Science.gov

Sample records for cow physiological adaptations

  1. Physiological and metabolic responses of gestating Brahaman cows to repeated transportation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to examine physiological and metabolic responses to repeated transportation of gestating Brahman cows, previously classified as mature cows into temperament groups of Calm, Intermediate, or Temperamental. Brahman cows (n = 48) were subjected to 2 hours of transport (TRA...

  2. Physiologic adaptation to space - Space adaptation syndrome

    NASA Technical Reports Server (NTRS)

    Vanderploeg, J. M.

    1985-01-01

    The adaptive changes of the neurovestibular system to microgravity, which result in space motion sickness (SMS), are studied. A list of symptoms, which range from vomiting to drowsiness, is provided. The two patterns of symptom development, rapid and gradual, and the duration of the symptoms are described. The concept of sensory conflict and rearrangements to explain SMS is being investigated.

  3. Metabolic Heat Stress Adaption in Transition Cows: Differences in Macronutrient Oxidation between Late-Gestating and Early-Lactating German Holstein Dairy Cows

    PubMed Central

    Derno, Michael; Otten, Winfried; Mielenz, Manfred; Nürnberg, Gerd

    2015-01-01

    High ambient temperatures have severe adverse effects on biological functions of high-yielding dairy cows. The metabolic adaption to heat stress was examined in 14 German Holsteins transition cows assigned to two groups, one heat-stressed (HS) and one pair-fed (PF) at the level of HS. After 6 days of thermoneutrality and ad libitum feeding (P1), cows were challenged for 6 days (P2) by heat stress (temperature humidity index (THI) = 76) or thermoneutral pair-feeding in climatic chambers 3 weeks ante partum and again 3 weeks post-partum. On the sixth day of each period P1 or P2, oxidative metabolism was analyzed for 24 hours in open circuit respiration chambers. Water and feed intake, vital parameters and milk yield were recorded. Daily blood samples were analyzed for glucose, β-hydroxybutyric acid, non-esterified fatty acids, urea, creatinine, methyl histidine, adrenaline and noradrenaline. In general, heat stress caused marked effects on water homeorhesis with impairments of renal function and a strong adrenergic response accompanied with a prevalence of carbohydrate oxidation over fat catabolism. Heat-stressed cows extensively degraded tissue protein as reflected by the increase of plasma urea, creatinine and methyl histidine concentrations. However, the acute metabolic heat stress response in dry cows differed from early-lactating cows as the prepartal adipose tissue was not refractory to lipolytic, adrenergic stimuli, and the rate of amino acid oxidation was lower than in the postpartal stage. Together with the lower endogenous metabolic heat load, metabolic adaption in dry cows is indicative for a higher heat tolerance and the prioritization of the nutritional requirements of the fast-growing near-term fetus. These findings indicate that the development of future nutritional strategies for attenuating impairments of health and performance due to ambient heat requires the consideration of the physiological stage of dairy cows. PMID:25938406

  4. Physiological and metabolic responses of gestating Brahman cows to repeated transportation.

    PubMed

    Price, D M; Lewis, A W; Neuendorff, D A; Carroll, J A; Burdick Sanchez, N C; Vann, R C; Welsh, T H; Randel, R D

    2015-02-01

    This study characterized physiological responses to repeated transportation (TRANS) of gestating cows of differing temperaments. Cows were classified as Calm (C; = 10), Intermediate (I; = 28), or Temperamental (T; = 10). Based on artificial insemination date and pregnancy confirmation, cows were TRANS for 2 h on d 60 (TRANS1), 80 (TRANS2), 100 (TRANS3), 120 (TRANS4), and 140 (TRANS5) ± 5 d of gestation. Indwelling vaginal temperature (VT) monitoring devices were inserted 24 h before each TRANS with VT recorded from 2 h before TRANS and averaged into 5-min intervals through 30 min after TRANS. Serum samples were collected before loading and on unloading from the trailer to determine concentrations of cortisol, glucose, and nonesterified fatty acids (NEFA). Data were analyzed by repeated measures analysis in SAS. Serum cortisol concentrations were affected by temperament ( < 0.001), with T cows having the greater concentrations of cortisol before each TRANS event. All cows (100%) regardless of temperament exhibited elevations in cortisol following each TRANS event. Peak VT was greater ( < 0.001) at TRANS1 relative to all other TRANS events regardless of cow temperament. During TRANS, the T cows tended ( < 0.09) to have greater peak VT (39.86 ± 0.15°C) compared to C (39.41 ± 0.16°C) and I cows (39.55 ± 0.08°C). Area under the VT curve decreased ( = 0.002) from TRANS1 through TRANS5. Pre-TRANS serum glucose concentration at TRANS1 was greater ( < 0.03) for T (68.13 ± 4.31mg/dL) compared to I (53.42 ± 2.78 mg/dL) and C cows (52.76 ± 4.60 mg/dL). The C and I cows had greater changes in NEFA concentration between pre- and post-transport, and T cows showed the least change ( < 0.001). Cow VT and serum glucose concentration decreased in all temperaments ( < 0.01) with repeated TRANS; however, serum NEFA concentration post-TRANS did not vary ( > 0.10) with repeated TRANS events. Serum glucose concentrations were affected ( < 0.02) by a TRANS event by temperament

  5. Neandertal cold adaptation: physiological and energetic factors.

    PubMed

    Steegmann, A Theodore; Cerny, Frank J; Holliday, Trenton W

    2002-01-01

    European Neandertals employed a complex set of physiological cold defenses, homologous to those seen in contemporary humans and nonhuman primates. While Neandertal morphological patterns, such as foreshortened extremities and low relative surface-area, may have explained some of the variance in cold resistance, it is suggested the adaptive package was strongly dependent on a rich array of physiological defenses. A summary of the environmental cold conditions in which the Neandertals lived is presented, and a comparative ethnographic model from Tierra del Fuego is used. Muscle and subcutaneous fat are excellent "passive" insulators. Neandertals were quite muscular, but it is unlikely that they could maintain enough superficial body fat to offer much cold protection. A major, high-energy metabolic adaptation facilitated by modest amounts of highly thermogenic brown adipose tissue (BAT) is proposed. In addition, Neandertals would have been protected by general mammalian cold defenses based on systemic vasoconstriction and intensified by acclimatization, aerobic fitness, and localized cold--induced vasodilation. However, these defenses are energetically expensive. Based on contemporary data from circumpolar peoples, it is estimated that Neandertals required 3,360 to 4,480 kcal per day to support strenuous winter foraging and cold resistance costs. Several specific genetic cold adaptations are also proposed--heat shock protein (actually, stress shock protein), an ACP*1 locus somatic growth factor, and a specialized calcium metabolism not as yet understood. PMID:12203812

  6. Performance and physiologic adaptations to resistance training.

    PubMed

    Deschenes, Michael R; Kraemer, William J

    2002-11-01

    Weight lifting, or resistance training, is a potent stimulus to the neuromuscular system. Depending on the specific program design, resistance training can enhance strength, power, or local muscular endurance. These improvements in performance are directly related to the physiologic adaptations elicited through prolonged resistance training. Optimal resistance training programs are individualized to meet specific training goals. When trained properly (i.e., similar intensity and volume), these functional and physiologic adaptations are similarly impressive among women and the aged as they are among young men. Yet, in contrast to relative measurements, sex and age differences exist in the absolute magnitude of adaptation. Of equal importance, perhaps most notably among the elderly, are the important health benefits that may also be derived from resistance training. For example, bone density, insulin sensitivity, and co-morbidities associated with obesity can be effectively managed with resistance exercise when it is conducted on a regular basis. The extent of the functional and health benefits to be accrued from resistance training depend on factors such as initial performance and health status, along with the specification of program design variables such as frequency, duration, intensity, volume, and rest intervals. PMID:12409807

  7. Physiological adaptations of key oral bacteria.

    PubMed

    Douglas, C W Ian; Naylor, Kathryn; Phansopa, Chatchawal; Frey, Andrew M; Farmilo, Thomas; Stafford, Graham P

    2014-01-01

    Oral colonising bacteria are highly adapted to the various environmental niches harboured within the mouth, whether that means while contributing to one of the major oral diseases of caries, pulp infections, or gingival/periodontal disease or as part of a commensal lifestyle. Key to these infections is the ability to adhere to surfaces via a range of specialised adhesins targeted at both salivary and epithelial proteins, their glycans and to form biofilm. They must also resist the various physical stressors they are subjected to, including pH and oxidative stress. Possibly most strikingly, they have developed the ability to harvest both nutrient sources provided by the diet and those derived from the host, such as protein and surface glycans. We have attempted to review recent developments that have revealed much about the molecular mechanisms at work in shaping the physiology of oral bacteria and how we might use this information to design and implement new treatment strategies.

  8. Resistance Training: Physiological Responses and Adaptations (Part 3 of 4).

    ERIC Educational Resources Information Center

    Fleck, Steven J.; Kraemer, William J.

    1988-01-01

    The physiological responses and adaptations which occur as a result of resistance training, such as cardiovascular responses, serum lipid count, body composition, and neural adaptations are discussed. Changes in the endocrine system are also described. (JL)

  9. Vascular sphingolipids in physiological and pathological adaptation.

    PubMed

    Bao, Jun-Xiang; Su, Yu-Ting; Cheng, Yao-Ping; Zhang, Hai-Jun; Xie, Xiao-Ping; Chang, Yao-Ming

    2016-01-01

    Sphingolipids (SLs) are compounds containing a long-chain fatty alcohol amine called sphingosine which exists in cellular membranes, cytoplasm, nucleus, interstitial fluid, blood and lymphatic circulation. SLs act as essential constituents of membranes of eukaryotic cells, so the seesaw of SLs will lead to structural alteration of membranes instigating cellular functional change. SLs also act as crucial signaling molecules taking effect intracellularly or extracellularly which regulates activity of downstream molecules determining cellular adaptation to numerous stimulus. This review aims to highlight the contribution of SLs to physiological and pathophysiological remodeling of vasculature. We will first provide a short overview on metabolism, trafficking and compartmentalization of SLs. Then the regulation of SLs on reactive oxygen species (ROS) formation, vascular tone modulation, endothelial barrier integrity, apoptosis and autophagy are summarized. Finally, we will discuss how the SLs are modulated contributing to vascular development, angiogenesis and vascular remodeling in pathological situations as hypertension, atherosclerosis, and aging. The compellingly regulative actions of SLs bring about copious therapeutic targets for potential pharmacological intervention on the diseases involving vascular maladaptation. PMID:27100498

  10. Understanding diversity of hepatic metabolism and related adaptations in the early lactating dairy cow.

    PubMed

    van Dorland, H A; Bruckmaier, R M

    2013-08-01

    The onset of lactation in dairy cows represents a major metabolic challenge that involves large adaptations in glucose, fatty acid, and mineral metabolism to support lactation and to avoid metabolic dysfunction. The complex system of adaptation can differ considerably between cows, and may have a genetic base. In the present review, the variation in adaptive reactions in dairy cows is discussed. In these studies, the liver being a key metabolic regulator for understanding the variation in adaptive performance of the dairy cow was the main focus of research. Liver function was evaluated through gene expression measurements; to explain the associated phenotypic variability and to identify descriptors for metabolic robustness in dairy cows. Hence, the identified genes involved act as a connecting link between the genotype encoded on the DNA and the phenotypic expression of the target factors at a protein level. The integration of phenotypic data, including gene expression profiles, and genomic data will facilitate a better characterization of the complex interplay between these levels, and will improve the genetic understanding necessary to unravel a certain trait or multi-trait such as metabolic robustness in dairy cows.

  11. Diet and cooling interactions on physiological responses of grazing dairy cows, milk production and composition

    NASA Astrophysics Data System (ADS)

    Gallardo, M. R.; Valtorta, S. E.; Leva, P. E.; Gaggiotti, M. C.; Conti, G. A.; Gregoret, R. F.

    2005-11-01

    The objective of this trial was to evaluate the effects of diet and cooling in the holding pen before milking on rectal temperature, respiration rate and milk production and composition. Fifty-eight lactating Holstein cows were used in a factorial split-plot design, at Rafaela Experimental Station from 12 January to 3 March 2003. The treatments were combinations of two diets: control (CD) and balanced (BD) with two levels of cooling before milking: none (NSF) and a sprinkler and fans (SF). Forage:concentrate ratios for CD and BD were 81:19 and 68:32, respectively. Cows were milked twice daily. Milk production was recorded daily, and milk composition (fat, protein, lactose and urea) was analysed twice a week. The physiological data were recorded once a week, before the cattle entered the holding pen and after milking, in the afternoon. Average maximum weekly temperature humidity index was 75.4 and ranged from 61.4 to 83. There were highly significant effects of cooling on physiological responses. Milk production was affected by diet and cooling, with no interaction; the highest and lowest production of milk was 22.42 and 20.07 l/cow per day, for BD+SF and CD+NSF, respectively. Protein was affected by diet, and was higher for BD (3.17 vs. 3.08%). There were interaction effects on milk fat at the 8% level, the highest concentration being 3.65% for BD+NFS. It was concluded that under grazing conditions, cooling by sprinkler and fans before milking improves the comfort of dairy cows, and that the effects on milk production and composition are enhanced when diets are specially formulated for heat-stress periods.

  12. Opioid peptides and behavioral and physiological responses of dairy cows to social isolation in unfamiliar surroundings.

    PubMed

    Rushen, J; Boissy, A; Terlouw, E M; de Passillé, A M

    1999-11-01

    To test whether endogenous opioid peptides are involved in the behavioral and physiological responses of cattle to stress, 12 Holstein cows were either placed in social isolation in unfamiliar surroundings for 15 min or remained in their home stalls, either with or without naloxone treatment, following a Latin square design. Vocalizations (judged as high or low frequency), defecation/urination, and heart rate were recorded, latency to respond to local thermal stimulation of the leg by means of a laser was measured to detect pain sensitivity, and blood was sampled and assayed for cortisol concentrations. Naloxone in the home stall increased cortisol concentrations and tended to reduce response latencies to the laser but did not induce vocalization. Social isolation increased the incidence of high-frequency vocalization and of defecation/urination, heart rate, cortisol concentrations, and response latencies to the laser. Prior administration of naloxone increased the incidence of low-frequency vocalization in isolation, but it had no effect on heart rate or on responses to the laser and only limited effect on cortisol concentrations when the cows were isolated. Brief periods of social isolation in unfamiliar surroundings seem to be stressful to cows, as indicated by increased heart rate, hypothalamic-pituitary-adrenocortical axis activity, and vocalization. Isolation also reduces pain sensitivity, suggesting a stress-induced analgesia. However, we found no evidence that naloxone-sensitive opioid receptors were involved in these responses. PMID:10568459

  13. Short dry period management improves peripartum ruminal adaptation in dairy cows.

    PubMed

    Jolicoeur, M S; Brito, A F; Santschi, D E; Pellerin, D; Lefebvre, D; Berthiaume, R; Girard, C L

    2014-12-01

    kilograms per day, was greater or tended to be greater for SDP cows, but differences were no longer significant when expressed per unit of nutrient ingested. The decrease in plasma nonesterified fatty acids and β-hydroxybutyrate in SDP cows without effect on milk yield suggests an improved energy balance likely due to greater DMI. Results from the present study seem to indicate that reducing the number of diet changes before calving could facilitate ruminal adaptation to the lactation diet and improve energy balance postpartum.

  14. Genetics of water use physiology in locally adapted Arabidopsis thaliana.

    PubMed

    Mojica, Julius P; Mullen, Jack; Lovell, John T; Monroe, J Grey; Paul, John R; Oakley, Christopher G; McKay, John K

    2016-10-01

    Identifying the genetic basis of adaptation to climate has long been a goal in evolutionary biology and has applications in agriculture. Adaptation to drought represents one important aspect of local adaptation, and drought is the major factor limiting agricultural yield. We examined local adaptation between Sweden and Italy Arabidopsis thaliana ecotypes, which show contrasting levels of water availability in their local environments. To identify quantitative trait loci (QTL) controlling water use physiology traits and adaptive trait QTL (genomic regions where trait QTL and fitness QTL colocalize), we performed QTL mapping on 374F9 recombinant inbred lines in well-watered and terminal drought conditions. We found 72 QTL (32 in well-watered, 31 in drought, 9 for plasticity) across five water use physiology traits: δ(13)C, rosette area, dry rosette weight, leaf water content and percent leaf nitrogen. Some of these genomic regions colocalize with fitness QTL and with other physiology QTL in defined hotspots. In addition, we found evidence of both constitutive and inducible water use physiology QTL. Finally, we identified highly divergent candidate genes, in silico. Our results suggest that many genes with minor effects may influence adaptation through water use physiology and that pleiotropic water use physiology QTL have fitness consequences.

  15. Genetics of water use physiology in locally adapted Arabidopsis thaliana.

    PubMed

    Mojica, Julius P; Mullen, Jack; Lovell, John T; Monroe, J Grey; Paul, John R; Oakley, Christopher G; McKay, John K

    2016-10-01

    Identifying the genetic basis of adaptation to climate has long been a goal in evolutionary biology and has applications in agriculture. Adaptation to drought represents one important aspect of local adaptation, and drought is the major factor limiting agricultural yield. We examined local adaptation between Sweden and Italy Arabidopsis thaliana ecotypes, which show contrasting levels of water availability in their local environments. To identify quantitative trait loci (QTL) controlling water use physiology traits and adaptive trait QTL (genomic regions where trait QTL and fitness QTL colocalize), we performed QTL mapping on 374F9 recombinant inbred lines in well-watered and terminal drought conditions. We found 72 QTL (32 in well-watered, 31 in drought, 9 for plasticity) across five water use physiology traits: δ(13)C, rosette area, dry rosette weight, leaf water content and percent leaf nitrogen. Some of these genomic regions colocalize with fitness QTL and with other physiology QTL in defined hotspots. In addition, we found evidence of both constitutive and inducible water use physiology QTL. Finally, we identified highly divergent candidate genes, in silico. Our results suggest that many genes with minor effects may influence adaptation through water use physiology and that pleiotropic water use physiology QTL have fitness consequences. PMID:27593459

  16. Physiological Self-Regulation and Adaptive Automation

    NASA Technical Reports Server (NTRS)

    Prinzell, Lawrence J.; Pope, Alan T.; Freeman, Frederick G.

    2007-01-01

    Adaptive automation has been proposed as a solution to current problems of human-automation interaction. Past research has shown the potential of this advanced form of automation to enhance pilot engagement and lower cognitive workload. However, there have been concerns voiced regarding issues, such as automation surprises, associated with the use of adaptive automation. This study examined the use of psychophysiological self-regulation training with adaptive automation that may help pilots deal with these problems through the enhancement of cognitive resource management skills. Eighteen participants were assigned to 3 groups (self-regulation training, false feedback, and control) and performed resource management, monitoring, and tracking tasks from the Multiple Attribute Task Battery. The tracking task was cycled between 3 levels of task difficulty (automatic, adaptive aiding, manual) on the basis of the electroencephalogram-derived engagement index. The other two tasks remained in automatic mode that had a single automation failure. Those participants who had received self-regulation training performed significantly better and reported lower National Aeronautics and Space Administration Task Load Index scores than participants in the false feedback and control groups. The theoretical and practical implications of these results for adaptive automation are discussed.

  17. Physiological adaptation - Crew health in space

    NASA Technical Reports Server (NTRS)

    Brand, Susan

    1988-01-01

    The experiments planned for the Spacelab Life Sciences-1 (SLS-1) Shuttle mission, which is dedicated to investigating biomedical issues pertinent to the man's presence in space, are discussed. The areas of research will include human and animal experiments concerned with the cardiovascular system, the vestibular apparatus, and metabolic experiments related to renal endocrine function, hematology, immune system, and muscle and bone/calcium metabolism, with particular attention given to the physiological complications resulting from short-duration space flight and subsequent return to the 1-G environment. The hardware systems to be used on the SLS-1 mission represent prototypes of systems to be developed for the medical and research facilities of the Space Station. The results of the experiments will be used to address issues related to long-duration space flight required for the Space Station and interplanetary travels.

  18. Using time-series intervention analysis to model cow heart rate affected by programmed audio and environmental/physiological

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research is the first use of the Box-Jenkins time-series models to describe changes in heart rate (HR) of free-ranging crossbred cows (Bos taurus) receiving both programmed audio cues from directional virtual fencing (DVFTM) devices and non-programmed environmental/physiological cues. The DVFT...

  19. Using time-series intervention analysis to model cow heart rate affected by programmed audio and environmental/physiological cues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research is the first use of the Box-Jenkins time-series models to describe changes in heart rate (HR) of free-ranging crossbred cows (Bos taurus) receiving both programmed audio cues from directional virtual fencing (DVFTM) devices and non-programmed environmental/physiological cues. The DVFT...

  20. Effects of bovine somatotropin on physiologic responses of lactating Holstein and Jersey cows during hot, humid weather.

    PubMed

    West, J W; Mullinix, B G; Sandifer, T G

    1991-03-01

    Thirty-one lactating Holstein and Jersey cows were used to determine the effects of daily injections of 0 or 20 mg of recombinant bST on physiologic responses during hot, humid weather. Body temperature was determined by measuring milk temperature at each milking. Jugular blood was sampled for serum analysis of selected hormones, blood metabolites, and fatty acids, and arterial blood was sampled for blood pH and blood gas analysis. Milk was characterized for fatty acid composition. Blood pH was unchanged, but partial pressure of blood CO2, blood bicarbonate, base excess, and total CO2 declined with administration of bST. Serum triglycerides increased 89% in cows receiving bST. Blood urea nitrogen tended to decline in cows receiving bST. Serum cortisol, triiodothyronine, and thyroxine did not change, but insulin-like growth factor-1 increased 128% with bST use. Reduced milk short-chain fatty acids, increased milk long-chain fatty acids, and increased blood serum C18:1 fatty acid content occurred in cows administered bST and probably reflected tissue mobilization. Cows administered bST in hot weather had higher milk temperatures. Alterations in physiologic and metabolic measures in association with higher milk temperature suggest an interaction of bST use with hot, humid weather and reflect the need to minimize the effects of heat stress.

  1. The effect of temperament and responsiveness towards humans on the behavior, physiology and milk production of multi-parous dairy cows in a familiar and novel milking environment.

    PubMed

    Sutherland, Mhairi A; Rogers, Andrea R; Verkerk, Gwyneth A

    2012-10-10

    The objectives of this study were to investigate whether; 1) temperament or 2) behavioral responsiveness to humans, can affect the behavior, physiology and productivity of dairy cows being milked in a familiar and novel milking environment. Temperament of multi-parous cows was defined based on exit time from a restraint device, as High Responders (HR; n=10), Medium Responders (MR; n=10) or Low Responders (LR; n=10). The behavioral response of cows to humans was assessed using four tests: restraint, exit speed, avoidance distance test and a voluntary approach test. Cows were milked according to their established routines in a rotary (familiar) milking parlor and behavioral, physiological and production data were collected over five consecutive days, including heart rate, cortisol and oxytocin concentrations and milk yield. The following week, cows were milked in a novel environment (herringbone parlor within the same farm facility) over five consecutive days, and the data and sample collection program was repeated. Cows were then given an exogenous adrenocorticotropic hormone (ACTH) challenge to measure adrenal responsiveness. Exit time was negatively correlated with the behavioral responses of cows to restraint and human avoidance distance (HAD) in the paddock and arena. The behavioral response of cows to the milking process was greater in MR than LR and HR cows in the familiar and novel milking environments. Milk yields were greater in LR than HR cows in the novel but not the familiar milking parlor. Oxytocin concentrations increased during milking in the novel environment, regardless of cow temperament. In the familiar and novel environments, heart rates were higher in HR than LR cows before and during milking and rMSSD was lower in HR cows during milking in a novel environment. There was no difference in cortisol concentrations between LR and HR cows in response to an ACTH challenge, but HR cows had higher baseline cortisol levels than LR cows. The number of leg

  2. Coping with thermal challenges: physiological adaptations to environmental temperatures.

    PubMed

    Tattersall, Glenn J; Sinclair, Brent J; Withers, Philip C; Fields, Peter A; Seebacher, Frank; Cooper, Christine E; Maloney, Shane K

    2012-07-01

    Temperature profoundly influences physiological responses in animals, primarily due to the effects on biochemical reaction rates. Since physiological responses are often exemplified by their rate dependency (e.g., rate of blood flow, rate of metabolism, rate of heat production, and rate of ion pumping), the study of temperature adaptations has a long history in comparative and evolutionary physiology. Animals may either defend a fairly constant temperature by recruiting biochemical mechanisms of heat production and utilizing physiological responses geared toward modifying heat loss and heat gain from the environment, or utilize biochemical modifications to allow for physiological adjustments to temperature. Biochemical adaptations to temperature involve alterations in protein structure that compromise the effects of increased temperatures on improving catalytic enzyme function with the detrimental influences of higher temperature on protein stability. Temperature has acted to shape the responses of animal proteins in manners that generally preserve turnover rates at animals' normal, or optimal, body temperatures. Physiological responses to cold and warmth differ depending on whether animals maintain elevated body temperatures (endothermic) or exhibit minimal internal heat production (ectothermic). In both cases, however, these mechanisms involve regulated neural and hormonal over heat flow to the body or heat flow within the body. Examples of biochemical responses to temperature in endotherms involve metabolic uncoupling mechanisms that decrease metabolic efficiency with the outcome of producing heat, whereas ectothermic adaptations to temperature are best exemplified by the numerous mechanisms that allow for the tolerance or avoidance of ice crystal formation at temperatures below 0°C.

  3. Effects of protein supplementation frequency on physiological responses associated with reproduction in beef cows.

    PubMed

    Cappellozza, B I; Cooke, R F; Reis, M M; Marques, R S; Guarnieri Filho, T A; Perry, G A; Jump, D B; Lytle, K A; Bohnert, D W

    2015-01-01

    The objective of this experiment was to determine if frequency of protein supplementation impacts physiological responses associated with reproduction in beef cows. Fourteen nonpregnant, nonlactating beef cows were ranked by age and BW and allocated to 3 groups. Groups were assigned to a 3 × 3 Latin square design, containing 3 periods of 21 d and the following treatments: 1) soybean meal supplementation daily (D), 2) soybean meal supplementation 3 times/week (3WK), and 3) soybean meal supplementation once/week (1WK). Within each period, cows were assigned to an estrus synchronization protocol: 100 μg of GnRH + controlled internal drug release device (CIDR) containing 1.38 g of progesterone (P4) on d 1, 25 mg of PGF2α on d 8, and CIDR removal + 100 μg of GnRH on d 11. Grass-seed straw was offered for ad libitum consumption. Soybean meal was individually supplemented at a daily rate of 1 kg/cow (as-fed basis). Moreover, 3WK was supplemented on d 0, 2, 4, 7, 9, 11, 14, 16, and 18 whereas 1WK was supplemented on d 4, 11, and 18. Blood samples were collected from 0 (before) to 72 h after supplementation on d 11 and 18 and analyzed for plasma urea-N (PUN). Samples collected from 0 to 12 h were also analyzed for plasma glucose, insulin, and P4 (d 18 only). Uterine flushing fluid was collected concurrently with blood sampling at 28 h for pH evaluation. Liver biopsies were performed concurrently with blood sampling at 0, 4, and 28 h and analyzed for mRNA expression of carbamoyl phosphate synthetase I (CPS-I; h 28) and CYP2C19 and CYP3A4 (h 0 and 4 on d 18). Plasma urea-N concentrations were greater (P < 0.01) for 1WK vs. 3WK from 20 to 72 h and greater (P < 0.01) for 1WK vs. D from 16 to 48 h and at 72 h after supplementation (treatment × hour interaction, P < 0.01). Moreover, PUN concentrations peaked at 28 h after supplementation for 3WK and 1WK (P < 0.01) and were greater (P < 0.01) at this time for 1WK vs. 3WK and D and for 3WK vs. D. Expression of CPS-I was

  4. Physiologic, health, and production responses of dairy cows supplemented with an immunomodulatory feed ingredient during the transition period.

    PubMed

    Brandão, A P; Cooke, R F; Corrá, F N; Piccolo, M B; Gennari, R; Leiva, T; Vasconcelos, J L M

    2016-07-01

    This study compared physiological, health, and productive parameters in dairy cows supplemented or not with Omnigen-AF (OMN; Phibro Animal Health, Teaneck, NJ) during the transition period. Thirty-eight nonlactating, multiparous, pregnant Holstein × Gir cows were ranked by body weight (BW) and body condition score (BCS), and assigned to receive (n=19) or not (CON; n=19) OMN at 56 g/cow daily (as-fed basis) beginning 35 d before expected date of calving. Before calving, cows were maintained in single drylot pen with ad libitum access to corn silage, and received (as-fed basis) 3kg/cow daily of a concentrate. After calving, cows were moved to an adjacent drylot pen, milked twice daily, offered (as-fed basis) 35kg/cow daily of corn silage, and individually received a concentrate formulated to meet their nutritional requirements after both milkings. Cows received OMN individually as top-dressing in the morning concentrate feeding. Before calving, cow BW and BCS were recorded weekly and blood samples were collected every 5 d beginning on d -35 relative to expected calving date. After calving and until 46 d in milk, BW and BCS were recorded weekly, individual milk production was recorded, and milk samples were collected daily for total solids and somatic cell count analyses. Blood was sampled daily from 0 to 7 d in milk, every other day from 9 to 21 d in milk, and every 5 d from 26 to 46 d in milk. On 30 and 46 d in milk, cows were evaluated for endometritis via cytobrush technique, based on % of polymorphonuclear (PMN) cells in 100 total cell count (PMN + endometrial cells). On 48.7±1.6 d in milk, 9 cows/treatment received a lipopolysaccharide (LPS) injection (0.25μg/kg of BW), and blood was sampled hourly from -2 to 8 h, at 12-h intervals from 12 to 72 h, and at 24-h intervals form 96 to 120 h relative to LPS administration. No treatment differences were detected on BW, BCS, serum concentrations of cortisol, fatty acids, insulin, glucose, haptoglobin, cortisol, and

  5. ADAPTIVE DATA ANALYSIS OF COMPLEX FLUCTUATIONS IN PHYSIOLOGIC TIME SERIES

    PubMed Central

    PENG, C.-K.; COSTA, MADALENA; GOLDBERGER, ARY L.

    2009-01-01

    We introduce a generic framework of dynamical complexity to understand and quantify fluctuations of physiologic time series. In particular, we discuss the importance of applying adaptive data analysis techniques, such as the empirical mode decomposition algorithm, to address the challenges of nonlinearity and nonstationarity that are typically exhibited in biological fluctuations. PMID:20041035

  6. Nociceptive threshold, blood constituents and physiological values in 213 cows with locomotion scores ranging from normal to severely lame.

    PubMed

    Tadich, N; Tejeda, C; Bastias, S; Rosenfeld, C; Green, L E

    2013-08-01

    The aim of this study was to investigate associations between mechanical nociceptive threshold, blood constituents, physiological measurements and locomotion score (LS) in dairy cattle with a range of LS from 1 (normal) to 5 (severely lame). The study used 213 Friesian/Friesian cross dairy cows from 12 farms. There were 40-50 cows each with LS 1-4 and 22 cows with LS 5. Each cow was restrained and her temperature and respiratory and cardiac rates were measured. Nociceptive threshold, plasma concentrations of haptoglobin, β-hydroxybutyrate (β-HB), cortisol, glucose, lactate, creatinine kinase activity, packed cell volume and white blood cell counts were determined. Mixed effect models were used to investigate associations between the variables measured and LS. Parity and stage of lactation were forced into all analyses and the model fit was checked by investigation of residuals. After accounting for parity and stage of lactation, nociceptive threshold was significantly lower in cattle with LS 3-5 compared with LS 1 in a dose response manner, indicating increasing hyperalgesia with increasing LS. Haptoglobin concentration was raised in all cattle with LS>1, demonstrating an inflammatory response with all levels of lameness. Cortisol and glucose concentrations were lower and β-HB concentrations higher in cows with LS 2 compared with cows with other scores, possibly signifying metabolic challenge. Heart and respiratory rate and rectal temperature were significantly higher only in cows with LS 5, suggesting that these measurements were insensitive measures of pain or stress. It was concluded that hyperalgesia increases with increasing severity of lameness and that nociceptive pressure and haptoglobin were sensitive measures of pain from lameness.

  7. Functional Genomics of Physiological Plasticity and Local Adaptation in Killifish

    PubMed Central

    Galvez, Fernando; Zhang, Shujun; Williams, Larissa M.; Oleksiak, Marjorie F.

    2011-01-01

    Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation. PMID:20581107

  8. Physiological Adaptations to Resistance Training in Prepubertal Boys

    ERIC Educational Resources Information Center

    dos Santos Cunha, Giovani; Sant'anna, Marcelo Morganti; Cadore, Eduardo Lusa; de Oliveira, Norton Luis; dos Santos, Cinara Bos; Pinto, Ronei Silveira; Reischak-Oliveira, Alvaro

    2015-01-01

    Purpose: The purpose of this study was to investigate the physiological adaptations of resistance training (RT) in prepubertal boys. Methods: Eighteen healthy boys were divided into RT (n = 9, M[subscript age] = 10.4 ± 0.5 years) and control (CTR; n = 9, M[subscript age] = 10.9 ± 0.7 years) groups. The RT group underwent a resistance training…

  9. Effects of day of gestation and feeding regimen in Holstein × Gyr cows: III. Placental adaptations and placentome gene expression.

    PubMed

    Rotta, P P; Valadares Filho, S C; Gionbelli, T R S; Costa E Silva, L F; Engle, T E; Marcondes, M I; Guimarães, S E F; Nascimento, C S; Carvalho, B C; Silva, F A S; Oliveira, J R S

    2015-05-01

    This study investigated the influence of day of gestation (DG) and feeding regimens (FR) on the expression of genes responsible for placenta development, nutrient transfer, and angiogenic factors in Holstein × Gyr cows. Forty pregnant multiparous Holstein × Gyr cows with an average initial body weight of 482±10.8kg and an initial age of 5±0.8 yr were allocated to 1 of 2 FR: ad libitum (AL; n=20) or maintenance level (ML; n=20). Maintenance level was considered to be 1.15% of body weight (dry matter basis) and met 100% of the net energy requirements and AL provided 190% of the total net energy requirements. Cows were slaughtered at 4 DG: 139, 199, 241, and 268d. After the cows were slaughtered, the placenta and uterus were separated and weighed. Caruncles and cotyledons were individually separated, counted, and weighed. Placenta expressed as kilograms and grams per kilogram of empty body weight (EBW) was heavier in ML- than in AL-fed cows at 268d of gestation. Placenta expressed as kilograms and grams per kilogram of EBW was the lightest at 139d of gestation, and the greatest mass was observed at 268d in ML-fed cows. However, in AL-fed cows, the heaviest placenta expressed as grams per kilogram of EBW was observed from 199d of gestation. Placentomes expressed as grams per kilogram of EBW were heavier in ML-fed cows during gestation, and the number of placentomes was greater in ML-fed cows at 268d of gestation. We observed that IGFR1 and IGFR2 were involved in placenta adaptations when ML was provided, as their expression in placentome cells was greater in ML-fed cows at 268d of gestation. The genes responsible for angiogenesis were also greater in ML-fed cows: VEGFA, GUCY1B3, HIFA, FGF2, and NOS3 were altered by FR and DG interaction and they were greater in ML-fed cows at 268d of gestation. In addition, VEGFB and ANGPT2 did not show interactions between FR and DG, but they were greater in ML-fed cows. Thus, we suggest that the placenta from an ML-fed cow

  10. Access to shade changes behavioral and physiological attributes of dairy cows during the hot season in the subtropics.

    PubMed

    Vizzotto, E F; Fischer, V; Thaler Neto, A; Abreu, A S; Stumpf, M T; Werncke, D; Schmidt, F A; McManus, C M

    2015-09-01

    The effect of shade on behavior and physiological attributes of grazing cows in a high altitude subtropical zone is not well established. This work aimed to investigate how social and ingestive behaviors, as well as physiological and other attributes of dairy cows such as milk production, change in a subtropical environment during the hot season either with or without free access to shade. Fourteen lactating cows were kept on pasture either with no shade or with free access to shade for 5 days and their behavior was recorded with instantaneous scan sampled every 10 min, from sunrise, 0530 h (Greenwich mean time, GMT-0200 h) to sunset, 2100 h (GMT-0200 h). Behavior traits included (1) time spent in activities such as grazing, ruminating, resting, lying, standing, walking, seeking shade and staying in the proximity to the water trough and (2) number of events such as water ingestion, aggressive interactions, as well as competition for shade and water. Physiological attributes such as heart and respiratory rates, rectal temperature, number of rumen movements, panting score, as well as milk yield, were evaluated. Time spent in behavioral activities, number of behavioral events and physiological attributes varied between groups (with and without access to shade). Cows with no shade showed increased respiratory and heart rates and panting score at 1300 h, higher values for time of permanence near the water trough, number of competition and aggression events for shade. On the other hand, they showed lower values for time spent resting while lying, ruminating while standing, seeking shade. Access to shade did not change time spent lying, standing, walking with the head up, ruminating while lying, resting while standing, as well as milk yield and number of ruminal movements. Significant interactions between access to shade and days of measurements were detected for time spent walking, ruminating, grazing, resting, number of water ingestion events, competition events near

  11. Effects of physiological and/or disease status on the response of postpartum dairy cows to synchronization of estrus using an intravaginal progesterone device.

    PubMed

    McNally, Julie C; Crowe, Mark A; Roche, James F; Beltman, Marijke E

    2014-12-01

    Progesterone treatments are used to increase submission rates in postpartum dairy cows; however, in many cases the protocol is used as a blanket therapy for all cows without regard for physiological or disease state. The objective of this study was to identify the physiological or disease classes of cows that respond well (or not) to synchronization of estrus via progesterone. Dairy cows (n = 402) were monitored peri and postpartum to establish their physiological or disease status. Animals were classified as having negative energy balance, clinical lameness, uterine infection (UI), anovulatory anestrus, high somatic cell counts, and healthy (H). Blood samples were collected at five different time points and analyzed for metabolites. All animals received an 8-day controlled internal drug release protocol, which included GnRH at insertion and PGF2α the day before removal. Response to the protocol was determined by visual observation of estrus synchronization. Conception rate was determined by ultrasonography between Days 32 and 35 after artificial insemination. Animals without UI were 1.9 times more likely to respond and two times more likely to be confirmed pregnant than those with UI. There was no relationship between negative energy balance and clinical lameness in the visual estrous response, but both conditions were associated with reduced conception rates. Dairy cows in anovulatory anestrus responded successfully to the protocol in both estrous response and conception rates. High glutathione peroxidase concentrations had a positive effect on conception rates, whereas high non-esterified fatty acids and beta-hydroxybutyrate had a negative effect on the estrous response. In conclusion, disease and physiological states of dairy cows determined the response to progesterone-based synchronization. The more disease or physiological problems the cows had, the lower the estrous response and conception rates; cows with these problems were not ideal candidates for

  12. Cooling cows efficiently with water spray: Behavioral, physiological, and production responses to sprinklers at the feed bunk.

    PubMed

    Chen, Jennifer M; Schütz, Karin E; Tucker, Cassandra B

    2016-06-01

    Dairies commonly mount nozzles above the feed bunk that intermittently spray cows to dissipate heat. These sprinklers use potable water-an increasingly scarce resource-but there is little experimental evidence for how much is needed to cool cows in loose housing. Sprinkler flow rate may affect the efficacy of heat abatement, cattle avoidance of spray (particularly on the head), and water waste. Our objectives were to determine how sprinkler flow rate affects cattle behavioral, physiological, and production responses when cows are given 24-h access to spray in freestall housing, and to evaluate heat abatement in relation to water use. We compared 3 treatments: sprinklers that delivered 1.3 or 4.9L/min (both 3min on and 9min off, 24h/d) and an unsprayed control. Nine pairs of high-producing lactating Holstein cows received each treatment at a shaded feed bunk for 2d in a replicated 3×3 Latin square design [air temperature (T): 24-h maximum=33±3°C, mean ± SD]. Cows spent 5.8±0.9h/24h (mean ± SD) at the feed bunk overall, regardless of treatment. With few exceptions, cows responded similarly to the 1.3 and 4.9L/min flow rates. Sprinklers resulted in visits to the feed bunk that were on average 23 to 27% longer and 13 to 16% less frequent compared with the control, perhaps because cows avoided walking through spray. Indeed, when the sprinklers were on, cows left the feed bunk half as often as expected by chance, and when cows chose to walk through spray, they lowered their heads on average 1.7- to 3-fold more often than in the control. Despite possible reluctance to expose their heads to spray, cows did not avoid sprinklers overall. In warmer weather, cows spent more time at the feed bunk when it had sprinklers (on average 19 to 21min/24h for each 1°C increase in T), likely for heat abatement benefits. Compared with the control, sprinklers resulted in 0.3 to 0.7°C lower body temperature from 1300 to 1500h and 1700 to 2000h overall and attenuated the rise in this

  13. Physiological adaptations to weight loss and factors favouring weight regain

    PubMed Central

    Greenway, F L

    2015-01-01

    Obesity is a major global health problem and predisposes individuals to several comorbidities that can affect life expectancy. Interventions based on lifestyle modification (for example, improved diet and exercise) are integral components in the management of obesity. However, although weight loss can be achieved through dietary restriction and/or increased physical activity, over the long term many individuals regain weight. The aim of this article is to review the research into the processes and mechanisms that underpin weight regain after weight loss and comment on future strategies to address them. Maintenance of body weight is regulated by the interaction of a number of processes, encompassing homoeostatic, environmental and behavioural factors. In homoeostatic regulation, the hypothalamus has a central role in integrating signals regarding food intake, energy balance and body weight, while an ‘obesogenic' environment and behavioural patterns exert effects on the amount and type of food intake and physical activity. The roles of other environmental factors are also now being considered, including sleep debt and iatrogenic effects of medications, many of which warrant further investigation. Unfortunately, physiological adaptations to weight loss favour weight regain. These changes include perturbations in the levels of circulating appetite-related hormones and energy homoeostasis, in addition to alterations in nutrient metabolism and subjective appetite. To maintain weight loss, individuals must adhere to behaviours that counteract physiological adaptations and other factors favouring weight regain. It is difficult to overcome physiology with behaviour. Weight loss medications and surgery change the physiology of body weight regulation and are the best chance for long-term success. An increased understanding of the physiology of weight loss and regain will underpin the development of future strategies to support overweight and obese individuals in their

  14. Metabolic Disorders in the Transition Period Indicate that the Dairy Cows' Ability to Adapt is Overstressed.

    PubMed

    Sundrum, Albert

    2015-01-01

    Metabolic disorders are a key problem in the transition period of dairy cows and often appear before the onset of further health problems. They mainly derive from difficulties the animals have in adapting to changes and disturbances occurring both outside and inside the organisms and due to varying gaps between nutrient supply and demand. Adaptation is a functional and target-oriented process involving the whole organism and thus cannot be narrowed down to single factors. Most problems which challenge the organisms can be solved in a number of different ways. To understand the mechanisms of adaptation, the interconnectedness of variables and the nutrient flow within a metabolic network need to be considered. Metabolic disorders indicate an overstressed ability to balance input, partitioning and output variables. Dairy cows will more easily succeed in adapting and in avoiding dysfunctional processes in the transition period when the gap between nutrient and energy demands and their supply is restricted. Dairy farms vary widely in relation to the living conditions of the animals. The complexity of nutritional and metabolic processes Animals 2015, 5 979 and their large variations on various scales contradict any attempts to predict the outcome of animals' adaptation in a farm specific situation. Any attempts to reduce the prevalence of metabolic disorders and associated production diseases should rely on continuous and comprehensive monitoring with appropriate indicators on the farm level. Furthermore, low levels of disorders and diseases should be seen as a further significant goal which carries weight in addition to productivity goals. In the long run, low disease levels can only be expected when farmers realize that they can gain a competitive advantage over competitors with higher levels of disease. PMID:26479480

  15. Urban plant physiology: adaptation-mitigation strategies under permanent stress.

    PubMed

    Calfapietra, Carlo; Peñuelas, Josep; Niinemets, Ülo

    2015-02-01

    Urban environments that are stressful for plant function and growth will become increasingly widespread in future. In this opinion article, we define the concept of 'urban plant physiology', which focuses on plant responses and long term adaptations to urban conditions and on the capacity of urban vegetation to mitigate environmental hazards in urbanized settings such as air and soil pollution. Use of appropriate control treatments would allow for studies in urban environments to be comparable to expensive manipulative experiments. In this opinion article, we propose to couple two approaches, based either on environmental gradients or manipulated gradients, to develop the concept of urban plant physiology for assessing how single or multiple environmental factors affect the key environmental services provided by urban forests.

  16. Physiological responses in thermal stressed Jersey cows subjected to different management strategies.

    PubMed

    Keister, Z O; Moss, K D; Zhang, H M; Teegerstrom, T; Edling, R A; Collier, R J; Ax, R L

    2002-12-01

    The effects of cooling and recombinant bovine somatotropin (rbST) on milk yield, reproductive performance, and health of Jersey cattle during summer thermal stress were measured for 2 yr. Cows were assigned to one of two groups based upon days in milk (DIM), parity, and genetic index. Year 1 and year 2 control cows (n = 143, n = 183, respectively) were housed in a pen with only shades. Cooled treatment cows each year (n = 142, n = 180) were housed with a spray and fan system for evaporative cooling. Cows were assigned at various days postpartum, not before d 63, coincident with commencement of rbST injections. One half of cows in each group received rbST on d 63 postpartum. Cows were assigned to the shade trial ranging from d 63 to 190. Cooled versus noncooled DIM were similar at the start of the trial. Trials began on July 1, 1999, and July 1, 2000, and concluded on September 30, 1999, and September 25, 2000. The ANOVA of daily milk weight data was conducted utilizing a 2 x 2 factorial design with cooling and rbST treatments as main effects. Cooling in combination with rbST increased milk yield compared with no cooling and no rbST for 1999 and 2000 (25.5 versus 21.8 kg/d, and 23.7 versus 20.5 kg/d, respectively). In general, cooling improved health and reproductive performance.

  17. Nutrition and human physiological adaptations to space flight

    NASA Technical Reports Server (NTRS)

    Lane, H. W.; LeBlanc, A. D.; Putcha, L.; Whitson, P. A.

    1993-01-01

    Space flight provides a model for the study of healthy individuals undergoing unique stresses. This review focuses on how physiological adaptations to weightlessness may affect nutrient and food requirements in space. These adaptations include reductions in body water and plasma volume, which affect the renal and cardiovascular systems and thereby fluid and electrolyte requirements. Changes in muscle mass and function may affect requirements for energy, protein and amino acids. Changes in bone mass lead to increased urinary calcium concentrations, which may increase the risk of forming renal stones. Space motion sickness may influence putative changes in gastro-intestinal-hepatic function; neurosensory alterations may affect smell and taste. Some or all of these effects may be ameliorated through the use of specially designed dietary countermeasures.

  18. Are free glucose and glucose-6-phosphate in milk indicators of specific physiological states in the cow?

    PubMed

    Larsen, T; Moyes, K M

    2015-01-01

    A total of 3200 milk samples from Holstein and Jersey cows were analysed for free glucose and glucose-6-phosphate (G6P) by an enzymatic-fluorometric method that requires no pre-treatment. The cows were primiparous as well as multiparous, and samples were taken throughout the entire lactation period. In addition, lactose, protein, fat, citrate and β-hydroxybutyrate were determined and comparisons between these variables were made. Data were analysed using GLM model for the effect of parity, breed, time from last milking and stage of lactation on variations in parameters in milk. Pearson's correlations were generated between milk variables. P<0.05 was considered significant. Concentration of free glucose and G6P were on average 331 and 81 μM, respectively. Time from last milking (stay in the gland cistern) did not increase the concentration of these monosaccharides, indicating that they are not hydrolysis product from lactose post secretion, but rather reflecting the energy status of the mammary epithelial cells pre-secretion. Wide variation in range of these metabolites, that is, from 90 to 630 μM and 5 to 324 μM, for glucose and G6P, respectively, was observed. During the first 21 weeks in milk, free glucose increased whereas G6P decreased. Concentration of free glucose in milk is greater for primiparous than multiparous cows and greater for Holstein than Jersey cows. Concentration of G6P was not affected by parity or breed. The use of free glucose and G6P as indicators of physiological conditions and risk of disease is warranted for use as potential biomarkers for in-line surveillance systems on-farm.

  19. Membrane lipid unsaturation as physiological adaptation to animal longevity

    PubMed Central

    Naudí, Alba; Jové, Mariona; Ayala, Victòria; Portero-Otín, Manuel; Barja, Gustavo; Pamplona, Reinald

    2013-01-01

    The appearance of oxygen in the terrestrial atmosphere represented an important selective pressure for ancestral living organisms and contributed toward setting up the pace of evolutionary changes in structural and functional systems. The evolution of using oxygen for efficient energy production served as a driving force for the evolution of complex organisms. The redox reactions associated with its use were, however, responsible for the production of reactive species (derived from oxygen and lipids) with damaging effects due to oxidative chemical modifications of essential cellular components. Consequently, aerobic life required the emergence and selection of antioxidant defense systems. As a result, a high diversity in molecular and structural antioxidant defenses evolved. In the following paragraphs, we analyze the adaptation of biological membranes as a dynamic structural defense against reactive species evolved by animals. In particular, our goal is to describe the physiological mechanisms underlying the structural adaptation of cellular membranes to oxidative stress and to explain the meaning of this adaptive mechanism, and to review the state of the art about the link between membrane composition and longevity of animal species. PMID:24381560

  20. Membrane lipid unsaturation as physiological adaptation to animal longevity.

    PubMed

    Naudí, Alba; Jové, Mariona; Ayala, Victòria; Portero-Otín, Manuel; Barja, Gustavo; Pamplona, Reinald

    2013-01-01

    The appearance of oxygen in the terrestrial atmosphere represented an important selective pressure for ancestral living organisms and contributed toward setting up the pace of evolutionary changes in structural and functional systems. The evolution of using oxygen for efficient energy production served as a driving force for the evolution of complex organisms. The redox reactions associated with its use were, however, responsible for the production of reactive species (derived from oxygen and lipids) with damaging effects due to oxidative chemical modifications of essential cellular components. Consequently, aerobic life required the emergence and selection of antioxidant defense systems. As a result, a high diversity in molecular and structural antioxidant defenses evolved. In the following paragraphs, we analyze the adaptation of biological membranes as a dynamic structural defense against reactive species evolved by animals. In particular, our goal is to describe the physiological mechanisms underlying the structural adaptation of cellular membranes to oxidative stress and to explain the meaning of this adaptive mechanism, and to review the state of the art about the link between membrane composition and longevity of animal species. PMID:24381560

  1. The use of simple physiological and environmental measures to estimate the latent heat transfer in crossbred Holstein cows

    NASA Astrophysics Data System (ADS)

    Santos, Severino Guilherme Caetano Gonçalves dos; Saraiva, Edilson Paes; Pimenta Filho, Edgard Cavalcanti; Gonzaga Neto, Severino; Fonsêca, Vinicus França Carvalho; Pinheiro, Antônio da Costa; Almeida, Maria Elivania Vieira; de Amorim, Mikael Leal Cabral Menezes

    2016-07-01

    The aim of the present study was to estimate the heat transfer through cutaneous and respiratory evaporation of dairy cows raised in tropical ambient conditions using simple environmental and physiological measures. Twenty-six lactating crossbred cows (7/8 Holstein-Gir) were used, 8 predominantly white and 18 predominantly black. The environmental variables air temperature, relative humidity, black globe temperature, and wind speed were measured. Respiratory rate and coat surface temperature were measured at 0700, 0900, 1100, 1300, and 1500 h. The environmental and physiological data were used to estimate heat loss by respiratory (ER) and cutaneous evaporation (EC). Results showed that there was variation (P < 0.01) for respiratory rate depending on the times of the day. The highest values were recorded at 1100, 1300, and 1500 h, corresponding to 66.85 ± 10.20, 66.98 ± 7.80, and 65.65 ± 6.50 breaths/min, respectively. Thus, the amount of heat transferred via respiration ranged from 19.21 to 29.42 W/m2. There was a variation from 31.6 to 38.8 °C for coat surface temperature; these values reflected a range of 55.52 to 566.83 W/m2 for heat transfer via cutaneous evaporation. However, throughout the day, the dissipation of thermal energy through the coat surface accounted for 87.9 % total loss of latent heat, and the remainder (12.1 %) was via the respiratory tract. In conclusion, the predictive models based on respiratory rate and coat surface temperature may be used to estimate the latent heat loss in dairy cows kept confined in tropical ambient conditions.

  2. Hormonal profiles, physiological parameters, and productive and reproductive performances of Girolando cows in the state of Ceará-Brazil

    NASA Astrophysics Data System (ADS)

    da Costa, Antônio Nélson Lima; Feitosa, José Valmir; Júnior, Péricles Afonso Montezuma; de Souza, Priscila Teixeira; de Araújo, Airton Alencar

    2015-02-01

    This study compared two breed groups of Girolando (½ Holstein ½ Gyr vs. ¾ Holstein ¼ Gyr) through analysis of physiological, productive, and reproductive parameters to determine the group best suited to rearing in a semiarid tropical climate. The experiment was conducted at the Companhia de Alimentos do Nordeste (CIALNE) farm, in the municipality of Umirim, State of Ceará, Brazil. Eighty cows were used in a 2 × 2 factorial study; 40 of each breed group were kept under an extensive system during the wet season and an intensive system during the dry season. The collection of physiological data and blood samples were obtained in the afternoon after milking. Rectal temperature (RT), surface temperature (ST), and respiratory rate (RR) were obtained for each cow after milking. Blood samples were obtained by tail vein puncture and were determined triiodothyronine (T3) and thyroxine (T4) and cortisol. The environmental parameters obtained were relative humidity (RH) and air temperature (AT), and from these, a temperature and humidity index (THI) was calculated. Pregnancy diagnosis (PD) was determined by ultrasonography 30 days after artificial insemination (AI). The milk production of each cow was recorded with automated milkings in the farm. The variables were expressed as mean and standard error, evaluated by ANOVA at 5 % probability using the Proc GLM of SAS. Chi-square test at 5 % probability was applied to data of pregnancy rate (PR) and the number of AI's to obtain pregnancy. It can be concluded that the breed group ½ Holstein ½ Gyr is most suited for farming under conditions of thermal stress.

  3. Physiological and productive responses of multiparous lactating Holstein cows exposed to short-term cooling during severe summer conditions in an arid region of Mexico

    NASA Astrophysics Data System (ADS)

    Avendaño-Reyes, L.; Hernández-Rivera, J. A.; Álvarez-Valenzuela, F. D.; Macías-Cruz, U.; Díaz-Molina, R.; Correa-Calderón, A.; Robinson, P. H.; Fadel, J. G.

    2012-11-01

    Heat stress generates a significant economic impact for the dairy industry in arid and semi-arid regions of the world, so that heat abatement is an important issue for dairy producers. The objective of this study was to evaluate effects of two short-term cooling periods on physiological and productive status of lactating Holstein cows during hot ambient temperatures. Thirty-nine multiparous cows were blocked by milk yield and assigned to one of three treatments including: control group (C), cows cooled before milking time (0500 and 1700 h daily, 1 h cooling); AM group, cows cooled at 1000 h and before milking (2 h cooling); and AM + PM group, cows cooled at 1100, 1500 and 2200 h, as well as before milking (4 h cooling). The cooling system was placed in the holding pen which the cows were moved through for cooling. Respiratory rate, and temperatures of thurl and right flank, were lower ( P < 0.05) in cows from the AM + PM group than AM and C cows during the morning and afternoon. However, udder temperature was higher in the AM + PM group compared to AM and C groups during the afternoon, although lower than the AM group during the morning. Rectal temperature was similar in all groups. Thyroxin concentrations tended ( P < 0.10) to be lower in AM + PM relative to the AM and C groups. The AM + PM group had higher ( P < 0.05) milk production than C (18.70 vs. 17.43 kg, respectively), and AM + PM cows had a trend ( P < 0.10) to increased milk energy output vs. the C and AM groups (13.75 vs. 13.18 and 13.15 Mcal, respectively). Protein and fat in milk, body condition score, glucose, cholesterol, triglycerides and triiodothyronine were similar among the groups. Four hours of cooling with spray and fans during severe summer temperatures only modestly improved milk yield of lactating Holstein cows.

  4. Dietary Antioxidants as Modifiers of Physiologic Adaptations to Exercise

    PubMed Central

    Mankowski, Robert T.; Anton, Stephen D.; Buford, Thomas W.; Leeuwenburgh, Christiaan

    2015-01-01

    Adaptive responses to exercise training (ET) are crucial in maintaining physiological homeostasis and health span. Exercise-induced aerobic bioenergetic reactions in mitochondria and cytosol increase production of reactive oxygen species (ROSs), where excess of ROS can be scavenged by enzymatic as well as non-enzymatic antioxidants to protect against deleterious oxidative stress. Free radicals, however, have recently been recognized as crucial signaling agents that promote adaptive mechanisms to ET, such as mitochondrial biogenesis, antioxidant (AO) enzyme activity defense system upregulation, insulin sensitivity, and glucose uptake in skeletal muscle. Commonly used non-enzymatic AO supplements, such as vitamins C and E, a-lipoic acid, and polyphenols, in combination with ET, have been proposed as ways to prevent exercise-induced oxidative stress and hence improve adaptation responses to endurance training. Preclinical and clinical studies to date have shown inconsistent results indicating either positive or negative effects of endurance training combined with different blends of AO supplements (mostly vitamins C and E and a-lipoic acid) on redox status, mitochondrial biogenesis pathways, and insulin sensitivity. Preclinical reports on ET combined with resveratrol, however, have shown consistent positive effects on exercise performance, mitochondrial biogenesis, and insulin sensitivity, with clinical trials reporting mixed effects. Relevant clinical studies have been few and have used inconsistent results and methodology (types of compounds, combinations, and supplementation time). The future studies would investigate the effects of specific antioxidants and other popular supplements, such as a-lipoic acid and resveratrol, on training effects in humans. Of particular importance are older adults who may be at higher risk of age-related increased oxidative stress, an impaired AO enzyme defense system, and comorbidities such as hypertension, insulin resistance, and

  5. Reproductive performance of cows mated to and preweaning performance of calves sired by Brahman vs alternative subtropically adapted breeds.

    PubMed

    Thrift, F A

    1997-10-01

    Comparisons involving Brahman and Brahman-derivative (Brangus, Santa Gertrudis, Beef-master, Simbrah, Braford) sires indicate the following: 1) cows mated to Brangus and Santa Gertrudis bulls had a shorter gestation length than cows mated to Brahman bulls, 2) calves sired by Brangus and Beefmaster bulls were lighter at birth and weaning than calves sired by Brahman bulls, and 3) birth and weaning weights were similar for calves sired by Santa Gertrudis and Brahman bulls and for calves sired by Simbrah and Brahman bulls. Comparisons involving Brahman and other Zebu (Sahiwal, Nellore, Gir, Indu-Brazil, Boran, Romana Red) sires indicate that gestation length was slightly longer for cows mated to Sahiwal and Nellore bulls and that, relative to the Brahman, birth and weaning weights were similar to or lighter for calves sired by bulls of the other Zebu breeds. The only exception to this pattern was birth weight of Indu-Brazil-sired calves, which were heavier than calves sired by Brahman bulls. Comparisons involving Brahman and non-Zebu subtropically adapted (Tuli, Senepol) sires indicate that cows mated to Tuli bulls had a slightly shorter gestation length than cows mated to Brahman bulls and that birth and weaning weights of calves sired by Tuli and Senepol bulls were lighter than those of calves sired by Brahman bulls. PMID:9331860

  6. Reproductive performance of cows mated to and preweaning performance of calves sired by Brahman vs alternative subtropically adapted breeds.

    PubMed

    Thrift, F A

    1997-10-01

    Comparisons involving Brahman and Brahman-derivative (Brangus, Santa Gertrudis, Beef-master, Simbrah, Braford) sires indicate the following: 1) cows mated to Brangus and Santa Gertrudis bulls had a shorter gestation length than cows mated to Brahman bulls, 2) calves sired by Brangus and Beefmaster bulls were lighter at birth and weaning than calves sired by Brahman bulls, and 3) birth and weaning weights were similar for calves sired by Santa Gertrudis and Brahman bulls and for calves sired by Simbrah and Brahman bulls. Comparisons involving Brahman and other Zebu (Sahiwal, Nellore, Gir, Indu-Brazil, Boran, Romana Red) sires indicate that gestation length was slightly longer for cows mated to Sahiwal and Nellore bulls and that, relative to the Brahman, birth and weaning weights were similar to or lighter for calves sired by bulls of the other Zebu breeds. The only exception to this pattern was birth weight of Indu-Brazil-sired calves, which were heavier than calves sired by Brahman bulls. Comparisons involving Brahman and non-Zebu subtropically adapted (Tuli, Senepol) sires indicate that cows mated to Tuli bulls had a slightly shorter gestation length than cows mated to Brahman bulls and that birth and weaning weights of calves sired by Tuli and Senepol bulls were lighter than those of calves sired by Brahman bulls.

