (i.e. approximately one map per five-year period). Ocean color metrics were evaluated against atmospheric, meteorological, and oceanographic variables including precipitation, wind speed, U and V wind vectors, river discharge, and water level over weekly, monthly, seasonal and annual time steps. Climate indices like the North Atlantic Oscillation and El Nino Southern Oscillation index were also examined as possible drivers of long-term changes. Extreme turbidity events were defined by the 90th and 95th percentile observations over each time step. Wind speed, river discharge and El Nino best explained variability in turbidity time-series and extreme events (R2 > 0.2, p < 0.05), but this varied substantially between time steps and estuaries. The background land cover analyses conducted for coastal water quality studies showed that there are substantial discrepancies between the wetland extent estimates mapped by local, state and federal agencies. The third chapter of my research sought to examine these differences and evaluate the accuracy and precision of wetland maps using high spatial-resolution (i.e. two-meter) WorldView-2 satellite imagery. Ground validation data showed that wetlands mapped at two study sites in Tampa Bay were more accurately identified by WorldView-2 than by Landsat imagery (30-meter resolution). When compared to maps produced separately by the National Oceanic and Atmospheric Administration, Southwest Florida Water Management District, and National Wetland Inventory, we found that these historical land cover products overestimated by 2-10 times the actual extent of wetlands as identified in the WorldView-2 maps. We could find no study that had utilized more than six of these commercial images for a given project. Part of the problem is cost of the images, but there is also the cost of processing the images, which is typically done one at a time and with substantial human interaction. Chapter four explains an approach to automate the preprocessing and classification of imagery to detect wetlands within the Tampa Bay watershed (6,500 km2). Software scripts in Python, Matlab and Linux were used to ingest 130 WorldView-2 images and to generate maps that included wetlands, uplands, water, and bare and developed land. These maps proved to be more accurate at identifying forested wetland (78%) than those by NOAA, SWFWMD, and NWI (45-65%) based on ground validation data. Typical processing methods would have required 4-5 months to complete this work, but this protocol completed the 130 images in under 24 hours. Chapter five of the dissertation reviews coastal management case studies that have used satellite technologies. The objective was to illustrate the utility of this technology. The management sectors reviewed included coral reefs, wetlands, water quality, public health, and fisheries and aquaculture.
Urban land cover is commonly associated with degraded stream habitat including flashier hydrology, increased pollutant export, and lower ecological health , collectively termed “urban stream syndrome.” Pollutant export from urban areas can also contribute to water quality issues...
33 CFR 239.5 - Engineering considerations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Engineering considerations. 239.5 Section 239.5 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF... § 239.5 Engineering considerations. Reports on proposals to provide covered channels shall include a...
33 CFR 239.5 - Engineering considerations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Engineering considerations. 239.5 Section 239.5 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF... § 239.5 Engineering considerations. Reports on proposals to provide covered channels shall include a...
33 CFR 239.5 - Engineering considerations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Engineering considerations. 239.5 Section 239.5 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF... § 239.5 Engineering considerations. Reports on proposals to provide covered channels shall include a...
33 CFR 239.5 - Engineering considerations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Engineering considerations. 239.5 Section 239.5 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF... § 239.5 Engineering considerations. Reports on proposals to provide covered channels shall include a...
33 CFR 239.5 - Engineering considerations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Engineering considerations. 239.5 Section 239.5 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF... § 239.5 Engineering considerations. Reports on proposals to provide covered channels shall include a...
Selected water-resources activities of the U.S. Geological Survey in New England in 2017
Weiskel, Peter K.
2017-06-22
The New England Water Science Center of the U.S. Geological Survey (USGS) is headquartered in Pembroke, New Hampshire, with offices in East Hartford, Connecticut; Augusta, Maine; Northborough, Massachusetts; and Montpelier, Vermont. The areas of expertise covered by the water science center’s staff of 130 include aquatic biology, chemistry, geographic information systems, geology, hydrologic sciences and engineering, and water use.
Methods Used in EnviroAtlas to Assess Urban Natural ...
Previous studies have positively correlated human exposures to natural features with health promoting outcomes such as increased physical activity, improved cognitive function, increased social engagement, and reduced ambient air pollution. When using remotely-sensed data to investigate these relationships, researchers must first identify an appropriate spatial resolution to characterize exposures. However, metric development has often been limited by the lack of fine-scale land cover data, especially across multiple communities. As a result, researchers commonly use coarse resolution imagery. EnviroAtlas, a U.S. Environmental Protection Agency web-based ecosystem services mapping tool, has developed 1-meter resolution land cover data across 16 diverse U.S. Census Urban Areas using aerial photography and supplemental data. Research maps derived from these foundational data include percent tree cover along busy roads, percent tree cover and green space along walkable streets, and percent natural vegetation bordering water bodies. EnviroAtlas has also developed multiple smoothed “heat maps” of proximity to specific types of features at every 1m point; these include total green space, tree cover, and water within 50m, 500m, and 1,000m buffers; walking distance to the nearest park entrance; and intersection density as an indicator of neighborhood walkability.EnviroAtlas variables are available to external researchers, public health professionals and planners t
Geographic techniques and recent applications of remote sensing to landscape-water quality studies
Griffith, J.A.
2002-01-01
This article overviews recent advances in studies of landscape-water quality relationships using remote sensing techniques. With the increasing feasibility of using remotely-sensed data, landscape-water quality studies can now be more easily performed on regional, multi-state scales. The traditional method of relating land use and land cover to water quality has been extended to include landscape pattern and other landscape information derived from satellite data. Three items are focused on in this article: 1) the increasing recognition of the importance of larger-scale studies of regional water quality that require a landscape perspective; 2) the increasing importance of remotely sensed data, such as the imagery-derived normalized difference vegetation index (NDVI) and vegetation phenological metrics derived from time-series NDVI data; and 3) landscape pattern. In some studies, using landscape pattern metrics explained some of the variation in water quality not explained by land use/cover. However, in some other studies, the NDVI metrics were even more highly correlated to certain water quality parameters than either landscape pattern metrics or land use/cover proportions. Although studies relating landscape pattern metrics to water quality have had mixed results, this recent body of work applying these landscape measures and satellite-derived metrics to water quality analysis has demonstrated their potential usefulness in monitoring watershed conditions across large regions.
NASA Astrophysics Data System (ADS)
Saadatkhah, Nader; Mansor, Shattri; Khuzaimah, Zailani; Asmat, Arnis; Adnan, Noraizam; Adam, Siti Noradzah
2016-09-01
Changing the land cover/ land use has serious environmental impacts affecting the ecosystem in Malaysia. The impact of land cover changes on the environmental functions such as surface water, loss water, and soil moisture is considered in this paper on the Kelantan river basin. The study area at the east coast of the peninsular Malaysia has suffered significant land cover changes in the recent years. The current research tried to assess the impact of land cover changes in the study area focused on the surface water, loss water, and soil moisture from different land use classes and the potential impact of land cover changes on the ecosystem of Kelantan river basin. To simulate the impact of land cover changes on the environmental hydrology characteristics, a deterministic regional modeling were employed in this study based on five approaches, i.e. (1) Land cover classification based on Landsat images; (2) assessment of land cover changes during last three decades; (3) Calculation the rate of water Loss/ Infiltration; (4) Assessment of hydrological and mechanical effects of the land cover changes on the surface water; and (5) evaluation the impact of land cover changes on the ecosystem of the study area. Assessment of land cover impact on the environmental hydrology was computed with the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) based on the transient infiltration, and subsequently changes in the surface water, due to precipitation events. The results showed the direct increased in surface water from development area, agricultural area, and grassland regions compared with surface water from other land covered areas in the study area. The urban areas or lower planting density areas tend to increase for surface water during the monsoon seasons, whereas the inter flow from forested and secondary jungle areas contributes to the normal surface water.
Coastal and Inland Aquatic Data Products for the Hyperspectral Infrared Imager (HyspIRI)
NASA Technical Reports Server (NTRS)
Abelev, Andrei; Babin, Marcel; Bachmann, Charles; Bell, Thomas; Brando, Vittorio; Byrd, Kristin; Dekker , Arnold; Devred, Emmanuel; Forget, Marie-Helene; Goodman, James;
2015-01-01
The HyspIRI Aquatic Studies Group (HASG) has developed a conceptual list of data products for the HyspIRI mission to support aquatic remote sensing of coastal and inland waters. These data products were based on mission capabilities, characteristics, and expected performance. The topic of coastal and inland water remote sensing is very broad. Thus, this report focuses on aquatic data products to keep the scope of this document manageable. The HyspIRI mission requirements already include the global production of surface reflectance and temperature. Atmospheric correction and surface temperature algorithms, which are critical to aquatic remote sensing, are covered in other mission documents. Hence, these algorithms and their products were not evaluated in this report. In addition, terrestrial products (e.g., land use land cover, dune vegetation, and beach replenishment) were not considered. It is recognized that coastal studies are inherently interdisciplinary across aquatic and terrestrial disciplines. However, products supporting the latter are expected to already be evaluated by other components of the mission. The coastal and inland water data products that were identified by the HASG, covered six major environmental and ecological areas for scientific research and applications: wetlands, shoreline processes, the water surface, the water column, bathymetry and benthic cover types. Accordingly, each candidate product was evaluated for feasibility based on the HyspIRI mission characteristics and whether it was unique and relevant to the HyspIRI science objectives.
16 CFR 305.19 - Promotional material displayed or distributed at point of sale.
Code of Federal Regulations, 2013 CFR
2013-01-01
... OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT... distribution at point-of-sale concerning a covered product that is a showerhead, faucet, water closet, or urinal shall clearly and conspicuously include in such printed material the product's water use...
16 CFR 305.19 - Promotional material displayed or distributed at point of sale.
Code of Federal Regulations, 2012 CFR
2012-01-01
... OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT... distribution at point-of-sale concerning a covered product that is a showerhead, faucet, water closet, or urinal shall clearly and conspicuously include in such printed material the product's water use...
Surface Water Treatment Workshop Manual.
ERIC Educational Resources Information Center
Ontario Ministry of the Environment, Toronto.
This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…
Pump Operation Workshop. Third Edition (Revised).
ERIC Educational Resources Information Center
Ontario Ministry of the Environment, Toronto.
Presented is the learner's manual for a five-day workshop designed to supplement the skills of water and wastewater treatment personnel. The program consists of lecture-discussions and hands-on sessions covering the operation of water and wastewater pumps. Areas addressed include: material pumped, pump systems, types of pumps, pump controls,…
Opsahl, Stephen P.; Musgrove, MaryLynn; Mahler, Barbara J.; Lambert, Rebecca B.
2018-06-07
As questions regarding the influence of increasing urbanization on water quality in the Edwards aquifer are raised, a better understanding of the sources, fate, and transport of compounds of concern in the aquifer—in particular, nutrients and pesticides—is needed to improve water management decision-making capabilities. The U.S. Geological Survey, in cooperation with the San Antonio Water System, performed a study from 2010 to 2016 to better understand how water quality changes under a range of hydrologic conditions and in contrasting land-cover settings (rural and urban) in the Edwards aquifer. The study design included continuous hydrologic monitoring, continuous water-quality monitoring, and discrete sample collection for a detailed characterization of water quality at a network of sites throughout the aquifer system. The sites were selected to encompass a “source-to-sink” (that is, from aquifer recharge to aquifer discharge) approach. Network sites were selected to characterize rainfall, recharging surface water, and groundwater; groundwater sites included wells in the unconfined part of the aquifer (unconfined wells) and in the confined part of the aquifer (confined wells) and a major discharging spring. Storm-related samples—including rainfall samples, stormwater-runoff (surface-water) samples, and groundwater samples—were collected to characterize the aquifer response to recharge.Elevated nitrate concentrations relative to national background values and the widespread detection of pesticides indicate that the Edwards aquifer is vulnerable to contamination and that vulnerability is affected by factors such as land cover, aquifer hydrogeology, and changes in hydrologic conditions. Greater vulnerability of groundwater in urban areas relative to rural areas was evident from results for urban groundwater sites, which generally had higher nitrate concentrations, elevated δ15N-nitrate values, a greater diversity of pesticides, and higher pesticide concentrations. The continuum of water quality from unconfined rural groundwater sites (least affected by anthropogenic contamination) to unconfined urban groundwater sites (most affected by anthropogenic contamination) demonstrates enhanced vulnerability of urban versus rural land cover. Differences in contaminant occurrences and concentration among unconfined urban wells indicate that the urban parts of the aquifer are not uniformly vulnerable, but rather are affected by spatial differences in the sources of nutrients and pesticides. In urban areas, the shallow, unconfined groundwater sites showed greater temporal variability in both nutrient and pesticide concentrations, as well as a greater degree of contamination, than did deeper, confined groundwater sites. In comparison to that of the shallow, unconfined groundwater sites, the water quality of the deeper, confined groundwater sites was relatively invariant during this multiyear study. Although aquifer hydrogeology is an important factor related to aquifer vulnerability, land cover likely has a greater influence on pesticide contamination of groundwater. Temporal variability in hydrologic conditions for the Edwards aquifer is apparent in data for surface water as a source of groundwater recharge, water-level altitude in wells, spring discharge, and groundwater quality. This temporal variability affects recharge sources, recharge amounts, groundwater traveltimes, flow routing, water-rock interaction processes, dilution, mixing, and, in turn, water quality. Relations of land cover, aquifer hydrogeology, and changing hydrologic conditions to water quality are complex but provide insight into the vulnerability of Edwards aquifer groundwater—a vital drinking-water resource.
New method to assess the water vapour permeance of wound coverings.
Jonkman, M F; Molenaar, I; Nieuwenhuis, P; Bruin, P; Pennings, A J
1988-05-01
A new method for assessing the permeability to water vapour of wound coverings is presented, using the evaporimeter developed by Nilsson. This new method combines the water vapour transmission rate (WVTR) and the vapour pressure difference across a wound covering in one absolute measure: the water vapour permeance (WVP). The WVP of a wound covering is the steady flow (g) of water vapour per unit (m2) area of surface in unit (h) time induced by unit (kPa) vapour pressure difference, g.m-2.h-1.kPa-1. Since the WVP of a wound covering is a more accurate measure for the permeability than the WVTR is, it facilitates the prediction of the water exchange of a wound covering in clinical situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loflin, Leonard; McRimmon, Beth
2014-12-18
This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.
Land Use Patterns and Fecal Contamination of Coastal Waters in Western Puerto Rico
NASA Technical Reports Server (NTRS)
Norat, Jose
1994-01-01
The Department of Environmental Health of the Graduate School of Public Health of the Medical Sciences Campus, University of Puerto Rico (UPR-RCM) conducted this research project on how different patterns of land use affect the microbiological quality of rivers flowing into Mayaguez Bay in Western Puerto Rico. Coastal shellfish growing areas, stream and ocean bathing beaches, and pristine marine sites in the Bay are affected by the discharge of the three study rivers. Satellite imagery was used to study watershed land uses which serve as point and nonpoint sources of pathogens affecting stream and coastal water users. The study rivers drain watersheds of different size and type of human activity (including different human waste treatment and disposal facilities). Land use and land cover in the study watersheds were interpreted, classified and mapped using remotely sensed images from NASA's Landsat Thematic Mapper (TM). This study found there is a significant relationship between watershed land cover and microbiological water quality of rivers flowing into Mayaguez Bay in Western Puerto Rico. Land covers in the Guanajibo, Anasco, and Yaguez watersheds were classified into forested areas, pastures, agricultural zones and urban areas so as to determine relative contributions to fecal water contamination. The land cover classification was made processing TM images with IDRISI and ERDAS software.
An improved snow scheme for the ECMWF land surface model: Description and offline validation
Emanuel Dutra; Gianpaolo Balsamo; Pedro Viterbo; Pedro M. A. Miranda; Anton Beljaars; Christoph Schar; Kelly Elder
2010-01-01
A new snow scheme for the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model has been tested and validated. The scheme includes a new parameterization of snow density, incorporating a liquid water reservoir, and revised formulations for the subgrid snow cover fraction and snow albedo. Offline validation (covering a wide range of spatial and...
Combustion characteristics and emissions from burning organic soils
Charles K. McMahon; Dale D. Wade; Skevos N. Tsoukalas
1980-01-01
Organic soils cover many millions of hectares in the United States, including 2.8 million hectares in the Southern United States and about 1.0 million in south Florida. Organic soils form when plants such as pond weeds, grasses, shrubs, and trees die and are covered by water for extended periods. With oxygen excluded, decomposition is very slow. As residues accumulate...
These are abstracts of peer-reviewed articles, authored by Office of Children's Health Protection staff. They cover topics including risk assessment for early life stages, inhalation dosimetry, and manganese in drinking water.
Dampers, reclaimers and pumps - oh my!
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.; Wyatt, E.
1997-07-01
Residential energy retrofitters often hear much hype about new products designed to increased the efficiency of domestic water heating. This article examines how much energy these devices really save and how they save it. Topics covered include the following: nonelectronic flue dampers; recovering heat from wastewater; water that`s neither hear not there, the demand pump which improves continuous recirculation of water; cost savings. 1 fig.
Summary of Recent Inducer Testing at MSFC and Future Plans
NASA Technical Reports Server (NTRS)
Skelley, Stephen
2003-01-01
This viewgraph presentation covers water flow tests on the RS-83 Main LOX Inducer for the Space Shuttle Main Engine (SSME). The presentation lists recent water tests on the SSME liquid oxygen (LOX) pump inducer, includes images and diagrams of the water test facility at Marshall Space Flight Center (MSFC), profiles inducer hydrodynamic forces, and diagrams the performance of the RS-83 inducer.
Advanced Land Use Classification for Nigeriasat-1 Image of Lake Chad Basin
NASA Astrophysics Data System (ADS)
Babamaaji, R.; Park, C.; Lee, J.
2009-12-01
Lake Chad is a shrinking freshwater lake that has been significantly reduced to about 1/20 of its original size in the 1960’s. The severe draughts in 1970’s and 1980’s and following overexploitations of water resulted in the shortage of surface water in the lake and the surrounding rivers. Ground water resources are in scarcity too as ground water recharge is mostly made by soil infiltration through soil and land cover, but this surface cover is now experiencing siltation and expansion of wetland with invasive species. Large changes in land use and water management practices have taken place in the last 50 years including: removal of water from river systems for irrigation and consumption, degradation of forage land by overgrazing, deforestation, replacing natural ecosystems with mono-cultures, and construction of dams. Therefore, understanding the change of land use and its characteristics must be a first step to find how such changes disturb the water cycle around the lake and affect the shrinkage of the lake. Before any useful thematic information can be extracted from remote sensing data, a land cover classification system has to be developed to obtain the classes of interest. A combination of classification systems used by Global land cover, Water Resources eAtlass and Lake Chad Basin Commission gave rise to 7 land cover classes comprising of - Cropland, vegetation, grassland, water body, shrub-land, farmland ( mostly irrigated) and bareland (i.e. clear land). Supervised Maximum likelihood classification method was used with 15 reference points per class chosen. At the end of the classification, the overall accuracy is 93.33%. Producer’s accuracy for vegetation is 40% compare to the user’s accuracy that is 66.67 %. The reason is that the vegetation is similar to shrub land, it is very hard to differentiate between the vegetation and other plants, and therefore, most of the vegetation is classified as shrub land. Most of the waterbodies are occupied by vegetation and other plant, therefore it can only be well identify if producer is present or using high resolution image, which is shown in the accuracy result of water for both producer and user (66.67%).
Alluvial Mountain Meadow Source-Sink Dynamics: Land-Cover Effects on Water and Fluvial Carbon Export
NASA Astrophysics Data System (ADS)
Weiss, T.; Covino, T. P.; Wohl, E.; Rhoades, C.; Fegel, T.; Clow, D. W.
2017-12-01
Fluvial networks of historically glaciated mountain landscapes alternate between confined and unconfined valley segments. In low-gradient unconfined reaches, river-connected wet meadows commonly establish, and have been recognized as important locations of long-term water, carbon, and nutrient storage. Among connected meadow floodplains, sink-source behavior shifts as a function of flow state; storing water at high flows (snowmelt) and contributing toward higher late-season baseflows. Despite these benefits, historical and contemporary land-use practices often result in the simplification of wet meadow systems, leading to reduced river-floodplain connectivity, lower water-tables and reductions in hydrologic buffering capacity. In this study, we are exploring hydrologic-carbon relationships across a gradient of valley confinement and river-floodplain connectivity (connected, n=3; disconnected, n=4) within the Colorado Rockies. Our approach includes hydrologic analysis, fluorometric assays, water chemistry, instream metabolic measures, and land-cover assessment to examine patterns between land-form, carbon quantity and quality, and stream ecosystem productivity. Between different meadow types, preliminary results suggest differences between instream productivity, carbon qualities, and hydrologic-carbon sink-source dynamics across the season. These data and analyses will provide insight into water, carbon and nutrient flux dynamics as a function of land-cover in mountain headwaters.
Exergie /4th revised and enlarged edition/
NASA Astrophysics Data System (ADS)
Baloh, T.; Wittwer, E.
The theoretical concept of exergy is explained and its practical applications are discussed. Equilibrium and thermal equilibrium are reviewed as background, and exergy is considered as a reference point for solid-liquid, liquid-liquid, and liquid-gas systems. Exergetic calculations and their graphic depictions are covered. The concepts of enthalpy and entropy are reviewed in detail, including their applications to gas mixtures, solutions, and isolated substances. The exergy of gas mixtures, solutions, and isolated substances is discussed, including moist air, liquid water in water vapor, dry air, and saturation-limited solutions. Mollier exergy-enthalpy-entropy diagrams are presented for two-component systems, and exergy losses for throttling, isobaric mixing, and heat transfer are addressed. The relationship of exergy to various processes is covered, including chemical processes, combustion, and nuclear reactions. The optimization of evaporation plants through exergy is discussed. Calculative examples are presented for energy production and heating, industrial chemical processes, separation of liquid air, nuclear reactors, and others.
Rerouting Urban Waters: A Historic Examination of the Age of Imperviousness
NASA Astrophysics Data System (ADS)
Hopkins, K. G.; Bain, D. J.
2011-12-01
From the 1600's to the 1900's landscapes along the Eastern United States underwent dramatic changes, including transitions from forest to production agriculture and eventually urban development. Legacy effects from decisions on sewer and water infrastructure built during the early 1900's are emerging today in degraded urban waterways. Impervious cover is often a factor used to predict water impairment. However, does imperviousness age or change through the course of landscape evolution? This study reconstructs the history of imperviousness in the Panther Hollow watershed (161 ha, Pittsburgh, PA) to examine these changes. We reconstruct the importance of factors influencing effective imperviousness from the 1800's to present including; (1) pipe and road network technological transitions, (2) land cover changes, particularly the loss of forest cover, and (3) modifications to local topography. Analysis reveals effective imperviousness (impervious area in the basin directly connected to stream channels) increased dramatically after 1900. Prior to 1900, water and sewer infrastructure was very limited. Local drainage networks generally followed the natural topography and households accessed water supplies from wells, precipitation harvesting or surface water. Road networks were sparse and predominantly dirt or aggregate surfaces. Forests and large family farms dominated land cover. Around 1910 public water supply expanded, significantly increasing effective imperviousness due to installation of brick and ceramic sewer infrastructure that routed waste waters directly to stream channels. Road networks also expanded and began transitioning from dirt roads to brick and eventually asphalt. Shifting to impervious paving materials required the installation of stormwater drainage. New drainage systems altered historic flow paths by re-routed large quantities of water through macro-pore sewer networks to local waterways. While this improvement prevented flooding to roadways, it also created new flooding issues downstream of outfalls. Improvements to transit networks also increased mobility and connected towns together facilitating the expansion of development. Significant losses of urban tree canopy cover and the loss of water storage capacity in soils compounded issues, dramatically increasing effective imperviousness. From 1940 - 1960 concerns over polluted waterways resulted in the re-routing of sewage networks from streams to treatment facilities, decreasing sewage subsidies to effective imperviousness. However, connection of stormwater drainage networks to sewage infrastructure designed for earlier flow regimes and the increasing effective imperviousness resulted in frequent overflows of sewage directly to local waterways. Currently, aging infrastructure presents the opportunity to incorporate low impact development techniques in infrastructure repair. This has the potential to reduce effective imperviousness in urban areas by re-establishing lost hydrologic flow paths. This research indicates imperviousness as a parameter incorporates a complicated mix of processes. Examining the causal, mechanistic links between these systems can provide additional perspective on water impairments in urban landscapes throughout the course of landscape evolution.
NASA Technical Reports Server (NTRS)
1981-01-01
The Space Transportation System (STS) is discussed, including the launch processing system, the thermal protection subsystem, meteorological research, sound supression water system, rotating service structure, improved hypergol or removal systems, fiber optics research, precision positioning, remote controlled solid rocket booster nozzle plugs, ground operations for Centaur orbital transfer vehicle, parachute drying, STS hazardous waste disposal and recycle, toxic waste technology and control concepts, fast analytical densitometry study, shuttle inventory management system, operational intercommunications system improvement, and protective garment ensemble. Terrestrial applications are also covered, including LANDSAT applications to water resources, satellite freeze forecast system, application of ground penetrating radar to soil survey, turtle tracking, evaluating computer drawn ground cover maps, sparkless load pulsar, and coupling a microcomputer and computing integrator with a gas chromatograph.
16 CFR 305.19 - Promotional material displayed or distributed at point of sale.
Code of Federal Regulations, 2011 CFR
2011-01-01
... OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT... concerning a covered product that is a showerhead, faucet, water closet, or urinal shall clearly and conspicuously include in such printed material the product's water use, expressed in gallons and liters per...
ERIC Educational Resources Information Center
Bureau of Labor Statistics (DOL), Washington, DC.
Focusing on air and water transportation occupations, this document is one in a series of forty-one reprints from the Occupational Outlook Handbook providing current information and employment projections for individual occupations and industries through 1985. The specific occupations covered in this document include civil aviation workers, air…
Gould, William A.; Martinuzzi, Sebastián; Pares-Ramos, Isabel K.; Murphy, Sheila F.; Stallard, Robert F.; Murphy, Sheila F.; Stallard, Robert F.
2012-01-01
We assessed current and historic land use and land cover in the Luquillo Mountains and surrounding area in eastern Puerto Rico, including four small subwatersheds that are study watersheds of the U.S. Geological Survey's Water, Energy, and Biogeochemical Budgets (WEBB) program. This region occupies an area of 1,616 square kilometers, about 18 percent of the total land in Puerto Rico. Closed forests occupy about 37 percent of the area, woodlands and shrublands 7 percent, nonforest vegetation 43 percent, urban development 10 percent, and water and natural barrens total less than 2 percent. The area has been classified into three main land-use categories by integrating recent census information (population density per barrio in the year 2000) with satellite image analyses (degree of developed area versus natural land cover). Urban land use (in this analysis, land with more than 20 percent developed cover within a 1-square-kilometer area and population density greater than 500 people per square kilometer) covered 16 percent of eastern Puerto Rico. Suburban land use (more than 80 percent natural land cover, more than 500 people per square kilometer, and primarily residential) covers 50 percent of the area. Rural land use (more than 80 percent natural land cover, less than 500 people per square kilometer, and primarily active or abandoned agricultural, wetland, steep slope, or protected conservation areas) covered 34 percent of the area. Our analysis of land-cover change indicates that in the 1990s, forest cover increased at the expense of woodlands and grasslands. Urban development increased by 16 percent during that time. The most pronounced change in the last seven decades has been the shift from a nonforested to a forested landscape and the intensification of the ring of urbanization that surrounds the long-protected Luquillo Experimental Forest.
Polluted and turbid water masses in Osaka Bay and its vicinity revealed with ERTS-A imageries
NASA Technical Reports Server (NTRS)
Watanabe, K.
1973-01-01
ERTS-1 took very valuable MSS imageries of Osaka Bay and its vicinity on October 24, 1972. In the MSS-4 and MSS-5 imageries a complex grey pattern of water masses can be seen. Though some of grey colored patterns seen in black and white prints of the MSS-4 and MSS-5 imageries are easily identified from their shapes as cloud covers or polluted water masses characterized by their color tone in longer wavelengths in the visible region, any correct distribution pattern of polluted or turbid water masses can be hardly detected separately from thin cloud covers in a quick look analysis. In the present investigation, a simple photographic technique was applied using the fact that reflected sun light from cloud including smog and inclined water surfaces of wave have a certain component in the near infrared region, that MSS-7, whereas the light scattered from fine materials suspended in the sea water has nearly no component sensible in MSS-4 and MSS-5 channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giambelluca, Thomas W.; Mudd, Ryan G.; Liu, Wen
The expansion of rubber (Hevea brasiliensis) cultivation to higher latitudes and higher elevations in southeast Asia is part of a dramatic shift in the direction of rural land cover change in the region toward more tree covered landscapes. To investigate the possible effects of increasing rubber cultivation in the region on ecosystem services including water cycling, eddy covariance towers were established to measure ecosystem fluxes within two rubber plantations, one each in Bueng Kan, northeastern Thailand, and Kampong Cham, central Cambodia. The results show that evapotranspiration (ET) at both sites is strongly related to variations in available energy and leafmore » area, and moderately controlled by soil moisture. Measured mean annual ET was 1128 and 1272 mm for the Thailand and Cambodia sites, respectively. After adjustment for energy closure, mean annual was estimated to be 1211 and 1459 mm yr at the Thailand and Cambodia sites, respectively. Based on these estimates and that of another site in Xishuangbanna, southwestern China, it appears that of rubber is higher than that of other tree dominated land covers in the region, including forest. While measurements by others in non rubber tropical ecosystems indicate that at high net radiation sites is at most only slightly higher than for sites with lower net radiation, mean annual rubber increases strongl with increasing net radiation across the three available rubber plantation observation sites. With the continued expansion of tree dominated land covers, including rubber cultivation, in southeast Asia, the possible association between commercially viable, fast growing tree crop species Giambelluca et al. Evapotranspiration of rubber (Havea brasiliensis) cultivated at two sites in southeast Asia and their relatively high water use raises concerns about potential effects on water and food security.« less
NASA Astrophysics Data System (ADS)
Lisniak, D.; Meissner, D.; Klein, B.; Pinzinger, R.
2013-12-01
The German Federal Institute of Hydrology (BfG) offers navigational water-level forecasting services on the Federal Waterways, like the rivers Rhine and Danube. In cooperation with the Federal States this mandate also includes the forecasting of flood events. For the River Rhine, the most frequented inland waterway in Central Europe, the BfG employs a hydrological model (HBV) coupled to a hydraulic model (SOBEK) by the FEWS-framework to perform daily forecasts of water-levels operationally. Sensitivity studies have shown that the state of soil water storage in the hydrological model is a major factor of uncertainty when performing short- to medium-range forecasts some days ahead. Taking into account the various additional sources of uncertainty associated with hydrological modeling, including measurement uncertainties, it is essential to estimate an optimal initial state of the soil water storage before propagating it in time, forced by meteorological forecasts, and transforming it into discharge. We show, that using the Ensemble Kalman Filter these initial states can be updated straightforward under certain hydrologic conditions. However, this approach is not sufficient if the runoff is mainly generated by snow melt. Since the snow cover evolution is modeled rather poorly by the HBV-model in our operational setting, flood events caused by snow melt are consistently underestimated by the HBV-model, which has long term effects in basins characterized by a nival runoff regime. Thus, it appears beneficial to update the snow storage of the HBV-model with information derived from regionalized snow cover observations. We present a method to incorporate spatially distributed snow cover observations into the lumped HBV-model. We show the plausibility of this approach and asses the benefits of a coupled snow cover and soil water storage updating, which combine a direct insertion with an Ensemble Kalman Filter. The Ensemble Kalman Filter used here takes into account the internal routing mechanism of the HBV-model, which causes a delayed response of the simulated discharge at the catchment outlet to changes in internal states.
The Impact of Anthropogenic Land Cover Change on Continental River Flow
NASA Astrophysics Data System (ADS)
Sterling, S. M.; Ducharne, A.; Polcher, J.
2006-12-01
The 2003 World Water Forum highlighted a water crisis that forces over one billion people to drink contaminated water and leaves countless millions with insufficient supplies for agriculture industry. This crisis has spurred numerous recent calls for improved science and understanding of how we alter the water cycle. Here we investigate how this global water crisis is affected by human-caused land cover change. We examine the impact of the present extent of land cover change on the water cycle, in particular on evapotranspiration and streamflow, through numerical experiments with the ORCHIDEE land surface model. Using Geographic Information Systems, we characterise land cover change by assembling and modifying existing global-scale maps of land cover change. To see how the land cover change impacts river runoff streamflow, we input the maps into ORCHIDEE and run 50-year "potential vegetation" and "current land cover" simulations of the land surface and energy fluxes, forced by the 50-year NCC atmospheric forcing data set. We present global maps showing the "hotspot" areas with the largest change in ET and streamflow due to anthropogenic land cover change. The results of this project enhance scientific understanding of the nature of human impact on the global water cycle.
NASA Astrophysics Data System (ADS)
McGowan, L. E.; Dahlke, H. E.; Paw U, K. T.
2015-12-01
Snow cover is a critical driver of the Earth's surface energy budget, climate change, and water resources. Variations in snow cover not only affect the energy budget of the land surface but also represent a major water supply source. In California, US estimates of snow depth, extent, and melt in the Sierra Nevada are critical to estimating the amount of water available for both California agriculture and urban users. However, accurate estimates of snow cover and snow melt processes in forested area still remain a challenge. Canopy structure influences the vertical and spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability in forested regions. In this study we use the Advanced Canopy-Atmosphere-Soil algorithm (ACASA), a multi-layer soil-vegetation-atmosphere numerical model, to simulate the effect of different snow-covered canopy structures on the energy budget, and temperature and other scalar profiles within different forest types in the Sierra Nevada, California. ACASA incorporates a higher order turbulence closure scheme which allows the detailed simulation of turbulent fluxes of heat and water vapor as well as the CO2 exchange of several layers within the canopy. As such ACASA can capture the counter gradient fluxes within canopies that may occur frequently, but are typically unaccounted for, in most snow hydrology models. Six different canopy types were modeled ranging from coniferous forests (e.g. most biomass near the ground) to top-heavy (e.g. most biomass near the top of the crown) deciduous forests to multi-layered forest canopies (e.g. mixture of young and mature trees). Preliminary results indicate that the canopy shape and structure associated with different canopy types fundamentally influence the vertical scalar profiles (including those of temperature, moisture, and wind speed) in the canopy and thus alter the interception and snow melt dynamics in forested land surfaces. The turbulent transport dynamics, including counter-gradient fluxes, and radiation features including land surface albedo, are discussed in the context of the snow energy balance.
Toward a Predictive Model of Arctic Coastal Retreat in a Warming Climate, Beaufort Sea, Alaska
2012-09-30
Water level is modulated of the water level by waves and surge and tide. Melt rate is governed by an empirically based iceberg melting algorithm that...examination of enviornmental conditions, modified iceberg melting rules, and energy fluxes to the coast establish that water depth, water temperature and...photography, Arctic Alpine Antarctic Research 43(3): 474-484. (includes cover photo of this issue) Matell, N., R. S. Anderson, I. Overeem, C. Wobus
Land use, population dynamics, and land-cover change in Eastern Puerto Rico
W.A. Gould; S. Martinuzzi; I.K. Páres-Ramos
2012-01-01
We assessed current and historic land use and land cover in the Luquillo Mountains and surrounding area in eastern Puerto Rico, including four small subwatersheds that are study watersheds of the U.S. Geological Surveyâs Water, Energy, and Biogeochemical Budgets (WEBB) program. This region occupies an area of 1,616 square kilometers, about 18 percent of the total land...
Abeyta, Cynthia G.; Frenzel, P.F.
1999-01-01
Geologic and hydrologic data for the Municipal Solid Waste Landfill Facility on the U.S. Army Air Defense Artillery Center and Fort Bliss in El Paso County, Texas, were collected by the U.S. Geological Survey in cooperation with the U.S. Department of the Army. The 106.03-acre landfill has been in operation since January 1974. The landfill contains household refuse, Post solid wastes, bulky items, grass and tree trimmings from family housing, refuse from litter cans, construction debris, classified waste (dry), dead animals, asbestos, and empty oil cans. The depth of the filled areas is about 30 feet and the cover, consisting of locally derived material, is 2 to 3 feet thick. Geologic and hydrologic data were collected at or adjacent to the landfill during (1) drilling of 10 30- to 31-foot boreholes that were completed with gas-monitoring probes, (2) drilling of a 59-foot borehole, (3) drilling of a 355-foot borehole that was completed as a ground-water monitoring well, and (4) in situ measurements made on the landfill cover. After completion, the gas- monitoring probes were monitored on a quarterly basis (1 year total) for gases generated by the landfill. Water samples were collected from the ground-water monitoring well for chemical analysis. Data collection is divided into two elements: geologic data and hydrologic data. Geologic data include lithologic descriptions of cores and cuttings, geophysical logs, soil- gas and ambient-air analyses, and chemical analyses of soil. Hydrologic data include physical properties, total organic carbon, and pH of soil and sediment samples; soil-water chloride and soil-moisture analyses; physical properties of the landfill cover; measurements of depth to ground water; and ground-water chemical analyses. Interpretation of data is not included in this report.
Use of thermal infrared and colour infrared imagery to detect crop moisture stress. [Alberta, Canada
NASA Technical Reports Server (NTRS)
Mckenzie, R. C.; Clark, N. F.; Cihlar, J. (Principal Investigator)
1979-01-01
The author has identified the following significant results. In the presence of variable plant cover (primarily percent cover) and variable available water content, the remotely sensed apparent temperatures correlate closely with plant cover and poorly with soil water. To the extent that plant cover is not systematically related to available soil water, available water in the root zone values may not be reliably predicted from the thermal infrared data. On the other hand, if plant cover is uniform and the soil surface is shown in a minor way, the thermal data indicate plant stress and consequently available water in the soil profile.
Variation in surface water-groundwater exchange with land use in an urban stream
NASA Astrophysics Data System (ADS)
Ryan, Robert J.; Welty, Claire; Larson, Philip C.
2010-10-01
SummaryA suite of methods is being utilized in the Baltimore metropolitan area to develop an understanding of the interaction between groundwater and surface water at multiple space and time scales. As part of this effort, bromide tracer experiments were conducted over two 10-day periods in August 2007 and May 2008 along two sections (each approximately 900 m long) of Dead Run, a small urban stream located in Baltimore County, Maryland, to investigate the influence of distinct zones of riparian land cover on surface-subsurface exchange and transient storage under low and high baseflow conditions. Riparian land cover varied by reach along a gradient of land use spanning parkland, suburban/residential, commercial, institutional, and transportation, and included wooded, meadow, turf grass, and impervious cover. Under summer low baseflow conditions, surface water-groundwater exchange, defined by gross inflow and gross outflow, was larger and net inflow (gross inflow minus gross outflow) had greater spatial variability, than was observed under spring high baseflow conditions. In addition, the fraction of nominal travel time attributable to transient storage ( Fmed) was lower and was more spatially variable under high baseflow conditions than under low baseflow conditions. The influence of baseflow condition on surface water-ground water exchange and transient storage was most evident in the subreaches with the least riparian forest cover and these effects are attributed to a lack of shading in reaches with little riparian forest cover. We suggest that under summer low baseflow conditions, the lack of shading allowed excess in-channel vegetation growth which acted as a transient storage zone and a conduit for outflow (i.e. uptake and evapotranspiration). Under spring high baseflow conditions the transient storage capacity of the channel was reduced because there was little in-channel vegetation.
Ranking agricultural practices on soil water improvements: a meta-analysis
NASA Astrophysics Data System (ADS)
Basche, A.; DeLonge, M. S.; Gonzalez, J.
2016-12-01
Increased rainfall variability is well documented in the historic record and predicted to intensify with future climate change. Managing excess water in periods of heavy rain and a lack of water in periods of inadequate precipitation will continue to be a challenge. Improving soil resiliency through increased water storage is a promising strategy to combat effects of both rainfall extremes. The goal of this research is to quantify to what extent various conservation and ecological practices can improve soil hydrology. We are conducting a global meta-analysis focused on studies where conservation and ecological practices are compared to more conventional management. To date we have analyzed 100 studies with more than 450 paired comparisons to understand the effect of management on water infiltration rates, a critical process that ensures water enters the soil profile for crop use, water storage and runoff prevention. The database will be expanded to include studies measuring soil porosity and the water retained at field capacity. Statistical analysis has been done both with both a bootstrap method and a mixed model that weights studies based on precision while accounting for between-study variation. We find that conservation and ecological practices, ranging from no-till, cover crops, crop rotation, perennial crops and agroforestry, on average significantly increased water infiltration rates relative to more conventional practice controls (mean of 75%, standard error 25%). There were significant differences between practices, where perennial and agroforestry systems show the greatest potential for improving water infiltration rates (> 100% increase). Cover crops also lead to a significant increase in water infiltration rates (> 60%) while crop rotations and no-till systems did not consistently demonstrate increases. We also found that studies needed to include alternative management for more than two years to detect a significant increase. Overall this global meta-analysis improves understanding of how alternative management, notably the use of continuous cover in agricultural systems, improves water dynamics. Policies should be designed in a way that allows agricultural producers to prioritize and implement practices that offer greater water conservation while maintaining crop productivity.
Rulemaking on Preventing Hazardous Substance Spills
This web area covers the new rulemaking effort under Clean Water Act section 311(j)(l)(C): preventing hazardous substance spills. This includes public meetings, the proposed rule, and public comment period.
Environmental information translated into Korean covers topics including nail salons, dry-cleaning, drinking water, fish consumption, asthma, cleaning and disinfecting foot spa basins, pesticides, and professional fabricare processes.
NASA Astrophysics Data System (ADS)
Eggen, Trine; Soran, Maria-Loredana
2015-12-01
Historically, pollution has been associated with heavy metals and hydrophobic persistent organic pollutants (POPs). This has changed. Today, legacy or emerging contaminants cover a vast number of compounds including industrial man-made chemicals, pesticides and pharmaceuticals in addition to inorganic elements and nanomaterials. These compounds are transferred to the environment via wastewater effluents and leachates and via sludge/biosolids such as fertilizers or soil amendments. Compared to previous POPs, today's legacy and emerging contaminants cover a broader spectrum of structures and properties, including a high number of persistent medium to highly water. For most emerging contaminants, neither the environmental transfer and residue nor the short- and long ecotoxicological and human adverse effects are known. Thus, it's time for precautionary acting and to replace conventional treatment processes originally designed for removal of organic matter and nutrients with processes suitable for removal of hazardous chemicals with a wide range of properties before entering water and terrestrial recipients.
Newton, Michael; Ice, George
2016-01-01
Forested riparian buffers isolate streams from the influence of harvesting operations that can lead to water temperature increases. Only forest cover between the sun and stream limits stream warming, but that cover also reduces in-stream photosynthesis, aquatic insect production, and fish productivity. Water temperature increases that occur as streams flow through canopy openings decrease rapidly downstream, in as little as 150 m. Limiting management options in riparian forests restricts maintenance and optimization of various buffer contributions to beneficial uses, including forest products, fish, and their food supply. Some riparian disturbance, especially along cold streams, appears to benefit fish productivity. Options for enhancing environmental investments in buffers should include flexibility in application of water quality standards to address the general biological needs of fish and temporary nature of clearing induced warming. Local prescriptions for optimizing riparian buffers and practices that address long-term habitat needs deserve attention. Options and incentives are needed to entice landowners to actively manage for desirable riparian forest conditions.
Field Demonstration of Light Obscuration Particle Counting Technologies to Detect Fuel Contaminates
2016-12-01
to detect fuel contamiation including particulates and free water 15. SUBJECT TERMS fuel, JP-8, aviation fuel, contamination, free water ...undissolved water , F24 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT none 18. NUMBER OF PAGES 12 19a. NAME OF RESPONSIBLE PERSON Joel...technical, interim, memorandum, master’s thesis, progress, quarterly, research , special, group study, etc. 3. DATES COVERED. Indicate the time during
NASA Astrophysics Data System (ADS)
Babamaaji, R. A.; Lee, J.
2013-12-01
Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the effects of land use / land cover must be a first step to find how they disturb cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and disuse recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires reliable forecasting of changes in the major climatic variables and other spatial variations including the land use/land cover, soil texture, topographic slope, and vegetation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal and spatial distribution of surface runoff, interception, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB. The study shows that major role in the water balance of LCB. The mean yearly actual evapotranspiration (ET) from the basin range from 60mm - 400 mm, which is 90 % (69mm - 430) of the annual precipitation from 2003 - 2010. It is striking that about 50 - 60 % of the total runoff is produced on build-up (impervious surfaces), while much smaller contributions are obtained from vegetated, bare soil and open water surfaces. The result of this study also shows that runoff is high in the clay, clay loam and sandy-clay loam due to the lack of infiltration process in clay soil from capping or crusting or sealing of the soil pores, therefore this situation will aid runoff. The application of the WetSpass model shows that precipitation, soil texture and land use / land cover are three controlling factors affecting the water balance in the LCB. Key words: Groundwater recharge, surface runoff, evapotranspiration, water balance, meteorological, draught, Landuse changes, climate changes, WetSpass, GIS.
NASA Technical Reports Server (NTRS)
Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy
2011-01-01
Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.
Fishman, M. J.
1993-01-01
Methods to be used to analyze samples of water, suspended sediment and bottom material for their content of inorganic and organic constituents are presented. Technology continually changes, and so this laboratory manual includes new and revised methods for determining the concentration of dissolved constituents in water, whole water recoverable constituents in water-suspended sediment samples, and recoverable concentration of constit- uents in bottom material. For each method, the general topics covered are the application, the principle of the method, interferences, the apparatus and reagents required, a detailed description of the analytical procedure, reporting results, units and significant figures, and analytical precision data. Included in this manual are 30 methods.
NASA Astrophysics Data System (ADS)
Manago, K. F.; Hogue, T. S.; Litvak, E.; Pataki, D. E.