  7. Physiologically responsive, mechanically adaptive polymer optical fibers for optogenetics.

    PubMed

    Jorfi, Mehdi; Voirin, Guy; Foster, E Johan; Weder, Christoph

    2014-05-15

    The capability to deliver light to specific locations within the brain using optogenetic tools has opened up new possibilities in the field of neural interfacing. In this context, optical fibers are commonly inserted into the brain to activate or mute neurons using photosensitive proteins. While chronic optogenetic stimulation studies are just beginning to emerge, knowledge gathered in connection with electrophysiological implants suggests that the mechanical mismatch of conventional optical fibers and the cortical tissue may be a significant contributor to neuroinflammatory response. Here, we present the design and fabrication of physiologically responsive, mechanically adaptive optical fibers made of poly(vinyl alcohol) (PVA) that may mitigate this problem. Produced by a one-step wet-spinning process, the fibers display a tensile storage modulus E' of ∼7000  MPa in the dry state at 25°C and can thus readily be inserted into cortical tissue. Exposure to water causes a drastic reduction of E' to ∼35  MPa on account of modest swelling with the water. The optical properties at 470 and 590 were comparable with losses of 0.7±0.04  dB/cm at 470 nm and 0.6±0.1  dB/cm at 590 nm in the dry state and 1.1±0.1  dB/cm at 470 nm and 0.9±0.3  dB/cm at 590 nm in the wet state. The dry end of a partially switched fiber with a length of 10 cm was coupled with a light-emitting diode with an output of 10.1 mW to deliver light with a power density of >500  mW/cm2 from the wet end, which is more than sufficient to stimulate neurons in vivo. Thus, even without a low-refractive index cladding, the physiologically responsive, mechanically adaptive optical fibers presented here appear to be a very useful new tool for future optogenetic studies.

  8. Exercise as a countermeasure for physiological adaptation to prolonged spaceflight

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1996-01-01

    Exercise represents the primary countermeasure used during spaceflight to maintain or restore maximal aerobic capacity (VO2max), musculoskeletal structure, and orthostatic function. However, no single exercise or combination of prescriptions has proven entirely effective in restoring cardiovascular and musculoskeletal functions to preflight levels following prolonged spaceflight. As human spaceflight exposures increase in duration, assessment and development of various effective exercise-based protective procedures become paramount. This must involve improvement in specific countermeasure prescription as well as development of additional approaches that will allow space travelers greater flexibility and medical safety during long flights. Effective exercise prescription will be based on identification of basic physiological stimuli that maintain normal function in terrestrial gravity and understanding of how specific combinations of exercise characteristics e.g., duration, frequency, intensity, mode) can mimic these stimuli and affect the overall process of adaptation to microgravity. This can be accomplished only with greater emphasis of research on ground-based experiments. Future attention must be directed to improving exercise compliance while minimizing both crew time and the impact of the exercise on life-support resources.

  9. Exercise as a countermeasure for physiological adaptation to prolonged spaceflight.

    PubMed

    Convertino, V A

    1996-08-01

    Exercise represents the primary countermeasure used during spaceflight to maintain or restore maximal aerobic capacity (VO2max), musculoskeletal structure, and orthostatic function. However, no single exercise or combination of prescriptions has proven entirely effective in restoring cardiovascular and musculoskeletal functions to preflight levels following prolonged spaceflight. As human spaceflight exposures increase in duration, assessment and development of various effective exercise-based protective procedures become paramount. This must involve improvement in specific countermeasure prescription as well as development of additional approaches that will allow space travelers greater flexibility and medical safety during long flights. Effective exercise prescription will be based on identification of basic physiological stimuli that maintain normal function in terrestrial gravity and understanding of how specific combinations of exercise characteristics e.g., duration, frequency, intensity, mode) can mimic these stimuli and affect the overall process of adaptation to microgravity. This can be accomplished only with greater emphasis of research on ground-based experiments. Future attention must be directed to improving exercise compliance while minimizing both crew time and the impact of the exercise on life-support resources. PMID:8871910

  10. Dietary composition and physiologic adaptations to energy restriction

    PubMed Central

    Agus, Michael SD; Swain, Janis F; Larson, Courtney L; Eckert, Elizabeth A; Ludwig, David S

    2010-01-01

    Background The concept of a body weight set point, determined predominantly by genetic mechanisms, has been proposed to explain the poor long-term results of conventional energy-restricted diets in the treatment of obesity. Objective The objective of this study was to examine whether dietary composition affects hormonal and metabolic adaptations to energy restriction. Design A randomized, crossover design was used to compare the effects of a high-glycemic-index (high-GI) and a low-glycemic-index (low-GI) energy-restricted diet. The macronutrient composition of the high-GI diet was (as percent of energy) 67% carbohydrate, 15% protein, and 18% fat and that of the low-GI diet was 43% carbohydrate, 27% protein, and 30% fat; the diets had similar total energy, energy density, and fiber contents. The subjects, 10 moderately overweight young men, were studied for 9 d on 2 separate occasions. On days −1 to 0, they consumed self-selected foods ad libitum. On days 1–6, they received an energy-restricted high- or low-GI diet. On days 7–8, the high-or low-GI diets were consumed ad libitum. Results Serum leptin decreased to a lesser extent from day 0 to day 6 with the high-GI diet than with the low-GI diet. Resting energy expenditure declined by 10.5% during the high-GI diet but by only 4.6% during the low-GI diet (7.38 ± 0.39 and 7.78 ± 0.36 MJ/d, respectively, on days 5–6; P = 0.04). Nitrogen balance tended to be more negative, and energy intake from snacks on days 7–8 was greater, with the high-GI than the low-GI diet. Conclusion Diets with identical energy contents can have different effects on leptin concentrations, energy expenditure, voluntary food intake, and nitrogen balance, suggesting that the physiologic adaptations to energy restriction can be modified by dietary composition. PMID:10731495

  11. Physiological and anatomical adaptations induced by flooding in Cotula coronopifolia.

    PubMed

    Smaoui, A; Jouini, Jihène; Rabhi, M; Bouzaien, G; Albouchi, A; Abdelly, C

    2011-06-01

    Cotula coronopifolia is a wild annual Asteraceae that grows in periodically-flooded prone environments and seems highly tolerant to periodic flooding. Seedlings of about 15 cm were collected directly from the edge of Soliman sabkha (N-E Tunisia, semi-arid stage) and grown under greenhouse conditions. Two treatments were considered: drainage and flooding. After 56 days of treatment, flooded plants showed a pronounced growth increase. This performance was essentially associated with significant increment in biomass production of both shoots and roots (about 220% of the control). The appropriate response to flooding was also characterized by the ability of the species to maintain its water status under such conditions. Neither water content nor water potential showed a significant variation as compared to those of non-flooded plants. However, transpiration rate decreased slightly but significantly in flooded plants (from 0.86 to 0.64 mmol H2O m-2 s-1). Na+ and K+ concentrations were practically maintained under waterlogging conditions, except a significant increase of Na+ content in roots of flooded plants (157% of the control). These responses were concomitant with maintenance of photosynthetic rate. However, the contents of chlorophylls a and b increased to 167% and 295%, respectively. It seems that the enhancement in these photosynthetic pigments together with a significant improvement in water use efficiency (from 4.66 to 6.07 mmol CO2 mol-1 H2O) allowed to the species to compensate the decrease in photosynthetic rate. At the anatomical level, this species responded to flooding by a significant development of its root aerenchyma (+63%) and an increase in the lignification of its stem xylem tissues (+37%). Based on the presented data, the plant fitness under flooding conditions was a result of dynamic readjustment of several morphological, physiological, and anatomical adaptive traits. Flood requirement together with salt tolerance are responsible for the

  12. Effects of in vitro insulin and 2,4-thiazolidinedione on the function of neutrophils harvested from blood of cows in different physiological states.

    PubMed

    Revelo, X S; Waldron, M R

    2010-09-01

    Neutrophils [polymorphonuclear neutrophilic leukocytes (PMNL)] were isolated from 26 Holstein cows in different physiological states (12+/-1.7 d prepartum, n=8; 7+/-0 d postpartum, n=9; 253+/-25.2 d postpartum, n=9) and incubated in vitro for 120 min in a factorial arrangement of treatments with 0, 1.5, or 15 ng/mL of bovine insulin and 0 or 300 microg/mL of the peroxisome proliferator-activated receptor-gamma ligand 2,4-thiazolidinedione (TZD). Following the incubations, PMNL functional assays were performed to determine treatment effects on proxies for total, extracellular, and intracellular generation of reactive oxygen species (ROS), neutrophil extracellular trap formation, and phagocytic killing abilities. The ROS production of PMNL collected from cows at 7 d postpartum was reduced compared with that of PMNL from midlactation and prepartum cows, but neutrophil extracellular trap expression was 23 and 36% greater in PMNL from prepartum cows compared with that in PMNL from midlactation and postpartum cows, respectively. Insulin had no effect on PMNL functional assay results. In contrast, TZD inhibited a measurement of total ROS production by 89%, increased extracellular superoxide generation by 43%, but had no effect on the intracellular ROS measured. Interestingly, TZD did not alter the ability of the PMNL to release neutrophil extracellular traps and engulf or kill Staphylococcus aureus. These findings suggest a possible anti-inflammatory effect of TZD that may result in reduced extracellular oxidative damage with maintenance of PMNL antimicrobial activity.

  13. Resistance Training: Physiological Responses and Adaptations (Part 2 of 4).

    ERIC Educational Resources Information Center

    Fleck, Stephen J.; Kraerner, William J.

    1988-01-01

    Resistance training causes a variety of physiological reactions, including changes in muscle size, connective tissue size, and bone mineral content. This article summarizes data from a variety of studies and research. (JL)

  14. Stress inoculation training supported by physiology-driven adaptive virtual reality stimulation.

    PubMed

    Popović, Sinisa; Horvat, Marko; Kukolja, Davor; Dropuljić, Branimir; Cosić, Kresimir

    2009-01-01

    Significant proportion of psychological problems related to combat stress in recent large peacekeeping operations underscores importance of effective methods for strengthening the stress resistance of military personnel. Adaptive control of virtual reality (VR) stimulation, based on estimation of the subject's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Therefore, following an overview of SIT and its applications in the military setting, generic concept of physiology-driven adaptive VR stimulation is presented in the paper. Toward the end of the paper, closed-loop adaptive control strategy applicable to SIT is outlined. PMID:19592729

  15. Adaptive cyclic physiologic noise modeling and correction in functional MRI.

    PubMed

    Beall, Erik B

    2010-03-30

    Physiologic noise in BOLD-weighted MRI data is known to be a significant source of the variance, reducing the statistical power and specificity in fMRI and functional connectivity analyses. We show a dramatic improvement on current noise correction methods in both fMRI and fcMRI data that avoids overfitting. The traditional noise model is a Fourier series expansion superimposed on the periodicity of parallel measured breathing and cardiac cycles. Correction using this model results in removal of variance matching the periodicity of the physiologic cycles. Using this framework allows easy modeling of noise. However, using a large number of regressors comes at the cost of removing variance unrelated to physiologic noise, such as variance due to the signal of functional interest (overfitting the data). It is our hypothesis that there are a small variety of fits that describe all of the significantly coupled physiologic noise. If this is true, we can replace a large number of regressors used in the model with a smaller number of the fitted regressors and thereby account for the noise sources with a smaller reduction in variance of interest. We describe these extensions and demonstrate that we can preserve variance in the data unrelated to physiologic noise while removing physiologic noise equivalently, resulting in data with a higher effective SNR than with current corrections techniques. Our results demonstrate a significant improvement in the sensitivity of fMRI (up to a 17% increase in activation volume for fMRI compared with higher order traditional noise correction) and functional connectivity analyses.

  16. Physiology of environmental adaptations and resource acquisition in cockroaches.

    PubMed

    Mullins, Donald E

    2015-01-01

    Cockroaches are a group of insects that evolved early in geological time. Because of their antiquity, they for the most part display generalized behavior and physiology and accordingly have frequently been used as model insects to examine physiological and biochemical mechanisms involved with water balance, nutrition, reproduction, genetics, and insecticide resistance. As a result, a considerable amount of information on these topics is available. However, there is much more to be learned by employing new protocols, microchemical analytical techniques, and molecular biology tools to explore many unanswered questions.

  17. Human Adaptation to Space: Space Physiology and Countermeasures

    NASA Technical Reports Server (NTRS)

    Fogarty, Jennifer

    2009-01-01

    This viewgraph presentation reviews human physiological responses to spaceflight, and the countermeasures taken to prevent adverse effects of manned space flight. The topics include: 1) Human Spaceflight Experience; 2) Human Response to Spaceflight; 3) ISS Expeditions 1-16; 4) Countermeasure; and 5) Biomedical Data;

  18. Physiological Adaptations to Training in Competitive Swimming: A Systematic Review

    PubMed Central

    Costa, Mário J.; Balasekaran, Govindasamy; Vilas-Boas, J. Paulo; Barbosa, Tiago M.

    2015-01-01

    The purpose of this systematic review was to summarize longitudinal studies on swimming physiology and get implications for daily practice. A computerized search of databases according to the PRISMA statement was employed. Studies were screened for eligibility on inclusion criteria: (i) present two testing points; (ii) on swimming physiology; (iii) using adult elite swimmers; (iv) no case-studies or with small sample sizes. Two independent reviewers used a checklist to assess the methodological quality of the studies. Thirty-four studies selected for analysis were gathered into five main categories: blood composition (n=7), endocrine secretion (n=11), muscle biochemistry (n=7), cardiovascular response (n=8) and the energetic profile (n=14). The mean quality index was 10.58 ± 2.19 points demonstrating an almost perfect agreement between reviewers (K = 0.93). It can be concluded that the mixed findings in the literature are due to the diversity of the experimental designs. Micro variables obtained at the cellular or molecular level are sensitive measures and demonstrate overtraining signs and health symptoms. The improvement of macro variables (i.e. main physiological systems) is limited and may depend on the athletes’ training background and experience. PMID:26839618

  19. Physiological Adaptations to Training in Competitive Swimming: A Systematic Review.

    PubMed

    Costa, Mário J; Balasekaran, Govindasamy; Vilas-Boas, J Paulo; Barbosa, Tiago M

    2015-12-22

    The purpose of this systematic review was to summarize longitudinal studies on swimming physiology and get implications for daily practice. A computerized search of databases according to the PRISMA statement was employed. Studies were screened for eligibility on inclusion criteria: (i) present two testing points; (ii) on swimming physiology; (iii) using adult elite swimmers; (iv) no case-studies or with small sample sizes. Two independent reviewers used a checklist to assess the methodological quality of the studies. Thirty-four studies selected for analysis were gathered into five main categories: blood composition (n=7), endocrine secretion (n=11), muscle biochemistry (n=7), cardiovascular response (n=8) and the energetic profile (n=14). The mean quality index was 10.58 ± 2.19 points demonstrating an almost perfect agreement between reviewers (K = 0.93). It can be concluded that the mixed findings in the literature are due to the diversity of the experimental designs. Micro variables obtained at the cellular or molecular level are sensitive measures and demonstrate overtraining signs and health symptoms. The improvement of macro variables (i.e. main physiological systems) is limited and may depend on the athletes' training background and experience. PMID:26839618

  20. Physiology-driven adaptive virtual reality stimulation for prevention and treatment of stress related disorders.

    PubMed

    Cosić, Kresimir; Popović, Sinisa; Kukolja, Davor; Horvat, Marko; Dropuljić, Branimir

    2010-02-01

    The significant proportion of severe psychological problems related to intensive stress in recent large peacekeeping operations underscores the importance of effective methods for strengthening the prevention and treatment of stress-related disorders. Adaptive control of virtual reality (VR) stimulation presented in this work, based on estimation of the person's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Following an overview of physiology-driven adaptive VR stimulation, its major functional subsystems are described in more detail. A specific algorithm of stimuli delivery applicable to SIT is outlined. PMID:20528296

  1. Physiological and behavioral adaptations in bats living at high latitudes.

    PubMed

    Boyles, Justin G; McGuire, Liam P; Boyles, Esmarie; Reimer, Jesika P; Brooks, Christopher A C; Rutherford, Robert W; Rutherford, Teresa A; Whitaker, John O; McCracken, Gary F

    2016-10-15

    Widespread animals at the extremes of the species' distribution experience ecological constraints different than individuals in the core of the distribution. For example, small endotherms at very high latitudes face short summers with cool temperatures and a lack of true darkness. In particular, insectivorous bats at high latitudes may experience constraints because of their unique life history traits, and may have different energy requirements than bats at lower latitudes. To evaluate the extent of these differences, we estimated an energy budget and refueling rates for reproductively active female little brown bats (Myotis lucifugus) roosting in buildings in eastern Alaska (~63°N). Physiological parameters (torpor use and metabolic rates) and daily energy expenditures (25.7±5.3kJd(-1)) were similar to, or slightly lower than, conspecifics at lower latitudes. Northern little brown bats foraged for less time than southerly conspecifics, but measurements of plasma β-hydroxybutyrate concentrations suggest that northern bats refuel at a rate considerably higher than those to the south. It appears that high refueling rates (and therefore foraging intensity) involve a dietary shift to orb-weaver spiders, which are abundant and likely offer higher energetic benefit than the small, flying insects consumed by individuals in other parts of the distribution. Environmental factors may limit species' distributions, but our results provide an example of a population at the limit of their geographic range that has compensated for environmental challenges by adopting unique behavioral strategies while the underlying physiology (including daily energy expenditure) remains similar to populations at the core of the species' range. PMID:27542518

  2. Physiological and behavioral adaptations in bats living at high latitudes.

    PubMed

    Boyles, Justin G; McGuire, Liam P; Boyles, Esmarie; Reimer, Jesika P; Brooks, Christopher A C; Rutherford, Robert W; Rutherford, Teresa A; Whitaker, John O; McCracken, Gary F

    2016-10-15

    Widespread animals at the extremes of the species' distribution experience ecological constraints different than individuals in the core of the distribution. For example, small endotherms at very high latitudes face short summers with cool temperatures and a lack of true darkness. In particular, insectivorous bats at high latitudes may experience constraints because of their unique life history traits, and may have different energy requirements than bats at lower latitudes. To evaluate the extent of these differences, we estimated an energy budget and refueling rates for reproductively active female little brown bats (Myotis lucifugus) roosting in buildings in eastern Alaska (~63°N). Physiological parameters (torpor use and metabolic rates) and daily energy expenditures (25.7±5.3kJd(-1)) were similar to, or slightly lower than, conspecifics at lower latitudes. Northern little brown bats foraged for less time than southerly conspecifics, but measurements of plasma β-hydroxybutyrate concentrations suggest that northern bats refuel at a rate considerably higher than those to the south. It appears that high refueling rates (and therefore foraging intensity) involve a dietary shift to orb-weaver spiders, which are abundant and likely offer higher energetic benefit than the small, flying insects consumed by individuals in other parts of the distribution. Environmental factors may limit species' distributions, but our results provide an example of a population at the limit of their geographic range that has compensated for environmental challenges by adopting unique behavioral strategies while the underlying physiology (including daily energy expenditure) remains similar to populations at the core of the species' range.

  3. Phenotyping for drought adaptation in wheat using physiological traits.

    PubMed

    Monneveux, Philippe; Jing, Ruilian; Misra, Satish C

    2012-01-01

    Wheat (Triticum spp) is one of the first domesticated food crops. It represents the first source of calories (after rice) and an important source of proteins in developing countries. As a result of the Green Revolution, wheat yield sharply increased due to the use of improved varieties, irrigation, pesticides, and fertilizers. The rate of increase in world wheat production, however, slowed after 1980, except in China, India, and Pakistan. Being adapted to a wide range of moisture conditions, wheat is grown on more land area worldwide than any other crop, including in drought prone areas. In these marginal rain-fed environments where at least 60 m ha of wheat is grown, amount and distribution of rainfall are the predominant factors influencing yield variability. Intensive work has been carried out in the area of drought adaptation over the last decades. Breeding strategies for drought tolerance improvement include: definition of the target environment, choice and characterization of the testing environment, water stress management and characterization, and use of phenotyping traits with high heritability. The use of integrative traits, facilitated by the development and application of new technologies (thermal imaging, spectral reflectance, stable isotopes) is facilitating high throughput phenotyping and indirect selection, consequently favoring yield improvement in drought prone environments. PMID:23181021

  4. Salt stress adaptation of Bacillus subtilis: a physiological proteomics approach.

    PubMed

    Höper, Dirk; Bernhardt, Jörg; Hecker, Michael

    2006-03-01

    The adaptation to osmotic stress is crucial for growth and survival of Bacillus subtilis in its natural ecosystem. Dual channel imaging and warping of 2-D protein gels were used to visualize global changes in the protein synthesis pattern of cells in response to osmotic stress (6% NaCl). Many vegetative enzymes were repressed in response to salt stress and derepressed after resumption of growth. The enzymes catalyzing the metabolic steps from glucose to 2-oxoglutarate, however, were almost constantly synthesized during salt stress despite the growth arrest. This indicates an enhanced need for the proline precursor glutamate. The synthesis of enzymes involved in sulfate assimilation and in the formation of Fe-S clusters was also induced, suggesting an enhanced need for the formation or repair of Fe-S clusters in response to salt stress. One of the most obvious changes in the protein synthesis profile can be followed by the very strong induction of the SigB regulon. Furthermore, members of the SigW regulon and of the PerR regulon, indicating oxidative stress after salt challenge, were also induced. This proteomic approach provides an overview of cell adaptation to an osmotic upshift in B. subtilis visualizing the most dramatic changes in the protein synthesis pattern.

  5. [Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology].

    PubMed

    Vonk-Noordegraaf, Anton; Haddad, François; Chin, Kelly M; Forfia, Paul R; Kawut, Steven M; Lumens, Joost; Naeije, Robert; Newman, John; Oudiz, Ronald J; Provencher, Steve; Torbicki, Adam; Voelkel, Norbert F; Hassoun, Paul M

    2014-10-01

    Survival in patients with pulmonary arterial hypertension (PAH) is closely related to right ventricular (RV) function. Although pulmonary load is an important determinant of RV systolic function in PAH, there remains a significant variability in RV adaptation to pulmonary hypertension. In this report, the authors discuss the emerging concepts of right heart pathobiology in PAH. More specifically, the discussion focuses on the following questions. 1) How is right heart failure syndrome best defined? 2) What are the uderlying molecular mechanisms of the failing right ventricle in PAH? 3) How are RV contractility and function and their prognostic implications best assessed? 4) What is the role of targeted RV therapy? Throughout the report, the authors highlight differences between right and left heart failure and outline key areas of future investigation. (J Am Coll Cardiol 2013;62:D22-33) a 2013 by the American College of Cardiology Foundation).

  6. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology.

    PubMed

    Vonk-Noordegraaf, Anton; Haddad, François; Chin, Kelly M; Forfia, Paul R; Kawut, Steven M; Lumens, Joost; Naeije, Robert; Newman, John; Oudiz, Ronald J; Provencher, Steve; Torbicki, Adam; Voelkel, Norbert F; Hassoun, Paul M

    2013-12-24

    Survival in patients with pulmonary arterial hypertension (PAH) is closely related to right ventricular (RV) function. Although pulmonary load is an important determinant of RV systolic function in PAH, there remains a significant variability in RV adaptation to pulmonary hypertension. In this report, the authors discuss the emerging concepts of right heart pathobiology in PAH. More specifically, the discussion focuses on the following questions. 1) How is right heart failure syndrome best defined? 2) What are the underlying molecular mechanisms of the failing right ventricle in PAH? 3) How are RV contractility and function and their prognostic implications best assessed? 4) What is the role of targeted RV therapy? Throughout the report, the authors highlight differences between right and left heart failure and outline key areas of future investigation.

  7. Physiology and relevance of human adaptive thermogenesis response.

    PubMed

    Celi, Francesco S; Le, Trang N; Ni, Bin

    2015-05-01

    In homoeothermic organisms, the preservation of core temperature represents a primal function, and its costs in terms of energy expenditure can be considerable. In modern humans, the endogenous thermoregulation mechanisms have been replaced by clothing and environmental control, and the maintenance of thermoneutrality has been successfully achieved by manipulation of the micro- and macroenvironment. The rediscovery of the presence and activity of brown adipose tissue in adult humans has renewed the interest on adaptive thermogenesis (AT) as a means to facilitate weight loss and improve carbohydrate metabolism. The aim of this review is to describe the recent advancements in the study of this function, and to assess the potential and limitations of exploiting AT for environmental/behavioral, and pharmacological interventions. PMID:25869212

  8. Distribution, adaptation and physiological meaning of thiols from vertebrate hemoglobins.

    PubMed

    Reischl, Evaldo; Dafre, Alcir Luiz; Franco, Jeferson Luis; Wilhelm Filho, Danilo

    2007-01-01

    In the present review, the sequences of hemoglobins (Hb) of 267 adult vertebrate species belonging to eight major vertebrate taxa are examined for the presence and location of cysteinyl residues in an attempt at correlation with their ecophysiology. Essentially, all vertebrates have surface cysteinyl residues in Hb molecules whereby their thiol groups may become highly reactive. Thiol-rich Hbs may display eight or more thiols per tetramer. In vertebrates so far examined, the cysteinyl residues occur in 44 different sequence positions in alpha chains and 41 positions in beta chains. Most of them are conservatively located and occur in only a few positions in Teleostei, Aves and Mammalia, whereas they are dispersed in Amphibia. The internal cysteinyl residue alpha104 is ubiquitous in vertebrates. Residue beta93 is highly conserved in reptiles, birds and mammals. The number of cysteine residues per tetramer with solvent access varies in vertebrates, mammalians and bony fish having the lowest number of external residues, whereas nearly all external cysteine residues in Aves and Lepidosauria are of the surface crevice type. In cartilaginous fish, amphibians, Crocodylidae and fresh water turtles, a substantial portion of the solvent accessible thiols are of the totally external type. Recent evidence shows that some Hb thiol groups are highly reactive and undergo extensive and reversible S-thiolation, and that they may be implicated in interorgan redox equilibrium processes. Participation of thiol groups in nitric oxide ((*)NO) metabolism has also been proved. The evidence argues for a new physiologically relevant role for Hb via involvement in free radical and antioxidant metabolism. PMID:17368111

  9. Aortic pulse pressure homeostasis emerges from physiological adaptation of systemic arteries to local mechanical stresses.

    PubMed

    Nguyen, Phuc H; Tuzun, Egemen; Quick, Christopher M

    2016-09-01

    Aortic pulse pressure arises from the interaction of the heart, the systemic arterial system, and peripheral microcirculations. The complex interaction between hemodynamics and arterial remodeling precludes the ability to experimentally ascribe changes in aortic pulse pressure to particular adaptive responses. Therefore, the purpose of the present work was to use a human systemic arterial system model to test the hypothesis that pulse pressure homeostasis can emerge from physiological adaptation of systemic arteries to local mechanical stresses. First, we assumed a systemic arterial system that had a realistic topology consisting of 121 arterial segments. Then the relationships of pulsatile blood pressures and flows in arterial segments were characterized by standard pulse transmission equations. Finally, each arterial segment was assumed to remodel to local stresses following three simple rules: 1) increases in endothelial shear stress increases radius, 2) increases in wall circumferential stress increases wall thickness, and 3) increases in wall circumferential stress decreases wall stiffness. Simulation of adaptation by iteratively calculating pulsatile hemodynamics, mechanical stresses, and vascular remodeling led to a general behavior in response to mechanical perturbations: initial increases in pulse pressure led to increased arterial compliances, and decreases in pulse pressure led to decreased compliances. Consequently, vascular adaptation returned pulse pressures back toward baseline conditions. This behavior manifested when modeling physiological adaptive responses to changes in cardiac output, changes in peripheral resistances, and changes in local arterial radii. The present work, thus, revealed that pulse pressure homeostasis emerges from physiological adaptation of systemic arteries to local mechanical stresses.

  10. Anatomical, immnunohistochemical and physiological characteristics of the vomeronasal vessels in cows and their possible role in vomeronasal reception

    PubMed Central

    Salazar, Ignacio; Sánchez-Quinteiro, Pablo; Alemañ, Nuria; Prieto, Dolores

    2008-01-01

    The general morphology of the vomeronasal vessels in adult cows was studied following a classic protocol, including optical, confocal and ultrastructural approaches. This anatomical work was completed immunohistochemically. The vomeronasal organ in cows is well developed, and its vessels are considerable in size. This fact allowed some functional properties of the vomeronasal arteries to be evaluated and, for the first time, their isometric tension to be recorded. Our functional studies were in agreement with the immunohistochemistry, and both corroborated the morphological data on the similarity between the vomeronasal vessels and those of the typical erectile tissue. In consequence, the vasoconstriction and vasodilation of the vomeronasal vessels would facilitate an influx and outflow of fluids in the vomeronasal organ, that is to say, this organ in cows would be able to work as a pump mechanism to send chemical signals to the vomeronasal receptor neurones. PMID:18430091

  11. Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training

    PubMed Central

    Hedayatpour, Nosratollah; Falla, Deborah

    2015-01-01

    Eccentric exercise is characterized by initial unfavorable effects such as subcellular muscle damage, pain, reduced fiber excitability, and initial muscle weakness. However, stretch combined with overload, as in eccentric contractions, is an effective stimulus for inducing physiological and neural adaptations to training. Eccentric exercise-induced adaptations include muscle hypertrophy, increased cortical activity, and changes in motor unit behavior, all of which contribute to improved muscle function. In this brief review, neuromuscular adaptations to different forms of exercise are reviewed, the positive training effects of eccentric exercise are presented, and the implications for training are considered. PMID:26543850

  12. Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training.

    PubMed

    Hedayatpour, Nosratollah; Falla, Deborah

    2015-01-01

    Eccentric exercise is characterized by initial unfavorable effects such as subcellular muscle damage, pain, reduced fiber excitability, and initial muscle weakness. However, stretch combined with overload, as in eccentric contractions, is an effective stimulus for inducing physiological and neural adaptations to training. Eccentric exercise-induced adaptations include muscle hypertrophy, increased cortical activity, and changes in motor unit behavior, all of which contribute to improved muscle function. In this brief review, neuromuscular adaptations to different forms of exercise are reviewed, the positive training effects of eccentric exercise are presented, and the implications for training are considered.

  13. Adaptation to Altitude as a Vehicle for Experiential Learning of Physiology by University Undergraduates

    ERIC Educational Resources Information Center

    Weigle, David S.; Buben, Amelia; Burke, Caitlin C.; Carroll, Nels D.; Cook, Brett M.; Davis, Benjamin S.; Dubowitz, Gerald; Fisher, Rian E.; Freeman, Timothy C.; Gibbons, Stephen M.; Hansen, Hale A.; Heys, Kimberly A.; Hopkins, Brittany; Jordan, Brittany L.; McElwain, Katherine L.; Powell, Frank L.; Reinhart, Katherine E.; Robbins, Charles D.; Summers, Cameron C.; Walker, Jennifer D.; Weber, Steven S.; Weinheimer, Caroline J.

    2007-01-01

    In this article, an experiential learning activity is described in which 19 university undergraduates made experimental observations on each other to explore physiological adaptations to high altitude. Following 2 wk of didactic sessions and baseline data collection at sea level, the group ascended to a research station at 12,500-ft elevation.…

  14. PHYCAA+: an optimized, adaptive procedure for measuring and controlling physiological noise in BOLD fMRI.

    PubMed

    Churchill, Nathan W; Strother, Stephen C

    2013-11-15

    The presence of physiological noise in functional MRI can greatly limit the sensitivity and accuracy of BOLD signal measurements, and produce significant false positives. There are two main types of physiological confounds: (1) high-variance signal in non-neuronal tissues of the brain including vascular tracts, sinuses and ventricles, and (2) physiological noise components which extend into gray matter tissue. These physiological effects may also be partially coupled with stimuli (and thus the BOLD response). To address these issues, we have developed PHYCAA+, a significantly improved version of the PHYCAA algorithm (Churchill et al., 2011) that (1) down-weights the variance of voxels in probable non-neuronal tissue, and (2) identifies the multivariate physiological noise subspace in gray matter that is linked to non-neuronal tissue. This model estimates physiological noise directly from EPI data, without requiring external measures of heartbeat and respiration, or manual selection of physiological components. The PHYCAA+ model significantly improves the prediction accuracy and reproducibility of single-subject analyses, compared to PHYCAA and a number of commonly-used physiological correction algorithms. Individual subject denoising with PHYCAA+ is independently validated by showing that it consistently increased between-subject activation overlap, and minimized false-positive signal in non gray-matter loci. The results are demonstrated for both block and fast single-event task designs, applied to standard univariate and adaptive multivariate analysis models.

  15. Drivers of grazing livestock efficiency: how physiology, metabolism, experience, and adaptability influence productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef cow efficiency, a century’s old debate, on what the criteria, certain phenotypic traits, and definition of an “efficient” cow really should be. However, we do know that energy utilization by the cow herd is proportionally large compared to the rest of the sector. This requirement accounts up to...

  16. Adaptation and acclimation of aerobic exercise physiology in Lake Whitefish ecotypes (Coregonus clupeaformis).

    PubMed

    Dalziel, Anne C; Martin, Nicolas; Laporte, Martin; Guderley, Helga; Bernatchez, Louis

    2015-08-01

    The physiological mechanisms underlying local adaptation in natural populations of animals, and whether the same mechanisms contribute to adaptation and acclimation, are largely unknown. Therefore, we tested for evolutionary divergence in aerobic exercise physiology in laboratory bred, size-matched crosses of ancestral, benthic, normal Lake Whitefish (Coregonus clupeaformis) and derived, limnetic, more actively swimming "dwarf" ecotypes. We acclimated fish to constant swimming (emulating limnetic foraging) and control conditions (emulating normal activity levels) to simultaneously study phenotypic plasticity. We found extensive divergence between ecotypes: dwarf fish generally had constitutively higher values of traits related to oxygen transport (ventricle size) and use by skeletal muscle (percent oxidative muscle, mitochondrial content), and also evolved differential plasticity of mitochondrial function (Complex I activity and flux through Complexes I-IV and IV). The effects of swim training were less pronounced than differences among ecotypes and the traits which had a significant training effect (ventricle protein content, ventricle malate dehydrogenase activity, and muscle Complex V activity) did not differ among ecotypes. Only one trait, ventricle mass, varied in a similar manner with acclimation and adaptation and followed a pattern consistent with genetic accommodation. Overall, the physiological and biochemical mechanisms underlying acclimation and adaptation to swimming activity in Lake Whitefish differ. PMID:26177840

  17. Adaptation and acclimation of aerobic exercise physiology in Lake Whitefish ecotypes (Coregonus clupeaformis).

    PubMed

    Dalziel, Anne C; Martin, Nicolas; Laporte, Martin; Guderley, Helga; Bernatchez, Louis

    2015-08-01

    The physiological mechanisms underlying local adaptation in natural populations of animals, and whether the same mechanisms contribute to adaptation and acclimation, are largely unknown. Therefore, we tested for evolutionary divergence in aerobic exercise physiology in laboratory bred, size-matched crosses of ancestral, benthic, normal Lake Whitefish (Coregonus clupeaformis) and derived, limnetic, more actively swimming "dwarf" ecotypes. We acclimated fish to constant swimming (emulating limnetic foraging) and control conditions (emulating normal activity levels) to simultaneously study phenotypic plasticity. We found extensive divergence between ecotypes: dwarf fish generally had constitutively higher values of traits related to oxygen transport (ventricle size) and use by skeletal muscle (percent oxidative muscle, mitochondrial content), and also evolved differential plasticity of mitochondrial function (Complex I activity and flux through Complexes I-IV and IV). The effects of swim training were less pronounced than differences among ecotypes and the traits which had a significant training effect (ventricle protein content, ventricle malate dehydrogenase activity, and muscle Complex V activity) did not differ among ecotypes. Only one trait, ventricle mass, varied in a similar manner with acclimation and adaptation and followed a pattern consistent with genetic accommodation. Overall, the physiological and biochemical mechanisms underlying acclimation and adaptation to swimming activity in Lake Whitefish differ.

  18. [The physiological analysis of cross adaptation to regular cold exposure and physical activities].

    PubMed

    Son'kin, V D; Iakushkin, A V; Akimov, E B; Andreev, R S; Kalenov, Iu N; Kozlov, A V

    2014-01-01

    Research is devoted to the comparative analysis of results of cold adaptation and physical training. The adaptive shifts occurring in an organism under the influence of a hardening (douche by a cold shower 2 times a day 2 minutes long within 6 weeks) and running training on the treadmill (30 minutes at 70-80% of individual VO2max, 3 times a week, within 6 weeks) were compared at 6 the same subjects. The interval between the two cycles of training was no less than 3 months. The indicators registered during ramp test and standard cold exposure test before and after each cycle of trainings were compared. It is shown that patterns of adaptive shifts at adaptation to factors of various modality strongly differ. Shifts at adaptation to physical activities were as a whole more expressed, than at adaptation to regular cold exposition. An individual variety of adaptive reactions suggests the feasibility of developing new approaches to the theory of the adaptation, connected with studying of physiological individuality. PMID:25711113

  19. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway?

    PubMed Central

    Kumar, Hemant; Choi, Dong-Kug

    2015-01-01

    Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1–1% O2), physioxia or physoxia (∼1–13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction). Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s) (HIFs) are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise. PMID:26491231

  20. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation.

    PubMed

    Huey, Raymond B; Kearney, Michael R; Krockenberger, Andrew; Holtum, Joseph A M; Jess, Mellissa; Williams, Stephen E

    2012-06-19

    A recently developed integrative framework proposes that the vulnerability of a species to environmental change depends on the species' exposure and sensitivity to environmental change, its resilience to perturbations and its potential to adapt to change. These vulnerability criteria require behavioural, physiological and genetic data. With this information in hand, biologists can predict organisms most at risk from environmental change. Biologists and managers can then target organisms and habitats most at risk. Unfortunately, the required data (e.g. optimal physiological temperatures) are rarely available. Here, we evaluate the reliability of potential proxies (e.g. critical temperatures) that are often available for some groups. Several proxies for ectotherms are promising, but analogous ones for endotherms are lacking. We also develop a simple graphical model of how behavioural thermoregulation, acclimation and adaptation may interact to influence vulnerability over time. After considering this model together with the proxies available for physiological sensitivity to climate change, we conclude that ectotherms sharing vulnerability traits seem concentrated in lowland tropical forests. Their vulnerability may be exacerbated by negative biotic interactions. Whether tropical forest (or other) species can adapt to warming environments is unclear, as genetic and selective data are scant. Nevertheless, the prospects for tropical forest ectotherms appear grim.

  1. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation

    PubMed Central

    Huey, Raymond B.; Kearney, Michael R.; Krockenberger, Andrew; Holtum, Joseph A. M.; Jess, Mellissa; Williams, Stephen E.

    2012-01-01

    A recently developed integrative framework proposes that the vulnerability of a species to environmental change depends on the species' exposure and sensitivity to environmental change, its resilience to perturbations and its potential to adapt to change. These vulnerability criteria require behavioural, physiological and genetic data. With this information in hand, biologists can predict organisms most at risk from environmental change. Biologists and managers can then target organisms and habitats most at risk. Unfortunately, the required data (e.g. optimal physiological temperatures) are rarely available. Here, we evaluate the reliability of potential proxies (e.g. critical temperatures) that are often available for some groups. Several proxies for ectotherms are promising, but analogous ones for endotherms are lacking. We also develop a simple graphical model of how behavioural thermoregulation, acclimation and adaptation may interact to influence vulnerability over time. After considering this model together with the proxies available for physiological sensitivity to climate change, we conclude that ectotherms sharing vulnerability traits seem concentrated in lowland tropical forests. Their vulnerability may be exacerbated by negative biotic interactions. Whether tropical forest (or other) species can adapt to warming environments is unclear, as genetic and selective data are scant. Nevertheless, the prospects for tropical forest ectotherms appear grim. PMID:22566674

  2. Physiological and proteomic analysis of Lactobacillus casei in response to acid adaptation.

    PubMed

    Wu, Chongde; He, Guiqiang; Zhang, Juan

    2014-10-01

    The aim of this study was to investigate the acid tolerance response (ATR) in Lactobacillus casei by a combined physiological and proteomic analysis. To optimize the ATR induction, cells were acid adapted for 1 h at different pHs, and then acid challenged at pH 3.5. The result showed that acid adaptation improved acid tolerance, and the highest survival was observed in cells adapted at pH 4.5 for 1 h. Analysis of the physiological data showed that the acid-adapted cells exhibited higher intracellular pH (pHi), intracellular NH4 (+) content, and lower inner permeability compared with the cells without adaptation. Proteomic analysis was performed upon acid adaptation to different pHs (pH 6.5 vs. pH 4.5) using two-dimensional electrophoresis. A total of 24 proteins that exhibited at least 1.5-fold differential expression were identified. Four proteins (Pgk, LacD, Hpr, and Galm) involved in carbohydrate catabolism and five classic stress response proteins (GroEL, GrpE, Dnak, Hspl, and LCAZH_2811) were up-regulated after acid adaptation at pH 4.5 for 1 h. Validation of the proteomic data was performed by quantitative RT-PCR, and transcriptional regulation of all selected genes showed a positive correlation with the proteomic patterns of the identified proteins. Results presented in this study may be useful for further elucidating the acid tolerance mechanisms and may help in formulating new strategies to improve the industrial performance of this species during acid stress. PMID:25062817

  3. Sexually dimorphic adaptations in basal maternal stress physiology during pregnancy and implications for fetal development.

    PubMed

    Giesbrecht, Gerald F; Campbell, Tavis; Letourneau, Nicole

    2015-06-01

    There is clear evidence of reciprocal exchange of information between the mother and fetus during pregnancy but the majority of research in this area has focussed on the fetus as a recipient of signals from the mother. Specifically, physiological signals produced by the maternal stress systems in response to the environment may carry valuable information about the state of the external world. Prenatal stress produces sex-specific adaptations within fetal physiology that have pervasive and long-lasting effects on development. Little is known, however, about the effects of sex-specific fetal signals on maternal adaptations to pregnancy. The current prospective study examined sexually dimorphic adaptations within maternal stress physiology, including the hypothalamic-adrenal-pituitary (HPA) axis and the autonomic nervous system (ANS) and associations with fetal growth. Using diurnal suites of saliva collected in early and late pregnancy, we demonstrate that basal cortisol and salivary alpha-amylase (sAA) differ by fetal sex. Women carrying female fetuses displayed greater autonomic arousal and flatter (but more elevated) diurnal cortisol patterns compared to women carrying males. Women with flatter daytime cortisol trajectories and more blunted sAA awakening responses also had infants with lower birth weight. These maternal adaptations are consistent with sexually dimorphic fetal developmental/evolutionary adaptation strategies that favor growth for males and conservation of resources for females. The findings provide new evidence to suggest that the fetus contributes to maternal HPA axis and ANS regulation during pregnancy and that these systems also contribute to the regulation of fetal growth.

  4. Sexually dimorphic adaptations in basal maternal stress physiology during pregnancy and implications for fetal development.

    PubMed

    Giesbrecht, Gerald F; Campbell, Tavis; Letourneau, Nicole

    2015-06-01

    There is clear evidence of reciprocal exchange of information between the mother and fetus during pregnancy but the majority of research in this area has focussed on the fetus as a recipient of signals from the mother. Specifically, physiological signals produced by the maternal stress systems in response to the environment may carry valuable information about the state of the external world. Prenatal stress produces sex-specific adaptations within fetal physiology that have pervasive and long-lasting effects on development. Little is known, however, about the effects of sex-specific fetal signals on maternal adaptations to pregnancy. The current prospective study examined sexually dimorphic adaptations within maternal stress physiology, including the hypothalamic-adrenal-pituitary (HPA) axis and the autonomic nervous system (ANS) and associations with fetal growth. Using diurnal suites of saliva collected in early and late pregnancy, we demonstrate that basal cortisol and salivary alpha-amylase (sAA) differ by fetal sex. Women carrying female fetuses displayed greater autonomic arousal and flatter (but more elevated) diurnal cortisol patterns compared to women carrying males. Women with flatter daytime cortisol trajectories and more blunted sAA awakening responses also had infants with lower birth weight. These maternal adaptations are consistent with sexually dimorphic fetal developmental/evolutionary adaptation strategies that favor growth for males and conservation of resources for females. The findings provide new evidence to suggest that the fetus contributes to maternal HPA axis and ANS regulation during pregnancy and that these systems also contribute to the regulation of fetal growth. PMID:25827961

  5. Actions of Prolactin in the Brain: From Physiological Adaptations to Stress and Neurogenesis to Psychopathology

    PubMed Central

    Torner, Luz

    2016-01-01

    Prolactin (PRL) is one of the most versatile hormones known. It is considered an adaptive hormone due to the key roles it plays in the modulation of the stress response and during pregnancy and lactation. Within the brain, PRL acts as a neuropeptide to promote physiological responses related to reproduction, stress adaptation, neurogenesis, and neuroprotection. The action of PRL on the nervous system contributes to the wide array of changes that occur in the female brain during pregnancy and result in the attenuation of the hypothalamic–pituitary–adrenal axis. Together, all these changes promote behavioral and physiological adaptations of the new mother to enable reproductive success. Brain adaptations driven by PRL are also important for the regulation of maternal emotionality and well-being. PRL also affects the male brain during the stress response, but its effects have been less studied. PRL regulates neurogenesis both in the subventricular zone and in the hippocampus. Therefore, alterations in the PRL system due to stress or exposure to substances that reduce neurogenesis or other conditions, could contribute to maladaptive responses and pathological behavioral outcomes. Here, we review the PRL system and the role it plays in the modulation of stress response and emotion regulation. We discuss the effects of PRL on neurogenesis and neuroprotection, the putative neuronal mechanisms underlying these effects, and their contribution to the onset of psychopathological states such as depression. PMID:27065946

  6. Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation

    PubMed Central

    Cardoso, Gonçalo C.; Whittaker, Danielle J.; Campbell-Nelson, Samuel; Robertson, Kyle W.; Ketterson, Ellen D.

    2012-01-01

    Novel or changing environments expose animals to diverse stressors that likely require coordinated hormonal and behavioral adaptations. Predicted adaptations to urban environments include attenuated physiological responses to stressors and bolder exploratory behaviors, but few studies to date have evaluated the impact of urban life on codivergence of these hormonal and behavioral traits in natural systems. Here, we demonstrate rapid adaptive shifts in both stress physiology and correlated boldness behaviors in a songbird, the dark-eyed junco, following its colonization of a novel urban environment. We compared elevation in corticosterone (CORT) in response to handling and flight initiation distances in birds from a recently established urban population in San Diego, California to birds from a nearby wildland population in the species' ancestral montane breeding range. We also measured CORT and exploratory behavior in birds raised from early life in a captive common garden study. We found persistent population differences for both reduced CORT responses and bolder exploratory behavior in birds from the colonist population, as well as significant negative covariation between maximum CORT and exploratory behavior. Although early developmental effects cannot be ruled out, these results suggest contemporary adaptive evolution of correlated hormonal and behavioral traits associated with colonization of an urban habitat. PMID:22936840

  7. Actions of Prolactin in the Brain: From Physiological Adaptations to Stress and Neurogenesis to Psychopathology.

    PubMed

    Torner, Luz

    2016-01-01

    Prolactin (PRL) is one of the most versatile hormones known. It is considered an adaptive hormone due to the key roles it plays in the modulation of the stress response and during pregnancy and lactation. Within the brain, PRL acts as a neuropeptide to promote physiological responses related to reproduction, stress adaptation, neurogenesis, and neuroprotection. The action of PRL on the nervous system contributes to the wide array of changes that occur in the female brain during pregnancy and result in the attenuation of the hypothalamic-pituitary-adrenal axis. Together, all these changes promote behavioral and physiological adaptations of the new mother to enable reproductive success. Brain adaptations driven by PRL are also important for the regulation of maternal emotionality and well-being. PRL also affects the male brain during the stress response, but its effects have been less studied. PRL regulates neurogenesis both in the subventricular zone and in the hippocampus. Therefore, alterations in the PRL system due to stress or exposure to substances that reduce neurogenesis or other conditions, could contribute to maladaptive responses and pathological behavioral outcomes. Here, we review the PRL system and the role it plays in the modulation of stress response and emotion regulation. We discuss the effects of PRL on neurogenesis and neuroprotection, the putative neuronal mechanisms underlying these effects, and their contribution to the onset of psychopathological states such as depression.

  8. Common-garden studies on adaptive radiation of photosynthetic physiology among Hawaiian lobeliads.

    PubMed

    Givnish, Thomas J; Montgomery, Rebecca A

    2014-03-22

    Species in an adaptive radiation often occupy different habitats so that individuals of each species develop under different conditions. Showing that a radiation is adaptive thus requires evidence that taxa have diverged genetically and that each has an ecological advantage in using particular habitats or resources, taking into account both phenotypic plasticity and phylogenetic relationships among species. Here, we use a common-garden experiment to show that representative species of Hawaiian lobeliads have diverged adaptively in their leaf-level photosynthetic light responses. Across species, plants genetically shifted their photosynthetic physiology with native light regime in accord with theoretical predictions and exhibited adaptive crossover in net carbon gain-that is, species native to a given light regime outperformed others only under conditions similar to those they occupy in the field, with the rank order of species based on photosynthesis per unit leaf mass changing with light level. These findings make a powerful case for adaptation of photosynthetic light responses to native light regimes and, combined with our earlier field studies, provide the strongest demonstration to date for the evolution of divergent adaptations for energy capture in any group of closely related plants.

  9. Common-garden studies on adaptive radiation of photosynthetic physiology among Hawaiian lobeliads

    PubMed Central

    Givnish, Thomas J.; Montgomery, Rebecca A.

    2014-01-01

    Species in an adaptive radiation often occupy different habitats so that individuals of each species develop under different conditions. Showing that a radiation is adaptive thus requires evidence that taxa have diverged genetically and that each has an ecological advantage in using particular habitats or resources, taking into account both phenotypic plasticity and phylogenetic relationships among species. Here, we use a common-garden experiment to show that representative species of Hawaiian lobeliads have diverged adaptively in their leaf-level photosynthetic light responses. Across species, plants genetically shifted their photosynthetic physiology with native light regime in accord with theoretical predictions and exhibited adaptive crossover in net carbon gain—that is, species native to a given light regime outperformed others only under conditions similar to those they occupy in the field, with the rank order of species based on photosynthesis per unit leaf mass changing with light level. These findings make a powerful case for adaptation of photosynthetic light responses to native light regimes and, combined with our earlier field studies, provide the strongest demonstration to date for the evolution of divergent adaptations for energy capture in any group of closely related plants. PMID:24478303

  10. Physiology

    ERIC Educational Resources Information Center

    Kay, Ian

    2008-01-01

    Underlying recent developments in health care and new treatments for disease are advances in basic medical sciences. This edition of "Webwatch" focuses on sites dealing with basic medical sciences, with particular attention given to physiology. There is a vast amount of information on the web related to physiology. The sites that are included here…

  11. Myosin heavy chain and physiological adaptation of the rat diaphragm in elastase-induced emphysema

    PubMed Central

    Kim, Dong Kwan; Zhu, Jianliang; Kozyak, Benjamin W; Burkman, James M; Rubinstein, Neal A; Lankford, Edward B; Stedman, Hansell H; Nguyen, Taitan; Levine, Sanford; Shrager, Joseph B

    2003-01-01

    Background Several physiological adaptations occur in the respiratory muscles in rodent models of elastase-induced emphysema. Although the contractile properties of the diaphragm are altered in a way that suggests expression of slower isoforms of myosin heavy chain (MHC), it has been difficult to demonstrate a shift in MHCs in an animal model that corresponds to the shift toward slower MHCs seen in human emphysema. Methods We sought to identify MHC and corresponding physiological changes in the diaphragms of rats with elastase-induced emphysema. Nine rats with emphysema and 11 control rats were studied 10 months after instillation with elastase. MHC isoform composition was determined by both reverse transcriptase polymerase chain reaction (RT-PCR) and immunocytochemistry by using specific probes able to identify all known adult isoforms. Physiological adaptation was studied on diaphragm strips stimulated in vitro. Results In addition to confirming that emphysematous diaphragm has a decreased fatigability, we identified a significantly longer time-to-peak-tension (63.9 ± 2.7 ms versus 53.9 ± 2.4 ms). At both the RNA (RT-PCR) and protein (immunocytochemistry) levels, we found a significant decrease in the fastest, MHC isoform (IIb) in emphysema. Conclusion This is the first demonstration of MHC shifts and corresponding physiological changes in the diaphragm in an animal model of emphysema. It is established that rodent emphysema, like human emphysema, does result in a physiologically significant shift toward slower diaphragmatic MHC isoforms. In the rat, this occurs at the faster end of the MHC spectrum than in humans. PMID:12617755

  12. Eco-physiological adaptation shapes the response of calcifying algae to nutrient limitation

    NASA Astrophysics Data System (ADS)

    Šupraha, Luka; Gerecht, Andrea C.; Probert, Ian; Henderiks, Jorijntje

    2015-11-01

    The steady increase in global ocean temperature will most likely lead to nutrient limitation in the photic zone. This will impact the physiology of marine algae, including the globally important calcifying coccolithophores. Understanding their adaptive patterns is essential for modelling carbon production in a low-nutrient ocean. We investigated the physiology of Helicosphaera carteri, a representative of the abundant but under-investigated flagellated functional group of coccolithophores. Two strains isolated from contrasting nutrient regimes (South Atlantic and Mediterranean Sea) were grown in phosphorus-replete and phosphorus-limited batch cultures. While growing exponentially in a phosphorus-replete medium, the Mediterranean strain exhibited on average 24% lower growth rate, 36% larger coccosphere volume and 21% lower particulate inorganic carbon (PIC) production than the Atlantic strain. Under phosphorus limitation, the same strain was capable of reaching a 2.6 times higher cell density than the Atlantic strain due to lower phosphorus requirements. These results suggest that local physiological adaptation can define the performance of this species under nutrient limitation.

  13. Eco-physiological adaptation shapes the response of calcifying algae to nutrient limitation

    PubMed Central

    Šupraha, Luka; Gerecht, Andrea C.; Probert, Ian; Henderiks, Jorijntje

    2015-01-01

    The steady increase in global ocean temperature will most likely lead to nutrient limitation in the photic zone. This will impact the physiology of marine algae, including the globally important calcifying coccolithophores. Understanding their adaptive patterns is essential for modelling carbon production in a low-nutrient ocean. We investigated the physiology of Helicosphaera carteri, a representative of the abundant but under-investigated flagellated functional group of coccolithophores. Two strains isolated from contrasting nutrient regimes (South Atlantic and Mediterranean Sea) were grown in phosphorus-replete and phosphorus-limited batch cultures. While growing exponentially in a phosphorus-replete medium, the Mediterranean strain exhibited on average 24% lower growth rate, 36% larger coccosphere volume and 21% lower particulate inorganic carbon (PIC) production than the Atlantic strain. Under phosphorus limitation, the same strain was capable of reaching a 2.6 times higher cell density than the Atlantic strain due to lower phosphorus requirements. These results suggest that local physiological adaptation can define the performance of this species under nutrient limitation. PMID:26560531

  14. Eco-physiological adaptation shapes the response of calcifying algae to nutrient limitation.

    PubMed

    Šupraha, Luka; Gerecht, Andrea C; Probert, Ian; Henderiks, Jorijntje

    2015-11-12

    The steady increase in global ocean temperature will most likely lead to nutrient limitation in the photic zone. This will impact the physiology of marine algae, including the globally important calcifying coccolithophores. Understanding their adaptive patterns is essential for modelling carbon production in a low-nutrient ocean. We investigated the physiology of Helicosphaera carteri, a representative of the abundant but under-investigated flagellated functional group of coccolithophores. Two strains isolated from contrasting nutrient regimes (South Atlantic and Mediterranean Sea) were grown in phosphorus-replete and phosphorus-limited batch cultures. While growing exponentially in a phosphorus-replete medium, the Mediterranean strain exhibited on average 24% lower growth rate, 36% larger coccosphere volume and 21% lower particulate inorganic carbon (PIC) production than the Atlantic strain. Under phosphorus limitation, the same strain was capable of reaching a 2.6 times higher cell density than the Atlantic strain due to lower phosphorus requirements. These results suggest that local physiological adaptation can define the performance of this species under nutrient limitation.

  15. Global transcriptional, physiological and metabolite analyses of Desulfovibrio vulgaris Hildenborough responses to salt adaptation

    SciTech Connect

    He, Z.; Zhou, A.; Baidoo, E.; He, Q.; Joachimiak, M. P.; Benke, P.; Phan, R.; Mukhopadhyay, A.; Hemme, C.L.; Huang, K.; Alm, E.J.; Fields, M.W.; Wall, J.; Stahl, D.; Hazen, T.C.; Keasling, J.D.; Arkin, A.P.; Zhou, J.

    2009-12-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by physiological, global transcriptional, and metabolite analyses. The growth of D. vulgaris was inhibited by high levels of NaCl, and the growth inhibition could be relieved by the addition of exogenous amino acids (e.g., glutamate, alanine, tryptophan) or yeast extract. Salt adaptation induced the expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). Genes involved in carbon metabolism, cell motility, and phage structures were repressed. Comparison of transcriptomic profiles of D. vulgaris responses to salt adaptation with those of salt shock (short-term NaCl exposure) showed some similarity as well as a significant difference. Metabolite assays showed that glutamate and alanine were accumulated under salt adaptation, suggesting that they may be used as osmoprotectants in D. vulgaris. A conceptual model is proposed to link the observed results to currently available knowledge for further understanding the mechanisms of D. vulgaris adaptation to elevated NaCl.

  16. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation

    PubMed Central

    Raubenheimer, David; Simpson, Stephen J.; Tait, Alice H.

    2012-01-01

    Conservation physiology (CP) and nutritional ecology (NE) are both integrative sciences that share the fundamental aim of understanding the patterns, mechanisms and consequences of animal responses to changing environments. Here, we explore the high-level similarities and differences between CP and NE, identifying as central themes to both fields the multiple timescales over which animals adapt (and fail to adapt) to their environments, and the need for integrative models to study these processes. At one extreme are the short-term regulatory responses that modulate the state of animals in relation to the environment, which are variously considered under the concepts of homeostasis, homeorhesis, enantiostasis, heterostasis and allostasis. In the longer term are developmental responses, including phenotypic plasticity and transgenerational effects mediated by non-genomic influences such as parental physiology, epigenetic effects and cultural learning. Over a longer timescale still are the cumulative genetic changes that take place in Darwinian evolution. We present examples showing how the adaptive responses of animals across these timescales have been represented in an integrative framework from NE, the geometric framework (GF) for nutrition, and close with an illustration of how GF can be applied to the central issue in CP, animal conservation. PMID:22566672

  17. What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation?

    PubMed Central

    Alonso-Blanco, Carlos; Aarts, Mark G.M.; Bentsink, Leonie; Keurentjes, Joost J.B.; Reymond, Matthieu; Vreugdenhil, Dick; Koornneef, Maarten

    2009-01-01

    Nearly 100 genes and functional polymorphisms underlying natural variation in plant development and physiology have been identified. In crop plants, these include genes involved in domestication traits, such as those related to plant architecture, fruit and seed structure and morphology, as well as yield and quality traits improved by subsequent crop breeding. In wild plants, comparable traits have been dissected mainly in Arabidopsis thaliana. In this review, we discuss the major contributions of the analysis of natural variation to our understanding of plant development and physiology, focusing in particular on the timing of germination and flowering, plant growth and morphology, primary metabolism, and mineral accumulation. Overall, functional polymorphisms appear in all types of genes and gene regions, and they may have multiple mutational causes. However, understanding this diversity in relation to adaptation and environmental variation is a challenge for which tools are now available. PMID:19574434

  18. Physiological properties of the gut lumen of terrestrial isopods (Isopoda: Oniscidea): adaptive to digesting lignocellulose?