2016-12-01
California experienced its most severe drought on record in 2013 and 2014, forcing the governor to call for the first statewide reductions in urban water use. This led to numerous water conservation efforts including turf removal and restrictions on outdoor irrigation. The decrease in irrigation across the city of Los Angeles has had major effects on regional hydrologic fluxes. Previous studies have found that conservation efforts have decreased streamflow but little work has been done on the impact of reduced irrigation on Evapotranspiration (ET). ET is one of the most difficult variables to measure as a result of its heterogeneity both spatially and temporally; yet, it is imperative in characterizing energy and hydrologic processes and in aiding water management decisions. Estimating ET is further complicated in urban regions where land cover composition is extremely variable, even at small scales. Irrigated landscape and impervious surfaces are two of the most common land cover types associated with urbanization, but they have opposite effects on ET. While numerous studies have evaluated changes in ET caused by urbanization, they have all produced varying results. This is expected as changes to ET are highly dependent on land cover composition. In this study, we modeled the relationship between ET and urban land cover change in Los Angeles. We utilized empirical equations derived from in situ measurements to calculate tree and irrigated turfgrass ET and compared the results to estimates based on remote-sensing and California Irrigation Management Information System (CIMIS) network of weather stations. We found that unshaded turfgrass largely increased ET compared to impervious surfaces, which reveals lavish irrigation practices. Trees also increased ET, but they provided shade that decreased ET from turf grass. With much of the western United States facing drought and water supply uncertainty due to climate change, understanding and predicting how land cover impacts ET under various scenarios is imperative for informed water management and efficient conservation solutions.
NASA Astrophysics Data System (ADS)
Akay, A. E.; Gencal, B.; Taş, İ.
2017-11-01
This short paper aims to detect spatiotemporal detection of land use/land cover change within Karacabey Flooded Forest region. Change detection analysis applied to Landsat 5 TM images representing July 2000 and a Landsat 8 OLI representing June 2017. Various image processing tools were implemented using ERDAS 9.2, ArcGIS 10.4.1, and ENVI programs to conduct spatiotemporal change detection over these two images such as band selection, corrections, subset, classification, recoding, accuracy assessment, and change detection analysis. Image classification revealed that there are five significant land use/land cover types, including forest, flooded forest, swamp, water, and other lands (i.e. agriculture, sand, roads, settlement, and open areas). The results indicated that there was increase in flooded forest, water, and other lands, while the cover of forest and swamp decreased.
Marshall Space Flight Center ECLSS technology activities
NASA Technical Reports Server (NTRS)
Wieland, Paul
1990-01-01
Viewgraphs on Environmental Control and Life Support System (ECLSS) technology activities are presented. Topics covered include: analytical development; ECLSS modeling approach; example of water reclamation modeling needs; and hardware development and testing.
USDA-ARS?s Scientific Manuscript database
The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...
A Model Evaluation Data Set for the Tropical ARM Sites
Jakob, Christian
2008-01-15
This data set has been derived from various ARM and external data sources with the main aim of providing modelers easy access to quality controlled data for model evaluation. The data set contains highly aggregated (in time) data from a number of sources at the tropical ARM sites at Manus and Nauru. It spans the years of 1999 and 2000. The data set contains information on downward surface radiation; surface meteorology, including precipitation; atmospheric water vapor and cloud liquid water content; hydrometeor cover as a function of height; and cloud cover, cloud optical thickness and cloud top pressure information provided by the International Satellite Cloud Climatology Project (ISCCP).
Long-Endurance, Ice-capable Autonomous Seagliders
NASA Astrophysics Data System (ADS)
Lee, C. M.; Gobat, J. I.; Shilling, G.; Curry, B.
2012-12-01
Autonomous Seagliders capable of extended (many months) operation in ice-covered waters have been developed and successfully employed as part of the US Arctic Observing Network. Seagliders operate routinely in lower-latitude oceans for periods of up to 9 months to provide persistent sampling in difficult, remote conditions, including strong boundary currents and harsh wintertime subpolar seas. The Arctic Observing Network calls for sustained occupation of key sections within the Arctic Ocean and across the critical gateways that link the Arctic to lower-latitude oceans, motivating the extension of glider technologies to permit operation in ice-covered waters. When operating in open water, gliders rely on GPS for navigation and Iridium satellite phones for data and command telemetry. Ice cover blocks access to the sea surface and thus prevents gliders from using these critical services. When operating under ice, ice-capable Seagliders instead navigate by trilateration from an array of RAFOS acoustic sound sources and employ advanced autonomy to make mission-critical decisions (previously the realm of the human pilot) and identify and exploit leads in the ice to allow intermittent communication through Iridium. Davis Strait, one of the two primary pathways through which Arctic waters exit into the subpolar North Atlantic, provided a convenient site for development of ice-capable Seagliders at a location where the resulting measurements could greatly augment the existing observing system. Initial testing of 780 Hz RAFOS sources in Davis Strait, substantiated by the performance of the operational array, indicates effective ranges of 100-150 km in ice-covered waters. Surface ducting and reflection off the ice bottom significantly degrade the range from the 500+ km expected in ice-free conditions. Comparisons between GPS and acoustically-derived positions collected during operations in ice-free conditions suggest 1-2 km uncertainty in the acoustically-derived positions. The first successful section across the ice-covered Davis Strait occurred in 2006, while the first full mission took place September - February 2008. Mission duration was 25 weeks, with over 800 km of under-ice transit over 51 days. The glider was able to identify and surface through leads 10 times during under-ice operations. Most recently, a pair of successful missions collected continuous sections across Davis Strait from October 2010 through June 2011, including operations between January and June, when the strait was nearly entirely ice-covered and the glider rarely gained access to the surface. These missions provide the first year-round time series of high-resolution sections across Davis Strait. In the Antarctic, ice-capable Seagliders successfully transited beneath a 40-km ice bridge and self-extracted after being carried beneath the Ross ice shelf during missions conducted without the support of an acoustic navigation array. Ice-capable Seagliders can provide sustainable, continuous occupation of critical sections in ice-covered regions, including the marginal ice zone, with typical horizontal resolution of 3 km and routine sampling of the important, but hazardous, region near the ice-ocean interface. Future directions include development of basin-scale acoustic navigation ('underwater GPS' for the Arctic) and use of existing high-frequency acoustic communications for short-range data transfer.
Long-Endurance, Ice-capable Autonomous Seagliders
NASA Astrophysics Data System (ADS)
Lee, Craig; Gobat, Jason; Shilling, Geoff; Curry, Beth
2013-04-01
Autonomous Seagliders capable of extended (many months) operation in ice-covered waters have been developed and successfully employed as part of the US Arctic Observing Network. Seagliders operate routinely in lower-latitude oceans for periods of up to 9 months to provide persistent sampling in difficult, remote conditions, including strong boundary currents and harsh wintertime subpolar seas. The Arctic Observing Network calls for sustained occupation of key sections within the Arctic Ocean and across the critical gateways that link the Arctic to lower-latitude oceans, motivating the extension of glider technologies to permit operation in ice-covered waters. When operating in open water, gliders rely on GPS for navigation and Iridium satellite phones for data and command telemetry. Ice cover blocks access to the sea surface and thus prevents gliders from using these critical services. When operating under ice, ice-capable Seagliders instead navigate by trilateration from an array of RAFOS acoustic sound sources and employ advanced autonomy to make mission-critical decisions (previously the realm of the human pilot) and identify and exploit leads in the ice to allow intermittent communication through Iridium. Davis Strait, one of the two primary pathways through which Arctic waters exit into the subpolar North Atlantic, provided a convenient site for development of ice-capable Seagliders at a location where the resulting measurements could greatly augment the existing observing system. Initial testing of 780 Hz RAFOS sources in Davis Strait, substantiated by the performance of the operational array, indicates effective ranges of 100-150 km in ice-covered waters. Surface ducting and reflection off the ice bottom significantly degrade the range from the 500+ km expected in ice-free conditions. Comparisons between GPS and acoustically-derived positions collected during operations in ice-free conditions suggest 1-2 km uncertainty in the acoustically-derived positions. The first successful section across the ice-covered Davis Strait occurred in 2006, while the first full mission took place September - February 2008. Mission duration was 25 weeks, with over 800 km of under-ice transit over 51 days. The glider was able to identify and surface through leads 10 times during under-ice operations. Most recently, a pair of successful missions collected continuous sections across Davis Strait from October 2010 through June 2011, including operations between January and June, when the strait was nearly entirely ice-covered and the glider rarely gained access to the surface. These missions provide the first year-round time series of high-resolution sections across Davis Strait. In the Antarctic, ice-capable Seagliders successfully transited beneath a 40-km ice bridge and self-extracted after being carried beneath the Ross ice shelf during missions conducted without the support of an acoustic navigation array. Ice-capable Seagliders can provide sustainable, continuous occupation of critical sections in ice-covered regions, including the marginal ice zone, with typical horizontal resolution of 3 km and routine sampling of the important, but hazardous, region near the ice-ocean interface. Future directions include development of basin-scale acoustic navigation ('underwater GPS' for the Arctic) and use of existing high-frequency acoustic communications for short-range data transfer.
Water Balance Covers For Waste Containment: Principles and Practice
Water Balance Covers for Waste Containment: Principles and Practices introduces water balance covers and compares them with conventional approaches to waste containment. The authors provided detailed analysis of the fundamentals of soil physics and design issues, introduce appl...
ERIC Educational Resources Information Center
Simko, Robert A.
Urban stormwater runoff collects pollutants from many parts of a city and is an important consideration in water quality planning. Presented is an instructor's guide for a learning session covering various aspects of urban runoff including pollutant sources, management practices, and regulatory programs. Intended for citizen advisory groups, this…
Using land-cover change as dynamic variables in surface-water and water-quality models
Karstensen, Krista A.; Warner, Kelly L.; Kuhn, Anne
2010-01-01
Land-cover data are typically used in hydrologic modeling to establish or describe land surface dynamics. This project is designed to demonstrate the use of land-cover change data in surface-water and water-quality models by incorporating land-cover as a variable condition. The project incorporates three different scenarios that vary hydrologically and geographically: 1) Agriculture in the Plains, 2) Loon habitat in New England, and 3) Forestry in the Ozarks.
Environmental quality program review
NASA Technical Reports Server (NTRS)
1979-01-01
The transcript of discussions held following formal presentations during sessions 4 and 5 of the program review are presented. Topics covered include global and regional tropospheric research and water quality. Plans for continued study are indicated.
ACCURACY ASSESSMENT OF THE NATIONAL LAND COVER DATABASE 2001 (NLCD 2001) IMPERVIOUSNESS DATA
Landscape conditions of watersheds strongly influence the sustainability of aquatic resources valued by society, including quality of drinking water, diversity of stream life, and resilience to catastrophic flooding.
Microwave remote sensing of snowpack properties
NASA Technical Reports Server (NTRS)
Rango, A. (Editor)
1980-01-01
Topic concerning remote sensing capabilities for providing reliable snow cover data and measurement of snow water equivalents are discussed. Specific remote sensing technqiues discussed include those in the microwave region of the electromagnetic spectrum.
NASA Astrophysics Data System (ADS)
Cak, A. D.
2017-12-01
The Amazon Basin has faced innumerable pressures in recent years, including logging, mining and resource extraction, agricultural expansion, road building, and urbanization. These changes have drastically altered the landscape, transforming a predominantly forested environment into a mosaic of different types of land cover. The resulting fragmentation has caused dramatic and negative impacts on its structure and function, including on biodiversity and the transfer of water and energy to and from soil, vegetation, and the atmosphere (e.g., evapotranspiration). Because evapotranspiration from forested areas, which is affected by factors including temperature and water availability, plays a significant role in water dynamics in the Amazon Basin, measuring land surface temperature (LST) across the region can provide a dynamic assessment of hydrological, vegetation, and land use and land cover changes. It can also help to identify widespread urban development, which often has a higher LST signal relative to surrounding vegetation. Here, we discuss results from work to measure and identify drivers of change in LST across the entire Amazon Basin through analysis of past and current thermal and infrared satellite imagery. We leverage cloud computing resources in new ways to allow for more efficient analysis of imagery over the Amazon Basin across multiple years and multiple sensors. We also assess potential drivers of change in LST using spatial and multivariate statistical analyses with additional data sources of land cover, urban development, and demographics.
Area changes for forest cover types in the United States, 1952 to 1997, with projections to 2050.
Ralph J. Alig; Brett J. Butler
2004-01-01
The United States has a diverse array of forest cover types on its 747 million acres of forest land. Forests in the United States have been shaped by many natural and human-caused forces, including climate, physiography, geology, soils, water, fire, land use changes, timber harvests, and other human interventions. The major purpose of this document is to describe area...
Thompson, J.L.; Upton, H.A.
1999-04-27
Breaker valve assemblies for a simplified boiling water nuclear reactor are described. The breaker valve assembly, in one form, includes a valve body and a breaker valve. The valve body includes an interior chamber, and an inlet passage extends from the chamber and through an inlet opening to facilitate transporting particles from outside of the valve body to the interior chamber. The breaker valve is positioned in the chamber and is configured to substantially seal the inlet opening. Particularly, the breaker valve includes a disk which is sized to cover the inlet opening. The disk is movably coupled to the valve body and is configured to move substantially concentrically with respect to the valve opening between a first position, where the disk completely covers the inlet opening, and a second position, where the disk does not completely cover the inlet opening. 1 fig.
Thompson, Jeffrey L.; Upton, Hubert Allen
1999-04-27
Breaker valve assemblies for a simplified boiling water nuclear reactor are described. The breaker valve assembly, in one form, includes a valve body and a breaker valve. The valve body includes an interior chamber, and an inlet passage extends from the chamber and through an inlet opening to facilitate transporting particles from outside of the valve body to the interior chamber. The breaker valve is positioned in the chamber and is configured to substantially seal the inlet opening. Particularly, the breaker valve includes a disk which is sized to cover the inlet opening. The disk is movably coupled to the valve body and is configured to move substantially concentrically with respect to the valve opening between a first position, where the disk completely covers the inlet opening, and a second position, where the disk does not completely cover the inlet opening.
Program objectives for the National Water Data Exchange (NAWDEX) for fiscal year 1978
Edwards, Melvin D.
1977-01-01
This report presents the program objectives for the National Water Data Exchange (Nawdex) for Fiscal Year 1978, October 1, 1977 to September 30, 1978. Objectives covered include Nawdex mambership, membership participation, Nawdex services, identification of sources of water data, the indexing of water data, systems development and implementation, training, recommended standards for the handling and exchange of water data, and program management. The report provides advance information on Nawdex activities, thereby, allowing the activities to be better integrated into the planning and operation of programs of member organizations. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Midekisa, A.; Bennet, A.; Gething, P. W.; Holl, F.; Andrade-Pacheco, R.; Savory, D. J.; Hugh, S. J.
2016-12-01
Spatially detailed and temporally dynamic land use land cover data is necessary to monitor the state of the land surface for various applications. Yet, such data at a continental to global scale is lacking. Here, we developed high resolution (30 meter) annual land use land cover layers for the continental Africa using Google Earth Engine. To capture ground truth training data, high resolution satellite imageries were visually inspected and used to identify 7, 212 sample Landsat pixels that were comprised entirely of one of seven land use land cover classes (water, man-made impervious surface, high biomass, low biomass, rock, sand and bare soil). For model validation purposes, 80% of points from each class were used as training data, with 20% withheld as a validation dataset. Cloud free Landsat 7 annual composites for 2000 to 2015 were generated and spectral bands from the Landsat images were then extracted for each of the training and validation sample points. In addition to the Landsat spectral bands, spectral indices such as normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used as covariates in the model. Additionally, calibrated night time light imageries from the National Oceanic and Atmospheric Administration (NOAA) were included as a covariate. A decision tree classification algorithm was applied to predict the 7 land cover classes for the periods 2000 to 2015 using the training dataset. Using the validation dataset, classification accuracy including omission error and commission error were computed for each land cover class. Model results showed that overall accuracy of classification was high (88%). This high resolution land cover product developed for the continental Africa will be available for public use and can potentially enhance the ability of monitoring and studying the state of the Earth's surface.
At the nexus of fire, water and society
Martin, Deborah
2016-01-01
The societal risks of water scarcity and water-quality impairment have received considerable attention, evidenced by recent analyses of these topics by the 2030 Water Resources Group, the United Nations and the World Economic Forum. What are the effects of fire on the predicted water scarcity and declines in water quality? Drinking water supplies for humans, the emphasis of this exploration, are derived from several land cover types, including forests, grasslands and peatlands, which are vulnerable to fire. In the last two decades, fires have affected the water supply catchments of Denver (CO) and other southwestern US cities, and four major Australian cities including Sydney, Canberra, Adelaide and Melbourne. In the same time period, several, though not all, national, regional and global water assessments have included fire in evaluations of the risks that affect water supplies. The objective of this discussion is to explore the nexus of fire, water and society with the hope that a more explicit understanding of fire effects on water supplies will encourage the incorporation of fire into future assessments of water supplies, into the pyrogeography conceptual framework and into planning efforts directed at water resiliency.
Sun, Jianlei; Yuen, Samuel T S; Fourie, Andy B
2010-11-01
This paper examines the potential effects of a geotextile layer used in a lysimeter pan experiment conducted in a monolithic (evapotranspiration) soil cover trial on its resulting water balance performance. The geotextile was added to the base of the lysimeter to serve as a plant root barrier in order to delineate the root zone depth. Both laboratory data and numerical modelling results indicated that the geotextile creates a capillary barrier under certain conditions and retains more water in the soil above the soil/geotextile interface than occurs without a geotextile. The numerical modelling results also suggested that the water balance of the soil cover could be affected by an increase in plant transpiration taking up this extra water retained above the soil/geotextile interface. This finding has a practical implication on the full-scale monolithic cover design, as the absence of the geotextile in the full-scale cover may affect the associated water balance and hence cover performance. Proper consideration is therefore required to assess the final monolithic cover water balance performance if its design is based on the lysimeter results. Copyright © 2010 Elsevier Ltd. All rights reserved.
Xu, Li-Ya; Yang, Wan-Qin; Li, Han; Ni, Xiang-Yin; He, Jie; Wu, Fu-Zhong
2014-11-01
Seasonal snow cover may change the characteristics of freezing, leaching and freeze-thaw cycles in the scenario of climate change, and then play important roles in the dynamics of water soluble and organic solvent soluble components during foliar litter decomposition in the alpine forest. Therefore, a field litterbag experiment was conducted in an alpine forest in western Sichuan, China. The foliar litterbags of typical tree species (birch, cypress, larch and fir) and shrub species (willow and azalea) were placed on the forest floor under different snow cover thickness (deep snow, medium snow, thin snow and no snow). The litterbags were sampled at snow formation stage, snow cover stage and snow melting stage in winter. The results showed that the content of water soluble components from six foliar litters decreased at snow formation stage and snow melting stage, but increased at snow cover stage as litter decomposition proceeded in the winter. Besides the content of organic solvent soluble components from azalea foliar litter increased at snow cover stage, the content of organic solvent soluble components from the other five foliar litters kept a continue decreasing tendency in the winter. Compared with the content of organic solvent soluble components, the content of water soluble components was affected more strongly by snow cover thickness, especially at snow formation stage and snow cover stage. Compared with the thicker snow covers, the thin snow cover promoted the decrease of water soluble component contents from willow and azalea foliar litter and restrain the decrease of water soluble component content from cypress foliar litter. Few changes in the content of water soluble components from birch, fir and larch foliar litter were observed under the different thicknesses of snow cover. The results suggested that the effects of snow cover on the contents of water soluble and organic solvent soluble components during litter decomposition would be controlled by litter quality.
Water Resources Development in Minnesota 1991
1991-01-01
the primary elements of the Pick-Sloan Program. These six have total storage capacity of 75-m illion acre -feet, more than three times the average...almost 121 million acres . Water is an element indispensable to life. Not only does it It includes that part of the United States that is drained by...oilpollutionandsedimentproblemsallimpact million acres of the area is covered by freshwater lakes and on water quality. About two-thirds of the people in
Preview of Our Changing Planet. The U.S. Climate Change Science Program for Fiscal Year 2008
2007-04-01
reduce the uncertainty in predictions of the global and regional water cycle and surface climate. Sunlight not reflected back to space provides the...research elements include atmospheric composition, climate variability and change, the global water cycle , land-use and land-cover change, the global...entire planet, and researchers with the ability to better explain observed changes in the climate system. Global Water Cycle – Research associated with
Power, Christopher; Ramasamy, Murugan; Mkandawire, Martin
2018-03-03
Cover systems are commonly applied to mine waste rock piles (WRPs) to control acid mine drainage (AMD). Single-layer covers utilize the moisture "store-and-release" concept to first store and then release moisture back to the atmosphere via evapotranspiration. Although more commonly used in semi-arid and arid climates, store-and-release covers remain an attractive option in humid climates due to the low cost and relative simplicity of installation. However, knowledge of their performance in these climates is limited. The objective of this study was to assess the performance of moisture store-and-release covers at full-scale WRPs located in humid climates. This cover type was installed at a WRP in Nova Scotia, Canada, alongside state-of-the-art monitoring instrumentation. Field monitoring was conducted over 5 years to assess key components such as meteorological conditions, cover material water dynamics, net percolation, surface runoff, pore-gas, environmental receptor water quality, landform stability and vegetation. Water balances indicate small reductions in water influx to the waste rock (i.e., 34 to 28% of precipitation) with the diminished AMD release also apparent by small improvements in groundwater quality (increase in pH, decrease in sulfate/metals). Surface water quality analysis and field observations of vegetative/aquatic life demonstrate significant improvements in the surface water receptor. The WRP landform is stable and the vegetative cover is thriving. This study has shown that while a simple store-and-release cover may not be a highly effective barrier to water infiltration in humid climates, it can be used to (i) eliminate contaminated surface water runoff, (ii) minimize AMD impacts to surface water receptor(s), (iii) maintain a stable landform, and (iv) provide a sustainable vegetative canopy.
Singh, Shatrughan; Dash, Padmanava; Silwal, Saurav; Feng, Gary; Adeli, Ardeshir; Moorhead, Robert J
2017-06-01
Water quality of lakes, estuaries, and coastal areas serves as an indicator of the overall health of aquatic ecosystems as well as the health of the terrestrial ecosystem that drains to the water body. Land use and land cover plays not only a significant role in controlling the quantity of the exported dissolved organic matter (DOM) but also influences the quality of DOM via various biogeochemical and biodegradation processes. We examined the characteristics and spatial distribution of DOM in five major lakes, in an estuary, and in the coastal waters of the Mississippi, USA, and investigated the influence of the land use and land cover of their watersheds on the DOM composition. We employed absorption and fluorescence spectroscopy including excitation-emission matrix (EEM) combined with parallel factor (PARAFAC) analysis modeling techniques to determine optical properties of DOM and its characteristics in this study. We developed a site-specific PARAFAC model to evaluate DOM characteristics resulting in five diverse DOM compositions that included two terrestrial humic-like (C1 and C3), two microbial humic-like (C2 and C5), and one protein-like (C4) DOM. Our results showed elevated fluorescence levels of microbial humic-like or protein-like DOM in the lakes and coastal waters, while the estuarine waters showed relatively high fluorescence levels of terrestrial humic-like DOM. The results also showed that percent forest and wetland coverage explained 68 and 82% variability, respectively, in terrestrial humic-like DOM exports, while 87% variability in microbially derived humiclike DOM was explained by percent agricultural lands. Strong correlations between microbial humic-like DOM and fluorescence-derived DOM indices such as biological index (BIX) and fluorescence index (FI) indicated autochthonous characteristics in the lakes, while the estuary showed largely allochthonous DOM of terrestrial origin. We also observed higher concentrations of total dissolved phosphorous (TDP) and ammonium nitrogen (NH 4 -N) in coastal waters potentially due to photodegradation of refractory DOM derived from the sediment-bound organic matter in the coastal wetlands. This study highlights the relationships between the DOM compositions in the water and the land use and land cover in the watershed. The spatial variability of DOM in three different types of aquatic environments enhances the understanding of the role of land use and land cover in carbon cycling through export of organic matter to the aquatic ecosystems..
NASA Astrophysics Data System (ADS)
Kowalska, Anna; Boczoń, Andrzej; Hildebrand, Robert; Polkowska, Żaneta
2016-07-01
Vegetation cover affects the amount of precipitation, its chemical composition and its spatial distribution, and this may have implications for the distribution of water, nutrients and contaminants in the subsurface soil layer. The aim of this study was a detailed diagnosis of the spatio-temporal variability in the amount of throughfall (TF) and its chemical components in a 72-year-old pine stand with an admixture of oak and birch. The spatio-temporal variability in the amount of TF water and the concentrations and deposition of the TF components were studied. The components that are exchanged in canopy (H+, K, Mg, Mn, DOC, NH4+) were more variable than the components whose TF deposition is the sum of wet and dry (including gas) deposition and which undergo little exchange in the canopy (Na, Cl, NO3-, SO42-). The spatial distribution was temporally stable, especially during the leafed period. This study also investigated the effect of the selected pine stand characteristics on the spatial distribution of throughfall and its chemical components; the characteristics included leaf area index (LAI), the proportion of the canopy covered by deciduous species and pine crowns, and the distance from the nearest tree trunk. The LAI measured during the leafed and leafless periods had the greatest effect on the spatial distribution of TF deposition. No relationship was found between the spatial distribution of the amount of TF water and (i) the LAI; (ii) the canopy cover of broadleaf species or pines; or (iii) the distance from the trunks.
40 CFR 17.3 - Proceedings covered.
Code of Federal Regulations, 2014 CFR
2014-07-01
... individual National Pollution Discharge Elimination System permit under section 402 of the Clean Water Act as...) of the Noise Control Act as amended (42 U.S.C. 4910(d)). (b) If a proceeding includes both matters...
40 CFR 17.3 - Proceedings covered.
Code of Federal Regulations, 2012 CFR
2012-07-01
... individual National Pollution Discharge Elimination System permit under section 402 of the Clean Water Act as...) of the Noise Control Act as amended (42 U.S.C. 4910(d)). (b) If a proceeding includes both matters...
40 CFR 17.3 - Proceedings covered.
Code of Federal Regulations, 2013 CFR
2013-07-01
... individual National Pollution Discharge Elimination System permit under section 402 of the Clean Water Act as...) of the Noise Control Act as amended (42 U.S.C. 4910(d)). (b) If a proceeding includes both matters...
40 CFR 17.3 - Proceedings covered.
Code of Federal Regulations, 2011 CFR
2011-07-01
... individual National Pollution Discharge Elimination System permit under section 402 of the Clean Water Act as...) of the Noise Control Act as amended (42 U.S.C. 4910(d)). (b) If a proceeding includes both matters...
40 CFR 17.3 - Proceedings covered.
Code of Federal Regulations, 2010 CFR
2010-07-01
... individual National Pollution Discharge Elimination System permit under section 402 of the Clean Water Act as...) of the Noise Control Act as amended (42 U.S.C. 4910(d)). (b) If a proceeding includes both matters...
Internal Corrosion and Deposition Control
This chapter reviews the current knowledge of the science of corrosion control and control of scaling in drinking water systems. Topics covered include: types of corrosion; physical, microbial and chemical factors influencing corrosion; corrosion of specific materials; direct ...
Managing water scarcity in the Magdalena river basin in Colombia.An economic assessment
NASA Astrophysics Data System (ADS)
Bolivar Lobato, Martha Isabel; Schneider, Uwe A.
2014-05-01
Key words: global change, water scarcity, river basin In Colombia, serious water conflicts began to emerge with the economic development in the 70ies and 80ies and the term "water scarcity" became a common word in this tropical country. Despite a mean annual runoff of 1840 mm, which classifies Colombia as a water rich country, shortfalls in fresh water availability have become a frequent event in the last two decades. One reason for the manifestation of water scarcity is the long-held perception of invulnerable water abundance, which has delayed technical and political developments to use water more efficiently. The Magdalena watershed is the most important and complex area in Colombia, because of its huge anthropogenic present, economic development and increasing environmental problems. This river basin has a total area of 273,459 km2, equivalent to 24% of the territory of the country. It is home to 79% of the country's population (32.5 million of inhabitants) and approximately 85% of Gross Domestic Product of Colombia is generated in this area. Since the economic development of the 1970s and 1980s, large changes in land cover and related environmental conditions have occurred in the Magdalena basin. These changes include deforestation, agricultural land expansion, soil degradation, lower groundwater and increased water pollution. To assess the consequences of geophysical alteration and economic development, we perform an integrated analysis of water demand, water supply, land use changes and possible water management strategies. The main objective of this study is to determine how global and local changes affect the balance between water supply and demand in the Magdalena river basin in Colombia, the consequences of different water pricing schemes, and the social benefits of public or private investments into various water management infrastructures. To achieve this goal, a constrained welfare maximization model has been developed. The General Algebraic Modeling System based mathematical program uses information from spatially detailed Geographic Information System including topography, land cover and water systems. Spatially resolved economic data are included to depict price and income sensitive consumption decisions of major water users. Water management adaptation options include wet ponds and dams. The model maximizes economic net benefits subject to physical and technological constraints. The results of this study are relevant to water management stakeholders, and to governmental agencies for the development of better water policies.
Water resources data, Puerto Rico and the U.S. Virgin Islands, water year 2004
Figueroa-Alamo, Carlos; Aquino, Zaida; Guzman-Rios, Senen; Sanchez, Ana V.
2006-01-01
The Caribbean Water Science Center of the U.S. Geological Survey (USGS), in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 89 streamflow-gaging stations, daily sediment records for 13 sediment stations, stage records for 18 reservoirs, and (2) water-quality records for 20 streamflow-gaging stations, and for 38 ungaged stream sites, 13 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 72 observation wells. Water-resources data for Puerto Rico for calendar years 1958-67 were released in a series of reports entitled 'Water Records of Puerto Rico.' Water-resources data for the U.S. Virgin Islands for the calendar years 1962-69 were released in a report entitled 'Water Records of U.S. Virgin Islands.' Included were records of streamflow, ground-water levels, and water-quality data for both surface and ground water. Beginning with the 1968 calendar year, surface-water records for Puerto Rico were released separately on an annual basis. Ground-water level records and water-quality data for surface and ground water were released in companion reports covering periods of several years. Data for the 1973-74 reports were published under separate covers. Water-resources data reports for 1975 to 2003 water years consist of one volume each and contain data for streamflow, water quality, and ground water.
Observational evidence for cloud cover enhancement over western European forests.
Teuling, Adriaan J; Taylor, Christopher M; Meirink, Jan Fokke; Melsen, Lieke A; Miralles, Diego G; van Heerwaarden, Chiel C; Vautard, Robert; Stegehuis, Annemiek I; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau
2017-01-11
Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas.
Observational evidence for cloud cover enhancement over western European forests
Teuling, Adriaan J.; Taylor, Christopher M.; Meirink, Jan Fokke; Melsen, Lieke A.; Miralles, Diego G.; van Heerwaarden, Chiel C.; Vautard, Robert; Stegehuis, Annemiek I.; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau
2017-01-01
Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas. PMID:28074840
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aas, S.; Barendregt, T.J.; Chesne, A.
1960-07-01
A series of lectures on fuel elements for water-cooled power reactors are presented. Topics covered include fabrication, properties, cladding, radiation damage, design, cycling, storage and transpont, and reprocessing. Separate records have been prepared for each section.
Marginal Ice Zone: Biogeochemical Sampling with Gliders
2015-09-30
chlorophyll primary productivity model to estimate and compare phytoplankton productivity under full ice cover, in the MIZ, and in open ice-free water...observing array (Fig. 1). The glider sensor suite included temperature, temperature microstructure, salinity, oxygen, chlorophyll fluorescence, optical...operating in continental shelf waters off Alaska’s north slope allowed us to construct proxy libraries for converting chlorophyll fluorescence to
ERIC Educational Resources Information Center
Hanson, Bradley D.
This guide, which includes an outline of 222 hours of technical training integrated with training in community organization techniques, is intended for trainers who prepare Peace Corps water and sanitation technicians and engineers for field service. The training program developed by the guide covers these subject areas: community development,…
ERIC Educational Resources Information Center
McCleary, John M.
This Records and Archives Management Programme (RAMP) study covers the conservation of archival documents and the application of freeze-drying to the salvage of documents damaged by flood. Following an introductory discussion of the hazards of water, the study presents a broad summary of data on freeze-drying, including the behavior of…
A Literature Review on the Study of Moisture in Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trautschold, Olivia Carol
2016-05-25
This literature review covers the main chemical and physical interactions between moisture and the polymer matrix. Fickian versus Non-Fickian diffusion behaviors are discussed in approximating the characteristics of moisture sorption. Also, bound water and free water sorbed in polymers are distinguished. Methods to distinguish between bound and free water include differential scanning calorimetry, infrared spectroscopy, and time-domain nuclear magnetic resonance spectroscopy. The difference between moisture sorption and water sorption is considered, as well as the difficulties associated with preventing moisture sorption. Furthermore, specific examples of how moisture sorption influences polymers include natural fiber-polymer composites, starch-based biodegradable thermoplastics, and thermoset polyurethanemore » and epoxies.« less
Sediment oxygen profiles in a super-oxygenated antarctic lake
NASA Technical Reports Server (NTRS)
Wharton, R. A. Jr; Meyer, M. A.; McKay, C. P.; Mancinelli, R. L.; Simmons, G. M. Jr; Wharton RA, J. r. (Principal Investigator)
1994-01-01
Perennially ice-covered lakes are found in the McMurdo Dry Valleys of southern Victoria Land, Antarctica. In contrast to temperate lakes that have diurnal photic periods, antarctic (and arctic) lakes have a yearly photic period. An unusual feature of the antarctic lakes is the occurrence of O2 at supersaturated levels in certain portions of the water column. Here we report the first sediment O2 profiles obtained using a microelectrode from a perennially ice-covered antarctic lake. Sediment cores collected in January and October 1987 from Lake Hoare in Taylor Valley show oxygenation down to 15, and in some cases, 25 cm. The oxygenation of sediments several centimeters below the sediment-water interface is atypical for lake sediments and may be characteristic of perennially ice-covered lakes. There is a significant difference between the observed January and October sediment O2 profiles. Several explanations may account for the difference, including seasonality. A time-dependent model is presented which tests the feasibility of a seasonal cycle resulting from the long photoperiod and benthic primary production in sediments overlain by a highly oxygenated water column.
Were lakes on early Mars perennially were ice-covered?
NASA Astrophysics Data System (ADS)
Sumner, D. Y.; Rivera-Hernandez, F.; Mackey, T. J.
2016-12-01
Paleo-lake deposits indicate that Mars once sustained liquid water, supporting the idea of an early "wet and warm" Mars. However, liquid water can be sustained under ice in cold conditions as demonstrated by perennially ice-covered lakes (PICLs) in Antarctica. If martian lakes were ice-covered, the global climate on early Mars could have been much colder and dryer than if the atmosphere was in equilibrium with long-lived open water lakes. Modern PICLs on Earth have diagnostic sedimentary features. Unlike open water lakes that are dominated by mud, and drop stones or tills if icebergs are present, previous studies determined that deposits in PICLs can include coarser grains that are transported onto the ice cover, where they absorb solar radiation, melt through the ice and are deposited with lacustrine muds. In Lake Hoare, Antarctica, these coarse grains form conical sand mounds and ridges. Our observations of ice-covered lakes Joyce, Fryxell, Vanda and Hoare, Antarctica suggest that the distributions of grains depend significantly on ice characteristics. Deposits in these lakes contain moderately well to moderately sorted medium to very coarse sand grains, which preferentially melt through the ice whereas granules and larger grains remain on the ice surface. Similarly, high albedo grains are concentrated on the ice surface, whereas low albedo grains melt deeper into the ice, demonstrating a segregation of grains due to ice-sediment interactions. In addition, ice cover thickness may determine the spatial distribution of sand deposited in PICLs. Localized sand mounds and ridges composed of moderately sorted sand are common in PICLs with rough ice covers greater than 3 m thick. In contrast, lakes with smooth and thinner ice have disseminated sand grains and laterally extensive sand layers but may not have sand mounds. At Gale Crater, Mars, the Murray formation consists of sandy lacustrine mudstones, but the depositional process for the sand is unknown. The presence of a perennial ice-cover could explain the sand, but no definitive ice-related deposits have been identified to date. The Murray formation is an ideal target to start analyzing for evidence of ancient PICL deposits on Mars.
Forecasting land cover change impacts on drinking water treatment costs in Minneapolis, Minnesota
NASA Astrophysics Data System (ADS)
Woznicki, S. A.; Wickham, J.
2017-12-01
Source protection is a critical aspect of drinking water treatment. The benefits of protecting source water quality in reducing drinking water treatment costs are clear. However, forecasting the impacts of environmental change on source water quality and its potential to influence future treatment processes is lacking. The drinking water treatment plant in Minneapolis, MN has recognized that land cover change threatens water quality in their source watershed, the Upper Mississippi River Basin (UMRB). Over 1,000 km2 of forests, wetlands, and grasslands in the UMRB were lost to agriculture from 2008-2013. This trend, coupled with a projected population increase of one million people in Minnesota by 2030, concerns drinking water treatment plant operators in Minneapolis with respect to meeting future demand for clean water in the UMRB. The objective of this study is to relate land cover change (forest and wetland loss, agricultural expansion, urbanization) to changes in treatment costs for the Minneapolis, MN drinking water utility. To do this, we first developed a framework to determine the relationship between land cover change and water quality in the context of recent historical changes and projected future changes in land cover. Next we coupled a watershed model, the Soil and Water Assessment Tool (SWAT) to projections of land cover change from the FOREcasting SCEnarios of Land-use Change (FORE-SCE) model for the mid-21st century. Using historical Minneapolis drinking water treatment data (chemical usage and costs), source water quality in the UMRB was linked to changes in treatment requirements as a function of projected future land cover change. These analyses will quantify the value of natural landscapes in protecting drinking water quality and future treatment processes requirements. In addition, our study provides the Minneapolis drinking water utility with information critical to their planning and capital improvement process.
Water and Regional Stability: The Nile a Case Study
2011-03-24
including agriculture, hydropower , economic growth, and maintaining a healthy aquatic ecosystem. Each nation may not alter the quantity or quality of the...Victoria which is the largest lake in Africa covering 69,000 km2. The White Nile contributes a small but steady flow of water, about 14 percent of the...linked the availability of sufficient clean water to an area’s economic potential. 20 Countries that have a very low per capita Gross Domestic Product
Anthropogenic impacts on hydrology of Karkheh River Basin
NASA Astrophysics Data System (ADS)
Ashraf, B.; Aghakouchak, A.; Alizadeh, A.; Mousavi Baygi, M.
2015-12-01
The Karkheh River Basin (KRB) in southwest Iran is a key region for agriculture and energy production. KRB has high human-induced water demand and suffers from low water productivity. The future of the KRB and its growth clearly relies on sustainable water resources and hence, requires a holistic, basin-wide management and monitoring of natural resources (water, soil, vegetation, livestock, etc.). The KRB has dry regions in which water scarcity is a major challenge. In this study, we investigate changes in the hydrology of the basin during the past three decades including human-induced alterations of the system. We evaluate climatic variability, agricultural water use, land cover change and agriculture production. In this reaserch, we have developed a simple indicator for quantifying human influence on the hydrologic cycle. The results show that KRB's hydrology is significantly dominated by human activities. The anthropogenic water demand has increased substantially caused by growth in agriculture industry. In fact, the main reason for water scarcity in the region appears to be due to the increased anthropogenic water demand resulting from substantial socio-economic growth in the past three decades. Our results show that continued growth in the region is not sustainable without considering major changes in water use efficiency, land cover management and water productivity.
Coupled land surface/hydrologic/atmospheric models
NASA Technical Reports Server (NTRS)
Pielke, Roger; Steyaert, Lou; Arritt, Ray; Lahtakia, Mercedes; Smith, Chris; Ziegler, Conrad; Soong, Su Tzai; Avissar, Roni; Wetzel, Peter; Sellers, Piers
1993-01-01
The topics covered include the following: prototype land cover characteristics data base for the conterminous United States; surface evapotranspiration effects on cumulus convection and implications for mesoscale models; the use of complex treatment of surface hydrology and thermodynamics within a mesoscale model and some related issues; initialization of soil-water content for regional-scale atmospheric prediction models; impact of surface properties on dryline and MCS evolution; a numerical simulation of heavy precipitation over the complex topography of California; representing mesoscale fluxes induced by landscape discontinuities in global climate models; emphasizing the role of subgrid-scale heterogeneity in surface-air interaction; and problems with modeling and measuring biosphere-atmosphere exchanges of energy, water, and carbon on large scales.
Weiskel, Peter K.; Brandt, Sara L.; DeSimone, Leslie A.; Ostiguy, Lance J.; Archfield, Stacey A.
2010-01-01
Massachusetts streams and stream basins have been subjected to a wide variety of human alterations since colonial times. These alterations include water withdrawals, treated wastewater discharges, construction of onsite septic systems and dams, forest clearing, and urbanization—all of which have the potential to affect streamflow regimes, water quality, and habitat integrity for fish and other aquatic biota. Indicators were developed to characterize these types of potential alteration for subbasins and groundwater contributing areas in Massachusetts. The potential alteration of streamflow by the combined effects of withdrawals and discharges was assessed under two water-use scenarios. Water-use scenario 1 incorporated publicly reported groundwater withdrawals and discharges, direct withdrawals from and discharges to streams, and estimated domestic-well withdrawals and septic-system discharges. Surface-water-reservoir withdrawals were excluded from this scenario. Water-use scenario 2 incorporated all the types of withdrawal and discharge included in scenario 1 as well as withdrawals from surface-water reservoirs—all on a long-term, mean annual basis. All withdrawal and discharge data were previously reported to the State for the 2000–2004 period, except domestic-well withdrawals and septic-system discharges, which were estimated for this study. The majority of the state’s subbasins and groundwater contributing areas were estimated to have relatively minor (less than 10 percent) alteration of streamflow under water-use scenario 1 (seasonally varying water use; no surface-water-reservoir withdrawals). However, about 12 percent of subbasins and groundwater contributing areas were estimated to have extensive alteration of streamflows (greater than 40 percent) in August; most of these basins were concentrated in the outer metropolitan Boston region. Potential surcharging of streamflow in August was most commonly indicated for main-stem river subbasins, although surcharging was also indicated for some smaller tributary subbasins. In the high-flow month of April, only 4.8 percent of subbasins and groundwater contributing areas had more than 10 percent potential flow alteration. A majority of the state’s subbasins and groundwater contributing areas were also indicated to have relatively minor alteration of streamflow under water-use scenario 2 (long-term average water use, including surface-water-reservoir withdrawals). Extensive alteration of mean annual flows was estimated for about 6 percent of the state’s subbasins and groundwater contributing areas. The majority of subbasins estimated to have extensive long-term flow alteration contained reservoirs that were specifically designed, constructed, and managed to supply drinking water to cities. Only a small number of subbasins and groundwater contributing areas (1 percent) were extensively surcharged on a long-term, mean annual basis. Because site-specific data concerning surface-water-reservoir storage dynamics and management practices are not available statewide, the seasonal effects of surface-water-reservoir withdrawals on downstream flows could not be assessed in this study. The impounded storage ratio (volume of impounded subbasin or groundwater-contributing-area storage divided by mean annual predevelopment outflow from the subbasin or contributing area, in units of days) indicates the potential for alteration of streamflow, sediment-transport, and temperature regimes by dams, independent of water use. Storage ratios were less than 1 day for 33 percent of the subbasins and groundwater contributing areas, greater than 1 month for about 40 percent of the cases, and greater than 1 year for 3.2 percent of the cases statewide. Dam density, an indicator of stream-habitat fragmentation by dams, averaged 1 dam for every 6.7 stream miles statewide. Many of these dams are not presently (2009) being managed. The highest dam densities were in portions of Worcester County and in the Plymouth-Carver region, respectively, reflecting the historical reliance of Massachusetts industry upon water power and agricultural water-management practices in southeastern Massachusetts. Impervious cover is a frequently used indicator of urban land use. About 33 percent of the state’s 1,429 subbasins and groundwater contributing areas are relatively undeveloped at the local scale, with a local impervious cover of less than 4 percent. About 18 percent of Massachusetts subbasins and contributing areas are highly developed, with a local impervious cover greater than 16 percent. The remaining 49 percent of subbasins and contributing areas have levels of urban development between these extremes (4 to 16 percent local impervious cover). Cumulative impervious cover, defined for the entire upstream area encompassed by each subbasin, shows a smaller range (0 to 55 percent) than local impervious cover. Both local and cumulative impervious cover were highest in metropolitan Boston and other urban centers. High elevated impervious-cover values were also found along major transportation corridors. The water-quality status of Massachusetts streams is assessed periodically by the Massachusetts Department of Environmental Protection pursuant to the requirements of the Federal Clean Water Act. Streams selected for assessment are commonly located in larger subbasins where some degree of impairment is expected. In the 72 percent of the state’s subbasins and groundwater contributing areas with assessed streams in 2002, more than 50 percent of the assessed stream miles were considered impaired. All of the assessed stream miles were considered impaired in 66 percent of the subbasins and groundwater contributing areas with assessed streams. Large streams, such as the main stems of rivers that make up most of the assessed stream miles, also are in many cases the receiving waters for treated wastewater discharges and for this reason may be more susceptible to water-quality impairments than smaller streams. Subbasins and contributing areas with large fractions of assessed stream miles that are listed as impaired are distributed across the state, but are more prevalent in eastern Massachusetts.
Land cover characterization and land surface parameterization research
Steyaert, Louis T.; Loveland, Thomas R.; Parton, William J.
1997-01-01
The understanding of land surface processes and their parameterization in atmospheric, hydrologic, and ecosystem models has been a dominant research theme over the past decade. For example, many studies have demonstrated the key role of land cover characteristics as controlling factors in determining land surface processes, such as the exchange of water, energy, carbon, and trace gases between the land surface and the lower atmosphere. The requirements for multiresolution land cover characteristics data to support coupled-systems modeling have also been well documented, including the need for data on land cover type, land use, and many seasonally variable land cover characteristics, such as albedo, leaf area index, canopy conductance, surface roughness, and net primary productivity. Recently, the developers of land data have worked more closely with the land surface process modelers in these efforts.
Real-World Water System Lead and Copper Corrosion Control
This presentation provides specific background on lead and copper corrosion control chemistry and strategies, and integrates it with other important distribution system corrosion control objectives. Topics covered include: driving force for corrosion (oxidants); impacts of oxida...
ERIC Educational Resources Information Center
Talmage, Sylvia S.; Coutant, Charles C.
1978-01-01
Presents a literature review of the effect of temperature on the biosphere water, covering publications of 1976-77. This review includes the effects of temperature on growth, production, and embryonic and larval development. A list of 401 references is also presented. (HM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrad, Marlies; Huber-Humer, Marion, E-mail: marion.huber-humer@boku.ac.at; Wimmer, Bernhard
2012-12-15
Highlights: Black-Right-Pointing-Pointer Tested engineered covers as surrogate to gas extraction during and after in situ aeration. Black-Right-Pointing-Pointer Examined how covers influence gas emissions, water balance and leachate generation. Black-Right-Pointing-Pointer Investigated effect of top covers on air-distribution in waste mass during aeration. Black-Right-Pointing-Pointer We suggest criteria and cover design to meet the demands during and after aeration. Black-Right-Pointing-Pointer Such cover systems may offer greenhouse gas emission reduction also after active aeration. - Abstract: Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top coversmore » that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 Multiplication-Sign 2 Multiplication-Sign 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH{sub 4} loadings up to 300 l CH{sub 4}/m{sup 2} d. In addition, the compost material provided high air permeability even at 100% water holding capacity (WHC). In contrast, the more cohesive, mineral soil cover was expected to cause a notably uniform distribution of the injected air within the waste layer. Laboratory results also revealed sufficient air permeability of the soil materials (TS-F and SS-Z) placed in lysimeter C. However, at higher compaction density SS-Z became impermeable at 100% WHC. Methane emissions from the reference lysimeter with the smaller substrate cover (12-52 g CH{sub 4}/m{sup 2} d) were significantly higher than fluxes from the other lysimeters (0-19 g CH{sub 4}/m{sup 2} d) during in situ aeration. Regarding water balance, lysimeters covered with compost and compost-sand mixture, showed the lowest leachate rate (18-26% of the precipitation) due to the high water holding capacity and more favourable plant growth conditions compared to the lysimeters with mineral, more cohesive, soil covers (27-45% of the precipitation). On the basis of these results, the authors suggest a layered top cover system using both compost material as well as mineral soil in order to support active low-pressure aeration. Conventional soil materials with lower permeability may be used on top of the landfill body for a more uniform aeration of the waste due to an increased resistance to vertical gas flow. A compost cover may be built on top of the soil cover underlain by a gas distribution layer to improve methane oxidation rates and minimise water infiltration. By planting vegetation with a high transpiration rate, the leachate amount emanating from the landfill could be further minimised. The suggested design may be particularly suitable in combination with intermittent in situ aeration, in the later stage of an aeration measure, or at very small sites and shallow deposits. The top cover system could further regulate water infiltration into the landfill and mitigate residual CH{sub 4} emissions, even beyond the time of active aeration.« less
NASA Astrophysics Data System (ADS)
Dompierre, Kathryn A.; Barbour, S. Lee; North, Rebecca L.; Carey, Sean K.; Lindsay, Matthew B. J.
2017-06-01
Fluid fine tailings (FFT) are a principal by-product of the bitumen extraction process at oil sands mines. Base Mine Lake (BML)—the first full-scale demonstration oil sands end pit lake (EPL)—contains approximately 1.9 × 108 m3 of FFT stored under a water cover within a decommissioned mine pit. Chemical mass transfer from the FFT to the water cover can occur via two key processes: (1) advection-dispersion driven by tailings settlement; and (2) FFT disturbance due to fluid movement in the water cover. Dissolved chloride (Cl) was used to evaluate the water cover mass balance and to track mass transport within the underlying FFT based on field sampling and numerical modeling. Results indicated that FFT was the dominant Cl source to the water cover and that the FFT is exhibiting a transient advection-dispersion mass transport regime with intermittent disturbance near the FFT-water interface. The advective pore water flux was estimated by the mass balance to be 0.002 m3 m-2 d-1, which represents 0.73 m of FFT settlement per year. However, the FFT pore water Cl concentrations and corresponding mass transport simulations indicated that advection rates and disturbance depths vary between sample locations. The disturbance depth was estimated to vary with location between 0.75 and 0.95 m. This investigation provides valuable insight for assessing the geochemical evolution of the water cover and performance of EPLs as an oil sands reclamation strategy.
Geomorphology and dynamics of supraglacial debris covers in the Western Alps
NASA Astrophysics Data System (ADS)
Deline, P.; Gardent, M.; Kirkbride, M. P.; Le Roy, M.; Martin, B.
2012-04-01
In the alpine regions of France and NW Italy, many glaciers of a variety of sizes are at least partly debris-covered, but these have received less scientific research than clean glaciers. During the present period of glacier shrinkage - the area of glacier cover in France has reduced by 26% over the last 40 years -, growing debris cover needs to be understood as an influence on continuing retreat, with consequences for natural hazards, water resources and tourism. We present the results of a combined ongoing study of an inventory of debris-covered glaciers in France with site-specific studies of c. 12 glaciers of contrasting types, in order to understand spatial and temporal changes in supraglacial debris cover. Our specific aims are: 1. To understand the geomorphology of debris-covers and their formation, investigating the types of debris cover in relation to formative processes including extraglacial supply and development during transport. 2. To document the changing extents of supraglacial debris covers, using historical documents and aerial photographs. 3. To interpret areal changes in terms of glaciological and topographical controls on different glacier and debris cover types (catchment morphology, glacier structure, mass balance history, and rock wall collapse magnitude and frequency). 4. To understand the effect of debris cover on glacier dynamics and geomorphological evolution, related to insulation-related modifications to AAR, long profiles, and length changes on both short and long timescales. This includes investigation of the characteristics of debris-covered glacier depositional systems resulting from their modified dynamics.
Scoring Los Angeles Landscapes: Environmental Education in an Urban Setting.
ERIC Educational Resources Information Center
Salter, Christopher L.; And Others
This notebook serves as a guide for learning activities in environmental education. Twelve themes are treated in four groups: (1) sense of place includes history and landscape; (2) the natural environment covers air, water, energy, and landforms; (3) the built environment includes architecture, transportation, and housing; and (4) the social…
NASA Astrophysics Data System (ADS)
Höning, D.; Spohn, T.
2016-12-01
The evolution of Earth is charcterized by intertwined feedback cycles. We focus on two feedback cycles that include the mantle water budget and the continental crust and study possible effects of the Earth's biosphere. The first feedback loop includes cycling of water into the mantle at subduction zones and outgassing at volcanic chains and mid-ocean ridges. Water will reduce the viscosity of mantle rock, and therefore the speed of mantle convection and plate subduction will increase with the mantle water concentration, eventually enhancing the rates of mantle water regassing and outgassing. A second feedback loop includes the production and erosion of continental crust. Continents grow by volcanism above subduction zones, whose total length is determined by the total area of the continents. Furthermore, the erosion rate of the continents is proportional to the total surface area of continental crust. The rate of sediment subduction affects the rate of transport of water to the mantle and the production rate of new continental crust. We present a model that includes both cycles and show how the system develops stable and unstable fixed points in a plane defined by mantle water concentration and surface are of continents. The stable points represent either an Earth mostly covered by continents and a wet mantle or an Earth mostly covered by oceans with a dry mantle. The presently observed Earth is inbetween these extreme states but the state is intrinsically unstable. We couple the feedback model to a parameterized thermal evolution model. We show how Earth evolved towards its present unstable state. We argue that other feedback cycles such as the carbonate silicate cycle may act to stabilize the present state, however. By enhancing continental weathering and erosion, and eventually the sediment transport into subduction zones, the biosphere impacts both feedback cycles and might play a crucial role in regulating Earth's system and keep continental crust coverage and mantle water budget at its present day state.
Long-term trends in a Dimictic Lake
Robertson, Dale M.; Hsieh, Yi-Fang; Lathrop, Richard C; Wu, Chin H; Magee, Madeline; Hamilton, David P.
2016-01-01
The one-dimensional hydrodynamic ice model, DYRESM-WQ-I, was modified to simulate ice cover and thermal structure of dimictic Lake Mendota, Wisconsin, USA, over a continuous 104-year period (1911–2014). The model results were then used to examine the drivers of changes in ice cover and water temperature, focusing on the responses to shifts in air temperature, wind speed, and water clarity at multiyear timescales. Observations of the drivers include a change in the trend of warming air temperatures from 0.081 °C per decade before 1981 to 0.334 °C per decade thereafter, as well as a shift in mean wind speed from 4.44 m s−1 before 1994 to 3.74 m s−1 thereafter. Observations show that Lake Mendota has experienced significant changes in ice cover: later ice-on date(9.0 days later per century), earlier ice-off date (12.3 days per century), decreasing ice cover duration (21.3 days per century), while model simulations indicate a change in maximum ice thickness (12.7 cm decrease per century). Model simulations also show changes in the lake thermal regime of earlier stratification onset (12.3 days per century), later fall turnover (14.6 days per century), longer stratification duration (26.8 days per century), and decreasing summer hypolimnetic temperatures (−1.4 °C per century). Correlation analysis of lake variables and driving variables revealed ice cover variables, stratification onset, epilimnetic temperature, and hypolimnetic temperature were most closely correlated with air temperature, whereas freeze-over water temperature, hypolimnetic heating, and fall turnover date were more closely correlated with wind speed. Each lake variable (i.e., ice-on and ice-off dates, ice cover duration, maximum ice thickness, freeze-over water temperature, stratification onset, fall turnover date, stratification duration, epilimnion temperature, hypolimnion temperature, and hypolimnetic heating) was averaged for the three periods (1911–1980, 1981–1993, and 1994–2014) delineated by abrupt changes in air temperature and wind speed. Average summer hypolimnetic temperature and fall turnover date exhibit significant differences between the third period and the first two periods. Changes in ice cover (ice-on and ice-off dates, ice cover duration, and maximum ice thickness) exhibit an abrupt change after 1994, which was related in part to the warm El Niño winter of 1997–1998. Under-ice water temperature, freeze-over water temperature, hypolimnetic temperature, fall turnover date, and stratification duration demonstrate a significant difference in the third period (1994–2014), when air temperature was warmest and wind speeds decreased rather abruptly. The trends in ice cover and water temperature demonstrate responses to both long-term and abrupt changes in meteorological conditions that can be complemented with numerical modeling to better understand how these variables will respond in a future climate.
Selected hydrologic data from a wastewater spray disposal site on Hilton Head Island, South Carolina
Speiran, G.K.; Belval, D.L.
1985-01-01
This study presents data collected during a study of the effects on the water table aquifer from wastewater application at rates of up to 5 inches per week on a wastewater spray disposal site on Hilton Head Island, South Carolina. The study was conducted from April 1982 through December 1983. The disposal site covers approximately 14 acres. Water level and water quality data from organic, inorganic, and nutrient analyses from the water table aquifer to a depth of 30 ft and similar water quality data from the wastewater treatment plant are included. (USGS)
Policy makers need to understand how land cover change alters storm water regimes, yet existing methods do not fully utilize newly available datasets to quantify storm water changes at a landscape-scale. Here, we use high-resolution, remotely-sensed land cover, imperviousness, an...
Untangling the effects of urban development on subsurface storage in Baltimore
NASA Astrophysics Data System (ADS)
Bhaskar, Aditi S.; Welty, Claire; Maxwell, Reed M.; Miller, Andrew J.
2015-02-01
The impact of urban development on surface flow has been studied extensively over the last half century, but effects on groundwater systems are still poorly understood. Previous studies of the influence of urban development on subsurface storage have not revealed any consistent pattern, with results showing increases, decreases, and negligible change in groundwater levels. In this paper, we investigated the effects of four key features that impact subsurface storage in urban landscapes. These include reduced vegetative cover, impervious surface cover, infiltration and inflow (I&I) of groundwater and storm water into wastewater pipes, and other anthropogenic recharge and discharge fluxes including water supply pipe leakage and well and reservoir withdrawals. We applied the integrated groundwater-surface water-land surface model ParFlow.CLM to the Baltimore metropolitan area. We compared the base case (all four features) to simulations in which an individual urban feature was removed. For the Baltimore region, the effect of infiltration of groundwater into wastewater pipes had the greatest effect on subsurface storage (I&I decreased subsurface storage 11.1% relative to precipitation minus evapotranspiration after 1 year), followed by the impact of water supply pipe leakage and lawn irrigation (combined anthropogenic discharges and recharges led to a 7.4% decrease) and reduced vegetation (1.9% increase). Impervious surface cover led to a small increase in subsurface storage (0.56% increase) associated with decreased groundwater discharge as base flow. The change in subsurface storage due to infiltration of groundwater into wastewater pipes was largest despite the smaller spatial extent of surface flux modifications, compared to other features.
NASA Astrophysics Data System (ADS)
Rokni Deilmai, B.; Ahmad, B. Bin; Zabihi, H.
2014-06-01
Mapping is essential for the analysis of the land use and land cover, which influence many environmental processes and properties. For the purpose of the creation of land cover maps, it is important to minimize error. These errors will propagate into later analyses based on these land cover maps. The reliability of land cover maps derived from remotely sensed data depends on an accurate classification. In this study, we have analyzed multispectral data using two different classifiers including Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM). To pursue this aim, Landsat Thematic Mapper data and identical field-based training sample datasets in Johor Malaysia used for each classification method, which results indicate in five land cover classes forest, oil palm, urban area, water, rubber. Classification results indicate that SVM was more accurate than MLC. With demonstrated capability to produce reliable cover results, the SVM methods should be especially useful for land cover classification.
Heterogeneous photocatalytic oxidation of atmospheric trace contaminants
NASA Technical Reports Server (NTRS)
Ollis, David F.; Peral, Jose
1991-01-01
The following subject areas are covered: (1) design and construction of continuous flow photoreactor for study of oxidation of trace atmospheric contaminants; (2) establishment of kinetics of acetone oxidation including adsorption equilibration, variation of oxidation rate with acetone concentration and water (inhibitor), and variation of rate and apparent quantum yield with light intensity; (3) exploration of kinetics of butanol oxidation, including rate variation with concentration of butanol, and lack of inhibition by water; and (4) exploration of kinetics of catalyst deactivation during oxidation of butanol, including deactivation rate, influence of dark conditions, and establishment of photocatalytic regeneration of activity in alcohol-free air.
Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone
NASA Astrophysics Data System (ADS)
Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.
2016-12-01
The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong lateral gradients at the MIZ. This presentation will discuss the evolution of the Arctic upper ocean over the summer to the start of freeze up and the relationship of its variability to sea ice extent and atmospheric forcing.
NASA Technical Reports Server (NTRS)
Hoffer, R. M. (Principal Investigator); Knowlton, D. J.; Dean, M. E.
1981-01-01
Supervised and cluster block training statistics were used to analyze the thematic mapper simulation MSS data (both 1979 and 1980 data sets). Cover information classes identified on SAR imagery include: hardwood, pine, mixed pine hardwood, clearcut, pasture, crops, emergent crops, bare soil, urban, and water. Preliminary analysis of the HH and HV polarized SAR data indicate a high variance associated with each information class except for water and bare soil. The large variance for most spectral classes suggests that while the means might be statistically separable, an overlap may exist between the classes which could introduce a significant classification error. The quantitative values of many cover types are much larger on the HV polarization than on the HH, thereby indicating the relative nature of the digitized data values. The mean values of the spectral classes in the areas with larger look angles are greater than the means of the same cover type in other areas having steeper look angles. Difficulty in accurately overlaying the dual polarization of the SAR data was resolved.
Williamson, Tanja N.; Lant, Jeremiah G.; Claggett, Peter; Nystrom, Elizabeth A.; Milly, Paul C.D.; Nelson, Hugh L.; Hoffman, Scott A.; Colarullo, Susan J.; Fischer, Jeffrey M.
2015-11-18
The Water Availability Tool for Environmental Resources (WATER) is a decision support system for the nontidal part of the Delaware River Basin that provides a consistent and objective method of simulating streamflow under historical, forecasted, and managed conditions. In order to quantify the uncertainty associated with these simulations, however, streamflow and the associated hydroclimatic variables of potential evapotranspiration, actual evapotranspiration, and snow accumulation and snowmelt must be simulated and compared to long-term, daily observations from sites. This report details model development and optimization, statistical evaluation of simulations for 57 basins ranging from 2 to 930 km2 and 11.0 to 99.5 percent forested cover, and how this statistical evaluation of daily streamflow relates to simulating environmental changes and management decisions that are best examined at monthly time steps normalized over multiple decades. The decision support system provides a database of historical spatial and climatic data for simulating streamflow for 2001–11, in addition to land-cover and general circulation model forecasts that focus on 2030 and 2060. WATER integrates geospatial sampling of landscape characteristics, including topographic and soil properties, with a regionally calibrated hillslope-hydrology model, an impervious-surface model, and hydroclimatic models that were parameterized by using three hydrologic response units: forested, agricultural, and developed land cover. This integration enables the regional hydrologic modeling approach used in WATER without requiring site-specific optimization or those stationary conditions inferred when using a statistical model.
Local- and landscape-scale land cover affects microclimate and water use in urban gardens.
Lin, Brenda B; Egerer, Monika H; Liere, Heidi; Jha, Shalene; Bichier, Peter; Philpott, Stacy M
2018-01-01
Urban gardens in Central California are highly vulnerable to the effects of climate change, experiencing both extended high heat periods as well as water restrictions because of severe drought conditions. This puts these critical community-based food production systems at risk as California is expected to experience increasing weather extremes. In agricultural systems, increased vegetation complexity, such as greater structure or biodiversity, can increase the resilience of food production systems from climate fluctuations. We test this theory in 15 urban gardens across California's Central Coast. Local- and landscape-scale measures of ground, vegetation, and land cover were collected in and around each garden, while climate loggers recorded temperatures in each garden in 30min increments. Multivariate analyses, using county as a random factor, show that both local- and landscape-scale factors were important. All factors were significant predictors of mean temperature. Tallest vegetation, tree/shrub species richness, grass cover, mulch cover, and landscape level agricultural cover were cooling factors; in contrast, garden size, garden age, rock cover, herbaceous species richness, and landscape level urban cover were warming factors. Results were similar for the maximum temperature analysis except that agriculture land cover and herbaceous species richness were not significant predictors of maximum temperature. Analysis of gardener watering behavior to observed temperatures shows that garden microclimate was significantly related to the number of minutes watered as well as the number of liters of water used per watering event. Thus gardeners seem to respond to garden microclimate in their watering behavior even though this behavior is most probably motivated by a range of other factors such as water regulations and time availability. This research shows that local management of ground cover and vegetation can reduce mean and maximum temperatures in gardens, and the reduced temperatures may influence watering behavior of gardeners. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Madrinan, Max Jacobo Moreno; Cordova, Africa Flores; Olivares, Francisco Delgado; Irwin, Dan
2012-01-01
Basin development and consequent change in basin land cover have been often associated with an increased turbidity in coastal waters because of sediment yield and nutrients loading. The later leads to phytoplankton abundance further exacerbating water turbidity. This subsequently affects biological and physical processes in coastal estuaries by interfering with sun light penetration to coral reefs and sea grass, and even affecting public health. Therefore, consistent estimation of land cover changes and turbidity trend lines is crucial to design environmental and restoration management plans, to predict fate of possible pollutants, and to estimate sedimentary fluxes into the ocean. Ground solely methods to estimate land cover change would be unpractical and traditional methods of monitoring in situ water turbidity can be very expensive and time consuming. Accurate monitoring on the status and trends of basin land cover as well as the water quality of the receiving water bodies are required for analysis of relationships between the two variables. Use of remote sensing (RS) technology provides a great benefit for both fields of study, facilitating monitoring of changes in a timely and cost effective manner and covering wide areas with long term measurements. In this study, the Magdalena River basin and fixed geographical locations in the estuarine waters of its delta are used as a case to study the temporal trend lines of both, land cover change and the reflectance of the water turbidity using satellite technology. Land cover data from a combined product between sensors Terra and Aqua (MCD12Q1) from MODIS will be adapted to the conditions in the Magdalena basin to estimate changes in land cover since year 2000 to 2009. Surface reflectance data from a MODIS, Terra (MOD09GQ), band 1, will be used in lieu of in situ water turbidity for the time period between 2000 and present. Results will be compared with available existing data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, A.B.
1975-06-01
A compilation of rates of reactions of hydrated electrons with other transients and with organic and inorganic solutes in aqueous solution appeared in NSRDS-NBS 43, and covered the literature up to early 1971. This supplement includes additional rates which have been published through July 1973.
NASA Technical Reports Server (NTRS)
Mcelroy, J. F.
1990-01-01
Viewgraphs on SPE regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications are presented. Topics covered include: hydrogen-oxygen regenerative fuel cell energy storage system; electrochemical cell reactions; SPE cell voltage stability; passive water removal SPE fuel cell; fuel cell performance; SPE water electrolyzers; hydrophobic oxygen phase separator; hydrophilic/electrochemical hydrogen phase separator; and unitized regenerative fuel cell.
At the nexus of fire, water and society
2016-01-01
The societal risks of water scarcity and water-quality impairment have received considerable attention, evidenced by recent analyses of these topics by the 2030 Water Resources Group, the United Nations and the World Economic Forum. What are the effects of fire on the predicted water scarcity and declines in water quality? Drinking water supplies for humans, the emphasis of this exploration, are derived from several land cover types, including forests, grasslands and peatlands, which are vulnerable to fire. In the last two decades, fires have affected the water supply catchments of Denver (CO) and other southwestern US cities, and four major Australian cities including Sydney, Canberra, Adelaide and Melbourne. In the same time period, several, though not all, national, regional and global water assessments have included fire in evaluations of the risks that affect water supplies. The objective of this discussion is to explore the nexus of fire, water and society with the hope that a more explicit understanding of fire effects on water supplies will encourage the incorporation of fire into future assessments of water supplies, into the pyrogeography conceptual framework and into planning efforts directed at water resiliency. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216505
Suppression of nighttime sap flux with lower stem photosynthesis in Eucalyptus trees.
Gao, Jianguo; Zhou, Juan; Sun, Zhenwei; Niu, Junfeng; Zhou, Cuiming; Gu, Daxing; Huang, Yuqing; Zhao, Ping
2016-04-01
It is widely accepted that substantial nighttime sap flux (J s,n) or transpiration (E) occurs in most plants, but the physiological implications are poorly known. It has been hypothesized that J s,n or E serves to enhance nitrogen uptake or deliver oxygen; however, no clear evidence is currently available. In this study, sap flux (J s) in Eucalyptus grandis × urophylla with apparent stem photosynthesis was measured, including control trees which were covered by aluminum foil (approximately 1/3 of tree height) to block stem photosynthesis. We hypothesized that the nighttime water flux would be suppressed in trees with lower stem photosynthesis. The results showed that the green tissue degraded after 3 months, demonstrating a decrease in stem photosynthesis. The daytime J s decreased by 21.47%, while J s,n decreased by 12.03% in covered trees as compared to that of control, and the difference was statistically significant (P < 0.01). The linear quantile regression model showed that J s,n decreased for a given daytime transpiration water loss, indicating that J s,n was suppressed by lower stem photosynthesis in covered trees. Predawn (ψ pd) of covered trees was marginally higher than that of control while lower at predawn stomatal conductance (g s), indicating a suppressed water flux in covered trees. There was no difference in leaf carbon content and δ(13)C between the two groups, while leaf nitrogen content and δ(15)N were significantly higher in covered trees than that of the control (P < 0.05), indicating that J s,n was not used for nitrogen uptake. These results suggest that J s,n may act as an oxygen pathway since green tissue has a higher respiration or oxygen demand than non-green tissue. Thus, this study demonstrated the physiological implications of J s,n and the possible benefits of nighttime water use or E by the tree.
NASA Astrophysics Data System (ADS)
Liu, Chunwei; Sun, Ge; McNulty, Steven G.; Noormets, Asko; Fang, Yuan
2017-01-01
The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient (Kc) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, Kc has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. This study aimed at deriving monthly Kc for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly Kc data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), Kc values had large seasonal variation across all land covers. The spatial variability of Kc was well explained by latitude, suggesting site factors are a major control on Kc. Seasonally, Kc increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly Kc in all land covers, except in EBF. During the peak growing season, forests had the highest Kc values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for Kc by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. The Kc models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.
Distribution and habitat use of king rails in the Illinois and Upper Mississippi River valleys
Darrah, Abigail J.; Krementz, David G.
2009-01-01
The migratory population of the king rail (Rallus elegans) has declined dramatically during the past 40 years, emphasizing the need to identify habitat requirements of this species to help guide conservation efforts. To assess distribution and habitat use of king rails along the Illinois and Upper Mississippi valleys, USA, we conducted repeated call-broadcast surveys at 83 locations in 2006 and 114 locations in 2007 distributed among 21 study sites. We detected king rails at 12 survey locations in 2006 and 14 locations in 2007, illustrating the limited distribution of king rails in this region. We found king rails concentrated at Clarence Cannon National Wildlife Refuge, an adjacent private Wetlands Reserve program site, and B. K. Leach Conservation Area, which were located in the Mississippi River floodplain in northeast Missouri. Using Program PRESENCE, we estimated detection probabilities and built models to identify habitat covariates that were important in king rail site occupancy. Habitat covariates included percentage of cover by tall (> 1 m) and short (<= 1 m) emergent vegetation, percentage of cover of woody vegetation, and interspersion of water and vegetation ( 2007 only) within 50 m of the survey location. Detection probability was 0.43 (SE = 0.12) in 2006 and 0.35 (SE = 0.03) in 2007 and was influenced by observer identity and percentage of cover by tall herbaceous vegetation. Site occupancy was 0.11 (SE = 0.04) in 2006 and 0.14 (SE = 0.04) in 2007 and was negatively influenced most by percentage of cover by woody vegetation. In addition, we found that interspersion of vegetation and water was positively related to occupancy in 2007. Thus, nesting king rails used wetlands that were characterized by high water-vegetation interspersion and little or no cover by woody vegetation. Our results suggest that biologists can improve king rail habitat by implementing management techniques that reduce woody cover and increase vegetation-water interspersion in wetlands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chunwei; Sun, Ge; McNulty, Steven G.
The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient ( K c) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, K c has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. Thismore » study aimed at deriving monthly K c for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly K c data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), K c values had large seasonal variation across all land covers. The spatial variability of K c was well explained by latitude, suggesting site factors are a major control on K c. Seasonally, K c increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly K c in all land covers, except in EBF. During the peak growing season, forests had the highest K c values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for K c by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. Here, the K c models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.« less
Liu, Chunwei; Sun, Ge; McNulty, Steven G.; ...
2017-01-18
The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient ( K c) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, K c has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. Thismore » study aimed at deriving monthly K c for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly K c data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), K c values had large seasonal variation across all land covers. The spatial variability of K c was well explained by latitude, suggesting site factors are a major control on K c. Seasonally, K c increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly K c in all land covers, except in EBF. During the peak growing season, forests had the highest K c values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for K c by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. Here, the K c models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.« less
Chip seal design and specifications : final report.
DOT National Transportation Integrated Search
2016-12-01
Chip seals or seal coats, are a pavement preservation method constructed using a layer of asphalt binder that is covered by a uniformly graded aggregate. The benefits of chip seal include: sealing surface cracks, keeping water from penetrating the su...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., rate and frequency of rainfall and runoff, surface roughness, slope and vegetative cover, infiltration... the function of storing water, such as permeability, infiltration, porosity, depth and direction of...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., rate and frequency of rainfall and runoff, surface roughness, slope and vegetative cover, infiltration... the function of storing water, such as permeability, infiltration, porosity, depth and direction of...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., rate and frequency of rainfall and runoff, surface roughness, slope and vegetative cover, infiltration... the function of storing water, such as permeability, infiltration, porosity, depth and direction of...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., rate and frequency of rainfall and runoff, surface roughness, slope and vegetative cover, infiltration... the function of storing water, such as permeability, infiltration, porosity, depth and direction of...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., rate and frequency of rainfall and runoff, surface roughness, slope and vegetative cover, infiltration... the function of storing water, such as permeability, infiltration, porosity, depth and direction of...
ERIC Educational Resources Information Center
Science Teacher, 1988
1988-01-01
Presents information and concerns regarding computer courseware, books, and audiovisual materials reviewed by teachers. Covers a variety of topics including dissection of common classroom specimens, medicine, acid rain projects, molecules, the water cycle, erosion, plankton, and evolution. Notes on availability, price, and needed equipment, where…
This presentation provides an update and overview of new research results and remaining research needs with respect to copper corrosion control issues. The topics to be covered include: occurrence of elevated copper release in systems that meet the Action Level; impact of water c...
NASA Astrophysics Data System (ADS)
Apple, M. E.; Ricketts, M. K.
2016-12-01
On the stair-stepped solifluction terraces of the periglacial patterned ground at Glacier National Park, Montana, the clearly visible striped pattern of green alternating with brown is formed by contrasts in the percent cover of plants with different functional traits. The sloping green risers dominated by the mat-forming dwarf shrubs, Dryas octopetela (Mountain Dryad) and Salix arctica (Arctic Willow) alternate with the relatively flat, sparsely covered brown rocky treads which are inhabitated by herbaceous, and often taprooted plants. Eleven species were restricted to the brown treads, including the rare arctic-alpine species Papaver pygmaeum (Pygmy Poppy), Aqiulegia jonesii (Jones' Columbine), Draba macounii, and Erigeron lanatus. Of these, the first three arise from taproots or branched rootcrowns. They are restricted to the brown rocky treads while E. lanatus arises from a caudex and grows on the treads and risers. The relative abundance of rare plants was significantly higher on the brown treads and no rare species were restricted to the green risers. The community weighted trait means were significantly higher for Raunkiaer cryptophytes and hemicryptophytes, graminoid, herbaceous and rosetted forms, and stolons, Underground traits varied significantly as well, since taproots, caudices, and other substantial roots had higher incidences on the brown treads than on the green risers. The brown, rocky treads are relatively flat with low percent plant cover and likely a water-stressed environment, hence the substantial investment in underground structures. In contrast, the sloped green risers are essentially covered by the mat-forming dwarf shrubs, D. octopetela and S. arctica, which augment their woody roots with the anchorage of adventitious roots and which provide shade and water retention for other plants, including seedlings of Abies lasiocarpa (Subalpine fir) and Pinus albicaulus (Whitebark Pine). Water from summer thunderstorms and seasonal melting supplies the periglacial patterned ground, which is by definition close to Glacier National Park's vanishing snowfields and glaciers, so their loss will likely influence water availability for these alpine plants.
Biodesalination-On harnessing the potential of nature's desalination processes.
Taheri, Reza; Razmjou, Amir; Szekely, Gyorgy; Hou, Jingwei; Ghezelbash, Gholam Reza
2016-07-08
Water scarcity is now one of the major global crises, which has affected many aspects of human health, industrial development and ecosystem stability. To overcome this issue, water desalination has been employed. It is a process to remove salt and other minerals from saline water, and it covers a variety of approaches from traditional distillation to the well-established reverse osmosis. Although current water desalination methods can effectively provide fresh water, they are becoming increasingly controversial due to their adverse environmental impacts including high energy intensity and highly concentrated brine waste. For millions of years, microorganisms, the masters of adaptation, have survived on Earth without the excessive use of energy and resources or compromising their ambient environment. This has encouraged scientists to study the possibility of using biological processes for seawater desalination and the field has been exponentially growing ever since. Here, the term biodesalination is offered to cover all of the techniques which have their roots in biology for producing fresh water from saline solution. In addition to reviewing and categorizing biodesalination processes for the first time, this review also reveals unexplored research areas in biodesalination having potential to be used in water treatment.
NASA Technical Reports Server (NTRS)
Wharton, R. A. Jr; Crosby, J. M.; McKay, C. P.; Rice, J. W. Jr; Wharton RA, ,. J. r. (Principal Investigator)
1995-01-01
Observational evidence such as outflow channels and valley networks suggest that in the past there was flowing water on Mars. The images of fluvial features on Mars logically suggest that there must exist downstream locations in which the water pooled and the sediment load deposited (i.e. lakes). Sediments and morphological features associated with the martian paleolakes are believed to occur in Valles Marineris, and several large basins including Amazonis, Chryse and Elysium planitia. As Mars became progressively colder over geological time, any lakes on its surface would have become seasonally, and eventually perennially ice-covered. We know from polar lakes on Earth that ice-covered lakes can persist even when the mean annual temperature falls below freezing. Thus, the most recent lacustrine sediments on Mars were probably deposited in ice-covered lakes. While life outside of the Earth's atmosphere has yet to be observed, there is a general consensus among exobiologists that the search for extraterrestrial life should be based upon liquid water. The inference that there was liquid water on Mars during an earlier epoch is the primary motivation for considering the possibility of life during this time. It would be of enormous interest from both an exobiological and paleolimnological perspective to discover lakes or the evidence of former lakes on another planet such as Mars. Limnology would then become an interplanetary science.
Wharton, R A; Crosby, J M; McKay, C P; Rice, J W
1995-01-01
Observational evidence such as outflow channels and valley networks suggest that in the past there was flowing water on Mars. The images of fluvial features on Mars logically suggest that there must exist downstream locations in which the water pooled and the sediment load deposited (i.e. lakes). Sediments and morphological features associated with the martian paleolakes are believed to occur in Valles Marineris, and several large basins including Amazonis, Chryse and Elysium planitia. As Mars became progressively colder over geological time, any lakes on its surface would have become seasonally, and eventually perennially ice-covered. We know from polar lakes on Earth that ice-covered lakes can persist even when the mean annual temperature falls below freezing. Thus, the most recent lacustrine sediments on Mars were probably deposited in ice-covered lakes. While life outside of the Earth's atmosphere has yet to be observed, there is a general consensus among exobiologists that the search for extraterrestrial life should be based upon liquid water. The inference that there was liquid water on Mars during an earlier epoch is the primary motivation for considering the possibility of life during this time. It would be of enormous interest from both an exobiological and paleolimnological perspective to discover lakes or the evidence of former lakes on another planet such as Mars. Limnology would then become an interplanetary science.
Ground penetrating radar detection of subsnow slush on ice-covered lakes in interior Alaska
NASA Astrophysics Data System (ADS)
Gusmeroli, A.; Grosse, G.
2012-12-01
Lakes are abundant throughout the pan-Arctic region. For many of these lakes ice cover lasts for up to two thirds of the year. The frozen cover allows human access to these lakes, which are therefore used for many subsistence and recreational activities, including water harvesting, fishing, and skiing. Safe traveling condition onto lakes may be compromised, however, when, after significant snowfall, the weight of the snow acts on the ice and causes liquid water to spill through weak spots and overflow at the snow-ice interface. Since visual detection of subsnow slush is almost impossible our understanding on overflow processes is still very limited and geophysical methods that allow water and slush detection are desirable. In this study we demonstrate that a commercially available, lightweight 1 GHz, ground penetrating radar system can detect and map extent and intensity of overflow. The strength of radar reflections from wet snow-ice interfaces are at least twice as much in strength than returns from dry snow-ice interface. The presence of overflow also affects the quality of radar returns from the base of the lake ice. During dry conditions we were able to profile ice thickness of up to 1 m, conversely, we did not retrieve any ice-water returns in areas affected by overflow.
Lishawa, Shane C.; Carson, Brendan D.; Brandt, Jodi S.; Tallant, Jason M.; Reo, Nicholas J.; Albert, Dennis A.; Monks, Andrew M.; Lautenbach, Joseph M.; Clark, Eric
2017-01-01
The ecological impacts of invasive plants increase dramatically with time since invasion. Targeting young populations for treatment is therefore an economically and ecologically effective management approach, especially when linked to post-treatment monitoring to evaluate the efficacy of management. However, collecting detailed field-based post-treatment data is prohibitively expensive, typically resulting in inadequate documentation of the ecological effects of invasive plant management. Alternative approaches, such as remote detection with unmanned aerial vehicles (UAV), provide an opportunity to advance the science and practice of restoration ecology. In this study, we sought to determine the plant community response to different mechanical removal treatments to a dominant invasive wetland macrophyte (Typha spp.) along an age-gradient within a Great Lakes coastal wetland. We assessed the post-treatment responses with both intensive field vegetation and UAV data. Prior to treatment, the oldest Typha stands had the lowest plant diversity, lowest native sedge (Carex spp.) cover, and the greatest Typha cover. Following treatment, plots that were mechanically harvested below the surface of the water differed from unharvested control and above-water harvested plots for several plant community measures, including lower Typha dominance, lower native plant cover, and greater floating and submerged aquatic species cover. Repeated-measures analysis revealed that above-water cutting increased plant diversity and aquatic species cover across all ages, and maintained native Carex spp. cover in the youngest portions of Typha stands. UAV data revealed significant post-treatment differences in normalized difference vegetation index (NDVI) scores, blue band reflectance, and vegetation height, and these remotely collected measures corresponded to field observations. Our findings suggest that both mechanically harvesting the above-water biomass of young Typha stands and harvesting older stands below-water will promote overall native community resilience, and increase the abundance of the floating and submerged aquatic plant guilds, which are the most vulnerable to invasions by large macrophytes. UAV's provided fast and spatially expansive data compared to field monitoring, and effectively measured plant community structural responses to different treatments. Study results suggest pairing UAV flights with targeted field data collection to maximize the quality of post-restoration vegetation monitoring. PMID:28487713
2006-06-01
TREATMENT AND WATER DISTRIBUTION SYSTEM DECONTAMINATION 1 . LITERATURE SURVEY Joseph J. DeFrank RESEARCH AND TECHNOLOGY DIRECTORATE June 2006 Approved for...No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) XX-06-2006 Literature Survey May 2004 - Aug 2004
NASA Astrophysics Data System (ADS)
Souma, Kazuyoshi; Tanaka, Kenji; Suetsugi, Tadashi; Sunada, Kengo; Tsuboki, Kazuhisa; Shinoda, Taro; Wang, Yuqing; Sakakibara, Atsushi; Hasegawa, Koichi; Moteki, Qoosaku; Nakakita, Eiichi
2013-10-01
5 August 2008, a localized heavy rainfall event caused a rapid increase in drainpipe discharge, which killed five people working in a drainpipe near Zoshigaya, Tokyo. This study compared the effects of artificial land cover and anthropogenic heat on this localized heavy rainfall event based on three ensemble experiments using a cloud-resolving model that includes realistic urban features. The first experiment CTRL (control) considered realistic land cover and urban features, including artificial land cover, anthropogenic heat, and urban geometry. In the second experiment NOAH (no anthropogenic heat), anthropogenic heat was ignored. In the third experiment NOLC (no land cover), urban heating from artificial land cover was reduced by keeping the urban geometry but with roofs, walls, and roads of artificial land cover replaced by shallow water. The results indicated that both anthropogenic heat and artificial land cover increased the amount of precipitation and that the effect of artificial land cover was larger than that of anthropogenic heat. However, in the middle stage of the precipitation event, the difference between the two effects became small. Weak surface heating in NOAH and NOLC reduced the near-surface air temperature and weakened the convergence of horizontal wind and updraft over the urban areas, resulting in a reduced rainfall amount compared with that in CTRL.
Schilling, Keith E.; Jha, Manoj K.; Zhang, You‐Kuan; Gassman, Philip W.; Wolter, Calvin F.
2009-01-01
Over the last century, land use and land cover (LULC) in the United States Corn Belt region shifted from mixed perennial and annual cropping systems to primarily annual crops. Historical LULC change impacted the annual water balance in many Midwestern basins by decreasing annual evapotranspiration (ET) and increasing streamflow and base flow. Recent expansion of the biofuel industry may lead to future LULC changes from increasing corn acreage and potential conversion of the industry to cellulosic bioenergy crops of warm or cool season grasses. In this paper, the Soil and Water Assessment Tool (SWAT) model was used to evaluate potential impacts from future LULC change on the annual and seasonal water balance of the Raccoon River watershed in west‐central Iowa. Three primary scenarios for LULC change and three scenario variants were evaluated, including an expansion of corn acreage in the watershed and two scenarios involving expansion of land using warm season and cool season grasses for ethanol biofuel. Modeling results were consistent with historical observations. Increased corn production will decrease annual ET and increase water yield and losses of nitrate, phosphorus, and sediment, whereas increasing perennialization will increase ET and decrease water yield and loss of nonpoint source pollutants. However, widespread tile drainage that exists today may limit the extent to which a mixed perennial‐annual land cover would ever resemble pre‐1940s hydrologic conditions. Study results indicate that future LULC change will affect the water balance of the watershed, with consequences largely dependent on the future LULC trajectory.
Effects of forest cover on drinking water treatment costs
Travis Warziniack; Chi Ho Sham; Robert Morgan; Yasha Feferholtz
2016-01-01
This paper explores the relationship between forest cover and drinking water treatment costs using results from a 2014 survey by the American Water Works Association (AWWA) that targeted utilities in forested ecoregions in the United States. On the basis of the data collected, there is a negative relationship between forest cover and turbidity, i.e. as forest...
Pittaway, P; Martínez-Alvarez, V; Hancock, N
2015-01-01
The highly variable performance of artificial monolayers in reducing evaporation from water storages has been attributed to wind speed and wave turbulence. Other factors operating at the interfacial boundary layer have seldom been considered. In this paper, two physical shade covers differing in porosity and reflectivity were suspended over 10 m diameter water tanks to attenuate wind and wave turbulence. The monolayer octadecanol was applied to one of the covered tanks, and micrometeorological conditions above and below the covers were monitored to characterise diurnal variation in the energy balance. A high downward (air-to-water) convective heat flux developed under the black cover during the day, whereas diurnal variation in the heat flux under the more reflective, wind-permeable white cover was much less. Hourly air and water temperature profiles under the covers over 3 days when forced convection was minimal (low wind speed) were selected for analysis. Monolayer application reduced temperature gain in surface water under a downward convective heat flux, and conversely reduced temperature loss under an upward convective heat flux. This 'dual property' may explain why repeat application of an artificial monolayer to retard evaporative loss (reducing latent heat loss) does not inevitably increase water temperature.
NASA Astrophysics Data System (ADS)
Janke, Jason R.; Ng, Sam; Bellisario, Antonio
2017-11-01
An inventory of firn fields, glaciers, debris-covered glaciers, and rock glaciers was conducted in the Aconcagua River Basin of the semiarid Andes of central Chile. A total of 916 landforms were identified, of which rock glaciers were the most abundant (669) and occupied the most total area. Glaciers and debris-covered glaciers were less numerous, but were about five times larger in comparison. The total area occupied by glaciers and debris-covered glaciers was roughly equivalent to the total area of rock glaciers. Debris-covered glaciers and rock glaciers were subcategorized into six ice-content classes based on interpretation of surface morphology with high-resolution satellite imagery. Over 50% of rock glaciers fell within a transitional stage; 85% of debris-covered glaciers were either fully covered or buried. Most landforms occupied elevations between 3500 and 4500 m. Glaciers and firn occurred at higher elevations compared to rock glaciers and debris-covered glaciers. Rock glaciers had a greater frequency in the northern part of the study area where arid climate conditions exist. Firn and glaciers were oriented south, debris-covered glaciers west, and rock glaciers southwest. An analysis of water contribution of each landform in the upper Andes of the Aconcagua River Basin was conducted using formulas that associate the size of the landforms to estimates of water stored. Minimum and maximum water storage was calculated based on a range of debris to ice content ratios for debris-covered glaciers and rock glaciers. In the Aconcagua River Basin, rock glaciers accounted for 48 to 64% of the water stored within the landforms analyzed; glaciers accounted for 15 to 25%; debris-covered glaciers were estimated at 15 to 19%; firn fields contained only about 5 to 8% of the water stored. Expansion of agriculture, prolonged drought, and removal of ice-rich landforms for mining have put additional pressure on already scarce water resources. To develop long-term, sustainable solutions, the importance of the water stored in rock glaciers or other alpine permafrost landforms, such as talus slopes, must be weighed against the economic value of mineral resources.
NASA Astrophysics Data System (ADS)
Chaerani, D.; Lesmana, E.; Tressiana, N.
2018-03-01
In this paper, an application of Robust Optimization in agricultural water resource management problem under gross margin and water demand uncertainty is presented. Water resource management is a series of activities that includes planning, developing, distributing and managing the use of water resource optimally. Water resource management for agriculture can be one of the efforts to optimize the benefits of agricultural output. The objective function of agricultural water resource management problem is to maximizing total benefits by water allocation to agricultural areas covered by the irrigation network in planning horizon. Due to gross margin and water demand uncertainty, we assume that the uncertain data lies within ellipsoidal uncertainty set. We employ robust counterpart methodology to get the robust optimal solution.
NASA Astrophysics Data System (ADS)
Or, D.; Lehmann, P.; Aminzadeh, M.; Sommer, M.; Wey, H.; Wunderli, H.; Breitenstein, D.
2016-12-01
The competition over dwindling fresh water resources is expected to intensify with projected increase in human population in arid regions, expansion of irrigated land and changes in climate and drought patterns. The volume of water stored in reservoirs would also increase to mitigate seasonal shortages due to rainfall variability and to meet irrigation water needs. By some estimates up to half of the stored water is lost to evaporation thereby exacerbating the water scarcity problem. Recently, there is an upsurge in the use of self-assembling floating covers to suppress evaporation, yet the design, and implementation remain largely empirical. Studies have shown that evaporation suppression is highly nonlinear, as also known from a century of research on gas exchange from plant leaves (that often evaporate as free water surfaces through stomata that are only 1% of leaf area). We report a systematic evaluation of different cover types and external drivers (radiation, wind, wind+radiation) on evaporation suppression and energy balance of a 1.4 m2 basin placed in a wind-tunnel. Surprisingly, evaporation suppression by black and white floating covers (balls and plates) were similar despite significantly different energy balance regimes over the cover surfaces. Moreover, the evaporation suppression efficiency was a simple function of the uncovered area (square root of the uncovered fraction) with linear relations with the covered area in some cases. The thermally decoupled floating covers offer an efficient solution to the evaporation suppression with limited influence of the surface energy balance (water temperature for black and white covers was similar and remained nearly constant). The results will be linked with a predictive evaporation-energy balance model and issues of spatial scales and long exposure times will be studied.