    PubMed

    Zimmer, Martin; Brune, Andreas

    2005-05-01

    Since any given trait of an organism is considered to represent either an adaptation to the environment or a phylogenetic constraint, most physiological gut characteristics should be adaptive in terms of optimizing digestion and utilization of the respective food source. Among the Crustacea, the taxon Oniscidea (Isopoda) is the only suborder that includes, and essentially consists of, species inhabiting terrestrial environments, feeding on food sources different from those of most other Crustacea (i.e., terrestrial leaf litter). Microelectrodes were used to assay physiological characteristics of the gut lumen from representatives of four families of terrestrial isopods: Trichoniscus pusillus (Trichoniscidae), Oniscus asellus (Oniscidae), Porcellio scaber (Porcellionidae), and Trachelipus rathkii (Trachelipodidae). Microsensor measurements of oxygen pressure (Clark-type oxygen microelectrodes) revealed that O2-consuming processes inside the gut lumen created steep radial oxygen gradients. Although all guts were oxic in the periphery, the radial center of the posterior hindgut was micro-oxic or even anoxic in the adults of the larger species. The entire gut lumen of all examined species was strongly oxidizing (Pt microelectrodes; apparent redox potential, Eh: +600-700 mV). Such conditions would allow for the coexistence of aerobic and anaerobic microorganisms, with both oxidative and fermentative activities contributing to digestion. Although bacterial O2 consumption was also observed in the midgut glands (hepatopancreas), they remained entirely oxic, probably owing to their large surface-to-volume ratio and high oxygen fluxes across the hepatopancreatic epithelium into the gland lumen. Measurements with pH microelectrodes (LIX-type) showed a slight pH gradient from acidic conditions in the anterior hindgut to neutral conditions in the posterior hindgut of O. asellus, P. scaber and T. rathkii. By contrast, the pH in the hindgut lumen of T. pusillus was almost

  19. Behavioural and physiological adaptations to low-temperature environments in the common frog, Rana temporaria

    PubMed Central

    2014-01-01

    Background Extreme environments can impose strong ecological and evolutionary pressures at a local level. Ectotherms are particularly sensitive to low-temperature environments, which can result in a reduced activity period, slowed physiological processes and increased exposure to sub-zero temperatures. The aim of this study was to assess the behavioural and physiological responses that facilitate survival in low-temperature environments. In particular, we asked: 1) do high-altitude common frog (Rana temporaria) adults extend the time available for larval growth by breeding at lower temperatures than low-altitude individuals?; and 2) do tadpoles sampled from high-altitude sites differ physiologically from those from low-altitude sites, in terms of routine metabolic rate (RMR) and freeze tolerance? Breeding date was assessed as the first day of spawn observation and local temperature recorded for five, paired high- and low-altitude R. temporaria breeding sites in Scotland. Spawn was collected and tadpoles raised in a common laboratory environment, where RMR was measured as oxygen consumed using a closed respiratory tube system. Freeze tolerance was measured as survival following slow cooling to the point when all container water had frozen. Results We found that breeding did not occur below 5°C at any site and there was no significant relationship between breeding temperature and altitude, leading to a delay in spawning of five days for every 100 m increase in altitude. The relationship between altitude and RMR varied by mountain but was lower for individuals sampled from high- than low-altitude sites within the three mountains with the highest high-altitude sites (≥900 m). In contrast, individuals sampled from low-altitudes survived freezing significantly better than those from high-altitudes, across all mountains. Conclusions Our results suggest that adults at high-altitude do not show behavioural adaptations in terms of breeding at lower temperatures. However

  20. Adaptive divergence in a scleractinian coral: physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats

    PubMed Central

    2011-01-01

    Background Divergent natural selection across environmental gradients has been acknowledged as a major driver of population and species divergence, however its role in the diversification of scleractinian corals remains poorly understood. Recently, it was demonstrated that the brooding coral Seriatopora hystrix and its algal endosymbionts (Symbiodinium) are genetically partitioned across reef environments (0-30 m) on the far northern Great Barrier Reef. Here, we explore the potential mechanisms underlying this differentiation and assess the stability of host-symbiont associations through a reciprocal transplantation experiment across habitats ('Back Reef', 'Upper Slope' and 'Deep Slope'), in combination with molecular (mtDNA and ITS2-DGGE) and photo-physiological analyses (respirometry and HPLC). Results The highest survival rates were observed for native transplants (measured 14 months after transplantation), indicating differential selective pressures between habitats. Host-symbiont assemblages remained stable during the experimental duration, demonstrating that the ability to "shuffle" or "switch" symbionts is restricted in S. hystrix. Photo-physiological differences were observed between transplants originating from the shallow and deep habitats, with indirect evidence of an increased heterotrophic capacity in native deep-water transplants (from the 'Deep Slope' habitat). Similar photo-acclimatisation potential was observed between transplants originating from the two shallow habitats ('Back Reef' and 'Upper Slope'), highlighting that their genetic segregation over depth may be due to other, non-photo-physiological traits under selection. Conclusions This study confirms that the observed habitat partitioning of S. hystrix (and associated Symbiodinium) is reflective of adaptive divergence along a depth gradient. Gene flow appears to be reduced due to divergent selection, highlighting the potential role of ecological mechanisms, in addition to physical dispersal

  1. Local adaptation to altitude underlies divergent thermal physiology in tropical killifishes of the genus Aphyosemion.

    PubMed

    McKenzie, David J; Estivales, Guillan; Svendsen, Jon C; Steffensen, John F; Agnèse, Jean-François

    2013-01-01

    In watersheds of equatorial West Africa, monophyletic groups of killifish species (genus Aphyosemion) occur in discrete altitudinal ranges, low altitude species (LA, sea level to ∼350 m) or high altitude species (HA, 350 to 900 m). We investigated the hypothesis that local adaptation to altitude by the LA and HA species would be revealed as divergent effects of temperature on their physiological energetics. Two species from each group (mass ∼350 mg) were acclimated to 19, 25 and 28°C, with 19 and 28°C estimated to be outside the thermal envelope for LA or HA, respectively, in the wild. Wild-caught animals (F0 generation) were compared with animals raised in captivity at 25°C (F1 generation) to investigate the contribution of adaptation versus plasticity. Temperature significantly increased routine metabolic rate in all groups and generations. However, LA and HA species differed in the effects of temperature on their ability to process a meal. At 25°C, the specific dynamic action (SDA) response was completed within 8 h in all groups, but acclimation to temperatures beyond the thermal envelope caused profound declines in SDA performance. At 19°C, the LA required ∼14 h to complete the SDA, whereas the HA required only ∼7 h. The opposite effect was observed at 28°C. This effect was evident in both F0 and F1. Reaction norms for effects of temperature on SDA therefore revealed a trade-off, with superior performance at warmer temperatures by LA being associated with inferior performance at cooler temperatures, and vice-versa in HA. The data indicate that divergent physiological responses to temperature in the LA and HA species reflect local adaptation to the thermal regime in their habitat, and that local adaptation to one thermal environment trades off against performance in another.

  2. Physiological adaptations of yeasts living in cold environments and their potential applications.

    PubMed

    Alcaíno, Jennifer; Cifuentes, Víctor; Baeza, Marcelo

    2015-10-01

    Yeasts, widely distributed across the Earth, have successfully colonized cold environments despite their adverse conditions for life. Lower eukaryotes play important ecological roles, contributing to nutrient recycling and organic matter mineralization. Yeasts have developed physiological adaptations to optimize their metabolism in low-temperature environments, which affect the rates of biochemical reactions and membrane fluidity. Decreased saturation of fatty acids helps maintain membrane fluidity at low temperatures and the production of compounds that inhibit ice crystallization, such as antifreeze proteins, helps microorganisms survive at temperatures around the freezing point of water. Furthermore, the production of hydrolytic extracellular enzymes active at low temperatures allows consumption of available carbon sources. Beyond their ecological importance, interest in psychrophilic yeasts has increased because of their biotechnological potential and industrial uses. Long-chain polyunsaturated fatty acids have beneficial effects on human health, and antifreeze proteins are attractive for food industries to maintain texture in food preserved at low temperatures. Furthermore, extracellular cold-active enzymes display unusual substrate specificities with higher catalytic efficiency at low temperatures than their mesophilic counterparts, making them attractive for industrial processes requiring high enzymatic activity at low temperatures. In this minireview, we describe the physiological adaptations of several psychrophilic yeasts and their possible biotechnological applications.

  3. Adaptive Physiological Response to Perceived Scarcity as a Mechanism of Sensory Modulation of Life Span

    PubMed Central

    Waterson, Michael J.; Chan, Tammy P.

    2015-01-01

    Chemosensation is a potent modulator of organismal physiology and longevity. In Drosophila, loss of recognition of diverse tastants has significant and bidirectional life-span effects. Recently published results revealed that when flies were unable to taste water, they increased its internal generation, which may have subsequently altered life span. To determine whether similar adaptive responses occur in other contexts, we explored the impact of sensory deficiency of other metabolically important molecules. Trehalose is a major circulating carbohydrate in the fly that is recognized by the gustatory receptor Gr5a. Gr5a mutant flies are short lived, and we found that they specifically increased whole-body and circulating levels of trehalose, but not other carbohydrates, likely through upregulation of de novo synthesis. dILP2 transcript levels were increased in Gr5a mutants, a possible response intended to reduce hypertrehalosemia, and likely a contributing factor to their reduced life span. Together, these data suggest that compensatory physiological responses to perceived environmental scarcity, which are designed to alleviate the ostensive shortage, may be a common outcome of sensory manipulation. We suggest that future investigations into the mechanisms underlying sensory modulation of aging may benefit by focusing on direct or indirect consequences of physiological changes that are designed to correct perceived disparity with the environment. PMID:25878032

  4. Adaptive Physiological Response to Perceived Scarcity as a Mechanism of Sensory Modulation of Life Span.

    PubMed

    Waterson, Michael J; Chan, Tammy P; Pletcher, Scott D

    2015-09-01

    Chemosensation is a potent modulator of organismal physiology and longevity. In Drosophila, loss of recognition of diverse tastants has significant and bidirectional life-span effects. Recently published results revealed that when flies were unable to taste water, they increased its internal generation, which may have subsequently altered life span. To determine whether similar adaptive responses occur in other contexts, we explored the impact of sensory deficiency of other metabolically important molecules. Trehalose is a major circulating carbohydrate in the fly that is recognized by the gustatory receptor Gr5a. Gr5a mutant flies are short lived, and we found that they specifically increased whole-body and circulating levels of trehalose, but not other carbohydrates, likely through upregulation of de novo synthesis. dILP2 transcript levels were increased in Gr5a mutants, a possible response intended to reduce hypertrehalosemia, and likely a contributing factor to their reduced life span. Together, these data suggest that compensatory physiological responses to perceived environmental scarcity, which are designed to alleviate the ostensive shortage, may be a common outcome of sensory manipulation. We suggest that future investigations into the mechanisms underlying sensory modulation of aging may benefit by focusing on direct or indirect consequences of physiological changes that are designed to correct perceived disparity with the environment. PMID:25878032

  5. Background adaptation and water acidification affect pigmentation and stress physiology of tilapia, Oreochromis mossambicus.

    PubMed

    van der Salm, A L; Spanings, F A T; Gresnigt, R; Bonga, S E Wendelaar; Flik, G

    2005-10-01

    The ability to adjust skin darkness to the background is a common phenomenon in fish. The hormone alpha-melanophore-stimulating hormone (alphaMSH) enhances skin darkening. In Mozambique tilapia, Oreochromis mossambicus L., alphaMSH acts as a corticotropic hormone during adaptation to water with a low pH, in addition to its role in skin colouration. In the current study, we investigated the responses of this fish to these two environmental challenges when it is exposed to both simultaneously. The skin darkening of tilapia on a black background and the lightening on grey and white backgrounds are compromised in water with a low pH, indicating that the two vastly different processes both rely on alphaMSH-regulatory mechanisms. If the water is acidified after 25 days of undisturbed background adaptation, fish showed a transient pigmentation change but recovered after two days and continued the adaptation of their skin darkness to match the background. Black backgrounds are experienced by tilapia as more stressful than grey or white backgrounds both in neutral and in low pH water. A decrease of water pH from 7.8 to 4.5 applied over a two-day period was not experienced as stressful when combined with background adaptation, based on unchanged plasma pH and plasma alphaMSH, and Na levels. However, when water pH was lowered after 25 days of undisturbed background adaptation, particularly alphaMSH levels increased chronically. In these fish, plasma pH and Na levels had decreased, indicating a reduced capacity to maintain ion-homeostasis, implicating that the fish indeed experience stress. We conclude that simultaneous exposure to these two types of stressor has a lower impact on the physiology of tilapia than subsequent exposure to the stressors.

  6. High sustained +Gz acceleration: physiological adaptation to high-G tolerance

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1998-01-01

    Since the early 1940s, a significant volume of research has been conducted in an effort to describe the impact of acute exposures to high-G acceleration on cardiovascular mechanisms responsible to maintaining cerebral perfusion and conscious in high performance aircraft pilots during aerial combat maneuvers. The value of understanding hemodynamic characteristics that underlie G-induced loss of consciousness has been instrumental in the evolution of optimal technology development (e.g., G-suits, positive pressure breathing, COMBAT EDGE, etc.) and pilot training (e.g., anti-G straining maneuvers). Although the emphasis of research has been placed on the development of protection against acute high +Gz acceleration effects, recent observations suggest that adaptation of cardiovascular mechanism associated with blood pressure regulation may contribute to a protective 'G-training' effect. Regular training at high G enhances G tolerance in humans, rats, guinea pigs, and dogs while prolonged layoff from exposure in high G profiles (G-layoff) can result in reduced G endurance. It seems probable that adaptations in physiological functions following chronically-repeated high G exposure (G training) or G-layoff could have significant impacts on performance during sustained high-G acceleration since protective technology such as G-suits and anit-G straining maneuvers are applied consistently during these periods of training. The purpose of this paper is to present a review of new data from three experiments that support the notion that repeated exposure on a regular basis to high sustained +Gz acceleration induces significant physiological adaptations which are associated with improved blood pressure regulation and subsequent protection of cerebral perfusion during orthostatic challenges.

  7. Antepartal insulin-like growth factor concentrations indicating differences in the metabolic adaptive capacity of dairy cows

    PubMed Central

    Holzhausen, Lars; Araujo, Marcelo Gil; Heppelmann, Maike; Sipka, Anja; Pfarrer, Chistiane; Schuberth, Hans-Joachim; Bollwein, Heinrich

    2014-01-01

    Cows with different Insulin-like Growth Factor-I (IGF-I) concentrations showed comparable expression levels of hepatic growth hormone receptor (GHR). Suppressor of cytokine signaling 2 (SOCS2), could be responsible for additional inhibition of the GHR signal cascade. The aims were to monitor cows with high or low antepartal IGF-I concentrations (IGF-Ihigh or IGF-Ilow), evaluate the interrelationships of endocrine endpoints, and measure hepatic SOCS2 expression. Dairy cows (n = 20) were selected (240 to 254 days after artificial insemination (AI)). Blood samples were drawn daily (day -17 until calving) and IGF-I, GH, insulin, thyroid hormones, estradiol, and progesterone concentrations were measured. Liver biopsies were taken (day 264 ± 1 after AI and postpartum) to measure mRNA expression (IGF-I, IGFBP-2, IGFBP-3, IGFBP-4, acid labile subunit (ALS), SOCS2, deiodinase1, GHR1A). IGF-I concentrations in the two groups were different (p < 0.0001). However, GH concentrations and GHR1A mRNA expression were comparable (p > 0.05). Thyroxine levels and ALS expression were higher in the IGF-Ihigh cows compared to IGF-Ilow cows. Estradiol concentration tended to be greater in the IGF-Ilow group (p = 0.06). It was hypothesized that low IGF-I levels are associated with enhanced SOCS2 expression although this could not be decisively confirmed by the present study. PMID:24962413

  8. Adaptation to Shift Work: Physiologically Based Modeling of the Effects of Lighting and Shifts’ Start Time

    PubMed Central

    Postnova, Svetlana; Robinson, Peter A.; Postnov, Dmitry D.

    2013-01-01

    Shift work has become an integral part of our life with almost 20% of the population being involved in different shift schedules in developed countries. However, the atypical work times, especially the night shifts, are associated with reduced quality and quantity of sleep that leads to increase of sleepiness often culminating in accidents. It has been demonstrated that shift workers’ sleepiness can be improved by a proper scheduling of light exposure and optimizing shifts timing. Here, an integrated physiologically-based model of sleep-wake cycles is used to predict adaptation to shift work in different light conditions and for different shift start times for a schedule of four consecutive days of work. The integrated model combines a model of the ascending arousal system in the brain that controls the sleep-wake switch and a human circadian pacemaker model. To validate the application of the integrated model and demonstrate its utility, its dynamics are adjusted to achieve a fit to published experimental results showing adaptation of night shift workers (n = 8) in conditions of either bright or regular lighting. Further, the model is used to predict the shift workers’ adaptation to the same shift schedule, but for conditions not considered in the experiment. The model demonstrates that the intensity of shift light can be reduced fourfold from that used in the experiment and still produce good adaptation to night work. The model predicts that sleepiness of the workers during night shifts on a protocol with either bright or regular lighting can be significantly improved by starting the shift earlier in the night, e.g.; at 21∶00 instead of 00∶00. Finally, the study predicts that people of the same chronotype, i.e. with identical sleep times in normal conditions, can have drastically different responses to shift work depending on their intrinsic circadian and homeostatic parameters. PMID:23308206

  9. Adaptation to shift work: physiologically based modeling of the effects of lighting and shifts' start time.

    PubMed

    Postnova, Svetlana; Robinson, Peter A; Postnov, Dmitry D

    2013-01-01

    Shift work has become an integral part of our life with almost 20% of the population being involved in different shift schedules in developed countries. However, the atypical work times, especially the night shifts, are associated with reduced quality and quantity of sleep that leads to increase of sleepiness often culminating in accidents. It has been demonstrated that shift workers' sleepiness can be improved by a proper scheduling of light exposure and optimizing shifts timing. Here, an integrated physiologically-based model of sleep-wake cycles is used to predict adaptation to shift work in different light conditions and for different shift start times for a schedule of four consecutive days of work. The integrated model combines a model of the ascending arousal system in the brain that controls the sleep-wake switch and a human circadian pacemaker model. To validate the application of the integrated model and demonstrate its utility, its dynamics are adjusted to achieve a fit to published experimental results showing adaptation of night shift workers (n = 8) in conditions of either bright or regular lighting. Further, the model is used to predict the shift workers' adaptation to the same shift schedule, but for conditions not considered in the experiment. The model demonstrates that the intensity of shift light can be reduced fourfold from that used in the experiment and still produce good adaptation to night work. The model predicts that sleepiness of the workers during night shifts on a protocol with either bright or regular lighting can be significantly improved by starting the shift earlier in the night, e.g.; at 21:00 instead of 00:00. Finally, the study predicts that people of the same chronotype, i.e. with identical sleep times in normal conditions, can have drastically different responses to shift work depending on their intrinsic circadian and homeostatic parameters.

  10. Adaptive style and physiological reactivity during a laboratory stress paradigm in children with cancer and healthy controls.

    PubMed

    Williams, Natalie A; Allen, Michael T; Phipps, Sean

    2011-10-01

    Repressive adaptation has been conceptualized as one pathway to psychological resilience in children with cancer, but the physiological costs of maintaining a repressive adaptive style are currently unknown. The goal of this study was to examine physiological functioning as a function of adaptive style in children with cancer (N = 120) and healthy controls (N = 120). Children completed self-report measures of state anxiety and defensiveness prior to participating in three verbal stress tasks while monitoring blood pressure, electrocardiogram, and electrodermal response, and rated their anxiety following each task. Findings indicated no consistent differences in baseline indices and physiological reactivity as a function of adaptive style or health status (cancer vs. control). In addition, children identified as having a repressive adaptive style did not exhibit greater verbal-autonomic discrepancy than low-anxious children. In contrast to findings with adults, children with a repressive adaptive style do not appear to experience adverse effects of this coping style in terms of physiological reactivity.

  11. Eco-physiological adaptation of dominant tree species at two contrasting karst habitats in southwestern China.

    PubMed

    Zhang, Shouren; Fan, Dayong; Wu, Qian; Yan, Hui; Xu, Xinwu

    2013-01-01

    The purpose of this study was to investigate the eco-physiological adaptation of indigenous woody species to their habitats in karst areas of southwestern China. Two contrasting forest habitats were studied: a degraded habitat in Daxiagu and a well-developed habitat in Tianlongshan, and the eco-physiological characteristics of the trees were measured for three growth seasons. Photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr) of the tree species in Daxiagu were 2-3 times higher than those in Tianlongshan under ambient conditions. However, this habitat effect was not significant when measurements were taken under controlled conditions. Under controlled conditions, Pn, gs, and Tr of the deciduous species were markedly higher than those for the evergreen species. Habitat had no significant effect on water use efficiency (WUE) or photochemical characteristics of PSII. The stomatal sensitivity of woody species in the degraded habitat was much higher than that in the well-developed habitat. Similarly, the leaf total nitrogen (N) and phosphorus (P) contents expressed on the basis of either dry mass or leaf area were also much higher in Daxiagu than they were in Tianlongshan. The mass-based leaf total N content of deciduous species was much higher than that of evergreen species, while leaf area-based total N and P contents of evergreens were significantly higher than those of deciduous species. The photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE) of deciduous species were much higher than those of evergreens. Further, the PPUE of the woody species in Tianlongshan was much higher than that  of the woody species in Daxiagu. The results from three growth seasons imply that the tree species were able to adapt well to their growth habitats. Furthermore, it seems that so-called "temporary drought stress" may not occur, or may not be severe for most woody plants in karst areas of southwestern China.

  12. Predicting animal δ18O: Accounting for diet and physiological adaptation

    NASA Astrophysics Data System (ADS)

    Kohn, Matthew J.

    1996-12-01

    Theoretical predictions and measured isotope variations indicate that diet and physiological adaptation have a significant impact on animals δ18O and cannot be ignored. A generalized model is therefore developed for the prediction of animal body water and phosphate δ18O to incorporate these factors quantitatively. Application of the model reproduces most published compositions and compositional trends for mammals and birds. A moderate dependence of animal δ18O on humidity is predicted for drought-tolerant animals, and the correlation between humidity and North American deer bone composition as corrected for local meteoric water is predicted within the scatter of the data. In contrast to an observed strong correlation between kangaroo δ18O and humidity (Δδ18O/Δh ∼ 2.5± 0.4‰/10%r.h.), the predicted humidity dependence is only 1.3 - 1.7‰/10% r.h., and it is inferred that drinking water in hot dry areas of Australia is enriched in 18O over rainwater. Differences in physiology and water turnover readily explain the observed differences in δ18O for several herbivore genera in East Africa, excepting antelopes. Antelope models are more sensitive to biological fractionations, and adjustments to the flux of transcutaneous water vapor within experimentally measured ranges allows their δ18O values to be matched. Models of the seasonal changes of forage composition for two regions with dissimilar climates show that significant seasonal variations in animal isotope composition are expected, and that animals with different physiologies and diets track climate differently. Analysis of different genera with disparate sensitivities to surface water and humidity will allow the most accurate quantification of past climate changes.

  13. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress.

    PubMed

    Sawka, Michael N; Leon, Lisa R; Montain, Scott J; Sonna, Larry A

    2011-10-01

    This article emphasizes significant recent advances regarding heat stress and its impact on exercise performance, adaptations, fluid electrolyte imbalances, and pathophysiology. During exercise-heat stress, the physiological burden of supporting high skin blood flow and high sweating rates can impose considerable cardiovascular strain and initiate a cascade of pathophysiological events leading to heat stroke. We examine the association between heat stress, particularly high skin temperature, on diminishing cardiovascular/aerobic reserves as well as increasing relative intensity and perceptual cues that degrade aerobic exercise performance. We discuss novel systemic (heat acclimation) and cellular (acquired thermal tolerance) adaptations that improve performance in hot and temperate environments and protect organs from heat stroke as well as other dissimilar stresses. We delineate how heat stroke evolves from gut underperfusion/ischemia causing endotoxin release or the release of mitochondrial DNA fragments in response to cell necrosis, to mediate a systemic inflammatory syndrome inducing coagulopathies, immune dysfunction, cytokine modulation, and multiorgan damage and failure. We discuss how an inflammatory response that induces simultaneous fever and/or prior exposure to a pathogen (e.g., viral infection) that deactivates molecular protective mechanisms interacts synergistically with the hyperthermia of exercise to perhaps explain heat stroke cases reported in low-risk populations performing routine activities. Importantly, we question the "traditional" notion that high core temperature is the critical mediator of exercise performance degradation and heat stroke. Published 2011. This article is a U.S. Government work and is in the public domain in the USA. PMID:23733692

  14. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress.

    PubMed

    Sawka, Michael N; Leon, Lisa R; Montain, Scott J; Sonna, Larry A

    2011-10-01

    This article emphasizes significant recent advances regarding heat stress and its impact on exercise performance, adaptations, fluid electrolyte imbalances, and pathophysiology. During exercise-heat stress, the physiological burden of supporting high skin blood flow and high sweating rates can impose considerable cardiovascular strain and initiate a cascade of pathophysiological events leading to heat stroke. We examine the association between heat stress, particularly high skin temperature, on diminishing cardiovascular/aerobic reserves as well as increasing relative intensity and perceptual cues that degrade aerobic exercise performance. We discuss novel systemic (heat acclimation) and cellular (acquired thermal tolerance) adaptations that improve performance in hot and temperate environments and protect organs from heat stroke as well as other dissimilar stresses. We delineate how heat stroke evolves from gut underperfusion/ischemia causing endotoxin release or the release of mitochondrial DNA fragments in response to cell necrosis, to mediate a systemic inflammatory syndrome inducing coagulopathies, immune dysfunction, cytokine modulation, and multiorgan damage and failure. We discuss how an inflammatory response that induces simultaneous fever and/or prior exposure to a pathogen (e.g., viral infection) that deactivates molecular protective mechanisms interacts synergistically with the hyperthermia of exercise to perhaps explain heat stroke cases reported in low-risk populations performing routine activities. Importantly, we question the "traditional" notion that high core temperature is the critical mediator of exercise performance degradation and heat stroke. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  15. Preweaning performance of calves from tropically-adapted and temperate sires and Brangus cows managed on two forage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four years of preweaning data on 511 calves from 187 Brangus cows and 129 Bonsmara, Brangus, Charolais, Gelbvieh, Hereford, and Romosinuano sires were used to determine sire breed, sex, and age of dam differences under two preweaning forage systems (native tallgrass rangeland vs improved warm-season...

  16. Physiological adaptation of an Antarctic Na+/K+-ATPase to the cold

    PubMed Central

    Galarza-Muñoz, Gaddiel; Soto-Morales, Sonia I.; Holmgren, Miguel; Rosenthal, Joshua J. C.

    2011-01-01

    SUMMARY Because enzymatic activity is strongly suppressed by the cold, polar poikilotherms face significant adaptive challenges. For example, at 0°C the catalytic activity of a typical enzyme from a temperate organism is reduced by more than 90%. Enzymes embedded in the plasma membrane, such as the Na+/K+-ATPase, may be even more susceptible to the cold because of thermal effects on the lipid bilayer. Accordingly, adaptive changes in response to the cold may include adjustments to the enzyme or the surrounding lipid environment, or synergistic changes to both. To assess the contribution of the enzyme itself, we cloned orthologous Na+/K+-ATPase α-subunits from an Antarctic (Pareledone sp.; –1.8°C) and a temperate octopus (Octopus bimaculatus; ∼18°C), and compared their turnover rates and temperature sensitivities in a heterologous expression system. The primary sequences of the two pumps were found to be highly similar (97% identity), with most differences being conservative changes involving hydrophobic residues. The physiology of the pumps was studied using an electrophysiological approach in intact Xenopus oocytes. The voltage dependence of the pumps was equivalent. However, at room temperature the maximum turnover rate of the Antarctic pump was found to be 25% higher than that of the temperate pump. In addition, the Antarctic pump exhibited a lower temperature sensitivity, leading to significantly higher relative activity at lower temperatures. Orthologous Na+/K+ pumps were then isolated from two tropical and two Arctic octopus. The temperature sensitivities of these pumps closely matched those of the temperate and Antarctic pumps, respectively. Thus, reduced thermal sensitivity appears to be a common mechanism driving cold adaptation in the Na+/K+-ATPase. PMID:21653810

  17. Prepartal dietary energy alters transcriptional adaptations of the liver and subcutaneous adipose tissue of dairy cows during the transition period.

    PubMed

    Selim, S; Salin, S; Taponen, J; Vanhatalo, A; Kokkonen, T; Elo, K T

    2014-05-01

    Overfeeding during the dry period may predispose cows to increased insulin resistance (IR) with enhanced postpartum lipolysis. We studied gene expression in the liver and subcutaneous adipose tissue (SAT) of 16 Finnish Ayrshire dairy cows fed either a controlled energy diet [Con, 99 MJ/day metabolizable energy (ME)] during the last 6 wk of the dry period or high-energy diet (High, 141 MJ/day ME) for the first 3 wk and then gradually decreasing energy allowance during 3 wk to 99 MJ/day ME before the expected parturition. Tissue biopsies were collected at -10, 1, and 9 days, and blood samples at -10, 1, and 7 days relative to parturition. Overfed cows had greater dry matter, crude protein, and ME intakes and ME balance before parturition. Daily milk yield, live weight, and body condition score were not different between treatments. The High cows tended to have greater plasma insulin and lower glucagon/insulin ratio compared with Con cows. No differences in circulating glucose, glucagon, nonesterified fatty acids and β-hydroxybutyrate concentrations, and hepatic triglyceride contents were observed between treatments. Overfeeding compared with Con resulted in lower CPT1A and PCK1 and a tendency for lower G6PC and PC expression in the liver. The High group tended to have lower RETN expression in SAT than Con. No other effects of overfeeding on the expression of genes related to IR in SAT were observed. In conclusion, overfeeding energy prepartum may have compromised hepatic gluconeogenic capacity and slightly affected IR in SAT based on gene expression.

  18. Facilitated physiological adaptation to prolonged circadian disruption through dietary supplementation with essence of chicken.

    PubMed

    Wu, Tao; Yao, Cencen; Tsang, Fai; Huang, Liangfeng; Zhang, Wanjing; Jiang, Jianguo; Mao, Youxiang; Shao, Yujian; Kong, Boda; Singh, Paramjeet; Fu, Zhengwei

    2015-01-01

    Synchrony between circadian and metabolic processes is critical to the maintenance of energy homeostasis. Studies on essence of chicken (EC), a chicken meat extract rich in proteins, amino acids and peptides, showed its effectiveness in alleviating fatigue and promoting metabolism. A recent study revealed that it facilitated the re-entrainment of clock genes (Bmal1, Cry1, Dec1, Per1 and Per2) in the pineal gland and liver in a rat model of circadian disruption. Here, we investigated the role of EC-facilitated circadian synchrony in the maintenance of the energy homeostasis using a mouse model of prolonged circadian disruption. Prolonged circadian disruption (12 weeks) resulted in hepatic maladaptation, manifested by a mild but significant (p < 0.05) hepatomegaly, accompanied by disturbed hepatic lipid metabolism and liver injury (indicated by increased circulating hepatic enzymes). Evidently, there was marked elevations of hepatic inflammatory mediators (interleukin-1beta and interleukin-6), suggesting an underlying inflammation leading to the hepatic injury and functional impairment. Importantly, the disruption paradigm caused the decoupling between key metabolic regulators (e.g. mTOR and AMPK) and hepatic clock genes (Per1, Cry1, Dec1, Bmal1). Further, we showed that the loss of circadian synchrony between the master and hepatic clock genes (Per1, Cry1, Dec1, Bmal1) could be the underlying cause of the maladaptation. When supplemented with EC, the functional impairment and inflammation were abolished. The protective effects could be linked to its effectiveness in maintaining the synchrony between the master and hepatic clocks, and the resultant improved coupling of the circadian oscillators (Per1, Cry1, Dec1, Bmal1) and metabolic regulators (mTOR, AMPK). Overall, EC supplementation promoted the physiological adaptation to the prolonged circadian disruption through facilitation of endogenous circadian synchrony and the coupling of circadian oscillators and

  19. Facilitated physiological adaptation to prolonged circadian disruption through dietary supplementation with essence of chicken.

    PubMed

    Wu, Tao; Yao, Cencen; Tsang, Fai; Huang, Liangfeng; Zhang, Wanjing; Jiang, Jianguo; Mao, Youxiang; Shao, Yujian; Kong, Boda; Singh, Paramjeet; Fu, Zhengwei

    2015-01-01

    Synchrony between circadian and metabolic processes is critical to the maintenance of energy homeostasis. Studies on essence of chicken (EC), a chicken meat extract rich in proteins, amino acids and peptides, showed its effectiveness in alleviating fatigue and promoting metabolism. A recent study revealed that it facilitated the re-entrainment of clock genes (Bmal1, Cry1, Dec1, Per1 and Per2) in the pineal gland and liver in a rat model of circadian disruption. Here, we investigated the role of EC-facilitated circadian synchrony in the maintenance of the energy homeostasis using a mouse model of prolonged circadian disruption. Prolonged circadian disruption (12 weeks) resulted in hepatic maladaptation, manifested by a mild but significant (p < 0.05) hepatomegaly, accompanied by disturbed hepatic lipid metabolism and liver injury (indicated by increased circulating hepatic enzymes). Evidently, there was marked elevations of hepatic inflammatory mediators (interleukin-1beta and interleukin-6), suggesting an underlying inflammation leading to the hepatic injury and functional impairment. Importantly, the disruption paradigm caused the decoupling between key metabolic regulators (e.g. mTOR and AMPK) and hepatic clock genes (Per1, Cry1, Dec1, Bmal1). Further, we showed that the loss of circadian synchrony between the master and hepatic clock genes (Per1, Cry1, Dec1, Bmal1) could be the underlying cause of the maladaptation. When supplemented with EC, the functional impairment and inflammation were abolished. The protective effects could be linked to its effectiveness in maintaining the synchrony between the master and hepatic clocks, and the resultant improved coupling of the circadian oscillators (Per1, Cry1, Dec1, Bmal1) and metabolic regulators (mTOR, AMPK). Overall, EC supplementation promoted the physiological adaptation to the prolonged circadian disruption through facilitation of endogenous circadian synchrony and the coupling of circadian oscillators and

  20. A Prolactin Family Paralog Regulates Placental Adaptations to a Physiological Stressor.

    PubMed

    Bu, Pengli; Alam, Sheikh M Khorshed; Dhakal, Pramod; Vivian, Jay L; Soares, Michael J

    2016-05-01

    The prolactin (PRL) family of hormones and cytokines participates in the regulation of optimal reproductive performance in the mouse and rat. Members of the PRL family are expressed in the anterior pituitary, uterus, and/or placenta. In the present study, we investigated the ontogeny of PRL family 7, subfamily b, member 1 (PRL7B1; also called PRL-like protein-N, PLP-N) expression in the developing mouse placenta and established a mouse model for investigating the biological function of PRL7B1. Transcripts for Prl7b1 were first detected on Gestation Day (d) 8.5. From gestation d8.5 through d14.5, Prl7b1 was expressed in trophoblast cells residing at the interface between maternal mesometrial decidua and the developing placenta. On gestation d17.5, the predominant cellular source of Prl7b1 mRNA was migratory trophoblast cells invading into the uterine mesometrial decidua. The Prl7b1 null mutant allele was generated via replacement of the endogenous Prl7b1 coding sequence with beta-galactosidase (LacZ) reporter and neomycin cassettes. The mutant Prl7b1 allele was successfully passed through the germline. Homozygous Prl7b1 mutant mice were viable and fertile. Under standard animal housing conditions, Prl7b1 had undetectable effects on placentation and pregnancy. Hypoxia exposure during pregnancy evoked adaptations in the organization of the wild-type placenta that were not observed in Prl7b1 null placentation sites. In summary, PRL7B1 is viewed as a part of a pathway regulating placental adaptations to physiological stressors.

  1. Can supplementation with vitamin C and E alter physiological adaptations to strength training?

    PubMed Central

    2014-01-01

    Background Antioxidant supplementation has recently been demonstrated to be a double-edged sword, because small to moderate doses of exogenous antioxidants are essential or beneficial, while high doses may have adverse effects. The adverse effects can be manifested in attenuated effects of exercise and training, as the antioxidants may shut down some redox-sensitive signaling in the exercised muscle fibers. However, conditions such as age may potentially modulate the need for antioxidant intake. Therefore, this paper describes experiments for testing the hypothesis that high dosages of vitamin C (1000 mg/day) and E (235 mg/day) have negative effects on adaptation to resistance exercise and training in young volunteers, but positive effects in older men. Methods/design We recruited a total of 73 volunteers. The participants were randomly assigned to receiving either vitamin C and E supplementation or a placebo. The study design was double-blinded, and the participants followed an intensive training program for 10–12 weeks. Tests and measurements aimed at assessing changes in physical performance (maximal strength) and physiological characteristics (muscle mass), as well as biochemical and cellular systems and structures (e.g., cell signaling and morphology). Discussion Dietary supplements, such as vitamin C and E, are used by many people, especially athletes. The users often believe that high dosages of supplements improve health (resistance to illness and disease) and physical performance. These assumptions are, however, generally not supported in the scientific literature. On the contrary, some studies have indicated that high dosages of antioxidant supplements have negative effects on exercise-induced adaptation processes. Since this issue concerns many people and few randomized controlled trials have been conducted in humans, further studies are highly warranted. Trial registration ACTRN12614000065695 PMID:25075311

  2. Oxidative stress indicators and metabolic adaptations in response to the omission of the dry period in dairy cows.

    PubMed

    Mantovani, Roberto; Sgorlon, Sandy; Marinelli, Lieta; Bailoni, Lucia; Bittante, Giovanni; Gabai, Gianfranco

    2010-08-01

    The effects of dry period omission on oxidative stress and metabolic indicators around calving were studied. Seventeen Italian Friesian cows were randomly assigned to two groups, homogeneous for milk yield and parity, and managed either with a traditional 55-d dry off period (n=8) or continuously milked till parturition (n=9). Between 60 d before expected calving and 90 d after calving, body condition (BCS) was recorded and blood samples were collected to measure cortisol, urea, cholesterol, glucose, NEFA, triglycerides, insulin, malondialdehyde (MDA), total glutathione (GSH) and glutathione peroxidase (GPx) activity. BCS changes after calving were not different between the two groups. The normally dried group showed lower (P<0.05) glucose concentrations on day 7 before calving, greater (P<0.01) non-esterified fatty acid concentrations at 7 d and 15 d after calving, and greater (P<0.01) triglyceride concentrations for all the period before calving. On the other hand, plasma MDA was not different between groups. On average, plasma GSH concentrations were greater in continuously milked cows after calving (P<0.05), while plasma GPx was greater with continuous milking up to parturition (P<0.01). The results confirmed that omitting the dry period leads to an improved energy balance. The degree of oxidative stress was not detrimental for animal health, and the slight modifications of GPx observed prepartum were possibly related to continuous milk secretion. The differences in plasma GSH observed after calving may depend upon sulphur amino acid sparing in continuously milked cows.

  3. Comparison of hepatic adaptation in extreme metabolic phenotypes observed in early lactation dairy cows on-farm.

    PubMed

    van Dorland, H A; Graber, M; Kohler, S; Steiner, A; Bruckmaier, R M

    2014-08-01

    The aim was to study the variation in metabolic responses in early-lactating dairy cows (n = 232) on-farm that were pre-selected for a high milk fat content (>45 g/l) and a high fat/protein ratio in milk (>1.5) in their previous lactation. Blood was assayed for concentrations of metabolites and hormones. Liver was measured for mRNA abundance of 25 candidate genes encoding enzymes and receptors involved in gluconeogenesis (6), fatty acid β-oxidation (6), fatty acid and triglyceride synthesis (5), cholesterol synthesis (4), ketogenesis (2) and the urea cycle (2). Two groups of cows were formed based on the plasma concentrations of glucose, non-esterified fatty acids (NEFA) and β-hydroxybutyric acid (BHBA) (GRP+, high metabolic load; glucose <3.0 mm, NEFA >300 μm and BHBA >1.0 mm, n = 30; GRP-, low metabolic load; glucose >3.0 mm, NEFA <300 μm and BHBA <1.0 mm, n = 30). No differences were found between GRP+ and GRP- for the milk yield at 3 weeks post-partum, but milk fat content was higher (p < 0.01) for GRP+ than for GRP-. In week 8 post-partum, milk yield was higher in GRP+ in relation to GRP- (37.5 vs. 32.5 kg/d; p < 0.01). GRP+ in relation to GRP- had higher (p < 0.001) NEFA and BHBA and lower glucose, insulin, IGF-I, T3 , T4 concentrations (p < 0.01). The mRNA abundance of genes related to gluconeogenesis, fatty acid β-oxidation, fatty acid and triglyceride synthesis, cholesterol synthesis and the urea cycle was different in GRP+ compared to GRP- (p < 0.05), although gene transcripts related to ketogenesis were similar between GRP+ and GRP-. In conclusion, high metabolic load post-partum in dairy cows on-farm corresponds to differences in the liver in relation to dairy cows with low metabolic load, even though all cows were pre-selected for a high milk fat content and fat/protein ratio in milk in their previous lactation.

  4. Seasonal variation in coat characteristics, tick loads, cortisol levels, some physiological parameters and temperature humidity index on Nguni cows raised in low- and high-input farms

    NASA Astrophysics Data System (ADS)

    Katiyatiya, C. L. F.; Muchenje, V.; Mushunje, A.

    2014-08-01

    Seasonal variations in hair length, tick loads, cortisol levels, haematological parameters (HP) and temperature humidity index (THI) in Nguni cows of different colours raised in two low-input farms, and a commercial stud was determined. The sites were chosen based on their production systems, climatic characteristics and geographical locations. Zazulwana and Komga are low-input, humid-coastal areas, while Honeydale is a high-input, dry-inland Nguni stud farm. A total of 103 cows, grouped according to parity, location and coat colour, were used in the study. The effects of location, coat colour, hair length and season were used to determine tick loads on different body parts, cortisol levels and HP in blood from Nguni cows. Highest tick loads were recorded under the tail and the lowest on the head of each of the animals (P < 0.05). Zazulwana cows recorded the highest tick loads under the tails of all the cows used in the study from the three farms (P < 0.05). High tick loads were recorded for cows with long hairs. Hair lengths were longest during the winter season in the coastal areas of Zazulwana and Honeydale (P < 0.05). White and brown-white patched cows had significantly longer (P < 0.05) hair strands than those having a combination of red, black and white colour. Cortisol and THI were significantly lower (P < 0.05) in summer season. Red blood cells, haematoglobin, haematocrit, mean cell volumes, white blood cells, neutrophils, lymphocytes, eosinophils and basophils were significantly different (P < 0.05) as some associated with age across all seasons and correlated to THI. It was concluded that the location, coat colour and season had effects on hair length, cortisol levels, THI, HP and tick loads on different body parts and heat stress in Nguni cows.

  5. Seasonal variation in coat characteristics, tick loads, cortisol levels, some physiological parameters and temperature humidity index on Nguni cows raised in low- and high-input farms

    NASA Astrophysics Data System (ADS)

    Katiyatiya, C. L. F.; Muchenje, V.; Mushunje, A.

    2015-06-01

    Seasonal variations in hair length, tick loads, cortisol levels, haematological parameters (HP) and temperature humidity index (THI) in Nguni cows of different colours raised in two low-input farms, and a commercial stud was determined. The sites were chosen based on their production systems, climatic characteristics and geographical locations. Zazulwana and Komga are low-input, humid-coastal areas, while Honeydale is a high-input, dry-inland Nguni stud farm. A total of 103 cows, grouped according to parity, location and coat colour, were used in the study. The effects of location, coat colour, hair length and season were used to determine tick loads on different body parts, cortisol levels and HP in blood from Nguni cows. Highest tick loads were recorded under the tail and the lowest on the head of each of the animals ( P < 0.05). Zazulwana cows recorded the highest tick loads under the tails of all the cows used in the study from the three farms ( P < 0.05). High tick loads were recorded for cows with long hairs. Hair lengths were longest during the winter season in the coastal areas of Zazulwana and Honeydale ( P < 0.05). White and brown-white patched cows had significantly longer ( P < 0.05) hair strands than those having a combination of red, black and white colour. Cortisol and THI were significantly lower ( P < 0.05) in summer season. Red blood cells, haematoglobin, haematocrit, mean cell volumes, white blood cells, neutrophils, lymphocytes, eosinophils and basophils were significantly different ( P < 0.05) as some associated with age across all seasons and correlated to THI. It was concluded that the location, coat colour and season had effects on hair length, cortisol levels, THI, HP and tick loads on different body parts and heat stress in Nguni cows.

  6. NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L. plants.

    PubMed

    Acosta-Motos, José Ramón; Diaz-Vivancos, Pedro; Álvarez, Sara; Fernández-García, Nieves; Sánchez-Blanco, María Jesús; Hernández, José Antonio

    2015-07-01

    Physiological and biochemical changes in Myrtus communis L. plants after being subjected to different solutions of NaCl (44, and 88 mM) for up to 30 days (Phase I) and after recovery from the salinity period (Phase II) were studied. Myrtle plants showed salinity tolerance by displaying a series of adaptative mechanisms to cope with salt-stress, including controlled ion homeostasis, the increase in root/shoot ratio, the reduction of water potentials and stomatal conductance to limit water loss. In addition, they displayed different strategies to protect the photosynthetic machinery, including limiting toxic ion accumulation in leaves, increase in chlorophyll content, and changes in chlorophyll fluorescence parameters, leaf anatomy and increases in catalase activity. Anatomical modifications in leaves, including a decrease in spongy parenchyma and increased intercellular spaces, allow CO2 diffusion in a situation of reduced stomatal aperture. In spite of all these changes, salinity produced oxidative stress in myrtle plants as monitored by increases in oxidative stress parameter values. The post-recovery period is perceived as a new stress situation, as observed through effects on plant growth and alterations in non-photochemical quenching parameters and lipid peroxidation values.

  7. Physiological and proteomic adaptation of the alpine grass Stipa purpurea to a drought gradient.

    PubMed

    Yang, Yunqiang; Dong, Chao; Yang, Shihai; Li, Xiong; Sun, Xudong; Yang, Yongping

    2015-01-01

    Stipa purpurea, an endemic forage species on the Tibetan Plateau, is highly resistant to cold and drought, but the mechanisms underlying its responses to drought stress remain elusive. An understanding of such mechanisms may be useful for developing cultivars that are adaptable to water deficit. In this study, we analyzed the physiological and proteomic responses of S. purpurea under increasing drought stress. Seedlings of S. purpurea were subjected to a drought gradient in a controlled experiment, and proteins showing changes in abundance under these conditions were identified by two-dimensional electrophoresis followed by mass spectrometry analysis. A western blotting analysis was conducted to confirm the increased abundance of a heat-shock protein, NCED2, and a dehydrin in S. purpurea seedlings under drought conditions. We detected carbonylated proteins to identify oxidation-sensitive proteins in S. purpurea seedlings, and found that ribulose-1, 5-bisphosphate carboxylase oxygenase (RuBisCO) was one of the oxidation-sensitive proteins under drought. Together, these results indicated drought stress might inhibit photosynthesis in S. purpurea by oxidizing RuBisCO, but the plants were able to maintain photosynthetic efficiency by a compensatory upregulation of unoxidized RuBisCO and other photosynthesis-related proteins. Further analyses confirmed that increased abundance of antioxidant enzymes could balance the redox status of the plants to mitigate drought-induced oxidative damage. PMID:25646623

  8. Physiological effects of sudden change in illuminance during dark-adapted state.

    PubMed

    Noguchi, H; Sakaguchi, T; Sato, M

    1999-05-01

    To derive an optimal illuminance of nighttime illumination, we conducted an experiment with 7 healthy young individuals and 7 healthy elderly individuals as subjects. After 20 minutes of adaptation to darkness, subjects were exposed to illumination under 5 conditions comprising 0.5 lx, 1 lx, 3 lx, 10 lx, or 30 lx vertical illuminance of the facial region, and heart rate variability (HRV) and electroencephalogram (EEG) were measured, and discomfort was evaluated by subjective report. Results of LF/(LF + HF) (LF = low frequency, HF = high frequency) demonstrated a V-shaped trend for the young groups beginning during exposure and ending post exposure, with 3 lx conditions representing the minimum value, a value markedly lower than that for 30 lx conditions. From these results we inferred that approximately 3 lx illuminance could best suppress physiological stress. Evaluation of discomfort by subjective report also demonstrated an increase in discomfort evaluation scores under high illuminance conditions. The alpha-wave proportion of EEG during exposure fell markedly on 3 lx or higher illuminance conditions, and we inferred that visual sensory information and cortical activity level were adequately attained in 3 lx or higher illuminance conditions. These results suggest that the optimal illuminance of nighttime illumination is approximately 3 lx.

  9. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense.

    PubMed

    Fibach-Paldi, Sharon; Burdman, Saul; Okon, Yaacov

    2012-01-01

    Azospirillum brasilense is a plant growth promoting rhizobacterium (PGPR) that is being increasingly used in agriculture in a commercial scale. Recent research has elucidated key properties of A. brasilense that contribute to its ability to adapt to the rhizosphere habitat and to promote plant growth. They include synthesis of the auxin indole-3-acetic acid, nitric oxide, carotenoids, and a range of cell surface components as well as the ability to undergo phenotypic variation. Storage and utilization of polybetahydroxyalkanoate polymers are important for the shelf life of the bacteria in production of inoculants, products containing bacterial cells in a suitable carrier for agricultural use. Azospirillum brasilense is able to fix nitrogen, but despite some controversy, as judging from most systems evaluated so far, contribution of fixed nitrogen by this bacterium does not seem to play a major role in plant growth promotion. In this review, we focus on recent advances in the understanding of physiological properties of A. brasilense that are important for rhizosphere performance and successful interactions with plant roots.

  10. NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L. plants.

    PubMed

    Acosta-Motos, José Ramón; Diaz-Vivancos, Pedro; Álvarez, Sara; Fernández-García, Nieves; Sánchez-Blanco, María Jesús; Hernández, José Antonio

    2015-07-01

    Physiological and biochemical changes in Myrtus communis L. plants after being subjected to different solutions of NaCl (44, and 88 mM) for up to 30 days (Phase I) and after recovery from the salinity period (Phase II) were studied. Myrtle plants showed salinity tolerance by displaying a series of adaptative mechanisms to cope with salt-stress, including controlled ion homeostasis, the increase in root/shoot ratio, the reduction of water potentials and stomatal conductance to limit water loss. In addition, they displayed different strategies to protect the photosynthetic machinery, including limiting toxic ion accumulation in leaves, increase in chlorophyll content, and changes in chlorophyll fluorescence parameters, leaf anatomy and increases in catalase activity. Anatomical modifications in leaves, including a decrease in spongy parenchyma and increased intercellular spaces, allow CO2 diffusion in a situation of reduced stomatal aperture. In spite of all these changes, salinity produced oxidative stress in myrtle plants as monitored by increases in oxidative stress parameter values. The post-recovery period is perceived as a new stress situation, as observed through effects on plant growth and alterations in non-photochemical quenching parameters and lipid peroxidation values. PMID:26074356

  11. Physiological and Proteomic Adaptation of the Alpine Grass Stipa purpurea to a Drought Gradient

    PubMed Central

    Yang, Yunqiang; Dong, Chao; Yang, Shihai; Li, Xiong; Sun, Xudong; Yang, Yongping

    2015-01-01

    Stipa purpurea, an endemic forage species on the Tibetan Plateau, is highly resistant to cold and drought, but the mechanisms underlying its responses to drought stress remain elusive. An understanding of such mechanisms may be useful for developing cultivars that are adaptable to water deficit. In this study, we analyzed the physiological and proteomic responses of S. purpurea under increasing drought stress. Seedlings of S. purpurea were subjected to a drought gradient in a controlled experiment, and proteins showing changes in abundance under these conditions were identified by two-dimensional electrophoresis followed by mass spectrometry analysis. A western blotting analysis was conducted to confirm the increased abundance of a heat-shock protein, NCED2, and a dehydrin in S. purpurea seedlings under drought conditions. We detected carbonylated proteins to identify oxidation-sensitive proteins in S. purpurea seedlings, and found that ribulose-1, 5-bisphosphate carboxylase oxygenase (RuBisCO) was one of the oxidation-sensitive proteins under drought. Together, these results indicated drought stress might inhibit photosynthesis in S. purpurea by oxidizing RuBisCO, but the plants were able to maintain photosynthetic efficiency by a compensatory upregulation of unoxidized RuBisCO and other photosynthesis-related proteins. Further analyses confirmed that increased abundance of antioxidant enzymes could balance the redox status of the plants to mitigate drought-induced oxidative damage. PMID:25646623

  12. Haematological and immunological adaptations of non-pregnant, non-lactating dairy cows to a high-energetic diet containing mycotoxins.

    PubMed

    Dänicke, Sven; Meyer, Ulrich; Winkler, Janine; Ulrich, Sebastian; Frahm, Jana; Kersten, Susanne; Valenta, Hana; Rehage, Jürgen; Häussler, Susanne; Sauerwein, Helga; Locher, Lena

    2016-01-01

    Diet change and fatness are supposed to challenge the immune system of the cow. Therefore, immunological and haematological consequences of adaptation to and continued feeding of a high-energy diet were studied in eight non-pregnant, non-lactating Holstein cows over 16 weeks. Blood haptoglobin concentration remained unaltered, suggesting that an acute phase reaction was not induced. Stimulation ability of peripheral blood mononuclear cells and stimulated oxidative burst capacity of granulocytes increased significantly in the course of the experiment after an initial drop. While total leucocyte counts increased, the proportion of granulocytes increased and that of lymphocytes decreased at the same time as the ratio of CD4(+)/CD8(+) lymphocytes did. Capability of rumen microbes to detoxify the immune-modulating mycotoxin deoxynivalenol (DON) was not compromised as indicated by the exclusive presence of de-DON as the detoxified DON metabolite in blood. In conclusion, both diet change and prolonged positive energy balance influenced the bovine immune system. PMID:26654380

  13. Haematological and immunological adaptations of non-pregnant, non-lactating dairy cows to a high-energetic diet containing mycotoxins.

    PubMed

    Dänicke, Sven; Meyer, Ulrich; Winkler, Janine; Ulrich, Sebastian; Frahm, Jana; Kersten, Susanne; Valenta, Hana; Rehage, Jürgen; Häussler, Susanne; Sauerwein, Helga; Locher, Lena

    2016-01-01

    Diet change and fatness are supposed to challenge the immune system of the cow. Therefore, immunological and haematological consequences of adaptation to and continued feeding of a high-energy diet were studied in eight non-pregnant, non-lactating Holstein cows over 16 weeks. Blood haptoglobin concentration remained unaltered, suggesting that an acute phase reaction was not induced. Stimulation ability of peripheral blood mononuclear cells and stimulated oxidative burst capacity of granulocytes increased significantly in the course of the experiment after an initial drop. While total leucocyte counts increased, the proportion of granulocytes increased and that of lymphocytes decreased at the same time as the ratio of CD4(+)/CD8(+) lymphocytes did. Capability of rumen microbes to detoxify the immune-modulating mycotoxin deoxynivalenol (DON) was not compromised as indicated by the exclusive presence of de-DON as the detoxified DON metabolite in blood. In conclusion, both diet change and prolonged positive energy balance influenced the bovine immune system.

  14. Effect of farm and simulated laboratory cold environmental conditions on the performance and physiological responses of lactating dairy cows supplemented with bovine somatotropin (BST)

    NASA Astrophysics Data System (ADS)

    Becker, B. A.; Johnson, H. D.; Li, R.; Collier, R. J.

    1990-09-01

    A study was conducted to evaluate the effect of bovine somatotropin (BST) supplementation in twelve lactating dairy cows maintained in cold environmental conditions. Six cows were injected daily with 25 mg of BST; the other six were injected with a control vehicle. Cows were maintained under standard dairy management during mid-winter for 30 days. Milk production was recorded twice daily, and blood samples were taken weekly. Animals were then transferred to environmentally controlled chambers and exposed to cycling thermoneutral (15° to 20° C) and cycling cold (-5° to +5° C) temperatures for 10 days in a split-reversal design. Milk production, feed and water intake, body weights and rectal temperatures were monitored. Blood samples were taken on days 1, 3, 5, 8 and 10 of each period and analyzed for plasma triiodothyronine (T3), thyroxine (T4), cortisol, insulin and prolactin. Under farm conditions, BST-treated cows produced 11% more milk than control-treated cows and in environmentally controlled chambers produced 17.4% more milk. No differences due to BST in feed or water intake, body weights or rectal temperatures were found under laboratory conditions. Plasma T3 and insulin increased due to BST treatment while no effect was found on cortisol, prolactin or T4. The results showed that the benefits of BST supplementation in lactating dairy cows were achieved under cold environmental conditions.

  15. Cool Cow Quiz.

    ERIC Educational Resources Information Center

    DeRosa, Bill

    1988-01-01

    Provides a game to help develop the skill of estimating and making educated guesses. Uses facts about cows to explain some problems associated with the dairy industry. Includes cards and rules for playing, class adaptation procedures, follow-up activities, and availability of background information on humane concerns. (RT)

  16. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'.

    PubMed

    Somero, G N

    2010-03-15

    Physiological studies can help predict effects of climate change through determining which species currently live closest to their upper thermal tolerance limits, which physiological systems set these limits, and how species differ in acclimatization capacities for modifying their thermal tolerances. Reductionist studies at the molecular level can contribute to this analysis by revealing how much change in sequence is needed to adapt proteins to warmer temperatures--thus providing insights into potential rates of adaptive evolution--and determining how the contents of genomes--protein-coding genes and gene regulatory mechanisms--influence capacities for adapting to acute and long-term increases in temperature. Studies of congeneric invertebrates from thermally stressful rocky intertidal habitats have shown that warm-adapted congeners are most susceptible to local extinctions because their acute upper thermal limits (LT(50) values) lie near current thermal maxima and their abilities to increase thermal tolerance through acclimation are limited. Collapse of cardiac function may underlie acute and longer-term thermal limits. Local extinctions from heat death may be offset by in-migration of genetically warm-adapted conspecifics from mid-latitude 'hot spots', where midday low tides in summer select for heat tolerance. A single amino acid replacement is sufficient to adapt a protein to a new thermal range. More challenging to adaptive evolution are lesions in genomes of stenotherms like Antarctic marine ectotherms, which have lost protein-coding genes and gene regulatory mechanisms needed for coping with rising temperature. These extreme stenotherms, along with warm-adapted eurytherms living near their thermal limits, may be the major 'losers' from climate change.

  17. Annual Research Review: The Neurobiology and Physiology of Resilience and Adaptation across the Life Course

    ERIC Educational Resources Information Center

    Karatoreos, Ilia N.; McEwen, Bruce S.

    2013-01-01

    Background: Adaptation is key to survival. An organism must adapt to environmental challenges in order to be able to thrive in the environment in which they find themselves. Resilience can be thought of as a measure of the ability of an organism to adapt, and to withstand challenges to its stability. In higher animals, the brain is a key player in…

  18. A Chemosensory Adaptation Module for the Physiology Laboratory from Student-Directed "C. elegans" Research

    ERIC Educational Resources Information Center

    Lindblom, Tim

    2006-01-01

    The model organism, "Caenorhabditis elegans," in addition to being well suited to genetics and cell biology teaching applications, can also be useful in the physiology laboratory. In this article, the author describes how students in a junior level college Comparative Physiology course have made use of "C. elegans" in semester-long,…

  19. Global Transcriptional, Physiological, and Metabolite Analyses of the Responses of Desulfovibrio vulgaris Hildenborough to Salt Adaptation ▿ †

    PubMed Central

    He, Zhili; Zhou, Aifen; Baidoo, Edward; He, Qiang; Joachimiak, Marcin P.; Benke, Peter; Phan, Richard; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Huang, Katherine; Alm, Eric J.; Fields, Matthew W.; Wall, Judy; Stahl, David; Hazen, Terry C.; Keasling, Jay D.; Arkin, Adam P.; Zhou, Jizhong

    2010-01-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by performing physiological, global transcriptional, and metabolite analyses. Salt adaptation was reflected by increased expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). The expression of genes involved in carbon metabolism, cell growth, and phage structures was decreased. Transcriptome profiles of D. vulgaris responses to salt adaptation were compared with transcriptome profiles of D. vulgaris responses to salt shock (short-term NaCl exposure). Metabolite assays showed that glutamate and alanine accumulated under salt adaptation conditions, suggesting that these amino acids may be used as osmoprotectants in D. vulgaris. Addition of amino acids (glutamate, alanine, and tryptophan) or yeast extract to the growth medium relieved salt-related growth inhibition. A conceptual model that links the observed results to currently available knowledge is proposed to increase our understanding of the mechanisms of D. vulgaris adaptation to elevated NaCl levels. PMID:20038696

  20. Life under water: physiological adaptations to diving and living at sea.

    PubMed

    Castellini, Michael

    2012-07-01

    This review covers the field of diving physiology by following a chronological approach and focusing heavily on marine mammals. Because the study of modern diving physiology can be traced almost entirely to the work of Laurence Irving in the 1930s, this particular field of physiology is different than most in that it did not derive from multiple laboratories working at many locations or on different aspects of a similar problem. Because most of the physiology principles still used today were first formulated by Irving, it is important to the study of this field that the sequence of thought is examined as a progression of theory. The review covers the field in roughly decadal blocks and traces ideas as they were first suggested, tested, modified and in some cases, abandoned. Because diving physiology has also been extremely dependent on new technologies used in the development of diving recorders, a chronological approach fits well with advances in electronics and mechanical innovation. There are many species that dive underwater as part of their natural behavior, but it is mainly the marine mammals (seals, sea lions, and whales) that demonstrate both long duration and dives to great depth. There have been many studies on other diving species including birds, snakes, small aquatic mammals, and humans. This work examines these other diving species as appropriate and a listing of reviews and relevant literature on these groups is included at the end.