NASA Astrophysics Data System (ADS)
Heo, J.
2015-12-01
This study investigates an interconnected system of climate change - land cover - water resources for a watershed in humid subtropical climate from 1970 to 2009. A 0.7°C increase in temperature and a 16.3% increase in precipitation were observed in our study area where temperature had no obvious increase trend and precipitation showed definite increasing trend compared to previous studies. The main trend of land-cover change was conversion of vegetation and barren lands to developed and crop lands affected by human intervention, and forest and grass to bush/shrub which considered to be caused by natural climate system. Precipitation contribution to the other hydrologic parameters for a humid subtropical basin is estimated to be 51.9% of evapotranspiration, 16.3% of surface runoff, 0.9% of groundwater discharge, 19.3% of soil water content, and 11.6% of water storage. It shows little higher evapotranspiration and considerably lower surface runoff compare to other humid climate area due to vegetation dominance of land cover. Hydrologic responses to climate and land cover changes are increases of surface runoff, soil water content, evapotranspiration by 15.0%, 2.7%, and 20.1%, respectively, and decrease of groundwater discharge decreased by 9.2%. Surface runoff is relatively stable with precipitation while groundwater discharge and soil water content are sensitive to land cover changes especially human intervention. If temperature is relatively stable, it is considered to be land cover plays important role in evapotranspiration. Citation: Heo, J., J. Yu, J. R. Giardino, and H. Cho (2015), Impacts of climate and land-cover changes on water resources in a humid subtropical watershed: a case study from East Texas, USA, Water Environ. J., 29, doi:10.1111/wej.12096
NASA Astrophysics Data System (ADS)
Black, F. W.; Lee, J.; Ellison, L.; Gupta, M.; Bolten, J. D.; Gatebe, C. K.; Ichoku, C. M.
2016-12-01
The cause of shrinkage of Lake Chad has been of great interest for issues of global warming and climate change. The present study investigates the effect of biomass burning on the water cycle dynamics of Lake Chad Basin in the Northern Sub-Saharan Africa. Burning activities increase from November to April when monsoonal precipitation is at its lowest and decreases dramatically from May to October when precipitation peaks. To circumvent weather station scarcity in the region, a variety of satellite products were used as input into a water balance model. The datasets include TRMM 3B31 for precipitation, SRTM for elevation, and MODIS: MOD11C3 for temperature, MOD12Q1 for land cover, and MOD14A for fire count. Non-satellite based data sources include soil maps from the Harmonized World Soil Database and wind speed from NOAA NCDC stations. The Chari-Logone catchment of the Lake Chad Basin was selected since it supplies over 90% of the water input to the Lake. Fire count data from MOD14A were integrated with land cover albedo changes to determine monthly potential evapotranspiration (PET) using a Penman equation. The resolution of the model is 2 km x 2 km which allows for delineation of physical features such as lakes and other water bodies. Fire counts, also at a resolution of 2 km x 2 km, vary dramatically depending on the season. A separate land cover dataset was created to account for the effect of burning of different vegetative land types, which affects vegetative area, bare area, leaf area index, vegetation height, Manning coefficient, and aerodynamic resistance. Two water balance simulations, one considering burning and one without, were compared from the years 2005 to 2010. Results indicate biomass burning contribute to an increase in average monthly runoff and a decrease in groundwater recharge. Actual evapotranspiration shows variation depending on the month.
Development of LANDSAT Derived Forest Cover Information for Integration into Adirondack Park GIS
NASA Technical Reports Server (NTRS)
Curran, R. P.; Banta, J. S.
1982-01-01
Based upon observed changes in timber harvest practices partially attributable to forest biomass removable for energy supply purposes, the Adirondack Park Agency began in 1979 a multi-year project to implement a digital geographic information system (GIS). An initial developmental task was an inventory of forest cover information and analysis of forest resource change and availability. While developing the GIS, a pilot project was undertaken to evaluate the usefulness of LANDSAT derived land cover information for this purpose, and to explore the integration of LANDSAT data into the GIS. The prototype LANDSAT analysis project involved: (1) the use of both recent and historic data to derive land cover information for two dates; and (2) comparison of land cover over time to determine quantitative and geographic changes. The "recent data," 1978 full foliage data over portions of four LANDSAT scenes, was classified, using ground truth derived training samples in various forested and non-forested categories. Forested categories include the following: northern hardwoods, pine, spruce-fir, and pine plantation, while nonforested categories include wet-conifer, pasture, grassland, urban, exposed soil, agriculture, and water.
Stromberg, J.C.; Bagstad, K.J.; Leenhouts, J.M.; Lite, S.J.; Makings, E.
2005-01-01
The San Pedro River in the southwestern United States retains a natural flood regime and has several reaches with perennial stream flow and shallow ground water. However, much of the river flows intermittently. Urbanization-linked declines in regional ground-water levels have raised concerns over the future status of the riverine ecosystem in some parts of the river, while restoration-linked decreases in agricultural ground-water pumping are expected to increase stream flows in other parts. This study describes the response of the streamside herbaceous vegetation to changes in stream flow permanence. During the early summer dry season, streamside herbaceous cover and species richness declined continuously across spatial gradients of flow permanence, and composition shifted from hydric to mesic species at sites with more intermittent flow. Hydrologic threshold values were evident for one plant functional group: Schoenoplectus acutus, Juncus torreyi, and other hydric riparian plants declined sharply in cover with loss of perennial stream flow. In contrast, cover of mesic riparian perennials (including Cynodon dactylon, an introduced species) increased at sites with intermittent flow. Patterns of hydric and mesic riparian annuals varied by season: in the early summer dry season their cover declined continuously as flow became more intermittent, while in the late summer wet season their cover increased as the flow became more intermittent. Periodic drought at the intermittent sites may increase opportunities for establishment of these annuals during the monsoonal flood season. During the late summer flood season, stream flow was present at most sites, and fewer vegetation traits were correlated with flow permanence; cover and richness were correlated with other environmental factors including site elevation and substrate nitrate level and particle size. Although perennial-flow and intermittent-flow sites support different streamside plant communities, all of the plant functional groups are abundant at perennial-flow sites when viewing the ecosystem at broader spatial and temporal scales: mesic riparian perennials are common in the floodplain zone adjacent to the river channel and late-summer hydric and mesic annuals are periodically abundant after large floods. Copyright ?? 2005 John Wiley & Sons, Ltd.
Cover crop biomass production and water use in the Central Great Plains
USDA-ARS?s Scientific Manuscript database
The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...
Landsat - What is operational in water resources
NASA Technical Reports Server (NTRS)
Middleton, E. M.; Munday, J. C., Jr.
1981-01-01
Applications of Landsat data in hydrology and water quality measurement were examined to determine which applications are operational. In hydrology, the principal applications have been surface water inventory, and land cover analysis for (1) runoff modeling and (2) abatement planning for non-point pollution and erosion. In water quality measurement, the principal applications have been: (1) trophic state assessment, and (2) measurement of turbidity and suspended sediment. The following applications were found to be operational: mapping of surface water, snow cover, and land cover (USGS Level 1) for watershed applications; measurement of turbidity, Secchi disk depth, suspended sediment concentration, and water depth.
Soil-moisture sensors and irrigation management
USDA-ARS?s Scientific Manuscript database
This agricultural irrigation seminar will cover the major classes of soil-moisture sensors; their advantages and disadvantages; installing and reading soil-moisture sensors; and using their data for irrigation management. The soil water sensor classes include the resistance sensors (gypsum blocks, g...
18 CFR 401.35 - Classification of projects for review under Section 3.8 of the Compact.
Code of Federal Regulations, 2010 CFR
2010-04-01
... materials; (6) A change in land cover on major ground water infiltration areas when the amount of land that... infiltration areas; (11) Hydroelectric power projects, including pumped storage projects; (12) Projects or...
18 CFR 401.35 - Classification of projects for review under Section 3.8 of the Compact.
Code of Federal Regulations, 2013 CFR
2013-04-01
... materials; (6) A change in land cover on major ground water infiltration areas when the amount of land that... infiltration areas; (11) Hydroelectric power projects, including pumped storage projects; (12) Projects or...
18 CFR 401.35 - Classification of projects for review under Section 3.8 of the Compact.
Code of Federal Regulations, 2014 CFR
2014-04-01
... materials; (6) A change in land cover on major ground water infiltration areas when the amount of land that... infiltration areas; (11) Hydroelectric power projects, including pumped storage projects; (12) Projects or...
18 CFR 401.35 - Classification of projects for review under Section 3.8 of the Compact.
Code of Federal Regulations, 2012 CFR
2012-04-01
... materials; (6) A change in land cover on major ground water infiltration areas when the amount of land that... infiltration areas; (11) Hydroelectric power projects, including pumped storage projects; (12) Projects or...
Oxygen Sag and Stream Purification.
ERIC Educational Resources Information Center
Neal, Larry; Herwig, Roy
1978-01-01
Presents a literature review of water quality related to oxygen sag and stream purification, covering publications of 1976-77. This review includes: (1) self-purification models; (2) oxygen demand; and (3) reaeration and oxygen transfer. A list of 60 references is also presented. (HM)
Code of Federal Regulations, 2010 CFR
2010-07-01
... Amendments and Reauthorization Act of 1986. Septic tank is a water-tight covered receptacle designed to... premises where stored; (c) Septic tank; (d) Pipeline facility (including gathering lines) regulated under... STANDARDS AND CORRECTIVE ACTION REQUIREMENTS FOR OWNERS AND OPERATORS OF UNDERGROUND STORAGE TANKS (UST...
EVALUATION OF CONTAINMENT SYSTEMS USING HYDRAULIC HEAD DATA
Subsurface vertical barriers have been used as components of containment systems to prevent or reduce the impact of containment sources on ground-water resources. Many containment systems also include a low permeability cover to prevent the infiltration-/recharge of precipitatio...
Removal of cyanobacteria and cyanotoxins through drinking water treatment-full-scale studies?
This presentation covers the control of intact cyanobacterial cells through particulate removal processes such as coagulation, sedimentation and filtration. The control of cyanobacterial toxins through oxidation and adsorption processes including, but not limited to, chlorine, oz...
NASA Astrophysics Data System (ADS)
Anderson, A. M.; Walker, E. L.; Hogue, T. S.; Ruybal, C. J.
2015-12-01
Unconventional energy production in semi-arid regions places additional stress on already over-allocated water systems. Production of shale gas and oil resources in northern Colorado has rapidly increased since 2010, and is expected to continue growing due to advances in horizontal drilling and hydraulic fracturing. This unconventional energy production has implications for the availability of water in the South Platte watershed, where water demand for hydraulic fracturing of unconventional shale resources reached ~16,000 acre-feet in 2014. Groundwater resources are often exploited to meet water demands for unconventional energy production in regions like the South Platte basin, where surface water supply is limited and allocated across multiple uses. Since groundwater is often a supplement to surface water in times of drought and peak demand, variability in modeled recharge estimates can significantly impact projected availability. In the current work we used the Soil-Water Balance Model (SWB) to assess the variability in model estimates of actual evapotranspiration (ET) and soil-moisture conditions utilized to derive estimates of groundwater recharge. Using both point source and spatially distributed data, we compared modeled actual ET and soil-moisture derived from several potential ET methods, such as Thornthwaite-Mather, Jense-Haise, Turc, and Hargreaves-Samani, to historic soil moisture conditions obtained through sources including the Gravity Recovery and Climate Experiment (GRACE). In addition to a basin-scale analysis, we divided the South Platte watershed into sub-basins according to land cover to evaluate model capabilities of estimating soil-moisture parameters with variations in land cover and topography. Results ultimately allow improved prediction of groundwater recharge under future scenarios of climate and land cover change. This work also contributes to complementary subsurface groundwater modeling and decision support modeling in the South Platte.
Chen, Xuexia; Giri, Chandra; Vogelmann, James
2012-01-01
Land cover is the biophysical material on the surface of the earth. Land-cover types include grass, shrubs, trees, barren, water, and man-made features. Land cover changes continuously. The rate of change can be either dramatic and abrupt, such as the changes caused by logging, hurricanes and fire, or subtle and gradual, such as regeneration of forests and damage caused by insects (Verbesselt et al., 2001). Previous studies have shown that land cover has changed dramatically during the past sevearal centuries and that these changes have severely affected our ecosystems (Foody, 2010; Lambin et al., 2001). Lambin and Strahlers (1994b) summarized five types of cause for land-cover changes: (1) long-term natural changes in climate conditions, (2) geomorphological and ecological processes, (3) human-induced alterations of vegetation cover and landscapes, (4) interannual climate variability, and (5) human-induced greenhouse effect. Tools and techniques are needed to detect, describe, and predict these changes to facilitate sustainable management of natural resources.
Ignatius, Amber R.; Jones, John W.
2014-01-01
Construction of small reservoirs affects ecosystem processes in numerous ways including fragmenting stream habitat, altering hydrology, and modifying water chemistry. While the upper and middle Chattahoochee River basins within the Southeastern United States Piedmont contain few natural lakes, they have a high density of small reservoirs (more than 7500 small reservoirs in the nearly 12,000 km2 basin). Policymakers and water managers in the region have little information about small reservoir distribution, uses, or the cumulative inundation of land cover caused by small reservoir construction. Examination of aerial photography reveals the spatiotemporal patterns and extent of small reservoir construction from 1950 to 2010. Over that 60 year timeframe, the area inundated by water increased nearly six fold (from 19 reservoirs covering 0.16% of the study area in 1950 to 329 reservoirs covering 0.95% of the study area in 2010). While agricultural practices were associated with reservoir creation from 1950 to 1970, the highest rates of reservoir construction occurred during subsequent suburban development between 1980 and 1990. Land cover adjacent to individual reservoirs transitioned over time through agricultural abandonment, land reforestation, and conversion to development during suburban expansion. The prolific rate of ongoing small reservoir creation, particularly in newly urbanizing regions and developing counties, necessitates additional attention from watershed managers and continued scientific research into cumulative environmental impacts at the watershed scale.
Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.
1995-01-01
Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.
ENGINEERING BULLETIN: LANDFILL COVERS
Landfill covers are used at Superfund sites to minimize surface water infiltration and control gas migration. In many cases covers are used in conjunction with other waste treatment technologies, such as slurry walls, ground water pump-and-treat systems, and gas collection. This ...
NASA Astrophysics Data System (ADS)
Wang, Y.
2015-12-01
Landfill disposal is still the most common and economical practice for municipal solid waste in most countries. However, heavily polluted leachate generated by excess rainwater percolating through the landfill waste is the major drawback of this practice. Evapotranspiration (ET) cover systems are increasingly being used as alternative cover systems to minimize percolation by evapotranspiration. Leachate recirculation is one of the least expensive options for leachate treatment. The combination of ET cover systems and leachate recirculation can be an economical and environment-friendly practice for landfill leachate management. An interactive real-time decision support system is being developed to better manage leachate irrigation using historical and forecasting weather data, and real time soil moisture data. The main frame of this system includes soil water modules, and plant-soil modules. An inverse simulation module is also included to calibrate certain parameters based on observed data when necessary. It would be an objectives-oriented irrigation management tool to minimize landfill operation costs and negative environmental impacts.
ERIC Educational Resources Information Center
Clinch-Powell Resource Conservation and Development Council, Rutledge, TN.
This student workbook is designed as a companion to a day of field studies investigating water quality and stream health for sixth grade students in several northeastern Tennessee counties. Nineteen environmental education activities cover topics including wildlife species, wildlife habitats (instream and riparian), connections between water…
Water Column Variability in Coastal Regions
1997-09-30
to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data... 1 . REPORT DATE 30 SEP 1997 2. REPORT TYPE 3. DATES COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Water Column Variability in...Andrews, Woods, and Kester deployed a spar buoy at a central location in Narragansett Bay to obtain time-series variations at multiple depths ( 1 , 4
NASA Astrophysics Data System (ADS)
Or, Dani; Lehmann, Peter; Aminzadeh, Milad; Sommer, Martina; Wey, Hannah; Krentscher, Christiane; Wunderli, Hans; Breitenstein, Daniel
2017-04-01
The competition over dwindling fresh water resources is expected to intensify with projected increase in human population in arid regions, expansion of irrigated land and changes in climate and drought patterns. The volume of water stored in reservoirs would also increase to mitigate seasonal shortages due to rainfall variability and to meet irrigation water needs. By some estimates up to half of the stored water is lost to evaporation, thereby exacerbating the water scarcity problem. Recently, there is an upsurge in the use of self-assembling floating covers to suppress evaporation, yet the design and implementation remain largely empirical. We report a systematic experimental evaluation of different cover types and external drivers (radiation, wind, wind plus radiation) on evaporation suppression and energy balance of a 1.4 m2 basin placed in a wind-tunnel. Surprisingly, evaporation suppression by black and white floating covers (balls and plates) were similar despite significantly different energy balance regimes over the cover surfaces. Moreover, the evaporation suppression efficiency was a simple function of the uncovered area (square root of the uncovered fraction) with linear relations with the covered area in some cases. The thermally decoupled floating covers offer an efficient solution to the evaporation suppression with limited influence of the surface energy balance (water temperature for black and white covers was similar and remained nearly constant). The results will be linked with a predictive evaporation-energy balance model and issues of spatial scales and long exposure times will be studied.
On the merging of optical and SAR satellite imagery for surface water mapping applications
NASA Astrophysics Data System (ADS)
Markert, Kel N.; Chishtie, Farrukh; Anderson, Eric R.; Saah, David; Griffin, Robert E.
2018-06-01
Optical and Synthetic Aperture Radar (SAR) imagery from satellite platforms provide a means to discretely map surface water; however, the application of the two data sources in tandem has been inhibited by inconsistent data availability, the distinct physical properties that optical and SAR instruments sense, and dissimilar data delivery platforms. In this paper, we describe a preliminary methodology for merging optical and SAR data into a common data space. We apply our approach over a portion of the Mekong Basin, a region with highly variable surface water cover and persistent cloud cover, for surface water applications requiring dense time series analysis. The methods include the derivation of a representative index from both sensors that transforms data from disparate physical units (reflectance and backscatter) to a comparable dimensionless space applying a consistent water extraction approach to both datasets. The merging of optical and SAR data allows for increased observations in cloud prone regions that can be used to gain additional insight into surface water dynamics or flood mapping applications. This preliminary methodology shows promise for a common optical-SAR water extraction; however, data ranges and thresholding values can vary depending on data source, yielding classification errors in the resulting surface water maps. We discuss some potential future approaches to address these inconsistencies.
Engineering Characteristics of Chemically Treated Water-Repellent Kaolin
Choi, Youngmin; Choo, Hyunwook; Yun, Tae Sup; Lee, Changho; Lee, Woojin
2016-01-01
Water-repellent soils have a potential as alternative construction materials that will improve conventional geotechnical structures. In this study, the potential of chemically treated water-repellent kaolin clay as a landfill cover material is explored by examining its characteristics including hydraulic and mechanical properties. In order to provide water repellency to the kaolin clay, the surface of clay particle is modified with organosilanes in concentrations (CO) ranging from 0.5% to 10% by weight. As the CO increases, the specific gravity of treated clay tends to decrease, whereas the total organic carbon content of the treated clay tends to increase. The soil-water contact angle increases with an increase in CO until CO = 2.5%, and then maintains an almost constant value (≈134.0°). Resistance to water infiltration is improved by organosilane treatment under low hydrostatic pressure. However, water infiltration resistance under high hydrostatic pressure is reduced or exacerbated to the level of untreated clay. The maximum compacted dry weight density decreases with increasing CO. As the CO increases, the small strain shear modulus increases, whereas the effect of organosilane treatment on the constrained modulus is minimal. The results indicate that water-repellent kaolin clay possesses excellent engineering characteristics for a landfill cover material. PMID:28774098
Factors affecting water balance and percolate production for a landfill in operation.
Poulsen, Tjalfe G; Møoldrup, Per
2005-02-01
Percolate production and precipitation data for a full-scale landfill in operation measured over a 13-year period were used to evaluate the impact and importance of the hydrological conditions of landfill sections on the percolate production rates. Both active (open) and closed landfill sections were included in the evaluation. A simple top cover model requiring a minimum of input data was used to simulate the percolate production as a function of precipitation and landfill section hydrology. The results showed that changes over time in the hydrology of individual landfill sections (such as section closure or plantation of trees on top of closed sections) can change total landfill percolate production by more than 100%; thus, percolate production at an active landfill can be very different from percolate production at the same landfill after closure. Furthermore, plantation of willow on top of closed sections can increase the evapotranspiration rate thereby reducing percolate production rates by up to 47% compared to a grass cover. This process, however, depends upon the availability of water in the top layer, and so the evaporation rate will be less than optimal during the summer where soil-water contents in the top cover are low.
A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011
Jin, Suming; Yang, Limin; Zhu, Zhe; Homer, Collin G.
2017-01-01
Monitoring and mapping land cover changes are important ways to support evaluation of the status and transition of ecosystems. The Alaska National Land Cover Database (NLCD) 2001 was the first 30-m resolution baseline land cover product of the entire state derived from circa 2001 Landsat imagery and geospatial ancillary data. We developed a comprehensive approach named AKUP11 to update Alaska NLCD from 2001 to 2011 and provide a 10-year cyclical update of the state's land cover and land cover changes. Our method is designed to characterize the main land cover changes associated with different drivers, including the conversion of forests to shrub and grassland primarily as a result of wildland fire and forest harvest, the vegetation successional processes after disturbance, and changes of surface water extent and glacier ice/snow associated with weather and climate changes. For natural vegetated areas, a component named AKUP11-VEG was developed for updating the land cover that involves four major steps: 1) identify the disturbed and successional areas using Landsat images and ancillary datasets; 2) update the land cover status for these areas using a SKILL model (System of Knowledge-based Integrated-trajectory Land cover Labeling); 3) perform decision tree classification; and 4) develop a final land cover and land cover change product through the postprocessing modeling. For water and ice/snow areas, another component named AKUP11-WIS was developed for initial land cover change detection, removal of the terrain shadow effects, and exclusion of ephemeral snow changes using a 3-year MODIS snow extent dataset from 2010 to 2012. The overall approach was tested in three pilot study areas in Alaska, with each area consisting of four Landsat image footprints. The results from the pilot study show that the overall accuracy in detecting change and no-change is 90% and the overall accuracy of the updated land cover label for 2011 is 86%. The method provided a robust, consistent, and efficient means for capturing major disturbance events and updating land cover for Alaska. The method has subsequently been applied to generate the land cover and land cover change products for the entire state of Alaska.
LaFontaine, Jacob H.; Hay, Lauren E.; Viger, Roland; Regan, R. Steve; Markstrom, Steven
2015-01-01
The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases of surface runoff (due to urbanization), the groundwater flow component then increased. For hydrologic studies that include projections of land cover change (urbanization in particular), any analysis of runoff beyond the change in total runoff should include effects of stormwater management practices as these features affect flow timing and magnitude and may be useful in mitigating land cover change impacts on streamflow. Potential changes in water availability and how biota may respond to changes in flow regime in response to climate and land cover change may prove challenging for managers attempting to balance the needs of future development and the environment. However, these models are still useful for assessing the relative impacts of climate and land cover change and for evaluating tradeoffs when managing to mitigate different stressors.
Imperial Valley Environmental Project: quarterly data report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyholm, R.A.; Anspaugh, L.R.
This is a catalog of all samples which have been collected and the presently available results of chemical and other analyses. Types covered include: air quality, water quality, ecosystem quality, subsidence and seismicity, remotely sensed data, socioeconomic effects, and measurements of radioactivity. (MHR)
Preparing Students for Travel Abroad.
ERIC Educational Resources Information Center
Novotny, Jeanne
1989-01-01
This article outlines information which can be provided by the school nurse or health educator to help make student trips abroad healthy as well as educational. Topics covered include: food and water, traveler's diarrhea, handwashing, insect and animal bites, stress, and prior health problems. (IAH)
ESTIMATION OF GIARDIA CT VALUES AT HIGH PH FOR THE SURFACE WATER TREATMENT RULE
The U.S. Environmental Protection Agency currently recommends Ct (disinfectant concentration multiplied by the exposure time) values to achieve required levels of inactivation of Giardia lamblia cysts by different disinfectants including free chlorine. Current guidance covers ina...
ECOREGION: ECOREGIONS OF CONTERMINOUS UNITED STATES
The Ecoregion data set covers aquatic ecoregions of the conterminous U.S. It is provided by the USGS and is intended for national-level studies of water resources. Aquatic ecoregions are based on perceived patterns of a combination of causal and integrative factors including lan...
Hrad, Marlies; Huber-Humer, Marion; Wimmer, Bernhard; Reichenauer, Thomas G
2012-12-01
Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 × 2 × 3m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH(4) loadings up to 300 lCH(4)/m(2)d. In addition, the compost material provided high air permeability even at 100% water holding capacity (WHC). In contrast, the more cohesive, mineral soil cover was expected to cause a notably uniform distribution of the injected air within the waste layer. Laboratory results also revealed sufficient air permeability of the soil materials (TS-F and SS-Z) placed in lysimeter C. However, at higher compaction density SS-Z became impermeable at 100% WHC. Methane emissions from the reference lysimeter with the smaller substrate cover (12-52 g CH(4)/m(2)d) were significantly higher than fluxes from the other lysimeters (0-19 g CH(4)/m(2)d) during in situ aeration. Regarding water balance, lysimeters covered with compost and compost-sand mixture, showed the lowest leachate rate (18-26% of the precipitation) due to the high water holding capacity and more favourable plant growth conditions compared to the lysimeters with mineral, more cohesive, soil covers (27-45% of the precipitation). On the basis of these results, the authors suggest a layered top cover system using both compost material as well as mineral soil in order to support active low-pressure aeration. Conventional soil materials with lower permeability may be used on top of the landfill body for a more uniform aeration of the waste due to an increased resistance to vertical gas flow. A compost cover may be built on top of the soil cover underlain by a gas distribution layer to improve methane oxidation rates and minimise water infiltration. By planting vegetation with a high transpiration rate, the leachate amount emanating from the landfill could be further minimised. The suggested design may be particularly suitable in combination with intermittent in situ aeration, in the later stage of an aeration measure, or at very small sites and shallow deposits. The top cover system could further regulate water infiltration into the landfill and mitigate residual CH(4) emissions, even beyond the time of active aeration. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wilkinson, Jeremy; Beegle-Krause, C J; Evers, Karl-Ulrich; Hughes, Nick; Lewis, Alun; Reed, Mark; Wadhams, Peter
2017-12-01
Renewed political and commercial interest in the resources of the Arctic, the reduction in the extent and thickness of sea ice, and the recent failings that led to the Deepwater Horizon oil spill, have prompted industry and its regulatory agencies, governments, local communities and NGOs to look at all aspects of Arctic oil spill countermeasures with fresh eyes. This paper provides an overview of present oil spill response capabilities and technologies for ice-covered waters, as well as under potential future conditions driven by a changing climate. Though not an exhaustive review, we provide the key research results for oil spill response from knowledge accumulated over many decades, including significant review papers that have been prepared as well as results from recent laboratory tests, field programmes and modelling work. The three main areas covered by the review are as follows: oil weathering and modelling; oil detection and monitoring; and oil spill response techniques.
Elevated soil nitrogen pools after conversion of turfgrass to water-efficient residential landscapes
NASA Astrophysics Data System (ADS)
Heavenrich, Hannah; Hall, Sharon J.
2016-08-01
As a result of uncertain resource availability and growing populations, city managers are implementing conservation plans that aim to provide services for people while reducing household resource use. For example, in the US, municipalities are incentivizing homeowners to replace their water-intensive turfgrass lawns with water-efficient landscapes consisting of interspersed drought-tolerant shrubs and trees with rock or mulch groundcover (e.g. xeriscapes, rain gardens, water-wise landscapes). While these strategies are likely to reduce water demand, the consequences for other ecosystem services are unclear. Previous studies in controlled, experimental landscapes have shown that conversion from turfgrass to shrubs may lead to high rates of nutrient leaching from soils. However, little is known about the long-term biogeochemical consequences of this increasingly common land cover change across diverse homeowner management practices. We explored the fate of soil nitrogen (N) across a chronosequence of land cover change from turfgrass to water-efficient landscapes in privately owned yards in metropolitan Phoenix, Arizona, in the arid US Southwest. Soil nitrate ({{{{NO}}}3}--N) pools were four times larger in water-efficient landscapes (25 ± 4 kg {{{{NO}}}3}--N/ha 0-45 cm depth) compared to turfgrass lawns (6 ± 7 kg {{{{NO}}}3}--N/ha). Soil {{{{NO}}}3}--N also varied significantly with time since landscape conversion; the largest pools occurred at 9-13 years after turfgrass removal and declined to levels comparable to turfgrass thereafter. Variation in soil {{{{NO}}}3}--N with landscape age was strongly influenced by management practices related to soil water availability, including shrub cover, sub-surface plastic sheeting, and irrigation frequency. Our findings show that transitioning from turfgrass to water-efficient residential landscaping can lead to an accumulation of {{{{NO}}}3}--N that may be lost from the plant rooting zone over time following irrigation or rainfall. These results have implications for best management practices to optimize the benefits of water-conserving landscapes while protecting water quality.
Evaluating Impacts of Land Use/Land Cover Change on Water Resources in Semiarid Regions
NASA Astrophysics Data System (ADS)
Scanlon, B. R.; Faunt, C. C.; Pool, D. R.; Reedy, R. C.
2017-12-01
Land use/land cover (LU/LC) changes play an integral role in water resources by controlling the partitioning of water at the land surface. Here we evaluate impacts of changing LU/LC on water resources in response to climate variation and change and land use change related to agriculture using data from semiarid regions in the southwestern U.S. Land cover changes in response to climate can amplify or dampen climate impacts on water resources. Changes from wet Pleistocene to much drier Holocene climate resulted in expansion of perennial vegetation, amplifying climate change impacts on water resources by reducing groundwater recharge as shown in soil profiles in the southwestern U.S.. In contrast, vegetation response to climate extremes, including droughts and floods, dampen impacts of these extremes on water resources, as shown by water budget monitoring in the Mojave Desert. Agriculture often involves changes from native perennial vegetation to annual crops increasing groundwater recharge in many semiarid regions. Irrigation based on conjunctive use of surface water and groundwater increases water resource availability, as shown in the Central Valley of California and in southern Arizona. Surface water irrigation in these regions is enhanced by water transported from more humid settings through extensive pipelines. These projects have reversed long-term declining groundwater trends in some regions. While irrigation design has often focused on increased efficiency, "more crop per drop", optimal water resource management may benefit more from inefficient (e.g. flood irrigation) surface-water irrigation combined with efficient (e.g. subsurface drip) irrigation to maximize groundwater recharge, as seen in parts of the Central Valley. Flood irrigation of perennial crops, such as almonds and vineyards, during winter is being considered in the Central Valley to enhance groundwater recharge. Managed aquifer recharge can be considered a special case of conjunctive use of surface water and groundwater use where spreading basins focus recharge in southern California and Arizona. This overview highlights the importance of changes in LU/LC in controlling water budgets in semiarid regions. Understanding these controls should allow us to better manage water resources.
Long-term hydrologic effects on marsh plant community structure in the southern Everglades
Busch, David E.; Loftus, W.F.; Bass, O.L.
1998-01-01
Although large-scale transformation of Everglades landscapes has occurred during the past century, the patterns of association among hydrologic factors and southern Everglades freshwater marsh vegetation have not been well-defined. We used a 10-year data base on the aquatic biota of Shark Slough to classify vegetation and describe plant community change in intermediate- to long-hydroperiod Everglades marshes. Study area marsh vegetation was quantitatively grouped into associations dominated by 1) Cladium jamaicense, 2) a group of emergents including Eleocharis cellulosa, Sagittaria lancifolia, and Rhyncospora tracyi, 3) taxa associated with algal mats (Utricularia spp. and Bacopa caroliniana), and 4) the grasses Panicum hemitomon and Paspalidium geminatum. During the decade evaluated, the range of water depths that characterized our study sites approached both extremes depicted in the 40-year hydrologic record for the region. Water depths were near the long-term average during the mid-1980s, declined sharply during a late 1980s drought, and underwent a prolonged increase from 1991 through 1995. Overall macrophyte cover varied inversely with water depth, while the response of periphyton was more complex. An ordination analysis, based on plant species abundance, revealed that study area vegetation structure was associated with hydrologic patterns. Marsh plant community structure showed evidence of cyclic interannual variation corresponding to hydrologic change over the decade evaluated. Lower water depths, the occurrence of marl substrates, and high periphyton cover were correlated. These factors contributed to reduced macrophyte cover in portions of the study area from which water had been diverted.
Redox processes as revealed by voltammetry in the surface sediments of the Gotland Basin, Baltic Sea
NASA Astrophysics Data System (ADS)
Yücel, Mustafa; Dale, Andy; Sommer, Stefan; Pfannkuche, Olaf
2014-05-01
Sulfur cycling in marine sediments undergoes dramatic changes with changing redox conditions of the overlying waters. The upper sediments of the anoxic Gotland Basin, central Baltic Sea represent a dynamic redox environment with extensive mats of sulfide oxidizing bacteria covering the seafloor beneath the chemocline. In order to investigate sulfur redox cycling at the sediment-water interface, sediment cores were sampled over a transect covering 65 - 174 m water depth in August-September 2013. High resolution (0.25 mm minimum) vertical microprofiles of electroactive redox species including dissolved sulfide and iron were obtained with solid state Au-Hg voltammetric microelectrodes. This approach enabled a fine-scale comparison of porewater profiles across the basin. The steepest sulfide gradients (i.e. the highest sulfide consumption) occurred within the upper 10 mm in sediments covered by surficial mats (2.10 to 3.08 mmol m-2 day-1). In sediments under permanently anoxic waters (>140m), voltammetric signals for Fe(II) and aqueous FeS were detected below a subsurface maximum in dissolved sulfide, indicating a Fe flux originating from older, deeper sedimentary layers. Our results point to a unique sulfur cycling in the Gotland basin seafloor where sulfide accumulation is moderated by sulfide oxidation at the sediment surface and by FeS precipitation in deeper sediment layers. These processes may play an important role in minimizing benthic sulfide fluxes to bottom waters around the major basins of the Baltic Sea.
NASA Astrophysics Data System (ADS)
López-Burgos, V.; Rajagopal, S.; Martinez Baquero, G. F.; Gupta, H. V.
2009-12-01
Rapidly growing population in the southwestern US is leading to increasing demand and decreasing availability of water, requiring a detailed quantification of hydrological processes. The integration of detailed spatial information of water fluxes from remote sensing platforms, and hydrological models coupled with ground based data is an important step towards this goal. This project is exploring the use of Snow Water Equivalent (SWE) estimates to update the snow component of the Variable Infiltration Capacity model (VIC). SWE estimates are obtained by combining SNOTEL data with MODIS Snow Cover Area (SCA) information. Because, cloud cover corrupts the estimates of SCA, a rule-based method is used to clean up the remotely sensed images. The rules include a time interpolation method, and the probability of a pixel for been covered with snow based on the relationships between elevation, temperature, lapse rate, aspect and topographic shading. The approach is used to improve streamflow predictions on two rivers managed by the Salt River Project, a water and energy supplier in central Arizona. This solution will help improve the management of reservoirs in the Salt and Verde River in Phoenix, Arizona (tributaries of the lower Colorado River basin), by incorporating physically based distributed models and remote sensing observations into their Decision Support Tools and planning tools. This research seeks to increase the knowledge base used to manage reservoirs and groundwater resources in a region affected by a long-term drought. It will be applicable and relevant for other water utility companies facing the challenges of climate change and decreasing water resources.
NASA Astrophysics Data System (ADS)
Pawson, David L.; Pawson, Doris J.
2013-08-01
In a survey of the bathyal echinoderms of the Bahama Islands region using manned submersibles, approximately 200 species of echinoderms were encountered and documented; 33 species were echinoids, most of them widespread in the general Caribbean area. Three species were found to exhibit covering behavior, the piling of debris on the upper surface of the body. Active covering is common in at least 20 species of shallow-water echinoids, but it has been reliably documented previously only once in deep-sea habitats. Images of covered deep-sea species, and other species of related interest, are provided. Some of the reasons adduced in the past for covering in shallow-water species, such as reduction of incident light intensity, physical camouflage, ballast in turbulent water, protection from desiccation, presumably do not apply in bathyal species. The main reasons for covering in deep, dark, environments are as yet unknown. Some covering behavior in the deep sea may be related to protection of the genital pores, ocular plates, or madreporite. Covering in some deep-sea species may also be merely a tactile reflex action, as some authors have suggested for shallow-water species.
Effects of Lily Pads on Evaporation
NASA Astrophysics Data System (ADS)
Cooley, Keith R.; Idso, Sherwood B.
1980-06-01
Measurements of evaporation from open water and water partially covered by lily pads have indicated that for the portion of the surface area covered by lily pads, evaporation is reduced to about 84% of that occurring from open water.
At the nexus of fire, water and society.
Martin, Deborah A
2016-06-05
The societal risks of water scarcity and water-quality impairment have received considerable attention, evidenced by recent analyses of these topics by the 2030 Water Resources Group, the United Nations and the World Economic Forum. What are the effects of fire on the predicted water scarcity and declines in water quality? Drinking water supplies for humans, the emphasis of this exploration, are derived from several land cover types, including forests, grasslands and peatlands, which are vulnerable to fire. In the last two decades, fires have affected the water supply catchments of Denver (CO) and other southwestern US cities, and four major Australian cities including Sydney, Canberra, Adelaide and Melbourne. In the same time period, several, though not all, national, regional and global water assessments have included fire in evaluations of the risks that affect water supplies. The objective of this discussion is to explore the nexus of fire, water and society with the hope that a more explicit understanding of fire effects on water supplies will encourage the incorporation of fire into future assessments of water supplies, into the pyrogeography conceptual framework and into planning efforts directed at water resiliency.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).
Household safe water management in Kisii County, Kenya.
Misati, A G
2016-11-01
Contaminated drinking water can lead to the risk of intestinal and other infectious diseases that lead to high morbidity. Therefore, determining household safe water management practices will benefit billions of people by ensuring there is no recontamination. A cross-sectional study design was used and a sample of 346 households was selected through systematic random sampling. A questionnaire was then used which was based on the core questions on drinking water and sanitation for household surveys and descriptive analyses were performed for the collected data using SPSS. Springs were predominantly used as the main source of water (97 %). Approximately, over half (58 %) of the sampled households never treated their drinking water to ensure that it was safe for drinking. Mostly (56 %), the households used jerricans for the storage of water with a majority of the households (95 %) covering their containers which were elevated from the reach of children in 52 % of the households. The risks included lack of water treatment, not covering the water container, risk of permitting dipping for those containers, lacking narrow neck and the risk of container being accessible to children. Basic treatment of the water at the household level by use of chemicals, filtration and boiling may have a great impact on the drinking water quality and health of the inhabitants of Kisii County. Also, creation of awareness on the possibilities of spring water being contaminated should be carried because of the assumption that spring water is safe and does not need to be treated.
NASA Technical Reports Server (NTRS)
Steyaert, Louis T.; Knox, Robert G.
2007-01-01
The local environment where we live within the Earth's biosphere is often taken for granted. This environment can vary depending on whether the land cover is a forest, grassland, wetland, water body, bare soil, pastureland, agricultural field, village, residential suburb, or an urban complex with concrete, asphalt, and large buildings. In general, the type and characteristics of land cover influence surface temperatures, sunlight exposure and duration, relative humidity, wind speed and direction, soil moisture amount, plant life, birds, and other wildlife in our backyards. The physical and biological properties (biophysical characteristics) of land cover help to determine our surface environment because they directly affect surface radiation, heat, and soil moisture processes, and also feedback to regional weather and climate. Depending on the spatial scale and land use intensity, land cover changes can have profound impacts on our local and regional environment. Over the past 350 years, the eastern half of the United States, an area extending from the grassland prairies of the Great Plains to the Gulf and Atlantic coasts, has experienced extensive land cover and land use changes that began with land clearing in the 1600s, led to extensive deforestation and intensive land use practices by 1920, and then evolved to the present-day landscape. Determining the consequences of such land cover changes on regional and global climate is a major research issue. Such research requires detailed historical land cover data and modeling experiments simulating historical climates. Given the need to understand the effects of historical land cover changes in the eastern United States, some questions include: - What were the most important land cover transformations and how did they alter biophysical characteristics of the land cover at key points in time since the mid-1600s? - How have land cover and land use changes over the past 350 years affected the land surface environment including surface weather, hydrologic, and climatic variability? - How do the potential effects of regional human-induced land cover change on the environment compare to similar changes that are caused by the natural variations of the Earth's climate system? To help answer these questions, we reconstructed a fractional land cover and biophysical parameter dataset for the eastern United States at 1650, 1850, 1920, and 1992 time-slices. Each land cover fraction is associated with a biophysical parameter class, a suite of parameters defining the biophysical characteristics of that kind of land cover. This new dataset is designed for use in computer models of land-atmosphere interactions, to understand and quantify the effects of historical land cover changes on the water, energy, and carbon cycles
Markon, Carl J.; Talbot, Stephen
1986-01-01
Landsat-derived land cover maps and associated elevation, slope, and aspect class maps were produced for the Innoko National Wildlife Refuge (3,850,000 acres; 1,555,095 hectares) in northwestern Alaska. These maps and associated digital data products are being used by the U. S. Fish and Wildlife Service for wildlife management, research, and comprehensive conservation planning. Portions of two Landsat Multispectral Scanner (MSS) scenes and digital terrain data were used to produce 1:250,000 scale land cover and terrain maps. Prints of summer and winter Landsat MSS scenes were used to manually interpret broad physiographic strata. These strata were transferred to U. S. Geological Survey 1:250,000-scale topographic maps and digitized. Seven major land cover classes and 23 subclasses were identified. The major land cover classes include: forest, scrub, dwarf scrub and related types, herbaceous, scarcely vegetated areas, water, and shadow.
Manage Hydrologic Fluxes Instead of Land Cover in Watershed Services Projects
NASA Astrophysics Data System (ADS)
Brauman, K. A.; Ponette-González, A. G.; Marin-Spiotta, E.; Farley, K. A.; Weathers, K. C.; Young, K. R.; Curran, L. M.
2014-12-01
Payments for Watershed Services (PWS), Water Funds, and other payment schemes intended to increase the delivery of hydrologic ecosystem services have great potential for ensuring water resources for downstream beneficiaries while improving livelihoods for upstream residents. However, it is often ambiguous which land-management options should be promoted to enhance watershed service delivery. In many watershed investment programs, specific land covers are promoted as proxies for water service delivery. This approach is based on assumed relationships between land cover and water service outcomes. When land cover does not sufficiently describe ecosystem characteristics that affect water flow, however, desired water services may not be delivered. The use of land cover proxies is especially problematic for watershed investments in the tropics, where many projects are located, because these proxies rely on generalizations about landscape hydrology established for temperate zones. Based on an extensive review of hydrologic fluxes in the high-elevation tropics, we argue that direct management of hydrologic fluxes is a good design for achieving quantifiable results. We use case studies from sites in the Caribbean and Latin American tropics to illustrate how designers of watershed payment projects can manage hydrologic fluxes. To do so, projects must explicitly articulate the water service of interest based on the specific social setting. Projects must also explicitly account for the particulars of the geographic setting. Finally, outcomes must be assessed relative to water services delivered under an alternative land use or land cover scenario.
Modeled impact of anthropogenic land cover change on climate
Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.
2007-01-01
Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.
The Effect of Climate Change on Snow Pack at Sleepers River, Vermont, USA
NASA Astrophysics Data System (ADS)
Shanley, J. B.; Chalmers, A.; Denner, J.; Clark, S.
2017-12-01
Sleepers River Research Watershed, a U.S. Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) site in northeastern Vermont, has a 58-year record (since 1959) of snow depth and snow water equivalence (SWE), one of the longest continuous records in eastern North America. Snow measurements occur weekly during the winter at the watershed using an Adirondack type snow tube sampler. Sleepers River averages about 1100 mm of precipitation annually of which 20 to 30 percent falls as snow. Snow cover typically persists from December to April. Length of snow cover and snow depth vary with elevation, aspect, and cover type. Sites include open field, and hardwood and conifer stand clearings from 225 to 630 meters elevation. We evaluated changes in snow depth, snow cover duration, and SWE relative to elevation, soil frost depth, air temperature, total precipitation, and the El Niño - Southern Oscillation (ENSO) cycle. Overall, warmer winter temperatures have resulted in more midwinter thaws, more rain during the winter, and more variable soil frost depth. Trends in snowpack amount and duration were compared to winter-spring streamflow center-of-mass to evaluate if shifts in the snow pack regime were leading to earlier snowmelt.
New developments in water efficiency
NASA Astrophysics Data System (ADS)
Gregg, Tony T.; Dewees, Amanda; Gross, Drema; Hoffman, Bill; Strub, Dan; Watson, Matt
2006-10-01
An overview of significant new developments in water efficiency is presented in this paper. The areas covered will be legislative, regulatory, new programs or program wrinkles, new products, and new studies on the effectiveness of conservation programs. Examples include state and local level efficiency regulations in Texas; the final results of the national submetering study for apartments in the US; the US effort to adopt the IWA protocols for leak detection; new water efficient commercial products such as ET irrigation controllers, new models of efficient clothes washers, and innovative toilet designs.
ACCURACY ASSESSMENT OF THE NATIONAL LAND COVER DATABASE 2001 (NLCD 2001) IMPERVIOUSNESS DATA
Landscape conditions of watersheds strongly influence the sustainability of aquatic resources valued by society, including quality of drinking water, diversity of stream life, and resilience to catastrophic flooding. The amount of impervious surface area in a watershed is a key ...