  1. Estimating the capability of microalgae to physiological acclimatization and genetic adaptation to petroleum and diesel oil contamination.

    PubMed

    Romero-Lopez, Julia; Lopez-Rodas, Victoria; Costas, Eduardo

    2012-11-15

    There is increasing scientific interest in how phytoplankton reacts to petroleum contamination, since crude oil and its derivatives are generating extensive contamination of aquatic environments. However, toxic effects of short-term petroleum exposure are more widely known than the adaptation of phytoplankton to long-term petroleum exposure. An analysis of short-term and long-term effects of petroleum exposure was done using experimental populations of freshwater (Scenedesmus intermedius and Microcystis aeruginosa) and marine (Dunaliella tertiolecta) microalgae isolated from pristine sites without crude oil product contamination. These strains were exposed to increased levels of petroleum and diesel oil. Short-term exposure to petroleum or diesel oil revealed a rapid inhibition of photosynthetic performance and cell proliferation in freshwater and marine phytoplankton species. A broad degree of inter-specific variation in lethal contamination level was observed. When different strains were exposed to petroleum or diesel oil over the long-term, the cultures showed massive destruction of the sensitive cells. Nonetheless, after further incubation, some cultures were able to grow again due to cells that were resistant to the toxins. By means of a fluctuation analysis, discrimination between cells that had become resistant due to physiological acclimatization and resistant cells arising from rare spontaneous mutations was accomplished. In addition, an analysis was done as to the maximum capacity of adaptation to a gradual contamination process. An experimental ratchet protocol was used, which maintains a strong selection pressure in a temporal scale up to several months over very large experimental populations of microalgae. Microalgae are able to survive to petroleum contamination as a result of physiological acclimatization without genetic changes. However, when petroleum concentration exceeds the physiological limits, survival depends exclusively on the occurrence on

  2. Copepods Oithona similis and Oithona davisae: Two strategies of ecological-physiological adaptation in the Black Sea

    NASA Astrophysics Data System (ADS)

    Hubareva, E. S.; Svetlichny, L. S.

    2016-03-01

    Salinity tolerance, energy metabolism, buoyancy, and passive sinking and swimming speeds have been studied for comparative assessment of the adaptive potential of two species of cyclopoid copepods in the Black Sea, the native Oithona similis and new invader Oithona davisae. Both species were considered marine euryhaline copepods, but the range of salinity tolerance of O. davisae was much broader (5-55‰). The energy metabolism, locomotor activity, mean body mass density, and speed of passive sinking at the same temperature were significantly higher in O. davisae than in O. similis. The relationship between the physiological and behavioral parameters and ecological characteristics of the species are discussed.

  3. Ovum pick up and in vitro embryo production in cows superstimulated with an individually adapted superstimulation protocol.

    PubMed

    De Roover, R; Genicot, G; Leonard, S; Bols, P; Dessy, F

    2005-03-01

    The aim of this experiment was to apply an ovarian superstimulation protocol prior to ovum pick up (OPU), tailored to the individual donor response, to evaluate its advantages and disadvantages in terms of follicle numbers and diameters, the numbers of retrieved oocytes and day 7 cultured blastocysts. Ten adult non-lactating dairy cows were superstimulated with pFSH and subjected to ovum pick up-in vitro fertilisation (OPU-IVF) 6 times at 2-week intervals. On day 0 of each 2-week period, all follicles >8mm were ablated and an ear implant (Crestar, Intervet, Belgium) was inserted. On day 2, 48 h after follicle ablation the animals were administered six equal doses of pFSH, divided into morning and evening doses for 3 days. On day 7, 48 h following the last pFSH injection, follicle diameters were measured by ultrasound and all follicles were subjected to OPU. All cumulus-oocyte complexes (COC), regardless of their quality, were subjected to in vitro maturation-in vitro fertilisation-in vitro culture (IVM-IVF-IVC). The total dose of pFSH prior to the first OPU session was 300 microg per animal. During the following OPU sessions, the total pFSH dose was either kept unchanged, increased or reduced (+/-50 microg), according to the percentage of follicles of more than 11 mm in diameter, present in the previous session of that particular donor. The mean number of punctured follicles per session was 11.9 +/- 7.7 (mean +/- S.D.), with 16% of follicles exceeding 11 mm. These follicles yielded a mean of 5.6 +/- 4.1 cumulus oocyte complexes (COC), 32% of which had >/=3 layers of cumulus cells (quality 1 and 2). The recovery rate was 47%. Finally, all COC were subjected to IVM-IVF-IVC, which resulted in a mean of 2.0 +/- 2.3 blastocysts on day 7 postinsemination. The subtle changes in pFSH dose influenced the sizes but not the numbers of follicles, the latter parameter was influenced by the individual donor and the OPU session.

  4. Insulin Signaling in Liver and Adipose Tissues in Periparturient Dairy Cows Supplemented with Dietary Nicotinic Acid

    PubMed Central

    Kinoshita, Asako; Kenéz, Ákos; Locher, Lena; Meyer, Ulrich; Dänicke, Sven; Rehage, Jürgen; Huber, Korinna

    2016-01-01

    The glucose homeostasis in dairy cattle is very well controlled, in line with the metabolic adaptation during the periparturient period. Former studies showed that nicotinic acid (NA) lowered plasma non-esterified fatty acids (NEFA) concentrations and increased insulin sensitivity in dairy cows. Thus, the purpose of this study was to investigate whether the expression of proteins involved in hepatic and adipose insulin signaling and protein expression of hepatic glucose transporter 2 (GLUT2) were affected by dietary NA and dietary concentrate intake in periparturient dairy cows. Twenty pluriparous German Holstein cows were fed with the same diet from about 21 days before the expected calving date (d-21) to calving. After calving, cows were randomly assigned in 4 groups and fed with diets different in concentrate proportion (“HC” with 60:40% or “LC” with 30:70% concentrate-to-roughage ratio) and supplemented with NA (24 g/day) (NA) or without (CON) until d21. Biopsy samples were taken from the liver, subcutaneous (SCAT) and retroperitoneal (RPAT) adipose tissues at d-21 and d21. Protein expression of insulin signaling molecules (insulin receptor (INSR), phosphatidylinositol-3-kinase (PI3K), protein kinase Cζ (PKCζ)) and hepatic GLUT2 was measured by Western Blotting. The ratio of protein expression at d21/at d-21 was calculated and statistically evaluated for the effects of time and diet. Cows in HC had significantly higher dietary energy intake than cows in LC. In RPAT a decrease in PI3K and PKCζ expression was found in all groups, irrespectively of diet. In the liver, the GLUT2 expression was significantly lower in cows in NA compared with cows in CON. In conclusion, insulin signaling might be decreased in RPAT over time without any effect of diet. NA was able to modulate hepatic GLUT2 expression, but its physiological role is unclear. PMID:26766039

  5. Insulin Signaling in Liver and Adipose Tissues in Periparturient Dairy Cows Supplemented with Dietary Nicotinic Acid.

    PubMed

    Kinoshita, Asako; Kenéz, Ákos; Locher, Lena; Meyer, Ulrich; Dänicke, Sven; Rehage, Jürgen; Huber, Korinna

    2016-01-01

    The glucose homeostasis in dairy cattle is very well controlled, in line with the metabolic adaptation during the periparturient period. Former studies showed that nicotinic acid (NA) lowered plasma non-esterified fatty acids (NEFA) concentrations and increased insulin sensitivity in dairy cows. Thus, the purpose of this study was to investigate whether the expression of proteins involved in hepatic and adipose insulin signaling and protein expression of hepatic glucose transporter 2 (GLUT2) were affected by dietary NA and dietary concentrate intake in periparturient dairy cows. Twenty pluriparous German Holstein cows were fed with the same diet from about 21 days before the expected calving date (d-21) to calving. After calving, cows were randomly assigned in 4 groups and fed with diets different in concentrate proportion ("HC" with 60:40% or "LC" with 30:70% concentrate-to-roughage ratio) and supplemented with NA (24 g/day) (NA) or without (CON) until d21. Biopsy samples were taken from the liver, subcutaneous (SCAT) and retroperitoneal (RPAT) adipose tissues at d-21 and d21. Protein expression of insulin signaling molecules (insulin receptor (INSR), phosphatidylinositol-3-kinase (PI3K), protein kinase Cζ (PKCζ)) and hepatic GLUT2 was measured by Western Blotting. The ratio of protein expression at d21/at d-21 was calculated and statistically evaluated for the effects of time and diet. Cows in HC had significantly higher dietary energy intake than cows in LC. In RPAT a decrease in PI3K and PKCζ expression was found in all groups, irrespectively of diet. In the liver, the GLUT2 expression was significantly lower in cows in NA compared with cows in CON. In conclusion, insulin signaling might be decreased in RPAT over time without any effect of diet. NA was able to modulate hepatic GLUT2 expression, but its physiological role is unclear. PMID:26766039

  6. Insulin Signaling in Liver and Adipose Tissues in Periparturient Dairy Cows Supplemented with Dietary Nicotinic Acid.

    PubMed

    Kinoshita, Asako; Kenéz, Ákos; Locher, Lena; Meyer, Ulrich; Dänicke, Sven; Rehage, Jürgen; Huber, Korinna

    2016-01-01

    The glucose homeostasis in dairy cattle is very well controlled, in line with the metabolic adaptation during the periparturient period. Former studies showed that nicotinic acid (NA) lowered plasma non-esterified fatty acids (NEFA) concentrations and increased insulin sensitivity in dairy cows. Thus, the purpose of this study was to investigate whether the expression of proteins involved in hepatic and adipose insulin signaling and protein expression of hepatic glucose transporter 2 (GLUT2) were affected by dietary NA and dietary concentrate intake in periparturient dairy cows. Twenty pluriparous German Holstein cows were fed with the same diet from about 21 days before the expected calving date (d-21) to calving. After calving, cows were randomly assigned in 4 groups and fed with diets different in concentrate proportion ("HC" with 60:40% or "LC" with 30:70% concentrate-to-roughage ratio) and supplemented with NA (24 g/day) (NA) or without (CON) until d21. Biopsy samples were taken from the liver, subcutaneous (SCAT) and retroperitoneal (RPAT) adipose tissues at d-21 and d21. Protein expression of insulin signaling molecules (insulin receptor (INSR), phosphatidylinositol-3-kinase (PI3K), protein kinase Cζ (PKCζ)) and hepatic GLUT2 was measured by Western Blotting. The ratio of protein expression at d21/at d-21 was calculated and statistically evaluated for the effects of time and diet. Cows in HC had significantly higher dietary energy intake than cows in LC. In RPAT a decrease in PI3K and PKCζ expression was found in all groups, irrespectively of diet. In the liver, the GLUT2 expression was significantly lower in cows in NA compared with cows in CON. In conclusion, insulin signaling might be decreased in RPAT over time without any effect of diet. NA was able to modulate hepatic GLUT2 expression, but its physiological role is unclear.

  7. Transcriptional and functional adaptations of human endothelial cells to physiological chronic low oxygen.

    PubMed

    Jiang, Yi-Zhou; Wang, Kai; Li, Yan; Dai, Cai-Feng; Wang, Ping; Kendziorski, Christina; Chen, Dong-Bao; Zheng, Jing

    2013-05-01

    Endothelial cells chronically reside in low-O2 environments in vivo (2%-13% O2), which are believed to be critical for cell homeostasis. To elucidate the roles of this physiological chronic normoxia in human endothelial cells, we examined transcriptomes of human umbilical vein endothelial cells (HUVECs), proliferation and migration of HUVECs in response to fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA), and underlying signaling mechanisms under physiological chronic normoxia. Immediately after isolation, HUVECs were cultured steadily under standard cell culture normoxia (SCN; 21% O2) or physiological chronic normoxia (PCN; 3% O2) up to 25 days. We found that PCN up-regulated 41 genes and down-regulated 21 genes, 90% of which differed from those previously reported from HUVECs cultured under SCN and exposed to acute low O2. Gene ontology analysis indicated that PCN-regulated genes were highly related to cell proliferation and migration, consistent with the results from benchtop assays that showed that PCN significantly enhanced FGF2- and VEGFA-stimulated cell proliferation and migration. Interestingly, preexposing the PCN cells to 21% O2 up to 5 days did not completely diminish PCN-enhanced cell proliferation and migration. These PCN-enhanced cell proliferations and migrations were mediated via augmented activation of MEK1/MEK2/ERK1/ERK2 and/or PI3K/AKT1. Importantly, these PCN-enhanced cellular responses were associated with an increase in activation of VEGFR2 but not FGFR1, without altering their expression. Thus, PCN programs endothelial cells to undergo dramatic changes in transcriptomes and sensitizes cellular proliferative and migratory responses to FGF2 and VEGFA. These PCN cells may offer a unique endothelial model, more closely mimicking the in vivo states.

  8. A dynamic control algorithm based on physiological parameters and wearable interfaces for adaptive ventricular assist devices.

    PubMed

    Tortora, G; Fontana, R; Argiolas, S; Vatteroni, M; Dario, P; Trivella, M G

    2015-08-01

    In this work we present an innovative algorithm for the dynamic control of ventricular assist devices (VADs), based on the acquisition of continuous physiological and functional parameters such as heart rate, blood oxygenation, temperature, and patient movements. Such parameters are acquired by wearable devices (MagIC & Winpack) and sensors implanted close to the VAD. The aim of the proposed algorithm is to dynamically control the hydraulic power of the VAD as a function of the detected parameters, patient's activity and emotional status. In this way, the cardiac dynamics regulated by the proposed autoregulation control algorithm for sensorized VADs, thus providing new therapy approaches for heart failure. PMID:26737403

  9. A dynamic control algorithm based on physiological parameters and wearable interfaces for adaptive ventricular assist devices.

    PubMed

    Tortora, G; Fontana, R; Argiolas, S; Vatteroni, M; Dario, P; Trivella, M G

    2015-08-01

    In this work we present an innovative algorithm for the dynamic control of ventricular assist devices (VADs), based on the acquisition of continuous physiological and functional parameters such as heart rate, blood oxygenation, temperature, and patient movements. Such parameters are acquired by wearable devices (MagIC & Winpack) and sensors implanted close to the VAD. The aim of the proposed algorithm is to dynamically control the hydraulic power of the VAD as a function of the detected parameters, patient's activity and emotional status. In this way, the cardiac dynamics regulated by the proposed autoregulation control algorithm for sensorized VADs, thus providing new therapy approaches for heart failure.

  10. Effect of adaptation strategies when feeding fresh cassava foliage on intake and physiological responses of lambs.

    PubMed

    Hue, Khuc Thi; Van, Do Thi Thanh; Spörndly, Eva; Ledin, Inger; Wredle, Ewa

    2012-02-01

    The objective of the experiment was to study different adaptation strategies to avoid HCN intoxication when feeding fresh cassava foliage to sheep. Twenty-four Phan Rang lambs (initial weight = 19.6 kg at 5.5 months of age) were used in the study. The four experimental diets contained guinea grass (Panicum maximum) supplemented with concentrate at 1.5% of body weight (BW) as dry matter (DM) (control) or supplemented with fresh cassava foliage (FCF) that was introduced into the diet with an adaptation period of 0 (FCF-0), 7 (FCF-7) or 21 (FCF-21) days before reaching the target feeding level of 2% of BW. The average intake of FCF expressed as DM was not different amongst the supplemented treatments and ranged from 1.4 to 1.5% of BW but gradually increased during the first 7 days without any adaptation. The hydrogen cyanide consumed varied from 5.1 to 5.4 mg/kg BW and no difference between treatments with cassava foliage in the diet was found. The live weight gain was significantly higher in the treatments control and FCF-7 compared to FCF-21. No significant differences in heart rate, respiration rate and rumen movement were found between diets. The thiocyanate concentration in the urine of the lambs increased concomitantly with the increase in fresh cassava foliage offered during the first part of the experiment. In conclusion, an adaptation period of approximately 7 days seems to be favourable in combined diets where cassava foliage is offered in quantities up to 2% of BW. This level of intake could enhance the intake and LWG of the lambs without any documented effects on heart rate, respiration rate or rumen movements.

  11. Physiological responses to food deprivation in the house sparrow, a species not adapted to prolonged fasting.

    PubMed

    Khalilieh, Anton; McCue, Marshall D; Pinshow, Berry

    2012-09-01

    Many wild birds fast during reproduction, molting, migration, or because of limited food availability. Species that are adapted to fasting sequentially oxidize endogenous fuels in three discrete phases. We hypothesized that species not adapted to long fasts have truncated, but otherwise similar, phases of fasting, sequential changes in fuel oxidization, and similar changes in blood metabolites to fasting-adapted species. We tested salient predictions in house sparrows (Passer domesticus biblicus), a subspecies that is unable to tolerate more than ~32 h of fasting. Our main hypothesis was that fasting sparrows sequentially oxidize substrates in the order carbohydrates, lipids, and protein. We dosed 24 house sparrows with [(13)C]glucose, palmitic acid, or glycine and measured (13)CO(2) in their breath while they fasted for 24 h. To ascertain whether blood metabolite levels reflect fasting-induced changes in metabolic fuels, we also measured glucose, triacylglycerides, and β-hydroxybutyrate in the birds' blood. The results of both breath (13)CO(2) and plasma metabolite analyses did not support our hypothesis; i.e., that sparrows have the same metabolic responses characteristic of fasting-adapted species, but on a shorter time scale. Contrary to our main prediction, we found that recently assimilated (13)C-tracers were oxidized continuously in different patterns with no definite peaks corresponding to the three phases of fasting and also that changes in plasma metabolite levels accurately tracked the changes found by breath analysis. Notably, the rate of recently assimilated [(13)C]glycine oxidization was significantly higher (P < 0.001) than that of the other metabolic tracers at all postdosing intervals. We conclude that the inability of house sparrows to fast for longer than 32 h is likely related to their inability to accrue large lipid stores, separately oxidize different fuels, and/or spare protein during fasting.

  12. p21Cip1 plays a critical role in the physiological adaptation to fasting through activation of PPARα

    PubMed Central

    Lopez-Guadamillas, Elena; Fernandez-Marcos, Pablo J.; Pantoja, Cristina; Muñoz-Martin, Maribel; Martínez, Dolores; Gómez-López, Gonzalo; Campos-Olivas, Ramón; Valverde, Angela M.; Serrano, Manuel

    2016-01-01

    Fasting is a physiological stress that elicits well-known metabolic adaptations, however, little is known about the role of stress-responsive tumor suppressors in fasting. Here, we have examined the expression of several tumor suppressors upon fasting in mice. Interestingly, p21 mRNA is uniquely induced in all the tissues tested, particularly in liver and muscle (>10 fold), and this upregulation is independent of p53. Remarkably, in contrast to wild-type mice, p21-null mice become severely morbid after prolonged fasting. The defective adaptation to fasting of p21-null mice is associated to elevated energy expenditure, accelerated depletion of fat stores, and premature activation of protein catabolism in the muscle. Analysis of the liver transcriptome and cell-based assays revealed that the absence of p21 partially impairs the transcriptional program of PPARα, a key regulator of fasting metabolism. Finally, treatment of p21-null mice with a PPARα agonist substantially protects them from their accelerated loss of fat upon fasting. We conclude that p21 plays a relevant role in fasting adaptation through the positive regulation of PPARα. PMID:27721423

  13. Physiological and transcriptomic analyses reveal mechanistic insight into the adaption of marine Bacillus subtilis C01 to alumina nanoparticles

    PubMed Central

    Mu, Dashuai; Yu, Xiuxia; Xu, Zhenxing; Du, Zongjun; Chen, Guanjun

    2016-01-01

    An increasing number of studies have investigated the effects of nanoparticles (NPs) on microbial systems; however, few existing reports have focused on the defense mechanisms of bacteria against NPs. Whether secondary metabolism biosynthesis is a response to NP stress and contributes to the adaption of bacteria to NPs is unclear. Here, a significant induction in the surfactin production and biofilm formation were detected by adding Al2O3 NPs to the B. subtilis fermentation broth. Physiological analysis showed that Al2O3 NP stress could also affect the cell and colony morphogenesis and inhibit the motility and sporulation. Exogenously adding commercial surfactin restored the swarming motility. Additionally, a suite of toxicity assays analyzing membrane damage, cellular ROS generation, electron transport activity and membrane potential was used to determine the molecular mechanisms of toxicity of Al2O3 NPs. Furthermore, whole transcriptomic analysis was used to elucidate the mechanisms of B. subtilis adaption to Al2O3 NPs. These results revealed several mechanisms by which marine B. subtilis C01 adapt to Al2O3 NPs. Additionally, this study broadens the applications of nanomaterials and describes the important effects on secondary metabolism and multicellularity regulation by using Al2O3 NPs or other nano-products. PMID:27440502

  14. The high cost of reproduction in sea otters necessitates unique physiological adaptations.

    PubMed

    Thometz, Nicole M; Kendall, Traci L; Richter, Beau P; Williams, Terrie M

    2016-08-01

    Superimposed on inherently high basal metabolic demands, the additional energetic requirements of reproduction can push female sea otters beyond physiological limits. Indeed, the resulting energy imbalance contributes to disproportionately high rates of mortality at the end of lactation in this species. To examine and quantify metabolic changes associated with reproduction, we measured the resting metabolic rate (RMR) of a female sea otter across gestation, lactation and non-reproductive periods. Concurrently, measurements were made on a non-breeding control female. Our results suggest that RMR declines during gestation. Conversely, RMR increases during lactation, reaches a peak at 3-4 months postpartum, and remains elevated until weaning. Combining these direct measurements with published data, we found the cost of pup rearing to be significantly higher than previously estimated. High baseline energy demands and limited energy reserves, combined with significant lactation and pup rearing costs, appear to necessitate metabolic and thermal lability during key reproductive stages.

  15. Adaptation of the human endocrine system to microgravity in the context of integrative physiology and ageing.

    PubMed

    Strollo, F

    2000-01-01

    This review deals with changes occurring in space in different endocrine systems. Sections are dedicated to hormones involved in bone remodelling, the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-thyroid axis, pancreatic hormones, the hypothalamic-pituitary-gonadal axis and the hypothalamic-pituitary-somato-mammotropic system. In space, most systems - especially those regulating bone/muscle metabolism and reproduction - undergo changes resembling those observed during senescence, but recover within weeks or months after return. This suggests space as a possible experimental model for the study of "reversible ageing processes". Studying ageing through space technology might give us the opportunity to combine the holistic view of integrative physiology with the most ambitious goal of the present scientific community, i.e. to yield successful ageing by promoting chronic disease prevention studies and by optimizing safe, anti-ageing therapeutic protocols.

  16. The high cost of reproduction in sea otters necessitates unique physiological adaptations.

    PubMed

    Thometz, Nicole M; Kendall, Traci L; Richter, Beau P; Williams, Terrie M

    2016-08-01

    Superimposed on inherently high basal metabolic demands, the additional energetic requirements of reproduction can push female sea otters beyond physiological limits. Indeed, the resulting energy imbalance contributes to disproportionately high rates of mortality at the end of lactation in this species. To examine and quantify metabolic changes associated with reproduction, we measured the resting metabolic rate (RMR) of a female sea otter across gestation, lactation and non-reproductive periods. Concurrently, measurements were made on a non-breeding control female. Our results suggest that RMR declines during gestation. Conversely, RMR increases during lactation, reaches a peak at 3-4 months postpartum, and remains elevated until weaning. Combining these direct measurements with published data, we found the cost of pup rearing to be significantly higher than previously estimated. High baseline energy demands and limited energy reserves, combined with significant lactation and pup rearing costs, appear to necessitate metabolic and thermal lability during key reproductive stages. PMID:27489214

  17. Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart.

    PubMed

    Rasmussen, Tyler P; Wu, Yuejin; Joiner, Mei-ling A; Koval, Olha M; Wilson, Nicholas R; Luczak, Elizabeth D; Wang, Qinchuan; Chen, Biyi; Gao, Zhan; Zhu, Zhiyong; Wagner, Brett A; Soto, Jamie; McCormick, Michael L; Kutschke, William; Weiss, Robert M; Yu, Liping; Boudreau, Ryan L; Abel, E Dale; Zhan, Fenghuang; Spitz, Douglas R; Buettner, Garry R; Song, Long-Sheng; Zingman, Leonid V; Anderson, Mark E

    2015-07-21

    Myocardial mitochondrial Ca(2+) entry enables physiological stress responses but in excess promotes injury and death. However, tissue-specific in vivo systems for testing the role of mitochondrial Ca(2+) are lacking. We developed a mouse model with myocardial delimited transgenic expression of a dominant negative (DN) form of the mitochondrial Ca(2+) uniporter (MCU). DN-MCU mice lack MCU-mediated mitochondrial Ca(2+) entry in myocardium, but, surprisingly, isolated perfused hearts exhibited higher O2 consumption rates (OCR) and impaired pacing induced mechanical performance compared with wild-type (WT) littermate controls. In contrast, OCR in DN-MCU-permeabilized myocardial fibers or isolated mitochondria in low Ca(2+) were not increased compared with WT, suggesting that DN-MCU expression increased OCR by enhanced energetic demands related to extramitochondrial Ca(2+) homeostasis. Consistent with this, we found that DN-MCU ventricular cardiomyocytes exhibited elevated cytoplasmic [Ca(2+)] that was partially reversed by ATP dialysis, suggesting that metabolic defects arising from loss of MCU function impaired physiological intracellular Ca(2+) homeostasis. Mitochondrial Ca(2+) overload is thought to dissipate the inner mitochondrial membrane potential (ΔΨm) and enhance formation of reactive oxygen species (ROS) as a consequence of ischemia-reperfusion injury. Our data show that DN-MCU hearts had preserved ΔΨm and reduced ROS during ischemia reperfusion but were not protected from myocardial death compared with WT. Taken together, our findings show that chronic myocardial MCU inhibition leads to previously unanticipated compensatory changes that affect cytoplasmic Ca(2+) homeostasis, reprogram transcription, increase OCR, reduce performance, and prevent anticipated therapeutic responses to ischemia-reperfusion injury. PMID:26153425

  18. Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart.

    PubMed

    Rasmussen, Tyler P; Wu, Yuejin; Joiner, Mei-ling A; Koval, Olha M; Wilson, Nicholas R; Luczak, Elizabeth D; Wang, Qinchuan; Chen, Biyi; Gao, Zhan; Zhu, Zhiyong; Wagner, Brett A; Soto, Jamie; McCormick, Michael L; Kutschke, William; Weiss, Robert M; Yu, Liping; Boudreau, Ryan L; Abel, E Dale; Zhan, Fenghuang; Spitz, Douglas R; Buettner, Garry R; Song, Long-Sheng; Zingman, Leonid V; Anderson, Mark E

    2015-07-21

    Myocardial mitochondrial Ca(2+) entry enables physiological stress responses but in excess promotes injury and death. However, tissue-specific in vivo systems for testing the role of mitochondrial Ca(2+) are lacking. We developed a mouse model with myocardial delimited transgenic expression of a dominant negative (DN) form of the mitochondrial Ca(2+) uniporter (MCU). DN-MCU mice lack MCU-mediated mitochondrial Ca(2+) entry in myocardium, but, surprisingly, isolated perfused hearts exhibited higher O2 consumption rates (OCR) and impaired pacing induced mechanical performance compared with wild-type (WT) littermate controls. In contrast, OCR in DN-MCU-permeabilized myocardial fibers or isolated mitochondria in low Ca(2+) were not increased compared with WT, suggesting that DN-MCU expression increased OCR by enhanced energetic demands related to extramitochondrial Ca(2+) homeostasis. Consistent with this, we found that DN-MCU ventricular cardiomyocytes exhibited elevated cytoplasmic [Ca(2+)] that was partially reversed by ATP dialysis, suggesting that metabolic defects arising from loss of MCU function impaired physiological intracellular Ca(2+) homeostasis. Mitochondrial Ca(2+) overload is thought to dissipate the inner mitochondrial membrane potential (ΔΨm) and enhance formation of reactive oxygen species (ROS) as a consequence of ischemia-reperfusion injury. Our data show that DN-MCU hearts had preserved ΔΨm and reduced ROS during ischemia reperfusion but were not protected from myocardial death compared with WT. Taken together, our findings show that chronic myocardial MCU inhibition leads to previously unanticipated compensatory changes that affect cytoplasmic Ca(2+) homeostasis, reprogram transcription, increase OCR, reduce performance, and prevent anticipated therapeutic responses to ischemia-reperfusion injury.

  19. Design of a knee joint mechanism that adapts to individual physiology.

    PubMed

    Jiun-Yih Kuan; Pasch, Kenneth A; Herr, Hugh M

    2014-01-01

    This paper describes the design of a new knee joint mechanism, called the Adaptive Coupling Joint (ACJ). The new mechanism has an adaptive trajectory of the center of rotations (COR) that automatically matches those of the attached biological joint. The detailed design is presented as well as characterization results of the ACJ. Conventional exoskeleton and assistive devices usually consider limb joints as a one to three degrees of freedom (DOFs) joint synthesized by multiple one-DOF hinge joints in a single plane. However, the biological joints are complex and usually rotate with respect to a changing COR. As a result, the mismatch between limb joint motion and mechanical interface motion can lead to forces that cause undesired ligament and muscle length changes and internal mechanical changes. These undesired changes contribute to discomfort, as well as to the slippage and sluggish interaction between humans and devices. It is shown that the ACJ can transmit planetary torques from either active or passive devices to the limbs without altering the normal biological joint motion. PMID:25570389

  20. Design of a knee joint mechanism that adapts to individual physiology.

    PubMed

    Jiun-Yih Kuan; Pasch, Kenneth A; Herr, Hugh M

    2014-01-01

    This paper describes the design of a new knee joint mechanism, called the Adaptive Coupling Joint (ACJ). The new mechanism has an adaptive trajectory of the center of rotations (COR) that automatically matches those of the attached biological joint. The detailed design is presented as well as characterization results of the ACJ. Conventional exoskeleton and assistive devices usually consider limb joints as a one to three degrees of freedom (DOFs) joint synthesized by multiple one-DOF hinge joints in a single plane. However, the biological joints are complex and usually rotate with respect to a changing COR. As a result, the mismatch between limb joint motion and mechanical interface motion can lead to forces that cause undesired ligament and muscle length changes and internal mechanical changes. These undesired changes contribute to discomfort, as well as to the slippage and sluggish interaction between humans and devices. It is shown that the ACJ can transmit planetary torques from either active or passive devices to the limbs without altering the normal biological joint motion.

  1. Space physiology II: adaptation of the central nervous system to space flight--past, current, and future studies.

    PubMed

    Clément, Gilles; Ngo-Anh, Jennifer Thu

    2013-07-01

    Experiments performed in orbit on the central nervous system have focused on the control of posture, eye movements, spatial orientation, as well as cognitive processes, such as three-dimensional visual perception and mental representation of space. Brain activity has also been recorded during and immediately after space flight for evaluating the changes in brain structure activation during tasks involving perception, attention, memory, decision, and action. Recent ground-based studies brought evidence that the inputs from the neurovestibular system also participate in orthostatic intolerance. It is, therefore, important to revisit the flight data of neuroscience studies in the light of new models of integrative physiology. The outcomes of this exercise will increase our knowledge on the adaptation of body functions to changing gravitational environment, vestibular disorders, aging, and our approach towards more effective countermeasures during human space flight and planetary exploration.

  2. Behaviorally mediated, warm adaptation: a physiological strategy when mice behaviorally thermoregulate.

    PubMed

    Gordon, Christopher J; Aydin, Cenk; Repasky, Elizabeth A; Kokolus, Kathleen M; Dheyongera, Geoffrey; Johnstone, Andrew F M

    2014-08-01

    Laboratory mice housed under standard vivarium conditions with an ambient temperature (Ta) of ~22°C are likely to be cold stressed because this Ta is below their thermoneutral zone (TNZ). Mice raised at Tas within the TNZ adapt to the warmer temperatures, developing smaller internal organs and longer tails compared to mice raised at 22°C. Since mice prefer Tas equal to their TNZ when housed in a thermocline, we hypothesized that mice reared for long periods (e.g., months) in a thermocline would undergo significant changes in organ development and tail length as a result of their thermoregulatory behavior. Groups of three female BALB/c mice at an age of 37 days were housed together in a thermocline consisting of a 90cm long aluminum runway with a floor temperature ranging from 23 to 39°C. Two side-by-side thermoclines allowed for a total of 6 mice to be tested simultaneously. Control mice were tested in isothermal runways maintained at a Ta of 22°C. All groups were given cotton pads for bedding/nest building. Mass of heart, lung, liver, kidney, brain, and tail length were assessed after 73 days of treatment. Mice in the thermocline and control (isothermal) runways were compared to cage control mice housed 3/cage with bedding under standard vivarium conditions. Mice in the thermocline generally remained in the warm end throughout the daytime with little evidence of nest building, suggesting a state of thermal comfort. Mice in the isothermal runway built elaborate nests and huddled together in the daytime. Mice housed in the thermocline had significantly smaller livers and kidneys and an increase in tail length compared to mice in the isothermal runway as well as when compared to the cage controls. These patterns of organ growth and tail length of mice in the thermocline are akin to warm adaptation. Thus, thermoregulatory behavior altered organ development, a process we term behaviorally mediated, warm adaptation. Moreover, the data suggest that the standard

  3. Behaviorally mediated, warm adaptation: a physiological strategy when mice behaviorally thermoregulate.

    PubMed

    Gordon, Christopher J; Aydin, Cenk; Repasky, Elizabeth A; Kokolus, Kathleen M; Dheyongera, Geoffrey; Johnstone, Andrew F M

    2014-08-01

    Laboratory mice housed under standard vivarium conditions with an ambient temperature (Ta) of ~22°C are likely to be cold stressed because this Ta is below their thermoneutral zone (TNZ). Mice raised at Tas within the TNZ adapt to the warmer temperatures, developing smaller internal organs and longer tails compared to mice raised at 22°C. Since mice prefer Tas equal to their TNZ when housed in a thermocline, we hypothesized that mice reared for long periods (e.g., months) in a thermocline would undergo significant changes in organ development and tail length as a result of their thermoregulatory behavior. Groups of three female BALB/c mice at an age of 37 days were housed together in a thermocline consisting of a 90cm long aluminum runway with a floor temperature ranging from 23 to 39°C. Two side-by-side thermoclines allowed for a total of 6 mice to be tested simultaneously. Control mice were tested in isothermal runways maintained at a Ta of 22°C. All groups were given cotton pads for bedding/nest building. Mass of heart, lung, liver, kidney, brain, and tail length were assessed after 73 days of treatment. Mice in the thermocline and control (isothermal) runways were compared to cage control mice housed 3/cage with bedding under standard vivarium conditions. Mice in the thermocline generally remained in the warm end throughout the daytime with little evidence of nest building, suggesting a state of thermal comfort. Mice in the isothermal runway built elaborate nests and huddled together in the daytime. Mice housed in the thermocline had significantly smaller livers and kidneys and an increase in tail length compared to mice in the isothermal runway as well as when compared to the cage controls. These patterns of organ growth and tail length of mice in the thermocline are akin to warm adaptation. Thus, thermoregulatory behavior altered organ development, a process we term behaviorally mediated, warm adaptation. Moreover, the data suggest that the standard

  4. Evaluating adaptation options of microcirculatory-tissue systems based on the physiological link of nutritive blood flow and redox ratio

    NASA Astrophysics Data System (ADS)

    Krupatkin, Alexander I.; Sidorov, Victor V.; Dremin, Victor V.; Dunaev, Andrey V.; Novikova, Irina N.; Zhu, Simian; Nabi, Ghulam; Litvinova, Karina S.; Baklanova, Anastasia P.; Bakshaliev, Ruslan M.; Ravcheev, Sergey A.

    2015-03-01

    Fluorescent spectroscopy (FS) is becoming more widely used in chemistry, biology, in various fields of medical technology and medicine in general. Many purulent wounds, burns and other destructive inflammatory processes are accompanied by changes in the fluorescent activity of the tissues, which occurs due to a misbalance in accumulation of natural fluorophores: FAD, NADH, lipofuscin, porphyrins, structural proteins, etc. The study of redox ratio (RR), characterizing the metabolic processes, is important in the assessment of the metabolic activity ofmicrocirculatory-tissue systems (MTS). However, one of the big problems of the FS method is still the correct interpretation of the data and the development of practical methods for its application in clinical medicine. To solve this problem and create new diagnostic criteria, we propose to evaluate the adaptive capacity of MTS using indicators of links between nutritive blood flow and redox ratio during a physiological rest and functional load (occlusion test). As is known, these parameters (RR and nutritive blood flow) characterize the metabolic activity of tissues.We have performedan experimental study of the relationship between the RR, defined by FS, and nutritive blood flow, defined by the methods of laser Doppler flowmetry. Preliminary results in the study of a complex approach to diagnosis of the state of biological tissue were obtained. A positive relationship between the nutritive blood flow in the microcirculatory channel and RR of skin tissue is observed.The speed of change of metabolism in the phase of occlusion and reperfusion and duration of phase of recovery may be the criteria for adaptive capabilities of MTS, which has practical significance for physiology and medicine.

  5. On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats.

    PubMed

    Polle, Andrea; Chen, Shaoliang

    2015-09-01

    Saline and sodic soils that cannot be used for agriculture occur worldwide. Cultivating stress-tolerant trees to obtain biomass from salinized areas has been suggested. Various tree species of economic importance for fruit, fibre and timber production exhibit high salinity tolerance. Little is known about the mechanisms enabling tree crops to cope with high salinity for extended periods. Here, the molecular, physiological and anatomical adjustments underlying salt tolerance in glycophytic and halophytic model tree species, such as Populus euphratica in terrestrial habitats, and mangrove species along coastlines are reviewed. Key mechanisms that have been identified as mediating salt tolerance are discussed at scales from the genetic to the morphological level, including leaf succulence and structural adjustments of wood anatomy. The genetic and transcriptomic bases for physiological salt acclimation are salt sensing and signalling networks that activate target genes; the target genes keep reactive oxygen species under control, maintain the ion balance and restore water status. Evolutionary adaptation includes gene duplication in these pathways. Strategies for and limitations to tree improvement, particularly transgenic approaches for increasing salt tolerance by transforming trees with single and multiple candidate genes, are discussed. PMID:25159181

  6. On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats.

    PubMed

    Polle, Andrea; Chen, Shaoliang

    2015-09-01

    Saline and sodic soils that cannot be used for agriculture occur worldwide. Cultivating stress-tolerant trees to obtain biomass from salinized areas has been suggested. Various tree species of economic importance for fruit, fibre and timber production exhibit high salinity tolerance. Little is known about the mechanisms enabling tree crops to cope with high salinity for extended periods. Here, the molecular, physiological and anatomical adjustments underlying salt tolerance in glycophytic and halophytic model tree species, such as Populus euphratica in terrestrial habitats, and mangrove species along coastlines are reviewed. Key mechanisms that have been identified as mediating salt tolerance are discussed at scales from the genetic to the morphological level, including leaf succulence and structural adjustments of wood anatomy. The genetic and transcriptomic bases for physiological salt acclimation are salt sensing and signalling networks that activate target genes; the target genes keep reactive oxygen species under control, maintain the ion balance and restore water status. Evolutionary adaptation includes gene duplication in these pathways. Strategies for and limitations to tree improvement, particularly transgenic approaches for increasing salt tolerance by transforming trees with single and multiple candidate genes, are discussed.

  7. Effects of Prepartum Dietary Energy Level and Nicotinic Acid Supplementation on Immunological, Hematological and Biochemical Parameters of Periparturient Dairy Cows Differing in Parity

    PubMed Central

    Tienken, Reka; Kersten, Susanne; Frahm, Jana; Hüther, Liane; Meyer, Ulrich; Huber, Korinna; Rehage, Jürgen; Dänicke, Sven

    2015-01-01

    Simple Summary Several biological changes occur during the transition from late pregnancy to early lactation which is associated with a high susceptibility of health disorders. Nicotinic acid, as feed additive, is suggested to balance catabolic metabolism of periparturient dairy cows by attenuating lipolysis and impact production performance. This study provides information of the biological changes occurring around parturition with special emphasis on differences between primiparous and multiparous cows. Present results showed that energy-dense feeding prepartum did not result in metabolic imbalances postpartum in dairy cows which were similar in body condition score. Nicotinic acid supplementation did not reveal any effect. Abstract The periparturient period is critical according to health, productivity and profitability. As this period is fundamental for the success of the lactation period, the interest in improving periparturient health by dietary supplements increased in recent years. The present study investigated the effects of feeding nicotinic acid (NA) combined with varying dietary energy densities on immunological, hematological and biochemical parameters of periparturient cows differing in parity. Thirty-six multiparous and 20 primiparous dairy cows were enrolled in the study 42 days before expected parturition date until 100 days postpartum with the half of the cows being supplemented with 24 g of NA/d. After parturition a diet with 30% concentrate was fed to all cows which was followed by different concentrate escalation strategies. Dietary NA supplementation was ceased on day 24 postpartum. Dietary NA increased (P = 0.010) serum nicotinamide concentrations (mean of 3.35 ± 1.65 µg/mL), whereas NA could not be detected. Present data emphasize that periparturient cows are faced with major physiological challenges and that both parity-groups have different prerequisites to adapt to those changes irrespective of NA supplementation. The overfeeding of

  8. Development of the Digital Astronaut Project for the analysis of the mechanisms of physiologic adaptation to microgravity: Validation of the cardiovascular system module

    NASA Astrophysics Data System (ADS)

    Summers, Richard; Coleman, Thomas; Meck, Janice

    The physiologic adaptation of humans to the microgravity environment is complex and requires an integrative perspective to fully understand the mechanisms involved. A large computer model of human systems physiology provides the framework for the development of the Digital Astronaut to be used by NASA in the analysis of adaptive mechanisms. While project expansion is ongoing to include all relevant systems, we describe the validation results of the cardiovascular phase of model development. The cardiovascular aspects of the model were validated by benchmark comparisons to published literature findings of changes in left ventricular mass, right atrial pressure and plasma volumes. Computer simulations using the model predicted microgravity induced changes in the target endpoints within statistical validity of experimental findings. Therefore, the current cardiovascular portion of the Digital Astronaut Project computer model appears to accurately predict observed microgravity induced physiologic adaptations. The ongoing process of model development to include all spaceflight relevant systems will require similar validations.

  9. Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes.

    PubMed

    Iaia, F M; Bangsbo, J

    2010-10-01

    The present article reviews the physiological and performance effects of speed endurance training consisting of exercise bouts at near maximal intensities in already trained subjects. Despite a reduction in training volume, speed endurance training of endurance-trained athletes can maintain the oxidative capacity and improve intense short-duration/repeated high-intensity exercise performance lasting 30 s to 4 min, as it occurs in a number of sports. When combined with a basic volume of training including some aerobic high-intensity sessions, speed endurance training is also useful in enhancing performance during longer events, e.g. 40 K cycling and 10 K running. Athletes in team sports involving intense exercise actions and endurance aspects can also benefit from performing speed endurance training. These improvements don't appear to depend on changes in maximum oxygen uptake (VO2max), muscle substrate levels, glycolytic and oxidative enzymes activity, and membrane transport proteins involved in pH regulation. Instead they appear to be related to a reduced energy expenditure during submaximal exercise and a higher expression of muscle Na(+) ,K(+) pump α-subunits, which via a higher Na(+) ,K(+) pump activity during exercise may delay fatigue development during intense exercise. In conclusion, athletes from disciplines involving periods of intense exercise can benefit from the inclusion of speed endurance sessions in their training programs.

  10. Physiological adaptations to reproduction. II. Mitochondrial adjustments in livers of lactating mice.

    PubMed

    Pichaud, Nicolas; Garratt, Michael; Ballard, J William O; Brooks, Robert C

    2013-08-01

    Reproduction imposes significant costs and is characterized by an increased energy demand. As a consequence, individuals adjust their cellular structure and function in response to this physiological constraint. Because mitochondria are central to energy production, changes in their functional properties are likely to occur during reproduction. Such changes could cause adjustments in reactive oxygen species (ROS) production and consequently in oxidative stress levels. In this study, we investigated several mechanisms involved in energy production, including mitochondrial respiration at different steps of the electron transport system (ETS) and related the results to citrate synthase activity in the liver of non-reproductive and reproductive (two and eight pups) female house mice at peak lactation. Whereas we did not find differences between females having different litter sizes, liver mitochondria of reproductive females showed lower ETS activity and an increase in mitochondrial density when compared with the non-reproductive females. Although it is possible that these changes were due to combined processes involved in reproduction and not to the relative investment in lactation, we propose that the mitochondrial adjustment in liver might help to spare substrates and therefore energy for milk production in the mammary gland. Moreover, our results suggest that these changes lead to an increase in ROS production that subsequently upregulates antioxidant defence activity and decreases oxidative stress.

  11. Physiological adaptations of microorganisms to high oxygen in two oligotrophic lakes

    SciTech Connect

    Mikell, A.T. Jr.

    1985-01-01

    Dissolved oxygen at four times normal saturation inhibited growth and metabolism of summer planktobacteria in surface waters of alpine oligotrophic Mountain Lake (Giles County, Virginia). Data included viable colony counts, D-(U-/sup 14/C)glucose incorporation into extractable lipid of colonies, and respiration-assimilation of D-(U-/sup 14/C)glucose by lake water samples. Significant differences were not detected in either colony counts or /sup 14/C-lipid when superoxide dismutase or catalase were added to the medium. The upper waters of Lake Hoare, Antarctica, contain dissolved oxygen at greater than or equal to42 mg liter/sup -1/ (=HDO). HDO did inhibit D-(U-/sup 14/C)glucoses assimilation-respiration compared with normal atmospheric dissolved oxygen (=ADO) in Lake Hoare water. D-(U-/sup 14/C)glucose was assimilated and respired optimally at 12/sup 0/C in Lake Hoare. Colony formation was inhibited in both lakes. Five microbial isolated were selected from Lake Hoare by growth under very high oxygen. Isolates were examined for physiological characteristics which might enhance their survival in the HDO environment. Bacterial isolates were motile Gram negative rods, catalase and oxidase positive, differing in their growth response to temperature and nutrient concentration. Four of five bacterial isolates demonstrated HDO inducible superoxide dismutase (SOD). Microorganisms in the high oxygen Lake Hoare waters may be protected from oxygen toxicity by the lake's oligotrophic nature as well as a combination of cellular defenses.

  12. Physiological adaptations to prolonged fasting in the overwintering striped skunk (Mephitis mephitis).

    PubMed

    Mustonen, Anne-Mari; Bowman, Jeff; Sadowski, Carrie; Nituch, Larissa A; Bruce, Laura; Halonen, Toivo; Puukka, Katri; Rouvinen-Watt, Kirsti; Aho, Jari; Nieminen, Petteri

    2013-12-01

    Wintertime physiology of captive striped skunks (Mephitis mephitis) in response to cold ambient temperature (Ta) and fasting was investigated with body temperature (Tb) and activity recordings and analyses of hematology, plasma biochemistry and tissue fatty acids (FA). After 105 days of food deprivation, the skunks were in phase II of fasting indicated by the elevated plasma nonesterified FA and glycerol but no accumulation of nitrogen end products. Shorter-chain saturated and monounsaturated FA together with C18-20 n-3 polyunsaturated FA were preferentially mobilized. Individual amino acids responded to fasting in a complex manner, while essential and nonessential amino acid sums remained stable. Increases in hemoglobin and hematocrit suggested dehydration. The activity levels were lower in mid-January-early March, and the activity bouts were mostly displayed between 17:00-23:00 h. Daily torpor was observed in two females with 29 and 46 bouts. The deepest torpor (Tb<31 °C) occurred between dawn and early afternoon and lasted for 3.3 ± 0.18 h. The average minimum Tb was 29.2 ± 0.15 °C and the lowest recorded Tb was 25.8 °C. There was significant relation between the average 24-h Tb and Ta. Increases in wintertime Ta, as predicted by climate change scenarios, could influence torpor patterns in the species. PMID:23981473

  13. Physiological tremor reveals how thixotropy adapts skeletal muscle for posture and movement

    PubMed Central

    Vernooij, Carlijn A.; Reynolds, Raymond F.; Lakie, Martin

    2016-01-01

    People and animals can move freely, but they must also be able to stay still. How do skeletal muscles economically produce both movement and posture? Humans are well known to have motor units with relatively homogeneous mechanical properties. Thixotropic muscle properties can provide a solution by providing a temporary stiffening of all skeletal muscles in postural conditions. This stiffening is alleviated almost instantly when muscles start to move. In this paper, we probe this behaviour. We monitor both the neural input to a muscle, measured here as extensor muscle electromyography (EMG), and its output, measured as tremor (finger acceleration). Both signals were analysed continuously as the subject made smooth transitions between posture and movement. The results showed that there were marked changes in tremor which systematically increased in size and decreased in frequency as the subject moved faster. By contrast, the EMG changed little and reflected muscle force requirement rather than movement speed. The altered tremor reflects naturally occurring thixotropic changes in muscle behaviour. Our results suggest that physiological tremor provides useful and hitherto unrecognized insights into skeletal muscle's role in posture and movement. PMID:27293785

  14. Morphological and physiological determinants of local adaptation to climate in Rocky Mountain butterflies.

    PubMed

    MacLean, Heidi J; Higgins, Jessica K; Buckley, Lauren B; Kingsolver, Joel G

    2016-01-01

    Flight is a central determinant of fitness in butterflies and other insects, but it is restricted to a limited range of body temperatures. To achieve these body temperatures, butterflies use a combination of morphological, behavioural and physiological mechanisms. Here, we used common garden (without direct solar radiation) and reciprocal transplant (full solar radiation) experiments in the field to determine the thermal sensitivity of flight initiation for two species of Colias butterflies along an elevation gradient in the southwestern Rocky Mountains. The mean body temperature for flight initiation in the field was lower (24-26°C) than indicated by previous studies (28-30°C) in these species. There were small but significant differences in thermal sensitivity of flight initiation between species; high-elevation Colias meadii initiated flight at a lower mean body temperature than lower-elevation Colias eriphyle. Morphological differences (in wing melanin and thoracic setae) drive body temperature differences between species and contributed strongly to differences in the time and probability of flight and air temperatures at flight initiation. Our results suggest that differences both in thermal sensitivity (15% contribution) and in morphology (85% contribution) contribute to the differences in flight initiation between the two species in the field. Understanding these differences, which influence flight performance and fitness, aids in forecasting responses to climate change.

  15. Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties

    PubMed Central

    Ghosh, Kaustabh; Pan, Zhi; Guan, E; Ge, Shouren; Liu, Yajie; Nakamura, Toshio; Ren, Xiang-Dong; Rafailovich, Miriam; Clark, Richard A.F.

    2009-01-01

    To successfully induce tissue repair or regeneration in vivo, bioengineered constructs must possess both optimal bioactivity and mechanical strength. This is because cell interaction with the extracellular matrix (ECM) produces two different but concurrent signaling mechanisms: ligation-induced signaling, which depends on ECM biological stimuli, and traction-induced signaling, which depends on ECM mechanical stimuli. In this report, we provide a fundamental understanding of how alterations in mechanical stimuli alone, produced by varying the viscoelastic properties of our bioengineered construct, modulate phenotypic behavior at the whole-cell level. Using a physiologically-relevant ECM mimic composed of hyaluronan and fibronectin, we found that adult human dermal fibroblasts modify their mechanical response in order to match substrate stiffness. More specifically, the cells on stiffer substrates had higher modulus and a more stretched and organized actin cytoskeleton (and vice versa), which translated into larger traction forces exerted on the substrate. This modulation of cellular mechanics had contrasting effects on migration and proliferation, where cells migrated faster on softer substrates while proliferating preferentially on the stiffer ones. These findings implicate substrate rigidity as a critical design parameter in the development of bioengineered constructs aimed at eliciting maximal cell and tissue function. PMID:17049594

  16. Morphological and physiological determinants of local adaptation to climate in Rocky Mountain butterflies

    PubMed Central

    MacLean, Heidi J.; Higgins, Jessica K.; Buckley, Lauren B.; Kingsolver, Joel G.

    2016-01-01

    Flight is a central determinant of fitness in butterflies and other insects, but it is restricted to a limited range of body temperatures. To achieve these body temperatures, butterflies use a combination of morphological, behavioural and physiological mechanisms. Here, we used common garden (without direct solar radiation) and reciprocal transplant (full solar radiation) experiments in the field to determine the thermal sensitivity of flight initiation for two species of Colias butterflies along an elevation gradient in the southwestern Rocky Mountains. The mean body temperature for flight initiation in the field was lower (24–26°C) than indicated by previous studies (28–30°C) in these species. There were small but significant differences in thermal sensitivity of flight initiation between species; high-elevation Colias meadii initiated flight at a lower mean body temperature than lower-elevation Colias eriphyle. Morphological differences (in wing melanin and thoracic setae) drive body temperature differences between species and contributed strongly to differences in the time and probability of flight and air temperatures at flight initiation. Our results suggest that differences both in thermal sensitivity (15% contribution) and in morphology (85% contribution) contribute to the differences in flight initiation between the two species in the field. Understanding these differences, which influence flight performance and fitness, aids in forecasting responses to climate change. PMID:27668080

  17. Morphological and physiological determinants of local adaptation to climate in Rocky Mountain butterflies

    PubMed Central

    MacLean, Heidi J.; Higgins, Jessica K.; Buckley, Lauren B.; Kingsolver, Joel G.

    2016-01-01

    Flight is a central determinant of fitness in butterflies and other insects, but it is restricted to a limited range of body temperatures. To achieve these body temperatures, butterflies use a combination of morphological, behavioural and physiological mechanisms. Here, we used common garden (without direct solar radiation) and reciprocal transplant (full solar radiation) experiments in the field to determine the thermal sensitivity of flight initiation for two species of Colias butterflies along an elevation gradient in the southwestern Rocky Mountains. The mean body temperature for flight initiation in the field was lower (24–26°C) than indicated by previous studies (28–30°C) in these species. There were small but significant differences in thermal sensitivity of flight initiation between species; high-elevation Colias meadii initiated flight at a lower mean body temperature than lower-elevation Colias eriphyle. Morphological differences (in wing melanin and thoracic setae) drive body temperature differences between species and contributed strongly to differences in the time and probability of flight and air temperatures at flight initiation. Our results suggest that differences both in thermal sensitivity (15% contribution) and in morphology (85% contribution) contribute to the differences in flight initiation between the two species in the field. Understanding these differences, which influence flight performance and fitness, aids in forecasting responses to climate change.

  18. Physiological adaptations to prolonged fasting in the overwintering striped skunk (Mephitis mephitis).

    PubMed

    Mustonen, Anne-Mari; Bowman, Jeff; Sadowski, Carrie; Nituch, Larissa A; Bruce, Laura; Halonen, Toivo; Puukka, Katri; Rouvinen-Watt, Kirsti; Aho, Jari; Nieminen, Petteri

    2013-12-01

    Wintertime physiology of captive striped skunks (Mephitis mephitis) in response to cold ambient temperature (Ta) and fasting was investigated with body temperature (Tb) and activity recordings and analyses of hematology, plasma biochemistry and tissue fatty acids (FA). After 105 days of food deprivation, the skunks were in phase II of fasting indicated by the elevated plasma nonesterified FA and glycerol but no accumulation of nitrogen end products. Shorter-chain saturated and monounsaturated FA together with C18-20 n-3 polyunsaturated FA were preferentially mobilized. Individual amino acids responded to fasting in a complex manner, while essential and nonessential amino acid sums remained stable. Increases in hemoglobin and hematocrit suggested dehydration. The activity levels were lower in mid-January-early March, and the activity bouts were mostly displayed between 17:00-23:00 h. Daily torpor was observed in two females with 29 and 46 bouts. The deepest torpor (Tb<31 °C) occurred between dawn and early afternoon and lasted for 3.3 ± 0.18 h. The average minimum Tb was 29.2 ± 0.15 °C and the lowest recorded Tb was 25.8 °C. There was significant relation between the average 24-h Tb and Ta. Increases in wintertime Ta, as predicted by climate change scenarios, could influence torpor patterns in the species.

  19. Cellular, physiological, and molecular adaptive responses of Erwinia amylovora to starvation.

    PubMed

    Santander, Ricardo D; Oliver, James D; Biosca, Elena G

    2014-05-01

    Erwinia amylovora causes fire blight, a destructive disease of rosaceous plants distributed worldwide. This bacterium is a nonobligate pathogen able to survive outside the host under starvation conditions, allowing its spread by various means such as rainwater. We studied E. amylovora responses to starvation using water microcosms to mimic natural oligotrophy. Initially, survivability under optimal (28 °C) and suboptimal (20 °C) growth temperatures was compared. Starvation induced a loss of culturability much more pronounced at 28 °C than at 20 °C. Natural water microcosms at 20 °C were then used to characterize cellular, physiological, and molecular starvation responses of E. amylovora. Challenged cells developed starvation-survival and viable but nonculturable responses, reduced their size, acquired rounded shapes and developed surface vesicles. Starved cells lost motility in a few days, but a fraction retained flagella. The expression of genes related to starvation, oxidative stress, motility, pathogenicity, and virulence was detected during the entire experimental period with different regulation patterns observed during the first 24 h. Further, starved cells remained as virulent as nonstressed cells. Overall, these results provide new knowledge on the biology of E. amylovora under conditions prevailing in nature, which could contribute to a better understanding of the life cycle of this pathogen.

  20. Morphological and physiological determinants of local adaptation to climate in Rocky Mountain butterflies.

    PubMed

    MacLean, Heidi J; Higgins, Jessica K; Buckley, Lauren B; Kingsolver, Joel G

    2016-01-01

    Flight is a central determinant of fitness in butterflies and other insects, but it is restricted to a limited range of body temperatures. To achieve these body temperatures, butterflies use a combination of morphological, behavioural and physiological mechanisms. Here, we used common garden (without direct solar radiation) and reciprocal transplant (full solar radiation) experiments in the field to determine the thermal sensitivity of flight initiation for two species of Colias butterflies along an elevation gradient in the southwestern Rocky Mountains. The mean body temperature for flight initiation in the field was lower (24-26°C) than indicated by previous studies (28-30°C) in these species. There were small but significant differences in thermal sensitivity of flight initiation between species; high-elevation Colias meadii initiated flight at a lower mean body temperature than lower-elevation Colias eriphyle. Morphological differences (in wing melanin and thoracic setae) drive body temperature differences between species and contributed strongly to differences in the time and probability of flight and air temperatures at flight initiation. Our results suggest that differences both in thermal sensitivity (15% contribution) and in morphology (85% contribution) contribute to the differences in flight initiation between the two species in the field. Understanding these differences, which influence flight performance and fitness, aids in forecasting responses to climate change. PMID:27668080

  1. Selection of physiological and metabolic adaptations to food deprivation in the Pyrenean newt Calotriton asper during cave colonisation.

    PubMed

    Issartel, Julien; Voituron, Yann; Guillaume, Olivier; Clobert, Jean; Hervant, Frédéric

    2010-01-01

    Food restriction is one of the major and most common constraints that subterranean animals face in their biotope. Cave-dwelling organisms thus have to cope with fasting periods that can extend from a month to a year. However, adaptive fasting resistance previously found in subterranean fauna has only been highlighted by direct comparisons with phylogenetically distant epigean organisms, which could severely impact conclusions. Here we report physiological and metabolic responses to 42 days of fasting followed by 10 days of refeeding in two populations (one subterranean and one epigean) of Calotriton asper. In the fed state (control), the hypogean population exhibited a hypometabolism together with higher glycogen (+25% in liver and muscles) and triglyceride stores (+50% in muscles). During the fasting period, cave individuals exhibited a 20% decrease in VO(2) whereas epigean individuals experienced no significant change. In addition, the energetic reserves always remained higher in the hypogean population. According to phylogenic and biogeographic data, cave colonization by this species dates back to less than 10,000 years, suggesting a rapid selection of adaptive traits related to fasting. This study strongly suggests that cave colonization induces a decrease in metabolism together with a higher capacity to accumulate energy reserves and therefore to withstand unpredictable fasting periods.

  2. The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4.

    PubMed

    Preiss, Laura; Klyszejko, Adriana L; Hicks, David B; Liu, Jun; Fackelmayer, Oliver J; Yildiz, Özkan; Krulwich, Terry A; Meier, Thomas

    2013-05-01

    The c-rings of ATP synthases consist of individual c-subunits, all of which harbor a conserved motif of repetitive glycine residues (GxGxGxG) important for tight transmembrane α-helix packing. The c-ring stoichiometry determines the number of ions transferred during enzyme operation and has a direct impact on the ion-to-ATP ratio, a cornerstone parameter of cell bioenergetics. In the extreme alkaliphile Bacillus pseudofirmus OF4, the glycine motif is replaced by AxAxAxA. We performed a structural study on two mutants with alanine-to-glycine changes using atomic force microscopy and X-ray crystallography, and found that mutants form smaller c12 rings compared with the WT c13. The molar growth yields of B. pseudofirmus OF4 cells on malate further revealed that the c12 mutants have a considerably reduced capacity to grow on limiting malate at high pH. Our results demonstrate that the mutant ATP synthases with either c12 or c13 can support ATP synthesis, and also underscore the critical importance of an alanine motif with c13 ring stoichiometry for optimal growth at pH >10. The data indicate a direct connection between the precisely adapted ATP synthase c-ring stoichiometry and its ion-to-ATP ratio on cell physiology, and also demonstrate the bioenergetic challenges and evolutionary adaptation strategies of extremophiles.

  3. Physiological fitness and health adaptations from purposeful training using off-road vehicles.

    PubMed

    Burr, J F; Jamnik, V K; Gledhill, N

    2011-08-01

    The purpose of this study was to evaluate fitness and health adaptations from a training program riding all-terrain vehicles (ATV) and off-road motorcycles (ORM) as the exercise stimulus. Participants (n = 58) were randomized to a control group (n = 12) or one of four experimental groups; 2 days/week ATV (n = 11), 2 days/week ORM (n = 12), 4 days/week ATV (n = 11), or 4 days/week ORM (n = 12). Aerobic fitness, musculoskeletal fitness, body composition, clinical health, and quality of life (QOL) were compared at baseline and following 6 weeks of training. In all riding groups, there were improvements in blood pressure (SBP = 9.4 ± 10.1, DBP = 5.8 ± 6.2 mmHg), fasting glucose (0.5 ± 0.7 mmol/l), subcutaneous adiposity (0.9 ± 1.1%), body mass (0.7 ± 2.7 kg), waist circumference (1.3 ± 2.5 cm), and isometric leg endurance (26 ± 44 s). All changes were of moderate to large magnitude (Cohen's d 0.52-0.94) with the exception of a small loss of body mass (Cohen's d = 0.27). Although changes occurred in the riding groups for aerobic power (2.9 ± 4.6 ml kg(-1) min(-1)), leg power (172 ± 486 w), and curl-ups (13.2 ± 22.7), these changes were not significantly different from the control group. No significant alterations occurred in resting heart rate, trunk flexibility, back endurance, hand grip strength, long jump, pull/push strength, or push-up ability as a result of training. Physical domain QOL increased in all 2 days/week riders but mental domain QOL increased in all ORM, but not ATV riders regardless of volume. Ambient carbon monoxide levels while riding (<30 ppm) were within safe exposure guidelines. Positive adaptations can be gained from a training program using off-road vehicle riding as the exercise stimulus.

  4. Age-related changes in intraventricular kinetic energy: a physiological or pathological adaptation?

    PubMed

    Wong, James; Chabiniok, Radomir; deVecchi, Adelaide; Dedieu, Nathalie; Sammut, Eva; Schaeffter, Tobias; Razavi, Reza

    2016-03-15

    Aging has important deleterious effects on the cardiovascular system. We sought to compare intraventricular kinetic energy (KE) in healthy subjects of varying ages with subjects with ventricular dysfunction to understand if changes in energetic momentum may predispose individuals to heart failure. Four-dimensional flow MRI was acquired in 35 healthy subjects (age: 1-67 yr) and 10 patients with left ventricular (LV) dysfunction (age: 28-79 yr). Healthy subjects were divided into age quartiles (1st quartile: <16 yr, 2nd quartile: 17-32 yr, 3rd quartile: 33-48 yr, and 4th quartile: 49-64 yr). KE was measured in the LV throughout the cardiac cycle and indexed to ventricular volume. In healthy subjects, two large peaks corresponding to systole and early diastole occurred during the cardiac cycle. A third smaller peak was seen during late diastole in eight adults. Systolic KE (P = 0.182) and ejection fraction (P = 0.921) were preserved through all age groups. Older adults showed a lower early peak diastolic KE compared with children (P < 0.0001) and young adults (P = 0.025). Subjects with LV dysfunction had reduced ejection fraction (P < 0.001) and compared with older healthy adults exhibited a similar early peak diastolic KE (P = 0.142) but with the addition of an elevated KE in diastasis (P = 0.029). In healthy individuals, peak diastolic KE progressively decreases with age, whereas systolic peaks remain constant. Peak diastolic KE in the oldest subjects is comparable to those with LV dysfunction. Unique age-related changes in ventricular diastolic energetics might be physiological or herald subclinical pathology.

  5. Physiological performance of warm-adapted marine ectotherms: Thermal limits of mitochondrial energy transduction efficiency.

    PubMed

    Martinez, Eloy; Hendricks, Eric; Menze, Michael A; Torres, Joseph J

    2016-01-01

    Thermal regimes in aquatic systems have profound implications for the physiology of ectotherms. In particular, the effect of elevated temperatures on mitochondrial energy transduction in tropical and subtropical teleosts may have profound consequences on organismal performance and population viability. Upper and lower whole-organism critical temperatures for teleosts suggest that subtropical and tropical species are not susceptible to the warming trends associated with climate change, but sub-lethal effects on energy transduction efficiency and population dynamics remain unclear. The goal of the present study was to compare the thermal sensitivity of processes associated with mitochondrial energy transduction in liver mitochondria from the striped mojarra (Eugerres plumieri), the whitemouth croaker (Micropogonias furnieri) and the palometa (Trachinotus goodei), to those of the subtropical pinfish (Lagodon rhomboides) and the blue runner (Caranx crysos). Mitochondrial function was assayed at temperatures ranging from 10 to 40°C and results obtained for both tropical and subtropical species showed a reduction in the energy transduction efficiency of the oxidative phosphorylation (OXPHOS) system in most species studied at temperatures below whole-organism critical temperature thresholds. Our results show a loss of coupling between O2 consumption and ATP production before the onset of the critical thermal maxima, indicating that elevated temperature may severely impact the yield of ATP production per carbon unit oxidized. As warming trends are projected for tropical regions, increasing water temperatures in tropical estuaries and coral reefs could impact long-term growth and reproductive performance in tropical organisms, which are already close to their upper thermal limit.

  6. Physiological Adaptations and Countermeasures Associated with Long-Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Tipton, C. M.; Hargens, A. R.; Baldwin, K. M.; Schneider, V.; Convertino, V. A.; Kozlovskaya, I.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    On earth, the presence of gravity imposes weight-bearing gradients on tissues which influence the functions of multiple integrative systems. On the other hand, conditions of actual or simulated microgravity can modify and/or nullify these gradients and subsequently alter structure and function. The purpose of this symposium is to discuss the results from short-term Shuttle flights, long term Skylab or Mir missions, or long-term ground based experiments which indicate or suggest that performance has been or could be compromised in space missions of long durations (>one year) or with space tasks (e.g. building space stations) with the goal of identifying countermeasures that could minimize or eliminate the expected anatomical and physiological consequences. After an overview by C. Tipton from the U. Arizona, the countermeasures necessary for the fluid shifts and select functions of the cardiovascular system will be discussed by A. Hargens from NASA Ames Research Center. He will be followed by K. Baldwin of the U. California at Irvine who will discuss the countermeasures needed to prevent the changes that alter the structure, function and control of skeletal muscles. Since changes in bone mass with microgravity are a major concern of NASA, V. Schneider from NASA Headquarters will present data and the countermeasures for bone. Although the results are limited, the changes in the endocrine and immune system deserve mentioning and C. Tipton will assume this responsibility. V. Convertino from the Air Force School of Aerospace Medicine has the challenge of discussing the role, importance, and the specificity of exercise as an effective countermeasure while I. Kozlovskaya from Moscow will elaborate on the Russian experiences with past countermeasures and provide a viewpoint on future ones. After the brief (25 min.) presentations, the speakers will assemble as a panel to discuss the issues raised and the concerns of the audience.

  7. Age-related changes in intraventricular kinetic energy: a physiological or pathological adaptation?

    PubMed Central

    Wong, James; Chabiniok, Radomir; deVecchi, Adelaide; Dedieu, Nathalie; Sammut, Eva; Schaeffter, Tobias

    2016-01-01

    Aging has important deleterious effects on the cardiovascular system. We sought to compare intraventricular kinetic energy (KE) in healthy subjects of varying ages with subjects with ventricular dysfunction to understand if changes in energetic momentum may predispose individuals to heart failure. Four-dimensional flow MRI was acquired in 35 healthy subjects (age: 1–67 yr) and 10 patients with left ventricular (LV) dysfunction (age: 28–79 yr). Healthy subjects were divided into age quartiles (1st quartile: <16 yr, 2nd quartile: 17–32 yr, 3rd quartile: 33–48 yr, and 4th quartile: 49–64 yr). KE was measured in the LV throughout the cardiac cycle and indexed to ventricular volume. In healthy subjects, two large peaks corresponding to systole and early diastole occurred during the cardiac cycle. A third smaller peak was seen during late diastole in eight adults. Systolic KE (P = 0.182) and ejection fraction (P = 0.921) were preserved through all age groups. Older adults showed a lower early peak diastolic KE compared with children (P < 0.0001) and young adults (P = 0.025). Subjects with LV dysfunction had reduced ejection fraction (P < 0.001) and compared with older healthy adults exhibited a similar early peak diastolic KE (P = 0.142) but with the addition of an elevated KE in diastasis (P = 0.029). In healthy individuals, peak diastolic KE progressively decreases with age, whereas systolic peaks remain constant. Peak diastolic KE in the oldest subjects is comparable to those with LV dysfunction. Unique age-related changes in ventricular diastolic energetics might be physiological or herald subclinical pathology. PMID:26747496

  8. Physiological performance of warm-adapted marine ectotherms: Thermal limits of mitochondrial energy transduction efficiency.

    PubMed

    Martinez, Eloy; Hendricks, Eric; Menze, Michael A; Torres, Joseph J

    2016-01-01

    Thermal regimes in aquatic systems have profound implications for the physiology of ectotherms. In particular, the effect of elevated temperatures on mitochondrial energy transduction in tropical and subtropical teleosts may have profound consequences on organismal performance and population viability. Upper and lower whole-organism critical temperatures for teleosts suggest that subtropical and tropical species are not susceptible to the warming trends associated with climate change, but sub-lethal effects on energy transduction efficiency and population dynamics remain unclear. The goal of the present study was to compare the thermal sensitivity of processes associated with mitochondrial energy transduction in liver mitochondria from the striped mojarra (Eugerres plumieri), the whitemouth croaker (Micropogonias furnieri) and the palometa (Trachinotus goodei), to those of the subtropical pinfish (Lagodon rhomboides) and the blue runner (Caranx crysos). Mitochondrial function was assayed at temperatures ranging from 10 to 40°C and results obtained for both tropical and subtropical species showed a reduction in the energy transduction efficiency of the oxidative phosphorylation (OXPHOS) system in most species studied at temperatures below whole-organism critical temperature thresholds. Our results show a loss of coupling between O2 consumption and ATP production before the onset of the critical thermal maxima, indicating that elevated temperature may severely impact the yield of ATP production per carbon unit oxidized. As warming trends are projected for tropical regions, increasing water temperatures in tropical estuaries and coral reefs could impact long-term growth and reproductive performance in tropical organisms, which are already close to their upper thermal limit. PMID:26297983

  9. Cortical response to psycho-physiological changes in auto-adaptive robot assisted gait training.

    PubMed

    Jelinek, Herbert F; August, Katherine G; Imam, Md Hasan; Khandoker, Ahsan H; Koenig, Alexander; Riener, Robert

    2011-01-01

    Robot-assisted treadmill training improves motor function and walking ability in neurologically impaired patients. However, despite attention having been shown to play a role in training success, psychological responsiveness to task difficulty and motivational levels at task onset have not been measured. Seven healthy subjects participated in a robot-assist treadmill training task. Subjects engaged in a virtual task with varying difficulty levels that was shown to induce a feeling of being bored, excited and over-stressed. The participants' mental engagement was measured using the ECG-based heart rate variability in real time, during gait training as a proxy for EEG and psychological test batteries. Heart rate variability (HRV), which has been shown to reflect cortical engagement for both cognitive and physical tasks, was measured using nonlinear measures obtained from the Poincaré plot. We show that the cortical response to the task measured with HRV varies in relation to the level of mental engagement in response to the difficulty level of the virtual task. From these results we propose that nonlinear measures quantify cortical response / motivational level to robot-assist motor learning tasks and that the adaptation to the task is dependent on the level of motivation.

  10. Inspiratory muscle training in patients with chronic obstructive pulmonary disease: structural adaptation and physiologic outcomes.

    PubMed

    Ramirez-Sarmiento, Alba; Orozco-Levi, Mauricio; Guell, Rosa; Barreiro, Esther; Hernandez, Nuria; Mota, Susana; Sangenis, Merce; Broquetas, Joan M; Casan, Pere; Gea, Joaquim

    2002-12-01

    The present study was aimed at evaluating the effects of a specific inspiratory muscle training protocol on the structure of inspiratory muscles in patients with chronic obstructive pulmonary disease. Fourteen patients (males, FEV1, 24 +/- 7% predicted) were randomized to either inspiratory muscle or sham training groups. Supervised breathing using a threshold inspiratory device was performed 30 minutes per day, five times a week, for 5 consecutive weeks. The inspiratory training group was subjected to inspiratory loading equivalent to 40 to 50% of their maximal inspiratory pressure. Biopsies from external intercostal muscles and vastus lateralis (control muscle) were taken before and after the training period. Muscle samples were processed for morphometric analyses using monoclonal antibodies against myosin heavy chain isoforms I and II. Increases in both the strength and endurance of the inspiratory muscles were observed in the inspiratory training group. This improvement was associated with increases in the proportion of type I fibers (by approximately 38%, p < 0.05) and in the size of type II fibers (by approximately 21%, p < 0.05) in the external intercostal muscles. No changes were observed in the control muscle. The study demonstrates that inspiratory training induces a specific functional improvement of the inspiratory muscles and adaptive changes in the structure of external intercostal muscles. PMID:12406842

  11. Physiological and genetic control mechanisms for plant adaptation to high temperature and elevated CO2

    SciTech Connect

    Zeiger, Eduardo

    2001-02-01

    Acclimations of the stomatal response to CO2 were characterized. Stomata from the model plant used, Vicia faba, are very sensitive to ambient CO2 when grown in growth chambers as compared to stomata from green house grown leaves. The different CO2 sensitivities of growth chamber and green house grown guard cells was confirmed by reciprocal transfer experiments. Stomata acclimated to their new environment and acquired the CO2 sensitivity typical of that environment. A mechanism for CO2 sensing was also characterized. Results show that CO2 concentration alters the concentration of zeaxanthin in the guard cell chloroplast, thus modifying the light response of the guard cells. This mechanism accounts for the well characterized interactions of light and CO2 in the stomatal responses. The xanthophyll cycle in the stomata of the facultative CAM plant, Mesembryanthemum crystallinum, was characterized. In the C3 mode, zeaxanthin is formed in the light and stomata open. Upon induction of the CAM mode, zeaxanthin synthesis is blocked and stomata no longer respond to light. These results implicate the regulation of the xanthophyll cycle of guard cells in the CAM adaptation.

  12. Genotypic Variation in Growth and Physiological Response to Drought Stress and Re-Watering Reveals the Critical Role of Recovery in Drought Adaptation in Maize Seedlings.

    PubMed

    Chen, Daoqian; Wang, Shiwen; Cao, Beibei; Cao, Dan; Leng, Guohui; Li, Hongbing; Yin, Lina; Shan, Lun; Deng, Xiping

    2015-01-01

    Non-irrigated crops in temperate climates and irrigated crops in arid climates are subjected to continuous cycles of water stress and re-watering. Thus, fast and efficient recovery from water stress may be among the key determinants of plant drought adaptation. The present study was designed to comparatively analyze the roles of drought resistance and drought recovery in drought adaptation and to investigate the physiological basis of genotypic variation in drought adaptation in maize (Zea mays) seedlings. As the seedlings behavior in growth associate with yield under drought, it could partly reflect the potential of drought adaptability. Growth and physiological responses to progressive drought stress and recovery were observed in seedlings of 10 maize lines. The results showed that drought adaptability is closely related to drought recovery (r = 0.714(**)), but not to drought resistance (r = 0.332). Drought induced decreases in leaf water content, water potential, osmotic potential, gas exchange parameters, chlorophyll content, Fv/Fm and nitrogen content, and increased H2O2 accumulation and lipid peroxidation. After recovery, most of these physiological parameters rapidly returned to normal levels. The physiological responses varied between lines. Further correlation analysis indicated that the physiological bases of drought resistance and drought recovery are definitely different, and that maintaining higher chlorophyll content (r = 0.874(***)) and Fv/Fm (r = 0.626(*)) under drought stress contributes to drought recovery. Our results suggest that both drought resistance and recovery are key determinants of plant drought adaptation, and that drought recovery may play a more important role than previously thought. In addition, leaf water potential, chlorophyll content and Fv/Fm could be used as efficient reference indicators in the selection of drought-adaptive genotypes. PMID:26793218

  13. Genotypic Variation in Growth and Physiological Response to Drought Stress and Re-Watering Reveals the Critical Role of Recovery in Drought Adaptation in Maize Seedlings

    PubMed Central

    Chen, Daoqian; Wang, Shiwen; Cao, Beibei; Cao, Dan; Leng, Guohui; Li, Hongbing; Yin, Lina; Shan, Lun; Deng, Xiping

    2016-01-01

    Non-irrigated crops in temperate climates and irrigated crops in arid climates are subjected to continuous cycles of water stress and re-watering. Thus, fast and efficient recovery from water stress may be among the key determinants of plant drought adaptation. The present study was designed to comparatively analyze the roles of drought resistance and drought recovery in drought adaptation and to investigate the physiological basis of genotypic variation in drought adaptation in maize (Zea mays) seedlings. As the seedlings behavior in growth associate with yield under drought, it could partly reflect the potential of drought adaptability. Growth and physiological responses to progressive drought stress and recovery were observed in seedlings of 10 maize lines. The results showed that drought adaptability is closely related to drought recovery (r = 0.714**), but not to drought resistance (r = 0.332). Drought induced decreases in leaf water content, water potential, osmotic potential, gas exchange parameters, chlorophyll content, Fv/Fm and nitrogen content, and increased H2O2 accumulation and lipid peroxidation. After recovery, most of these physiological parameters rapidly returned to normal levels. The physiological responses varied between lines. Further correlation analysis indicated that the physiological bases of drought resistance and drought recovery are definitely different, and that maintaining higher chlorophyll content (r = 0.874***) and Fv/Fm (r = 0.626*) under drought stress contributes to drought recovery. Our results suggest that both drought resistance and recovery are key determinants of plant drought adaptation, and that drought recovery may play a more important role than previously thought. In addition, leaf water potential, chlorophyll content and Fv/Fm could be used as efficient reference indicators in the selection of drought-adaptive genotypes. PMID:26793218

  14. Ratio of 18o Versus 13c As Indicator of Ecological and Physiological Adaptability In The Coral Genus Madracis

    NASA Astrophysics Data System (ADS)

    Maier, C.; Bak, R. P. M.

    Scleractinian corals hosting endosymbiotic algae (zooxanthellae) occur over a wide depth range within the photic zone of coral reefs. While some corals occur within a very narrow range others can be found over the whole reef slope. Within the genus Madracis we compared the skeletal 13C and 18O of three species that are very distinct in their distributional depth range. The species M. pharensis occurs over a wide range between 5 and > 60 m depth, while M. mirabilis and M. formosa are restricted to a narrow range growing shallow (<20 m) or deep (> 40 m), respectively. We hypothesize, that the distinct distributional depth range of the three species is due to physiological adaptation to the respective light regimes, and that this species specific adaptation must be reflected in the skeletal 18O and 13C signals. Skeletal isotope fractionation is controlled by kinetic (both 13C and 18O ) and metabolic (13C only) isotope effects. Apart from environmental factors (temperature and salinity), the calcification rate and P:R ratio control isotope fractionation. This means, that (1) the efficiency with which corals under various light regimes photosynthesize and calcify and (2) the linkage between photosynthesis and calcification become apparent when applying skeletal 13C versus 18O of the 3 Madracis species according to the model of McConnaughey (Geochim. Cosmochim. Acta, 53: 151-162, 1989). Comparing e.g. 13C vs. 18O ratios of M. pharensis (broad depth range) and M. formosa (narrow range, deep) sampled at 50 m depth, stable isotopes of M. pharensis plot on the kinetic line, while the isotopes of the deep adapted M. formosa are offset from the kinetic line. This indicates, that M. pharensis is hardly growing and is hence at its distributional depth limit, while M. formosa has even in 50 m depth a positive P:R ratio and skeletal growth. Therefore, the ratio of 13C and 18O might be useful as `proxy' in coral physiology and ecology. Vice versa an ecological approach in questions

  15. RNA Sequencing of Populus x canadensis Roots Identifies Key Molecular Mechanisms Underlying Physiological Adaption to Excess Zinc

    PubMed Central

    Ariani, Andrea; Di Baccio, Daniela; Romeo, Stefania; Lombardi, Lara; Andreucci, Andrea; Lux, Alexander; Horner, David Stephen; Sebastiani, Luca

    2015-01-01

    Populus x canadensis clone I-214 exhibits a general indicator phenotype in response to excess Zn, and a higher metal uptake in roots than in shoots with a reduced translocation to aerial parts under hydroponic conditions. This physiological adaptation seems mainly regulated by roots, although the molecular mechanisms that underlie these processes are still poorly understood. Here, differential expression analysis using RNA-sequencing technology was used to identify the molecular mechanisms involved in the response to excess Zn in root. In order to maximize specificity of detection of differentially expressed (DE) genes, we consider the intersection of genes identified by three distinct statistical approaches (61 up- and 19 down-regulated) and validate them by RT-qPCR, yielding an agreement of 93% between the two experimental techniques. Gene Ontology (GO) terms related to oxidation-reduction processes, transport and cellular iron ion homeostasis were enriched among DE genes, highlighting the importance of metal homeostasis in adaptation to excess Zn by P. x canadensis clone I-214. We identified the up-regulation of two Populus metal transporters (ZIP2 and NRAMP1) probably involved in metal uptake, and the down-regulation of a NAS4 gene involved in metal translocation. We identified also four Fe-homeostasis transcription factors (two bHLH38 genes, FIT and BTS) that were differentially expressed, probably for reducing Zn-induced Fe-deficiency. In particular, we suggest that the down-regulation of FIT transcription factor could be a mechanism to cope with Zn-induced Fe-deficiency in Populus. These results provide insight into the molecular mechanisms involved in adaption to excess Zn in Populus spp., but could also constitute a starting point for the identification and characterization of molecular markers or biotechnological targets for possible improvement of phytoremediation performances of poplar trees. PMID:25671786

  16. Hormonal and Physiological Adaptations to High-Intensity Interval Training in Professional Male Canoe Polo Athletes.

    PubMed

    Sheykhlouvand, Mohsen; Khalili, Erfan; Agha-Alinejad, Hamid; Gharaat, Mohammadali

    2016-03-01

    This study compared the effects of 2 different high-intensity interval training (HIIT) programs in professional male canoe polo athletes. Responses of peak oxygen uptake (VO2peak), ventilatory threshold (VT), peak and mean anaerobic power output (PPO and MPO), blood volume, and hormonal adaptations to HIIT were examined. Male athletes (n = 21, age: 24 ± 3 years; height: 181 ± 4 cm; mass: 85 ± 6 kg; and body fat: 12.9 ± 2.7%) were randomly assigned to one of 3 groups (N = 7): (a) (G1) interval paddling with variable volume (6, 7, 8, 9, 9, 9, 8, 7, 6 repetitions per session from first to ninth session, respectively) × 60 second at lowest velocity that elicited VO2peak (vVO2peak), 1:3 work to recovery ratio; (b) (G2) interval paddling with variable intensity (6 × 60 second at 100, 110, 120, 130, 130, 130, 120, 110, 100% vVO2peak from first to ninth session, respectively, 1:3 work to recovery); and (c) (GCON) the control group performed three 60 minutes paddling sessions (75% vVO2peak) per week for 3 weeks. High-intensity interval training resulted in significant (except as shown) increases compared with pretest, in VO2peak (G1 = +8.8% and G2 = +8.5%), heart rate at VT (b·min) (G1 = +9.7% and G2 = +5.9%) and (%maximum) (G1 = +6.9%; p = 0.29 and G2 = +6.5%), PPO (G1 = +9.7% and G2 = +12.2%), MPO (G1 = +11.1%; p = 0.29 and G2 = +16.2%), total testosterone (G1 = +29.4% and G2 = +16.7%), total testosterone/cortisol ratio (G1 = +40.9% and G2 = +28.1%), and mean corpuscular hemoglobin (G1 = +1.7% and G2 = +1.3%). No significant changes were found in GCON. High-intensity interval paddling may improve both aerobic and anaerobic performances in professional male canoe polo athletes under the conditions of this study.

  17. Rectal temperatures, respiratory rates, production, and reproduction performances of crossbred Girolando cows under heat stress in northeastern Brazil

    NASA Astrophysics Data System (ADS)

    da Costa, Antônio Nélson Lima; Feitosa, José Valmir; Montezuma, Péricles Afonso; de Souza, Priscila Teixeira; de Araújo, Airton Alencar

    2015-11-01

    This study compared the two breed groups of Girolando (½ Holstein ½ Gyr vs. ¾ Holstein ¼ Gyr) through analysis of the percentages (stressed or non-stressed cows) of rectal temperature (RT), respiratory rate (RR) and pregnancy rate (PR), and means of production and reproduction parameters to determine the group best suited to rearing in semiarid tropical climate. The experiment was conducted at the farm, in the municipality of Umirim, State of Ceará, Brazil. Two hundred and forty cows were used in a 2 × 2 factorial study; 120 of each group were kept under an intensive system during wet and dry seasons. The environmental parameters obtained were relative humidity (RH), air temperature (AT), and the temperature and humidity index (THI). Pregnancy diagnosis (PD) was determined by ultrasonography 30 days after artificial insemination (AI). The milk production of each cow was recorded with automated milkings in the farm. The variables were expressed as mean and standard error, evaluated by ANOVA at 5 % probability using the GLM procedure of SAS. Chi-square test at 5 % probability was applied to data of RT, RR, pregnancy rate (PR), and the number of AIs to obtain pregnancy. The majority of ½ Holstein cows showed mean values of RT and RR within the normal range in both periods and shifts. Most animals of the ¾ Holstein group exhibited the RR means above normal during the afternoon in the rainy and dry periods and RT means above normal during the afternoon in the dry period. After analyses, ½ Holstein crossbred cows are more capable of thermoregulating than ¾ Holstein cows under conditions of thermal stress, and the dry period was more impacting for bovine physiology with significant changes in physiological parameters, even for the first breed group. Knowledge of breed groups adapted to climatic conditions of northeastern Brazil can directly assist cattle farmers in selecting animals best adapted for forming herds.

  18. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth.

    PubMed

    Brown, Alastair; Thatje, Sven

    2014-05-01

    Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity-depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity-depth pattern over time. Thermal

  19. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth.

    PubMed

    Brown, Alastair; Thatje, Sven

    2014-05-01

    Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity-depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity-depth pattern over time. Thermal

  20. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth

    PubMed Central

    Brown, Alastair; Thatje, Sven

    2014-01-01

    Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity–depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity–depth pattern over time

  1. Effect of prepartal ad libitum feeding of grass silage on transcriptional adaptations of the liver and subcutaneous adipose tissue in dairy cows during the periparturient period.

    PubMed

    Selim, S; Kokkonen, T; Taponen, J; Vanhatalo, A; Elo, K

    2015-08-01

    Prepartal energy overfeeding may predispose cows to a state of increased insulin resistance with greater lipolysis after parturition. The aim of the study was to evaluate the effects of prepartal overfeeding in terms of abundant grass silage ration on the liver and subcutaneous adipose tissue (SAT) gene expression around parturition. Sixteen multiparous Finnish Ayrshire dairy cows were fed ad libitum either grass silage [high energy, HE; 144 MJ/d of metabolizable energy (ME) intake, n=8] or a mixture of grass silage, wheat straw, and rapeseed meal [55:40:5 (CON), 109 MJ/d of ME, n=8] during the dry period (58.2±4.89 d, mean ± standard deviation). Tissue biopsies and blood samples were collected at -14 (±4.98), 1, and 7 d relative to the actual parturition date. The HE cows had greater total dry matter intake, ME intake, and ME balance during the dry period than the CON cows. Compared with CON, the increases in body weight and body condition score were greater in HE during the dry period. Milk yield during the first 2 wk of lactation was not different between the groups. Plasma glucose, nonesterified fatty acids, insulin, glucagon, and β-hydroxybutyrate did not differ between the groups during the transition period. Dietary treatment did not affect hepatic triglyceride content; however, a delayed increase in hepatic total lipid content was observed in the HE cows at d 1 postpartum. Hepatic cytosolic phosphoenolpyruvate carboxykinase 1 mRNA expression was lower in HE than in CON at d 1 and 7 postpartum. Adiponectin receptor 1 and 2 mRNA abundance tended to be lower in SAT of HE than CON. Lower lipoprotein lipase, leptin, and stearoyl-coenzyme A desaturase mRNA abundances were observed at d 7 postpartum in SAT of the HE cows compared with the CON cows. We concluded that prepartal ad libitum feeding of grass silage may decrease insulin sensitivity and lipogenesis in SAT during peripartal period and may attenuate the increase of hepatic gluconeogenic capacity from

  2. Effect of prepartal ad libitum feeding of grass silage on transcriptional adaptations of the liver and subcutaneous adipose tissue in dairy cows during the periparturient period.

    PubMed

    Selim, S; Kokkonen, T; Taponen, J; Vanhatalo, A; Elo, K

    2015-08-01

    Prepartal energy overfeeding may predispose cows to a state of increased insulin resistance with greater lipolysis after parturition. The aim of the study was to evaluate the effects of prepartal overfeeding in terms of abundant grass silage ration on the liver and subcutaneous adipose tissue (SAT) gene expression around parturition. Sixteen multiparous Finnish Ayrshire dairy cows were fed ad libitum either grass silage [high energy, HE; 144 MJ/d of metabolizable energy (ME) intake, n=8] or a mixture of grass silage, wheat straw, and rapeseed meal [55:40:5 (CON), 109 MJ/d of ME, n=8] during the dry period (58.2±4.89 d, mean ± standard deviation). Tissue biopsies and blood samples were collected at -14 (±4.98), 1, and 7 d relative to the actual parturition date. The HE cows had greater total dry matter intake, ME intake, and ME balance during the dry period than the CON cows. Compared with CON, the increases in body weight and body condition score were greater in HE during the dry period. Milk yield during the first 2 wk of lactation was not different between the groups. Plasma glucose, nonesterified fatty acids, insulin, glucagon, and β-hydroxybutyrate did not differ between the groups during the transition period. Dietary treatment did not affect hepatic triglyceride content; however, a delayed increase in hepatic total lipid content was observed in the HE cows at d 1 postpartum. Hepatic cytosolic phosphoenolpyruvate carboxykinase 1 mRNA expression was lower in HE than in CON at d 1 and 7 postpartum. Adiponectin receptor 1 and 2 mRNA abundance tended to be lower in SAT of HE than CON. Lower lipoprotein lipase, leptin, and stearoyl-coenzyme A desaturase mRNA abundances were observed at d 7 postpartum in SAT of the HE cows compared with the CON cows. We concluded that prepartal ad libitum feeding of grass silage may decrease insulin sensitivity and lipogenesis in SAT during peripartal period and may attenuate the increase of hepatic gluconeogenic capacity from

  3. The interruption of thyroid and interrenal and the inter-hormonal interference in fish: does it promote physiologic adaptation or maladaptation?

    PubMed

    Peter, Valsa S; Peter, M C Subhash

    2011-12-01

    Endocrines, the chief components of chemical centers which produce hormones in tune with intrinsic and extrinsic clues, create a chemical bridge between the organism and the environment. In fishes also hormones integrate and modulate many physiologic functions and its synthesis, release, biological actions and metabolic clearance are well regulated. Consequently, thyroid hormones (THs) and cortisol, the products of thyroid and interrenal axes, have been identified for their common integrative actions on metabolic and osmotic functions in fish. On the other hand, many anthropogenic chemical substances, popularly known as endocrine disrupting chemicals, have been shown to disrupt the hormone-receptor signaling pathways in a number fish species. These chemicals which are known for their ability to induce endocrine disruption particularly on thyroid and interrenals can cause malfunction or maladaptation of many vital processes which are involved in the development, growth and reproduction in fish. On the contrary, evidence is presented that the endocrine interrupting agents (EIAs) can cause interruption of thyroid and interrenals, resulting in physiologic compensatory mechanisms which can be adaptive, though such hormonal interactions are less recognized in fishes. The EIAs of physical, chemical and biological origins can specifically interrupt and modify the hormonal interactions between THs and cortisol, resulting in specific patterns of inter-hormonal interference. The physiologic analysis of these inter-hormonal interruptions during acclimation and post-acclimation to intrinsic or extrinsic EIAs reveals that combinations of anti-hormonal, pro-hormonal or stati-hormonal interference may help the fish to fine-tune their metabolic and osmotic performances as part of physiologic adaptation. This novel hypothesis on the phenomenon of inter-hormonal interference and its consequent physiologic interference during thyroid and interrenal interruption thus forms the basis of

  4. The interruption of thyroid and interrenal and the inter-hormonal interference in fish: does it promote physiologic adaptation or maladaptation?

    PubMed

    Peter, Valsa S; Peter, M C Subhash

    2011-12-01

    Endocrines, the chief components of chemical centers which produce hormones in tune with intrinsic and extrinsic clues, create a chemical bridge between the organism and the environment. In fishes also hormones integrate and modulate many physiologic functions and its synthesis, release, biological actions and metabolic clearance are well regulated. Consequently, thyroid hormones (THs) and cortisol, the products of thyroid and interrenal axes, have been identified for their common integrative actions on metabolic and osmotic functions in fish. On the other hand, many anthropogenic chemical substances, popularly known as endocrine disrupting chemicals, have been shown to disrupt the hormone-receptor signaling pathways in a number fish species. These chemicals which are known for their ability to induce endocrine disruption particularly on thyroid and interrenals can cause malfunction or maladaptation of many vital processes which are involved in the development, growth and reproduction in fish. On the contrary, evidence is presented that the endocrine interrupting agents (EIAs) can cause interruption of thyroid and interrenals, resulting in physiologic compensatory mechanisms which can be adaptive, though such hormonal interactions are less recognized in fishes. The EIAs of physical, chemical and biological origins can specifically interrupt and modify the hormonal interactions between THs and cortisol, resulting in specific patterns of inter-hormonal interference. The physiologic analysis of these inter-hormonal interruptions during acclimation and post-acclimation to intrinsic or extrinsic EIAs reveals that combinations of anti-hormonal, pro-hormonal or stati-hormonal interference may help the fish to fine-tune their metabolic and osmotic performances as part of physiologic adaptation. This novel hypothesis on the phenomenon of inter-hormonal interference and its consequent physiologic interference during thyroid and interrenal interruption thus forms the basis of

  5. Tissue-specific mRNA expression patterns reveal a coordinated metabolic response associated with genetic selection for milk production in cows.

    PubMed

    Weikard, R; Goldammer, T; Brunner, R M; Kuehn, C

    2012-07-15

    The molecular mechanisms regulating the physiological adaptation of tissues important for nutrient partitioning and metabolism in lactating cows are still not completely understood. The aim of our study was to identify tissue-specific regulatory mechanisms necessary to accommodate metabolic changes associated with different genetic potential for milk performance. For this purpose, we analyzed mRNA expression of genes involved in energy metabolism of segregating F(2) beef type cows with a combined genetic dairy and beef background (Charolais × German Holstein cross, CH×GH) in contrast to purebred German Holstein (GH) dairy cows. Three groups of cows differing in milk performance were examined using quantitative real-time PCR in liver, mammary gland, and skeletal muscle. Our results describe substantial tissue-specific differences in mRNA transcription profiles between cow groups in relation to their genetic potential for milk performance and highlight genes exhibiting specific, partially yet-unknown functions in dairy and beef type cows, e.g., upregulation of PCK2 transcripts in the mammary gland and FBP2 transcripts in skeletal muscle of dairy cows. Noticeably, PCCA and PPARGC1A mRNA abundance varied significantly across experimental groups in all three tissues, pointing to potential key gene functions in the metabolic adaptation relative to divergent milk production performance. Correlations of mRNA expression levels to milk performance traits indicate that gene transcriptional processes may play a regulatory role in liver, mammary gland, and skeletal muscle to enable cows with different genetic potential for milk performance to cope with metabolic lactation-associated challenges.

  6. Space Physiology within an Exercise Physiology Curriculum

    ERIC Educational Resources Information Center

    Carter, Jason R.; West, John B.

    2013-01-01

    Compare and contrast strategies remain common pedagogical practices within physiological education. With the support of an American Physiological Society Teaching Career Enhancement Award, we have developed a junior- or senior-level undergraduate curriculum for exercise physiology that compares and contrasts the physiological adaptations of…

  7. Leap of faith: voluntary emersion behaviour and physiological adaptations to aerial exposure in a non-aestivating freshwater fish in response to aquatic hypoxia.

    PubMed

    Urbina, Mauricio A; Forster, Malcolm E; Glover, Chris N

    2011-05-01

    Lowland stream fauna in areas of intensive agriculture are increasingly under threat from anthropogenic activities leading to eutrophication and subsequent hypoxia. Survival of hypoxic episodes depends upon a combination of behavioural and physiological adaptations. Responses of inanga (Galaxias maculatus: Galaxiidae) to aquatic hypoxia were investigated in the laboratory. Contrary to expectation inanga did not display behaviour that might reduce energy expenditure during oxygen limitation, with swimming activity slightly, but significantly elevated relative to normoxia. Instead, as dissolved oxygen concentrations decreased, the fish moved higher in the water column, increased their swimming speed and exhibited aquatic surface respiration. Physiological changes such as enhanced opercular frequency were also noted. As hypoxia deepened inanga started to leap out of the water, emersing themselves on a floating platform. Once emersed, fish exhibited an enhanced oxygen consumption rate compared to hypoxic fish. Thus inanga appear better adapted to escape hypoxia (a behavioural adaptation) rather than tolerate it (physiological adaptation). The emersion strategy used for inanga in response to severe hypoxia is in agreement with their ability to take up more oxygen from the air than from hypoxic water and therefore may justify the potentially increased risks of desiccation and predation associated with leaving the water. PMID:21316378

  8. Physiological screening for target site insensitivity and localization of Na(+)/K(+)-ATPase in cardenolide-adapted Lepidoptera.

    PubMed

    Petschenka, Georg; Offe, Julia K; Dobler, Susanne

    2012-05-01

    Cardenolides are toxic plant compounds which specifically inhibit Na(+)/K(+)-ATPase, an animal enzyme which is essential for many physiological processes, such as the generation of action potentials. Several adapted insects feeding on cardenolide-containing plants sequester these toxins for their own defence. Some of these insects were shown to possess Na(+)/K(+)-ATPases with a reduced sensitivity towards cardenolides (target site insensitivity). In the present study we screened five species of arctiid moths feeding on cardenolide-containing plants for target site insensitivity towards cardenolides using an in vitro enzyme assay. The derived dose response curves of the respective Na(+)/K(+)-ATPases were compared to the insensitive Na(+)/K(+)-ATPase of the monarch butterfly (Danaus plexippus). Na(+)/K(+)-ATPases of all arctiid species tested were highly sensitive to ouabain, a water-soluble cardenolide which is most widely used in laboratory studies. Nevertheless, we detected substantial amounts of cardenolides in the haemolymph of two of the arctiid species. In caterpillars of the sequestering arctiid Empyreuma pugione and of D. plexippus we localized Na(+)/K(+)-ATPase by immunohistochemistry and western blot (in D. plexippus). Both techniques revealed strong expression of the enzyme in the nervous tissue and indicated weak expression or even absence in other tissues tested. We conclude that instead of target site insensitivity the investigated arctiid species use a different strategy to tolerate cardenolides. Most plausibly, the perineurium surrounding the nervous tissue functions as a barrier which prevents cardenolides from reaching Na(+)/K(+)-ATPase in the ventral nerve cord. PMID:22343317

  9. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?

    NASA Astrophysics Data System (ADS)

    Melzner, F.; Gutowska, M. A.; Langenbuch, M.; Dupont, S.; Lucassen, M.; Thorndyke, M. C.; Bleich, M.; Pörtner, H.-O.

    2009-10-01

    pH disturbances during exposure to elevated environmental pCO2. Compensation of extracellular acid-base status in turn may be important in avoiding metabolic depression. So far, maintained "performance" at higher seawater pCO2 (>0.3 to 0.6 kPa) has only been observed in adults/juveniles of active, high metabolic species with a powerful ion regulatory apparatus. However, while some of these taxa are adapted to cope with elevated pCO2 during their regular embryonic development, gametes, zygotes and early embryonic stages, which lack specialized ion-regulatory epithelia, may be the true bottleneck for ecological success - even of the more tolerant taxa. Our current understanding of which marine animal taxa will be affected adversely in their physiological and ecological fitness by projected scenarios of anthropogenic ocean acidification is quite incomplete. While a growing amount of empirical evidence from CO2 perturbation experiments suggests that several taxa might react quite sensitively to ocean acidification, others seem to be surprisingly tolerant. However, there is little mechanistic understanding on what physiological traits are responsible for the observed differential sensitivities (see reviews of Seibel and Walsh, 2003; Pörtner et al., 2004; Fabry et al., 2008; Pörtner, 2008). This leads us to the first very basic question of how to define general CO2 tolerance on the species level.

  10. Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows.

    PubMed

    Loor, Juan J; Everts, Robin E; Bionaz, Massimo; Dann, Heather M; Morin, Dawn E; Oliveira, Rosane; Rodriguez-Zas, Sandra L; Drackley, James K; Lewin, Harris A

    2007-12-19

    Dairy cows are highly susceptible after parturition to developing liver lipidosis and ketosis, which are costly diseases to farmers. A bovine microarray platform consisting of 13,257-annotated oligonucleotides was used to study hepatic gene networks underlying nutrition-induced ketosis. On day 5 postpartum, 14 Holstein cows were randomly assigned to ketosis-induction (n = 7) or control (n = 7) groups. Cows in the ketosis-induction group were fed at 50% of day 4 intake until they developed signs of clinical ketosis, and cows in the control group were fed ad libitum throughout the treatment period. Liver was biopsied at 10-14 (ketosis) or 14 days postpartum (controls). Feed restriction increased blood concentrations of nonesterified fatty acids and beta-hydroxybutyrate, but decreased glucose. Liver triacylglycerol concentration also increased. A total of 2,415 genes were altered by ketosis (false discovery rate = 0.05). Ingenuity Pathway Analysis revealed downregulation of genes associated with oxidative phosphorylation, protein ubiquitination, and ubiquinone biosynthesis with ketosis. Other molecular adaptations included upregulation of genes and nuclear receptors associated with cytokine signaling, fatty acid uptake/transport, and fatty acid oxidation. Genes downregulated during ketosis included several associated with cholesterol metabolism, growth hormone signaling, proton transport, and fatty acid desaturation. Feed restriction and ketosis resulted in previously unrecognized alterations in gene network expression underlying key cellular functions and discrete metabolic events. These responses might help explain well-documented physiological adaptations to reduced feed intake in early postpartum cows and, thus, provide molecular targets that might be useful in prevention and treatment of liver lipidosis and ketosis.

  11. Physiologic adaptation of man in space; Proceedings of the Seventh International Man in Space Symposium, Houston, TX, Feb. 10-13, 1986

    NASA Technical Reports Server (NTRS)

    Holland, Albert W. (Editor)

    1987-01-01

    Topics discussed in this volume include space motion sickness, cardiovascular adaptation, fluid shifts, extravehicular activity, general physiology, perception, vestibular response modifications, vestibular physiology, and pharmacology. Papers are presented on the clinical characterization and etiology of space motion sickness, ultrasound techniques in space medicine, fluid shifts in weightlessness, Space Shuttle inflight and postflight fluid shifts measured by leg volume changes, and the probability of oxygen toxicity in an 8-psi space suit. Consideration is also given to the metabolic and hormonal status of crewmembers in short-term space flights, adaptive changes in perception of body orientation and mental image rotation in microgravity, the effects of a visual-vestibular stimulus on the vestibulo-ocular reflex, rotation tests in the weightless phase of parabolic flight, and the mechanisms of antimotion sickness drugs.

  12. Wolf presence in the ranch of origin: impacts on temperament and physiological responses of beef cattle following a simulated wolf encounter.

    PubMed

    Cooke, R F; Bohnert, D W; Reis, M M; Cappellozza, B I

    2013-12-01

    This experiment evaluated temperament, vaginal temperature, and plasma cortisol in beef cows from wolf-naïve and wolf-experienced origins that were subjected to a simulated wolf encounter. Multiparous, pregnant, nonlactating Angus-crossbreed cows from the Eastern Oregon Agricultural Research Center located near Burns, OR (CON; n = 50), and from a commercial operation near Council, ID (WLF; n = 50), were used. To date, grey wolves are not present around Burns, OR, and thus CON were naïve to wolves. Conversely, wolves are present around Council, ID, and WLF cows were selected from a herd that had experienced multiple confirmed wolf-predation episodes from 2008 to 2012. Following a 50-d commingling and adaptation period, CON and WLF cows were ranked by temperament, BW, and BCS and allocated to 5 groups (d 0; 10 CON and 10 WLF cows/group). Groups were individually subjected to the experimental procedures on d 2 (n = 3) and d 3 (n = 2). Before the simulated wolf encounter, cow temperament was assessed and blood samples and vaginal temperatures (using intravaginal data loggers) were collected (presimulation assessments). Cows were then sorted by origin, moved to 2 adjacent drylot pens (10 WLF and 10 CON cows/pen), and subjected to a simulated wolf encounter event for 20 min, which consisted of 1) cotton plugs saturated with wolf urine attached to the drylot fence, 2) continuous reproduction of wolf howls, and 3) 3 leashed dogs that were walked along the fence perimeter. Thereafter, WLF and CON cows were commingled and returned to the handling facility for postsimulation assessments, which were conducted immediately after exposure to wolf-urine-saturated cotton plugs, wolf howl reproduction, and 20-s exposure to the 3 dogs while being restrained in a squeeze chute. Chute score, temperament score, and plasma cortisol concentration increased (P ≤ 0.01) from pre- to postsimulation assessment in WLF but did not change in CON cows (P ≥ 0.19). Exit velocity decreased (P

  13. The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: implications of antioxidant supplementation on physiological adaptation during intensified physical training.

    PubMed

    Slattery, Katie; Bentley, David; Coutts, Aaron J

    2015-04-01

    During periods of intensified physical training, reactive oxygen species (ROS) release may exceed the protective capacity of the antioxidant system and lead to dysregulation within the inflammatory and neuroendocrinological systems. Consequently, the efficacy of exogenous antioxidant supplementation to maintain the oxidative balance in states of exercise stress has been widely investigated. The aim of this review was to (1) collate the findings of prior research on the effect of intensive physical training on oxidant-antioxidant balance; (2) summarise the influence of antioxidant supplementation on the reduction-oxidation signalling pathways involved in physiological adaptation; and (3) provide a synopsis on the interactions between the oxidative, inflammatory and neuroendocrinological response to exercise stimuli. Based on prior research, it is evident that ROS are an underlying aetiology in the adaptive process; however, the impact of antioxidant supplementation on physiological adaptation remains unclear. Equivocal results have been reported on the impact of antioxidant supplementation on exercise-induced gene expression. Further research is required to establish whether the interference of antioxidant supplementation consistently observed in animal-based and in vivo research extends to a practical sports setting. Moreover, the varied results reported within the literature may be due to the hormetic response of oxidative, inflammatory and neuroendocrinological systems to an exercise stimulus. The collective findings suggest that intensified physical training places substantial stress on the body, which can manifest as an adaptive or maladaptive physiological response. Additional research is required to determine the efficacy of antioxidant supplementation to minimise exercise-stress during intensive training and promote an adaptive state.

  14. Restricting daily time at pasture at low and high pasture allowance: effects on pasture intake and behavioral adaptation of lactating dairy cows.

    PubMed

    Pérez-Ramírez, E; Peyraud, J L; Delagarde, R

    2009-07-01

    In pasture-based dairy systems, daily time at pasture is restricted during several periods of the year. The aim of this experiment was to evaluate the effect of restricting time at pasture on milk yield, pasture dry matter (DM) intake, and grazing behavior of dairy cows according to pasture allowance (PA), which partly defines pasture availability. The experiment was carried out in spring on strip-grazed perennial ryegrass pastures. The 6 treatments consisted of 3 durations of daily time at pasture [U: unrestricted day and night grazing (22 h at pasture); R9: 1 grazing session restricted to 9 h between the 2 milkings; R5: 2 grazing sessions of 2.75 h after each milking) compared at low and high PA (13 and 24 kg of DM/d per cow >5 cm, respectively). Eighteen mid-lactation Holstein dairy cows were used according to a 6 x 4 incomplete Latin square design replicated 3 times with four 14-d periods. Pasture DM intake was measured by the ytterbium-fecal index method and grazing behavior from portable devices. On average, restricting time at pasture from U to R (mean of R5 + R9) decreased pasture intake by 2.9 kg of DM, milk yield by 1.3 kg, and milk protein concentration by 0.11%, and increased milk fat concentration by 0.20%. Pasture intake and milk yield did not differ significantly between R9 and R5. The reduction of pasture intake and milk yield with decreasing time at pasture was greater at high compared with low PA. Grazing times were 536, 414, and 305 min, representing proportions of time spent grazing of 0.40, 0.77, and 0.93 for treatments U, R9, and R5, respectively. The reduction of grazing time with decreasing time at pasture was greater at high compared with low PA. Pasture intake rate greatly increased with decreasing time at pasture, but mainly on R5 (29.8, 31.6, and 42.1 g of DM/min for U, R9, and R5, respectively). The effect of time at pasture on pasture intake rate was unaffected by PA. In conclusion, the effect of restriction of time at pasture on

  15. Glomerular filtration rate in cows estimated by a prediction formula.

    PubMed

    Murayama, Isao; Miyano, Anna; Sato, Tsubasa; Iwama, Ryosuke; Satoh, Hiroshi; Ichijyo, Toshihiro; Sato, Shigeru; Furuhama, Kazuhisa

    2014-12-01

    To testify the relevance of Jacobsson's equation for estimating bovine glomerular filtration rate (GFR), we prepared an integrated formula based on its equation using clinically healthy dairy (n=99) and beef (n=63) cows, and cows with reduced renal function (n=15). The isotonic, nonionic, contrast medium iodixanol was utilized as a test tracer. The GFR values estimated from the integrated formula were well consistent with those from the standard multisample method in each cow strain, and the Holstein equation prepared by a single blood sample in Holstein dairy cows. The basal reference GFR value in healthy dairy cows was significantly higher than that in healthy beef cows, presumably due to a breed difference or physiological state difference. It is concluded that the validity for the application of Jacobsson's equation to estimate bovine GFR is proven and it can be used in bovine practices.

  16. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?

    NASA Astrophysics Data System (ADS)

    Melzner, F.; Gutowska, M. A.; Langenbuch, M.; Dupont, S.; Lucassen, M.; Thorndyke, M. C.; Bleich, M.; Pörtner, H.-O.

    2009-05-01

    Future ocean acidification has the potential to adversely affect many marine organisms. A growing body of evidence suggests that many species could suffer from reduced fertilization success, decreases in larval- and adult growth rates, reduced calcification rates, metabolic depression and even mortality when being exposed to near-future levels (year 2100 scenarios) of ocean acidification. Little research focus is currently placed on those organisms/taxa that might be less vulnerable to the anticipated changes in ocean chemistry; this is unfortunate, as the comparison of more vulnerable to more tolerant physiotypes could provide us with those physiological traits that are crucial for ecological success in a future ocean. Here, we attempt to summarize some ontogenetic and lifestyle traits that lead to an increased tolerance towards high environmental pCO2. In general, marine ectothermic metazoans with an extensive extracellular fluid volume may be less vulnerable to future acidification as their cells are already exposed to much higher pCO2 values (0.1 to 0.4 kPa, 1000 to 4000 μatm) than those of unicellular organisms and gametes, for which the ocean (0.04 kPa, 400 μatm) is the extracellular space. A doubling in environmental pCO2 therefore only represents a 10% change in extracellular CO2 in some marine teleosts. High extracellular pCO2 values are to some degree related to high metabolic rates, as diffusion gradients need to be high in order to excrete an amount of CO2 that is directly proportional to the amount of O2 consumed. In active metazoans, such as teleost fish, cephalopods and many brachyuran crustaceans, exercise induced increases in metabolic rate require an efficient ion-regulatory machinery for CO2 excretion and acid-base regulation, especially when anaerobic metabolism is involved and metabolic protons leak into the extracellular space. These ion-transport systems, which are located in highly developed gill epithelia, form the basis for efficient

  17. Heat production and retained energy in lactating cows held under hot summer conditions with evaporative cooling and fed two rations differing in roughage content and in vitro digestibility.

    PubMed

    Miron, J; Adin, G; Solomon, R; Nikbachat, M; Zenou, A; Shamay, A; Brosh, A; Mabjeesh, S Y

    2008-06-01

    The objective of this study was to measure the effect of feeding two total mixed rations (TMRs), differing in their roughage content and in vitro dry matter (DM) digestibility, on the physiological response and energy balance of lactating cows. The partitioning of metabolizable energy intake (MEI) between heat production (HP) and retained energy (RE) of cows held under hot weather conditions and external evaporative cooling was measured. In all, 42 lactating cows were divided into two similar sub-groups, each of 21 animals, and were fed either a control (CON) ration containing 18% roughage neutral detergent fiber (NDF) or an experimental (EXP) TMR containing 12% roughage NDF and used soy hulls as partial wheat silage replacer. The in vitro DM digestibility of the CON and EXP TMR was 75.3% and 78.6%, respectively (P < 0.05). All cows were cooled by evaporative cooling for 2 adaptation weeks plus 6 experimental weeks under hot weather conditions. The EXP diet reduced rectal temperature and respiratory rate of the cows while increasing their DM intake (DMI) from 23.1 to 24.7 kg/cow per day, milk yield from 41.9 to 44.2 kg and yield of energy-corrected milk from 38.7 to 39.7 kg, as compared with the CON group. Cows fed the EXP TMR had increased RE in milk and body tissue, as compared with the CON group, but the diets had no effect on the measured HP that was maintained constant (130.4 v. 130.8 MJ/cow per day) in the two groups. The measured MEI (MEI = RE + HP) and the efficiency of MEI utilization for RE production were also similar in the two dietary groups. PMID:22443663

  18. Cow's milk - infants

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002448.htm Cow's milk - infants To use the sharing features on this ... old, you should not feed your baby cow's milk, according to the American Academy of Pediatrics (AAP). ...

  19. The effects of nitrogen form on root morphological and physiological adaptations of maize, white lupin and faba bean under phosphorus deficiency

    PubMed Central

    Liu, Haitao; Tang, Caixian; Li, Chunjian

    2016-01-01

    Root morphological/physiological modifications are important for phosphorus (P) acquisition of plants under P deficiency, but strategies differ among plant species. Detailed studies on the response of maize roots to P deficiency are limited. Nitrogen (N) form influences root morphology/physiology, and thus may influence root responses to P deficiency. This work investigated adaptive mechanisms of maize roots to low P by comparison with white lupin and faba bean supplied with two N forms. Plants were grown for 7–16 days in hydroponics with sufficient (250 µmol L−1) and deficient P supply (1 µmol L−1) under supply of NH4NO3 or Ca(NO3)2. Plant growth and P uptake were measured, and release of protons and organic acid anions, and acid phosphatase activity in the root were monitored. The results showed that P deficiency significantly decreased shoot growth while increased root growth and total root length of maize and faba bean, but not white lupin. It enhanced the release of protons and organic acid anions, and acid phosphatase activity, from the roots of both legumes but not maize. Compared with Ca(NO3)2, NH4NO3 dramatically increased proton release by roots but did not alter root morphology or physiology of the three species in response to low P. It is concluded that the N form did not fundamentally change root morphological/physiological responses of the three species to P deficiency. Morphological variation in maize and morpho-physiological modifications in white lupin and faba bean were the main adaptive strategies to P deficiency. PMID:27519912

  20. The effects of nitrogen form on root morphological and physiological adaptations of maize, white lupin and faba bean under phosphorus deficiency.

    PubMed

    Liu, Haitao; Tang, Caixian; Li, Chunjian

    2016-01-01

    Root morphological/physiological modifications are important for phosphorus (P) acquisition of plants under P deficiency, but strategies differ among plant species. Detailed studies on the response of maize roots to P deficiency are limited. Nitrogen (N) form influences root morphology/physiology, and thus may influence root responses to P deficiency. This work investigated adaptive mechanisms of maize roots to low P by comparison with white lupin and faba bean supplied with two N forms. Plants were grown for 7-16 days in hydroponics with sufficient (250 µmol L(-1)) and deficient P supply (1 µmol L(-1)) under supply of NH4NO3 or Ca(NO3)2 Plant growth and P uptake were measured, and release of protons and organic acid anions, and acid phosphatase activity in the root were monitored. The results showed that P deficiency significantly decreased shoot growth while increased root growth and total root length of maize and faba bean, but not white lupin. It enhanced the release of protons and organic acid anions, and acid phosphatase activity, from the roots of both legumes but not maize. Compared with Ca(NO3)2, NH4NO3 dramatically increased proton release by roots but did not alter root morphology or physiology of the three species in response to low P. It is concluded that the N form did not fundamentally change root morphological/physiological responses of the three species to P deficiency. Morphological variation in maize and morpho-physiological modifications in white lupin and faba bean were the main adaptive strategies to P deficiency. PMID:27519912

  1. Physiological Observations and Omics to Develop Personalized Sensormotor Adaptability Countermeasures Using Bed Rest and Space Flight Data

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Seidler, R. D.; Feiveson, A.; Oddsson, L.; Zanello, S.; Oman, C. M.; Ploutz-Snyder, L.; Peters, B.; Cohen, H. S.; Reschke, M.; Wood, S.; Bloomberg, J. J.

    2014-01-01

    Astronauts experience sensorimotor disturbances during the initial exposure to microgravity and during the re-adapation phase following a return to an earth-gravitational environment. These alterations may disrupt the ability to perform mission critical functional tasks requiring ambulation, manual control and gaze stability. Interestingly, astronauts who return from space flight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts would be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. For such an approach to succeed, we must develop predictive measures of sensorimotor adaptability that will allow us to foresee, before actual space flight, which crewmembers are likely to experience the greatest challenges to their adaptive capacities. The goals of this project are to identify and characterize this set of predictive measures that include: 1) behavioral tests to assess sensory bias and adaptability quantified using both strategic and plastic-adaptive responses; 2) imaging to determine individual brain morphological and functional features using structural magnetic resonance imaging (MRI), diffusion tensor imaging, resting state functional connectivity MRI, and sensorimotor adaptation task-related functional brain activation; 3) genotype markers for genetic polymorphisms in Catechol-O-Methyl Transferase, Dopamine Receptor D2, Brain-derived neurotrophic factor and genetic polymorphism of alpha2-adrenergic receptor that play a role in the neural pathways underlying sensorimotor adaptation. We anticipate these predictive measures will be significantly correlated with individual differences in sensorimotor adaptability after long-duration space flight and an analog bed rest environment. We will be conducting a retrospective study leveraging data already collected from relevant

  2. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  3. Adaptive Calibration of Children's Physiological Responses to Family Stress: The Utility of Evolutionary Developmental Theory--Comment on Del Giudice et al. (2012) and Sturge-Apple et al. (2012)

    ERIC Educational Resources Information Center

    Bugental, Daphne Blunt

    2012-01-01

    Children's physiological reactions to stress are presented from the broader theoretical perspective of adaptive calibration to the environment, as rooted in life history theory. Del Giudice, Hinnant, Ellis, and El-Sheikh (2012) focus on children's physiological responses to a stressful task as a consequence of their history of family stress.…

  4. Regulation of lipid droplet-associated proteins following growth hormone administration and feed restriction in lactating Holstein cows.

    PubMed

    Faylon, M P; Koltes, D E; Spurlock, D M

    2014-05-01

    Lipid metabolism plays a crucial role in the adaptation of dairy cows to periods of energy insufficiency. The objective of the current study was to determine if lipolytic proteins are consistently regulated when energy mobilization is stimulated by different factors. We evaluated 2 models of altered energy balance in mid-lactation Holstein cows, including feed restriction (FR) and administration of bovine growth hormone (GH), by quantifying the abundance and (or) phosphorylation of hormone-sensitive lipase (HSL), perilipin (PLIN), and adipose triglyceride lipase (ATGL). For GH administration, adipose tissue and blood samples were collected 4d before and 3 and 7d after administration of GH (n=20 cows). Similarly, adipose and blood samples were obtained 6d before and 1 and 4d after initiation of FR (n=18 cows). Estimated net energy balance decreased and nonesterified fatty acid concentration increased in both experimental models. Decreased ATGL and PLIN protein abundance was observed with GH administration and FR. Additionally, the abundance of phosphorylated HSLSer565 decreased in both models. Decreased abundance of phosphorylated PLIN was observed with GH administration, but not FR. Decreased ATGL protein abundance appears to be a consistent response to energy insufficiency in lactating cows, as this response was also described with negative energy balance at the onset of lactation. In contrast, the abundance of PLIN protein and phosphorylation of HSL using antibodies targeting serine residue 565 of HSL (HSLSer565) were altered in the current research, but not at the onset of lactation. Our findings demonstrate that lipolysis is altered through the regulation of multiple proteins, and that this regulation differs according to physiological state in lactating cows. PMID:24630665

  5. Physiology and the Biomedical Engineering Curriculum: Utilizing Emerging Instructional Technologies to Promote Development of Adaptive Expertise in Undergraduate Students

    ERIC Educational Resources Information Center

    Nelson, Regina K.