40 CFR 230.30 - Threatened and endangered species.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., fish and reptiles. (b) Possible loss of values: The major potential impacts on threatened or endangered... species include adequate good quality water, spawning and maturation areas, nesting areas, protective cover, adequate and reliable food supply, and resting areas for migratory species. Each of these...
AASHE Digest. A Review of Campus Sustainability 2005
ERIC Educational Resources Information Center
Dautremont-Smith, Julian, Comp.
2006-01-01
This paper includes almost 250 stories about higher education institutions that are leading the way to a sustainable future. It is organized into 8 chapters covering: Institutional Change; Education & Outreach; Social Responsibility; Green Building; Energy & Climate; Food & Agriculture; Transportation; Waste, Water, Procurement, and Landscaping.…
Microbiology: Detection of Bacterial Pathogens and Their Occurrence.
ERIC Educational Resources Information Center
Reasoner, Donald J.
1978-01-01
Presents a literature review of bacterial pathogens that are related to water pollution, covering publications from 1976-77. This review includes: (1) bacterial pathogens in animals; and (2) detection and identification of waterborne bacterial pathogens. A list of 129 references is also presented. (HM)
Heavy Metals and Related Trace Elements.
ERIC Educational Resources Information Center
Leland, Harry V.; And Others
1978-01-01
Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)
Validation of national land-cover characteristics data for regional water-quality assessment
Zelt, Ronald B.; Brown, Jesslyn F.; Kelley, M.S.
1995-01-01
Land-cover information is used routinely to support the interpretation of water-quality data. The Prototype 1990 Conterminous US Land Cover Characteristics Data Set, developed primarily from Advanced Very High Resolution Radiometer (AVHRR) data, was made available to the US Geological Survey's National Water-Quality Assessment (NAWQA) Program. The study described in this paper explored the utility of the 1990 national data set for developing quantitative estimates of the areal extent of principal land-cover types within large areal units. Land-cover data were collected in 1993 at 210 sites in the Central Nebraska Basins, one of the NAWQA study units. Median percentage-corn estimates for each sampling stratum wre used to produce areally weighted estimates of the percentage-corn cover for hydrologic units. Comparison of those areal estimates with an independent source of 1992 land-cover data showed good agreement. -Authors
Environmental Control and Life Support System
NASA Technical Reports Server (NTRS)
Ray, Charles; Adams, Alan
1990-01-01
Viewgraphs on the Environmental Control and Life Support System (ECLSS) for the space station are presented. The ECLSS is divided into six subsystems: temperature and humidity control (THC), atmosphere control and supply (ACS), atmosphere revitalization (AR), fire detection and suppression (FDS), water recovery management (WRM), and waste management (WM). Topics covered include: ECLSS subsystem functions; ECLSS distributed system; ECLSS functional distribution; CO2 removal; CO2 reduction; oxygen generation; urine processor; and potable water recovery.
Water Column Variability in Coastal Regions
1999-09-30
0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing...collection of information if it does not display a currently valid OMB control number 1 . REPORT DATE 30 SEP 1999 2. REPORT TYPE 3. DATES COVERED...images were used to detect and characterize the front between waters of the Bay and those of the Sound. Figure 1 illustrates the type of SST
NASA Astrophysics Data System (ADS)
Song, Qing; Yanful, Ernest K.
2010-05-01
Engineered soil covers provide an option to mitigate acid rock drainage through reduced water flow and gaseous oxygen influx to underlying mine waste. Channels such as fissures, cracks or fractures developed in the barrier may influence the long-term performance of the soil cover. However, limited published information is available on the extent to which soil cover performance is impacted by these fissures and cracks. This study was conducted to investigate the effect of channelling in a barrier layer on water flow and oxygen transport in a soil cover. Two inclined (a slope of 20%) multilayer soil covers were examined under laboratory conditions. One cover had a 10-cm wide sand-filled channel in a compacted barrier layer (silty clay) at the upslope section, while the other cover was a normal one without the channel pathway. The soil covers were installed in plastic boxes measuring 120 cm × 120 cm × 25 cm (width × height × thickness). The sand-filled channel was designed to represent the aggregate of fissures and cracks that may be present in the compacted barrier. The soil covers were subjected to controlled drying and wetting periods selected to simulate field situation at the Whistle mine site near Capreol, Ontario, Canada. The measured results indicated that interflow decreased from 72.8% of the total precipitation in the soil cover without channel flow to 35.3% in the cover with channel flow, and percolation increased from zero in the normal soil cover to 43.0% of the total precipitation in the cover with channel flow. Gaseous oxygen transfer into the waste rock below the cover soils was 1091 times greater in the cover with channel than in the soil cover without channel. The channel pathway present in the barrier layer acted as a major passage for water movement and gaseous oxygen diffusion into the waste rock layer, thus decreasing the performance of the soil cover. The spacing of the channel with respect to the length of the test box is similar to those found in other published fracture networks. The distribution and partitioning of the water balance components would be expected to be similar to other situations with the same cover slope. This, of course, would depend on rainfall intensity.
Effectiveness of various cover scenarios on the rate of sulfide oxidation of mine tailings
NASA Astrophysics Data System (ADS)
Romano, Connie G.; Ulrich Mayer, K.; Jones, David R.; Ellerbroek, David A.; Blowes, David W.
2003-02-01
Long term environmentally sound disposal of the millions of tons of mining residue is a serious challenge to the international mining industry. This paper evaluates, through a numerical investigation, the potential performance of desulfurized tailings as a cover material for the reduction of acidic drainage from sulfidic tailings. This evaluation is facilitated through a comparison of various cover types as decommissioning options. The cover types considered consist of a desulfurized tailings material cover exposed to ambient climate conditions, a water cover (flooded tailings), and a combination cover type. As part of the evaluation of cover performances, the effect of climatic variability on the potential rate of sulfide oxidation in tailings with an open ground surface, was also assessed. The numerical analysis was conducted using the model PYROX, which was modified to allow for variably-saturated conditions, time varying moisture contents, and to account for the temperature dependence of Henry's law and gas diffusion. In the case study presented here, the benign cover material consists of a low sulfide waste stream (cassiterite float tails, CFT), a by-product of the production of tin concentrate (cassiterite, SnO 2). Modelling results after a simulation period of 100 years indicate that a water cover alone or an exposed CFT cover alone are both less effective options than the combined cover type. A water cover alone leads to a reduction of approximately 99.1%, in the oxidation rate relative to uncovered tailings while the combined cover type results in the lowest potential extent of sulfide oxidation after mine closure-an approximately 99.8% reduction. Importantly, a CFT cover exposed to ambient environmental conditions can still substantially reduce the sulfide oxidation rate, by approximately 75-82% over a 100-year time period, relative to uncovered tailings. Variability in precipitation (and hence percent saturation of the surface layer) had less of an effect on the potential sulfide oxidation rate than did the cover type. The performance of the exposed CFT cover varied by less than 10%, within the range of climatic conditions expected at the Renison Bell mine site in southwest Tasmania, Australia. Although the modelling results indicate that the combined water and CFT cover is the best option, this approach achieves only a minor improvement over the water cover alone.
NASA Astrophysics Data System (ADS)
Wang, Hailong; Tetzlaff, Doerthe; Soulsby, Chris
2018-03-01
Climate and land cover are two major factors affecting the water fluxes and balance across spatiotemporal scales. These two factors and their impacts on hydrology are often interlinked. The quantification and differentiation of such impacts is important for developing sustainable land and water management strategies. Here, we calibrated the well-known Hydrus-1D model in a data-rich boreal headwater catchment in Scotland to assess the role of two dominant vegetation types (shrubs vs. trees) in regulating the soil water partitioning and balance. We also applied previously established climate projections for the area and replaced shrubs with trees to imitate current land use change proposals in the region, so as to quantify the potential impacts of climate and land cover changes on soil hydrology. Under tree cover, evapotranspiration and deep percolation to recharge groundwater was about 44% and 57% of annual precipitation, whilst they were about 10% lower and 9% higher respectively under shrub cover in this humid, low energy environment. Meanwhile, tree canopies intercepted 39% of annual precipitation in comparison to 23% by shrubs. Soils with shrub cover stored more water than tree cover. Land cover change was shown to have stronger impacts than projected climate change. With a complete replacement of shrubs with trees under future climate projections at this site, evapotranspiration is expected to increase by ∼39% while percolation to decrease by 21% relative to the current level, more pronounced than the modest changes in the two components (<8%) with climate change only. The impacts would be particularly marked in warm seasons, which may result in water stress experienced by the vegetation. The findings provide an important evidence base for adaptive management strategies of future changes in low-energy humid environments, where vegetation growth is usually restricted by radiative energy and not water availability while few studies that quantify soil water partitioning exist.
Particle self-assembly at ionic liquid-based interfaces.
Frost, Denzil S; Nofen, Elizabeth M; Dai, Lenore L
2014-04-01
This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid-water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid-water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water-ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil or water is incorporated. © 2013.
Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders
NASA Astrophysics Data System (ADS)
Lee, Craig; Rainville, Luc; Perry, Mary Jane
2016-04-01
The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kgm-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.
Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders
NASA Astrophysics Data System (ADS)
Lee, C.; Rainville, L.; Perry, M. J.
2016-02-01
The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kg m-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.
NASA Astrophysics Data System (ADS)
SUN, N.; Yearsley, J. R.; Lettenmaier, D. P.
2013-12-01
Recent research shows that precipitation extremes in many of the largest U.S. urban areas have increased over the last 60 years. These changes have important implications for stormwater runoff and water quality, which in urban areas are dominated by the most extreme precipitation events. We assess the potential implications of changes in extreme precipitation and changing land cover in urban and urbanizing watersheds at the regional scale using a combination of hydrology and water quality models. Specifically, we describe the integration of a spatially distributed hydrological model - the Distributed Hydrology Soil Vegetation Model (DHSVM), the urban water quality model in EPA's Storm Water Management Model (SWMM), the semi-Lagrangian stream temperature model RBM10, and dynamical and statistical downscaling methods applied to global climate predictions. Key output water quality parameters include total suspended solids (TSS), toal nitrogen, total phosphorous, fecal coliform bacteria and stream temperature. We have evaluated the performance of the modeling system in the highly urbanized Mercer Creek watershed in the rapidly growing Bellevue urban area in WA, USA. The results suggest that the model is able to (1) produce reasonable streamflow predictions at fine temporal and spatial scales; (2) provide spatially distributed water temperature predictions that mostly agree with observations throughout a complex stream network, and characterize impacts of climate, landscape, near-stream vegetation change on stream temperature at local and regional scales; and (3) capture plausibly the response of water quality constituents to varying magnitude of precipitation events in urban environments. Next we will extend the scope of the study from the Mercer Creek watershed to include the entire Puget Sound Basin, WA, USA.
Tracking Trends in Fractional Forest Cover Change using Long Term Data from AVHRR and MODIS
NASA Astrophysics Data System (ADS)
Kim, D. H.; DiMiceli, C.; Sohlberg, R. A.; Hansen, M.; Carroll, M.; Kelly, M.; Townshend, J. R.
2014-12-01
Tree cover affects terrestrial energy and water exchanges, photosynthesis and transpiration, net primary production, and carbon and nutrient fluxes. Accurate and long-term continuous observation of tree cover change is critical for the study of the gradual ecosystem change. Tree cover is most commonly inferred from categorical maps which may inadequately represent within-class heterogeneity for many analyses. Alternatively, Vegetation Continuous Fields data measures fractions or proportions of pixel area. Recent development in remote sensing data processing and cross sensor calibration techniques enabled the continuous, long-term observations such as Land Long-Term Data Records. Such data products and their surface reflectance data have enhanced the possibilities for long term Vegetation Continuous Fields data, thus enabling the estimation of long term trend of fractional forest cover change. In this presentation, we will summarize the progress in algorithm development including automation of training selection for deciduous and evergreen forest, the preliminary results, and its future applications to relate trends in fractional forest cover change and environmental change.
Accuracy comparison in mapping water bodies using Landsat images and Google Earth Images
NASA Astrophysics Data System (ADS)
Zhou, Z.; Zhou, X.
2016-12-01
A lot of research has been done for the extraction of water bodies with multiple satellite images. The Water Indexes with the use of multi-spectral images are the mostly used methods for the water bodies' extraction. In order to extract area of water bodies from satellite images, accuracy may depend on the spatial resolution of images and relative size of the water bodies. To quantify the impact of spatial resolution and size (major and minor lengths) of the water bodies on the accuracy of water area extraction, we use Georgetown Lake, Montana and coalbed methane (CBM) water retention ponds in the Montana Powder River Basin as test sites to evaluate the impact of spatial resolution and the size of water bodies on water area extraction. Data sources used include Landsat images and Google Earth images covering both large water bodies and small ponds. Firstly we used water indices to extract water coverage from Landsat images for both large lake and small ponds. Secondly we used a newly developed visible-index method to extract water coverage from Google Earth images covering both large lake and small ponds. Thirdly, we used the image fusion method in which the Google Earth Images are fused with multi-spectral Landsat images to obtain multi-spectral images of the same high spatial resolution as the Google earth images. The actual area of the lake and ponds are measured using GPS surveys. Results will be compared and the optimal method will be selected for water body extraction.
NASA Astrophysics Data System (ADS)
Alvarez-Garreton, C. D.; Mendoza, P. A.; Zambrano-Bigiarini, M.; Galleguillos, M. H.; Boisier, J. P.; Lara, A.; Cortés, G.; Garreaud, R.; McPhee, J. P.; Addor, N.; Puelma, C.
2017-12-01
We provide the first catchment-based hydrometeorological, vegetation and physical data set over 531 catchments in Chile (17.8 S - 55.0 S). We compiled publicly available streamflow records at daily time steps for the period 1980-2015, and generated basin-averaged time series of the following hydrometeorological variables: 1) daily precipitation coming from three different gridded sources (re-analysis and satellite-based); 2) daily maximum and minimum temperature; 3) 8-days potential evapotranspiration (PET) based on MODIS imagery and daily PET based on Hargreaves formula; and 4) daily snow water equivalent. Additionally, catchments are characterized by their main physical (area, mean elevation, mean slope) and land cover characteristics. We synthetized these datasets with several indices characterizing the spatial distribution of climatic, hydrological, topographic and vegetation attributes. The new catchment-based dataset is unprecedented in the region and provides information that can be used in a myriad of applications, including catchment classification and regionalization studies, impacts of different land cover types on catchment response, characterization of drought history and projections, climate change impacts on hydrological processes, etc. Derived practical applications include water management and allocation strategies, decision making and adaptation planning to climate change. This data set will be publicly available and we encourage the community to use it.
Modeling water yield response to forest cover changes in northern Minnesota
S.C. Bernath; E.S. Verry; K.N. Brooks; P.F. Ffolliott
1982-01-01
A water yield model (TIMWAT) has been developed to predict changes in water yield following changes in forest cover in northern Minnesota. Two versions of the model exist; one predicts changes in water yield as a function of gross precipitation and time after clearcutting. The second version predicts changes in water yield due to changes in above-ground biomass...
Ground water and vegetation in two peat bogs in northern Minnesota
Roger R. Bay
1967-01-01
Plant cover and water quality of bog waters are related to the surrounding ground-water flow systems in two bogs--one perched above and isolated from the regional ground-water system, the other nonperched and continuous with the regional system. The nonperched bog has higher pH, higher specific conductivity, and greater variety in plant cover than the perched bog....
An Approach to Modeling the Water Balance Sensitivity to Landscape Vegetation Changes
NASA Astrophysics Data System (ADS)
Mohammed, I. N.; Tarboton, D. G.
2008-12-01
Watershed development and management require an understanding of how hydrological processes affect water balance components. The study of water resources management, especially in Western United States, is currently motivated by climate change, the impact of vegetation cover change on water production, and the need to manage water supplies. Vegetation management and its relation to runoff has been well documented, as reduction of forest cover, reducing evapotranspiration, increases water yield and in contrast the establishment of forest cover on sparsely vegetated land, increasing evapotranspiration, deceases water yield. This paper presents a water balance model developed to quantify the sensitivity of runoff production to changes in vegetation based on differences in evapotranspiration from different land cover types. The model is intended to provide a simple framework for estimating long term yield changes due to managed vegetation change. The model assumes that relative potential evapotranspiration from specific land cover can be quantified by a set of potential evapotranspiration coefficients for each land cover type. The model uses the Budyko curve to partition precipitation into evapotranspiration and runoff over the long term. Potential evapotranspiration is estimated from the Budyko curve for present conditions, then adjusted for land cover changes using the relative potential evapotranspiration coefficients for each land cover type. The adjusted potential evapotranspiration is then partitioned using the Budyko curve to provide estimates of long term runoff and evapotranspiration for the changed conditions. We found that the changes in runoff were in general close to being linearly proportional to the changes in land cover. In Utah study watersheds, reducing 50% of the present coniferous forests resulted in runoff increase that ranged from 0.5 to 38 mm/year, while the transition of 50% of area present as range/shrub/other to forest resulted in runoff decrease that ranged from 3.8 to 37 mm/year. The model helps to evaluate long term runoff production sensitivities to vegetation changes and answer, in a broad sense without requiring detailed information or modeling, how much runoff production could potentially be changed through vegetation management. The theoretical approach taken in this study is simple and general and could be applied to a wide range of watersheds.
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Smoot, James; Ellis, Jean; Swann, Roberta
2011-01-01
This presentation will discuss the development and use of Landsat-based impervious cover products in conjunction with land use land cover change products to assess multi-decadal urbanization across the Mobile Bay region at regional and watershed scales. This nationally important coastal region has undergone a variety of ephemeral and permanent land use land cover change since the mid-1970s, including gradual but consequential increases in urban surface cover. This urban sprawl corresponds with increased regional percent impervious cover. The region s coastal zone managers are concerned about the increasing percent impervious cover, since it can negatively influence water quality and is an important consideration for coastal conservation and restoration work. In response, we processed multi-temporal Landsat data to compute maps of percent impervious cover for multiple dates from 1974 through 2008, roughly at 5-year intervals. Each year of product was classified using one single date of leaf-on and leaf-off Landsat data in conjunction with Cubist software. We are assessing Landsat impervious cover product accuracy through comparisons to available reference data, including available NLCD impervious cover products from the USGS, raw Landsat data, plus higher spatial resolution aerial and satellite data. In particular, we are quantitatively comparing the 2008 Landsat impervious cover products to those from QuickBird 2.4-meter multispectral data. Initial visual comparisons with the QuickBird impervious cover product suggest that the 2008 Landsat product tends to underestimate impervious cover for high density urban areas and to overestimate impervious cover in established residential subdivisions mixed with forested cover. Landsat TM and ETM data appears to produce more accurate impervious cover products compared to those using lower resolution Landsat MSS data. Although imperfect, these Landsat impervious cover products have helped the Mobile Bay National Estuary Program visualize basic urbanization trends for multiple HUC-12 watersheds of concern to them and their constituents
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents estimated soil variables compiled for every catchment of NHDPlus for the conterminous United States. The variables included are cation exchange capacity, percent calcium carbonate, slope, water-table depth, soil thickness, hydrologic soil group, soil erodibility (k-factor), permeability, average water capacity, bulk density, percent organic material, percent clay, percent sand, and percent silt. The source data set is the State Soil ( STATSGO ) Geographic Database (Wolock, 1997). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
NASA Technical Reports Server (NTRS)
Martz, J. E.; Roberts, A. F.
1985-01-01
A photovoltaic (PV) system powering a grain mill and water pump was installed in the remote African village of Tangaye, Burkina Faso (formerly Upper Volta) under the sponsorship of the U.S. Agency for International Development (AID) and by the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) in early 1979. The presence reports covers the second two years of operation from April 1981 through June 1983. During this time, the grain mill and water pump were operational 96 and 88 percent of the time respectively, and the PV system generated sufficient electricity to enable the grinding of about 111 metric tons of finely ground flow and the pumping of over 5000 cm sq of water from the 10 m deep well. The report includes a description of the current configuration of the system, a review of system performance, a discussion of the socioeconomic impact of the system on the villagers and a summary of results and conclusions covering the entire four-year period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martz, J.E.; Roberts, A.F.
1985-03-01
A photovoltaic (PV) system powering a grain mill and water pump was installed in the remote African village of Tangaye, Burkina Faso (formerly Upper Volta) under the sponsorship of the U.S. Agency for International Development (AID) and by the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) in early 1979. The presence reports covers the second two years of operation from April 1981 through June 1983. During this time, the grain mill and water pump were operational 96 and 88 percent of the time respectively, and the PV system generated sufficient electricity to enable the grinding of aboutmore » 111 metric tons of finely ground flow and the pumping of over 5000 cm sq of water from the 10 m deep well. The report includes a description of the current configuration of the system, a review of system performance, a discussion of the socioeconomic impact of the system on the villagers and a summary of results and conclusions covering the entire four-year period.« less
NASA Astrophysics Data System (ADS)
Li, S.; Zhang, S.; Yang, D.
2017-09-01
Remote sensing images are particularly well suited for analysis of land cover change. In this paper, we present a new framework for detection of changing land cover using satellite imagery. Morphological features and a multi-index are used to extract typical objects from the imagery, including vegetation, water, bare land, buildings, and roads. Our method, based on connected domains, is different from traditional methods; it uses image segmentation to extract morphological features, while the enhanced vegetation index (EVI), the differential water index (NDWI) are used to extract vegetation and water, and a fragmentation index is used to the correct extraction results of water. HSV transformation and threshold segmentation extract and remove the effects of shadows on extraction results. Change detection is performed on these results. One of the advantages of the proposed framework is that semantic information is extracted automatically using low-level morphological features and indexes. Another advantage is that the proposed method detects specific types of change without any training samples. A test on ZY-3 images demonstrates that our framework has a promising capability to detect change.
Reduction of zinc emissions from buildings; the policy of Amsterdam.
Gouman, E
2004-01-01
In Amsterdam zinc coming from the roofs and gutters of the buildings accounts for about 50% of the zinc emissions into the surface water (i.e. canals and rivers). This causes water and sediment pollution. Dumping strongly polluted sediment costs ten times more then dumping less polluted mud. Therefore the City of Amsterdam has developed a policy for reducing the zinc emissions from buildings based on the current environmental legislation and the current national targets for surface water quality. Zinc roofs on new and renovated buildings are not permitted. Run off water from zinc roofs of existing buildings is allowed to contain a maximum of 200 microg/l zinc. For the zinc gutters of houses, Amsterdam will promote measures to reduce zinc emissions. To investigate the feasibility of measures, research has been carried out on the zinc emissions of gutters and the effect of covering gutters with an impermeable foil. This research shows clearly that covering zinc gutters with EPDM foil reduces the zinc emissions by 90% from 8.5 to 0.88 gram per square metre per year including the atmospheric deposition.
Habitat use by mountain quail in Northern California
Leonard A. Brennan; R. J. Gutierrez
1987-01-01
We studied habitat use by Mountain Quail (Oreortyx pictus) at four sites in northern California. Vegetative cover types (macrohabitats) were used in proportion to availability. Significant microhabitat variables which distinguished used from available microhabitat structure included proximity to water and tall, dense shrubs. Mountain Quail population...
Energy Management Checklist for the Home.
ERIC Educational Resources Information Center
Pifer, Glenda
This booklet contains a checklist of equipment and activities for the individual's use in home energy management. The categories covered include: (1) insulation; (2) windows; (3) temperature control; (4) lighting; (5) heating water; (6) laundry; (7) cleaning and maintenance; (8) cooking; (9) refrigeration; (10) dishwashing; (11) recreation; and…
MSATT Workshop on Chemical Weathering on Mars
NASA Technical Reports Server (NTRS)
Burns, Roger (Editor); Banin, Amos (Editor)
1992-01-01
The topics covered with respect to chemical weathering on Mars include the following: Mars soil, mineralogy, spectroscopic analysis, clays, silicates, oxidation, iron oxides, water, chemical reactions, geochemistry, minerals, Mars atmosphere, atmospheric chemistry, salts, planetary evolution, volcanology, Mars volcanoes, regolith, surface reactions, Mars soil analogs, carbonates, meteorites, and reactivity.
Determination of Residual Chlorine and Turbidity in Drinking Water. Student Manual.
ERIC Educational Resources Information Center
Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.
This student's manual covers analytical methods for residual chlorine and turbidity. Topics include sample handling, permissable concentration levels, substitution of residual chlorine for bacteriological work, public notification, and the required analytical techniques to determine residual chlorine and turbidity. The publication is intended for…
Engelsen, Christian J; Wibetoe, Grethe; van der Sloot, Hans A; Lund, Walter; Petkovic, Gordana
2012-06-15
The release of major and trace elements from recycled concrete aggregates used in an asphalt covered road sub-base has been monitored for more than 4 years. A similar test field without an asphalt cover, directly exposed to air and rain, and an asphalt covered reference field with natural aggregates in the sub-base were also included in the study. It was found that the pH of the infiltration water from the road sub-base with asphalt covered concrete aggregates decreased from 12.6 to below pH 10 after 2.5 years of exposure, whereas this pH was reached within only one year for the uncovered field. Vertical temperature profiles established for the sub-base, could explain the measured infiltration during parts of the winter season. When the release of major and trace elements as function of field pH was compared with pH dependent release data measured in the laboratory, some similar pH trends were found. The field concentrations of Cd, Ni, Pb and Zn were found to be low throughout the monitoring period. During two of the winter seasons, a concentration increase of Cr and Mo was observed, possibly due to the use of de-icing salt. The concentrations of the trace constituents did not exceed Norwegian acceptance criteria for ground water and surface water Class II. Copyright © 2012 Elsevier B.V. All rights reserved.
Tribouillois, Hélène; Dürr, Carolyne; Demilly, Didier; Wagner, Marie-Hélène; Justes, Eric
2016-01-01
A wide range of species can be sown as cover crops during fallow periods to provide various ecosystem services. Plant establishment is a key stage, especially when sowing occurs in summer with high soil temperatures and low water availability. The aim of this study was to determine the response of germination to temperature and water potential for diverse cover crop species. Based on these characteristics, we developed contrasting functional groups that group species with the same germination ability, which may be useful to adapt species choice to climatic sowing conditions. Germination of 36 different species from six botanical families was measured in the laboratory at eight temperatures ranging from 4.5–43°C and at four water potentials. Final germination percentages, germination rate, cardinal temperatures, base temperature and base water potential were calculated for each species. Optimal temperatures varied from 21.3–37.2°C, maximum temperatures at which the species could germinate varied from 27.7–43.0°C and base water potentials varied from -0.1 to -2.6 MPa. Most cover crops were adapted to summer sowing with a relatively high mean optimal temperature for germination, but some Fabaceae species were more sensitive to high temperatures. Species mainly from Poaceae and Brassicaceae were the most resistant to water deficit and germinated under a low base water potential. Species were classified, independent of family, according to their ability to germinate under a range of temperatures and according to their base water potential in order to group species by functional germination groups. These groups may help in choosing the most adapted cover crop species to sow based on climatic conditions in order to favor plant establishment and the services provided by cover crops during fallow periods. Our data can also be useful as germination parameters in crop models to simulate the emergence of cover crops under different pedoclimatic conditions and crop management practices. PMID:27532825
NASA Astrophysics Data System (ADS)
Ribeiro Piffer, P.; Reverberi Tambosi, L.; Uriarte, M.
2017-12-01
One of the most pressing challenges faced by modern societies is ensuring a sufficient supply of water considering the ever-growing conflict between environmental conservation and expansion of agricultural and urban frontiers worldwide. Land use cover change have marked effects on natural landscapes, putting key watershed ecosystem services in jeopardy. We investigated the consequences of land use cover change and precipitation regimes on water quality in the state of São Paulo, Brazil, a landscape that underwent major changes in past century. Water quality data collected bi-monthly between 2000 and 2014 from 229 water monitoring stations was analyzed together with 2011 land use cover maps. We focused on six water quality metrics (dissolved oxygen, total nitrogen, total phosphorus, turbidity, total dissolved solids and fecal coliforms) and used generalized linear mixed models to analyze the data. Models were built at two scales, the entire watershed and a 60 meters riparian buffer along the river network. Models accounted for 46-67% of the variance in water quality metrics and, apart from dissolved oxygen, which reflected land cover composition in riparian buffers, all metrics responded to land use at the watershed scale. Highly urbanized areas had low dissolved oxygen and high fecal coliforms, dissolved solids, phosphorus and nitrogen levels in streams. Pasture was associated with increases in turbidity, while sugarcane plantations significantly increased nitrogen concentrations. Watersheds with high forest cover had greater dissolved oxygen and lower turbidity. Silviculture plantations had little impact on water quality. Precipitation decreased dissolved oxygen and was associated with higher levels of turbidity, fecal coliforms and phosphorus. Results indicate that conversion of forest cover to other land uses had negative impacts on water quality in the study area, highlighting the need for landscape restoration to improve watersheds ecosystem services.
Environmental Predictors of Ice Seal Presence in the Bering Sea
Miksis-Olds, Jennifer L.
2014-01-01
Ice seals overwintering in the Bering Sea are challenged with foraging, finding mates, and maintaining breathing holes in a dark and ice covered environment. Due to the difficulty of studying these species in their natural environment, very little is known about how the seals navigate under ice. Here we identify specific environmental parameters, including components of the ambient background sound, that are predictive of ice seal presence in the Bering Sea. Multi-year mooring deployments provided synoptic time series of acoustic and oceanographic parameters from which environmental parameters predictive of species presence were identified through a series of mixed models. Ice cover and 10 kHz sound level were significant predictors of seal presence, with 40 kHz sound and prey presence (combined with ice cover) as potential predictors as well. Ice seal presence showed a strong positive correlation with ice cover and a negative association with 10 kHz environmental sound. On average, there was a 20–30 dB difference between sound levels during solid ice conditions compared to open water or melting conditions, providing a salient acoustic gradient between open water and solid ice conditions by which ice seals could orient. By constantly assessing the acoustic environment associated with the seasonal ice movement in the Bering Sea, it is possible that ice seals could utilize aspects of the soundscape to gauge their safe distance to open water or the ice edge by orienting in the direction of higher sound levels indicative of open water, especially in the frequency range above 1 kHz. In rapidly changing Arctic and sub-Arctic environments, the seasonal ice conditions and soundscapes are likely to change which may impact the ability of animals using ice presence and cues to successfully function during the winter breeding season. PMID:25229453
NASA Astrophysics Data System (ADS)
Brooks, P. D.; Harpold, A. A.; Biederman, J. A.; Litvak, M. E.; Broxton, P. D.; Gochis, D.; Molotch, N. P.; Troch, P. A.; Ewers, B. E.
2012-12-01
Unprecedented levels of insect induced tree mortality and massive wildfires both have spread through the forests of Western North America over the last decade. Warming temperatures and increased drought stress have been implicated as major factors in the increasing spatial extent and frequency of these forest disturbances, but it is unclear how simultaneous changes in forest structure and climate will interact to affect either downstream water resources or the regeneration and recovery of forested ecosystems. Because both streamflow and ecosystem productivity depend on seasonal snowmelt, a critical knowledge gap exists in how these disturbances will interact with a changing climate to control to the amount, timing, and the partitioning of seasonal snow cover This presentation will address this knowledge gap by synthesizing recent work on snowpack dynamics and ecosystem productivity from seasonally snow-covered forests along a gradient of snow depth and duration from Arizona to Montana. These include undisturbed sites, recently burned forests, and areas of extensive insect-induced forest mortality. Both before-after and control-impacted studies of forest disturbance on snow accumulation and ablation suggest that the spatial scale of snow distribution increases following disturbance, but net snow water input likely will not increase under a warming climate. While forest disturbance changes spatial scale of snowpack partitioning, the amount and especially the timing of snow cover accumulation and ablation are strongly related to interannual variability in ecosystem productivity with both earlier snowmelt and later snow accumulation associated with decreased carbon uptake. These observations suggest that the ecosystem services of water provision and carbon storage may be very different in the forests that regenerate after disturbance.
A national-scale analysis of the impacts of drought on water quality in UK rivers
NASA Astrophysics Data System (ADS)
Coxon, G.; Howden, N. J. K.; Freer, J. E.; Whitehead, P. G.; Bussi, G.
2015-12-01
Impacts of droughts on water quality qre difficult to quanitify but are essential to manage ecosystems and maintain public water supply. During drought, river water quality is significantly changed by increased residence times, reduced dilution and enhanced biogeochemical processes. But, the impact severity varies between catchments and depends on multiple factors including the sensitivity of the river to drought conditions, anthropogenic influences in the catchment and different delivery patterns of key nutrient, contaminant and mineral sources. A key constraint is data availability for key water quality parameters such that impacts of drought periods on certain determinands can be identified. We use national-scale water quality monitoring data to investigate the impacts of drought periods on water quality in the United Kingdom (UK). The UK Water Quality Sampling Harmonised Monitoring Scheme (HMS) dataset consists of >200 UK sites with weekly to monthly sampling of many water quality variables over the past 40 years. This covers several major UK droughts in 1975-1976, 1983-1984,1989-1992, 1995 and 2003, which cover severity, spatial and temporal extent, and how this affects the temporal impact of the drought on water quality. Several key water quality parameters, including water temperature, nitrate, dissolved organic carbon, orthophosphate, chlorophyll and pesticides, are selected from the database. These were chosen based on their availability for many of the sites, high sampling resolution and importance to the drinking water function and ecological status of the river. The water quality time series were then analysed to investigate whether water quality during droughts deviated significantly from non-drought periods and examined how the results varied spatially, for different drought periods and for different water quality parameters. Our results show that there is no simple conclusion as to the effects of drought on water quality in UK rivers; impacts are diverse both in terms of timing, magnitude and duration. We consider several scenarios in which management interventions may alleviate water quality pressures, and discuss how the many interacting factors need to be better characterised to support detailed mechanistic models to improve our process understanding.
Feng, S; Ng, C W W; Leung, A K; Liu, H W
2017-10-01
Microbial aerobic methane oxidation in unsaturated landfill cover involves coupled water, gas and heat reactive transfer. The coupled process is complex and its influence on methane oxidation efficiency is not clear, especially in steep covers where spatial variations of water, gas and heat are significant. In this study, two-dimensional finite element numerical simulations were carried out to evaluate the performance of unsaturated sloping cover. The numerical model was calibrated using a set of flume model test data, and was then subsequently used for parametric study. A new method that considers transient changes of methane concentration during the estimation of the methane oxidation efficiency was proposed and compared against existing methods. It was found that a steeper cover had a lower oxidation efficiency due to enhanced downslope water flow, during which desaturation of soil promoted gas transport and hence landfill gas emission. This effect was magnified as the cover angle and landfill gas generation rate at the bottom of the cover increased. Assuming the steady-state methane concentration in a cover would result in a non-conservative overestimation of oxidation efficiency, especially when a steep cover was subjected to rainfall infiltration. By considering the transient methane concentration, the newly-modified method can give a more accurate oxidation efficiency. Copyright © 2017. Published by Elsevier Ltd.
Auch, Roger F.; Sayler, K. L.; Napton, D.E.; Taylor, Janis L.; Brooks, M.S.
2011-01-01
Land-cover and land-use change usually results from a combination of anthropogenic drivers and biophysical conditions found across multiple scales, ranging from parcel to regional levels. A group of four Level 111 ecoregions located in the U.S. northern Great Plains is used to demonstrate the similarities and differences in land change during nearly a 30-year period (1973-2000) using results from the U.S. Geological Survey's Land Cover Trends project. There were changes to major suites of land-cover; the transitions between agriculture and grassland/shrubland and the transitions among wetland, water, agriculture, and grassland/ shrubland were affected by different factors. Anthropogenic drivers affected the land-use tension (or land-use competition) between agriculture and grassland/shrubland land-covers, whereas changes between wetland and water land-covers, and their relationship to agriculture and grassland/shrubland land-covers, were mostly affected by regional weather cycles. More land-use tension between agriculture and grassland/shrubland landcovers occurred in ecoregions with greater amounts of economically marginal cropland. Land-cover change associated with weather variability occurred in ecoregions that had large concentrations of wetlands and water impoundments, such as the Missouri River reservoirs. The Northwestern Glaciated Plains ecoregion had the highest overall estimated percentage of change because it had both land-use tension between agriculture and grassland/shrubland land-covers and wetland-water changes.
Climate-water quality relationships in Texas reservoirs
Gelca, Rodica; Hayhoe, Katharine; Scott-Fleming, Ian; Crow, Caleb; Dawson, D.; Patino, Reynaldo
2015-01-01
Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment, local human activities such as surface and ground water withdrawals, land use, and energy extraction, and variability and long-term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. We find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation over time scales ranging from one week to two years. Based on this analysis and published future projections for this region, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate, chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation.
Tudesque, Loïc; Tisseuil, Clément; Lek, Sovan
2014-01-01
The scale dependence of ecological phenomena remains a central issue in ecology. Particularly in aquatic ecology, the consideration of the accurate spatial scale in assessing the effects of landscape factors on stream condition is critical. In this context, our study aimed at assessing the relationships between multi-spatial scale land cover patterns and a variety of water quality and diatom metrics measured at the stream reach level. This investigation was conducted in a major European river system, the Adour-Garonne river basin, characterized by a wide range of ecological conditions. Redundancy analysis (RDA) and variance partitioning techniques were used to disentangle the different relationships between land cover, water-chemistry and diatom metrics. Our results revealed a top-down "cascade effect" indirectly linking diatom metrics to land cover patterns through water physico-chemistry, which occurred at the largest spatial scales. In general, the strength of the relationships between land cover, physico-chemistry, and diatoms was shown to increase with the spatial scale, from the local to the basin scale, emphasizing the importance of continuous processes of accumulation throughout the river gradient. Unexpectedly, we established that the influence of land cover on the diatom metric was of primary importance both at the basin and local scale, as a result of discontinuous but not necessarily antagonist processes. The most detailed spatial grain of the Corine land cover classification appeared as the most relevant spatial grain to relate land cover to water chemistry and diatoms. Our findings provide suitable information to improve the implementation of effective diatom-based monitoring programs, especially within the scope of the European Water Framework Directive. © 2013 Elsevier B.V. All rights reserved.
LANDSAT data for coastal zone management. [New Jersey
NASA Technical Reports Server (NTRS)
Mckenzie, S.
1981-01-01
The lack of adequate, current data on land and water surface conditions in New Jersey led to the search for better data collections and analysis techniques. Four-channel MSS data of Cape May County and access to the OSER computer interpretation system were provided by NASA. The spectral resolution of the data was tested and a surface cover map was produced by going through the steps of supervised classification. Topics covered include classification; change detection and improvement of spectral and spatial resolution; merging LANDSAT and map data; and potential applications for New Jersey.
CFCS and electric chillers: Selection of large-capacity water chillers in the 1990s. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niess, R.C.
1992-03-01
This handbook offers a single source of useful information for understanding CFC and HCFC phaseout issues and selecting large-capacity water chillers for cooling commercial buildings. It evaluates the performance of electric, absorption, and natural-gas-engine driven water chillers. An economic evaluation checklist and example are included, using the EPRI COMTECH screening tool. Peak shaving with gas chillers and load shifting with chilled water storage are examined. The handbook, written for a diverse audience, covers chiller hardware, function, performance, and typical installed costs. It provides guidelines and checklists for chiller selection, economic comparison, and operation and maintenance.
CFCS and electric chillers: Selection of large-capacity water chillers in the 1990s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niess, R.C.
1992-03-01
This handbook offers a single source of useful information for understanding CFC and HCFC phaseout issues and selecting large-capacity water chillers for cooling commercial buildings. It evaluates the performance of electric, absorption, and natural-gas-engine driven water chillers. An economic evaluation checklist and example are included, using the EPRI COMTECH screening tool. Peak shaving with gas chillers and load shifting with chilled water storage are examined. The handbook, written for a diverse audience, covers chiller hardware, function, performance, and typical installed costs. It provides guidelines and checklists for chiller selection, economic comparison, and operation and maintenance.
This EnviroAtlas dataset shows the percentages of stream and water body shoreline lengths within 30 meters of impervious cover by 12-digit Hydrologic Unit (HUC) subwatershed in the contiguous U.S. Impervious cover alters the hydrologic behavior of streams and water bodies, promoting increased storm water runoff and lower stream flow during periods in between rainfall events. Impervious cover also promotes increased pollutant loads in receiving waters and degraded streamside habitat. This dataset shows were impervious cover occurs close to streams and water bodies, where it is likely to have a greater adverse impact on receiving waters. This dataset was produced by the US EPA to support research and online mapping activities related to the EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
A Digital Hydrologic Network Supporting NAWQA MRB SPARROW Modeling--MRB_E2RF1WS
Brakebill, J.W.; Terziotti, S.E.
2011-01-01
A digital hydrologic network was developed to support SPAtially Referenced Regression on Watershed attributes (SPARROW) models within selected regions of the United States. These regions correspond with the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program Major River Basin (MRB) study units 2, 3, 4, 5, and 7 (Preston and others, 2009). MRB2, covers the South Atlantic-Gulf and Tennessee River basins. MRB3, covers the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins. MRB4, covers the Missouri River basins. MRB5, covers the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins. MRB7, covers the Pacific Northwest River basins. The digital hydrologic network described here represents surface-water pathways (MRB_E2RF1) and associated catchments (MRB_E2RF1WS). It serves as the fundamental framework to spatially reference and summarize explanatory information supporting nutrient SPARROW models (Brakebill and others, 2011; Wieczorek and LaMotte, 2011). The principal geospatial dataset used to support this regional effort was based on an enhanced version of a 1:500,000 scale digital stream-reach network (ERF1_2) (Nolan et al., 2002). Enhancements included associating over 3,500 water-quality monitoring sites to the reach network, improving physical locations of stream reaches at or near monitoring locations, and generating drainage catchments based on 100m elevation data. A unique number (MRB_ID) identifies each reach as a single unit. This unique number is also shared by the catchment area drained by the reach, thus spatially linking the hydrologically connected streams and the respective drainage area characteristics. In addition, other relevant physical, environmental, and monitoring information can be associated to the common network and accessed using the unique identification number.
A Digital Hydrologic Network Supporting NAWQA MRB SPARROW Modeling--MRB_E2RF1
Brakebill, J.W.; Terziotti, S.E.
2011-01-01
A digital hydrologic network was developed to support SPAtially Referenced Regression on Watershed attributes (SPARROW) models within selected regions of the United States. These regions correspond with the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program Major River Basin (MRB) study units 2, 3, 4, 5, and 7 (Preston and others, 2009). MRB2, covers the South Atlantic-Gulf and Tennessee River basins. MRB3, covers the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins. MRB4, covers the Missouri River basins. MRB5, covers the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins. MRB7, covers the Pacific Northwest River basins. The digital hydrologic network described here represents surface-water pathways (MRB_E2RF1) and associated catchments (MRB_E2RF1WS). It serves as the fundamental framework to spatially reference and summarize explanatory information supporting nutrient SPARROW models (Brakebill and others, 2011; Wieczorek and LaMotte, 2011). The principal geospatial dataset used to support this regional effort was based on an enhanced version of a 1:500,000 scale digital stream-reach network (ERF1_2) (Nolan et al., 2002). Enhancements included associating over 3,500 water-quality monitoring sites to the reach network, improving physical locations of stream reaches at or near monitoring locations, and generating drainage catchments based on 100m elevation data. A unique number (MRB_ID) identifies each reach as a single unit. This unique number is also shared by the catchment area drained by the reach, thus spatially linking the hydrologically connected streams and the respective drainage area characteristics. In addition, other relevant physical, environmental, and monitoring information can be associated to the common network and accessed using the unique identification number.
Tahir, Adnan Ahmad; Chevallier, Pierre; Arnaud, Yves; Ashraf, Muhammad; Bhatti, Muhammad Tousif
2015-02-01
A large proportion of Pakistan's irrigation water supply is taken from the Upper Indus River Basin (UIB) in the Himalaya-Karakoram-Hindukush range. More than half of the annual flow in the UIB is contributed by five of its snow and glacier-fed sub-basins including the Astore (Western Himalaya - south latitude of the UIB) and Hunza (Central Karakoram - north latitude of the UIB) River basins. Studying the snow cover, its spatio-temporal change and the hydrological response of these sub-basins is important so as to better manage water resources. This paper compares new data from the Astore River basin (mean catchment elevation, 4100 m above sea level; m asl afterwards), obtained using MODIS satellite snow cover images, with data from a previously-studied high-altitude basin, the Hunza (mean catchment elevation, 4650 m asl). The hydrological regime of this sub-catchment was analyzed using the hydrological and climate data available at different altitudes from the basin area. The results suggest that the UIB is a region undergoing a stable or slightly increasing trend of snow cover in the southern (Western Himalayas) and northern (Central Karakoram) parts. Discharge from the UIB is a combination of snow and glacier melt with rainfall-runoff at southern part, but snow and glacier melt are dominant at the northern part of the catchment. Similar snow cover trends (stable or slightly increasing) but different river flow trends (increasing in Astore and decreasing in Hunza) suggest a sub-catchment level study of the UIB to understand thoroughly its hydrological behavior for better flood forecasting and water resources management. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Litt, Maxime; Steiner, Jakob F.; Stigter, Emmy E.; Immerzeel, Walter; Shea, Joseph Michael
2017-04-01
Over debris-covered glaciers, water content variations in the debris layer can drive significant changes in its thermal conductivity and significantly impact melt rates. Since sublimation and evaporation are favoured in high-altitude conditions, e.g., low atmospheric pressure and high wind speeds, they are expected to strongly influence the water balance of the debris-layer. Dedicated latent heat fluxes measurements at the debris surface are essential to characterize the debris heat conductivity in order to assess underlying ice melt. Furthermore, the contribution of the turbulent fluxes in the surface energy balance over debris covered glacier remains uncertain since they are generally evaluated through similarity methods which might not be valid in complex terrain. We present the first results of a 15-day eddy-covariance experiment installed at the end of the monsoon (September-October) on a 3-m tower above the debris-covered Lirung glacier in Nepal. The tower also included measurements of the 4 radiation components. The eddy covariance measurements allowed for the characterization of the turbulence in the atmospheric surface layer, as well as the direct measurements of evaporation, sublimation and turbulent sensible heat fluxes. The experiment helps us to evaluate the contribution of turbulent fluxes to the surface energy balance over this debris-covered glacier, through a precise characterization of the overlying turbulent atmospheric surface layer. It also helps to study the role of the debris-layer water content changes through evaporation and sublimation and its feedback on heat conduction in this layer. The large observed turbulent fluxes play a significant role in the energy balance at the debris surface and significantly influence debris moisture, conductivity and subsequently underlying ice melt.