    2013-01-01

    A mixed-methods research study was designed to test whether undergraduate engineering students were better prepared to learn advanced topics in biomedical engineering if they learned physiology via a quantitative, concept-based approach rather than a qualitative, system-based approach. Experiments were conducted with undergraduate engineering…

  6. Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E.

    PubMed

    Baumgarten, Thomas; Vazquez, José; Bastisch, Christian; Veron, Wilfried; Feuilloley, Marc G J; Nietzsche, Sandor; Wick, Lukas Y; Heipieper, Hermann J

    2012-01-01

    In order to cope with the toxicity imposed by the exposure to environmental hydrocarbons, many bacteria have developed specific adaptive responses such as modifications in the cell envelope. Here we compared the influence of n-alkanols and chlorophenols on the surface properties of the solvent-tolerant bacterium Pseudomonas putida DOT-T1E. In the presence of toxic concentrations of n-alkanols, this strain significantly increased its cell surface charge and hydrophobicity with changes depending on the chain length of the added n-alkanols. The adaptive response occurred within 10 min after the addition of the solvent and was demonstrated to be of physiological nature. Contrary to that, chlorophenols of similar hydrophobicity and potential toxicity as the corresponding alkanols caused only minor effects in the surface properties. To our knowledge, this is the first observation of differences in the cellular adaptive response of bacteria to compound classes of quasi equal hydrophobicity and toxicity. The observed adaptation of the physico-chemical surface properties of strain DOT-T1E to the presence of alkanols was reversible and correlated with changes in the composition of the lipopolysaccharide content of the cells. The reaction is explained by previously described reactions allowing the release of membrane vesicles that was demonstrated for cells affected by 1-octanol and heat shock, whereas no membrane vesicles were released after the addition of chlorophenols.

  7. Temperature relations of aerial and aquatic physiological performance in a mid-intertidal limpet Cellana toreuma: adaptation to rapid changes in thermal stress during emersion.

    PubMed

    Huang, Xiongwei; Wang, Tifeng; Ye, Ziwen; Han, Guodong; Dong, Yunwei

    2015-01-01

    The physiological performance of a mid-intertidal limpet Cellana toreuma was determined to study the physiological adaptation of intertidal animals to rapid changes and extreme temperatures during emersion. The relationship between the Arrhenius breakpoint temperature (ABT) and in situ operative body temperature was studied to predict the possible impact of climate change on the species. The temperature coefficient (Q10) of emersed animals was higher than that of submersed animals and the ratio of aerial: aquatic heart rate rose with increasing temperature. The ABTs of submersed and emersed animals were 30.2 and 34.2°C, respectively. The heart rate and levels of molecular biomarkers (hsps, ampkα, ampkβ and sirt1 mRNA) were determined in 48 h simulated semi-diurnal tides. There were no obvious changes of heart rate and gene expression during the transition between emersion and submersion at room temperature, although expressions of hsp70 and hsp90 were induced significantly after thermal stress. These results indicate that C. toreuma can effectively utilize atmospheric oxygen, and the higher Q10 and ABT of emersed animals are adaptations to the rapid change and extreme thermal stress during emersion. However, the in situ operative body temperature frequently exceeds the aerial ABT of C. toreuma, indicating the occurrence of large-scale mortality of C. toreuma in summer, and this species should be sensitive to increasing temperature in the scenario of climate change.

  8. Does reduced precipitation trigger physiological and morphological drought adaptations in European beech (Fagus sylvatica L.)? Comparing provenances across a precipitation gradient.

    PubMed

    Knutzen, Florian; Meier, Ina Christin; Leuschner, Christoph

    2015-09-01

    Global warming and associated decreases in summer rainfall may threaten tree vitality and forest productivity in many regions of the temperate zone in the future. One option for forestry to reduce the risk of failure is to plant genotypes which combine high productivity with drought tolerance. Growth experiments with provenances from different climates indicate that drought exposure can trigger adaptive drought responses in temperate trees, but it is not well known whether and to what extent regional precipitation reduction can increase the drought resistance of a species. We conducted a common garden growth experiment with five European beech (Fagus sylvatica L.) populations from a limited region with pronounced precipitation heterogeneity (816-544 mm year(-1)), where phylogenetically related provenances grew under small to large water deficits. We grew saplings of the five provenances at four soil moisture levels (dry to moist) and measured ∼30 morphological (leaf and root properties, root : shoot ratio), physiological (leaf water status parameters, leaf conductance) and growth-related traits (above- and belowground productivity) with the aim to examine provenance differences in the drought response of morphological and physiological traits and to relate the responsiveness to precipitation at origin. Physiological traits were more strongly influenced by provenance (one-third of the studied traits), while structural traits were primarily affected by water availability in the experiment (two-thirds of the traits). The modulus of leaf tissue elasticity ϵ reached much higher values late in summer in plants from moist origins resulting in more rapid turgor loss and a higher risk of hydraulic failure upon drought. While experimental water shortage affected the majority of morphological and productivity-related traits in the five provenances, most parameters related to leaf water status were insensitive to water shortage. Thus, plant morphology, and root

  9. Cow dung powder poisoning.

    PubMed

    Sherfudeen, Khaja Mohideen; Kaliannan, Senthil Kumar; Dammalapati, Pavan Kumar

    2015-11-01

    Cow dung, which has germicidal property, was used in ancient days to clean living premises in South India. Nowadays, people are using commercially available synthetic cow dung powder. It is locally known as "saani powder" in Tamil Nadu. It is freely available in homes and is sometimes accidentally consumed by children. It is available in two colors - yellow and green. Cow dung powder poisoning is common in districts of Tamil Nadu such as Coimbatore, Tirupur, and Erode. We report two cases of yellow cow dung powder poisoning from our hospital. PMID:26730123

  10. Dissecting the COW

    SciTech Connect

    Linstadt, E.

    1985-10-01

    The COW, or Console On Wheels, is the primary operator interface to the SLC accelerator control system. A hardware and software description of the COW, a microcomputer based system with a color graphics display output and touchpanel and knob inputs, is given. The ease of development and expandability, due to both the modular nature of the hardware and the multitasking, interrupt driven software running in the COW, are described. Integration of the COW into the SLCNET communications network and SLC Control system is detailed.

  11. Dissecting the COW

    SciTech Connect

    Linstadt, E.

    1985-04-01

    The COW, or Console On Wheels, is the primary operator interface to the SLC accelerator control system. A hardware and software description of the COW, a microcomputer based system with a color graphics display output and touch-panel and knob inputs, is given. The ease of development and expandability, due to both the modular nature of the hardware and the multitasking, interrupt driven software running in the COW, are described. Integration of the COW into the SLCNET communications network and SLC Control system is detailed.

  12. Effects of body temperature on post-anoxic oxidative stress from the perspective of postnatal physiological adaptive processes in rats.

    PubMed

    Kletkiewicz, H; Rogalska, J; Nowakowska, A; Wozniak, A; Mila-Kierzenkowska, C; Caputa, M

    2016-04-01

    It is well known that decrease in body temperature provides protection to newborns subjected to anoxia/ischemia. We hypothesized that the normal body temperature of 33°C in neonatal rats (4°C below normal body temperature in adults) is in fact a preadaptation to protect CNS from anoxia and further reductions as well as elevations in temperature may be counterproductive. Our experiments aimed to examine the effect of changes in body temperature on oxidative stress development in newborn rats exposed to anoxia. Two-day-old Wistar rats were divided into 4 temperature groups: i. hypothermic at body temperature of 31°C, ii. maintaining physiological neonatal body temperature of 33°C, iii. forced to maintain hyperthermic temperature of 37°C, and i.v. forced to maintain hyperthermic temperature of 39°C. The temperature was controlled starting 15 minutes before and afterword during 10 minutes of anoxia as well as for 2 hours post-anoxia. Cerebral concentrations of lipid peroxidation products malondialdehyde (MDA) and conjugated dienes (CD) and the activities of antioxidant enzymes had been determined post mortem: immediately after anoxia was finished and 3, 7, and 14 days later. There were no post-anoxic changes in the concentration of MDA, CD and in antioxidant enzymes activity in newborn rats kept at their physiological body temperature of 33°C. In contrast, perinatal anoxia at body temperature elevated to 37°C or 39°C as well as under hypothermic conditions (31°C) intensified post-anoxic oxidative stress and depleted the antioxidant pool. Overall, these findings suggest that elevated body temperature (hyperthermia or fever), as well as exceeding cooling beyond the physiological level of body temperature of newborn rats, may extend perinatal anoxia-induced brain lesions. Our findings provide new insights into the role of body temperature in anoxic insult in vivo. PMID:27226188

  13. Effects of body temperature on post-anoxic oxidative stress from the perspective of postnatal physiological adaptive processes in rats.

    PubMed

    Kletkiewicz, H; Rogalska, J; Nowakowska, A; Wozniak, A; Mila-Kierzenkowska, C; Caputa, M

    2016-04-01

    It is well known that decrease in body temperature provides protection to newborns subjected to anoxia/ischemia. We hypothesized that the normal body temperature of 33°C in neonatal rats (4°C below normal body temperature in adults) is in fact a preadaptation to protect CNS from anoxia and further reductions as well as elevations in temperature may be counterproductive. Our experiments aimed to examine the effect of changes in body temperature on oxidative stress development in newborn rats exposed to anoxia. Two-day-old Wistar rats were divided into 4 temperature groups: i. hypothermic at body temperature of 31°C, ii. maintaining physiological neonatal body temperature of 33°C, iii. forced to maintain hyperthermic temperature of 37°C, and i.v. forced to maintain hyperthermic temperature of 39°C. The temperature was controlled starting 15 minutes before and afterword during 10 minutes of anoxia as well as for 2 hours post-anoxia. Cerebral concentrations of lipid peroxidation products malondialdehyde (MDA) and conjugated dienes (CD) and the activities of antioxidant enzymes had been determined post mortem: immediately after anoxia was finished and 3, 7, and 14 days later. There were no post-anoxic changes in the concentration of MDA, CD and in antioxidant enzymes activity in newborn rats kept at their physiological body temperature of 33°C. In contrast, perinatal anoxia at body temperature elevated to 37°C or 39°C as well as under hypothermic conditions (31°C) intensified post-anoxic oxidative stress and depleted the antioxidant pool. Overall, these findings suggest that elevated body temperature (hyperthermia or fever), as well as exceeding cooling beyond the physiological level of body temperature of newborn rats, may extend perinatal anoxia-induced brain lesions. Our findings provide new insights into the role of body temperature in anoxic insult in vivo.

  14. Physiological breeding.

    PubMed

    Reynolds, Matthew; Langridge, Peter

    2016-06-01

    Physiological breeding crosses parents with different complex but complementary traits to achieve cumulative gene action for yield, while selecting progeny using remote sensing, possibly in combination with genomic selection. Physiological approaches have already demonstrated significant genetic gains in Australia and several developing countries of the International Wheat Improvement Network. The techniques involved (see Graphical Abstract) also provide platforms for research and refinement of breeding methodologies. Recent examples of these include screening genetic resources for novel expression of Calvin cycle enzymes, identification of common genetic bases for heat and drought adaptation, and genetic dissection of trade-offs among yield components. Such information, combined with results from physiological crosses designed to test novel trait combinations, lead to more precise breeding strategies, and feed models of genotype-by-environment interaction to help build new plant types and experimental environments for future climates. PMID:27161822

  15. Pressure Induced Changes in Adaptive Immune Function in Belugas (Delphinapterus leucas); Implications for Dive Physiology and Health

    PubMed Central

    Thompson, Laura A.; Romano, Tracy A.

    2016-01-01

    Increased pressure, associated with diving, can alter cell function through several mechanisms and has been shown to impact immune functions performed by peripheral blood mononuclear cells (PBMC) in humans. While marine mammals possess specific adaptations which protect them from dive related injury, it is unknown how their immune system is adapted to the challenges associated with diving. The purpose of this study was to measure PBMC activation (IL2R expression) and Concanavalin A induced lymphocyte proliferation (BrdU incorporation) in belugas following in vitro pressure exposures during baseline, Out of Water Examination (OWE) and capture/release conditions. Beluga blood samples (n = 4) were obtained from animals at the Mystic Aquarium and from free ranging animals in Alaska (n = 9). Human blood samples (n = 4) (Biological Specialty Corporation) were run for comparison. In vivo catecholamines and cortisol were measured in belugas to characterize the neuroendocrine response. Comparison of cellular responses between controls and pressure exposed cells, between conditions in belugas, between belugas and humans as well as between dive profiles, were run using mixed generalized linear models (α = 0.05). Cortisol was significantly higher in Bristol Bay belugas and OWE samples as compared with baseline for aquarium animals. Both IL2R expression and proliferation displayed significant pressure induced changes, and these responses varied between conditions in belugas. Both belugas and humans displayed increased IL2R expression, while lymphocyte proliferation decreased for aquarium animals and increased for humans and Bristol Bay belugas. Results suggest beluga PBMC function is altered during diving and changes may represent dive adaptation as the response differs from humans, a non-dive adapted mammal. In addition, characteristics of a dive (i.e., duration, depth) as well as neuroendocrine activity can alter the response of beluga cells, potentially impacting the

  16. Application of Physiological Self-Regulation and Adaptive Task Allocation Techniques for Controlling Operator Hazardous States of Awareness

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Pope, Alan T.; Freeman, Frederick G.

    2001-01-01

    Prinzel, Hadley, Freeman, and Mikulka found that adaptive task allocation significantly enhanced performance only when used at the endpoints of the task workload continuum (i.e., very low or high workload), but that the technique degraded performance if invoked during other levels of task demand. These researchers suggested that other techniques should be used in conjunction with adaptive automation to help minimize the onset of hazardous states of awareness (HSA) and keep the operator 'in-the-loop.' The paper reports on such a technique that uses psychophysiological self-regulation to modulate the level of task engagement. Eighteen participants were assigned to three groups (self-regulation, false feedback, and control) and performed a compensatory tracking task that was cycled between three levels of task difficulty on the basis of the electroencephalogram (EEG) record. Those participants who had received self-regulation training performed significantly better and reported lower NASA-TLX scores than participants in the false feedback and control groups. Furthermore, the false feedback and control groups had significantly more task allocations resulting in return-to-manual performance decrements and higher EEG difference scores. Theoretical and practical implications of these results for adaptive automation are discussed.

  17. Physiological Adaptation of a Nitrate-Storing Beggiatoa sp. to Diel Cycling in a Phototrophic Hypersaline Mat▿

    PubMed Central

    Hinck, Susanne; Neu, Thomas R.; Lavik, Gaute; Mussmann, Marc; de Beer, Dirk; Jonkers, Henk M.

    2007-01-01

    The aim of this study was to investigate the supposed vertical diel migration and the accompanying physiology of Beggiatoa bacteria from hypersaline microbial mats. We combined microsensor, stable-isotope, and molecular techniques to clarify the phylogeny and physiology of the most dominant species inhabiting mats of the natural hypersaline Lake Chiprana, Spain. The most dominant morphotype had a filament diameter of 6 to 8 μm and a length varying from 1 to >10 mm. Phylogenetic analysis by 16S rRNA gene comparison revealed that this type appeared to be most closely related (91% sequence identity) to the narrow (4-μm diameter) nonvacuolated marine strain MS-81-6. Stable-isotope analysis showed that the Lake Chiprana species could store nitrate intracellularly to 40 mM. The presence of large intracellular vacuoles was confirmed by fluorescein isothiocyanate staining and subsequent confocal microscopy. In illuminated mats, their highest abundance was found at a depth of 8 mm, where oxygen and sulfide co-occurred. However, in the dark, the highest Beggiatoa densities occurred at 7 mm, and the whole population was present in the anoxic zone of the mat. Our findings suggest that hypersaline Beggiatoa bacteria oxidize sulfide with oxygen under light conditions and with internally stored nitrate under dark conditions. It was concluded that nitrate storage by Beggiatoa is an optimal strategy to both occupy the suboxic zones in sulfidic sediments and survive the dark periods in phototrophic mats. PMID:17766448

  18. The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage

    PubMed Central

    2013-01-01

    Background We describe the genome of the western painted turtle, Chrysemys picta bellii, one of the most widespread, abundant, and well-studied turtles. We place the genome into a comparative evolutionary context, and focus on genomic features associated with tooth loss, immune function, longevity, sex differentiation and determination, and the species' physiological capacities to withstand extreme anoxia and tissue freezing. Results Our phylogenetic analyses confirm that turtles are the sister group to living archosaurs, and demonstrate an extraordinarily slow rate of sequence evolution in the painted turtle. The ability of the painted turtle to withstand complete anoxia and partial freezing appears to be associated with common vertebrate gene networks, and we identify candidate genes for future functional analyses. Tooth loss shares a common pattern of pseudogenization and degradation of tooth-specific genes with birds, although the rate of accumulation of mutations is much slower in the painted turtle. Genes associated with sex differentiation generally reflect phylogeny rather than convergence in sex determination functionality. Among gene families that demonstrate exceptional expansions or show signatures of strong natural selection, immune function and musculoskeletal patterning genes are consistently over-represented. Conclusions Our comparative genomic analyses indicate that common vertebrate regulatory networks, some of which have analogs in human diseases, are often involved in the western painted turtle's extraordinary physiological capacities. As these regulatory pathways are analyzed at the functional level, the painted turtle may offer important insights into the management of a number of human health disorders. PMID:23537068

  19. Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: review and practical recommendations for training.

    PubMed

    Millet, G P; Vleck, V E

    2000-10-01

    Current knowledge of the physiological, biomechanical, and sensory effects of the cycle to run transition in the Olympic triathlon (1.5 km, 10 km, 40 km) is reviewed and implications for the training of junior and elite triathletes are discussed. Triathlon running elicits hyperventilation, increased heart rate, decreased pulmonary compliance, and exercise induced hypoxaemia. This may be due to exercise intensity, ventilatory muscle fatigue, dehydration, muscle fibre damage, a shift in metabolism towards fat oxidation, and depleted glycogen stores after a 40 km cycle. The energy cost (CR) of running during the cycle to run transition is also increased over that of control running. The increase in CR varies from 1.6% to 11.6% and is a reflection of triathlete ability level. This increase may be partly related to kinematic alterations, but research suggests that most biomechanical parameters are unchanged. A more forward leaning trunk inclination is the most significant observation reported. Running pattern, and thus running economy, could also be influenced by sensorimotor perturbations related to the change in posture. Technical skill in the transition area is obviously very important. The conditions under which the preceding cycling section is performed-that is, steady state or stochastic power output, drafting or non-drafting-are likely to influence the speed of adjustment to transition. The extent to which a decrease in the average 10 km running speed occurs during competition must be investigated further. It is clear that the higher the athlete is placed in the field at the end of the bike section, the greater the importance to their finishing position of both a quick transition area time and optimal adjustment to the physiological demands of the cycle to run transition. The need for, and current methods of, training to prepare junior and elite triathletes for a better transition are critically reviewed in light of the effects of sequential cycle to run exercise

  20. Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: review and practical recommendations for training

    PubMed Central

    Millet, G.; Vleck, V.

    2000-01-01

    Current knowledge of the physiological, biomechanical, and sensory effects of the cycle to run transition in the Olympic triathlon (1.5 km, 10 km, 40 km) is reviewed and implications for the training of junior and elite triathletes are discussed. Triathlon running elicits hyperventilation, increased heart rate, decreased pulmonary compliance, and exercise induced hypoxaemia. This may be due to exercise intensity, ventilatory muscle fatigue, dehydration, muscle fibre damage, a shift in metabolism towards fat oxidation, and depleted glycogen stores after a 40 km cycle. The energy cost (CR) of running during the cycle to run transition is also increased over that of control running. The increase in CR varies from 1.6% to 11.6% and is a reflection of triathlete ability level. This increase may be partly related to kinematic alterations, but research suggests that most biomechanical parameters are unchanged. A more forward leaning trunk inclination is the most significant observation reported. Running pattern, and thus running economy, could also be influenced by sensorimotor perturbations related to the change in posture. Technical skill in the transition area is obviously very important. The conditions under which the preceding cycling section is performed—that is, steady state or stochastic power output, drafting or non-drafting—are likely to influence the speed of adjustment to transition. The extent to which a decrease in the average 10 km running speed occurs during competition must be investigated further. It is clear that the higher the athlete is placed in the field at the end of the bike section, the greater the importance to their finishing position of both a quick transition area time and optimal adjustment to the physiological demands of the cycle to run transition. The need for, and current methods of, training to prepare junior and elite triathletes for a better transition are critically reviewed in light of the effects of sequential cycle to run

  1. Cow's milk and children

    MedlinePlus

    Milk and children; Cow’s milk allergy - children; Lactose intolerance - children ... You may have heard that cow's milk should not be given to babies younger than 1 year old. This is because cow's milk doesn't provide enough of certain ...

  2. Hypomagnesaemia in suckler cows.

    PubMed

    2016-03-01

    Hypomagnesaemia in housed and grazing suckler cows. Coronavirus infection in cows. Suspected nitrite toxicity in lambs associated with feeding broccoli. Maedi visna in ewes. Mycotic pneumonia in a wildcat. These are among matters discussed in the disease surveillance report for November 2015 from SAC Consulting: Veterinary Services (SAC C VS).

  3. Fasting in the American marten (Martes americana): a physiological model of the adaptations of a lean-bodied animal.

    PubMed

    Nieminen, Petteri; Rouvinen-Watt, Kirsti; Saarela, Seppo; Mustonen, Anne-Mari

    2007-10-01

    The American marten (Martes americana) is a boreal forest marten with low body adiposity throughout the year. The aim of this study was to investigate the adaptations of this lean-bodied species to fasting for an ecologically relevant duration (48 h) by exposing eight farm-bred animals to total food deprivation with seven control animals. Selected morphological and hematological parameters, plasma and serum biochemistry, endocrinological variables and liver and white adipose tissue (WAT) enzyme activities were determined. After 48 h without food, the marten were within phase II of fasting with depleted liver and muscle glycogen stores, but with active lipid mobilization indicated by the high lipase activities in several WAT depots. The plasma ghrelin concentrations were higher due to food deprivation, possibly increasing appetite and enhancing foraging behavior. The lower plasma insulin and higher cortisol concentrations could mediate augmented lipolysis and the lower triiodothyronine levels could suppress the metabolic rate. Fasting did not affect the plasma levels of stress-associated catecholamines or variables indicating tissue damage. In general, the adaptations to short-term fasting exhibited some differences compared to the related farm-bred American mink (Mustela vison), an example of which was the better ability of the marten to hydrolyze lipids despite its significantly lower initial fat mass.

  4. Physiological and cell morphology adaptation of Bacillus subtilis at near-zero specific growth rates: a transcriptome analysis.

    PubMed

    Overkamp, Wout; Ercan, Onur; Herber, Martijn; van Maris, Antonius J A; Kleerebezem, Michiel; Kuipers, Oscar P

    2015-02-01

    Nutrient scarcity is a common condition in nature, but the resulting extremely low growth rates (below 0.025 h(-1) ) are an unexplored research area in Bacillus subtilis. To understand microbial life in natural environments, studying the adaptation of B. subtilis to near-zero growth conditions is relevant. To this end, a chemostat modified for culturing an asporogenous B. subtilis sigF mutant strain at extremely low growth rates (also named a retentostat) was set up, and biomass accumulation, culture viability, metabolite production and cell morphology were analysed. During retentostat culturing, the specific growth rate decreased to a minimum of 0.00006 h(-1) , corresponding to a doubling time of 470 days. The energy distribution between growth and maintenance-related processes showed that a state of near-zero growth was reached. Remarkably, a filamentous cell morphology emerged, suggesting that cell separation is impaired under near-zero growth conditions. To evaluate the corresponding molecular adaptations to extremely low specific growth, transcriptome changes were analysed. These revealed that cellular responses to near-zero growth conditions share several similarities with those of cells during the stationary phase of batch growth. However, fundamental differences between these two non-growing states are apparent by their high viability and absence of stationary phase mutagenesis under near-zero growth conditions.

  5. Stress responses during milking; comparing conventional and automatic milking in primiparous dairy cows.

    PubMed

    Hopster, H; Bruckmaier, R M; Van der Werf, J T N; Korte, S M; Macuhova, J; Korte-Bouws, G; van Reenen, C G

    2002-12-01

    A comparative study was performed to evaluate the differences in behavioral and physiological stress responses during milking between cows that were milked by an automated milking system (AM-cows) and cows that were milked in a conventional tandem parlor (TM-cows). In a randomized design, 36 primiparous Holstein-Friesian dairy cows were observed and blood sampled (1-min intervals) individually during milking. AM-cows spent less time standing with their heads outside the feeding trough than TM-cows and had a lower heart rate. In addition, AM-cows had lower maximum plasma adrenaline and noradrenaline concentrations during milking. No differences were found in the number of steps. After tactile stimulation of the teats either by hand or by the cleaning brush, mean oxytocin concentrations did not differ. In AM-cows, however, elevated oxytocin levels were prolonged at the end of milking. Averaged over the first five blood samples, AM-cows tended to have higher plasma cortisol concentrations than TM-cows, but median fecal concentrations of the cortisol metabolite dioxoandrostane were comparable. Maximum quarter milk flow, maximum udder milk flow and residual milk as a percentage of the total milk volume was comparable. From this study it is concluded that behavioral and physiological responses, both in automatically and in conventionally milked cows, were relatively low and were typical for cows being milked. We therefore conclude that, as far as the welfare of the dairy cow during milking is concerned, automatic milking and conventional milking are equally acceptable. PMID:12512594

  6. Physiological adaptations in the lichens Peltigera rufescens and Cladina arbuscula var. mitis, and the moss Racomitrium lanuginosum to copper-rich substrate.

    PubMed

    Backor, Martin; Klejdus, Borivoj; Vantová, Ivana; Kovácik, Jozef

    2009-09-01

    Two lichen species (Peltigera rufescens and Cladina arbuscula subsp. mitis) and one moss species (Racomitrium lanuginosum) growing on a copper mine heaps (probably 200-300yr old) in the village of Spania dolina (Slovak Republic) were assessed for selected physiological parameters, including composition of assimilation pigments, chlorophyll a fluorescence, soluble proteins and free amino acid content. The lichen C. arbuscula subsp. mitis was collected also at a control locality where total copper concentration in the soil was approximately 3% that of the waste heaps. Concentrations of Al, Co, Cu, Ni, Sb and Zn were highest in thalli of Peltigera, while the moss Racomitrium contained the highest content of Fe and Pb. Thalli of Cladina contained less metals than the cyanolichen Peltigera, and except for Zn metal concentrations in Cladina from the control locality were lower than in thalli of the same species from copper mine heaps. Regardless of the species or locality, the composition of assimilation pigments and chlorophyll a fluorescence showed that the tested lichens and moss were in good physiological condition and adapted to increased copper levels in the soil. There were significantly different amounts of total free amino acids in Peltigera, Cladina and Racomitrium from the Cu-polluted field. However, differences in amount of free amino acids in control, as well as Cu-polluted thalli of Cladina were less pronounced. PMID:19595434

  7. Do telomeres adapt to physiological stress? Exploring the effect of exercise on telomere length and telomere-related proteins.

    PubMed

    Ludlow, Andrew T; Ludlow, Lindsay W; Roth, Stephen M

    2013-01-01

    Aging is associated with a tissue degeneration phenotype marked by a loss of tissue regenerative capacity. Regenerative capacity is dictated by environmental and genetic factors that govern the balance between damage and repair. The age-associated changes in the ability of tissues to replace lost or damaged cells is partly the cause of many age-related diseases such as Alzheimer's disease, cardiovascular disease, type II diabetes, and sarcopenia. A well-established marker of the aging process is the length of the protective cap at the ends of chromosomes, called telomeres. Telomeres shorten with each cell division and with increasing chronological age and short telomeres have been associated with a range of age-related diseases. Several studies have shown that chronic exposure to exercise (i.e., exercise training) is associated with telomere length maintenance; however, recent evidence points out several controversial issues concerning tissue-specific telomere length responses. The goals of the review are to familiarize the reader with the current telomere dogma, review the literature exploring the interactions of exercise with telomere phenotypes, discuss the mechanistic research relating telomere dynamics to exercise stimuli, and finally propose future directions for work related to telomeres and physiological stress.

  8. Whole transcriptome analysis of the fasting and fed Burmese python heart: insights into extreme physiological cardiac adaptation.

    PubMed

    Wall, Christopher E; Cozza, Steven; Riquelme, Cecilia A; McCombie, W Richard; Heimiller, Joseph K; Marr, Thomas G; Leinwand, Leslie A

    2011-01-01

    The infrequently feeding Burmese python (Python molurus) experiences significant and rapid postprandial cardiac hypertrophy followed by regression as digestion is completed. To begin to explore the molecular mechanisms of this response, we have sequenced and assembled the fasted and postfed Burmese python heart transcriptomes with Illumina technology using the chicken (Gallus gallus) genome as a reference. In addition, we have used RNA-seq analysis to identify differences in the expression of biological processes and signaling pathways between fasted, 1 day postfed (DPF), and 3 DPF hearts. Out of a combined transcriptome of ∼2,800 mRNAs, 464 genes were differentially expressed. Genes showing differential expression at 1 DPF compared with fasted were enriched for biological processes involved in metabolism and energetics, while genes showing differential expression at 3 DPF compared with fasted were enriched for processes involved in biogenesis, structural remodeling, and organization. Moreover, we present evidence for the activation of physiological and not pathological signaling pathways in this rapid, novel model of cardiac growth in pythons. Together, our data provide the first comprehensive gene expression profile for a reptile heart.

  9. Genome-Guided Analysis of Physiological Capacities of Tepidanaerobacter acetatoxydans Provides Insights into Environmental Adaptations and Syntrophic Acetate Oxidation

    PubMed Central

    Niazi, Adnan; Bongcam-Rudloff, Erik; Schnürer, Anna

    2015-01-01

    This paper describes the genome-based analysis of Tepidanaerobacter acetatoxydans strain Re1, a syntrophic acetate-oxidising bacterium (SAOB). Principal issues such as environmental adaptations, metabolic capacities, and energy conserving systems have been investigated and the potential consequences for syntrophic acetate oxidation discussed. Briefly, in pure culture, T. acetatoxydans grows with different organic compounds and produces acetate as the main product. In a syntrophic consortium with a hydrogenotrophic methanogen, it can also reverse its metabolism and instead convert acetate to formate/H2 and CO2. It can only proceed if the product formed is continuously removed. This process generates a very small amount of energy that is scarcely enough for growth, which makes this particular syntrophy of special interest. As a crucial member of the biogas-producing community in ammonium-rich engineered AD processes, genomic features conferring ammonium resistance, bacterial defense, oxygen and temperature tolerance were found, as well as attributes related to biofilm formation and flocculation. It is likely that T. acetatoxydans can form an electrochemical gradient by putative electron-bifurcating Rnf complex and [Fe-Fe] hydrogenases, as observed in other acetogens. However, genomic deficiencies related to acetogenic metabolism and anaerobic respiration were discovered, such as the lack of formate dehydrogenase and F1F0 ATP synthase. This has potential consequences for the metabolic pathways used under SAO and non-SAO conditions. The two complete sets of bacteriophage genomes, which were found to be encoded in the genome, are also worthy of mention. PMID:25811859

  10. Physiological adaptation of Escherichia coli after transfer onto refrigerated ground meat and other solid matrices: a molecular approach.

    PubMed

    Guernec, Anthony; Robichaud-Rincon, Philippe; Saucier, Linda

    2012-10-01

    Bacteria on meat are subjected to specific living conditions that differ drastically from typical laboratory procedures in synthetic media. This study was undertaken to determine the behavior of bacteria when transferred from a rich-liquid medium to solid matrices, as is the case during microbial process validation. Escherichia coli cultured in Brain-Heart Infusion (BHI) broth to different growth phases were inoculated in ground beef (GB) and stored at 5°C for 12 days or spread onto BHI agar and cooked meat medium (CMM), and incubated at 37°C for several hours. We monitored cell densities and the expression of σ factors and genes under their control over time. The initial growth phase of the inoculum influenced growth resumption after transfer onto BHI agar and CMM. Whatever the solid matrix, bacteria adapted to their new environment and did not perceive stress immediately after inoculation. During this period, the σ(E) and σ(H) regulons were not activated and rpoD mRNA levels adjusted quickly. The rpoS and gadA mRNA levels did not increase after inoculation on solid surfaces and displayed normal growth-dependent modifications. After transfer onto GB, dnaK and groEL gene expression was affected more by the low temperature than by the composition of a meat environment.

  11. The Effects of Sprint Interval vs. Continuous Endurance Training on Physiological And Metabolic Adaptations in Young Healthy Adults

    PubMed Central

    Nalcakan, Gulbin Rudarli

    2014-01-01

    The purpose of this study was to compare the effects of sprint interval training (SIT) and continuous endurance training (CET) on selected anthropometric, aerobic, and anaerobic performance indices as well as the blood lipid profile, inflammatory and muscle damage markers in healthy young males. Fifteen recreationally active male volunteers (age: 21.7 ±2.2 years, body mass: 83.0 ±8.0 kg, body height: 1.82 ±0.05 m) were divided into two groups according to their initial VO2max levels. Training programs were conducted 3 times per week for 7 weeks. The SIT program consisted of 4–6 Wingate anaerobic sprints with a 4.5 min recovery, while CET consisted of 30–50 min cycling at 60% VO2max. Biochemical, anthropometric and fitness assessments were performed both pre and post-intervention. Significant improvements in VO2max, anaerobic power and capacity, and VO2 utilization during the submaximal workout and significant decreases in body fat and in waist circumference after the intervention occurred in both SIT and CET groups. Significantly greater gross efficiency was measured in the CET group. No differences in the lipid profile or serum levels of inflammatory, myocardial and skeletal muscle damage markers were observed after the training period. The study results agree with the effectiveness of a 30 s all-out training program with a reduced time commitment for anthropometric, aerobic and anaerobic adaptation and eliminate doubts about its safety as a model. PMID:25713670

  12. The Effects of Sprint Interval vs. Continuous Endurance Training on Physiological And Metabolic Adaptations in Young Healthy Adults.

    PubMed

    Nalcakan, Gulbin Rudarli

    2014-12-01

    The purpose of this study was to compare the effects of sprint interval training (SIT) and continuous endurance training (CET) on selected anthropometric, aerobic, and anaerobic performance indices as well as the blood lipid profile, inflammatory and muscle damage markers in healthy young males. Fifteen recreationally active male volunteers (age: 21.7 ±2.2 years, body mass: 83.0 ±8.0 kg, body height: 1.82 ±0.05 m) were divided into two groups according to their initial VO2max levels. Training programs were conducted 3 times per week for 7 weeks. The SIT program consisted of 4-6 Wingate anaerobic sprints with a 4.5 min recovery, while CET consisted of 30-50 min cycling at 60% VO2max. Biochemical, anthropometric and fitness assessments were performed both pre and post-intervention. Significant improvements in VO2max, anaerobic power and capacity, and VO2 utilization during the submaximal workout and significant decreases in body fat and in waist circumference after the intervention occurred in both SIT and CET groups. Significantly greater gross efficiency was measured in the CET group. No differences in the lipid profile or serum levels of inflammatory, myocardial and skeletal muscle damage markers were observed after the training period. The study results agree with the effectiveness of a 30 s all-out training program with a reduced time commitment for anthropometric, aerobic and anaerobic adaptation and eliminate doubts about its safety as a model.

  13. Effect of walking stress on growth, physiological adaptability and endocrine responses in Malpura ewes in a semi-arid tropical environment.

    PubMed

    Sejian, Veerasamy; Maurya, Vijai P; Naqvi, Syed M K

    2012-03-01

    Sheep in hot semi-arid environments are mostly reared using extensive systems. In addition to thermal stress and feed scarcity, the animals need to walk long distances for grazing in this ecological zone. A study was conducted to assess the effect of long-distance walking on adaptive capability in terms of physiological, biochemical and endocrine responses in Malpura ewes. Fourteen adult Malpura non-pregnant ewes weighing between 33 and 35 kg were used in the study. The ewes were randomly allocated into two groups of seven animals each: GI (n = 7; Control), and GII (n = 7; walking stress). The animals were stall-fed with a diet consisting of 70% roughage and 30% concentrate. Both GI and GII ewes had uniform access to feed and water. The walking stress group (GII) ewes were made to walk 14 km in two spans between 0900 and 1500 hours with 1 h 30 min for each span (7 km) of walking. The ewes subjected to walking stress (GII) were prevented from grazing by applying a face mask made of cotton thread. The study was conducted for a period of two estrous cycles (35 days) during the autumn season (October-November). Physiological responses were recorded twice daily at 0800 and 1400 hours at weekly intervals. Blood samples were collected from the jugular vein at weekly intervals to study the effects of walking stress on blood biochemical and endocrine parameters. The results indicate that walking stress had significant (P < 0.05) influence on body weight, average daily gain, respiration rate (RR), rectal temperature (RT), haemoglobin (Hb), packed cell volume (PCV), plasma glucose, calcium, phosphorus, aspartate amino transferase (AST), alanine amino transferase (ALT), tri-iodo-thyronine (T(3)), thyroxin (T(4)), and cortisol. However, walking stress did not influence the reproductive hormone levels. The significant changes in RR, RT, plasma cortisol, T(3) and T(4) show that Malpura ewes have the capability to adapt to long-distance walking, and that adrenal and

  14. Effect of walking stress on growth, physiological adaptability and endocrine responses in Malpura ewes in a semi-arid tropical environment

    NASA Astrophysics Data System (ADS)

    Sejian, Veerasamy; Maurya, Vijai P.; Naqvi, Syed M. K.

    2012-03-01

    Sheep in hot semi-arid environments are mostly reared using extensive systems. In addition to thermal stress and feed scarcity, the animals need to walk long distances for grazing in this ecological zone. A study was conducted to assess the effect of long-distance walking on adaptive capability in terms of physiological, biochemical and endocrine responses in Malpura ewes. Fourteen adult Malpura non-pregnant ewes weighing between 33 and 35 kg were used in the study. The ewes were randomly allocated into two groups of seven animals each: GI ( n = 7; Control), and GII ( n = 7; walking stress). The animals were stall-fed with a diet consisting of 70% roughage and 30% concentrate. Both GI and GII ewes had uniform access to feed and water. The walking stress group (GII) ewes were made to walk 14 km in two spans between 0900 and 1500 hours with 1 h 30 min for each span (7 km) of walking. The ewes subjected to walking stress (GII) were prevented from grazing by applying a face mask made of cotton thread. The study was conducted for a period of two estrous cycles (35 days) during the autumn season (October-November). Physiological responses were recorded twice daily at 0800 and 1400 hours at weekly intervals. Blood samples were collected from the jugular vein at weekly intervals to study the effects of walking stress on blood biochemical and endocrine parameters. The results indicate that walking stress had significant ( P < 0.05) influence on body weight, average daily gain, respiration rate (RR), rectal temperature (RT), haemoglobin (Hb), packed cell volume (PCV), plasma glucose, calcium, phosphorus, aspartate amino transferase (AST), alanine amino transferase (ALT), tri-iodo-thyronine (T3), thyroxin (T4), and cortisol. However, walking stress did not influence the reproductive hormone levels. The significant changes in RR, RT, plasma cortisol, T3 and T4 show that Malpura ewes have the capability to adapt to long-distance walking, and that adrenal and thyroid gland

  15. Physiological and behavioral basis for the successful adaptation of goats to severe water restriction under hot environmental conditions.

    PubMed

    Kaliber, M; Koluman, N; Silanikove, N

    2016-01-01

    Among domestic ruminants, goats are renowned for their ability to tolerate water deprivation, water restriction and energy restriction. However, some basic questions regarding their ability to endure water restriction under heat stress are still open. Three levels of water restriction (56%, 73% and 87% of the ad libitum) were imposed on 20 cross-bred 3-year-old female goats (75% German Fawn and 25% Hair Goat) distributed into four groups, with five animals per treatment. The experiment was conducted from the beginning of July to the end of August in a farm located in the Eastern Mediterranean region of Turkey (40 m in altitude; 36 59' N, 35 18'E), in which subtropical weather conditions prevail. The average daily temperature during the experiment was 34.2°C, whereas the highest and lowest temperatures were 42°C and 23.1°C, respectively. The average relative humidity was 68.2% and wind speed was 1.2 km/h. Weekly average thermal heat indexes during the experiment were 78.3 (week 1), 79.1 (week 2), 80.1 (weak 3), 79.8 (weak 4), 81.3 (weak 5) and on average 79.7. Feed intake, heart rate, thermoregulatory responses (rectal temperature, respiration rate), blood plasma concentrations of ions (Na, K), antidiuretic hormone (ADH), metabolites (glucose, cholesterol, creatinine and urea) and behavioral aspects (standing, walking, lying) were studied over 30 days. The responses to water restriction were proportional to the level of restriction. The reductions in feed intake (up to 13%), BW (up to 4.6%) and the increases in rectal temperature (0.5°C) and breath rate (10 respirations/min) were moderate and also were far from responses encountered under severe heat and water stresses. The increase in plasma Na (from 119 to 140 mM) and ADH concentrations (from 12.6 to 17.4 pg/ml) indicates that the physiological response to water restriction was in response to mild dehydration, which also explains the increase in blood plasma concentrations of glucose, cholesterol, creatinine

  16. Detraining: loss of training-induced physiological and performance adaptations. Part II: Long term insufficient training stimulus.

    PubMed

    Mujika, I; Padilla, S

    2000-09-01

    This part II discusses detraining following an insufficient training stimulus period longer than 4 weeks, as well as several strategies that may be useful to avoid its negative impact. The maximal oxygen uptake (VO2max) of athletes declines markedly but remains above control values during long term detraining, whereas recently acquired VO2max gains are completely lost. This is partly due to reduced blood volume, cardiac dimensions and ventilatory efficiency, resulting in lower stroke volume and cardiac output, despite increased heart rates. Endurance performance is accordingly impaired. Resting muscle glycogen levels return to baseline, carbohydrate utilisation increases and the lactate threshold is lowered, although it remains above untrained values in the highly trained. At the muscle level, capillarisation, arterial-venous oxygen difference and oxidative enzyme activities decline in athletes and are completely reversed in recently trained individuals, contributing significantly to the long term loss in VO2max. Oxidative fibre proportion is decreased in endurance athletes, whereas it increases in strength athletes, whose fibre areas are significantly reduced. Force production declines slowly, and usually remains above control values for very long periods. All these negative effects can be avoided or limited by reduced training strategies, as long as training intensity is maintained and frequency reduced only moderately. On the other hand, training volume can be markedly reduced. Cross-training may also be effective in maintaining training-induced adaptations. Athletes should use similar-mode exercise, but moderately trained individuals could also benefit from dissimilar-mode cross-training. Finally, the existence of a cross-transfer effect between ipsilateral and contralateral limbs should be considered in order to limit detraining during periods of unilateral immobilisation.

  17. Genus-Wide Comparative Genomics of Malassezia Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin

    PubMed Central

    Wu, Guangxi; Zhao, He; Li, Chenhao; Rajapakse, Menaka Priyadarsani; Wong, Wing Cheong; Xu, Jun; Saunders, Charles W.; Reeder, Nancy L.; Reilman, Raymond A.; Scheynius, Annika; Sun, Sheng; Billmyre, Blake Robert; Li, Wenjun; Averette, Anna Floyd; Mieczkowski, Piotr; Heitman, Joseph; Theelen, Bart; Schröder, Markus S.; De Sessions, Paola Florez; Butler, Geraldine; Maurer-Stroh, Sebastian; Boekhout, Teun; Nagarajan, Niranjan; Dawson, Thomas L.

    2015-01-01

    Malassezia is a unique lipophilic genus in class Malasseziomycetes in Ustilaginomycotina, (Basidiomycota, fungi) that otherwise consists almost exclusively of plant pathogens. Malassezia are typically isolated from warm-blooded animals, are dominant members of the human skin mycobiome and are associated with common skin disorders. To characterize the genetic basis of the unique phenotypes of Malassezia spp., we sequenced the genomes of all 14 accepted species and used comparative genomics against a broad panel of fungal genomes to comprehensively identify distinct features that define the Malassezia gene repertoire: gene gain and loss; selection signatures; and lineage-specific gene family expansions. Our analysis revealed key gene gain events (64) with a single gene conserved across all Malassezia but absent in all other sequenced Basidiomycota. These likely horizontally transferred genes provide intriguing gain-of-function events and prime candidates to explain the emergence of Malassezia. A larger set of genes (741) were lost, with enrichment for glycosyl hydrolases and carbohydrate metabolism, concordant with adaptation to skin’s carbohydrate-deficient environment. Gene family analysis revealed extensive turnover and underlined the importance of secretory lipases, phospholipases, aspartyl proteases, and other peptidases. Combining genomic analysis with a re-evaluation of culture characteristics, we establish the likely lipid-dependence of all Malassezia. Our phylogenetic analysis sheds new light on the relationship between Malassezia and other members of Ustilaginomycotina, as well as phylogenetic lineages within the genus. Overall, our study provides a unique genomic resource for understanding Malassezia niche-specificity and potential virulence, as well as their abundance and distribution in the environment and on human skin. PMID:26539826

  18. When to throw the switch: The adaptiveness of modifying emotion regulation strategies based on affective and physiological feedback.

    PubMed

    Birk, Jeffrey L; Bonanno, George A

    2016-08-01

    Particular emotion regulation (ER) strategies are beneficial in certain contexts, but little is known about the adaptiveness of switching strategies after implementing an initial strategy. Research and theory on regulatory flexibility suggest that people switch strategies dynamically and that internal states provide feedback indicating when switches are appropriate. Frequent switching may predict positive outcomes among people who respond to this feedback. We investigated whether internal feedback (particularly corrugator activity, heart rate, or subjective negative intensity) guides people to switch to an optimal (i.e., distraction) but not nonoptimal (i.e., reappraisal) strategy for regulating strong emotion. We also tested whether switching frequency and responsiveness to internal feedback (RIF) together predict well-being. While attempting to regulate emotion elicited by unpleasant pictures, participants could switch to an optimal (Study 1; reappraisal-to-distraction order; N = 90) or nonoptimal (Study 2; distraction-to-reappraisal order; N = 95) strategy for high-arousal emotion. A RIF score for each emotion measure indexed the relative strength of emotion during the initial phase for trials on which participants later switched strategies. As hypothesized, negative intensity, corrugator activity, and the magnitude of heart rate deceleration during this early phase were higher on switch than maintain trials in Study 1 only. Critically, in Study 1 only, greater switching frequency predicted higher and lower life satisfaction for participants with high and low corrugator RIF, respectively, even after controlling for reappraisal success. Individual differences in RIF may contribute to subjective well-being provided that the direction of strategy switching aligns well with regulatory preferences for high emotion. (PsycINFO Database Record PMID:26900993

  19. Genus-Wide Comparative Genomics of Malassezia Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin.

    PubMed

    Wu, Guangxi; Zhao, He; Li, Chenhao; Rajapakse, Menaka Priyadarsani; Wong, Wing Cheong; Xu, Jun; Saunders, Charles W; Reeder, Nancy L; Reilman, Raymond A; Scheynius, Annika; Sun, Sheng; Billmyre, Blake Robert; Li, Wenjun; Averette, Anna Floyd; Mieczkowski, Piotr; Heitman, Joseph; Theelen, Bart; Schröder, Markus S; De Sessions, Paola Florez; Butler, Geraldine; Maurer-Stroh, Sebastian; Boekhout, Teun; Nagarajan, Niranjan; Dawson, Thomas L

    2015-11-01

    Malassezia is a unique lipophilic genus in class Malasseziomycetes in Ustilaginomycotina, (Basidiomycota, fungi) that otherwise consists almost exclusively of plant pathogens. Malassezia are typically isolated from warm-blooded animals, are dominant members of the human skin mycobiome and are associated with common skin disorders. To characterize the genetic basis of the unique phenotypes of Malassezia spp., we sequenced the genomes of all 14 accepted species and used comparative genomics against a broad panel of fungal genomes to comprehensively identify distinct features that define the Malassezia gene repertoire: gene gain and loss; selection signatures; and lineage-specific gene family expansions. Our analysis revealed key gene gain events (64) with a single gene conserved across all Malassezia but absent in all other sequenced Basidiomycota. These likely horizontally transferred genes provide intriguing gain-of-function events and prime candidates to explain the emergence of Malassezia. A larger set of genes (741) were lost, with enrichment for glycosyl hydrolases and carbohydrate metabolism, concordant with adaptation to skin's carbohydrate-deficient environment. Gene family analysis revealed extensive turnover and underlined the importance of secretory lipases, phospholipases, aspartyl proteases, and other peptidases. Combining genomic analysis with a re-evaluation of culture characteristics, we establish the likely lipid-dependence of all Malassezia. Our phylogenetic analysis sheds new light on the relationship between Malassezia and other members of Ustilaginomycotina, as well as phylogenetic lineages within the genus. Overall, our study provides a unique genomic resource for understanding Malassezia niche-specificity and potential virulence, as well as their abundance and distribution in the environment and on human skin. PMID:26539826

  20. What's Mad Cow Disease?

    MedlinePlus

    ... Quizzes Kids' Dictionary of Medical Words En Español What Other Kids Are Reading Back-to-School Butterflies? ... Got Homework? Here's Help White House Lunch Recipes What's Mad Cow Disease? KidsHealth > For Kids > What's Mad ...

  1. Short communication: Preference for flavored concentrate premixes by dairy cows.

    PubMed

    Harper, M T; Oh, J; Giallongo, F; Lopes, J C; Weeks, H L; Faugeron, J; Hristov, A N

    2016-08-01

    Flavor preferences may be used to stimulate feed intake in dairy cows, which may improve use of robotic milking systems and increase feed intake of sick cows. A cafeteria-design experiment was used to determine if dairy cows have flavor preferences. Sixteen lactating Holstein cows averaging 197±32d in milk, 1.9±0.8 lactations, 27.8±4.2kg/d of dry matter intake, and 41.5±7.4kg/d of milk yield were involved in the experiment. Cows were offered 7 flavored concentrate premixes (FCP) and 1 control premix. The FCP flavors were anise, fenugreek, honey, orange, thyme, molasses, and vanilla; the absence of flavor, neutral, acted as a control. The inclusion rate of the flavors in FCP was 250 to 300g/t on an as-is basis. Cows were not adapted to the flavors before the experiment. Cows were housed in a tiestall barn and offered, on each day, 4 different FCP (1kg each) in plastic bins placed in front of each cow. The experiment lasted 6 consecutive days. Each FCP was presented to each cow once every 2d, 2h after the morning feeding. Flavors and position of the bins in front of the cows were randomized. As a result, each flavor was presented to each cow 3 times during the experiment, at 3 different bin locations. Each cow had access to the FCP for 5min from the time they started eating. Eating time and amount eaten were recorded. The vanilla and fenugreek FCP were consumed the most, at 408 and 371g/5-min offering, respectively, whereas the orange and anise FCP were consumed the least, at 264 and 239g/5-min offering, respectively. Similarly, cows spent the most time eating the vanilla and fenugreek FCP at 99 and 75 s/offering, respectively, and the least amount of time eating the orange and anise FCP at 49 and 50 s/offering, respectively. We detected an effect of bin position: the 2 center FCP were consumed more than the outer 2 FCP. Flavor had no effect on consumption rate. In conclusion, relative to the control, concentrate intake was not affected by flavor, but dairy cows

  2. Heterosis and direct effects for Charolais-sired calf weight and growth, cow weight and weight change, and ratios of cow and calf weights and weight changes across warm season lactation in Romosinuano, Angus, and F cows in Arkansas.

    PubMed

    Riley, D G; Burke, J M; Chase, C C; Coleman, S W

    2016-01-01

    The use of Brahman in cow-calf production offers some adaptation to the harsh characteristics of endophyte-infected tall fescue. Criollo breeds, such as the Romosinuano, may have similar adaptation. The objectives were to estimate genetic effects in Romosinuano, Angus, and crossbred cows for their weights, weights of their calves, and ratios (calf weight:cow weight and cow weight change:calf weight gain) across lactation and to assess the influence of forage on traits and estimates. Cows ( = 91) were bred to Charolais bulls after their second parity. Calves ( = 214) were born from 2006 to 2009. Cows and calves were weighed in early (April and June), mid- (July), and late lactation (August and October). Animal was a random effect in analyses of calf data; sire was random in analyses of cow records and ratios. Fixed effects investigated included calf age, calf sex, cow age-year combinations, sire breed of cow, dam breed of cow, and interactions. Subsequent analyses evaluated the effect of forage grazed: endophyte-free or endophyte-infected tall fescue. Estimates of maternal heterosis for calf weight ranged from 9.3 ± 4.3 to 15.4 ± 5.7 kg from mid-lactation through weaning ( < 0.05). Romosinuano direct effects (of the cow) were -6.8 ± 3.0 and -8.9 ± 4.2 kg for weights recorded in April and June. Calf weights and weight gains from birth were greater ( < 0.05) for calves of cows grazing endophyte-free tall fescue except in mid-summer. Cow weight change from April to each time was negative for Angus cows and lower ( < 0.05) than other groups. Cows grazing endophyte-free tall fescue were heavier ( < 0.05) at all times but had more weight loss in late lactation. Angus cows had the lowest ( < 0.05) ratios (negative) of cow weight change:calf weight gain, indicating an energy-deficit condition. Cows grazing endophyte-free tall fescue had more negative ( < 0.05) values for this trait but not in early lactation ( < 0.05). Estimates of heterosis ranged from 12.8 ± 9.5 to

  3. Using physiologically based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate.

    SciTech Connect

    Kirman, C R.; Sweeney, Lisa M.; Corley, Rick A.; Gargas, M L.

    2005-04-01

    Reference values, including an oral reference dose (RfD) and an inhalation reference concentration (RfC), were derived for propylene glycol methyl ether (PGME), and an oral RfD was derived for its acetate (PGMEA). These values were based upon transient sedation observed in F344 rats and B6C3F1 mice during a two-year inhalation study. The dose-response relationship for sedation was characterized using internal dose measures as predicted by a physiologically based pharmacokinetic (PBPK) model for PGME and its acetate. PBPK modeling was used to account for changes in rodent physiology and metabolism due to aging and adaptation, based on data collected during weeks 1, 2, 26, 52, and 78 of a chronic inhalation study. The peak concentration of PGME in richly perfused tissues was selected as the most appropriate internal dose measure based upon a consideration of the mode of action for sedation and similarities in tissue partitioning between brain and other richly perfused tissues. Internal doses (peak tissue concentrations of PGME) were designated as either no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs) based upon the presence or absence of sedation at each time-point, species, and sex in the two year study. Distributions of the NOAEL and LOAEL values expressed in terms of internal dose were characterized using an arithmetic mean and standard deviation, with the mean internal NOAEL serving as the basis for the reference values, which was then divided by appropriate uncertainty factors. Where data were permitting, chemical-specific adjustment factors were derived to replace default uncertainty factor values of ten. Nonlinear kinetics are were predicted by the model in all species at PGME concentrations exceeding 100 ppm, which complicates interspecies and low-dose extrapolations. To address this complication, reference values were derived using two approaches which differ with respect to the order in which these extrapolations

  4. Leaf morphological and physiological adaptations of a deciduous oak (Quercus faginea Lam.) to the Mediterranean climate: a comparison with a closely related temperate species (Quercus robur L.).

    PubMed

    Peguero-Pina, José Javier; Sisó, Sergio; Sancho-Knapik, Domingo; Díaz-Espejo, Antonio; Flexas, Jaume; Galmés, Jeroni; Gil-Pelegrín, Eustaquio

    2016-03-01

    'White oaks'--one of the main groups of the genus Quercus L.--are represented in western Eurasia by the 'roburoid oaks', a deciduous and closely related genetic group that should have an Arcto-Tertiary origin under temperate-nemoral climates. Nowadays, roburoid oak species such as Quercus robur L. are still present in these temperate climates in Europe, but others are also present in southern Europe under Mediterranean-type climates, such as Quercus faginea Lam. We hypothesize the existence of a coordinated functional response at the whole-shoot scale in Q. faginea under Mediterranean conditions to adapt to more xeric habitats. The results reveal a clear morphological and physiological segregation between Q. robur and Q. faginea, which constitute two very contrasting functional types in response to climate dryness. The most outstanding divergence between the two species is the reduction in transpiring area in Q. faginea, which is the main trait imposed by the water deficit in Mediterranean-type climates. The reduction in leaf area ratio in Q. faginea should have a negative effect on carbon gain that is partially counteracted by a higher inherent photosynthetic ability of Q. faginea when compared with Q. robur, as a consequence of higher mesophyll conductance, higher maximum velocity of carboxylation and much higher stomatal conductance (gs). The extremely high gs of Q. faginea counteracts the expected reduction in gs imposed by the stomatal sensitivity to vapor pressure deficit, allowing this species to diminish water losses maintaining high net CO2 assimilation values along the vegetative period under nonlimiting soil water potential values. In conclusion, the present study demonstrates that Q. faginea can be regarded as an example of adaptation of a deciduous oak to Mediterranean-type climates.

  5. Lack of Physiological Depth Patterns in Conspecifics of Endemic Antarctic Brown Algae: A Trade-Off between UV Stress Tolerance and Shade Adaptation?

    PubMed Central

    Gómez, Iván; Huovinen, Pirjo

    2015-01-01

    A striking characteristic of endemic Antarctic brown algae is their broad vertical distribution. This feature is largely determined by the shade adaptation in order to cope with the seasonal variation in light availability. However, during spring-summer months, when light penetrates deep in the water column these organisms have to withstand high levels of solar radiation, including UV. In the present study we examine the light use characteristics in parallel to a potential for UV tolerance (measured as content of phenolic compounds, antioxidant activity and maximum quantum yield of fluorescence) in conspecific populations of four Antarctic brown algae (Ascoseira mirabilis, Desmarestia menziesii, D. anceps and Himantothallus grandifolius) distributed over a depth gradient between 5 and 30 m. The main results indicated that a) photosynthetic efficiency was uniform along the depth gradient in all the studied species, and b) short-term (6 h) exposure to UV radiation revealed a high tolerance measured as chlorophyll fluorescence, phlorotannin content and antioxidant capacity. Multivariate analysis of similarity indicated that light requirements for photosynthesis, soluble phlorotannins and antioxidant capacity are the variables determining the responses along the depth gradient in all the studied species. The suite of physiological responses of algae with a shallower distribution (A. mirabilis and D. menziesii) differed from those with deeper vertical range (D. anceps and H. grandifolius). These patterns are consistent with the underwater light penetration that defines two zones: 0–15 m, with influence of UV radiation (1% of UV-B and UV-A at 9 m and 15 m respectively) and a zone below 15 m marked by PAR incidence (1% up to 30 m). These results support the prediction that algae show a UV stress tolerance capacity along a broad depth range according to their marked shade adaptation. The high contents of phlorotannins and antioxidant potential appear to be strongly

  6. GnRH-Induced Ca2+ Signaling Patterns and Gonadotropin Secretion in Pituitary Gonadotrophs. Functional Adaptations to Both Ordinary and Extraordinary Physiological Demands

    PubMed Central

    Durán-Pastén, Maria Luisa; Fiordelisio, Tatiana

    2013-01-01

    Pituitary gonadotrophs are a small fraction of the anterior pituitary population, yet they synthesize gonadotropins: luteinizing (LH) and follicle-stimulating (FSH), essential for gametogenesis and steroidogenesis. LH is secreted via a regulated pathway while FSH release is mostly constitutive and controlled by synthesis. Although gonadotrophs fire action potentials spontaneously, the intracellular Ca2+ rises produced do not influence secretion, which is mainly driven by Gonadotropin-Releasing Hormone (GnRH), a decapeptide synthesized in the hypothalamus and released in a pulsatile manner into the hypophyseal portal circulation. GnRH binding to G-protein-coupled receptors triggers Ca2+ mobilization from InsP3-sensitive intracellular pools, generating the global Ca2+ elevations necessary for secretion. Ca2+ signaling responses to increasing (GnRH) vary in stereotyped fashion from subthreshold to baseline spiking (oscillatory), to biphasic (spike-oscillatory or spike-plateau). This progression varies somewhat in gonadotrophs from different species and biological preparations. Both baseline spiking and biphasic GnRH-induced Ca2+ signals control LH/FSH synthesis and exocytosis. Estradiol and testosterone regulate gonadotropin secretion through feedback mechanisms, while FSH synthesis and release are influenced by activin, inhibin, and follistatin. Adaptation to physiological events like the estrous cycle, involves changes in GnRH sensitivity and LH/FSH synthesis: in proestrus, estradiol feedback regulation abruptly changes from negative to positive, causing the pre-ovulatory LH surge. Similarly, when testosterone levels drop after orquiectomy the lack of negative feedback on pituitary and hypothalamus boosts both GnRH and LH secretion, gonadotrophs GnRH sensitivity increases, and Ca2+ signaling patterns change. In addition, gonadotrophs proliferate and grow. These plastic changes denote a more vigorous functional adaptation in response to an extraordinary functional

  7. Insights into the Physiology and Ecology of the Brackish-Water-Adapted Cyanobacterium Nodularia spumigena CCY9414 Based on a Genome-Transcriptome Analysis

    PubMed Central

    Voß, Björn; Bolhuis, Henk; Fewer, David P.; Kopf, Matthias; Möke, Fred; Haas, Fabian; El-Shehawy, Rehab; Hayes, Paul; Bergman, Birgitta; Sivonen, Kaarina; Dittmann, Elke; Scanlan, Dave J.; Hagemann, Martin; Stal, Lucas J.; Hess, Wolfgang R.

    2013-01-01

    Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft genome analysis of N. spumigena sp. CCY9414 yielded a single scaffold of 5,462,271 nucleotides in length on which genes for 5,294 proteins were annotated. A subsequent strand-specific transcriptome analysis identified more than 6,000 putative transcriptional start sites (TSS). Orphan TSSs located in intergenic regions led us to predict 764 non-coding RNAs, among them 70 copies of a possible retrotransposon and several potential RNA regulators, some of which are also present in other N2-fixing cyanobacteria. Approximately 4% of the total coding capacity is devoted to the production of secondary metabolites, among them the potent hepatotoxin nodularin, the linear spumigin and the cyclic nodulapeptin. The transcriptional complexity associated with genes involved in nitrogen fixation and heterocyst differentiation is considerably smaller compared to other Nostocales. In contrast, sophisticated systems exist for the uptake and assimilation of iron and phosphorus compounds, for the synthesis of compatible solutes, and for the formation of gas vesicles, required for the active control of buoyancy. Hence, the annotation and interpretation of this sequence provides a vast array of clues into the genomic underpinnings of the physiology of this cyanobacterium and indicates in particular a competitive edge of N. spumigena in nutrient-limited brackish water ecosystems. PMID:23555932

  8. DAF-16 and TCER-1 Facilitate Adaptation to Germline Loss by Restoring Lipid Homeostasis and Repressing Reproductive Physiology in C. elegans.

    PubMed

    Amrit, Francis Raj Gandhi; Steenkiste, Elizabeth Marie; Ratnappan, Ramesh; Chen, Shaw-Wen; McClendon, T Brooke; Kostka, Dennis; Yanowitz, Judith; Olsen, Carissa Perez; Ghazi, Arjumand

    2016-02-01

    Elimination of the proliferating germline extends lifespan in C. elegans. This phenomenon provides a unique platform to understand how complex metazoans retain metabolic homeostasis when challenged with major physiological perturbations. Here, we demonstrate that two conserved transcription regulators essential for the longevity of germline-less adults, DAF-16/FOXO3A and TCER-1/TCERG1, concurrently enhance the expression of multiple genes involved in lipid synthesis and breakdown, and that both gene classes promote longevity. Lipidomic analyses revealed that key lipogenic processes, including de novo fatty acid synthesis, triglyceride production, desaturation and elongation, are augmented upon germline removal. Our data suggest that lipid anabolic and catabolic pathways are coordinately augmented in response to germline loss, and this metabolic shift helps preserve lipid homeostasis. DAF-16 and TCER-1 also perform essential inhibitory functions in germline-ablated animals. TCER-1 inhibits the somatic gene-expression program that facilitates reproduction and represses anti-longevity genes, whereas DAF-16 impedes ribosome biogenesis. Additionally, we discovered that TCER-1 is critical for optimal fertility in normal adults, suggesting that the protein acts as a switch supporting reproductive fitness or longevity depending on the presence or absence of the germline. Collectively, our data offer insights into how organisms adapt to changes in reproductive status, by utilizing the activating and repressive functions of transcription factors and coordinating fat production and degradation. PMID:26862916

  9. DAF-16 and TCER-1 Facilitate Adaptation to Germline Loss by Restoring Lipid Homeostasis and Repressing Reproductive Physiology in C. elegans

    PubMed Central

    Amrit, Francis Raj Gandhi; Steenkiste, Elizabeth Marie; Ratnappan, Ramesh; Chen, Shaw-Wen; McClendon, T. Brooke; Kostka, Dennis; Yanowitz, Judith; Olsen, Carissa Perez; Ghazi, Arjumand

    2016-01-01

    Elimination of the proliferating germline extends lifespan in C. elegans. This phenomenon provides a unique platform to understand how complex metazoans retain metabolic homeostasis when challenged with major physiological perturbations. Here, we demonstrate that two conserved transcription regulators essential for the longevity of germline-less adults, DAF-16/FOXO3A and TCER-1/TCERG1, concurrently enhance the expression of multiple genes involved in lipid synthesis and breakdown, and that both gene classes promote longevity. Lipidomic analyses revealed that key lipogenic processes, including de novo fatty acid synthesis, triglyceride production, desaturation and elongation, are augmented upon germline removal. Our data suggest that lipid anabolic and catabolic pathways are coordinately augmented in response to germline loss, and this metabolic shift helps preserve lipid homeostasis. DAF-16 and TCER-1 also perform essential inhibitory functions in germline-ablated animals. TCER-1 inhibits the somatic gene-expression program that facilitates reproduction and represses anti-longevity genes, whereas DAF-16 impedes ribosome biogenesis. Additionally, we discovered that TCER-1 is critical for optimal fertility in normal adults, suggesting that the protein acts as a switch supporting reproductive fitness or longevity depending on the presence or absence of the germline. Collectively, our data offer insights into how organisms adapt to changes in reproductive status, by utilizing the activating and repressive functions of transcription factors and coordinating fat production and degradation. PMID:26862916

  10. Adaptation of a single injection clearance method to physiological and pathophysiological facts. A review of data obtained in infancy and childhood.

    PubMed

    Wassmer, M; Schafroth, M; Bretscher, D; Schneider, A; Oetliker, O

    1977-07-01

    A retrospective analysis of 395 51Chromiumethylenediaminotetraacetate single injection clearances performed in infants and children is presented. In 61% of infants and 30% of the children the clearance values were calculated on the basis of a plasma disappearance half time of the reference substance, which was longer than the standard study, i.e. on the basis of extrapolated data. Plasma creatinine and urea levels were found to be appropriate indicators for predicting the plasma disappearance half time of the marker substance. 14 additional patients were studied prospectively with a duration of the study predicted by means of the plasma creatinine and urea levels. In these patients, separate determinations of the clearances using either the data obtained during the standard time of procedure only, or the data of the entire study, clearly demonstrated that the clearances obtained by means of the standard procedure overestimated glomerular filtration rate. The analysis of the data in infants show that the plasma urea level is a reasonably good indicator for predicting the time schedule of the study whereas plasma creatinine should not be used. Additionally the retrospective data indicate that a prolongation of the study should be recommended in all infants. This study demonstrates the necessity and offers means of adapting the time schedule of isotope single injection clearances to physiological and pathophysiological facts.

  11. Contrasting effects of progesterone on fertility of dairy and beef cows.

    PubMed

    Stevenson, J S; Lamb, G C

    2016-07-01

    after AI or at embryo transfer, and its success seems to depend on induction of ancillary CL, whereas in dairy cows increased fertility was detected in cows with multiple CL, human chorionic gonadotropin-enhanced progesterone from original CL, or both. Pregnancy losses after AI are less frequent in beef cows and are not associated with pre-AI progesterone or cycling status, whereas losses in dairy cows are inversely related to progesterone and adversely affected in anovular dairy cows. Genotype and nutritional management likely influence several physiological differences including circulating concentrations of progesterone and responses to supplemental progesterone.

  12. Using physiologically-based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate.

    PubMed

    Kirman, C R; Sweeney, L M; Corley, R; Gargas, M L

    2005-04-01

    Reference values, including an oral reference dose (RfD) and an inhalation reference concentration (RfC), were derived for propylene glycol methyl ether (PGME), and an oral RfD was derived for its acetate (PGMEA). These values were based on transient sedation observed in F344 rats and B6C3F1 mice during a two-year inhalation study. The dose-response relationship for sedation was characterized using internal dose measures as predicted by a physiologically-based pharmacokinetic (PBPK) model for PGME and its acetate. PBPK modeling was used to account for changes in rodent physiology and metabolism due to aging and adaptation, based on data collected during Weeks 1, 2, 26, 52, and 78 of a chronic inhalation study. The peak concentration of PGME in richly perfused tissues (i.e., brain) was selected as the most appropriate internal dose measure based on a consideration of the mode of action for sedation and similarities in tissue partitioning between brain and other richly perfused tissues. Internal doses (peak tissue concentrations of PGME) were designated as either no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs) based on the presence or the absence of sedation at each time point, species, and sex in the two-year study. Distributions of the NOAEL and LOAEL values expressed in terms of internal dose were characterized using an arithmetic mean and standard deviation, with the mean internal NOAEL serving as the basis for the reference values, which was then divided by appropriate uncertainty factors. Where data were permitting, chemical-specific adjustment factors were derived to replace default uncertainty factor values of 10. Nonlinear kinetics, which was predicted by the model in all species at PGME concentrations exceeding 100 ppm, complicate interspecies, and low-dose extrapolations. To address this complication, reference values were derived using two approaches that differ with respect to the order in which these

  13. Physiological responses of emerald ash borer larvae to feeding on different ash species reveal putative resistance mechanisms and insect counter-adaptations.

    PubMed

    Rigsby, C M; Showalter, D N; Herms, D A; Koch, J L; Bonello, P; Cipollini, D

    2015-07-01

    Emerald ash borer, Agrilus planipennis Fairmaire, an Asian wood-boring beetle, has devastated ash (Fraxinus spp.) trees in North American forests and landscapes since its discovery there in 2002. In this study, we collected living larvae from EAB-resistant Manchurian ash (Fraxinus mandschurica), and susceptible white (Fraxinus americana) and green (Fraxinus pennsylvanica) ash hosts, and quantified the activity and production of selected detoxification, digestive, and antioxidant enzymes. We hypothesized that differences in larval physiology could be used to infer resistance mechanisms of ash. We found no differences in cytochrome P450, glutathione-S-transferase, carboxylesterase, sulfotransferase, and tryptic BApNAase activities between larvae feeding on different hosts. Despite this, Manchurian ash-fed larvae produced a single isozyme of low electrophoretic mobility that was not produced in white or green ash-fed larvae. Additionally, larvae feeding on white and green ash produced two serine protease isozymes of high electrophoretic mobility that were not observed in Manchurian ash-fed larvae. We also found lower activity of β-glucosidase and higher activities of monoamine oxidase, ortho-quinone reductase, catalase, superoxide dismutase, and glutathione reductase in Manchurian ash-fed larvae compared to larvae that had fed on susceptible ash. A single isozyme was detected for both catalase and superoxide dismutase in all larval groups. The activities of the quinone-protective and antioxidant enzymes are consistent with the resistance phenotype of the host species, with the highest activities measured in larvae feeding on resistant Manchurian ash. We conclude that larvae feeding on Manchurian ash could be under quinone and oxidative stress, suggesting these may be potential mechanisms of resistance of Manchurian ash to EAB larvae, and that quinone-protective and antioxidant enzymes are important counter-adaptations of larvae for dealing with these resistance

  14. Physiological responses of emerald ash borer larvae to feeding on different ash species reveal putative resistance mechanisms and insect counter-adaptations.

    PubMed

    Rigsby, C M; Showalter, D N; Herms, D A; Koch, J L; Bonello, P; Cipollini, D

    2015-07-01

    Emerald ash borer, Agrilus planipennis Fairmaire, an Asian wood-boring beetle, has devastated ash (Fraxinus spp.) trees in North American forests and landscapes since its discovery there in 2002. In this study, we collected living larvae from EAB-resistant Manchurian ash (Fraxinus mandschurica), and susceptible white (Fraxinus americana) and green (Fraxinus pennsylvanica) ash hosts, and quantified the activity and production of selected detoxification, digestive, and antioxidant enzymes. We hypothesized that differences in larval physiology could be used to infer resistance mechanisms of ash. We found no differences in cytochrome P450, glutathione-S-transferase, carboxylesterase, sulfotransferase, and tryptic BApNAase activities between larvae feeding on different hosts. Despite this, Manchurian ash-fed larvae produced a single isozyme of low electrophoretic mobility that was not produced in white or green ash-fed larvae. Additionally, larvae feeding on white and green ash produced two serine protease isozymes of high electrophoretic mobility that were not observed in Manchurian ash-fed larvae. We also found lower activity of β-glucosidase and higher activities of monoamine oxidase, ortho-quinone reductase, catalase, superoxide dismutase, and glutathione reductase in Manchurian ash-fed larvae compared to larvae that had fed on susceptible ash. A single isozyme was detected for both catalase and superoxide dismutase in all larval groups. The activities of the quinone-protective and antioxidant enzymes are consistent with the resistance phenotype of the host species, with the highest activities measured in larvae feeding on resistant Manchurian ash. We conclude that larvae feeding on Manchurian ash could be under quinone and oxidative stress, suggesting these may be potential mechanisms of resistance of Manchurian ash to EAB larvae, and that quinone-protective and antioxidant enzymes are important counter-adaptations of larvae for dealing with these resistance

  15. Adapting Bulls to Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adaptation of bulls used for natural breeding purposes to the Gulf Coast region of the United States including all of Florida is an important topic. Nearly 40% of the U.S. cow/calf population resides in the Gulf Coast and Southeast. Thus, as A.I. is relatively rare, the number of bulls used for ...

  16. Aquagrams of raw milk for oestrus detection in dairy cows.

    PubMed

    Takemura, G; Bázár, G; Ikuta, K; Yamaguchi, E; Ishikawa, S; Furukawa, A; Kubota, Y; Kovács, Z; Tsenkova, R

    2015-06-01

    The purpose of this research was to develop rapid and cost-effective method for oestrus detection in dairy cows by means of near infrared spectroscopy and aquaphotomics, using raw milk from individual cows. We found that aquaphotomics approach showed consistent specific water spectral pattern of milk at the oestrus periods of the investigated Holstein cows. Characteristic changes were detected especially in foremilk collected at morning milking. They were reflected in calculated aquagrams of milk spectra where distinctive spectral pattern of oestrus showed increased light absorbance of strongly hydrogen-bonded water. Results showed that monitoring of raw milk near infrared spectra provides an opportunity for analysing hormone levels indirectly, through the changes of water spectral pattern caused by complex physiological changes related to fertile periods. PMID:25704193

  17. Heterosis and direct effects for Charolais-sired calf weight and growth, cow weight and weight change, and ratios of cow and calf weights and weight changes accross warm season lactation in Romosinuano, Angus, and F1 cows.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of Brahman in cow-calf production in the southeastern U.S. offers some adaptation to the harsh characteristics of endophyte-infected tall fescue. Other breeds, such as the Criollo breed Romosinuano, may provide similar adaptative characteristics. The objectives were to evaluate Romosinuano...

  18. Plasma exosome profiles from dairy cows with divergent fertility phenotypes.

    PubMed

    Mitchell, M D; Scholz-Romero, K; Reed, S; Peiris, H N; Koh, Y Q; Meier, S; Walker, C G; Burke, C R; Roche, J R; Rice, G; Salomon, C

    2016-09-01

    Cell-to-cell communication in physiological and pathological conditions may be influenced by neighboring cells, distant tissues, or local environmental factors. Exosomes are specific subsets of extracellular vesicles that internalize and deliver their content to near and distant sites. Exosomes may play a role in the maternal-embryo crosstalk vital for the recognition and maintenance of a pregnancy; however, their role in dairy cow reproduction has not been established. This study aimed to characterize the exosome profile in the plasma of 2 strains of dairy cow with divergent fertility phenotypes. Plasma was obtained and characterized on the basis of genetic ancestry as fertile (FERT; <23% North American genetics, New Zealand Holstein-Friesian strain, n=8) or subfertile (SUBFERT; >92% North American genetics, North American Holstein-Friesian strain, n=8). Exosomes were isolated by differential and buoyant density centrifugation and characterized by size distribution (nanoparticle tracking analysis, NanoSight NS500, NanoSight Ltd., Amesbury, UK), the presence of CD63 (Western blot), and their morphology (electron microscopy). The total number of exosomes was determined by quantifying the immunoreactive CD63 (ExoELISA kit, System Biosciences), and the protein content established by mass spectrometry. Enriched exosome fractions were identified as cup-shape vesicles with diameters around 100 nm and positive for the CD63 marker. The concentration of exosomes was 50% greater in FERT cows. Mass spectrometry identified 104 and 117 proteins in FERT and SUBFERT cows, of which 23 and 36 were unique, respectively. Gene ontology analysis revealed enrichment for proteins involved in immunomodulatory processes and cell-to-cell communication. Although the role of exosomes in dairy cow reproduction remains to be elucidated, their quantification and content in models with divergent fertility phenotypes could provide novel information to support both physiological and genetic

  19. Cow's Milk Protein Allergy.

    PubMed

    Mousan, Grace; Kamat, Deepak

    2016-10-01

    Cow's milk protein allergy (CMPA) is a common condition encountered in children with incidence estimated as 2% to 7.5% in the first year of life. Formula and breast-fed babies can present with symptoms of CMPA. It is important to accurately diagnose CMPA to avoid the consequences of either under- or overdiagnosis. CMPA is classically categorized into immunoglobulin E (IgE)- or non-IgE-mediated reaction that vary in clinical manifestations, diagnostic evaluation, and prognosis. The most commonly involved systems in patients with CMPA are gastrointestinal, skin, and respiratory. Evaluation of CMPA starts with good data gathering followed by testing if indicated. Treatment is simply by avoidance of cow's milk protein (CMP) in the child's or mother's diet, if exclusively breast-feeding. This article reviews the definition, epidemiology, risk factors, pathogenesis, clinical presentation, evaluation, management, and prognosis of CMPA and provides an overview of different options for formulas and their indication in the treatment of CMPA.

  20. Effect of dietary vegetable oils on the fatty acid profile of plasma lipoproteins in dairy cows.

    PubMed

    Vargas-Bello-Pérez, Einar; Íñiguez-González, Gonzalo; Cancino-Padilla, Nathaly; Loor, Juan J; Garnsworthy, Philip C

    2016-08-01

    The aim of this study was to elucidate the effect of dietary supplementation of soybean oil (SO) and hydrogenated palm oil (HPO) on the transport of fatty acids (FA) within plasma lipoproteins in lactating and non-lactating cows. Three lactating and three non-lactating Holstein cows were used in two different 3 × 3 Latin square experiments that included three periods of 21 d. Dietary treatments for lactating cows consisted of a basal diet (control; no fat supplement) and fat-supplemented diets containing SO (500 g/d per cow) or HPO (500 g/d per cow). For non-lactating cows, dietary treatments consisted of a basal diet (control; no fat supplement) and fat-supplemented diets containing SO (170 g/d per cow) or HPO (170 g/d per cow). Compared with the control and SO diet, HPO addition increased (p < 0.05) the concentration of C16:0, C18:0, C18:2cis-9,12, C18:3cis-9,12,15 and total saturated and polyunsaturated FA in the plasma of lactating cows. In non-lactating cows, the SO addition increased the plasma concentration of C18:1trans-11. In lactating cows, concentrations of C16:0, C18:0 and total saturated FA were increased (p < 0.05) by HPO addition in the high-density lipoprotein (HDL). Total saturated FA were increased (p < 0.05) by HPO in very-low-density lipoprotein (VLDL). In non-lactating cows, the concentration of C18:0 was increased (p < 0.05) by HPO in HDL, whereas C18:1trans-11 was increased (p < 0.05) by SO in the low-density lipoprotein. Overall, it was found that distribution and transport of FA within the bovine plasma lipoproteins may be influenced by chain length and degree of unsaturation of dietary lipids. Also, the distribution of individual FA isomers such as C18:1trans-11 and C18:2cis-9,trans-11 may vary depending on the physiological state of the cow (lactating or non-lactating), and are increased in plasma (lactating cows) and the HDL (non-lactating cows) when cows are fed SO. PMID:27216557

  1. [Allergy to cow's milk].

    PubMed

    Fourrier, E

    1997-07-01

    After recalling the medical reluctance as well as the risks that there are in complete elimination of milk in infants, the author presents several clinical pictures and then a classification of the immunological types. Allergic shock of neonates, digestive and extra-digestive (skin and respiratory airways) symptoms finally the rare chronic gastro-enteritis to cow milk. Non-reaginic food allergies: Acute gastro-enteropathy to cow milk, with villous atrophy and Heiner's syndrome, delayed hypersensitivities are studied, of difficult diagnosis that may cover almost all pathologies. They may be found in the digestive system, respiratory, the kidneys and even in the organs of behaviour. Migrane of food origin must be remembered. Development in regressive rules is a function of the type of allergy and the suddenness of the symptoms. Diagnosis is above all by questioning and confirmation or not by skin and in vitro tests. Certainty can only be shown by tests of elimination and re-introduction. The diet, at the same time of both diagnostic and therapeutic value, is based on the replacement of cow milk by foods that contain the same amount of proteins. It is essential, especially in the very small, to have perfect match of food so as to avoid any risk of a dramatic hypoprotinemia, which may happen if the child does not like the suggested diet, or if the parents cannot buy the substitution products. In such conditions great care must be taken to avoid provoking a crisis. Care must be taken to decide: If the elimination of cow milk is always justified each time. If it is, always check that the substituted protein is properly made, the family may change the diet mistakenly. It is better, finally, to keep the eczema, rather than die with it healed.

  2. [Allergy to cow's milk].

    PubMed

    Fourrier, E

    1997-04-01

    After recalling the medical reluctance as well as the risks that there are in complete elimination of milk in infants, the author presents several clinical pictures and then a classification of the immunological types: Allergic shock of neonates, digestive and extra-digestive (skin and respiratory airways) symptoms finally the rare chronic gastro-enteritis to cow milk. Non-reaginic food allergies: Acute gastro-enteropathy to cow milk, with villous atrophy and Heiner's syndrome, delayed hypersensitivities are studied, of difficult diagnosis that may cover almost all pathologies. They may be found in the digestive system, respiratory, the kidneys and even in the organs of behaviour. Migraine of food origin must be remembered. Development in regressive rules is a function of the type of allergy and the suddenness of the symptoms. Diagnosis is above all by questioning and confirmation or not by skin and in vitro tests. Certainty can only be shown by tests of elimination and re-introduction. The diet, at the same time of both diagnostic and therapeutic value, is based on the replacement of cow milk by foods that contain the same amount of proteins. It is essential, especially in the very small, to have perfect match of food so as to avoid any risk of a dramatic hypoprotinemia, which may happen if the child does not like the suggested diet, or if the parents cannot buy the substitution products. In such conditions great care must be taken to avoid provoking a crisis. Care must be taken to decide: If the elimination of cow milk is always justified each time. If it is, always check that the substituted protein is properly made, the family may change the diet mistakenly.

  3. Different Blood Cell-Derived Transcriptome Signatures in Cows Exposed to Vaccination Pre- or Postpartum

    PubMed Central

    Weikard, Rosemarie; Demasius, Wiebke; Hadlich, Frieder; Kühn, Christa

    2015-01-01

    Periparturient cows have been found to reveal immunosuppression, frequently associated with increased susceptibility to uterine and mammary infections. To improve understanding of the causes and molecular regulatory mechanisms accounting for this phenomenon around calving, we examined the effect of an antigen challenge on gene expression modulation on cows prior to (BC) or after calving (AC) using whole transcriptome sequencing (RNAseq). The transcriptome analysis of the cows’ blood identified a substantially higher number of loci affected in BC cows (2,235) in response to vaccination compared to AC cows (208) and revealed a divergent transcriptional profile specific for each group. In BC cows, a variety of loci involved in immune defense and cellular signaling processes were transcriptionally activated, whereas protein biosynthesis and posttranslational processes were tremendously impaired in response to vaccination. Furthermore, energy metabolism in the blood cells of BC cows was shifted from oxidative phosphorylation to the glycolytic system. In AC cows, the number and variety of regulated pathways involved in immunomodulation and maintenance of immnunocompetence are considerably lower after vaccination, and upregulation of arginine degradation was suggested as an immunosuppressive mechanism. Elevated transcript levels of erythrocyte-specific genes involved in gas exchange processes were a specific transcriptional signature in AC cows pointing to hematopoiesis activation. The divergent and substantially lower magnitude of transcriptional modulation in response to vaccination in AC cows provides evidence for a suppressed immune capacity of early lactating cows on the molecular level and demonstrates that an efficient immune response of cows is related to their physiological and metabolic status. PMID:26317664

  4. Adaptive calibration of children's physiological responses to family stress: the utility of evolutionary developmental theory: comment on Del Giudice et al. (2012) and Sturge-Apple et al. (2012).

    PubMed

    Bugental, Daphne Blunt

    2012-05-01

    Children's physiological reactions to stress are presented from the broader theoretical perspective of adaptive calibration to the environment, as rooted in life history theory. Del Giudice, Hinnant, Ellis, and El-Sheikh (2012) focus on children's physiological responses to a stressful task as a consequence of their history of family stress. Sturge-Apple, Davies, Martin, Cicchetti, and Hentges (2012) focus on the ways that children respond to a novel laboratory manipulation as a combined function of their temperament patterns and the harshness of their parental environment. The theoretical perspective employed provides an overarching framework that not only accounts for the findings presented here but also has heuristic value for future research on responses to early environmental risk. Future work in this area will benefit by inclusion of additional sympathetic nervous system (SNS) markers and neurotransmitters, inclusion of the role of gene expression in adaptive calibration, broader consideration of protective factors in the child's environment, and longitudinal work demonstrating the effects of adaptive calibration on children's future life history strategies and outcomes.

  5. Genetic evaluation of dairy cow livability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Predicted transmitting abilities (PTA) for cow livability (LIV) were developed to measure a cow's ability to stay alive while on the farm, whereas PTA for productive life (PL) measures a cow's ability to avoid either dying on the farm or being culled. About 20% of dairy cows die instead of being sol...

  6. Milk production responses to different strategies for feeding supplements to grazing dairy cows.

    PubMed

    Auldist, M J; Marett, L C; Greenwood, J S; Wright, M M; Hannah, M; Jacobs, J L; Wales, W J

    2016-01-01

    Milk production responses of grazing cows offered supplements in different ways were measured. Holstein-Friesian cows, averaging 45 d in milk, were allocated into 8 groups of 24, with 2 groups randomly assigned to each of 4 feeding strategies. These were control: cows grazed a restricted allowance of perennial ryegrass pasture supplemented with milled wheat grain fed in the milking parlor and alfalfa hay offered in the paddock; FGM: same pasture and allowance as the control supplemented with a formulated grain mix containing wheat grain, corn grain, and canola meal fed in the parlor and alfalfa hay fed in the paddock; PMRL: same pasture and allowance as the control, supplemented with a PMR consisting of the same FGM but mixed with alfalfa hay and presented on a feed pad after each milking; and PMRH: same PMR fed in the same way as PMRL but with a higher pasture allowance. For all strategies, supplements provided the same metabolizable energy and grain:forage ratio [75:25, dry matter (DM) basis]. Each group of 24 cows was further allocated into 4 groups of 6, which were randomly assigned to receive 8, 12, 14, or 16 kg of DM supplement/cow per d. Thus, 2 replicated groups per supplement amount per dietary strategy were used. The experiment had a 14-d adaptation period and a 14-d measurement period. Pasture allowance, measured to ground level, was approximately 14 kg of DM/d for control, FGM, and PMRL cows, and 28 kg of DM/d for the PMRH cows, and was offered in addition to the supplement. Positive linear responses to increasing amounts of supplement were observed for yield of milk, energy-corrected milk, fat, and protein for cows on all 4 supplement feeding strategies. Production of energy-corrected milk was greatest for PMRH cows, intermediate for FGM and PMRL cows, and lowest for control cows. Some of these differences in milk production related to differences in intake of pasture and supplement. Milk fat concentration decreased with increasing amount of supplement

  7. Milk production responses to different strategies for feeding supplements to grazing dairy cows.

    PubMed

    Auldist, M J; Marett, L C; Greenwood, J S; Wright, M M; Hannah, M; Jacobs, J L; Wales, W J

    2016-01-01

    Milk production responses of grazing cows offered supplements in different ways were measured. Holstein-Friesian cows, averaging 45 d in milk, were allocated into 8 groups of 24, with 2 groups randomly assigned to each of 4 feeding strategies. These were control: cows grazed a restricted allowance of perennial ryegrass pasture supplemented with milled wheat grain fed in the milking parlor and alfalfa hay offered in the paddock; FGM: same pasture and allowance as the control supplemented with a formulated grain mix containing wheat grain, corn grain, and canola meal fed in the parlor and alfalfa hay fed in the paddock; PMRL: same pasture and allowance as the control, supplemented with a PMR consisting of the same FGM but mixed with alfalfa hay and presented on a feed pad after each milking; and PMRH: same PMR fed in the same way as PMRL but with a higher pasture allowance. For all strategies, supplements provided the same metabolizable energy and grain:forage ratio [75:25, dry matter (DM) basis]. Each group of 24 cows was further allocated into 4 groups of 6, which were randomly assigned to receive 8, 12, 14, or 16 kg of DM supplement/cow per d. Thus, 2 replicated groups per supplement amount per dietary strategy were used. The experiment had a 14-d adaptation period and a 14-d measurement period. Pasture allowance, measured to ground level, was approximately 14 kg of DM/d for control, FGM, and PMRL cows, and 28 kg of DM/d for the PMRH cows, and was offered in addition to the supplement. Positive linear responses to increasing amounts of supplement were observed for yield of milk, energy-corrected milk, fat, and protein for cows on all 4 supplement feeding strategies. Production of energy-corrected milk was greatest for PMRH cows, intermediate for FGM and PMRL cows, and lowest for control cows. Some of these differences in milk production related to differences in intake of pasture and supplement. Milk fat concentration decreased with increasing amount of supplement

  8. Cow's Milk Protein Allergy.

    PubMed

    Mousan, Grace; Kamat, Deepak

    2016-10-01

    Cow's milk protein allergy (CMPA) is a common condition encountered in children with incidence estimated as 2% to 7.5% in the first year of life. Formula and breast-fed babies can present with symptoms of CMPA. It is important to accurately diagnose CMPA to avoid the consequences of either under- or overdiagnosis. CMPA is classically categorized into immunoglobulin E (IgE)- or non-IgE-mediated reaction that vary in clinical manifestations, diagnostic evaluation, and prognosis. The most commonly involved systems in patients with CMPA are gastrointestinal, skin, and respiratory. Evaluation of CMPA starts with good data gathering followed by testing if indicated. Treatment is simply by avoidance of cow's milk protein (CMP) in the child's or mother's diet, if exclusively breast-feeding. This article reviews the definition, epidemiology, risk factors, pathogenesis, clinical presentation, evaluation, management, and prognosis of CMPA and provides an overview of different options for formulas and their indication in the treatment of CMPA. PMID:27582492

  9. Adaptation to thermotolerance in Rhizopus coincides with virulence as revealed by avian and invertebrate infection models, phylogeny, physiological and metabolic flexibility

    PubMed Central

    Kaerger, Kerstin; Schwartze, Volker U; Dolatabadi, Somayeh; Nyilasi, Ildikó; Kovács, Stella A; Binder, Ulrike; Papp, Tamás; de Hoog, Sybren; Jacobsen, Ilse D; Voigt, Kerstin

    2015-01-01

    Mucormycoses are fungal infections caused by the ancient Mucorales. They are rare, but increasingly reported. Predisposing conditions supporting and favoring mucormycoses in humans and animals include diabetic ketoacidosis, immunosuppression and haematological malignancies. However, comprehensive surveys to elucidate fungal virulence in ancient fungi are limited and so far focused on Lichtheimia and Mucor. The presented study focused on one of the most important causative agent of mucormycoses, the genus Rhizopus (Rhizopodaceae). All known clinically-relevant species are thermotolerant and are monophyletic. They are more virulent compared to non-clinically, mesophilic species. Although adaptation to elevated temperatures correlated with the virulence of the species, mesophilic strains showed also lower virulence in Galleria mellonella incubated at permissive temperatures indicating the existence of additional factors involved in the pathogenesis of clinical Rhizopus species. However, neither specific adaptation to nutritional requirements nor stress resistance correlated with virulence, supporting the idea that Mucorales are predominantly saprotrophs without a specific adaptation to warm blooded hosts. PMID:26065324

  10. Plasma oxidative stress biomarkers and progesterone profiles in a dairy cow diagnosed with an ovarian follicular cyst.

    PubMed

    Talukder, S; Ingenhoff, L; Kerrisk, K L; Celi, P

    2014-01-01

    This study was conducted to examine the oxidative stress biomarkers in a cow diagnosed with a follicular cyst in her left ovary. Progesterone (P4) and plasma oxidative stress status was measured in 13 Holstein cows after synchronization of oestrus with controlled internal drug release (CIDR) and prostaglandinF2α (PGF2α) protocol. The presence and size of ovarian structures were monitored by transrectal ultrasound at 4 hourly intervals. Of the 13 cows, 12 were monitored until ovulation was detected and recorded, whereas one cow failed to ovulate and developed a follicular cyst. Oxidative stress biomarkers; reactive oxygen metabolites (ROMs), biological antioxidant potential (BAP), oxidative stress index (OSI), glutathione (GSH), ceruloplasmin and advanced oxidation protein products (AOPP) were measured in the cystic cow and compared to those of the 12 ovulated cows and are referred to as higher or lower if they are outside the mean ± standard error of mean of those of ovulated cows. The cystic cow had lower ROMs and OSI between 36 and 84 h after PGF2α injection and at 9 h, from 36 to 60 h after PGF2α injection respectively. On the other hand, antioxidant (BAP and GSH) was higher in the cystic cow compared to her ovulated herd mates. The observed imbalance between oxidant and antioxidant might have disrupted the physiological events for ovulation to occur, leading to cystic ovarian disease.

  11. Cow's milk and goat's milk.

    PubMed

    Turck, Dominique

    2013-01-01

    Cow's milk is increasingly suggested to play a role in the development of chronic degenerative, non-communicable disorders whereas goat's milk is advocated as having several health benefits. Cow's milk is a rich and cheap source of protein and calcium, and a valuable food for bone health. Despite their high content in saturated fats, consumption of full-fat dairy products does not seem to cause significant changes in cardiovascular disease risk variables. Early introduction of cow's milk is a strong negative determinant of iron status. Unmodified cow's milk does not meet nutritional requirements of infants although it is acceptable to add small volumes of cow's milk to complementary foods. Cow's milk protein allergy has a prevalence ranging from 2 to 7%, and the age of recovery is usually around 2-3 years. The evidence linking cow's milk intake to a later risk of type 1 diabetes or chronic degenerative, non-communicable disorders (obesity, metabolic syndrome, type 2 diabetes, hypertension) is not convincing. Milk probably protects against colorectal cancer, diets high in calcium are a probable cause of prostate cancer, and there is limited evidence suggesting that high consumption of milk and dairy products increases the risk for prostate cancer. There is no evidence to support the use of a cow's milk-free diet as a primary treatment for individuals with autistic spectrum disorders. Unmodified goat's milk is not suitable for infants because of the high protein and minerals content and of a low folate content. Goat's milk has no clear nutritional advantage over cow's milk and is not less allergenic. The European Food Safety Authority recently stated that proteins from goat's milk can be suitable as a protein source for infant and follow-on formula, provided the final product complies with the compositional criteria laid down in Directive 2006/141/EC.

  12. Procedures of Exercise Physiology Laboratories

    NASA Technical Reports Server (NTRS)

    Bishop, Phillip A.; Fortney, Suzanne; Greenisen, Michael; Siconolfi, Steven F.; Bamman, Marcas M.; Moore, Alan D., Jr.; Squires, William

    1998-01-01

    This manual describes the laboratory methods used to collect flight crew physiological performance data at the Johnson Space Center. The Exercise Countermeasures Project Laboratory is a standard physiology laboratory; only the application to the study of human physiological adaptations to spaceflight is unique. In the absence of any other recently published laboratory manual, this manual should be a useful document staffs and students of other laboratories.

  13. Physiologic mastectomy via flank laparotomy.

    PubMed

    Allen, Andrew J; Barrington, George M; Parish, Steve M

    2008-11-01

    Physiologic mastectomy can be used as a salvage procedure in cases of chronic suppurative mastitis, gangrenous mastitis, or chronic, severe mastitis associated with organisms liberating endotoxin or exotoxin. The surgical technique involves ligation of the major arterial blood supply (external pudendal artery) to the corresponding half of the mammary gland, which results in decreased systemic absorption of toxins and gland atrophy. The technique is performed with the cow standing, and it is relatively atraumatic. This procedure is a simple, yet effective alternative to radical mastectomy for unresponsive mastitis cases in genetically or otherwise valuable cattle.

  14. Metagenomic assessment of the functional potential of the rumen microbiome in Holstein dairy cows.

    PubMed

    Pitta, Dipti W; Indugu, Nagaraju; Kumar, Sanjay; Vecchiarelli, Bonnie; Sinha, Rohini; Baker, Linda D; Bhukya, Bhima; Ferguson, James D

    2016-04-01

    The microbial ecology of the rumen microbiome is influenced by the diet and the physiological status of the dairy cow and can have tremendous influence on the yield and components of milk. There are significant differences in milk yields between first and subsequent lactations of dairy cows, but information on how the rumen microbiome changes as the dairy cow gets older has received little attention. We characterized the rumen microbiome of the dairy cow for phylogeny and functional pathways by lactation group and stage of lactation using a metagenomics approach. Our findings revealed that the rumen microbiome was dominated by Bacteroidetes (70%), Firmicutes (15-20%) and Proteobacteria (7%). The abundance of Firmicutes and Proteobacteria were independently influenced by diet and lactation. Bacteroidetes contributed to a majority of the metabolic functions in first lactation dairy cows while the contribution from Firmicutes and Proteobacteria increased incrementally in second and third lactation dairy cows. We found that nearly 70% of the CAZymes were oligosaccharide breaking enzymes which reflect the higher starch and fermentable sugars in the diet. The results of this study suggest that the rumen microbiome continues to evolve as the dairy cow advances in lactations and these changes may have a significant role in milk production.

  15. Metagenomic assessment of the functional potential of the rumen microbiome in Holstein dairy cows.

    PubMed

    Pitta, Dipti W; Indugu, Nagaraju; Kumar, Sanjay; Vecchiarelli, Bonnie; Sinha, Rohini; Baker, Linda D; Bhukya, Bhima; Ferguson, James D

    2016-04-01

    The microbial ecology of the rumen microbiome is influenced by the diet and the physiological status of the dairy cow and can have tremendous influence on the yield and components of milk. There are significant differences in milk yields between first and subsequent lactations of dairy cows, but information on how the rumen microbiome changes as the dairy cow gets older has received little attention. We characterized the rumen microbiome of the dairy cow for phylogeny and functional pathways by lactation group and stage of lactation using a metagenomics approach. Our findings revealed that the rumen microbiome was dominated by Bacteroidetes (70%), Firmicutes (15-20%) and Proteobacteria (7%). The abundance of Firmicutes and Proteobacteria were independently influenced by diet and lactation. Bacteroidetes contributed to a majority of the metabolic functions in first lactation dairy cows while the contribution from Firmicutes and Proteobacteria increased incrementally in second and third lactation dairy cows. We found that nearly 70% of the CAZymes were oligosaccharide breaking enzymes which reflect the higher starch and fermentable sugars in the diet. The results of this study suggest that the rumen microbiome continues to evolve as the dairy cow advances in lactations and these changes may have a significant role in milk production. PMID:26700882

  16. Effect of ambient temperature and sodium bicarbonate supplementation on water and electrolyte balances in dry and lactating Holstein cows.

    PubMed

    Khelil-Arfa, H; Faverdin, P; Boudon, A

    2014-01-01

    The aim of this study was to quantify the effect of the interaction between 2 constant ambient temperatures [thermoneutrality (TN; 15°C) and high temperature (HT; 28°C)] and 2 levels of Na bicarbonate supplementation [calculated to provide diet Na contents of 0.20%DM (Na-) and 0.50%DM (Na+)] on water partitioning in dairy cows. Treatments were compared on 4 dry and 4mid-lactation Holstein cows according to 2 Latin squares (1 for each physiological stage) over the course of 4 periods of 15d. Diets consisted of a total mixed ration based on maize silage. Dry cows were restricted to their protein and energy requirements, whereas lactating cows were fed ad libitum. The daily average temperature-humidity index was 59.4 for TN and 73.2 for HT. Lactating and dry cows had higher vaginal temperatures at HT than at TN, but the increase was more pronounced in lactating cows (+1.05 vs. +0.12°C for vaginal temperature, respectively). Dry matter intake (DMI) of lactating cows decreased by 2.3kg/d at HT. Free water intake (FWI) and estimated volume of water lost to evaporation increased at HT in both lactating and dry cows; no interactions were observed between temperature and physiological stage. When expressed as a proportion of DMI, the increase in evaporation that occurred with increasing temperature was completely compensated for by an increase in FWI for both physiological stages. The urinary water excretion increased slightly at HT in lactating cows but not in dry cows, which may be related to the low chloride content of the offered diet. High Na supplementation increased DMI slightly in lactating cows, but milk yield was not affected. Sodium supplementation did not limit the decrease in DMI observed in lactating cows at HT; this observation is likely due to the high diet electrolyte balance of the offered diets. Sodium supplementation increased FWI in lactating cows and urinary flow in both physiological states. The interaction between ambient temperature and Na

  17. Effect of ambient temperature and sodium bicarbonate supplementation on water and electrolyte balances in dry and lactating Holstein cows.

    PubMed

    Khelil-Arfa, H; Faverdin, P; Boudon, A

    2014-01-01

    The aim of this study was to quantify the effect of the interaction between 2 constant ambient temperatures [thermoneutrality (TN; 15°C) and high temperature (HT; 28°C)] and 2 levels of Na bicarbonate supplementation [calculated to provide diet Na contents of 0.20%DM (Na-) and 0.50%DM (Na+)] on water partitioning in dairy cows. Treatments were compared on 4 dry and 4mid-lactation Holstein cows according to 2 Latin squares (1 for each physiological stage) over the course of 4 periods of 15d. Diets consisted of a total mixed ration based on maize silage. Dry cows were restricted to their protein and energy requirements, whereas lactating cows were fed ad libitum. The daily average temperature-humidity index was 59.4 for TN and 73.2 for HT. Lactating and dry cows had higher vaginal temperatures at HT than at TN, but the increase was more pronounced in lactating cows (+1.05 vs. +0.12°C for vaginal temperature, respectively). Dry matter intake (DMI) of lactating cows decreased by 2.3kg/d at HT. Free water intake (FWI) and estimated volume of water lost to evaporation increased at HT in both lactating and dry cows; no interactions were observed between temperature and physiological stage. When expressed as a proportion of DMI, the increase in evaporation that occurred with increasing temperature was completely compensated for by an increase in FWI for both physiological stages. The urinary water excretion increased slightly at HT in lactating cows but not in dry cows, which may be related to the low chloride content of the offered diet. High Na supplementation increased DMI slightly in lactating cows, but milk yield was not affected. Sodium supplementation did not limit the decrease in DMI observed in lactating cows at HT; this observation is likely due to the high diet electrolyte balance of the offered diets. Sodium supplementation increased FWI in lactating cows and urinary flow in both physiological states. The interaction between ambient temperature and Na

  18. The Development of Real-Time Physiological Monitoring and Training Software for Remote Applications

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Autogenic Feedback Training Exercise (AFTE) is an protocol and technology developed by Dr. Patricia Cowings and her associates at NASA Ames Research Center as a means to facilitate astronaut adaptation to space and exposure to the microgravity. AFTE is a training method which involves teaching subjects to voluntarily control several of their own physiological responses to environmental stressors. As the procedures matured, the training program was expanded to determine if technology developed to facilitate astronaut adaptation to space would be valuable in treating patients suffering from autonomic and vestibular pathologies and symptomatic relief from nausea and/or blood pressure control anomalies such as hypo- or hypertension. The present study, performed in conjunction with Morehouse School of Medicine, Biomedical Engineering at The University of Akron and NASA Ames Research Center has demonstrated that this technology can be successfully applied over vast distances. The specific purpose of this research was to develop a PC based system which could handle processing of twenty channels of acquired physiological data in addition to the necessary duplex communication protocols that would, for example, permit a patient in Atlanta, GA to be trained by a clinician stationed in San Jose, CA. Sixteen channels of physiological data and 20 channels of processed data are included.

  19. The effect of floor surface on dairy cow immune function and locomotion score.

    PubMed

    O'Driscoll, K K M; Schutz, M M; Lossie, A C; Eicher, S D

    2009-09-01

    detection respectively. Greater neutrophil to lymphocyte ratios and CD14 expression are associated with physiological stress or with activated immunity. Rubber flooring is associated with an increase in activity and standing. This may have resulted in indications of physiological stress and upregulation of genes associated with lameness and pain for RUB cows. However, this study did not take into account the long-term effects of concrete or rubber flooring; for instance, occurrence of lameness or survivability within the herd.

  20. Effects of feeding rumen-degradable valine on milk production in late-lactating dairy cows.

    PubMed

    Hultquist, Kayla M; Casper, David P

    2016-02-01

    The study objective was to determine if feeding the rumen-degradable AA Val can increase milk production comparable to recombinant bovine somatotropin (bST). Eight multiparous late-lactating (255±26.4 d in milk) Holstein dairy cows were blocked by milk yield (34.1±8.25 kg/d) and randomly assigned to 1 of 4 treatments in a replicated 4×4 Latin square design with 21-d periods (7 d for dietary adaptation and 14 d for data collection). Treatments were control (CON), a single injection of recombinant bST (rbST), and Val fed at 40 (V40) and 80 g/d (V80). Cows were fed a total mixed ration with a distillers dried grains carrier at 113.4 g/d containing none or added AA. Dry matter intake (21.3, 22.0, 22.8, and 21.5 kg/d for CON, rbST, V40, and V80, respectively) was similar among treatments, except cows receiving V40 had greater dry matter intake than cows receiving V80. Milk yield (22.0, 26.1, 25.2, and 24.9 kg/d), 3.5% fat-corrected milk (22.1, 25.4, 24.4, and 24.3 kg/d), and energy-corrected milk (22.7, 26.1, 25.1, and 24.9 kg/d) were increased at similar amounts for cows receiving rbST, V40, and V80 compared with CON cows. Milk fat percentages (3.51, 3.36, 3.32, and 3.38%) were greatest for CON cows compared with cows receiving V40, whereas cows receiving other treatments were intermediate and similar. Milk protein percentages (3.20, 3.12, 3.15, and 3.13%) were greater for CON cows compared with cows receiving rbST and V40, whereas cows receiving V80 were intermediate and similar. Ruminal isobutyrate (1.19, 1.24, 1.44, and 1.74 mol/100 mol) concentrations were increased for cows receiving V40 and V80 compared with CON and rbST cows, with cows receiving V80 having greater concentrations than cows receiving V40. Plasma growth hormone concentrations (1.78, 1.99, 1.55, and 1.45 ng/mL) were greater for cows receiving rbST compared with cows receiving V40 and V80, whereas CON cows were intermediate and similar. Plasma insulin-like growth factor-1 concentrations (60.4, 106

  1. Effects of feeding rumen-degradable valine on milk production in late-lactating dairy cows.

    PubMed

    Hultquist, Kayla M; Casper, David P

    2016-02-01

    The study objective was to determine if feeding the rumen-degradable AA Val can increase milk production comparable to recombinant bovine somatotropin (bST). Eight multiparous late-lactating (255±26.4 d in milk) Holstein dairy cows were blocked by milk yield (34.1±8.25 kg/d) and randomly assigned to 1 of 4 treatments in a replicated 4×4 Latin square design with 21-d periods (7 d for dietary adaptation and 14 d for data collection). Treatments were control (CON), a single injection of recombinant bST (rbST), and Val fed at 40 (V40) and 80 g/d (V80). Cows were fed a total mixed ration with a distillers dried grains carrier at 113.4 g/d containing none or added AA. Dry matter intake (21.3, 22.0, 22.8, and 21.5 kg/d for CON, rbST, V40, and V80, respectively) was similar among treatments, except cows receiving V40 had greater dry matter intake than cows receiving V80. Milk yield (22.0, 26.1, 25.2, and 24.9 kg/d), 3.5% fat-corrected milk (22.1, 25.4, 24.4, and 24.3 kg/d), and energy-corrected milk (22.7, 26.1, 25.1, and 24.9 kg/d) were increased at similar amounts for cows receiving rbST, V40, and V80 compared with CON cows. Milk fat percentages (3.51, 3.36, 3.32, and 3.38%) were greatest for CON cows compared with cows receiving V40, whereas cows receiving other treatments were intermediate and similar. Milk protein percentages (3.20, 3.12, 3.15, and 3.13%) were greater for CON cows compared with cows receiving rbST and V40, whereas cows receiving V80 were intermediate and similar. Ruminal isobutyrate (1.19, 1.24, 1.44, and 1.74 mol/100 mol) concentrations were increased for cows receiving V40 and V80 compared with CON and rbST cows, with cows receiving V80 having greater concentrations than cows receiving V40. Plasma growth hormone concentrations (1.78, 1.99, 1.55, and 1.45 ng/mL) were greater for cows receiving rbST compared with cows receiving V40 and V80, whereas CON cows were intermediate and similar. Plasma insulin-like growth factor-1 concentrations (60.4, 106

  2. Mad Cow Disease (For Parents)

    MedlinePlus

    ... versions of the disease can affect certain other animals, like goats and sheep. BSE is an incurable ... it affects a cow's nervous system, causing the animal to act strangely and lose control of its ...

  3. Physiological Waterfalls

    ERIC Educational Resources Information Center

    Leith, David E.

    1976-01-01

    Provides background information, defining areas within organ systems where physiological waterfalls exist. Describes pressure-flow relationships of elastic tubes (blood vessels, airways, renal tubules, various ducts). (CS)

  4. Metabolic profiles of cow's blood; a review.

    PubMed

    Puppel, Kamila; Kuczyńska, Beata

    2016-10-01

    The term 'metabolic profile' refers to the analysis of blood biochemical parameters that are useful to assess and prevent metabolic and nutritional disorders in dairy herds. In the higher standards of milk production, the priority in modern breeding is keeping dairy cows in high lactation and healthy. The proper analysis, as well as control. of their feeding and metabolic status is immensely important for the health condition of the herd. The disproportion between the genetically determined ability for milk production and the limitations in improving the energy value of the ration may be the cause of metabolic disorders. Negative energy balance has a major impact on the body's hormonal balance and organ functions and mostly appears during transition periods: from 3 to 2 weeks prepartum until 2-3 weeks postpartum. The term 'transition' is used to underscore the important physiological, metabolic and nutritional changes occurring in this time. The manner in which these changes occur and how they are diagnosed and detected are extremely important, as they are closely related to clinical and subclinical postpartum diseases, lactation and reproductive performance - factors that significantly shape the profitability of production. Therefore the priority for intensive milk production is prevention of metabolic diseases and other disorders. It is the intent of this review to synthesize and summarize the information currently available on metabolic status and physiological changes in the cow's body that occur during lactation, as well as to discuss the interpretation of the results, which will be a useful diagnostic tool in nutritional evaluations of the dairy herd. © 2016 Society of Chemical Industry.

  5. Metabolic profiles of cow's blood; a review.

    PubMed

    Puppel, Kamila; Kuczyńska, Beata

    2016-10-01

    The term 'metabolic profile' refers to the analysis of blood biochemical parameters that are useful to assess and prevent metabolic and nutritional disorders in dairy herds. In the higher standards of milk production, the priority in modern breeding is keeping dairy cows in high lactation and healthy. The proper analysis, as well as control. of their feeding and metabolic status is immensely important for the health condition of the herd. The disproportion between the genetically determined ability for milk production and the limitations in improving the energy value of the ration may be the cause of metabolic disorders. Negative energy balance has a major impact on the body's hormonal balance and organ functions and mostly appears during transition periods: from 3 to 2 weeks prepartum until 2-3 weeks postpartum. The term 'transition' is used to underscore the important physiological, metabolic and nutritional changes occurring in this time. The manner in which these changes occur and how they are diagnosed and detected are extremely important, as they are closely related to clinical and subclinical postpartum diseases, lactation and reproductive performance - factors that significantly shape the profitability of production. Therefore the priority for intensive milk production is prevention of metabolic diseases and other disorders. It is the intent of this review to synthesize and summarize the information currently available on metabolic status and physiological changes in the cow's body that occur during lactation, as well as to discuss the interpretation of the results, which will be a useful diagnostic tool in nutritional evaluations of the dairy herd. © 2016 Society of Chemical Industry. PMID:27129620

  6. Physiological and genetic analyses reveal a mechanistic insight into the multifaceted lifestyles of Pseudoalteromonas sp. SM9913 adapted to the deep-sea sediment.

    PubMed

    Mi, Zi-Hao; Yu, Zi-Chao; Su, Hai-Nan; Wang, Lei; Chen, Xiu-Lan; Pang, Xiuhua; Qin, Qi-Long; Xie, Bin-Bin; Zhang, Xi-Ying; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2015-10-01

    Although bacteriobenthos play a major role in the degradation of particulate organic matter in marine sediment, knowledge of the sediment-adapted lifestyles of bacteriobenthos is still scarce. Here, the particle-associated, swimming and swarming lifestyles of the benthonic bacterium Pseudoalteromonas sp. SM9913 (SM9913) were illustrated. SM9913 had a clay particle-associated lifestyle, and its exopolysaccharide played an important role in this lifestyle. SM9913 also had swimming and swarming motilities, indicating that it may have swimming and swarming lifestyles in the sediment. The lateral flagella were responsible for the swarming motility, and the polar flagella were responsible for the swimming motility. Iron limitation was an indispensable inductive signal of the swarming motility. An analysis of the motilities of SM9913 and its mutants in clay demonstrated that SM9913 moved in clay by both swimming and swarming motilities. Genomic analysis suggests that having two flagella systems is most likely a common adaptation of some bacteriobenthos to the sediment environment. Our results reveal the lifestyles of benthonic SM9913, providing a better understanding of the environmental adaptation of benthonic bacteria. PMID:25727765

  7. Salinity adaptation of the invasive New Zealand mud snail (Potamopyrgus antipodarum) in the Columbia River estuary (Pacific Northwest, USA): Physiological and molecular studies

    USGS Publications Warehouse

    Hoy, Marshal; Boese, Bruce L.; Taylor, Louise; Reusser, Deborah; Rodriguez, Rusty

    2012-01-01

    In this study, we examine salinity stress tolerances of two populations of the invasive species New Zealand mud snail Potamopyrgus antipodarum, one population from a high salinity environment in the Columbia River estuary and the other from a fresh water lake. In 1996, New Zealand mud snails were discovered in the tidal reaches of the Columbia River estuary that is routinely exposed to salinity at near full seawater concentrations. In contrast, in their native habitat and throughout its spread in the western US, New Zealand mud snails are found only in fresh water ecosystems. Our aim was to determine whether the Columbia River snails have become salt water adapted. Using a modification of the standard amphipod sediment toxicity test, salinity tolerance was tested using a range of concentrations up to undiluted seawater, and the snails were sampled for mortality at daily time points. Our results show that the Columbia River snails were more tolerant of acute salinity stress with the LC50 values averaging 38 and 22 Practical Salinity Units for the Columbia River and freshwater snails, respectively. DNA sequence analysis and morphological comparisons of individuals representing each population indicate that they were all P. antipodarum. These results suggest that this species is salt water adaptable and in addition, this investigation helps elucidate the potential of this aquatic invasive organism to adapt to adverse environmental conditions.

  8. Alopecia areata in Eringer cows.

    PubMed

    Timm, Katrin; Rüfenacht, Silvia; von Tscharner, Claudia; Bornand, Valérie F; Doherr, Marcus G; Oevermann, Anna; Flury, Christine; Rieder, Stefan; Hirsbrunner, Gaby; Drögemüller, Cord; Roosje, Petra J

    2010-12-01

    Alopecia areata is a hair loss disorder in humans, dogs and horses with a suspected autoimmune aetiology targeting anagen hair follicles. Alopecia areata is only sporadically reported in cows. Recently, we observed several cases of suspected alopecia areata in Eringer cows. The aim of this study was to confirm the presumptive diagnosis of alopecia areata and to define the clinical phenotype and histopathological patterns, including characterization of the infiltrating inflammatory cells. Twenty Eringer cows with alopecia and 11 Eringer cows without skin problems were included in this study. Affected cows had either generalized or multifocal alopecia or hypotrichosis. The tail, forehead and distal extremities were usually spared. Punch biopsies were obtained from the centre and margin of alopecic lesions and normal haired skin. Histological examination revealed several alterations in anagen hair bulbs. These included peri- and intrabulbar lymphocytic infiltration, peribulbar fibrosis, degenerate matrix cells with clumped melanosomes and pigmentary incontinence. Mild lymphocytic infiltrative mural folliculitis was seen in the inferior segment and isthmus of the hair follicles. Hair shafts were often unpigmented and dysplastic. The large majority of infiltrating lymphocytes were CD3(+) T cells, whereas only occasional CD20(+) lymphocytes were present in the peribulbar infiltrate. Our findings confirm the diagnosis of T-cell-mediated alopecia areata in these cows. Alopecia areata appears to occur with increased frequency in the Eringer breed, but distinct predisposing factors could not be identified. PMID:20626715

  9. Expression and detection of estrus in dairy cows: the role of new technologies.

    PubMed

    Fricke, P M; Carvalho, P D; Giordano, J O; Valenza, A; Lopes, G; Amundson, M C

    2014-05-01

    Despite the widespread adoption of hormonal synchronization protocols that allow for timed artificial insemination (AI), detection of estrus plays an important role in the reproductive management program on most dairies in the United States. Increased physical activity is a secondary sign of estrus in dairy cattle, and a new generation of electronic systems that continuously monitor physical activity to predict timing of AI have been developed and marketed to the dairy industry. A variety of management and physiologic challenges inhibit detection of behavioral estrus on farms, but the prevalence of anouvular cows near the end of the voluntary waiting period is particularly problematic. Only 70% of lactating Holstein cows were detected in estrus when using an activity monitoring system, with the remaining 20% of cows classified as anovular and 10% ovulating without showing signs of activity. Mean time of AI in relation to ovulation based on the activity monitoring system was acceptable for most of the cows with increased activity, however, variability in the duration of estrus and timing of AI in relation to ovulation could result in poor pregnancy outcomes in some cows. Use of a Presynch-Ovsynch protocol for submission of cows for first AI has been widely adopted by dairies in the United States, and a combined approach in which AI based on activity is followed by submission of cows not detected with activity to timed AI after synchronization of ovulation may be an effective strategy for submission of cows to first AI. Based on a field trial on a large commercial dairy in the United States, the activity monitoring system detected 70% of cows with increased activity after the second PGF2α injection of a Presynch-Ovsynch protocol, however, cows inseminated to increased activity had fewer pregnancies per AI (P/AI) compared with cows with increased activity after the second PGF2α injection that received timed AI after completing the Presynch-Ovsynch protocol. Based on

  10. Follicular development and steroid concentrations in cows with different levels of fertility raised under nutritional stress.

    PubMed

    Oliveira, J F C; Neves, J P; Moraes, J C F; Gonçalves, P B D; Bahr, J M; Hernandez, A G; Costa, L F S

    2002-09-16

    groups for number of follicles >5mm, but the day effect was significant (P < 0.01). Plasma concentrations of P(4) and E(2) were similar in both groups. These data suggest that cows, from a population raised in the same environment have different fertility as a consequence of individual physiological characteristics. PMID:12220814

  11. Rowing Physiology.

    ERIC Educational Resources Information Center

    Spinks, W. L.