Tillage as a tool to manage crop residue: impact on sugar beet production.
NASA Astrophysics Data System (ADS)
Hiel, Marie-Pierre; Chélin, Marie; Degrune, Florine; Parvin, Nargish; Bodson, Bernard
2015-04-01
Crop residues and plant cover represent a pool of organic matter that can be used either to restore organic matter in soils, and therefore maintain soil fertility, or that can be valorized outside of the field (e.g. energy production). However, it is crucial that the exportation of residues is not done to the detriment of the system sustainability. Three long term experiments have been settled in the loamy region in Belgium. All of them are designed to study the effect of residues management by several tillage systems (conventional plowing versus reduced tillage) on the whole soil-water-plant system. SOLRESIDUS is a field experiment where we study the impact of crop residue management while in SOLCOUVERT and SOLCOUVERT-BIS, we study the impact of cover crop management. SOLRESIDUS was started in 2008. In this field, four contrasted crop residues managements are tested in order to contrast as much as possible the responses from the soil-water plant system. Two practices characterize the four modalities: soil tillage (ploughing at 25 cm depth or reduce tillage at 10 cm max) and residue management (exportation or restitution). SOLCOUVERT and SOLCOUVERT-BIS were started in 2012 and 2013 respectively. In those fields cover crop management is also diverse: destruction of the cover crop by winter ploughing, spring ploughing, strip tillage (with a chemical destruction if needed) or shallow tillage (with a decompaction before cover crop sowing). Although although the overall project aims at studying the impact of management on the whole soil-water-plant system, here we will only present the results concerning crop production (sugar beet) in SOLCOUVERT experiments. The presented data will include germination rate, crop development (biomass quantification and BBCH stages) weeds population, disease occurrence, pest occurrences, nitrogen uptake by plants, quality and quantity of harvested products.
Zhang, Lisheng; Zhang, Lingling; Shi, Dongtao; Wei, Jing; Chang, Yaqing
2017-01-01
Increases in ocean temperature due to climate change are predicted to change the behaviors of marine invertebrates. Altered behaviors of keystone ecosystem engineers such as echinoderms will have consequences for the fitness of individuals, which are expected to flow on to the local ecosystem. Relatively few studies have investigated the behavioral responses of echinoderms to long-term elevated temperature. We investigated the effects of exposure to long-term (∼31 weeks) elevated temperature (∼3 °C above the ambient water temperature) on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius. Long-term elevated temperature showed different effects on the three behaviors. It significantly decreased covering behavior, including both covering behavior reaction (time to first covering) and ability (number of covered sea urchins and number of shells used for covering). Conversely, exposure to long-term elevated temperature significantly increased sheltering behavior. Righting response in S. intermedius was not significantly different between temperature treatments. The results provide new information into behavioral responses of echinoderms to ocean warming. PMID:28348933
Jujnovsky, Julieta; González-Martínez, Teresa Margarita; Cantoral-Uriza, Enrique Arturo; Almeida-Leñero, Lucia
2012-03-01
Studies from the ecosystem services perspective can provide a useful framework because they allow us to fully examine the benefits that humans obtain from socio-ecological systems. Mexico City, the second largest city in the world, has faced severe problems related to water shortages, which have worsened due to increasing population. Demand for space has forced changes in land cover, including covering areas that are essential for groundwater recharge. The city has 880 km(2) of forest areas that are crucial for the water supply. The Magdalena River Watershed was chosen as a model because it is a well-preserved zone within Mexico City and it provides water for the population. The general aim of this study was to assess the ecosystem service of the water supply in the Magdalena River Watershed by determining its water balance (SWAT model) and the number of beneficiaries of the ecosystem services. The results showed that the watershed provides 18.4 hm(3) of water per year. Baseflow was dominant, with a contribution of 85%, while surface runoff only accounted for 15%. The zone provides drinking water to 78,476 inhabitants and could supply 153,203 potential beneficiaries. This work provides an example for understanding how ecosystem processes determine the provision of ecosystem services and benefits to the population in a rural-urban watershed in Mexico City.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-20
.... Existing operations included in the HCP as covered activities include the diversion of flow from Tumalo... (river km 265.5). TID's water rights consist of 201.75 cfs from Tumalo Creek and 9.5 cfs of natural flow... during the months of May, June and July but begin to decrease in late July. Flow diverted from Tumalo...
NASA Astrophysics Data System (ADS)
Camarotto, Carlo; Dal Ferro, Nicola; Piccoli, Ilaria; Polese, Riccardo; Furlan, Lorenzo; Chiarini, Francesca; Berti, Antonio; Morari, Francesco
2017-04-01
In the last decades the adoption of sustainable land management practices (e.g. conservation agriculture, use of cover crops) has been largely subsidized by the EU policy in an attempt to combine competitive agricultural production with environmental protection, e.g. reduce nitrogen losses and optimize water management. However, the real environmental benefits of these practices is still questioned since strongly dependent on local pedo-climatic variability. This study aimed to evaluate water and nitrogen balances in sustainable land management systems including conservation agriculture (CA) practices or use of cover crops (CC). The experimental fields, established in 2010, are localized in the low-lying plain of the Veneto Region (NE Italy), characterized by a shallow water table and identified as Nitrate Vulnerable Zone. In March 2016, a total of nine soil-water monitoring stations have been installed in CA, CC and conventional fields. The stations (three per each field) were set up with multi-sensors probes (10 cm, 30 cm and 60 cm depth) for the continuous monitoring of soil electrical conductivity (EC, dS m-1), soil temperature (T, °C) and volumetric water content (WC, m3 m-3). A wireless system in ISM band has been designed to connect the soil-water monitoring stations to a unique access point, where the data were sent to a cloud platform via GSM. Water samples at each station were collected every two weeks using a suction cups (installed at 60 cm depth) and a phreatic wells, which were also used to record the water table level. Climatic data, collected from a weather station located in the experimental field, were combined with soil-water data to estimate water and nitrogen fluxes in the root zone. During the first year, relevant differences in water and nitrogen dynamics were observed between the treatments. It can be hypothesized that the combined effect of undisturbed soil conditions and continuous soil cover were major factors to affect water distribution and N fluxes within the soil profile.
Esralew, Rachel A.; Andrews, William J.; Smith, S. Jerrod
2011-01-01
The U.S. Geological Survey, in cooperation with the city of Oklahoma City, collected water-quality samples from the North Canadian River at the streamflow-gaging station near Harrah, Oklahoma (Harrah station), since 1968, and at an upstream streamflow-gaging station at Britton Road at Oklahoma City, Oklahoma (Britton Road station), since 1988. Statistical summaries and frequencies of detection of water-quality constituent data from water samples, and summaries of water-quality constituent data from continuous water-quality monitors are described from the start of monitoring at those stations through 2009. Differences in concentrations between stations and time trends for selected constituents were evaluated to determine the effects of: (1) wastewater effluent discharges, (2) changes in land-cover, (3) changes in streamflow, (4) increases in urban development, and (5) other anthropogenic sources of contamination on water quality in the North Canadian River downstream from Oklahoma City. Land-cover changes between 1992 and 2001 in the basin between the Harrah station and Lake Overholser upstream included an increase in developed/barren land-cover and a decrease in pasture/hay land cover. There were no significant trends in median and greater streamflows at either streamflow-gaging station, but there were significant downward trends in lesser streamflows, especially after 1999, which may have been associated with decreases in precipitation between 1999 and 2009 or construction of low-water dams on the river upstream from Oklahoma City in 1999. Concentrations of dissolved chloride, lead, cadmium, and chlordane most frequently exceeded the Criterion Continuous Concentration (a water-quality standard for protection of aquatic life) in water-quality samples collected at both streamflow-gaging stations. Visual trends in annual frequencies of detection were investigated for selected pesticides with frequencies of detection greater than 10 percent in all water samples collected at both streamflow-gaging stations. Annual frequencies of detection of 2,4-dichlorophenoxyacetic acid and bromacil increased with time. Annual frequencies of detection of atrazine, chlorpyrifos, diazinon, dichlorprop, and lindane decreased with time. Dissolved nitrogen and phosphorus concentrations were significantly greater in water samples collected at the Harrah station than at the Britton Road station, whereas specific conductance was greater at the Britton Road station. Concentrations of dissolved oxygen, biochemical oxygen demand, and fecal coliform bacteria were not significantly different between stations. Daily minimum, mean, and maximum specific conductance collected from continuous water-quality monitors were significantly greater at the Britton Road station than in water samples collected at the Harrah station. Daily minimum, maximum, and diurnal fluctuations of water temperature collected from continuous water-quality monitors were significantly greater at the Harrah station than at the Britton Road station. The daily maximums and diurnal range of dissolved oxygen concentrations were significantly greater in water samples collected at the Britton Road station than at the Harrah station, but daily mean dissolved oxygen concentrations in water at those streamflow-gaging stations were not significantly different. Daily mean and diurnal water temperature ranges increased with time at the Britton Road and Harrah streamflow-gaging stations, whereas daily mean and diurnal specific conductance ranges decreased with time at both streamflow-gaging stations from 1988–2009. Daily minimum dissolved oxygen concentrations collected from continuous water-quality monitors more frequently indicated hypoxic conditions at the Harrah station than at the Britton Road station after 1999. Fecal coliform bacteria counts in water decreased slightly from 1988–2009 at the Britton Road station. The Seasonal Kendall's tau test indicated significant downward trends in
System-Wide Water Resources Program Nutrient Sub-Model (SWWRP-NSM) Version 1.1
2008-09-01
species including crops, native grasses, and trees . The process descriptions utilize a single plant growth model to simulate all types of land covers...characteristics: • Multi- species , multi-phase, and multi-reaction system • Fast (equilibrium-based) and slow (non-equilibrium-based or rate- based...Transformation and loading of N and P species in the overland flow • Simulation of the N and P cycle in the water column (both overland and
Late MIS3 to modern central Arctic Paleoceanography based on Ostracode Faunal Assemblages
NASA Astrophysics Data System (ADS)
Gemery, L.; Cronin, T. M.; Jakobsson, M.; Poirier, R. K.; Pearce, C.; Barrientos, N.
2016-12-01
Continuous, highly abundant and well preserved fossil ostracodes were studied in one to two centimeter intervals from AMS-dated cores collected on the Lomonosov Ridge that indicate varying oceanographic conditions during the last 40 ka. Ostracode assemblages from cores taken during the SWERUS 2014 Expedition, Leg 2, reflect paleoenvironmental changes during glacial, deglacial, and interglacial transitions including changes in sea-ice cover and inflow of Atlantic-derived water into the Eurasian Basin. Notably, SWERUS 2014 obtained ridge, slope and shelf cores in relatively poorly studied regions of the Arctic. The composition of benthic ostracode assemblages from a multicore and complimentary gravity core (32 MUC4; 85.14, 151.59, in 837mwd and 32 GC2, section 1, 85.15, 151.66 in 826mwd), were analyzed and compared to prior results from various central Arctic expeditions to the Mendeleev, Northwind and Lomonosov Ridges. Key taxa used as indicators of specific water masses include: Acetabulastoma arcticum and Pseudocythere caudata (perennial sea ice), Polycope spp. (productivity and sea ice), Krithe hunti (partially sea-ice free conditions, deep water formation), and Rabilimis mirabilis (Atlantic water influx). Results indicate seasonally sea-ice free conditions during MIS 3 and less LGM ice cover than in more central regions of the Arctic. Intermittent periods of perennial sea ice began to develop during the late Holocene.
Arias, Mauricio E; Cochrane, Thomas A; Piman, Thanapon; Kummu, Matti; Caruso, Brian S; Killeen, Timothy J
2012-12-15
The economic value of the Tonle Sap Lake Floodplain to Cambodia is arguably among the highest provided to a nation by a single ecosystem around the world. Nonetheless, the Mekong River Basin is changing rapidly due to accelerating water infrastructure development (hydropower, irrigation, flood control, and water supply) and climate change, bringing considerable modifications to the flood pulse of the Tonle Sap Lake in the foreseeable future. This paper presents research conducted to determine how the historical flooding regime, together with human action, influenced landscape patterns of habitats in the Tonle Sap Lake, and how these habitats might shift as a result of hydrological changes. Maps of water depth, annual flood duration, and flood frequency were created for recent historical hydrological conditions and for simulated future scenarios of water infrastructure development and climate change. Relationships were then established between the historical flood maps and land cover, and these were subsequently applied to assess potential changes to habitat cover in future decades. Five habitat groups were clearly distinguishable based on flood regime, physiognomic patterns, and human activity: (1) Open water, flooded for 12 months in an average hydrological year; (2) Gallery forest, with flood duration of 9 months annually; (3) Seasonally flooded habitats, flooded 5-8 months and dominated by shrublands and grasslands; (4) transitional habitats, flooded 1-5 months and dominated by abandoned agricultural fields, receding rice/floating rice, and lowland grasslands; and (5) Rainfed habitats, flooded up to 1 month and consisting mainly of wet season rice fields and village crops. It was found that water infrastructure development could increase the area of open water (+18 to +21%) and the area of rainfed habitats (+10 to +14%), while reducing the area covered with seasonally flooded habitats (-13 to -22%) and gallery forest (-75 to -83%). Habitat cover shifts as a result of climate change include a net increase of open water (2-21%), as well as a reduction of rainfed habitats by 2-5% and seasonally flooded habitats by 5-11%. Findings from this study will help guide on-going and future conservation and restoration efforts throughout this unique and critical ecosystem. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects of livestock watering sites on alien and native plants in the Mojave Desert, USA
Brooks, M.L.; Matchett, J.R.; Berry, K.H.
2006-01-01
Increased livestock densities near artificial watering sites create disturbance gradients called piospheres. We studied responses of alien and native annual plants and native perennial plants within 9 piospheres in the Mojave Desert of North America. Absolute and proportional cover of alien annual plants increased with proximity to watering sites, whereas cover and species richness of native annual plants decreased. Not all alien species responded the same, as the alien forb Erodium cicutarium and the alien grass Schismus spp. increased with proximity to watering sites, and the alien annual grass Bromus madritensis ssp. rubens decreased. Perennial plant cover and species richness also declined with proximity to watering sites, as did the structural diversity of perennial plant cover classes. Significant effects were focused within 200 m of the watering sites, suggesting that control efforts for alien annual plants and restoration efforts for native plants should optimally be focused within this central part of the piosphere gradient.
Design, Development and Testing of Web Services for Multi-Sensor Snow Cover Mapping
NASA Astrophysics Data System (ADS)
Kadlec, Jiri
This dissertation presents the design, development and validation of new data integration methods for mapping the extent of snow cover based on open access ground station measurements, remote sensing images, volunteer observer snow reports, and cross country ski track recordings from location-enabled mobile devices. The first step of the data integration procedure includes data discovery, data retrieval, and data quality control of snow observations at ground stations. The WaterML R package developed in this work enables hydrologists to retrieve and analyze data from multiple organizations that are listed in the Consortium of Universities for the Advancement of Hydrologic Sciences Inc (CUAHSI) Water Data Center catalog directly within the R statistical software environment. Using the WaterML R package is demonstrated by running an energy balance snowpack model in R with data inputs from CUAHSI, and by automating uploads of real time sensor observations to CUAHSI HydroServer. The second step of the procedure requires efficient access to multi-temporal remote sensing snow images. The Snow Inspector web application developed in this research enables the users to retrieve a time series of fractional snow cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) for any point on Earth. The time series retrieval method is based on automated data extraction from tile images provided by a Web Map Tile Service (WMTS). The average required time for retrieving 100 days of data using this technique is 5.4 seconds, which is significantly faster than other methods that require the download of large satellite image files. The presented data extraction technique and space-time visualization user interface can be used as a model for working with other multi-temporal hydrologic or climate data WMTS services. The third, final step of the data integration procedure is generating continuous daily snow cover maps. A custom inverse distance weighting method has been developed to combine volunteer snow reports, cross-country ski track reports and station measurements to fill cloud gaps in the MODIS snow cover product. The method is demonstrated by producing a continuous daily time step snow presence probability map dataset for the Czech Republic region. The ability of the presented methodology to reconstruct MODIS snow cover under cloud is validated by simulating cloud cover datasets and comparing estimated snow cover to actual MODIS snow cover. The percent correctly classified indicator showed accuracy between 80 and 90% using this method. Using crowdsourcing data (volunteer snow reports and ski tracks) improves the map accuracy by 0.7--1.2%. The output snow probability map data sets are published online using web applications and web services. Keywords: crowdsourcing, image analysis, interpolation, MODIS, R statistical software, snow cover, snowpack probability, Tethys platform, time series, WaterML, web services, winter sports.
Martin, Sherry L; Hayes, Daniel B; Kendall, Anthony D; Hyndman, David W
2017-02-01
Numerous studies have linked land use/land cover (LULC) to aquatic ecosystem responses, however only a few have included the dynamics of changing LULC in their analysis. In this study, we explicitly recognize changing LULC by linking mechanistic groundwater flow and travel time models to a historical time series of LULC, creating a land-use legacy map. We then illustrate the utility of legacy maps to explore relationships between dynamic LULC and lake water chemistry. We tested two main concepts about mechanisms linking LULC and lake water chemistry: groundwater pathways are an important mechanism driving legacy effects; and, LULC over multiple spatial scales is more closely related to lake chemistry than LULC over a single spatial scale. We applied statistical models to twelve water chemistry variables, ranging from nutrients to relatively conservative ions, to better understand the roles of biogeochemical reactivity and solubility on connections between LULC and aquatic ecosystem response. Our study illustrates how different areas can have long groundwater pathways that represent different LULC than what can be seen on the landscape today. These groundwater pathways delay the arrival of nutrients and other water quality constituents, thus creating a legacy of historic land uses that eventually reaches surface water. We find that: 1) several water chemistry variables are best fit by legacy LULC while others have a stronger link to current LULC, and 2) single spatial scales of LULC analysis performed worse for most variables. Our novel combination of temporal and spatial scales was the best overall model fit for most variables, including SRP where this model explained 54% of the variation. We show that it is important to explicitly account for temporal and spatial context when linking LULC to ecosystem response. Copyright © 2016. Published by Elsevier B.V.
Yang, Wen-yan; Zhou, Zhong-xue
2014-12-01
With the urban eco-environment increasingly deteriorating, the ecosystem services provided by modern urban agriculture are exceedingly significant to maintain and build more suitable environment in a city. Taking Xi' an metropolitan as the study area, based on remote sensing data, DEM data and the economic and social statistics data, the water and soil conservation service of the agricultural ecosystems was valued employing the remote sensing and geographic information system method, covering the reduction values on land waste, soil fertility loss and sediment loss from 2000 to 2011, and analyzed its changes in time and space. The results showed that during the study period, the total value of water and soil conservation service provided by agricultural systems in Xi' an metropolitan was increased by 46,086 and 33.008 billion yuan respectively from period of 2000 to 2005 and from 2005 to 2011. The cultivated land (including grains, vegetables and other farming land), forest (including orchard) and grassland provided higher value on the water and soil conservation service than waters and other land use. Ecosystem service value of water and soil conserva- tion provided by agriculture was gradually decreasing from the southern to the northern in Xi' an metropolitan. There were significantly positive relationship between the ecosystem service value and the vegetation coverage. Forest, orchard and grassland distributed intensively in the southern which had higher vegetation coverage than in northern where covered by more cultivated land, sparse forest and scattered orchard. There were significantly negative correlation between the urbanization level and the value of water and soil conservation. The higher level of urbanization, the lower value there was from built-up area to suburban and to countryside within Xi' an metropolitan.
Louisse, Jochem; Dingemans, Milou M L; Baken, Kirsten A; van Wezel, Annemarie P; Schriks, Merijn
2018-06-14
The present study explores the ToxCast/Tox21 database to select candidate bioassays as bioanalytical tools for measuring groups of chemicals in water. To this aim, the ToxCast/Tox21 database was explored for bioassays that detect polycyclic aromatic hydrocarbons (PAHs), aromatic amines (AAs), (chloro)phenols ((C)Ps) and halogenated aliphatic hydrocarbons (HAliHs), which are included in the European and/or Dutch Drinking Water Directives. Based on the analysis of the availability and performance of bioassays included in the database, we concluded that several bioassays are suitable as bioanalytical tools for assessing the presence of PAHs and (C)Ps in drinking water sources. No bioassays were identified for AAs and HAliHs, due to the limited activity of these chemicals and/or the limited amount of data on these chemicals in the database. A series of bioassays was selected that measure molecular or cellular effects that are covered by bioassays currently in use for chemical water quality monitoring. Interestingly, also bioassays were selected that represent molecular or cellular effects that are not covered by bioassays currently applied. The usefulness of these newly identified bioassays as bioanalytical tools should be further evaluated in follow-up studies. Altogether, this study shows how exploration of the ToxCast/Tox21 database provides a series of candidate bioassays as bioanalytical tools for measuring groups of chemicals in water. This assessment can be performed for any group of chemicals of interest (if represented in the database), and may provide candidate bioassays that can be used to complement the currently applied bioassays for chemical water quality assessment. Copyright © 2018. Published by Elsevier Ltd.
33 CFR 55.3 - Who is covered by this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Who is covered by this subpart? 55.3 Section 55.3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PERSONNEL CHILD DEVELOPMENT SERVICES General § 55.3 Who is covered by this subpart? This subpart applies to...
33 CFR 55.3 - Who is covered by this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Who is covered by this subpart? 55.3 Section 55.3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PERSONNEL CHILD DEVELOPMENT SERVICES General § 55.3 Who is covered by this subpart? This subpart applies to...
33 CFR 55.3 - Who is covered by this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Who is covered by this subpart? 55.3 Section 55.3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PERSONNEL CHILD DEVELOPMENT SERVICES General § 55.3 Who is covered by this subpart? This subpart applies to...
33 CFR 55.3 - Who is covered by this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Who is covered by this subpart? 55.3 Section 55.3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PERSONNEL CHILD DEVELOPMENT SERVICES General § 55.3 Who is covered by this subpart? This subpart applies to...
33 CFR 55.3 - Who is covered by this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Who is covered by this subpart? 55.3 Section 55.3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PERSONNEL CHILD DEVELOPMENT SERVICES General § 55.3 Who is covered by this subpart? This subpart applies to...
NASA Astrophysics Data System (ADS)
Kitamura, Mitsuaki; Nakagawa, Yoshizumi; Nishino, Yasuto; Segawa, Susumu; Shiomoto, Akihiro
2018-03-01
Replacement of the warm water of the Soya Warm Current (SWC) and the cold water of the East Sakhalin Current (ESC) occurs seasonally along the coast of the southwestern Okhotsk Sea, and sea ice covers the surface during winter. Pseudocalanus newmani is one of the dominant copepods in coastal waters of the northern hemisphere. To better understand the population dynamics of the copepod P. newmani in coastal areas of the southwestern Okhotsk Sea, this study compared the seasonal variation in P. newmani abundance in Lagoon Notoro-ko and a coastal area of the Okhotsk Sea with regard to developmental stage. We sampled P. newmani in the lagoon, including during the ice cover season, and the coastal waters. Pseudocalanus newmani was abundant at both sites in spring. During summer-fall, adults disappeared from the populations at both sites, whereas the early developmental stages were abundant and dominated the population. Total length of adult females decreased toward summer at both sites. Pseudocalanus newmani abundance in the lagoon increased in early winter, and larger females were found in the populations at both sites. These phenomena at both sites corresponded with seasonal variation in water temperature caused by seasonal water-mass replacement and sea ice.
Effects of spatial resolution and landscape structure on land cover characterization
NASA Astrophysics Data System (ADS)
Yang, Wenli
This dissertation addressed problems in scaling, problems that are among the main challenges in remote sensing. The principal objective of the research was to investigate the effects of changing spatial scale on the representation of land cover. A second objective was to determine the relationship between such effects, characteristics of landscape structure and scaling procedures. Four research issues related to spatial scaling were examined. They included: (1) the upscaling of Normalized Difference Vegetation Index (NDVI); (2) the effects of spatial scale on indices of landscape structure; (3) the representation of land cover databases at different spatial scales; and (4) the relationships between landscape indices and land cover area estimations. The overall bias resulting from non-linearity of NDVI in relation to spatial resolution is generally insignificant as compared to other factors such as influences of aerosols and water vapor. The bias is, however, related to land surface characteristics. Significant errors may be introduced in heterogeneous areas where different land cover types exhibit strong spectral contrast. Spatially upscaled SPOT and TM NDVIs have information content comparable with the AVHRR-derived NDVI. Indices of landscape structure and spatial resolution are generally related, but the exact forms of the relationships are subject to changes in other factors including the basic patch unit constituting a landscape and the proportional area of foreground land cover under consideration. The extent of agreement between spatially aggregated coarse resolution land cover datasets and full resolution datasets changes with the properties of the original datasets, including the pixel size and class definition. There are close relationships between landscape structure and class areas estimated from spatially aggregated land cover databases. The relationships, however, do not permit extension from one area to another. Inversion calibration across different geographic/ecological areas is, therefore, not feasible. Different rules govern the land cover area changes across resolutions when different upscaling methods are used. Special attention should be given to comparison between land cover maps derived using different methods.
NASA Astrophysics Data System (ADS)
Cornwell, E.; Molotch, N. P.; McPhee, J.
2016-01-01
Seasonal snow cover is the primary water source for human use and ecosystems along the extratropical Andes Cordillera. Despite its importance, relatively little research has been devoted to understanding the properties, distribution and variability of this natural resource. This research provides high-resolution (500 m), daily distributed estimates of end-of-winter and spring snow water equivalent over a 152 000 km2 domain that includes the mountainous reaches of central Chile and Argentina. Remotely sensed fractional snow-covered area and other relevant forcings are combined with extrapolated data from meteorological stations and a simplified physically based energy balance model in order to obtain melt-season melt fluxes that are then aggregated to estimate the end-of-winter (or peak) snow water equivalent (SWE). Peak SWE estimates show an overall coefficient of determination R2 of 0.68 and RMSE of 274 mm compared to observations at 12 automatic snow water equivalent sensors distributed across the model domain, with R2 values between 0.32 and 0.88. Regional estimates of peak SWE accumulation show differential patterns strongly modulated by elevation, latitude and position relative to the continental divide. The spatial distribution of peak SWE shows that the 4000-5000 m a.s.l. elevation band is significant for snow accumulation, despite having a smaller surface area than the 3000-4000 m a.s.l. band. On average, maximum snow accumulation is observed in early September in the western Andes, and in early October on the eastern side of the continental divide. The results presented here have the potential of informing applications such as seasonal forecast model assessment and improvement, regional climate model validation, as well as evaluation of observational networks and water resource infrastructure development.
ERIC Educational Resources Information Center
Tufts, Craig
Many wildlife enthusiasts are aware of the need for planting certain flowers, shrubs, and trees to attract animals. Some arrange their yards to provide for food, water, cover, and areas for animals to bear and raise their young. These include city dwellers who create mini-refuges in tiny urban plots and suburbanites who design elaborate…
Code of Federal Regulations, 2014 CFR
2014-07-01
..., with the exception of Volume V, which is published biennially, covering the waters of the United States... River, South Carolina. (3) Volume III, Atlantic and Gulf Coasts, from Little River, South Carolina, to Econfina River, Florida, including Puerto Rico and the U.S. Virgin Islands. (4) Volume IV, Gulf of Mexico...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., with the exception of Volume V, which is published biennially, covering the waters of the United States... River, South Carolina. (3) Volume III, Atlantic and Gulf Coasts, from Little River, South Carolina, to Econfina River, Florida, including Puerto Rico and the U.S. Virgin Islands. (4) Volume IV, Gulf of Mexico...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., with the exception of Volume V, which is published biennially, covering the waters of the United States... River, South Carolina. (3) Volume III, Atlantic and Gulf Coasts, from Little River, South Carolina, to Econfina River, Florida, including Puerto Rico and the U.S. Virgin Islands. (4) Volume IV, Gulf of Mexico...
Electrolysis Performance Improvement and Validation Experiment
NASA Technical Reports Server (NTRS)
Schubert, Franz H.
1992-01-01
Viewgraphs on electrolysis performance improvement and validation experiment are presented. Topics covered include: water electrolysis: an ever increasing need/role for space missions; static feed electrolysis (SFE) technology: a concept developed for space applications; experiment objectives: why test in microgravity environment; and experiment description: approach, hardware description, test sequence and schedule.
Environment Online: The Greening of Databases. Part 2. Scientific and Technical Databases.
ERIC Educational Resources Information Center
Alston, Patricia Gayle
1991-01-01
This second in a series of articles about online sources of environmental information describes scientific and technical databases that are useful for searching environmental data. Topics covered include chemicals and hazardous substances; agriculture; pesticides; water; forestry, oil, and energy resources; air; environmental and occupational…
Reforesting the Earth. Worldwatch Paper 83.
ERIC Educational Resources Information Center
Postel, Sandra; Heise, Lori
This document deals with efforts aimed at reforesting large areas of degraded lands. It includes sections on: (1) tree cover trends; (2) fuelwood challenges of the future; (3) the need to supply industrial wood; (4) stabilizing soil and water resources; (5) forests and climate change; and (6) mobilization for reforestation. (TW)
Effects of Pollution on Freshwater Fish.
ERIC Educational Resources Information Center
Brungs, W. A.; And Others
1978-01-01
Presents a literature review of the effects of pollution on freshwater fish, covering publications of 1976-77. This review includes: (1) water quality; (2) pesticide pollutants; (3) chemical pollutants; (4) miscellaneous pollutants; and (5) physical factors of pollution on freshwater fish. A list of 338 references is also presented. (HM)
Forests of the Northern United States
Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield
2012-01-01
Bounded by Maine, Maryland, Missouri, and Minnesota, the 20 Northern States have a larger population and a higher proportion of forest cover than other comparably sized U.S. regions. Forest-associated issues across the North include insect and disease pests, invasive species, forest management capacity, management standards, biodiversity, forest fragmentation, water...
Aquatics. NAGWS Guide. July 1979-July 1981. Tips and Techniques for Teachers and Coaches.
ERIC Educational Resources Information Center
Polvino, Geri, Ed.; And Others
Articles covering a wide spectrum of aquatic sports are presented as aids to teachers and coaches of swimming. Included are suggestions for teaching swimming to the handicapped and infants, specific techniques for developing swimming skills, and tips for boating education and water safety. (JD)
State of the Environment: An Assessment at Mid-Decade.
ERIC Educational Resources Information Center
Conservation Foundation, Washington, DC.
This report is divided into two parts. The three chapters in part 1 describe environmental conditions and trends. Chapter 1 deals with underlying trends, primarily population growth and economic factors. Chapter 2 covers environmental contaminants, including toxic substances, hazardous waste, air and water pollutants, and overall waste production.…
Valuing water resources in Switzerland using a hedonic price model
NASA Astrophysics Data System (ADS)
van Dijk, Diana; Siber, Rosi; Brouwer, Roy; Logar, Ivana; Sanadgol, Dorsa
2016-05-01
In this paper, linear and spatial hedonic price models are applied to the housing market in Switzerland, covering all 26 cantons in the country over the period 2005-2010. Besides structural house, neighborhood and socioeconomic characteristics, we include a wide variety of new environmental characteristics related to water to examine their role in explaining variation in sales prices. These include water abundance, different types of water bodies, the recreational function of water, and water disamenity. Significant spatial autocorrelation is found in the estimated models, as well as nonlinear effects for distances to the nearest lake and large river. Significant effects are furthermore found for water abundance and the distance to large rivers, but not to small rivers. Although in both linear and spatial models water related variables explain less than 1% of the price variation, the distance to the nearest bathing site has a larger marginal contribution than many neighborhood-related distance variables. The housing market shows to differentiate between different water related resources in terms of relative contribution to house prices, which could help the housing development industry make more geographically targeted planning activities.
Mapping Wetlands of Dongting Lake in China Using Landsat and SENTINEL-1 Time Series at 30M
NASA Astrophysics Data System (ADS)
Xing, L.; Tang, X.; Wang, H.; Fan, W.; Gao, X.
2018-04-01
Mapping and monitoring wetlands of Dongting lake using optical sensor data has been limited by cloud cover, and open access Sentinal-1 C-band data could provide cloud-free SAR images with both have high spatial and temporal resolution, which offer new opportunities for monitoring wetlands. In this study, we combined optical data and SAR data to map wetland of Dongting Lake reserves in 2016. Firstly, we generated two monthly composited Landsat land surface reflectance, NDVI, NDWI, TC-Wetness time series and Sentinel-1 (backscattering coefficient for VH and VV) time series. Secondly, we derived surface water body with two monthly frequencies based on the threshold method using the Sentinel-1 time series. Then the permanent water and seasonal water were separated by the submergence ratio. Other land cover types were identified based on SVM classifier using Landsat time series. Results showed that (1) the overall accuracies and kappa coefficients were above 86.6 % and 0.8. (3) Natural wetlands including permanent water body (14.8 %), seasonal water body (34.6 %), and permanent marshes (10.9 %) were the main land cover types, accounting for 60.3 % of the three wetland reserves. Human-made wetlands, such as rice fields, accounted 34.3 % of the total area. Generally, this study proposed a new flowchart for wetlands mapping in Dongting lake by combining multi-source remote sensing data, and the use of the two-monthly composited optical time series effectively made up the missing data due to the clouds and increased the possibility of precise wetlands classification.
NASA Astrophysics Data System (ADS)
Evans, Martin; Allott, Tim; Worrall, Fred; Rowson, James; Maskill, Rachael
2014-05-01
Water table is arguably the dominant control on biogeochemical cycling in peatland systems. Local water tables are controlled by peat surface water balance and lateral transfer of water driven by slope can be a significant component of this balance. In particular, blanket peatlands typically have relatively high surface slope compared to other peatland types so that there is the potential for water table to be significantly contolled by topographic context. UK blanket peatlands are also significantly eroded so that there is the potential for additional topographic drainage of the peatland surface. This paper presents a topographically driven model of blanket peat water table. An initial model presented in Allott et al. (2009) has been refined and tested against further water table data collected across the Bleaklow and Kinderscout plateaux of the English Peak District. The water table model quantifies the impact of peat erosion on water table throughout this dramatically dissected landscape demonstrating that almost 50% of the landscape has suffered significant water table drawdown. The model calibrates the impact of slope and degree of dissection on local water tables but does not incorporate any effects of surface cover on water table conditions. Consequently significant outliers in the test data are potentially indicative of important impacts of surface cover on water table conditions. In the test data presented here sites associated with regular moorland burning are significant outliers. The data currently available do not allow us to draw conclusions around the impact of land cover but they indicate an important potential application of the validated model in controlling for topographic position in further testing of the impact of land cover on peatland water tables. Allott, T.E.H. & Evans, M.G., Lindsay, J.B., Agnew, C.T., Freer, J.E., Jones, A. & Parnell, M. Water tables in Peak District blanket peatlands. Moors for the Future Report No. 17. Moors for the Future Partnership, Edale, 47pp.
NASA Astrophysics Data System (ADS)
Abou Chakra, Charbel; Somma, Janine; Elali, Taha; Drapeau, Laurent
2017-04-01
Climate change and its negative impact on water resource is well described. For countries like Lebanon, undergoing major population's rise and already decreasing precipitations issues, effective water resources management is crucial. Their continuous and systematic monitoring overs long period of time is therefore an important activity to investigate drought risk scenarios for the Lebanese territory. Snow cover on Lebanese mountains is the most important water resources reserve. Consequently, systematic observation of snow cover dynamic plays a major role in order to support hydrologic research with accurate data on snow cover volumes over the melting season. For the last 20 years few studies have been conducted for Lebanese snow cover. They were focusing on estimating the snow cover surface using remote sensing and terrestrial measurement without obtaining accurate maps for the sampled locations. Indeed, estimations of both snow cover area and volumes are difficult due to snow accumulation very high variability and Lebanese mountains chains slopes topographic heterogeneity. Therefore, the snow cover relief measurement in its three-dimensional aspect and its Digital Elevation Model computation is essential to estimate snow cover volume. Despite the need to cover the all lebanese territory, we favored experimental terrestrial topographic site approaches due to high resolution satellite imagery cost, its limited accessibility and its acquisition restrictions. It is also most challenging to modelise snow cover at national scale. We therefore, selected a representative witness sinkhole located at Ouyoun el Siman to undertake systematic and continuous observations based on topographic approach using a total station. After four years of continuous observations, we acknowledged the relation between snow melt rate, date of total melting and neighboring springs discharges. Consequently, we are able to forecast, early in the season, dates of total snowmelt and springs low water flows which are essentially feeded by snowmelt water. Simulations were ran, predicting the snow level between two sampled dates, they provided promising result for national scale extrapolation.
NASA Astrophysics Data System (ADS)
Boike, J.; Georgi, C.; Kirilin, G.; Muster, S.; Abramova, K.; Fedorova, I.; Chetverova, A.; Grigoriev, M.; Bornemann, N.; Langer, M.
2015-10-01
Thermokarst lakes are typical features of the northern permafrost ecosystems, and play an important role in the thermal exchange between atmosphere and subsurface. The objective of this study is to describe the main thermal processes of the lakes and to quantify the heat exchange with the underlying sediments. The thermal regimes of five lakes located within the continuous permafrost zone of northern Siberia (Lena River Delta) were investigated using hourly water temperature and water level records covering a 3-year period (2009-2012), together with bathymetric survey data. The lakes included thermokarst lakes located on Holocene river terraces that may be connected to Lena River water during spring flooding, and a thermokarst lake located on deposits of the Pleistocene Ice Complex. Lakes were covered by ice up to 2 m thick that persisted for more than 7 months of the year, from October until about mid-June. Lake-bottom temperatures increased at the start of the ice-covered period due to upward-directed heat flux from the underlying thawed sediment. Prior to ice break-up, solar radiation effectively warmed the water beneath the ice cover and induced convective mixing. Ice break-up started at the beginning of June and lasted until the middle or end of June. Mixing occurred within the entire water column from the start of ice break-up and continued during the ice-free periods, as confirmed by the Wedderburn numbers, a quantitative measure of the balance between wind mixing and stratification that is important for describing the biogeochemical cycles of lakes. The lake thermal regime was modeled numerically using the FLake model. The model demonstrated good agreement with observations with regard to the mean lake temperature, with a good reproduction of the summer stratification during the ice-free period, but poor agreement during the ice-covered period. Modeled sensitivity to lake depth demonstrated that lakes in this climatic zone with mean depths > 5 m develop continuous stratification in summer for at least 1 month. The modeled vertical heat flux across the bottom sediment tends towards an annual mean of zero, with maximum downward fluxes of about 5 W m-2 in summer and with heat released back into the water column at a rate of less than 1 W m-2 during the ice-covered period. The lakes are shown to be efficient heat absorbers and effectively distribute the heat through mixing. Monthly bottom water temperatures during the ice-free period range up to 15 °C and are therefore higher than the associated monthly air or ground temperatures in the surrounding frozen permafrost landscape. The investigated lakes remain unfrozen at depth, with mean annual lake-bottom temperatures of between 2.7 and 4 °C.
[Reducing nutrients loss by plastic film covering chemical fertilizers].
Chen, Huo-jun; Wei, Ze-bin; Wu, Qi-tang; Zeng, Shu-cai
2010-03-01
With the low utilization rate of fertilizers by crop and the growing amount of fertilizer usage,the agricultural non-point source pollution in China is becoming more and more serious. The field experiments planting corns were conducted, in which the applied chemical fertilizers were recovered with plastic film to realize the separation of fertilizers from rain water. In the experiments, the influences of different fertilizing treatments on the growing and production of sweet corn were observed. The fertilizer utilization rate and the nutrient contents in surface run-off water with and without the film covering were also determined. Results showed that, with only 70% of the normal amount of fertilizers,the sweet corn could already get high yield under the experimental soil conditions. Soil analysis after corn crops showed that the amounts of available N, P and K in the soil increased obviously with the film-covering, and the decreasing order was: 100% fertilizers with film-covering > 70% fertilizers with film-covering > 100% fertilizers, 70% fertilizers > no fertilizer. The average utilization coefficients of fertilizers by the crop were 42%-87%, 0%-3%, 5%-15% respectively for N, P and K. It was higher with film-covering than that without covering, especially for the high fertilization treatment. Analysis of water samples collected for eight run-off events showed that, without film-covering, N, P and K average concentrations in the runoff waters with fertilizations were 27.72, 2.70 and 7.07 mg x L(-1), respectively. And they were reduced respectively by 39.54%, 28.05%, 43.74% with the film-covering. This can give significant benefits to the decrease of agricultural non-point source pollution and water eutrophication.
NASA Astrophysics Data System (ADS)
Pardo-Iguzquiza, Eulogio; Juan Collados Lara, Antonio; Pulido-Velazquez, David
2016-04-01
The snow availability in Alpine catchments is essential for the economy of these areas. It plays an important role in tourist development but also in the management of the Water Resources Snow is an important water resource in many river basins with mountains in the catchment area. The determination of the snow water equivalent requires the estimation of the evolution of the snow pack (cover area, thickness and snow density) along the time. Although there are complex physical models of the dynamics of the snow pack, sometimes the data available are scarce and a stochastic model like the cellular automata (CA) can be of great practical interest. CA can be used to model the dynamics of growth and wane of the snow pack. The CA is calibrated with historical data. This requires the determination of transition rules that are capable of modeling the evolution of the spatial pattern of snow cover area. Furthermore, CA requires the definition of states and neighborhoods. We have included topographical variables and climatological variables in order to define the state of each pixel. The evolution of snow cover in a pixel depends on its state, the state of the neighboring pixels and the transition rules. The calibration of the CA is done using daily MODIS data, available for the period 24/02/2002 to present with a spatial resolution of 500 m, and the LANDSAT information available with a sixteen-day periodicity from 1984 to the present and with spatial resolution of 30 m. The methodology has been applied to estimation of the snow cover area of Sierra Nevada mountain range in the Southern of Spain to obtain snow cover area daily information with 500 m spatial resolution for the period 1980-2014. Acknowledgments: This research has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds. We would also like to thank NASA DAAC and LANDSAT project for the data provided for this study.
Iñiguez-Armijos, Carlos; Leiva, Adrián; Frede, Hans-Georg; Hampel, Henrietta; Breuer, Lutz
2014-01-01
Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.
Iñiguez–Armijos, Carlos; Leiva, Adrián; Frede, Hans–Georg; Hampel, Henrietta; Breuer, Lutz
2014-01-01
Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments. PMID:25147941
Risk assessment of waste-water disinfection. Report for October 1979-January 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubly, D.; Chappell, W.; Lanning, J.
A risk-assessment data base is presented for several waste-water disinfection alternatives, including chlorination, ozonation, chlorination/dechlorination, and ultraviolet radiation. The data base covers hazards and consequences related to onsite use and transportation of the disinfectants and ultimate disposal of disinfected effluents. A major segment of the data base deals with the effects of chlorination products in aquatic ecosystems. Energy consumption and cost analyses are also presented for chlorination and ozonation. Example risk calculations are presented for two hypothetical waste-water treatment plants. The usefulness of the data base for risk assessment is also discussed.
A study of volatile contaminants in recovered water
NASA Technical Reports Server (NTRS)
Mckee, H. C.; Marek, R., Jr.
1972-01-01
The recovery and reuse of water during long term space flight is discussed. Particular attention was given to obtaining basic information on the volatile impurities in urine samples and in water recovered from urine by distillation. Data also cover laboratory distillation tests to determine the nature and extent of volatile constituents in the distillate and an evaluation of possible problems in distillation due to iodine used for control of microbial contamination. Efforts made to develop design criteria for distillation equipment to minimize the problems of volatile contaminants various methods which might be used for purification subsequent to recovery are included.
NASA Astrophysics Data System (ADS)
Skiles, M.
2016-12-01
Groups of tiny ice pieces fall from the sky in the cold times and cover the high places. Later, the tiny ice pieces become water that moves to the lower places, where people can use it for drinking and stuff. The time when the tiny ice pieces turn to water is controlled by the sun. New tiny ice pieces from the sky, which are very white and don't take up much sun, group up and grow tall. When they become dark from getting old and large, and from getting covered in tiny dark bits from the sky, they take up more sun and turn to water. The more tiny dark bits, the faster they become water. Using a flying thing over the high places we can see how much water will come from the cover of tiny ice pieces by using ground looking things to see how tall it is, and and when it will become water by using picture taking things to see how much sun is taken up. The low places are happy to know how much water is in the high places.
Water yield issues in the jarrah forest of south-western Australia
NASA Astrophysics Data System (ADS)
Ruprecht, J. K.; Stoneman, G. L.
1993-10-01
The jarrah forest of south-western Australia produces little streamflow from moderate rainfall. Water yield from water supply catchments for Perth, Western Australia, are low, averaging 71 mm (7% of annual rainfall). The low water yields are attributed to the large soil water storage available for continuous use by the forest vegetation. A number of water yield studies in south-western Australia have examined the impact on water yield of land use practices including clearing for agricultural development, forest harvesting and regeneration, forest thinning and bauxite mining. A permanent reduction in forest cover by clearing for agriculture led to permanent increases of water yield of approximately 28% of annual rainfall in a high rainfall catchment. Thinning of a high rainfall catchment led to an increase in water yield of 20% of annual rainfall. However, it is not clear for how long the increased water yield will persist. Forest harvesting and regeneration have led to water yield increases of 16% of annual rainfall. The subsequent recovery of vegetation cover has led to water yields returning to pre-disturbance levels after an estimated 12-15 years. Bauxite mining of a high rainfall catchment led to a water yield increase of 8% of annual rainfall, followed by a return to pre-disturbance water yield after 12 years. The magnitude of specific streamflow generation mechanisms in small catchments subject to forest disturbance vary considerably, typically in a number of distinct stages. The presence of a permanent groundwater discharge area was shown to be instrumental in determining the magnitude of the streamflow response after forest disturbance. The long-term prognosis for water yield from areas subject to forest thinning, harvesting and regeneration, and bauxite mining are uncertain, owing to the complex interrelationship between vegetation cover, tree height and age, and catchment evapotranspiration. Management of the forest for water yield needs to acknowledge this complexity and evaluate forest management strategies both at the large catchment scale and at long time-scales. The extensive network of small catchment experiments, regional studies, process studies and catchment modelling at both the small and large scale, which are carried out in the jarrah forest, are all considered as integral components of the research to develop these management strategies to optimise water yield from the jarrah forest, without forfeiting other forest values.
Effects of Non-Indigenous Oysters on Microbial Diversity and Ecosystem Functioning
Green, Dannielle S.; Boots, Bas; Crowe, Tasman P.
2012-01-01
Invasive ecosystem engineers can physically and chemically alter the receiving environment, thereby affecting biodiversity and ecosystem functioning. The Pacific oyster, Crassostrea gigas, invasive throughout much of the world, can establish dense populations monopolising shorelines and possibly altering ecosystem processes including decomposition and nutrient cycling. The effects of increasing cover of invasive C. gigas on ecosystem processes and associated microbial assemblages in mud-flats were tested experimentally in the field. Pore-water nutrients (NH4 + and total oxidised nitrogen), sediment chlorophyll content, microbial activity, total carbon and nitrogen, and community respiration (CO2 and CH4) were measured to assess changes in ecosystem functioning. Assemblages of bacteria and functionally important microbes, including methanogens, methylotrophs and ammonia-oxidisers were assessed in the oxic and anoxic layers of sediment using terminal restriction length polymorphism of the bacterial 16S rRNA, mxaF, amoA and archaeal mcrA genes respectively. At higher covers (40 and 80%) of oysters there was significantly greater microbial activity, increased chlorophyll content, CO2 (13 fold greater) and CH4 (6 fold greater) emission from the sediment compared to mud-flats without C. gigas. At 10% cover, C. gigas increased the concentration of total oxidised nitrogen and altered the assemblage structure of ammonia-oxidisers and methanogens. Concentrations of pore-water NH4 + were increased by C. gigas regardless of cover. Invasive species can alter ecosystem functioning not only directly, but also indirectly, by affecting microbial communities vital for the maintenance of ecosystem processes, but the nature and magnitude of these effects can be non-linear, depending on invader abundance. PMID:23144762
NASA Astrophysics Data System (ADS)
Lee, Kyeong-sang; Choi, Sungwon; Seo, Minji; Lee, Chang suk; Seong, Noh-hun; Han, Kyung-Soo
2016-10-01
Snow cover is biggest single component of cryosphere. The Snow is covering the ground in the Northern Hemisphere approximately 50% in winter season and is one of climate factors that affects Earth's energy budget because it has higher reflectance than other land types. Also, snow cover has an important role about hydrological modeling and water resource management. For this reason, accurate detection of snow cover acts as an essential element for regional water resource management. Snow cover detection using satellite-based data have some advantages such as obtaining wide spatial range data and time-series observations periodically. In the case of snow cover detection using satellite data, the discrimination of snow and cloud is very important. Typically, Misclassified cloud and snow pixel can lead directly to error factor for retrieval of satellite-based surface products. However, classification of snow and cloud is difficult because cloud and snow have similar optical characteristics and are composed of water or ice. But cloud and snow has different reflectance in 1.5 1.7 μm wavelength because cloud has lower grain size and moisture content than snow. So, cloud and snow shows difference reflectance patterns change according to wavelength. Therefore, in this study, we perform algorithm for classifying snow cover and cloud with satellite-based data using Dynamic Time Warping (DTW) method which is one of commonly used pattern analysis such as speech and fingerprint recognitions and reflectance spectral library of snow and cloud. Reflectance spectral library is constructed in advance using MOD21km (MODIS Level1 swath 1km) data that their reflectance is six channels including 3 (0.466μm), 4 (0.554μm), 1 (0.647μm), 2 (0.857μm), 26 (1.382μm) and 6 (1.629μm). We validate our result using MODIS RGB image and MOD10 L2 swath (MODIS swath snow cover product). And we use PA (Producer's Accuracy), UA (User's Accuracy) and CI (Comparison Index) as validation criteria. The result of our study detect as snow cover in the several regions which are did not detected as snow in MOD10 L2 and detected as snow cover in MODIS RGB image. The result of our study can improve accuracy of other surface product such as land surface reflectance and land surface emissivity. Also it can use input data of hydrological modeling.
Natural radioactivity in groundwater--a review.
Dinh Chau, Nguyen; Dulinski, Marek; Jodlowski, Pawel; Nowak, Jakub; Rozanski, Kazimierz; Sleziak, Monika; Wachniew, Przemyslaw
2011-12-01
The issue of natural radioactivity in groundwater is reviewed, with emphasis on those radioisotopes which contribute in a significant way to the overall effective dose received by members of the public due to the intake of drinking water originating from groundwater systems. The term 'natural radioactivity' is used in this context to cover all radioactivity present in the environment, including man-made (anthropogenic) radioactivity. Comprehensive discussion of radiological aspects of the presence of natural radionuclides in groundwater, including an overview of current regulations dealing with radioactivity in drinking water, is provided. The presented data indicate that thorough assessments of the committed doses resulting from the presence of natural radioactivity in groundwater are needed, particularly when such water is envisaged for regular intake by infants. They should be based on a precise determination of radioactivity concentration levels of the whole suite of radionuclides, including characterisation of their temporal variability. Equally important is a realistic assessment of water intake values for specific age groups. Only such an evaluation may provide the basis for possible remedial actions.
Excessive afforestation and soil drying on China's Loess Plateau
NASA Astrophysics Data System (ADS)
Zhang, Shulei; Yang, Dawen
2017-04-01
Afforestation and deforestation are human disturbances to vegetation, which have profound impacts on regional eco-hydrological processes, the water and carbon cycles, and consequently, ecosystem sustainability. Since 1999, large scale revegetation has been carried out across China's Loess Plateau following the "Grain-to-Green Program" implemented by the Chinese government. This revegetation, particularly with forest, has caused negative eco-hydrological consequences, including streamflow decline and soil drying. Here, we have used "ecosystem optimality theory" and satellite observations, to assess the water balance under the climate-defined optimal and actual vegetation cover during 1982-2010 and its responses to future climate change (2011-2050) over the Loess Plateau. Results show that the current vegetation cover (0.48 on average) has already exceeded the climate-defined optimal cover (0.43 on average) in the most recent decade, especially in the middle-to-east Loess Plateau, indicating that it is the widespread over-planting, which is primarily responsible for soil drying in the area. In addition, both the optimal vegetation cover and soil moisture tend to decrease under future climate scenarios. Our findings suggest that further revegetation on the Loess Plateau should be applied with caution. To maintain a sustainable eco-hydrological environment in the region, a revegetation threshold should be urgently set, to limit future planting.
Snow cover distribution over elevation zones in a mountainous catchment
NASA Astrophysics Data System (ADS)
Panagoulia, D.; Panagopoulos, Y.
2009-04-01
A good understanding of the elevetional distribution of snow cover is necessary to predict the timing and volume of runoff. In a complex mountainous terrain the snow cover distribution within a watershed is highly variable in time and space and is dependent on elevation, slope, aspect, vegetation type, surface roughness, radiation load, and energy exchange at the snow-air interface. Decreases in snowpack due to climate change could disrupt the downstream urban and agricultural water supplies, while increases could lead to seasonal flooding. Solar and longwave radiation are dominant energy inputs driving the ablation process. Turbulent energy exchange at the snow cover surface is important during the snow season. The evaporation of blowing and drifting snow is strongly dependent upon wind speed. Much of the spatial heterogeneity of snow cover is the result of snow redistribution by wind. Elevation is important in determining temperature and precipitation gradients along hillslopes, while the temperature gradients determine where precipitation falls as rain and snow and contribute to variable melt rates within the hillslope. Under these premises, the snow accumulation and ablation (SAA) model of the US National Weather Service (US NWS) was applied to implement the snow cover extent over elevation zones of a mountainous catchment (the Mesochora catchment in Western-Central Greece), taking also into account the indirectly included processes of sublimation, interception, and snow redistribution. The catchment hydrology is controlled by snowfall and snowmelt and the simulated discharge was computed from the soil moisture accounting (SMA) model of the US NWS and compared to the measured discharge. The elevationally distributed snow cover extent presented different patterns with different time of maximization, extinction and return during the year, producing different timing of discharge that is a crucial factor for the control and management of water resources systems.
NASA Astrophysics Data System (ADS)
Rahaman, S. A.; Aruchamy, S.; Balasubramani, K.; Jegankumar, R.
2017-05-01
Nowadays land use/ land cover in mountain landscape is in critical condition; it leads to high risky and uncertain environments. These areas are facing multiple stresses including degradation of land resources; vagaries of climate and depletion of water resources continuously affect land use practices and livelihoods. To understand the Land use/Land cover (Lu/Lc) changes in a semi-arid mountain landscape, Kallar watershed of Bhavani basin, in southern India has been chosen. Most of the hilly part in the study area covers with forest, plantation, orchards and vegetables and which are highly affected by severe soil erosion, landslide, frequent rainfall failures and associated drought. The foothill regions are mainly utilized for agriculture practices; due to water scarcity and meagre income, the productive agriculture lands are converted into settlement plots and wasteland. Hence, land use/land cover change deduction; a stochastic processed based method is indispensable for future prediction. For identification of land use/land cover, and vegetation changes, Landsat TM, ETM (1995, 2005) and IRS P6- LISS IV (2015) images were used. Through CAMarkov chain analysis, Lu/Lc changes in past three decades (1995, 2005, and 2015) were identified and projected for (2020 and 2025); Normalized Difference Vegetation Index (NDVI) were used to find the vegetation changes. The result shows that, maximum changes occur in the plantation and slight changes found in forest cover in the hilly terrain. In foothill areas, agriculture lands were decreased while wastelands and settlement plots were increased. The outcome of the results helps to farmer and policy makers to draw optimal lands use planning and better management strategies for sustainable development of natural resources.
Future Challenges for the Arab World: The Implications of Demographic and Economic Trends
2011-01-01
the reduction in U.S. consumption of fossil fuels. • In its role as a board member of both the World Bank and the International Mone - tary Fund, the...rents and utilities , thus offsetting the costs of bearing more children. The incentive structure created by these policies explain, in part, the...in sustainable water utilization on a region-wide basis. Key policy measures include setting prices so as to cover full costs of the water and to
Fluvial processes in Ma'adim Vallis and the potential of Gusev crater as a high priority site
NASA Technical Reports Server (NTRS)
Cabrol, Nathalie; Landheim, Ragnild; Greeley, Ronald; Farmer, Jack
1994-01-01
According to exobiology site selection criteria for Mars, the search for potential extinct/extant water dependent life should focus on sites were water flowed and ponded. The Ma'adim Vallis/Gusev crater system is of high priority for exobiology research, because it appears to have involved long term flooding, different periods and rates of sedimentation, and probable episodic ponding. The topics covered include the following: evidence of nonuniform fluvial processes and early overflooding of the plateau and ponding.
1984-04-01
species composition, hydroperiod, soils, and degree of salinity . Wetland communities and their dominant vegetation in Florida, as defined by the...Environmental Effects Laboratory of WES (1978), include: 9 a. Saltwater aquatic--Permanently flooded by saline or brack- ish water. Dominated by attached...Thalassis testudinum) is a typical species. b. Saltwater coastal flat--25 percent or less vegetative cover. Occasionally or regularly flooded by saline water
[Innovative ET cover system and its hydrologic evaluation].
Liu, Chuan-shun; Cai, Jun-xiong; Wang, Jing-zhai; Rong, Yu
2010-07-01
The evapotranspiration (ET) cover system,as an alternative cover system of landfill, has been used in many remediation projects since 2003. It is an inexpensive, practical,and easily maintained biological system, but is mainly favorable in arid and semiarid sites due to limited water-holding capacity of the single loam layer and limited transpiration of grass. To improve the effectiveness of percolation control, an innovative scheme of ET was suggested in this paper: (1) a clay liner was added under the single loam layer to increase the water-holding capacity; (2) combined vegetation consisting of shrub and grass was used to replace the grass cover. Hydrologic evaluation of conventional cover,ET cover and the innovative ET cover under the same condition was performed using the computer program HELP, which showed the performance of the innovative ET cover is obviously superior to that of ET cover and conventional cover.
NASA Astrophysics Data System (ADS)
Burke, Sophia; Mulligan, Mark
2017-04-01
WaterWorld is a widely used spatial hydrological policy support system. The last user census indicates regular use by 1029 institutions across 141 countries. A key feature of WaterWorld since 2001 is that it comes pre-loaded with all of the required data for simulation anywhere in the world at a 1km or 1 ha resolution. This means that it can be easily used, without specialist technical ability, to examine baseline hydrology and the impacts of scenarios for change or management interventions to support policy formulation, hence its labelling as a policy support system. WaterWorld is parameterised by an extensive global gridded database of more than 600 variables, developed from many sources, since 1998, the so-called simTerra database. All of these data are available globally at 1km resolution and some variables (terrain, land cover, urban areas, water bodies) are available globally at 1ha resolution. If users have access to better data than is pre-loaded, they can upload their own data. WaterWorld is generally applied at the national or basin scale at 1km resolution, or locally (for areas of <10,000km2) at 1ha resolution, though continental (1km resolution) and global (10km resolution) applications are possible so it is a model with local to global applications. WaterWorld requires some 140 maps to run including monthly climate data, land cover and use, terrain, population, water bodies and more. Whilst publically-available terrain and land cover data are now well developed for local scale application, climate and land use data remain a challenge, with most global products being available at 1km or 10km resolution or worse, which is rather coarse for local application. As part of the EartH2Observe project we have used WFDEI (WATCH Forcing Data methodology applied to ERA-Interim data) at 1km resolution to provide an alternative input to WaterWorld's preloaded climate data. Here we examine the impacts of that on key hydrological outputs: water balance, water quality and outline the remaining challenges of using datasets like these for local scale application.
NASA Technical Reports Server (NTRS)
Jackson, M. J.; Baker, J. R.; Townshend, J. R. G.; Gayler, J. E.; Hardy, J. R.
1984-01-01
In assessing the accuracy of classification techniques for Thematic Mapper data the consistency of the detector-to-detector response is critical. Preliminary studies were undertaken, therefore, to assess the significance of this factor for the TM. The overall structure of the band relationships can be examined by principal component analysis. In order to examine the utility of the Thematic Mapper data more carefully, six different land cover classes approximately Anderson level 1 were selected. These included an area of water from the sediment-laden Mississippi, woodland, agricultural land and urban land. A plume class was also selected which includes the plume of smoke emanating from the power station and drifting over the Mississippi river.
Effects of distance from cattle water developments on grassland birds
Fontaine, A.L.; Kennedy, P.L.; Johnson, D.H.
2004-01-01
Many North American grassland bird populations appear to be declining, which may be due to changes in grazing regimes on their breeding areas. Establishment of water developments and confining cattle (Bos taurus L.) to small pastures often minimizes spatial heterogeneity of cattle forage consumption, which may lead to uniformity in vegetative structure. This increased uniformity may provide suitable habitat for some bird species but not others. We assessed how cattle use, vegetative structure, and bird population densities varied with increasing distance from water developments (0DS800 m) on the Little Missouri National Grassland (LMNG) in North Dakota. Lark buntings (Calamospiza melancorys Stejneger), which are typically associated with low vegetative cover, decreased with increasing distance from water developments. Horned larks (Eremophila alpestris L.), also a low-cover associate, followed a similar but weaker trend. Densities of another low-cover associate as well as moderate- and high-cover associates were not related to distance from water. Vegetative height-density and litter depth increased by 50 and 112%, respectively, while cowpie cover and structural variability decreased by 51 and 24%, respectively, with distance from water. Confidence interval overlap was common among all measures, showing substantial variability among study sites. Our results indicate cattle use is higher closer to water developments, and this pattern may positively affect the densities of lark buntings and horned larks. The absence of density gradients in the other bird species may be due to the paucity of locations > 800 m from water on the LMNG.
Effects of distance from cattle water developments on grassland birds
Fontaine, A.L.; Kennedy, P.L.; Johnson, D.H.
2004-01-01
Many North American grassland bird populations appear to be declining, which may be due to changes in grazing regimes on their breeding areas. Establishment of water developments and confining cattle (Bos taurus L.) to small pastures often minimizes spatial heterogeneity of cattle forage consumption, which may lead to uniformity in vegetative structure. This increased uniformity may provide suitable habitat for some bird species but not others. We assessed how cattle use, vegetative structure, and bird population densities varied with increasing distance from water developments (0-800 m) on the Little Missouri National Grassland (LMNG) in North Dakota. Lark buntings (Calamospiza melancorys Stejneger), which are typically associated with low vegetative cover, decreased with increasing distance from water developments. Horned larks (Eremophila alpestris L.), also a low-cover associate, followed a similar but weaker trend. Densities of another low-cover associate as well as moderate- and high-cover associates were not related to distance from water. Vegetative height-density and litter depth increased by 50 and 112%, respectively, while cowpie cover and structural variability decreased by 51 and 24%, respectively, with distance from water. Confidence interval overlap was common among all measures, showing substantial variability among study sites. Our results indicate cattle use is higher closer to water developments, and this pattern may positively affect the densities of lark buntings and horned larks. The absence of density gradients in the other bird species may be due to the paucity of locations > 800 m from water on the LMNG.
Dengue fever in the San Juan Bay Estuary: Evaluating the ...
Dengue is transmitted by Aedes aegypti, a species that thrives in cities. Here we ask which elements within the urban environment could be managed to reduce the potential for Dengue occurrence. In particular, we study the potential of wetlands in the SJBE to buffer from vector proliferation. Wetlands provide ecosystem services such as heat and water hazard mitigation, water purification and habitat for a diversity of species, all of which are factors that have been shown to affect Dengue vectors. As such, we hypothesize that within coastal neighborhoods in the SJBE wetlands, ecosystem services lead to lower Dengue occurrence. We test this hypothesis using Dengue data from 2010-2013, which includes the largest epidemic in PR history. Our analytical model includes relevant socio-economic factors and environmental controls that may also affect Dengue dynamics. Results indicated a negative effect of neighborhood mangrove cover and a positive effect of percent flood area on Dengue prevalence. Moreover, heat hazards were positively correlated with dengue prevalence and negatively correlated with neighborhood mangrove cover. Dengue prevalence did not correlate with herbaceous wetlands, or with the ecosystem services of water quality or vertebrate species richness. Mosquito borne diseases are an increasingly important health concern, which pose great challenges for safe and sustainable control and eradication. This reality calls for management approaches that consider m
Annual global tree cover estimated by fusing optical and SAR satellite observations
NASA Astrophysics Data System (ADS)
Feng, M.; Sexton, J. O.; Channan, S.; Townshend, J. R.
2017-12-01
Tree cover defined structurally as the proportional, vertically projected area of vegetation (including leaves, stems, branches, etc.) of woody plants above a given height affects terrestrial energy and water exchanges, photosynthesis and transpiration, net primary production, and carbon and nutrient fluxes. Tree cover provides a measurable attribute upon which forest cover may be defined. Changes in tree cover over time can be used to monitor and retrieve site-specific histories of forest disturbance, succession, and degradation. Measurements of Earth's tree cover have been produced at regional, national, and global extents. However, most representations are static, and those for which multiple time periods have been produced are neither intended nor adequate for consistent, long-term monitoring. Moreover, although a substantial proportion of change has been shown to occur at resolutions below 250 m, existing long-term, Landsat-resolution datasets are either produced as static layers or with annual, five- or ten-year temporal resolution. We have developed an algorithms to retrieve seamless and consistent, sub-hectare resolution estimates of tree-canopy from optical and radar satellite data sources (e.g., Landsat, Sentinel-2, and ALOS-PALSAR). Our approach to estimation enables assimilation of multiple data sources and produces estimates of both cover and its uncertainty at the scale of pixels. It has generated the world's first Landsat-based percent tree cover dataset in 2013. Our previous algorithms are being adapted to produce prototype percent-tree and water-cover layers globally in 2000, 2005, and 2010—as well as annually over North and South America from 2010 to 2015—from passive-optical (Landsat and Sentinel-2) and SAR measurements. Generating a global, annual dataset is beyond the scope of this support; however, North and South America represent all of the world's major biomes and so offer the complete global range of environmental sources of error and uncertainty.
Markon, Carl J.
1988-01-01
Digital land cover and terrain data for the Upper Kuskokwim Resource Hanagement Area (UKRMA) were produced by the U.S. Geological Survey, Earth Resources Observation Systems Field Office, Anchorage, Alaska for the Bureau of Land Management. These and other environmental data, were incorporated into a digital data base to assist in the management and planning of the UKRMA. The digital data base includes land cover classifications, elevation, slope, and aspect data centering on the UKRMA boundaries. The data are stored on computer compatible tapes at a 50-m pixel size. Additional digital data in the data base include: (a) summer and winter Landsat multispectral scanner (MSS) data registered to a 50-m Universal Transverse Mercator grid; (b) elevation, slope, aspect, and solar illumination data; (c) soils and surficial geology; and (e) study area boundary. The classification of Landsat MSS data resulted in seven major classes and 24 subclasses. Major classes include: forest, shrubland, dwarf scrub, herbaceous, barren, water, and other. The final data base will be used by resource personnel for management and planning within the UKRMA.
Effects of climate and water balance across grasslands of varying C3 and C4 grass cover
Witwicki, Dana L.; Munson, Seth M.; Thoma, David P.
2016-01-01
Climate change in grassland ecosystems may lead to divergent shifts in the abundance and distribution of C3 and C4 grasses. Many studies relate mean climate conditions over relatively long time periods to plant cover, but there is still much uncertainty about how the balance of C3and C4 species will be affected by climate at a finer temporal scale than season (individual events to months). We monitored cover at five grassland sites with co-dominant C3 and C4 grass species or only dominant C3 grass species for 6 yr in national parks across the Colorado Plateau region to assess the influence of specific months of climate and water balance on changes in grass cover. C4 grass cover increased and decreased to a larger degree than C3 grass cover with extremely dry and wet consecutive years, but this response varied by ecological site. Climate and water balance explained 10–49% of the inter-annual variability of cover of C3 and C4 grasses at all sites. High precipitation in the spring and in previous year monsoon storms influenced changes in cover of C4 grasses, with measures of water balance in the same months explaining additional variability. C3 grasses in grasslands where they were dominant were influenced primarily by longer periods of climate, while C3 grasses in grasslands where they were co-dominant with C4 grasses were influenced little by climate anomalies at either short or long periods of time. Our results suggest that future changes in spring and summer climate and water balance are likely to affect cover of both C3 and C4 grasses, but cover of C4 grasses may be affected more strongly, and the degree of change will depend on soils and topography where they are growing and the timing of the growing season.
NASA Astrophysics Data System (ADS)
Saah, D.; Tenneson, K.; Hanh, Q. N.; Aekakkararungroj, A.; Aung, K. S.; Goldstein, J.; Cutter, P. G.; Maus, P.; Markert, K. N.; Anderson, E.; Ellenburg, W. L.; Ate, P.; Flores Cordova, A. I.; Vadrevu, K.; Potapov, P.; Phongsapan, K.; Chishtie, F.; Clinton, N.; Ganz, D.
2017-12-01
Earth observation and Geographic Information System (GIS) tools, products, and services are vital to support the environmental decision making by governmental institutions, non-governmental agencies, and the general public. At the heart of environmental decision making is the monitoring land cover and land use change (LCLUC) for land resource planning and for ecosystem services, including biodiversity conservation and resilience to climate change. A major challenge for monitoring LCLUC in developing regions, such as Southeast Asia, is inconsistent data products at inconsistent intervals that have different typologies across the region and are typically made in without stakeholder engagement or input. Here we present the Regional Land Cover Monitoring System (RLCMS), a novel land cover mapping effort for Southeast Asia, implemented by SERVIR-Mekong, a joint NASA-USAID initiative that brings Earth observations to improve environmental decision making in developing countries. The RLCMS focuses on mapping biophysical variables (e.g. canopy cover, tree height, or percent surface water) at an annual interval and in turn using those biophysical variables to develop land cover maps based on stakeholder definitions of land cover classes. This allows for flexible and consistent land cover classifications that can meet the needs of different institutions across the region. Another component of the RLCMS production is the stake-holder engagement through co-development. Institutions that directly benefit from this system have helped drive the development for regional needs leading to services for their specific uses. Examples of services for regional stakeholders include using the RLCMS to develop maps using the IPCC classification scheme for GHG emission reporting and developing custom annual maps as an input to hydrologic modeling/flood forecasting systems. In addition to the implementation of this system and the service stemming from the RLCMS in Southeast Asia, it is planned to replicate the methods presented at the SERVIR-Hindu Kush Himalaya hub serving South Asia. Enhancements to the system will include change detection methods, enhanced biophysical models, and delivery systems.
Beyond Impervious: Urban Land-Cover Pattern Variation and Implications for Watershed Management
NASA Astrophysics Data System (ADS)
Beck, Scott M.; McHale, Melissa R.; Hess, George R.
2016-07-01
Impervious surfaces degrade urban water quality, but their over-coverage has not explained the persistent water quality variation observed among catchments with similar rates of imperviousness. Land-cover patterns likely explain much of this variation, although little is known about how they vary among watersheds. Our goal was to analyze a series of urban catchments within a range of impervious cover to evaluate how land-cover varies among them. We then highlight examples from the literature to explore the potential effects of land-cover pattern variability for urban watershed management. High-resolution (1 m2) land-cover data were used to quantify 23 land-cover pattern and stormwater infrastructure metrics within 32 catchments across the Triangle Region of North Carolina. These metrics were used to analyze variability in land-cover patterns among the study catchments. We used hierarchical clustering to organize the catchments into four groups, each with a distinct landscape pattern. Among these groups, the connectivity of combined land-cover patches accounted for 40 %, and the size and shape of lawns and buildings accounted for 20 %, of the overall variation in land-cover patterns among catchments. Storm water infrastructure metrics accounted for 8 % of the remaining variation. Our analysis demonstrates that land-cover patterns do vary among urban catchments, and that trees and grass (lawns) are divergent cover types in urban systems. The complex interactions among land-covers have several direct implications for the ongoing management of urban watersheds.
Johnson, J. H.; Ross, R.M.; Dropkin, D.S.; Redell, L.A.
2011-01-01
Although considerable information exists on habitat use by stream salmonids, only a small portion has quantitatively examined diurnal and nocturnal habitat variation. We examined diel variation in habitat use by age-0 and age-1+ brook trout (Salvelinus fontinalis) during summer and autumn in a headwater stream in northern Pennsylvania. Habitat variables measured included cover, depth, substrate, and velocity. The most pronounced diel variation occurred in the use of cover during both seasons. Both age-0 brook trout and age-1+ trout were associated with less cover at night. Age-0 brook trout occupied swifter water during the day than at night during both seasons, but the difference was not significant. Increased cover, depth, and substrate size governed the habitat of age-1+ brook trout. Our findings support the need for a better understanding of diel differences in habitat use of stream salmonids when considering habitat enhancement and protection.
EnviroAtlas -Phoenix, AZ- One Meter Resolution Urban Land Cover Data (2010) Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The EnviroAtlas Phoenix, AZ land cover data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near-infrared) aerial photography taken from June through September, 2010 at 1 m spatial resolution. Seven land cover classes were mapped: water, impervious surfaces, soil and barren land, trees and forest, shrubland, grass and herbaceous non-woody vegetation, and agriculture. An accuracy assessment using a completely random sampling of 598 land cover reference points yielded an overall accuracy of 69.2%. The area mapped includes the entirety of the Central Arizona-Phoenix Long-Term Ecological Research (CAP-LTER) area, which was classified by the Environmental Remote Sensing and Geoinformatics Lab (ERSG) at Arizona State University. The land cover dataset also includes an area of approximately 625 square kilometers which is located north of Phoenix. This section was classified by the EPA land cover classification team. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data
EnviroAtlas - Phoenix, AZ - One Meter Resolution Urban Land Cover Data (2010)
The EnviroAtlas Phoenix, AZ land cover (LC) data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near-infrared) aerial photography taken from June through September, 2010 at 1 m spatial resolution. Seven land cover classes were mapped: water, impervious surfaces, soil and barren land, trees and forest, shrubs, grass and herbaceous non-woody vegetation, and agriculture. An accuracy assessment using a completely random sampling of 598 land cover reference points yielded an overall accuracy of 69.2%. The area mapped includes the entirety of the Central Arizona-Phoenix Long-Term Ecological Research (CAP-LTER) area, which was classified by the Environmental Remote Sensing and Geoinformatics Lab (ERSG) at Arizona State University. The land cover dataset also includes an area of approximately 625 square kilometers which is located north of Phoenix. This section was classified by the EPA land cover classification team. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each at
Coastal regime shifts: rapid responses of coastal wetlands to changes in mangrove cover.
Guo, Hongyu; Weaver, Carolyn; Charles, Sean P; Whitt, Ashley; Dastidar, Sayantani; D'Odorico, Paolo; Fuentes, Jose D; Kominoski, John S; Armitage, Anna R; Pennings, Steven C
2017-03-01
Global changes are causing broad-scale shifts in vegetation communities worldwide, including coastal habitats where the borders between mangroves and salt marsh are in flux. Coastal habitats provide numerous ecosystem services of high economic value, but the consequences of variation in mangrove cover are poorly known. We experimentally manipulated mangrove cover in large plots to test a set of linked hypotheses regarding the effects of changes in mangrove cover. We found that changes in mangrove cover had strong effects on microclimate, plant community, sediment accretion, soil organic content, and bird abundance within 2 yr. At higher mangrove cover, wind speed declined and light interception by vegetation increased. Air and soil temperatures had hump-shaped relationships with mangrove cover. The cover of salt marsh plants decreased at higher mangrove cover. Wrack cover, the distance that wrack was distributed from the water's edge, and sediment accretion decreased at higher mangrove cover. Soil organic content increased with mangrove cover. Wading bird abundance decreased at higher mangrove cover. Many of these relationships were non-linear, with the greatest effects when mangrove cover varied from zero to intermediate values, and lesser effects when mangrove cover varied from intermediate to high values. Temporal and spatial variation in measured variables often peaked at intermediate mangrove cover, with ecological consequences that are largely unexplored. Because different processes varied in different ways with mangrove cover, the "optimum" cover of mangroves from a societal point of view will depend on which ecosystem services are most desired. © 2016 by the Ecological Society of America.
Quinteiro, Paula; Rafael, Sandra; Villanueva-Rey, Pedro; Ridoutt, Bradley; Lopes, Myriam; Arroja, Luís; Dias, Ana Cláudia
2018-06-01
The development of methods to assess the potential environmental impact of green water consumption in life cycle assessment has lagged behind those for blue water use, which are now routinely applied in industrial and policy-related studies. This represents a critical gap in the assessment of land-based production systems and the ability to inform policy related to the bio-economy. Combining satellite remote sensing and meteorological data sets, this study develops two new sets of spatially-differentiated and globally applicable characterisation factors (CFs) to assess the environmental impact of green water flows in LCA. One set of CFs addresses the impact of shifts in water vapour flow by evapotranspiration on blue water availability (CFWS) and the other set of CFs addresses moisture recycling within a basin (CFWA). Furthermore, as an additional and optional step, these two indicators are combined into an aggregated green water scarcity indicator, representing the global variability of green water scarcity. The values obtained for CFWA show that there are significant changes in green water flows that were returned to the atmosphere in Alaska (covered by open shrublands) and in some central regions of China (covered by grasslands and barren or sparsely vegetated land), where precipitation levels are lower than 10 mm/yr. The results obtained for CFWS indicate that severe perturbations in surface blue water production occur, particularly in central regions of China (covered by grasslands), the southeast of Australia (covered by evergreen broadleaf forest) and in some central regions of the USA (covered by grassland and evergreen needleleaf forest). The application of the green water scarcity CFs enables the evaluation of the potential environmental impact due to green water consumption by agricultural and forestry products, informing both technical and non-technical audiences and decision-makers for the purpose of strategic planning of land use and to identify green water protection measures. Copyright © 2018 Elsevier B.V. All rights reserved.
Ohliger, Renja; Schulz, Ralf
2010-10-15
The implementation of a geodata-based probabilistic pesticide exposure assessment for surface waters in Germany offers the opportunity to base the exposure estimation on more differentiated assumptions including detailed landscape characteristics. Since these characteristics can only be estimated using field surveys, water body width and depth, hydrology, riparian buffer strip width, ground vegetation cover, existence of concentrated flow paths, and riparian vegetation were characterised at 104 water body segments in the vineyard region Palatinate (south-west Germany). Water body segments classified as permanent (n=43) had median values of water body width and depth of 0.9m and 0.06m, respectively, and the determined median width:depth ratio was 15. Thus, the deterministic water body model (width=1m; depth=0.3m) assumed in regulatory exposure assessment seems unsuitable for small water bodies in the study area. Only 25% of investigated buffer strips had a dense vegetation cover (>70%) and allow a laminar sheet flow as required to include them as an effective pesticide runoff reduction landscape characteristic. At 77 buffer strips, bordering field paths and erosion rills leading into the water body were present, concentrating pesticide runoff and consequently decreasing buffer strip efficiency. The vegetation type shrubbery (height>1.5m) was present at 57 (29%) investigated riparian buffer strips. According to their median optical vegetation density of 75%, shrubberies may provide a spray drift reduction of 72±29%. Implementing detailed knowledge in an overall assessment revealed that exposure via drift might be 2.4 and via runoff up to 1.6 fold higher than assumed by the deterministic approach. Furthermore, considering vegetated buffer strips only by their width leads to an underestimation of exposure by a factor of as much as four. Our data highlight that the deterministic model assumptions neither represent worst-case nor median values and therefore cannot simply be adopted in a probabilistic approach. Copyright © 2010 Elsevier B.V. All rights reserved.
Multitemporal Snow Cover Mapping in Mountainous Terrain for Landsat Climate Data Record Development
NASA Technical Reports Server (NTRS)
Crawford, Christopher J.; Manson, Steven M.; Bauer, Marvin E.; Hall, Dorothy K.
2013-01-01
A multitemporal method to map snow cover in mountainous terrain is proposed to guide Landsat climate data record (CDR) development. The Landsat image archive including MSS, TM, and ETM+ imagery was used to construct a prototype Landsat snow cover CDR for the interior northwestern United States. Landsat snow cover CDRs are designed to capture snow-covered area (SCA) variability at discrete bi-monthly intervals that correspond to ground-based snow telemetry (SNOTEL) snow-water-equivalent (SWE) measurements. The June 1 bi-monthly interval was selected for initial CDR development, and was based on peak snowmelt timing for this mountainous region. Fifty-four Landsat images from 1975 to 2011 were preprocessed that included image registration, top-of-the-atmosphere (TOA) reflectance conversion, cloud and shadow masking, and topographic normalization. Snow covered pixels were retrieved using the normalized difference snow index (NDSI) and unsupervised classification, and pixels having greater (less) than 50% snow cover were classified presence (absence). A normalized SCA equation was derived to independently estimate SCA given missing image coverage and cloud-shadow contamination. Relative frequency maps of missing pixels were assembled to assess whether systematic biases were embedded within this Landsat CDR. Our results suggest that it is possible to confidently estimate historical bi-monthly SCA from partially cloudy Landsat images. This multitemporal method is intended to guide Landsat CDR development for freshwaterscarce regions of the western US to monitor climate-driven changes in mountain snowpack extent.
Stark, James R.
1996-01-01
Physical and aquatic biological conditions differ among the Mississippi River and its major tributaries (the St. Croix and Minnesota Rivers) in Minnesota and Wisconsin. The quality of surface water and the ecological condition of rivers affect the ways in which we use them. The St. Croix River is used for recreation; the Mississippi River is used for recreation and is a corridor for commerce; and the Minnesota River primarily drains agricultural lands. Analysis of the environmental framework of the basins and water-quality and ecological information by the National Water-Quality Assessment (NAWQA) Program shows that the conditions of the rivers are a product of a combination of factors including climate, hydrology, geology, soils, land use, land cover, water management, and water use.
Water Flow in the High Plains Aquifer in Northwestern Oklahoma
Luckey, Richard R.; Osborn, Noel I.; Becker, Mark F.; Andrews, William J.
2000-01-01
The High Plains is a major agricultural area, supported primarily by water from the High Plains aquifer, which is used to irrigate wheat and corn and to raise cattle and swine. The U.S. Geological Survey (USGS) and the Oklahoma Water Resources Board (OWRB) began a study of the High Plains aquifer in 1996. One purpose of the study was to develop a ground-water flow model that the OWRB could use to allocate the amount of water withdrawn from the a aquifer. The study area in Oklahoma covers all or parts of Beaver, Cimarron, Dewey, Ellis, Harper, Texas, and Woodward Counties. To provide appropriate hydrologic boundaries for the ground-water flow model, the study area was expanded to include parts of Colorado, Kansas, New Mexico, and Texas.
40 CFR 35.101 - Environmental programs covered by the subpart.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) of the Safe Drinking Water Act). (5) Underground water source protection (section 1443(b) of the Safe... 104(b)(3) of the Clean Water Act). (17) Wetlands development grants program (section 104(b)(3) of the... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Environmental programs covered by the...
40 CFR 35.101 - Environmental programs covered by the subpart.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) of the Safe Drinking Water Act). (5) Underground water source protection (section 1443(b) of the Safe... 104(b)(3) of the Clean Water Act). (17) Wetlands development grants program (section 104(b)(3) of the... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Environmental programs covered by the...
40 CFR 35.101 - Environmental programs covered by the subpart.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) of the Safe Drinking Water Act). (5) Underground water source protection (section 1443(b) of the Safe... 104(b)(3) of the Clean Water Act). (17) Wetlands development grants program (section 104(b)(3) of the... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Environmental programs covered by the...
NASA Astrophysics Data System (ADS)
Rango, A.
2004-12-01
In the mountainous American Southwest, the Rio Grande basin is a prime example of how conflicts, misconceptions, and competition regarding water can arise in arid and semi-arid catchments. Much of the Rio Grande runoff originates from snow fields in the San Juan Mountains of southern Colorado and the Sangre De Cristo Mountains of northern New Mexico, far from population centers. Large and rapidly growing cities, like Albuquerque, Las Cruces, El Paso, and Juarez, are located along the Rio Grande where it flows through the Chihuahuan Desert, the largest desert in North America(two NSF Long Term Ecological Research sites are located in the desert portion of the basin). As a result, the importance of snowmelt, which makes up 50-75% or more of the total streamflow in sub-basins above Elephant Butte Reservoir(in south central New Mexico) is hardly known to the general public. Streamflow below Elephant Butte Reservoir is rainfall driven and very limited, with the lower basin receiving only 170-380 mm of precipitation annually, most of it occurring during the months of July-September. Extreme events, such as drought and flooding, are not unusual in arid basins, and they are of increasing concern with regard to changes in frequency of such events under the impending conditions of climate change. Current water demands in the basin already exceed the water supply by 15% or more, so streamflow forecasts(especially from snowmelt runoff) are extremely valuable for efficient water management as well as for proper apportionment of water between Colorado, New Mexico, and Texas under the Rio Grande Compact of 1938 and between the U.S. and Mexico under the Treaty of 1906. Other demands on the water supply include Indian water rights, flood regulation, irrigated agriculture, municipal and industrial demands, water quality, riverine and riparian habitat protection, endangered and threatened species protection, recreation, and hydropower. To assess snow accumulation and cover and to produce streamflow forecasts, several techniques are being employed including manual snow surveys, automated SNOTEL measurements, satellite snow cover extent measurements, development of snow cover depletion curves, and input of these data to the Snowmelt Runoff Model(SRM) and other models for forecasting. Early season(November-January) SNOTEL measurements of snow water equivalent can be used in regression approaches to estimate streamflow volumes early enough to provide growing season planning for the types of crops to plant. Satellite snow cover is used directly in SRM for daily flow forecasts throughout the melt season starting as early as March. Additionally, SRM can automatically produce future hydrographs for climate change scenarios. For large river basins in arid and semi-arid areas, new technologies, like remote sensing, will be valuable in assisting water managers to make more efficient use of their limited water supply. Additionally, like meteorologists have done for the last 40 years, hydrologists need to make use of remote sensing data to communicate in real time with the public on the effects of snow accumulation, melt, and snowmelt runoff on human activities.
Disentangling Climate and Land-use Impacts on Grassland Carbon and Water Fluxes
NASA Astrophysics Data System (ADS)
Brunsell, N. A.; Nippert, J. B.
2014-12-01
Regional climate and land cover interact in a complex, non-linear manner to alter the local cycling of mass and energy. It is often difficult to isolate the role of either mechanism on the resultant fluxes. Here, we attempt to isolate these mechanisms through the use of network of 4 Ameriflux eddy covariance towers installed over different land cover and land use classes along a pronounced rainfall gradient. The land cover types include: annually burned C4 grassland, a 4 year burn site experiencing woody encroachment, an abandoned agricultural field and a new perennial agricultural site. We investigated the impact of rainfall variability, drought, and heat waves on the water and carbon budgets using data analysis, remote sensing, and modeling approaches. In addition, we have established a network of mini-meteorological stations at the annually and 4-year burn sites to assess micro-scale variability within the footprints of the towers as a function of topographic position, soil depth and soil water availability. Through the use of a wavelet multiscale decomposition and information theory metrics, we have isolated the role of environmental factors (temperature, humidity, soil moisture, etc.) on the fluxes across the different sites. By applying a similar analysis to model output, we can assess the ability of land-surface models to recreate the observed sensitity. Results indicate the utility of a network of measurement systems used in conjunction with land surface modeling and time series analysis to assess differential impacts to similar regional scale climate forcings. Implications for the role of land cover class in regional and global scale modeling systems will also be discussed.
Read, Emily K; Patil, Vijay P; Oliver, Samantha K; Hetherington, Amy L; Brentrup, Jennifer A; Zwart, Jacob A; Winters, Kirsten M; Corman, Jessica R; Nodine, Emily R; Woolway, R Iestyn; Dugan, Hilary A; Jaimes, Aline; Santoso, Arianto B; Hong, Grace S; Winslow, Luke A; Hanson, Paul C; Weathers, Kathleen C
2015-06-01
Lake water quality is affected by local and regional drivers, including lake physical characteristics, hydrology, landscape position, land cover, land use, geology, and climate. Here, we demonstrate the utility of hypothesis testing within the landscape limnology framework using a random forest algorithm on a national-scale, spatially explicit data set, the United States Environmental Protection Agency's 2007 National Lakes Assessment. For 1026 lakes, we tested the relative importance of water quality drivers across spatial scales, the importance of hydrologic connectivity in mediating water quality drivers, and how the importance of both spatial scale and connectivity differ across response variables for five important in-lake water quality metrics (total phosphorus, total nitrogen, dissolved organic carbon, turbidity, and conductivity). By modeling the effect of water quality predictors at different spatial scales, we found that lake-specific characteristics (e.g., depth, sediment area-to-volume ratio) were important for explaining water quality (54-60% variance explained), and that regionalization schemes were much less effective than lake specific metrics (28-39% variance explained). Basin-scale land use and land cover explained between 45-62% of variance, and forest cover and agricultural land uses were among the most important basin-scale predictors. Water quality drivers did not operate independently; in some cases, hydrologic connectivity (the presence of upstream surface water features) mediated the effect of regional-scale drivers. For example, for water quality in lakes with upstream lakes, regional classification schemes were much less effective predictors than lake-specific variables, in contrast to lakes with no upstream lakes or with no surface inflows. At the scale of the continental United States, conductivity was explained by drivers operating at larger spatial scales than for other water quality responses. The current regulatory practice of using regionalization schemes to guide water quality criteria could be improved by consideration of lake-specific characteristics, which were the most important predictors of water quality at the scale of the continental United States. The spatial extent and high quality of contextual data available for this analysis makes this work an unprecedented application of landscape limnology theory to water quality data. Further, the demonstrated importance of lake morphology over other controls on water quality is relevant to both aquatic scientists and managers.
43 CFR 11.72 - Quantification phase-baseline services determination.
Code of Federal Regulations, 2012 CFR
2012-10-01
... for changes that have occurred as a result of causes other than the discharge or release. In addition... predictable that changes as a result of the discharge or release are likely to be detectable. (3) If... control area. Other factors, including climate, depth of ground water, vegetation type and area covered...
43 CFR 11.72 - Quantification phase-baseline services determination.
Code of Federal Regulations, 2011 CFR
2011-10-01
... for changes that have occurred as a result of causes other than the discharge or release. In addition... predictable that changes as a result of the discharge or release are likely to be detectable. (3) If... control area. Other factors, including climate, depth of ground water, vegetation type and area covered...
43 CFR 11.72 - Quantification phase-baseline services determination.
Code of Federal Regulations, 2014 CFR
2014-10-01
... for changes that have occurred as a result of causes other than the discharge or release. In addition... predictable that changes as a result of the discharge or release are likely to be detectable. (3) If... control area. Other factors, including climate, depth of ground water, vegetation type and area covered...
43 CFR 11.72 - Quantification phase-baseline services determination.
Code of Federal Regulations, 2013 CFR
2013-10-01
... for changes that have occurred as a result of causes other than the discharge or release. In addition... predictable that changes as a result of the discharge or release are likely to be detectable. (3) If... control area. Other factors, including climate, depth of ground water, vegetation type and area covered...
2017-05-23
Systems and the NRL Code 5763 Radio Frequency (RF) Stimulator. It includes and covers system descriptions , setup, data collection, and test goals that...6 4. Test Asset Descriptions ...7 4.1. Description of FOXTROT Anti-ship Missile (ASM) Simulator ......................................... 7
30 CFR 816.89 - Disposal of noncoal mine wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... underground water. Wastes shall be routinely compacted and covered to prevent combustion and wind-borne waste... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 816.89 Section... ACTIVITIES § 816.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to...
30 CFR 817.89 - Disposal of noncoal mine wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... underground water. Wastes shall be routinely compacted and covered to prevent combustion and wind-borne waste... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 817.89 Section... ACTIVITIES § 817.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to...
Principles of wildlife habitat management
Ernie P. Wiggers
1989-01-01
Simply stated, habitat is where an animal lives and must include all the resources an animal needs to survive and reproduce. An animal's habitat has to provide five essential factors: food, cover, water, space, and interspersion. Habitat management is identifying which factors are scarce enough to limit populations, and then improving the habitat to remove the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-03
.... Mitigation measures, such as operational controls and practices, worker training, use of personal protective... equipment emissions, and fugitive dust caused by earth-moving activities. As stated in the ER for the COL... fugitive dust and vehicle and equipment emissions, including water suppression, covering truck loads and...
Water quality in the eastern Iowa basins
Kalkhoff, Stephen J.; Barnes, Kimberlee K.; Becher, Kent D.; Savoca, Mark E.; Schnoebelen, Douglas J.; Sadorf, Eric M.; Porter, Stephen D.; Sullivan, Daniel J.; Creswell, John
2001-01-01
The Eastern Iowa Basins Study Unit includes the Wapsipinicon, Cedar, Iowa, and Skunk River basins and covers approximately 19,500 square miles in eastern Iowa and southern Minnesota. More than 90 percent of the land in the study unit is used for agricultural purposes. Forested areas account for only 4 percent of the land area.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors, Enrichment, Reprocessing, Fuel Fabrication, and Heavy Water...-6050. 10 CFR 205.300 through 205.379 and part 590. Nuclear Materials and Equipment * Nuclear Regulatory...
Soil CO2 response to organic and amino acids
USDA-ARS?s Scientific Manuscript database
Soil samples were obtained from under actively growing Austrian winter peas and from 2 m away in a plot that had no winter peas or other legumes growing in its cover crop mix. Soils were treated with 5 carbon compounds (oxalic, malic, citric, glycine and arginine) including a control (DI water) and...
Bremigan, M.T.; Soranno, P.A.; Gonzalez, M.J.; Bunnell, D.B.; Arend, K.K.; Renwick, W.H.; Stein, R.A.; Vanni, M.J.
2008-01-01
Although effects of land use/cover on nutrient concentrations in aquatic systems are well known, half or more of the variation in nutrient concentration remains unexplained by land use/cover alone. Hydrogeomorphic (HGM) landscape features can explain much remaining variation and influence food web interactions. To explore complex linkages among land use/cover, HGM features, reservoir productivity, and food webs, we sampled 11 Ohio reservoirs, ranging broadly in agricultural catchment land use/cover, for 3 years. We hypothesized that HGM features mediate the bottom-up effects of land use/cover on reservoir productivity, chlorophyll a, zooplankton, and recruitment of gizzard shad, an omnivorous fish species common throughout southeastern U.S. reservoirs and capable of exerting strong effects on food web and nutrient dynamics. We tested specific hypotheses using a model selection approach. Percent variation explained was highest for total nitrogen (R2 = 0.92), moderately high for total phosphorus, chlorophyll a, and rotifer biomass (R2 = 0.57 to 0.67), relatively low for crustacean zooplankton biomass and larval gizzard shad hatch abundance (R2 = 0.43 and 0.42), and high for larval gizzard shad survivor abundance (R2 = 0.79). The trophic status models included agricultural land use/cover and an HGM predictor, whereas the zooplankton models had few HGM predictors. The larval gizzard shad models had the highest complexity, including more than one HGM feature and food web components. We demonstrate the importance of integrating land use/cover, HGM features, and food web interactions to investigate critical interactions and feedbacks among physical, chemical, and biological components of linked land-water ecosystems.
Hydrology of area 4, Eastern Coal Province, Pennsylvania, Ohio, and West Virginia
Roth, Donald K.; Engelke, Morris J.; ,
1981-01-01
Area 4 (one of the 24 hydrologic areas defining the Eastern Coal Province) is located at the northern end of the Eastern Coal Province in eastern Ohio, northern West Virginia, and western Pennsylvania. It is part of the upper Ohio River basin, which includes the Beaver, Mahoning, and Shenango Rivers. The area is underlain by rocks of the Pottsville, Allegheny, Conemaugh, Monongahela Groups (or Formations) and Dunkard Group. Area 4 has a temperate climate with an annual average rainfall of 38 to 42 inches, most of its area is covered by forest. The soils have a high erosion potential where the vegetation cover is removed. In response to Public Law 95-87, 132 sites were added to the existing surface-water data-collection network in area 4. At these added sites, collected data includes discharge, water quality, sediment, and biology. The data are available from computer storage through the National Water Data Exchange (NAWDEX) or the published annual Water Resources Data reports for Ohio, Pennsylvania, and West Virginia. Hydrologic problems related to mining are: (1) Erosion and increased sedimentation, and (2) degradation of water quality. Erosion and sedimentation are associated chiefly with surface mining. Sediment yields increase drastically when vegetation is removed from the highly erosive soils. Degradation of water quality can be caused by acid-mine drainage from underground and surface mining. More than half the acid-mine drainage effluent in area 4 comes from underground mines. The rest seeps from abandoned surface mines. Usually in reclaimed surface mines the overburden is replaced in such a short time after the coal is taken out that oxidation of acid-forming minerals, commonly pyrite or marcasite, is not complete or is neutralized by the buffering action of calcareous minerals in the soils. (USGS)
Altered water and nitrogen input shifts succession in a southern California coastal sage community.
Kimball, Sarah; Goulden, Michael L; Suding, Katharine N; Parker, Scot
Vegetation-type conversions between grasslands and shrublands have occurred worldwide in semiarid regions over the last 150 years. Areas once covered by drought-deciduous shrubs in Southern California (coastal sage scrub) are converting to grasslands dominated by nonnative species. Increasing fire frequency, drought, and nitrogen deposition have all been hypothesized as causes of this conversion, though there is little direct evidence. We constructed rain-out shelters in a coastal sage scrub community following a wildfire, manipulated water and nitrogen input in a split-plot design, and collected annual data on community composition for four years. While shrub cover increased through time in all plots during the postfire succession, both drought and nitrogen significantly slowed recovery. Four years after the fire, average native shrub cover ranged from over 80% in water addition, ambient-nitrogen plots to 20% in water reduction, nitrogen addition plots. Nonnative grass cover was high following the fire and remained high in the water reduction plots through the third spring after the fire, before decreasing in the fourth year of the study. Adding nitrogen decreased the cover of native plants and increased the cover of nonnative grasses, but also increased the growth of one crown-sprouting shrub species. Our results suggest that extreme drought during postfire succession may slow or alter succession, possibly facilitating vegetation-type conversion of coastal sage scrub to grassland. Nitrogen addition slowed succession and, when combined with drought, significantly decreased native cover and increased grass cover. Fire, drought, and atmospheric N deposition are widespread aspects of environmental change that occur simultaneously in this system. Our results imply these drivers of change may reinforce each other, leading to a continued decline of native shrubs and conversion to annual grassland.
NASA Astrophysics Data System (ADS)
Taheri, Kamal; Taheri, Milad; Parise, Mario
2015-04-01
Bare and covered karst areas, with developed karstic aquifers, cover 35 percent of the Kermanshah province in western Iran. These aquifers are the vital sources for drinking and agricultural water supplies. Over the past decade, intensive groundwater use (exploitation) for irrigation imposed a significant impact on the carbonate environments. The huge amount of groundwater over-exploitations has been carried out and still goes on by local farmers in the absence of appropriate governance monitoring control. Increasing in water demands, for more intense crop production, is an important driving force toward groundwater depletion in alluvial aquifers. Progressive groundwater over-exploitations from underlying carbonate rocks have led to dramatic drawdown in alluvial aquifers and deep karst water tables. Detecting new sources of groundwater extractions and prohibiting the karst water utilization for agricultural use could be the most effective strategy to manage the sustainability of covered karst aquifers. Anthropogenic pressures on covered karst aquifers have magnified the drought impacts and caused dryness of most of the karst springs and deep wells. In this study, the combination of geophysical and geological studies was used to estimate the most intensively exploited agricultural zones of Islam Abad plain in the southwestern Kermanshah province using GIS. The results show that in the past decade a great number of deep wells were drilled through the overburden alluvial aquifer and reached the deep karst water resources. However, the difficulties involved in monitoring deep wells in covered karst aquifer were the main cause of karst water depletion. Overexploitation from both alluvial and karst aquifers is the main reason for drying out the Arkawazi, Sharafshah, Gawrawani karst springs, and the karst drinking water wells 1, 3 and 5 of Islam Abad city. Karst spring landscape destructions, fresh water supply deficit for inhabitants, decreasing of tourism and recreational activities are some outcomes of imbalance uses of unprotected karst water resources in Islam Abad plain.
Spring Internship 2018 at the Prototype Development Lab: A place of Dreamers and Makers
NASA Technical Reports Server (NTRS)
Rueda, Juan F.
2018-01-01
This paper covers the role of the design process and the methodology of creating a trophy during my Spring 2018 Internship at the Prototype Development Laboratory at the Kennedy Space Center. In the course of this project I used many new machines and materials while trying to deliver a professional product for a competition that invites college student teams from across the country. The machines covered in this paper include the wood chop saw, CNC mill, water jet, laser engraver, and the 3D printer. This paper also serves as an assembly guide for the trophy.
Stringfield, V.T.; Rapp, J.R.; Anders, R.B.
1979-01-01
The results of the natural processes caused by solution and leaching of limestone, dolomite, gypsum, salt and other soluble rocks, is known as karst. Development of karst is commonly known as karstification, which may have a pronounced effect on the topography, hydrology and environment, especially where such karst features as sinkholes and vertical solution shafts extend below the land surface and intersect lateral solution passages, cavities, caverns and other karst features in carbonate rocks. Karst features may be divided into two groups: (1) surficial features that do not extend far below the surface; and (2) karst features such as sinkholes that extend below the surface and affect the circulation of water below. The permeability of the most productive carbonate aquifers is due chiefly to enlargement of fractures and other openings by circulation of water. Important controlling factors responsible for the development of karst and permeability in carbonate aquifers include: (1) climate, topography, and presence of soluble rocks; (2) geologic structure; (3) nature of underground circulation; and (4) base level. Another important factor is the condition of the surface of the carbonate rocks at the time they are exposed to meteoric water. A carbonate rock surface, with soil or relatively permeable, less soluble cover, is more favorable for initiation of karstification and solution than bare rocks. Water percolates downward through the cover to the underlying carbonate rocks instead of running off on the surface. Also, the water becomes more corrosive as it percolates through the permeable cover to the underlying carbonate rocks. Where there is no cover or the cover has been removed, the carbonate rocks become case hardened and resistant to erosion. However, in regions underlain not only by carbonate rocks but also by beds of anhydrite, gypsum and salt, such as the Hueco Plateau in southeastern New Mexico, subsurface solution may occur where water without natural acids moves down from bare rock surfaces through cracks to the beds that are more soluble than carbonate rocks. For example, in the area of Carlsbad Caverns in southeastern New Mexico, much of the water responsible for solution that formed the caverns apparently entered the groundwater system through large open fractures and did not form sinkhole topography. East of the Carlsbad Caverns, however, in the Pecos River Valley where the carbonate rocks are overlain by the less soluble Ogallala Formation of Late Tertiary age, solution began along escarpments as the Pecos River and its tributaries cut through the less soluble cover. As these escarpments retreated, sinkholes and other karst features developed. Joints or fractures are essential for initiation of downward percolation of water in compact carbonate rocks such as some Paleozoic limestone in which there is no intergranular permeability. Also joints or fractures and bedding planes may be essential in the initiation of lateral movement of water in the zone of saturation. Where conditions of recharge and discharge are favorable, groundwater may move parallel to the dip. However, the direction of movement of water in most carbonate rocks is not necessarily down dip or parallel to the dip. The general direction of movement of both surface and groundwater may be parallel to the strike in a breached anticline. Faults may restrict the lateral movement of water, especially if water-bearing beds are faulted against relatively impervious beds. Conversely, some fault may serve as avenues through which water may move as, for example, in the Cretaceous Edwards aquifer in the San Antonio area, Texas. Karst aquifers, chiefly carbonate rocks, may be placed in three groups according to water-bearing capacity. Water in aquifers of group 1 occurs chiefly in joints, fractures, and other openings that have not been enlarged by solution. The yield of wells is small. Aquifers in group 2, with low to intermediate yields, are those in which
NASA Technical Reports Server (NTRS)
Carter, W. D. (Principal Investigator)
1974-01-01
The author has identified the following significant results. A color composite of image E1010-14035, dated 2 August 1972, covers the west central Bolivian Altiplano near Salar de Coipasa. It clearly shows the distribution of surface water and scant patches of vegetation. The Salar de Coipasa is the largest body of water in the area, about 130 sq km of dark blue fresh water. A lighter blue area south of the lake suggests a thin cover of highly saline water superposed on salt beds. The scattered vegetation patches are presumed to be native grasses, lichens, and possibly Indian potato and maiz areas. A detailed study has been made of the scene which provides 12 different interpretive overlays including geology, volcanology, soils, hydrology, and relative permeability. It was found that color composites provide at least 40% more information that do black and white renditions. An excellent example of change detection was provided by image E1244-14051, dated 24 March 1973. Water in the Salar de Coipasa had more than doubled as a result of the rains of the Bolivian winter, which generally occur in the February-March period. The Salars are excellent and highly sensitive moisture indicators in this highly arid region.
Buell, G.R.; Grams, S.C.
1985-01-01
Significant temporal trends in monthly pH, specific conductance, total alkalinity, hardness, total nitrite-plus-nitrite nitrogen, and total phosphorus measurements at five stream sites in Georgia were identified using a rank correlation technique, the seasonal Kendall test and slope estimator. These sites include a U.S. Geological Survey Hydrologic Bench-Mark site, Falling Creek near Juliette, and four periodic water-quality monitoring sites. Comparison of raw data trends with streamflow-residual trends and, where applicable, with chemical-discharge trends (instantaneous fluxes) shws that some of these trends are responses to factors other than changing streamflow. Percentages of forested, agricultural, and urban cover with each basin did not change much during the periods of water-quality record, and therefore these non-flow-related trends are not obviously related to changes in land cover or land use. Flow-residual water-quality trends at the Hydrologic Bench-Mark site and at the Chattooga River site probably indicate basin reponses to changes in the chemical quality of atmospheric deposition. These two basins are predominantly forested and have received little recent human use. Observed trends at the other three sites probably indicate basin responses to various land uses and water uses associated with agricultural and urban land or to changes in specific uses. (USGS)
Representing Plant Hydraulics in a Global Model: Updates to the Community Land Model
NASA Astrophysics Data System (ADS)
Kennedy, D.; Swenson, S. C.; Oleson, K. W.; Lawrence, D. M.; Fisher, R.; Gentine, P.
2017-12-01
In previous versions, the Community Land Model has used soil moisture to stand in for plant water status, with transpiration and photosynthesis driven directly by soil water potential. This eschews significant literature demonstrating the importance of plant hydraulic traits in the dynamics of water flow through the soil-plant-atmosphere continuum and in the regulation of stomatal aperture. In this study we install a simplified hydraulic framework to represent vegetation water potential and to regulate root water uptake and turbulent fluxes. Plant hydraulics allow for a more explicit representation of plant water status, which improves the physical basis for many processes represented in CLM. This includes root water uptake and the attenuation of photosynthesis and transpiration with drought. Model description is accompanied by results from a point simulation based at the Caxiuanã flux tower site in Eastern Amazonia, covering a throughfall exclusion experiment from 2001-2003. Including plant hydraulics improves the response to drought forcing compared to previous versions of CLM. Parameter sensitivity is examined at the same site and presented in the context of estimating hydraulic parameters in a global model.
A water resources model to explore the implications of energy alternatives in the southwestern US
NASA Astrophysics Data System (ADS)
Yates, D.; Averyt, Kristen; Flores-Lopez, Francisco; Meldrum, J.; Sattler, S.; Sieber, J.; Young, C.
2013-12-01
This letter documents the development and validation of a climate-driven, southwestern-US-wide water resources planning model that is being used to explore the implications of extended drought and climate warming on the allocation of water among competing uses. These model uses include a separate accounting for irrigated agriculture; municipal indoor use based on local population and per-capita consumption; climate-driven municipal outdoor turf and amenity watering; and thermoelectric cooling. The model simulates the natural and managed flows of rivers throughout the southwest, including the South Platte, the Arkansas, the Colorado, the Green, the Salt, the Sacramento, the San Joaquin, the Owens, and more than 50 others. Calibration was performed on parameters of land cover, snow accumulation and melt, and water capacity and hydraulic conductivity of soil horizons. Goodness of fit statistics and other measures of performance are shown for a select number of locations and are used to summarize the model’s ability to represent monthly streamflow, reservoir storages, surface and ground water deliveries, etc, under 1980-2010 levels of sectoral water use.
Solar or UVA-Visible Photocatalytic Ozonation of Water Contaminants.
Beltrán, Fernando J; Rey, Ana
2017-07-14
An incipient advanced oxidation process, solar photocatalytic ozonation (SPO), is reviewed in this paper with the aim of clarifying the importance of this process as a more sustainable water technology to remove priority or emerging contaminants from water. The synergism between ozonation and photocatalytic oxidation is well known to increase the oxidation rate of water contaminants, but this has mainly been studied in photocatalytic ozonation systems with lamps of different radiation wavelength, especially of ultraviolet nature (UVC, UVB, UVA). Nowadays, process sustainability is critical in environmental technologies including water treatment and reuse; the application of SPO systems falls into this category, and contributes to saving energy and water. In this review, we summarized works published on photocatalytic ozonation where the radiation source is the Sun or simulated solar light, specifically, lamps emitting radiation to cover the UVA and visible light spectra. The main aspects of the review include photoreactors used and radiation sources applied, synthesis and characterization of catalysts applied, influence of main process variables (ozone, catalyst, and pollutant concentrations, light intensity), type of water, biodegradability and ecotoxicity, mechanism and kinetics, and finally catalyst activity and stability.
Topological Relations-Based Detection of Spatial Inconsistency in GLOBELAND30
NASA Astrophysics Data System (ADS)
Kang, S.; Chen, J.; Peng, S.
2017-09-01
Land cover is one of the fundamental data sets on environment assessment, land management and biodiversity protection, etc. Hence, data quality control of land cover is extremely critical for geospatial analysis and decision making. Due to the similar remote-sensing reflectance for some land cover types, omission and commission errors occurred in preliminary classification could result to spatial inconsistency between land cover types. In the progress of post-classification, this error checking mainly depends on manual labour to assure data quality, by which it is time-consuming and labour intensive. So a method required for automatic detection in post-classification is still an open issue. From logical inconsistency point of view, an inconsistency detection method is designed. This method consist of a grids extended 4-intersection model (GE4IM) for topological representation in single-valued space, by which three different kinds of topological relations including disjoint, touch, contain or contained-by are described, and an algorithm of region overlay for the computation of spatial inconsistency. The rules are derived from universal law in nature between water body and wetland, cultivated land and artificial surface. Through experiment conducted in Shandong Linqu County, data inconsistency can be pointed out within 6 minutes through calculation of topological inconsistency between cultivated land and artificial surface, water body and wetland. The efficiency evaluation of the presented algorithm is demonstrated by Google Earth images. Through comparative analysis, the algorithm is proved to be promising for inconsistency detection in land cover data.
Mapping tree and impervious cover using Ikonos imagery: links with water quality and stream health
NASA Astrophysics Data System (ADS)
Wright, R.; Goetz, S. J.; Smith, A.; Zinecker, E.
2002-12-01
Precision georeferened Ikonos satellite imagery was used to map tree cover and impervious surface area in Montgomery county Maryland. The derived maps were used to assess riparian zone stream buffer tree cover and to predict, with multivariate logistic regression, stream health ratings across 246 small watersheds averaging 472 km2 in size. Stream health was assessed by state and county experts using a combination of physical measurements (e.g., dissolved oxygen) and biological indicators (e.g., benthic macroinvertebrates). We found it possible to create highly accurate (90+ per cent) maps of tree and impervious cover using decision tree classifiers, provided extensive field data were available for algorithm training. Impervious surface area was found to be the primary predictor of stream health, followed by tree cover in riparian buffers, and total tree cover within entire watersheds. A number of issues associated with mapping using Ikonos imagery were encountered, including differences in phenological and atmospheric conditions, shadowing within canopies and between scene elements, and limited spectral discrimination of cover types. We report on both the capabilities and limitations of Ikonos imagery for these applications, and considerations for extending these analyses to other areas.
NASA Astrophysics Data System (ADS)
Plotnikova, Irina; Salakhidinova, Gulmira; Nosova, Fidania; Pronin, Nikita; Ostroukhov, Sergey
2015-04-01
Special geochemical studies of oils allowed to allocate a movable migration component of oils in the industrial oil deposits. In the field the migration component of oils varies in different parts of the field. The largest percentage of the light migration component (gas condensate of the oil) was detected in the central part of the Kama-Kinel troughs system. Monitoring of the composition of water, oil and gas (condensate light oil component) in the sedimentary cover and ni crystalline basement led to the conclusion of modern migration of hydrocarbons in sedimentary cover. This proves the existence of the modern processes of formation and reformation of oil and gas fields. This presentation is dedicated to the problem of definition of geochemical criteria of selection of hydrocarbons deposit reformation zone in the sample wells of Minibaevskaya area of Romashkinskoye field. While carrying out this work we examined 11 samples of oil from the Upper Devonian Pashiysky horizon. Four oil samples were collected from wells reckoned among the "anomalous" zones that were marked out according to the results of geophysical, oil field and geological research. Geochemical studies of oils were conducted in the laboratory of geochemistry of the Kazan (Volga-region) Federal University. The wells where the signs of hydrocarbons influx from the deep zones of the crust were recorded are considered to be "anomalous". A number of scientists connect this fact to the hypothesis about periodic influx of deep hydrocarbons to the oil deposits of Romashkinskoye field. Other researchers believe that the source rocks of the adjacent valleys sedimentary cover generate gases when entering the main zone of gas formation, which then migrate up the section and passing through the previously formed deposits of oil, change and "lighten" their composition. Regardless of the point of view on the source of the hydrocarbons, the study of the process of deposits refilling with light hydrocarbons is an important fundamental task of exceptional practical importance. The reservoir water monitoring has been conducted in five wells that have penetrated the water-saturated, loosely aggregated zones of the South Tatarstan Arch's basement. The long-term testing resulted in the production of reservoir water from the basement. The sedimentary cover in these wells is blocked by the column, which prevents water cross-flowing from the sedimentary cover. The observations have shown that the levels, gas saturation, mineralisation, density, and composition of reservoir waters from the loosely aggregated zones of the basement change with time. The varying characteristics of the water include its component composition, redox potential, and amount of chlorine and some other components and trace elements. Compositional changes in gases of the loosely aggregated zones of the basement, variations in the gas saturation of reservoir waters and of their composition, the decreasing density of oil in the sedimentary cover, - all result from one cause. This cause is the movement of fluids (solutions and gases dissolved in them) through the loosely aggregated zones and faults of the Earth's crust and the sedimentary cover. The fluids mainly move vertically in an upward direction, although their migration through subhorizontal, loosely aggregated zones of the crystalline basement is also possible. Fluid migration still takes place in the Earth's crust of ancient platforms. This phenomenon indicates that some portions of the platforms - primarily, their margins - periodically resume tectonic activities. The fluid dynamic activity of the crust define the processes in the sedimentary cover. It affects the development of the sedimentary basin during the sedimentation period, and the formation of mineral deposits. The monitoring of the present-day movement of fluid systems in the loosely aggregated zones of the basement will permit the more detailed study of the present-day fluid regime in the upper portion of the Earth's crust and the sedimentary cover.
Synergies of solar energy across a land-food-energy-water nexus
NASA Astrophysics Data System (ADS)
Hoffacker, M. K.; Hernandez, R. R.; Allen, M. F.
2017-12-01
Land-cover change from energy development, including solar energy, presents trade-offs for the production of food and the conservation of natural ecosystems. Solar energy plays a critical role in contributing to the alternative energy mix to mitigate climate change and meet policy milestones; however, the extent that solar energy development can mitigate land scarcity, water shortages, and conservation is understudied. Here, we test whether projected electricity needs for the state of California (CA, United States [US]) can be met within land-cover types that can also generate environmental, social and fiscal co-benefits (techno-ecological synergies) including: the built environment, salt-affected land, contaminated land, and water reservoirs (as floatovoltaics). Additionally, we analyze general spatial trends and patterns related to clustering and proximity of techno-ecological opportunities and land-cover types (e.g. contamination sites and cities). In total, the Central Valley, a globally significant agricultural region, encompasses 15% of CA, 8,415 km2 of which was identified as potentially synergistic land for solar energy. These areas comprise a capacity-based energy potential of 17,348 TWh y-1 for photovoltaic (PV) and 1,655 TWh y-1 for concentrating solar power (CSP). Accounting for technology efficiencies, this exceeds California's 2025 projected electricity demands up to 13 and 2 times for PV and CSP, respectively. Further, 60% of contaminated lands are clustered within and up to 10 km of the 10 most populated cities in the Central Valley, where energy is consumed. Our study underscores the potential of strategic renewable energy siting to mitigate environmental trade-offs typically coupled with energy development sprawl in landscapes characterized by complex nexus issues.
Natural and anthropogenic factors affecting freshwater lenses in coastal dunes of the Adriatic coast
NASA Astrophysics Data System (ADS)
Cozzolino, Davide; Greggio, Nicolas; Antonellini, Marco; Giambastiani, Beatrice Maria Sole
2017-08-01
This study characterizes the near-shore portion of the shallow coastal aquifer included in the Ravenna area (Northern Italy) with special attention to the roles of coastal dunes as freshwater reservoirs and their buffer on groundwater salinity. The paper focuses on the presence and evolution of freshwater lenses below coastal dunes and highlights the existing differences between preserved natural dunes and dunes strongly affected by human intervention. The influence that multiple natural and anthropogenic factors, such as land cover, local drainage network, and beach erosion have on the presence, size and evolution of the freshwater lenses in the aquifer is quantified and discussed. The methodology includes multiple seasonal monitoring and sampling campaigns of physical (water level, salinity, and temperature) and chemical (major cations and anions) groundwater parameters. Results indicate that freshwater lenses, where existing, are limited in thickness (about 1-2 m). Proximity to drainage ditches as well as limited dune elevation and size do not allow the formation and permanent storage of large freshwater lenses in the aquifer below the dunes. The pine forest land cover, that replaced the typical bush or sand cover, intensifies evapotranspiration reducing net infiltration and freshwater storage. The cation species distribution in the water shows that a freshening process is ongoing in preserved natural sites with stable or advancing beaches, whereas a salinization process is ongoing in anthropogenic-impacted areas with strongly-fragmented dune systems. Currently, the thin freshwater lenses in the shallow Ravenna coastal aquifer are limited in space and have no relevance for irrigation or any other human activity. The dune-beach system, however, is the recharge zone of the coastal aquifer and its protection is important to reduce water and soil salinization, which in turn control the health of the whole coastal ecosystem.
NASA Astrophysics Data System (ADS)
Hall, Carlton R.; Bostater, Charles R., Jr.; Virnstein, Robert
2004-11-01
Development of robust protocols for use in mapping shallow water habitats using hyperspectral imagery requires knowledge of absorbing and scattering features present in the environment. These include, but are not limited to, water quality parameters, phytoplankton concentrations and species, submerged aquatic vegetation (SAV) species and densities, epiphytic growth on SAV, benthic microalgae and substrate reflectance characteristics. In the Indian River Lagoon, Fl. USA we conceptualize the system as having three possible basic layers, water column and SAV bed above the bottom. Each layer is occupied by plants with their associated light absorbing pigments that occur in varying proportions and concentrations. Phytoplankton communities are composed primarily of diatoms, dinoflagellates, and picoplanktonic cyanobacteria. SAV beds, including flowering plants and green, red, and brown macro-algae exist along density gradients ranging in coverage from 0-100%. SAV beds may be monotypic, or more typically, mixtures of the several species that may or may not be covered in epiphytes. Shallow water benthic substrates are colonized by periphyton communities that include diatoms, dinoflagellates, chlorophytes and cyanobacteria. Inflection spectra created form ASIA hyperspectral data display a combination of features related to water and select plant pigment absorption peaks.
Preliminary assessment of factors influencing riverine fish communities in Massachusetts.
Armstrong, David S.; Richards, Todd A.; Brandt, Sara L.
2010-01-01
The U.S. Geological Survey, in cooperation with the Massachusetts Department of Conservation and Recreation (MDCR), Massachusetts Department of Environmental Protection (MDEP), and the Massachusetts Department of Fish and Game (MDFG), conducted a preliminary investigation of fish communities in small- to medium-sized Massachusetts streams. The objective of this investigation was to determine relations between fish-community characteristics and anthropogenic alteration, including flow alteration and impervious cover, relative to the effect of physical basin and land-cover (environmental) characteristics. Fish data were obtained for 756 fish-sampling sites from the Massachusetts Division of Fisheries and Wildlife fish-community database. A review of the literature was used to select a set of fish metrics responsive to flow alteration. Fish metrics tested include two fish-community metrics (fluvial-fish relative abundance and fluvial-fish species richness), and five indicator species metrics (relative abundance of brook trout, blacknose dace, fallfish, white sucker, and redfin pickerel). Streamflows were simulated for each fish-sampling site using the Sustainable Yield Estimator application (SYE). Daily streamflows and the SYE water-use database were used to determine a set of indicators of flow alteration, including percent alteration of August median flow, water-use intensity, and withdrawal and return-flow fraction. The contributing areas to the fish-sampling sites were delineated and used with a Geographic Information System (GIS) to determine a set of environmental characteristics, including elevation, basin slope, percent sand and gravel, percent wetland, and percent open water, and a set of anthropogenic-alteration variables, including impervious cover and dam density. Two analytical techniques, quantile regression and generalized linear modeling, were applied to determine the association between fish-response variables and the selected environmental and anthropogenic explanatory variables. Quantile regression indicated that flow alteration and impervious cover were negatively associated with both fluvial-fish relative abundance and fluvial-fish species richness. Three generalized linear models (GLMs) were developed to quantify the response of fish communities to multiple environmental and anthropogenic variables. Flow-alteration variables are statistically significant for the fluvial-fish relative-abundance model. Impervious cover is statistically significant for the fluvial-fish relative-abundance, fluvial-fish species richness, and brook trout relative-abundance models. The variables in the equations were demonstrated to be significant, and the variability explained by the models, as measured by the correlation between observed and predicted values, ranges from 39 to 65 percent. The GLM models indicated that, keeping all other variables the same, a one-unit (1 percent) increase in the percent depletion or percent surcharging of August median flow would result in a 0.4-percent decrease in the relative abundance (in counts per hour) of fluvial fish and that the relative abundance of fluvial fish was expected to be about 55 percent lower in net-depleted streams than in net-surcharged streams. The GLM models also indicated that a unit increase in impervious cover resulted in a 5.5-percent decrease in the relative abundance of fluvial fish and a 2.5-percent decrease in fluvial-fish species richness.
Three-Dimensional Simulations of Oblique Asteroid Impacts into Water
NASA Astrophysics Data System (ADS)
Gisler, G. R.; Ferguson, J. M.; Heberling, T.; Plesko, C. S.; Weaver, R.
2016-12-01
Waves generated by impacts into oceans may represent the most significant danger from near-earth asteroids and comets. For impacts near populated shores, the crown splash and subsequent waves, accompanied by sediment lofting and high winds, could be more damaging than storm surges from the strongest hurricanes. For asteroids less than 500 m in diameter that impact into deep water far from shores, the waves produced will be detectable over large distances, but probably not significantly dangerous. We present new three-dimensional simulations of oblique impacts into deep water, with trajectory angles ranging from 20 degrees to 60 degrees (where 90 degrees is vertical). These simulations are performed with the Los Alamos Rage hydrocode, and include atmospheric effects including ablation and airbursts. These oblique impact simulations are specifically performed in order to help determine whether there are additional dangers from the obliquity of impact not covered by previous two-dimensional studies. Water surface elevation profiles, surface pressures, and depth-averaged mass fluxes within the water are prepared for use in propagation studies.
Design package for concentrating solar collector panels
NASA Technical Reports Server (NTRS)
1978-01-01
Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The collector is a water/glycol/working fluid type, with a dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, and fiber glass insulation. It weights 98 pounds. A collector assembly includes four collector units within a tracking mount array.
NASA Astrophysics Data System (ADS)
Rodríguez-Carretero, María Teresa; Lorite, Ignacio J.; Ruiz-Ramos, Margarita; Dosio, Alessandro; Gómez, José A.
2013-04-01
The rainfed olive orchards in Southern Spain constitute the main socioeconomic system of the Mediterranean Spanish agriculture. These systems have an elevated level of complexity and require the accurate characterization of crop, climate and soil components for a correct management. It is common the inclusion of cover crops (usually winter cereals or natural cover) intercalated between the olive rows in order to reduce water erosion. Saving limited available water requires specific management, mowing or killing these cover crops in early spring. Thus, under the semi-arid conditions in Southern Spain the management of the cover crops in rainfed olive orchards is essential to avoid a severe impact to the olive orchards yield through depletion of soil water. In order to characterize this agricultural system, a complete water balance model has been developed, calibrated and validated for the semi-arid conditions of Southern Spain, called WABOL (Abazi et al., 2013). In this complex and fragile system, the climate change constitutes a huge threat for its sustainability, currently limited by the availability of water resources, and its forecasted reduction for Mediterranean environments in Southern Spain. The objective of this study was to simulate the impact of climate change on the different components of the water balance in these representative double cropping systems: transpiration of the olive orchard and cover crop, runoff, deep percolation and soil water content. Four climatic scenarios from the FP6 European Project ENSEMBLES were first bias corrected for temperatures and precipitation (Dosio and Paruolo, 2011; Dosio et al., 2012) and, subsequently, used as inputs for the WABOL model for five olive orchard fields located in Southern Spain under different conditions of crop, climate, soils and management, in order to consider as much as possible of the variability detected in the Spanish olive orchards. The first results indicate the significant effect of the cover crop on the transpiration of the olive orchard, indicating that a correct water and soil management is crucial for these systems especially under climate change conditions. Thus, a significant reduction of transpiration was detected when the cover crops were implanted. When the climatic conditions were more limited (reductions of around 21% for the annual precipitation and increases around 13% for reference evapotranspiration), the impact on olive orchards were critical, affecting seriously the profitability of the olive orchards. In this context, cover crops can be considered as part of adaptation strategies. Further studies will be required for the determination of optimal species and varieties to be used as cover crops to reduce the impact of climate change on olive orchards under semi-arid conditions. References Abazi U, Lorite IJ, Cárceles B, Martínez-Raya A, Durán VH, Francia JR, Gómez JA (2013) WABOL: A conceptual water balance model for analyzing rainfall water use in olive orchards under different soil and cover crop Management strategies. Computers and Electronics in Agriculture 91:35-48 Dosio A, Paruolo P (2011) Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, V 116, D16106, doi:10.1029/2011JD015934 Dosio A, Paruolo P, Rojas R (2012) Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research, V 117, D17, doi: 10.1029/2012JD017968
Dust and Debris Tolerant Retractable Cover Connector
NASA Technical Reports Server (NTRS)
Lewis, Mark E. (Inventor); Dokos, Adam G. (Inventor); Townsend, III, Ivan I. (Inventor); Carlson, Jeffrey W. (Inventor); Bastin, Gary L. (Inventor); Murtland, Kevin A. (Inventor)
2017-01-01
A debris exclusion and removal apparatus for connectors which have retractable cover configurations which include internal wafers that clean the connectors prior to mating. XXXX connectors. More particularly, embodiments relate to dust tolerant connectors. Some embodiments also relate to an intelligent connector system capable of detecting damage to or faults within a conductor and then rerouting the energy to a non-damaged spare conductor. Discussion Connectors of the present invention may be used to transfer electrical current, fluid, and gas in a wide variety of environments containing dust and other debris, wherein that debris may present substantial challenges. For example, lunar/Martian dust intrusion and/or accumulation in connectors used to transfer oxygen, hydrogen, nitrogen, etc., may lead to larger system failures as well as loss of life in extraterrestrial human exploration endeavors. Additionally, embodiments of the present invention may also be suitable for use where connectors must resist water intrusion, such as terrestrial deep water operations.
The scaling of urban surface water abundance and impairment with city size
NASA Astrophysics Data System (ADS)
Steele, M. K.
2018-03-01
Urbanization alters surface water compared to nonurban landscapes, yet little is known regarding how basic aquatic ecosystem characteristics, such as the abundance and impairment of surface water, differ with population size or regional context. This study examined the abundance, scaling, and impairment of surface water by quantifying the stream length, water body area, and impaired stream length for 3520 cities in the United States with populations from 2500 to 18 million. Stream length, water body area, and impaired stream length were quantified using the National Hydrography Dataset and the EPA's 303(d) list. These metrics were scaled with population and city area using single and piecewise power-law models and related to biophysical factors (precipitation, topography) and land cover. Results show that abundance of stream length and water body area in cities actually increases with city area; however, the per person abundance decreases with population size. Relative to population, impaired stream length did not increase until city populations were > 25,000 people, then scaled linearly with population. Some variation in abundance and impairment was explained by biophysical context and land cover. Development intensity correlated with stream density and impairment; however, those relationships depended on the orientation of the land covers. When high intensity development occupied the local elevation highs (+ 15 m) and undeveloped land the elevation lows, the percentage of impaired streams was less than the opposite land cover orientation (- 15 m) or very flat land. These results show that surface water abundance and impairment across contiguous US cities are influenced by city size and by biophysical setting interacting with land cover intensity.
Snow Cover, Snowmelt Timing and Stream Power in the Wind River Range, Wyoming
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.
2011-01-01
Earlier onset of springtime weather, including earlier snowmelt, has been documented in the western United States over at least the last 50 years. Because the majority (is greater than 70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for the management of streamflow. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work, such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud-gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period as a whole. The extent of snow-cover (percent of basin covered) derived from the lowest elevation zone (2500-3000 m) of the WRR, using MODIS CGF snow-cover maps, is strongly correlated with maximum monthly discharge on 30 April, where Spearman's Rank correlation, rs,=0.89 for the decade of the 2000s. We also investigated stream power for Bull Lake Creek above Bull Lake; and found a trend (significant at the 90% confidence level) toward reduced stream power from 1970 to 2009. Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature measured during the 40-year study period, possibly contributing to a reduction in snow cover. In addition, the strong relationship between percent of basin that was snow covered, and maximum monthly streamflow indicates that MODIS snow-cover maps are useful for predicting streamflow, and can be used to improve management of water resources in the drought-prone western United States.
The water quality of the Vrgorska Matica River.
Stambuk-Giljanović, Nives
2003-04-01
The article presents the results of investigations carried out on the 42 km long Vrgorska Matica River, which flows through the 15 km long Vrgorsko polje (polje = field) which covers an area of 3000 ha, and is at 24 m a.s.l., located in Southern Croatia. It covers the years 1997-2000 after this field had been reclaimed for agricultural use. The purpose of the investigations was to evaluate the influence of the Vrgorska Matica River which is part of the catchment area of the Trebizat River, on the water quality in Modro Oko Lake and Prud Spring, which are used for water supply and are located downstream of the Vrgorska Matica River on the right bank of the Neretva River. The water quality was evaluated by using the quality index based on the following nine parameters: temperature, mineralization, corrosion coefficient, K = (Cl + SO4)/HCO3, dissolved oxygen, BOD5, total N, protein N, total phosphorus and total coliform bacteria (100 mL)-1 (MPN coli (100 mL)-1) for which concentrations C95 are calculated. After completing the nine parameters the results of C95 were recorded and transferred to the score table to obtain the q-value. The q-value used is an attempt to quantify environmental factors which would otherwise be qualitative. For each parameter the q-value was multiplied by a weighting factor based upon the relative significance of the parameter. The nine resulting scores values were then added to arrive at an overall water quality index (sigmaS95). According to this index the water can be classified into four categories. The first category, according to the Croatian Water Classification Act (Official Bulletin No. 77,1998), includes ground and surface waters used for drinking or in the food industry either in its natural state or after disinfection, and surface water used for raising high-quality species of fish, ranging from 85-100 scores; the second category includes water used in its natural state for swimming and recreation, sports or for other species of fish and the treated water used for drinking and other industrial purposes ranging between 70-85 scores. The third category includes water used in industry with no specific requests upon water quality and in agriculture ranging from 50-70 scores; the fourth category includes water used only after being treated in areas with water shortage which is less than 50 scores. According to results obtained by investigations, the water of the Vrgorska Matica River and Prud Spring falls into the second (II) category, while water from the Modro Oko Lake belongs to the first (I) category. This means that the Matica River water does not influence the water quality of the Modro Oko Lake. This lake water quality is influenced by the Rastocka Matica River from the Rastocko polje which is located upstream from the Vrgorska Matica River. This has been proved by dyeing tests.
Field performance of alternative landfill covers vegetated with cottonwood and eucalyptus trees.
Abichou, Tarek; Musagasa, Jubily; Yuan, Lei; Chanton, Jeff; Tawfiq, Kamal; Rockwood, Donald; Licht, Louis
2012-01-01
A field study was conducted to assess the ability of landfill covers to control percolation into the waste. Performance of one conventional cover was compared to that of two evapotranspiration (ET) tree covers, using large (7 x 14 m) lined lysimeters at the Leon County Solid Waste management facility in Tallahassee, Florida. Additional unlined test sections were also constructed and monitored in order to compare soil water storage, soil temperature, and tree growth inside lysimeters and in unlined test sections. The unlined test sections were in direct contact with landfill gas. Surface runoff on the ET covers was a small proportion of the water balance (1% of precipitation) as compared to 13% in the conventional cover. Percolation in the ET covers averaged 17% and 24% of precipitation as compared to 33% in the conventional cover. On average, soil water storage was higher in the lined lysimeters (429 mm) compared to unlined test sections (408 mm). The average soil temperature in the lysimeters was lower than in the unlined test sections. The average tree height inside the lysimeters was not significantly lower (8.04 mfor eucalyptus and 7.11 mfor cottonwood) than outside (8.82 m for eucalyptus and 8.01 m for cottonwood). ET tree covers vegetated with cottonwood or eucalyptus are feasible for North Florida climate as an alternative to GCL covers.
Navigating the murky waters of colorectal cancer screening and health reform.
Green, Beverly B; Coronado, Gloria D; Devoe, Jennifer E; Allison, James
2014-06-01
The Affordable Care Act (ACA) mandates that both Medicaid and insurance plans cover life-saving preventive services recommended by the US Preventive Services Task Force, including colorectal cancer (CRC) screening and choice between colonoscopy, flexible sigmoidoscopy, and fecal occult blood testing (FOBT). People who choose FOBT or sigmoidoscopy as their initial test could face high, unexpected, out-of-pocket costs because the mandate does not cover needed follow-up colonoscopies after positive tests. Some people will have no coverage for any CRC screening because of lack of state participation in the ACA or because they do not qualify (e.g., immigrant workers). Existing disparities in CRC screening and mortality will worsen if policies are not corrected to fully cover both initial and follow-up testing.
Numerical Modeling of Coupled Water Flow and Heat Transport in Soil and Snow
NASA Astrophysics Data System (ADS)
Kelleners, T.
2015-12-01
A numerical model is developed to calculate coupled water flow and heat transport in seasonally frozen soil and snow. Both liquid water flow and water vapor flow are included. The effect of dissolved ions on soil water freezing point depression is included by combining an expression for osmotic head with the Clapeyron equation and the van Genuchten soil water retention function. The coupled water flow and heat transport equations are solved using the Thomas algorithm and Picard iteration. Ice pressure is always assumed zero and frost heave is neglected. The new model is tested using data from a high-elevation rangeland soil that is subject to significant soil freezing and a mountainous forest soil that is snow-covered for about 8 months of the year. Soil hydraulic parameters are mostly based on measurements and only vegetation parameters are fine-tuned to match measured and calculated soil water content, soil & snow temperature, and snow height. Modeling statistics for both systems show good performance for temperature, intermediate performance for snow height, and relatively low performance for soil water content, in accordance with earlier results with an older version of the model.
Kharazmi, Rasoul; Tavili, Ali; Rahdari, Mohammad Reza; Chaban, Lyudmila; Panidi, Evgeny; Rodrigo-Comino, Jesús
2018-05-23
The availability of Landsat data allows improving the monitoring and assessment of large-scale areas with land cover changes in rapid developing regions. Thus, we pretend to show a combined methodology to assess land cover changes (LCCs) in the Hamoun Wetland region (Iran) over a period of 30-year (1987-2016) and to quantify seasonal and decadal landscape and land use variabilities. Using the pixel-based change detection (PBCD) and the post-classification comparison (PCC), four land cover classes were compared among spring, summer, and fall seasons. Our findings showed for the water class a higher correlation between spring and summer (R 2 = 0.94) than fall and spring (R 2 = 0.58) seasons. Before 2000, ~ 50% of the total area was covered by bare soil and 40% by water. However, after 2000, more than 70% of wetland was transformed into bare soils. The results of the long-term monitoring period showed that fall season was the most representative time to show the inter-annual variability of LCCs monitoring and the least affected by seasonal-scale climatic variations. In the Hamoun Wetland region, land cover was highly controlled by changes in surface water, which in turn responded to both climatic and anthropogenic impacts. We were able to divide the water budget monitoring into three different ecological regimes: (1) a period of high water level, which sustained healthy extensive plant life, and approximately 40% of the total surface water was retained until the end of the hydrological year; (2) a period of drought during high evaporation rates was observed, and a mean wetland surface of about 85% was characterized by bare land; and (3) a recovery period in which water levels were overall rising, but they are not maintained from year to year. After a spring flood, in 2006 and 2013, grassland reached the highest extensions, covering till more than 20% of the region, and the dynamics of the ecosystem were affected by the differences in moisture. The Hamoun wetland region served as an important example and demonstration of the feedbacks between land cover and land uses, particularly as pertaining to water resources available to a rapidly expanding population.