    This review of the literature discusses and examines the methods used in physiological assessment of rowers, results of such assessments, and future directions emanating from research in the physiology of rowing. The first section discusses the energy demands of rowing, including the contribution of the energy system, anaerobic metabolism, and the…

  12. a Sensor Based Automatic Ovulation Prediction System for Dairy Cows

    NASA Astrophysics Data System (ADS)

    Mottram, Toby; Hart, John; Pemberton, Roy

    2000-12-01

    Sensor scientists have been successful in developing detectors for tiny concentrations of rare compounds, but the work is rarely applied in practice. Any but the most trivial application of sensors requires a specification that should include a sampling system, a sensor, a calibration system and a model of how the information is to be used to control the process of interest. The specification of the sensor system should ask the following questions. How will the material to be analysed be sampled? What decision can be made with the information available from a proposed sensor? This project provides a model of a systems approach to the implementation of automatic ovulation prediction in dairy cows. A healthy well managed dairy cow should calve every year to make the best use of forage. As most cows are inseminated artificially it is of vital importance mat cows are regularly monitored for signs of oestrus. The pressure on dairymen to manage more cows often leads to less time being available for observation of cows to detect oestrus. This, together with breeding and feeding for increased yields, has led to a reduction in reproductive performance. In the UK the typical dairy farmer could save € 12800 per year if ovulation could be predicted accurately. Research over a number of years has shown that regular analysis of milk samples with tests based on enzyme linked immunoassay (ELISA) can map the ovulation cycle. However, these tests require the farmer to implement a manually operated sampling and analysis procedure and the technique has not been widely taken up. The best potential method of achieving 98% specificity of prediction of ovulation is to adapt biosensor techniques to emulate the ELISA tests automatically in the milking system. An automated ovulation prediction system for dairy cows is specified. The system integrates a biosensor with automatic milk sampling and a herd management database. The biosensor is a screen printed carbon electrode system capable of

  13. Metabolic Physiology in Pregnancy.

    PubMed

    Meo, Sultan Ayoub; Hassain, Asim

    2016-09-01

    The metabolic physiology during pregnancy is unique in the life of women. This change is a normal physiological adaptation to better accommodate the foetal growth and provides adequate blood, nutrition and oxygen. The metabolic changes prepare the mother\\'s body for pregnancy, childbirth and lactation. Early gestational period is considered as an anabolic phase, in which female body stores nutrients, enhance insulin sensitivity to encounter the maternal and feto-placental demands of late gestation and lactation. However, late gestational period is better named as a catabolic phase with reduced insulin sensitivity. The placenta plays a role as a sensor between mother and foetus physiology and acclimatizes the needs of the foetus to adequate growth and development. During pregnancy the female body changes its physiological and homeostatic mechanisms to meet the physiological needs of the foetus. However, if the maternal metabolic physiology during pregnancy is disturbed, it can cause hormonal imbalance, fat accumulation, decreased insulin sensitivity, increased insulin resistance and even gestational diabetes mellitus. PMID:27582161

  14. Metabolic Physiology in Pregnancy.

    PubMed

    Meo, Sultan Ayoub; Hassain, Asim

    2016-09-01

    The metabolic physiology during pregnancy is unique in the life of women. This change is a normal physiological adaptation to better accommodate the foetal growth and provides adequate blood, nutrition and oxygen. The metabolic changes prepare the mother\\'s body for pregnancy, childbirth and lactation. Early gestational period is considered as an anabolic phase, in which female body stores nutrients, enhance insulin sensitivity to encounter the maternal and feto-placental demands of late gestation and lactation. However, late gestational period is better named as a catabolic phase with reduced insulin sensitivity. The placenta plays a role as a sensor between mother and foetus physiology and acclimatizes the needs of the foetus to adequate growth and development. During pregnancy the female body changes its physiological and homeostatic mechanisms to meet the physiological needs of the foetus. However, if the maternal metabolic physiology during pregnancy is disturbed, it can cause hormonal imbalance, fat accumulation, decreased insulin sensitivity, increased insulin resistance and even gestational diabetes mellitus.

  15. Predictive Models for Regional Hepatic Function Based on 99mTc-IDA SPECT and Local Radiation Dose for Physiologic Adaptive Radiation Therapy

    SciTech Connect

    Wang, Hesheng; Feng, Mary; Frey, Kirk A.; Ten Haken, Randall K.; Lawrence, Theodore S.; Cao, Yue

    2013-08-01

    Purpose: High-dose radiation therapy (RT) for intrahepatic cancer is limited by the development of liver injury. This study investigated whether regional hepatic function assessed before and during the course of RT using 99mTc-labeled iminodiacetic acid (IDA) single photon emission computed tomography (SPECT) could predict regional liver function reserve after RT. Methods and Materials: Fourteen patients treated with RT for intrahepatic cancers underwent dynamic 99mTc-IDA SPECT scans before RT, during, and 1 month after completion of RT. Indocyanine green (ICG) tests, a measure of overall liver function, were performed within 1 day of each scan. Three-dimensional volumetric hepatic extraction fraction (HEF) images of the liver were estimated by deconvolution analysis. After coregistration of the CT/SPECT and the treatment planning CT, HEF dose–response functions during and after RT were generated. The volumetric mean of the HEFs in the whole liver was correlated with ICG clearance time. Three models, dose, priori, and adaptive models, were developed using multivariate linear regression to assess whether the regional HEFs measured before and during RT helped predict regional hepatic function after RT. Results: The mean of the volumetric liver HEFs was significantly correlated with ICG clearance half-life time (r=−0.80, P<.0001), for all time points. Linear correlations between local doses and regional HEFs 1 month after RT were significant in 12 patients. In the priori model, regional HEF after RT was predicted by the planned dose and regional HEF assessed before RT (R=0.71, P<.0001). In the adaptive model, regional HEF after RT was predicted by regional HEF reassessed during RT and the remaining planned local dose (R=0.83, P<.0001). Conclusions: 99mTc-IDA SPECT obtained during RT could be used to assess regional hepatic function and helped predict post-RT regional liver function reserve. This could support individualized adaptive radiation treatment strategies

  16. Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest - no indications for thermal adaptations.

    PubMed

    Schindlbacher, Andreas; Schnecker, Jörg; Takriti, Mounir; Borken, Werner; Wanek, Wolfgang

    2015-11-01

    Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0-10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long-term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m(-2)  s(-1) , control: 2.34 ± 0.29 μmol m(-2)  s(-1) ; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass-specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long-term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C-rich calcareous temperate forest soils.

  17. Predictive Models for Regional Hepatic Function Based upon 99mTc-IDA SPECT and Local Radiation Dose for Physiological Adaptive RT

    PubMed Central

    Wang, Hesheng; Feng, Mary; Frey, Kirk A.; Ten Haken, Randall K.; Lawrence, Theodore S.; Cao, Yue

    2013-01-01

    Purpose High dose radiation therapy (RT) for intrahepatic cancer is limited by the development of liver injury. This study investigated whether regional hepatic function assessed prior to and during the course of RT using 99mTc-labeled immindodiacetic acid (IDA) SPECT could predict regional liver function reserve after RT. Methods and Materials Fourteen patients treated with RT for intrahepatic cancers underwent dynamic 99mTc-IDA SPECT scans prior to RT, during, and one month after completion of RT. Indocyanine green (ICG) tests (a measure of overall liver function) were performed within 1 day of each scan. 3D volumetric hepatic extraction fraction (HEF) images of the liver were estimated by deconvolution analysis. After co-registration of the CT/SPECT and the treatment planning CT, HEF dose-response functions during and post-RT were generated. The volumetric mean of the HEFs in the whole liver was correlated with ICG clearance time. Three models, Dose, Priori and Adaptive models, were developed using multivariate linear regression to assess whether the regional HEFs measured before and during RT helped predict regional hepatic function post-RT. Results The mean of the volumetric liver HEFs was significantly correlated with ICG clearance half-life time (r = −0.80, p<0.0001), for all time points. Linear correlations between local doses and regional HEFs one month post-RT were significant in 12 patients. In the priori model, regional HEF post-RT was predicted by the planned dose and regional HEF assessed prior to RT (R=0.71, p<0.0001). In the adaptive model, regional HEF post-RT was predicted by regional HEF re-assessed during RT and the remaining planned local dose (R=0.83, p<0.0001). Conclusions 99mTc-IDA SPECT obtained during RT could be used to assess regional hepatic function and helped predict post-RT regional liver function reserve. This could support individualized adaptive radiation treatment strategies to maximize tumor control and minimize the risk of

  18. Effects of dry period length on milk production, body condition, metabolites, and hepatic glucose metabolism in dairy cows.

    PubMed

    Weber, C; Losand, B; Tuchscherer, A; Rehbock, F; Blum, E; Yang, W; Bruckmaier, R M; Sanftleben, P; Hammon, H M

    2015-03-01

    Dry period (DP) length affects energy metabolism around calving in dairy cows as well as milk production in the subsequent lactation. The aim of the study was to investigate milk production, body condition, metabolic adaptation, and hepatic gene expression of gluconeogenic enzymes in Holstein cows (>10,000 kg milk/305 d) with 28- (n=18), 56- (n=18), and 90-d DP (n=22) length (treatment groups) in a commercial farm. Cows were fed total mixed rations ad libitum adjusted for far-off (not for 28-d DP) and close-up DP and lactation. Milk yield was recorded daily and body condition score (BCS), back fat thickness (BFT), and body weight (BW) were determined at dry off, 1 wk before expected and after calving, and on wk 2, 4, and 8 postpartum (pp). Blood samples were taken on d -56, -28, -7, 1, 7, 14, 28, and 56 relative to calving to measure plasma concentrations of metabolites and hormones. Liver biopsies (n=11 per treatment) were taken on d -10 and 10 relative to calving to determine glycogen and total liver fat concentration (LFC) and to quantify mRNA levels of pyruvate carboxylase (PC), cytosolic phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase. Time course of milk yield during first 8 wk in lactation differed among treatment. Milk protein content was higher in 28-d than in 90-d DP cows. Milk fat to protein ratio was highest and milk urea was lowest in 90-d DP cows. Differences in BW, BFT, and BCS were predominantly seen before calving with greatest BW, BFT, and BCS in 90-d DP cows. Plasma concentrations of NEFA and BHBA were elevated during the transition period in all cows, and the greatest increase pp was seen in 90-d DP cows. Plasma glucose concentration decreased around calving and was greater in 28-d than in 90-d DP cows. Dry period length also affected plasma concentrations of urea, cholesterol, aspartate transaminase, and glutamate dehydrogenase. Plasma insulin concentration decreased around calving in all cows, but insulin concentration pp was

  19. Genetic and physiological data suggest demographic and adaptive responses in complex interactions between populations of figs (Ficus pumila) and their pollinating wasps (Wiebesia pumilae).

    PubMed

    Wang, Hurng-Yi; Hsieh, Chia-Hung; Huang, Chin-Gi; Kong, Siu-Wah; Chang, Hsiao-Chi; Lee, Ho-Huei; Wang, Wei-Kuang; Chen, Shih-Lun; Tzeng, Hsy-Yu; Wu, Wen-Jer

    2013-07-01

    To study interactions between host figs and their pollinating wasps and the influence of climatic change on their genetic structures, we sequenced cytoplasmic and nuclear genes and genotyped nuclear microsatellite loci from two varieties of Ficus pumila, the widespread creeping fig and endemic jelly fig, and from their pollinating wasps, Wiebesia pumilae, found in Taiwan and on nearby offshore islands. Great divergence in the mitochondrial cytochrome c oxidase subunit I (mtCOI) with no genetic admixture in nuclear markers indicated that creeping- and jelly-fig wasps are genetically distinct. Compared with creeping-fig wasps, jelly-fig wasps also showed better resistance under cold (20 °C) than warm (25 and 30 °C) conditions in a survival test, indicating their adaptation to a cold environment, which may have facilitated population expansion during the ice age as shown by a nuclear intron and 10 microsatellite loci. An excess of amino acid divergence and a pattern of too many rare mtCOI variants of jelly-fig wasps as revealed by computer simulations and neutrality tests implied the effect of positive selection, which we hypothesize was associated with the cold-adaptation process. Chloroplast DNA of the two fig plants was completely segregated, with signs of genetic admixture in nuclear markers. As creeping- and jelly-fig wasps can pollinate creeping figs, occasional gene flow between the two figs is thus possible. Therefore, it is suggested that pollinating wasps may be playing an active role in driving introgression between different types of host fig.

  20. Anatomy & Physiology

    MedlinePlus

    ... Central Nervous System Peripheral Nervous System Review Quiz Endocrine System Characteristics of Hormones Endocrine Glands & Their Hormones Pituitary & ... Thyroid & Parathyroid Glands Adrenal Gland Pancreas Gonads Other Endocrine Glands ... Cardiovascular System Heart Structure of the Heart Physiology of the ...

  1. Cardiac Physiology of Pregnancy.

    PubMed

    May, Linda

    2015-07-01

    Although the physiology of the heart and vascular system has not changed, there are many things we have learned and are still learning today. Research related to heart adaptations during pregnancy has been performed since the 1930s. Since the mid-1950s, researchers began to look at changes in the maternal cardiovascular system during exercise while pregnant. Research related to exercise during pregnancy and offspring heart development began and has continued since the 1970s. We will review the normal female cardiovascular system adaptations to pregnancy in general. Additionally, topics related to maternal cardiac adaptations to pregnancy during acute exercise, as well as the chronic conditioning response from exercise training will be explored. Since physical activity during pregnancy influences fetal development, the fetal cardiac development will be discussed in regards to acute and chronic maternal exercise. Similarly, the influence of various types of maternal exercise on acute and chronic fetal heart responses will be described. Briefly, the topics related to how and if there is maternal-fetal synchrony will be explained. Lastly, the developmental changes of the fetal cardiovascular system that persist after birth will be explored. Overall, the article will discuss maternal cardiac physiology related to changes with normal pregnancy, and exercise during pregnancy, as well as fetal cardiac physiology related to changes with normal development, and exercise during pregnancy as well as developmental changes in offspring after birth.

  2. Physiological and Proteomic Adaptation of “Aromatoleum aromaticum” EbN1 to Low Growth Rates in Benzoate-Limited, Anoxic Chemostats

    PubMed Central

    Trautwein, Kathleen; Lahme, Sven; Wöhlbrand, Lars; Feenders, Christoph; Mangelsdorf, Kai; Harder, Jens; Steinbüchel, Alexander; Blasius, Bernd; Reinhardt, Richard

    2012-01-01

    “Aromatoleum aromaticum” EbN1 was cultivated at different growth rates in benzoate-limited chemostats under nitrate-reducing conditions. Physiological characteristics, proteome dynamics, phospholipid-linked fatty acid (PLFA) composition, and poly(3-hydroxybutyrate) (PHB) content were analyzed in steady-state cells at low (μlow) (0.036 h−1), medium (μmed) (0.108 h−1), and high (μhigh) (0.180 h−1) growth rates. A positive correlation to growth rate was observed for cellular parameters (cell size, and DNA and protein contents). The free energy consumed for biomass formation steadily increased with growth rate. In contrast, the energy demand for maintenance increased only from μlow to μmed and then remained constant until μhigh. The most comprehensive proteomic changes were observed at μlow compared to μhigh. Uniformly decreased abundances of protein components of the anaerobic benzoyl coenzyme A (benzoyl-CoA) pathway, central carbon metabolism, and information processing agree with a general deceleration of benzoate metabolism and cellular processes in response to slow growth. In contrast, increased abundances were observed at μlow for diverse catabolic proteins and components of uptake systems in the absence of the respective substrate (aromatic or aliphatic compounds) and for proteins involved in stress responses. This potential catabolic versatility and stress defense during slow growth may be interpreted as preparation for future needs. PMID:22366417

  3. Physiological adaptations to reproduction. I. Experimentally increasing litter size enhances aspects of antioxidant defence but does not cause oxidative damage in mice.

    PubMed

    Garratt, Michael; Pichaud, Nicolas; King, Edith D Aloise; Brooks, Robert C

    2013-08-01

    Life history theory suggests that investment in reproduction can trade off against growth, longevity and both reproduction and performance later in life. One possible reason for this trade-off is that reproduction directly causes somatic damage. Oxidative stress, an overproduction of reactive oxygen species in relation to cellular defences, can correlate with reproductive investment and has been implicated as a pathway leading to senescence. This has led to the suggestion that this aspect of physiology could be an important mechanism underlying the trade-off between reproduction and lifespan. We manipulated female reproductive investment to test whether oxidative stress increases with reproduction in mice. Each female's pups were cross-fostered to produce litters of either two or eight, representing low and high levels of reproductive investment for wild mice. No differences were observed between reproductive groups at peak lactation for several markers of oxidative stress in the heart and gastrocnemius muscle. Surprisingly, oxidative damage to proteins was lower in the livers of females with a litter size of eight than in females with two pups or non-reproductive control females. While protein oxidation decreased, activity levels of the antioxidant enzyme superoxide dismutase increased in the liver, suggesting this may be one pathway used to protect against oxidative stress. Our results highlight the need for caution when interpreting correlative relationships and suggest that oxidative stress does not increase with enhanced reproductive effort during lactation.

  4. Immune response of postpartum dairy cows fed flaxseed.

    PubMed

    Lessard, M; Gagnon, N; Petit, H V

    2003-08-01

    Thirty Holstein cows were allotted at calving to 10 groups of three cows blocked for similar calving dates to determine the effects of dietary fatty acids on functional properties of immunocompetent cells in early lactation and at breeding. Cows were assigned at calving to one of three isonitrogenous, isoenergetic, and isolipidic supplements based on either calcium salts of palm oil, Megalac, micronized soybeans, or whole flaxseed. On the day of AI and 20 d later, cows were injected with ovalbumin to measure the antibody response. Blood samples were taken at different times after calving (d 5, 21, 42, and 105) and after AI (d 0, 10, 20, and 40) for quantification of serum progesterone, fatty acids, and prostaglandin E2 concentrations. Isolated peripheral blood mononuclear cells were cultured to evaluate the proliferative response to concanavalin A and in vitro productions of interferon-gamma and prostaglandin E2. In general, feeding flaxseed increased serum omega-3 fatty acids concentration compared with feeding Megalac or soybeans, which decreased the omega-6 to omega-3 fatty acids ratio. There was a significant diet x day interaction for the proliferative response of mononuclear cells after calving and AI, indicating that cell responses from cows fed flaxseed were transiently reduced compared with those fed Megalac and soybeans. Moreover, during the breeding period, serum progesterone concentration was significantly greater in cows fed flaxseed compared with those fed Megalac, whereas serum concentration of prostaglandin E2 was significantly lower in cows fed flaxseed than in those fed Megalac or soybeans. Dietary treatments had no effect on the antibody response to ovalbumin and on in vitro productions of interferon-gamma and prostaglandin E2. However, interferon-gamma and prostaglandin E2 were impaired in the first 3 wk after parturition regardless of dietary treatment. These results suggest that changes in fatty acids, progesterone, and prostaglandins E2

  5. Adaptation to temperature stress and aerial exposure in congeneric species of intertidal porcelain crabs (genus Petrolisthes): correlation of physiology, biochemistry and morphology with vertical distribution

    PubMed

    Stillman; Somero

    1996-01-01

    We examined physiological and biochemical responses to temperature and aerial exposure in two species of intertidal porcelain crabs (genus Petrolisthes) that inhabit discrete vertical zones. On the shores of the Northeastern Pacific, P. cinctipes (Randall) occurs under rocks and in mussel beds in the mid to high intertidal zone and P. eriomerus (Stimpson) occurs under rocks in the low intertidal zone and subtidally to 80 m. Because of their different vertical distributions, these two species experience very different levels of abiotic stress. Individuals of P. cinctipes can be emersed during every low tide, but P. eriomerus is only emersed during the lowest spring tides and on most days is not emersed at all. Temperatures measured underneath rocks in the mid intertidal zone were as high as 31 °C, 15 °C higher than maximal temperatures measured under rocks in the low intertidal zone. In air, at 25 °C, large specimens of P. cinctipes were able to maintain a higher respiration rate than similarly sized P. eriomerus. No interspecific differences in the respiratory response to emersion were seen in small specimens. Examination of the response of heart rate to temperature revealed that P. cinctipes has a 5 °C higher Arrhenius break temperature (ABT, the temperature at which there is a discontinuity in the slope of an Arrhenius plot) than its congener (31.5 °C versus 26.6 °C). The heart rate of P. cinctipes recovered fully after exposure to cold (1.5 °C), but the heart rate of P. eriomerus did not recover after exposure to 2 °C or cooler. The ABT of heart rate in P. cinctipes was very close to maximal microhabitat temperatures; thus, individuals of this species may be living at or near their thermal tolerance limits. P. cinctipes were able to maintain aerobic metabolism during emersion, whereas P. eriomerus shifted to anaerobic metabolism. A pronounced accumulation of whole-body lactate was found in specimens of P. eriomerus incubated in air at 25 °C over a 5 h

  6. Larval exposure to 4-nonylphenol and 17beta-estradiol affects physiological and behavioral development of seawater adaptation in Atlantic salmon smolts.

    PubMed

    Lerner, Darren T; Björnsson, Björn Thrandur; McCormick, Stephen D

    2007-06-15

    Population declines of anadromous salmonids are attributed to anthropogenic disturbances including dams, commercial and recreational fisheries, and pollutants, such as estrogenic compounds. Nonylphenol (NP), a xenoestrogen, is widespread in the aquatic environment due to its use in agricultural, industrial, and household products. We exposed Atlantic salmon yolk-sac larvae to waterborne 10 or 100 microg L(-1) NP (NP-L or NP-H, respectively), 2 microg L(-1) 17beta-estradiol (E2), or vehicle, for 21 days to investigate their effects on smolt physiology and behavior 1 year later. NP-H caused approximately 50% mortality during exposure, 30 days after exposure, and 60 days after exposure. Mortality rates of NP-L and E2 fish were not affected until 60 days after treatment, when they were 4-fold greater than those of controls. Treatment with NP-L or E2 as yolk-sac larvae decreased gill sodium-potassium-activated adenosine triphosphatase (Na+,K(+)-ATPase) activity and seawater (SW) tolerance during smolt development, 1 year after exposure. Exposure to NP-L and E2 resulted in a latency to enter SW and reduced preference for SW approximately 2- and 5-fold, respectively. NP-L-exposed fish had 20% lower plasma insulin-like growth factor I (IGF-I) levels and 35% lower plasma triiodothyronine (T3). Plasma growth hormone and thyroxine (T4) were unaffected. Exposure to E2 did not affect plasma levels of IGF-I, GH, T3, or T4. Both treatment groups exhibited increased plasma cortisol and decreased osmoregulatory capacity in response to a handling stressor. These results suggest that early exposure to environmentally relevant concentrations of NP, and other estrogenic compounds, can cause direct and delayed mortalities and that this exposure can have long-term, "organizational" effects on life-history events in salmonids. PMID:17626455

  7. Larval exposure to 4-nonylphenol and 17β-estradiol affects physiological and behavioral development of seawater adaptation in Atlantic salmon smolts

    USGS Publications Warehouse

    Lerner, Darrren T.; Bjornsson, Bjorn Thrandur; McCormick, Stephen D.

    2007-01-01

    Population declines of anadromous salmonids are attributed to anthropogenic disturbances including dams, commercial and recreational fisheries, and pollutants, such as estrogenic compounds. Nonylphenol (NP), a xenoestrogen, is widespread in the aquatic environment due to its use in agricultural, industrial, and household products. We exposed Atlantic salmon yolk-sac larvae to waterborne 10 or 100 μg L-1 NP (NP-L or NP-H, respectively), 2 μg L-1 17β-estradiol (E2), or vehicle, for 21 days to investigate their effects on smolt physiology and behavior 1 year later. NP-H caused approximately 50% mortality during exposure, 30 days after exposure, and 60 days after exposure. Mortality rates of NP-L and E2 fish were not affected until 60 days after treatment, when they were 4-fold greater than those of controls. Treatment with NP-L or E2 as yolk-sac larvae decreased gill sodium-potassium-activated adenosine triphosphatase (Na+,K+-ATPase) activity and seawater (SW) tolerance during smolt development, 1 year after exposure. Exposure to NP-L and E2 resulted in a latency to enter SW and reduced preference for SW approximately 2- and 5-fold, respectively. NP-L-exposed fish had 20% lower plasma insulin-like growth factor I (IGF-I) levels and 35% lower plasma triiodothyronine (T3). Plasma growth hormone and thyroxine (T4) were unaffected. Exposure to E2 did not affect plasma levels of IGF-I, GH, T3, or T4. Both treatment groups exhibited increased plasma cortisol and decreased osmoregulatory capacity in response to a handling stressor. These results suggest that early exposure to environmentally relevant concentrations of NP, and other estrogenic compounds, can cause direct and delayed mortalities and that this exposure can have long term, “organizational” effects on life-history events in salmonids.

  8. Gene-Based Mapping and Pathway Analysis of Metabolic Traits in Dairy Cows

    PubMed Central

    Ha, Ngoc-Thuy; Gross, Josef Johann; van Dorland, Annette; Tetens, Jens; Thaller, Georg; Schlather, Martin; Bruckmaier, Rupert; Simianer, Henner

    2015-01-01

    The metabolic adaptation of dairy cows during the transition period has been studied intensively in the last decades. However, until now, only few studies have paid attention to the genetic aspects of this process. Here, we present the results of a gene-based mapping and pathway analysis with the measurements of three key metabolites, (1) non-esterified fatty acids (NEFA), (2) beta-hydroxybutyrate (BHBA) and (3) glucose, characterizing the metabolic adaptability of dairy cows before and after calving. In contrast to the conventional single-marker approach, we identify 99 significant and biologically sensible genes associated with at least one of the considered phenotypes and thus giving evidence for a genetic basis of the metabolic adaptability. Moreover, our results strongly suggest three pathways involved in the metabolism of steroids and lipids are potential candidates for the adaptive regulation of dairy cows in their early lactation. From our perspective, a closer investigation of our findings will lead to a step forward in understanding the variability in the metabolic adaptability of dairy cows in their early lactation. PMID:25789767

  9. Body temperature in early postpartum dairy cows.

    PubMed

    Burfeind, O; Suthar, V S; Voigtsberger, R; Bonk, S; Heuwieser, W

    2014-07-01

    A strategy widely adopted in the modern dairy industry is the introduction of postpartum health monitoring programs by trained farm personnel. Within these fresh cow protocols, various parameters (e.g., rectal temperature, attitude, milk production, uterine discharge, ketones) are evaluated during the first 5 to 14 days in milk (DIMs) to diagnose relevant diseases. It is well documented that 14% to 66% of healthy cows exhibit at least one temperature of 39.5 °C or greater within the first 10 DIM. Although widely adopted, data on diagnostic performance of body temperature (BT) measurement to diagnose infectious diseases (e.g., metritis, mastitis) are lacking. Therefore, the objective of this study was to identify possible factors associated with BT in postpartum dairy cows. A study was conducted on a commercial dairy farm including 251 cows. In a total of 217 cows, a vaginal temperature logger was inserted from DIM 2 to 10, whereas 34 cows did not receive a temperature logger as control. Temperature loggers measured vaginal temperature every 10 minutes. Rectal temperature was measured twice daily in all cows. On DIM 2, 5, and 10, cows underwent a clinical examination. Body temperature was influenced by various parameters. Primiparous cows had 0.2 °C higher BT than multiparous cows. Multiparous cows that calved during June and July had higher BT than those that calved in May. In primiparous cows, this effect was only evident from DIM 7 to 10. Furthermore, abnormal calving conditions (i.e., assisted calving, dead calf, retained placenta, twins) affected BT in cows. This effect was more pronounced in multiparous cows. Abnormal vaginal discharge did increase BT in primiparous and multiparous cows. Primiparous cows suffering from hyperketonemia (beta-hydroxybutyrat ≥ 1.4 mmol/L) had higher BT than those not affected. In multiparous cows, there was no association between hyperketonemia and BT. The results of this study clearly demonstrate that BT is influenced

  10. Broiler chicks with slow-feathering (K) or rapid-feathering (k+) genes: Effects of environmental stressors on physiological adaptive indicators up to 56 h posthatch.

    PubMed

    Khosravinia, H; Manafi, M

    2016-08-01

    Two experiments were conducted to examine the effects on the physiological responses of slow-feathering (K) and rapid-feathering (k(+)) genes in neonate broiler chicks subjected to posthatch fasting (PHF). In the first experiment, 300 Ross 308 chicks were denied access to feed and water for 0, 7, 14, 21, 28, 35, 42, 49, and 56 h posthatch. In the second experiment, 625 Ross 308 chicks were subjected to PHF for 0, 12, 24, 36, and 48 h. In experiment 1, the weight loss rate increased over 56 h PHF and did not differ between fast- and slow-feathering chicks up to 28 h posthatch but was greater (P < 0.05) in fast-feathering birds from 28 to 56 h posthatch. The fast-feathering genotypes demonstrated greater serum K levels following 7, 21, and 56 h (P < 0.05) and serum uric acid (UA) levels after 7, 21, 28, 49, and 56 h PHF (P < 0.01). In experiment 2, weight loss increased linearly with no difference between fast- and slow-feathering chicks through 36 h PHF but increased in fast-feathering birds when PHF continued for 48 h. Neonatal fasting periods of 12 to 48 h decreased breast and thigh percentage (P < 0.01), with no difference between feathering genotypes. The fast-feathering genotypes showed greater serum HDL levels at 24 h (P < 0.05) and greater serum UA concentration following 12, 36, and 48 h PHF (P < 0.05). The mean frequency of jumping (P < 0.01) and active wakefulness (P > 0.01) was increased as PHF continued from 12 to 48 h across genotypes. At 48 h, the fast-feathering chicks showed greater frequency of escape attempts from the test field (P < 0.01). It was concluded that slow-feathering chicks are more capable of withstanding PHF periods lasting more than 28 h. This is important to consider when day-old chicks are transported for extended periods without access to feed.

  11. The effect of heat waves on dairy cow mortality.

    PubMed

    Vitali, A; Felici, A; Esposito, S; Bernabucci, U; Bertocchi, L; Maresca, C; Nardone, A; Lacetera, N

    2015-07-01

    This study investigated the mortality of dairy cows during heat waves. Mortality data (46,610 cases) referred to dairy cows older than 24mo that died on a farm from all causes from May 1 to September 30 during a 6-yr period (2002-2007). Weather data were obtained from 12 weather stations located in different areas of Italy. Heat waves were defined for each weather station as a period of at least 3 consecutive days, from May 1 to September 30 (2002-2007), when the daily maximum temperature exceeded the 90th percentile of the reference distribution (1971-2000). Summer days were classified as days in heat wave (HW) or not in heat wave (nHW). Days in HW were numbered to evaluate the relationship between mortality and length of the wave. Finally, the first 3 nHW days after the end of a heat wave were also considered to account for potential prolonged effects. The mortality risk was evaluated using a case-crossover design. A conditional logistic regression model was used to calculate odds ratio and 95% confidence interval for mortality recorded in HW compared with that recorded in nHW days pooled and stratified by duration of exposure, age of cows, and month of occurrence. Dairy cows mortality was greater during HW compared with nHW days. Furthermore, compared with nHW days, the risk of mortality continued to be higher during the 3 d after the end of HW. Mortality increased with the length of the HW. Considering deaths stratified by age, cows up to 28mo were not affected by HW, whereas all the other age categories of older cows (29-60, 61-96, and >96mo) showed a greater mortality when exposed to HW. The risk of death during HW was higher in early summer months. In particular, the highest risk of mortality was observed during June HW. Present results strongly support the implementation of adaptation strategies which may limit heat stress-related impairment of animal welfare and economic losses in dairy cow farm during HW.

  12. Root physiological adaptations involved in enhancing P assimilation in mining and non-mining ecotypes of Polygonum hydropiper grown under organic P media

    PubMed Central

    Ye, Daihua; Li, Tingxuan; Zheng, Zicheng; Zhang, Xizhou; Chen, Guangdeng; Yu, Haiying

    2015-01-01

    It is important to seek out plant species, high in phosphorus (P) uptake, for phytoremediation of P-enriched environments with a large amount of organic P (Po). P assimilation characteristics and the related mechanisms of Polygonum hydropiper were investigated in hydroponic media containing various concentrations of Po (1–8 mmol L-1) supplied as phytate. The mining ecotype (ME) showed significantly higher biomass in both shoots and roots compared to the non-mining ecotype (NME) at 4, 6, and 8 m mol L-1. Shoot P content of both ecotypes increased up to 4 mmol L-1 while root P content increased continually up to 8 mmol L-1 for the ME and up to 6 mmol L-1 for the NME. Root P content of the ME exceeded 1% dry weight under 6 and 8 mmol L-1. The ME had significantly higher P accumulation in both shoots and roots compared to the NME supplied with 6 and 8 mmol L-1. The ME showed higher total root length, specific root length, root surface area, root volume, and displayed significantly greater root length, root surface area, and root volume of lateral roots compared to the NME grown in all Po treatments. Average diameter of lateral roots was 0.17–19 mm for the ME and 0.18–0.21 mm for the NME. Greater acid phosphatase and phytase activities were observed in the ME grown under different levels of Po relative to the NME. This indicated fine root morphology, enhanced acid phosphatase and phytase activities might be adaptations to high Po media. Results from this study establish that the ME of P. hydropiper is capable of assimilating P from Po media and is a potential material for phytoremediation of polluted area with high Po. PMID:25699065

  13. Root physiological adaptations involved in enhancing P assimilation in mining and non-mining ecotypes of Polygonum hydropiper grown under organic P media.

    PubMed

    Ye, Daihua; Li, Tingxuan; Zheng, Zicheng; Zhang, Xizhou; Chen, Guangdeng; Yu, Haiying

    2015-01-01

    It is important to seek out plant species, high in phosphorus (P) uptake, for phytoremediation of P-enriched environments with a large amount of organic P (Po). P assimilation characteristics and the related mechanisms of Polygonum hydropiper were investigated in hydroponic media containing various concentrations of Po (1-8 mmol L(-1)) supplied as phytate. The mining ecotype (ME) showed significantly higher biomass in both shoots and roots compared to the non-mining ecotype (NME) at 4, 6, and 8 m mol L(-1). Shoot P content of both ecotypes increased up to 4 mmol L(-1) while root P content increased continually up to 8 mmol L(-1) for the ME and up to 6 mmol L(-1) for the NME. Root P content of the ME exceeded 1% dry weight under 6 and 8 mmol L(-1). The ME had significantly higher P accumulation in both shoots and roots compared to the NME supplied with 6 and 8 mmol L(-1). The ME showed higher total root length, specific root length, root surface area, root volume, and displayed significantly greater root length, root surface area, and root volume of lateral roots compared to the NME grown in all Po treatments. Average diameter of lateral roots was 0.17-19 mm for the ME and 0.18-0.21 mm for the NME. Greater acid phosphatase and phytase activities were observed in the ME grown under different levels of Po relative to the NME. This indicated fine root morphology, enhanced acid phosphatase and phytase activities might be adaptations to high Po media. Results from this study establish that the ME of P. hydropiper is capable of assimilating P from Po media and is a potential material for phytoremediation of polluted area with high Po.

  14. Milk yield and composition from Angus and Angus-cross beef cows raised in southern Brazil.

    PubMed

    Rodrigues, P F; Menezes, L M; Azambuja, R C C; Suñé, R W; Barbosa Silveira, I D; Cardoso, F F

    2014-06-01

    This study assessed milk yield and composition of Angus and Angus-cross beef cows raised in southern Brazil. A total of 128 records were collected in 2 consecutive calving seasons from cows between 3 and 5 yr of age of 4 breed compositions: Angus (ANAN), Caracu × Angus (CRAN), Hereford × Angus (HHAN), and Nelore × Angus (NEAN). These cows were mated to Brangus (BN) or Braford (BO) bulls and managed under extensive grazing conditions in southern Brazil. Milk production of these cows was assessed by 2 procedures: indirectly by the calf weigh-suckle-weigh procedure (WD) and directly by machine milking (MM). Lactation curves were estimated using nonlinear regression and the following related traits were derived: peak yield (PY), peak week (PW), total yield at 210 d (TY210), and lactation persistence (PERS). Milk composition and calf weaning weight adjusted to 210 d (WW210) were also determined. The MM technique was considered more accurate because of lower standard errors of estimated means, greater statistical power, and greater correlation between TY210 and WW210 (0.50) compared to WD (0.36). Considering the more precise evaluation by MM, the CRAN and NEAN cows had greater TY210 (1070 and 1116 kg, respectively) and PY (8.1 and 7.8 kg, respectively) compared to ANAN and HHAN cows, which had 858 and 842 kg for TY210 and 6.6 and 6.3 kg for PY, respectively. The NEAN cows had the latest PW at 10.8 wk. Late-calving cows had 21% lower TY210 compared to cows that calved earlier. Milk composition was influenced by cow genotype, with CRAN and NEAN cows producing milk with greater fat (3.8 and 3.9%, respectively) and protein (3.2 and 3.1%, respectively) content compared to ANAN and HHAN cows. Regardless of the genotype, fat, protein, and total solids increased in concentration from beginning to end of lactation, while lactose content decreased. Crossbreeding of Angus with adapted breeds of taurine or indicine origin can be effective in increasing milk yield and nutrient

  15. Milk yield and composition from Angus and Angus-cross beef cows raised in southern Brazil.

    PubMed

    Rodrigues, P F; Menezes, L M; Azambuja, R C C; Suñé, R W; Barbosa Silveira, I D; Cardoso, F F

    2014-06-01

    This study assessed milk yield and composition of Angus and Angus-cross beef cows raised in southern Brazil. A total of 128 records were collected in 2 consecutive calving seasons from cows between 3 and 5 yr of age of 4 breed compositions: Angus (ANAN), Caracu × Angus (CRAN), Hereford × Angus (HHAN), and Nelore × Angus (NEAN). These cows were mated to Brangus (BN) or Braford (BO) bulls and managed under extensive grazing conditions in southern Brazil. Milk production of these cows was assessed by 2 procedures: indirectly by the calf weigh-suckle-weigh procedure (WD) and directly by machine milking (MM). Lactation curves were estimated using nonlinear regression and the following related traits were derived: peak yield (PY), peak week (PW), total yield at 210 d (TY210), and lactation persistence (PERS). Milk composition and calf weaning weight adjusted to 210 d (WW210) were also determined. The MM technique was considered more accurate because of lower standard errors of estimated means, greater statistical power, and greater correlation between TY210 and WW210 (0.50) compared to WD (0.36). Considering the more precise evaluation by MM, the CRAN and NEAN cows had greater TY210 (1070 and 1116 kg, respectively) and PY (8.1 and 7.8 kg, respectively) compared to ANAN and HHAN cows, which had 858 and 842 kg for TY210 and 6.6 and 6.3 kg for PY, respectively. The NEAN cows had the latest PW at 10.8 wk. Late-calving cows had 21% lower TY210 compared to cows that calved earlier. Milk composition was influenced by cow genotype, with CRAN and NEAN cows producing milk with greater fat (3.8 and 3.9%, respectively) and protein (3.2 and 3.1%, respectively) content compared to ANAN and HHAN cows. Regardless of the genotype, fat, protein, and total solids increased in concentration from beginning to end of lactation, while lactose content decreased. Crossbreeding of Angus with adapted breeds of taurine or indicine origin can be effective in increasing milk yield and nutrient

  16. Regulatory Physiology

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Whitson, Peggy A.; Putcha, Lakshmi; Baker, Ellen; Smith, Scott M.; Stewart, Karen; Gretebeck, Randall; Nimmagudda, R. R.; Schoeller, Dale A.; Davis-Street, Janis

    1999-01-01

    As noted elsewhere in this report, a central goal of the Extended Duration Orbiter Medical Project (EDOMP) was to ensure that cardiovascular and muscle function were adequate to perform an emergency egress after 16 days of spaceflight. The goals of the Regulatory Physiology component of the EDOMP were to identify and subsequently ameliorate those biochemical and nutritional factors that deplete physiological reserves or increase risk for disease, and to facilitate the development of effective muscle, exercise, and cardiovascular countermeasures. The component investigations designed to meet these goals focused on biochemical and physiological aspects of nutrition and metabolism, the risk of renal (kidney) stone formation, gastrointestinal function, and sleep in space. Investigations involved both ground-based protocols to validate proposed methods and flight studies to test those methods. Two hardware tests were also completed.

  17. Fibrolytic enzymes and parity effects on feeding behavior, salivation, and ruminal pH of lactating dairy cows.

    PubMed

    Bowman, G R; Beauchemin, K A; Shelford, J A

    2003-02-01

    Four multiparous and four primiparous lactating dairy cows fitted with ruminal cannulas were used in a duplicated 4 x 4 Latin square design to study the effects of parity and inclusion of a fibrolytic enzyme product (Agribrands International, St. Louis, MO) on feeding and chewing behavior, salivation, and ruminal pH. Diets consisting of rolled barley, barley silage, and alfalfa haylage (55% forage, DM basis) differed in enzyme application: 1) control, 2) enzyme applied to concentrate (45% of TMR), 3) enzyme applied to supplement (4% of TMR), and enzyme applied to a premix (0.2% of TMR). Enzyme supplementation did not alter daily time spent eating or ruminating, but when enzymes were added to the ration daily, saliva production increased, with no difference among enzyme application treatments. Multiparous cows consumed a greater amount of feed, but spent a similar amount of time eating, compared to primiparous cows. Primiparous cows had shorter ruminating episodes, resulting in lower daily ruminating time compared with multiparous cows. Primiparous cows had lower daily saliva output compared with multiparous cows. These results indicate that application of this fibrolytic enzyme product did not alter the physical structure of the feed, as measured by feeding and chewing variables. The increase in total saliva production observed in cows fed enzyme-supplemented diets may be attributed to a physiological response to compensate for the increase in fermentation products during digestion. The increased intake for multiparous cows is attributed to increased eating rate and not to increased time spent eating. The higher DMI of multiparous cows resulted in increased rumination time needed to process the additional feed and increased salivation to buffer the greater production of VFA.

  18. The cow as an induced ovulator: timed AI after synchronization of ovulation.

    PubMed

    Wiltbank, Milo C; Pursley, J Richard

    2014-01-01

    Timed-AI after synchronization of ovulation has become one of the most used reproductive technologies developed during the past 40 years. Various adaptations of this technology are now extensively used worldwide, in the beef and dairy cattle industry. Our well-cited report, published in Theriogenology in 1995, presented a method termed Ovsynch, that used GnRH and PGF2α to perform synchronization of ovulation and timed AI in lactating dairy cows. This report introduced Ovsynch, more as a concept of induced ovulation, and demonstrated the ovarian dynamics during the protocol. Validation and improvements on this method were subsequently performed in numerous university studies and on commercial dairies, worldwide. This review will provide a brief historical background, some personal recollections, and certain modifications that have been made in synchronization of ovulation protocols. Each section emphasizes the physiology that underlies the most widely-used synchronization of ovulation protocols and key modifications and some practical application of these protocols on commercial operations. Finally, the effect of timed AI in the US dairy industry and in the Brazilian beef cattle industry are compared. Although numerous studies have been done using these protocols, there is still substantial need for research to improve the synchronization, efficacy, simplicity, and practical application of these protocols. PMID:24274420

  19. Short communication: Markers of oxidant status and inflammation relative to the development of claw lesions associated with lameness in early lactation cows.

    PubMed

    Abuelo, A; Gandy, J C; Neuder, L; Brester, J; Sordillo, L M

    2016-07-01

    Lameness is a major health disorder of dairy cattle and evidence suggests that it may be associated with oxidative stress (OS) during the transition period. Some debate exists, however, as to whether OS precedes the development of lameness or if OS occurs as a consequence of lameness. The purpose of this study was to test whether cows showing claw lesions during early lactation had a greater pro-oxidant and inflammatory status throughout the dry period or at the start of the lactation. Blood samples were taken from 30 cows from the same herd at dry off, movement to the close-up pen, and between 3 and 7 d in milk. Sera were analyzed for concentrations of haptoglobin, serum amyloid A, reactive oxygen and nitrogen species, and antioxidant potential. Blood samples also were subjected to total and differential white blood cell counts. Animals were monitored through 120 d in milk and grouped ex post into the following health categories: (1) exclusively hoof lesions; (2) other production diseases; or (3) nondiseased. Changes in oxidant status and inflammatory markers were significantly different with respect to metabolic and physiologic adaptations to calving and lactation. No differences in oxidant status, acute phase protein concentrations, or leukocyte populations were observed between the hoof lesions and the nondiseased categories. Thus, any associations between OS and lameness likely occurs closer to the onset of clinical signs or as a consequence of inflammatory responses due to localized tissue injury.

  20. Genetic evaluation for cow livability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When genetic evaluations for Productive Life were introduced by USDA in 1994, U.S. dairy producers had an opportunity to produce healthier cows, and it happened. The genetic evaluations were incorporated into selection programs and the deterioration occurring in pregnancy rate and somatic cell score...

  1. Physiological aeroecology: Anatomical and physiological adaptations for flight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flight has evolved independently in birds, bats, and insects and was present in the Mesozoic pterosaurians that have disappeared. Of the roughly 1 million living animal species, more than three-quarters are flying insects. Flying is an extremely successful way of locomotion. At first glance this see...

  2. Reproductive physiology

    USGS Publications Warehouse

    Gee, G.F.; Russman, S.E.; Ellis, David H.; Gee, George F.; Mirande, Claire M.

    1996-01-01

    Conclusions: Although the general pattern of avian physiology applies to cranes, we have identified many physiological mechanisms (e.g., effects of disturbance) that need further study. Studies with cranes are expensive compared to those done with domestic fowl because of the crane's larger size, low reproductive rate, and delayed sexual maturity. To summarize, the crane reproductive system is composed of physiological and anatomical elements whose function is controlled by an integrated neural-endocrine system. Males generally produce semen at a younger age than when females lay eggs. Eggs are laid in clutches of two (1 to 3), and females will lay additional clutches if the preceding clutches are removed. Both sexes build nests and incubate the eggs. Molt begins during incubation and body molt may be completed annually in breeding pairs. However, remiges are replaced sequentially over 2 to 3 years, or abruptly every 2 to 3 years in other species. Most immature birds replace their juvenal remiges over a 2 to 3 year period. Stress interferes with reproduction in cranes by reducing egg production or terminating the reproductive effort. In other birds, stress elevates corticosterone levels and decreases LHRH release. We know little about the physiological response of cranes to stress.

  3. Applied physiology of triathlon.

    PubMed

    O'Toole, M L; Douglas, P S

    1995-04-01

    The triathlon is a 3-event endurance sport in which athletes compete sequentially in swimming, cycling and running. The primary determinant of success is the ability to sustain a high rate of energy expenditure for prolonged periods of time. Exercise training-induced physiological adaptations in virtually all systems of the body allow the athlete to accomplish this. Aerobic capacity (measured as maximal oxygen uptake, VO2max), economy of motion (submaximal VO2) and fractional utilisation of maximal capacity (%VO2max) reflect the integrated responses of these physiological adaptations. Numerous studies have reported relatively high mean VO2max values for various groups of triathletes that are comparable to those reported for athletes in single-event endurance sports and clearly above those reported for untrained individuals. In shorter distance triathlons and in studies using recreational (rather than elite) triathletes, VO2max is related to performance in the corresponding event of the triathlon (e.g. tethered swimming VO2max with swim time). In longer events and with more elite triathletes, VO2max correlates less well with performance. The physiological adaptations that correspond to and facilitate improved VO2max occur centrally in the cardiovascular system, centred on increased maximal cardiac output, and peripherally in the metabolic systems, centred around increased arterio-venous O2 (a-v O2) difference. While a high VO2max in individuals is clearly of importance to triathlon performance, energy output must be sustained for long periods of time, making economy of motion also very important. Studies suggests that competitive swimmers have better swimming economy than triathletes. However, since many triathletes have previously been competitive swimmers this finding is questionable. The finding suggests that triathletes from nonswimming backgrounds would benefit from improving swimming technique rather than concentrating training workouts solely on distance. In

  4. Nonambulatory cows: Duration of recumbency and quality of nursing care affect outcome of flotation therapy.

    PubMed

    Stojkov, J; Weary, D M; von Keyserlingk, M A G

    2016-03-01

    Cows that are unable or unwilling to stand and remain recumbent for ≥ 12 h are defined as nonambulatory. Care and management of nonambulatory cattle is considered a major animal welfare concern facing the livestock industry, particularly the dairy sector. Flotation therapy has gained interest as a means to promote recovery in nonambulatory cows and is based on the concept that by floating the cow in warm water, secondary pressure damage to muscles and nerves will be reduced. The objective of this study was to assess the physiological responses to stress related to the flotation therapy and to evaluate the effect of recumbency duration and nursing care on the outcome of the flotation therapy. The outcomes of 34 nonambulatory Holstein dairy cows were analyzed after they were subjected to flotation therapy. The duration of recumbency and quality of nursing care provided before initiation of the flotation treatment were assessed based on producer responses to survey questions, and from on-site observations by the researchers. A veterinarian examined all cows before flotation therapy began. The treatment was divided into 5 phases: baseline (before filling), manipulation (placing the cow into the tank), filling (the tank was filled with water), flotation (the cow was confined in the filled tank), and draining (water was removed from the tank). Stress responses to the procedure, excluding the manipulation portion, were assessed using heart rate variability. The high-frequency component (HF normalized units) decreased during the filling and draining phases (2.8 ± 0.2 and 3.1 ± 0.4, respectively) compared with the baseline and floating phase (5.1 ± 0.6 and 4.9 ± 0.3, [corrected] respectively). These results indicate that the stress related to the flotation therapy is greatest during the filling and draining phases of the treatment, when cows likely have to exert increased effort to transition to a standing position. The flotation therapy was less likely to be

  5. A necropsy-based descriptive study of dairy cow deaths on a Colorado dairy.

    PubMed

    McConnel, C S; Garry, F B; Lombard, J E; Kidd, J A; Hill, A E; Gould, D H

    2009-05-01

    Increasing levels of dairy cow mortality pose a challenge to the US dairy industry. The industry's current understanding of dairy cow mortality is reliant upon descriptions largely based on producer or veterinary assumptions regarding cause of death without the benefit of detailed postmortem evaluations. A thorough necropsy is a superior tool for establishing a cause of death, except for cases involving euthanasia for traumatic accidents or severe locomotor disorders. Information provided from a necropsy examination would be most valuable if it were categorized and combined with cow health information in a complete postmortem evaluation designed to guide future management decisions. The objective of this study was to describe dairy cow deaths on a Colorado dairy over a 1-yr period and explore classification systems for necropsy findings that might inform management actions aimed at reducing dairy cow mortality. Throughout the study period a thorough necropsy examination was performed on every cow that died. Based upon this examination each death was characterized by a proximate cause (i.e., the most likely immediate cause of the death). Each proximate cause of death was then categorized using 3 alternate schemes founded on generalized etiologic principles and influenced by previous clinical history and treatments. These schemes included the broad categories commonly used for classifying findings within a review of literature related to dairy cow mortality, a diagnostic scheme used within the problem-oriented veterinary medical record, and an analysis focusing on the primary physiologic system derangement for each death. A total of 2,067 cows were enrolled during the study period of which 1,468 cows freshened, 507 cows were sold, and 94 cows died, resulting in a mortality risk of 6.4 deaths per 100 lactations at risk. The distribution of deaths by parity was significantly different from the herd distribution at the end of study with the largest percentage of death

  6. Effects of prepartum fat supplementation on plasma concentrations of glucagon-like peptide-1, peptide YY, adropin, insulin, and leptin in periparturient dairy cows.

    PubMed

    Zapata, Rizaldy C; Salehi, Reza; Ambrose, Divakar J; Chelikani, Prasanth K

    2015-10-01

    Dietary fat supplementation during the periparturient period is one strategy to increase energy intake and attenuate the degree of negative energy balance during early lactation; however, little is known of the underlying hormonal and metabolic adaptations. We evaluated the effects of prepartum fat supplementation on energy-balance parameters and plasma concentrations of glucagon-like peptide-1, peptide tyrosine-tyrosine (PYY), adropin, insulin, leptin, glucose, nonesterified fatty acid, and β-hydroxybutyric acid in dairy cows. Twenty-four pregnant dairy cows were randomized to diets containing either rolled canola or sunflower seed at 8% of dry matter, or no oilseed supplementation, during the last 5 wk of gestation and then assigned to a common lactation diet postpartum. Blood samples were collected at -2, +2, and +14 h relative to feeding, at 2 wk after the initiation of the diets, and at 2 wk postpartum. Dietary canola and sunflower supplementation alone did not affect energy balance, body weight, and plasma concentrations of glucagon-like peptide-1, PYY, adropin, insulin, leptin, nonesterified fatty acid, and β-hydroxybutyric acid; however, canola decreased and sunflower tended to decrease dry matter intake. We also observed that the physiological stage had a significant, but divergent, effect on circulating hormones and metabolite concentrations. Plasma glucagon-like peptide-1, PYY, adropin, nonesterified fatty acid, and β-hydroxybutyric acid concentrations were greater postpartum than prepartum, whereas glucose, insulin, leptin, body weight, and energy balance were greater prepartum than postpartum. Furthermore, the interaction of treatment and stage was significant for leptin and adropin, and tended toward significance for PYY and insulin; only insulin exhibited an apparent postprandial increase. Postpartum PYY concentrations exhibited a strong negative correlation with body weight, suggesting that PYY may be associated with body weight regulation during

  7. Effect of somatic cell count and mastitis pathogens on milk composition in Gyr cows

    PubMed Central

    2013-01-01

    Background Gyr cows are well adapted to tropical conditions, resistant to some tropical diseases and have satisfactory milk production. However, Gyr dairy herds have a high prevalence of subclinical mastitis, which negatively affects their milk yield and composition. The objectives of this study were (i) to evaluate the effects of seasonality, mammary quarter location (rear x front), mastitis-causing pathogen species, and somatic cell count (SCC) on milk composition in Gyr cows with mammary quarters as the experimental units and (ii) to evaluate the effects of seasonality and somatic cell count (SCC) on milk composition in Gyr cows with cows as the experimental units. A total of 221 lactating Gyr cows from three commercial dairy farms were selected for this study. Individual foremilk quarter samples and composite milk samples were collected once a month over one year from all lactating cows for analysis of SCC, milk composition, and bacteriological culture. Results Subclinical mastitis reduced lactose, nonfat solids and total solids content, but no difference was found in the protein and fat content between infected and uninfected quarters. Seasonality influenced milk composition both in mammary quarters and composite milk samples. Nevertheless, there was no effect of mammary quarter position on milk composition. Mastitis-causing pathogens affected protein, lactose, nonfat solids, and total solids content, but not milk fat content. Somatic cell count levels affected milk composition in both mammary quarters and composite samples of milk. Conclusions Intramammary infections in Gyr cows alter milk composition; however, the degree of change depends on the mastitis-causing pathogen. Somatic cell count is negatively associated with reduced lactose and nonfat solids content in milk. Seasonality significantly affects milk composition, in which the concentration of lactose, fat, protein, nonfat solids and total solids differs between dry and wet seasons in Gyr cows. PMID

  8. Strategies for improving fertility in the modern dairy cow.

    PubMed

    Thatcher, W W; Bilby, T R; Bartolome, J A; Silvestre, F; Staples, C R; Santos, J E P

    2006-01-01

    The high producing dairy cow of the 21st century is subfertile during lactation. Our objectives are to characterize physiological periods limiting reproductive performance and to describe integrated management strategies to improve pregnancy rates. Ovarian recrudescence with normal re-occurring estrous cycles and restoration of fertility to first service are associated with a reduced occurrence of periparturient metabolic and reproductive disorders. Marked negative changes in energy balance and reduced immunocompetence influence gonadotropic and metabolic hormones. Induced ovarian inactivity was associated with enhanced uterine involution. Post-partum health and reproductive performance were improved when by-pass lipids enriched in polyunsaturated fatty acids were fed in the pre- and post-partum periods. Pharmaceutical control of follicle, CL, and uterine function with PGF, GnRH and intravaginal progesterone releasing inserts, has permitted development of more optimal timed-insemination programs for first service. Likewise, resynchronization of nonpregnant cows coupled with the use of ultrasound for early pregnancy diagnosis provides the opportunity for a second timed-insemination within 3 days of a nonpregnant diagnosis. Bovine somatotropin (bST) increases embryo development and embryo survival when coupled with a timed-insemination program or cows detected in estrus. Presence of a conceptus alters endometrial expression of genes and proteins in response to bST and nutraceuticals (i.e., unsaturated fatty acids such as eicosapentaenoic and docosahexaenoic acid in by-pass lipids) to improve pregnancy rates. Postovulatory increases in progesterone may enhance pregnancy rates in targeted populations of lactating dairy cows, but timing and magnitude of the progesterone increases are pharmaceutically dependent. PMID:16280156

  9. Is there a role for organic trace element supplements in transition cow health?

    PubMed

    Andrieu, S

    2008-04-01

    Optimal transition cow health is the key to success of the subsequent lactation, and increasing attention has been focused on management and nutritional practices that support it. Physiological stress during the transition period alters the efficiency of the immune system, making the lactating dairy cow more susceptible to infectious diseases, such as mastitis and metritis, with subsequent impairment of reproductive performance. Trace elements have a specific role in free radical control at the cellular level and influence the anti-oxidant/free radical balance. Dietary trace elements must be available for absorption throughout the whole of the digestive process until they reach the final site of absorption in the small intestine. Negative interactions between minerals can occur and, as the intestinal environment lowers the absorption of ionic minerals, chelation technology has been developed to increase mineral bioavailability. Organic trace elements have been used in dairy cow experiments, resulting in significant improvements in udder health, lameness and reproductive performance. PMID:18329303

  10. 33 CFR 157.158 - COW operations: Changed characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.158 COW operations... recorded in the Crude Oil Washing Operations and Equipment Manual approved under § 157.112; and (c)...

  11. Adaptive capability as indicated by behavioral and physiological responses, plasma HSP70 level, and PBMC HSP70 mRNA expression in Osmanabadi goats subjected to combined (heat and nutritional) stressors.

    PubMed

    Shilja, Shaji; Sejian, V; Bagath, M; Mech, A; David, C G; Kurien, E K; Varma, Girish; Bhatta, Raghavendra

    2016-09-01

    A study was conducted to assess the impact of heat and nutritional stress simultaneously on the adaptive capability as indicated by behavioral and physiological responses, plasma heat shock protein 70 (HSP70) level, and peripheral blood mononuclear cells (PBMC) HSP70 gene expression in goats. Twenty-four adult Osmanabadi bucks (average body weight (BW) 16.0 kg) were used in the present study. The bucks were divided into four groups viz., C (n = 6; control), HS (n = 6; heat stress), NS (n = 6; nutritional stress), and CS (n = 6; combined stress). The study was conducted for a period of 45 days. C and HS bucks had ad libitum access to their feed while NS and CS bucks were under restricted feed (30 % intake of C bucks) to induce nutritional stress. The HS and CS bucks were exposed to solar radiation for 6 h a day between 10:00 a.m. and 4:00 p.m. to induce heat stress. The data was analyzed using repeated measures analysis of variance. The standing time differed significantly (P < 0.01) between ad libitum fed groups (C and HS) and restricted feeding groups (NS and CS). The highest (P < 0.01) lying time was recorded in the CS group while the lowest in the C and HS groups. The highest (P < 0.01) drinking frequency was also recorded in the CS group. Water intake recorded was significantly (P < 0.01) higher in both the HS and CS groups. The highest respiration rate (RR), pulse rate (PR), and rectal temperature (RT) during the afternoon were also recorded in the CS group. Further, skin temperature of the head, flank, and scrotum during the afternoon was also higher (P < 0.01) in the CS group. In addition, both plasma HSP70 concentration and PBMC HSP70 messenger RNA (mRNA) transcript expression were also significantly (P < 0.01) higher in the CS group. It can be concluded from this study that when two stressors occur simultaneously, they may have severe impact on adaptive capabilities of Osmanabadi bucks as compared to that would occur individually

  12. Adaptive capability as indicated by behavioral and physiological responses, plasma HSP70 level, and PBMC HSP70 mRNA expression in Osmanabadi goats subjected to combined (heat and nutritional) stressors

    NASA Astrophysics Data System (ADS)

    Shilja, Shaji; Sejian, V.; Bagath, M.; Mech, A.; David, C. G.; Kurien, E. K.; Varma, Girish; Bhatta, Raghavendra

    2016-09-01

    A study was conducted to assess the impact of heat and nutritional stress simultaneously on the adaptive capability as indicated by behavioral and physiological responses, plasma heat shock protein 70 (HSP70) level, and peripheral blood mononuclear cells (PBMC) HSP70 gene expression in goats. Twenty-four adult Osmanabadi bucks (average body weight (BW) 16.0 kg) were used in the present study. The bucks were divided into four groups viz., C ( n = 6; control), HS ( n = 6; heat stress), NS ( n = 6; nutritional stress), and CS ( n = 6; combined stress). The study was conducted for a period of 45 days. C and HS bucks had ad libitum access to their feed while NS and CS bucks were under restricted feed (30 % intake of C bucks) to induce nutritional stress. The HS and CS bucks were exposed to solar radiation for 6 h a day between 10:00 a.m. and 4:00 p.m. to induce heat stress. The data was analyzed using repeated measures analysis of variance. The standing time differed significantly ( P < 0.01) between ad libitum fed groups (C and HS) and restricted feeding groups (NS and CS). The highest ( P < 0.01) lying time was recorded in the CS group while the lowest in the C and HS groups. The highest ( P < 0.01) drinking frequency was also recorded in the CS group. Water intake recorded was significantly ( P < 0.01) higher in both the HS and CS groups. The highest respiration rate (RR), pulse rate (PR), and rectal temperature (RT) during the afternoon were also recorded in the CS group. Further, skin temperature of the head, flank, and scrotum during the afternoon was also higher ( P < 0.01) in the CS group. In addition, both plasma HSP70 concentration and PBMC HSP70 messenger RNA (mRNA) transcript expression were also significantly ( P < 0.01) higher in the CS group. It can be concluded from this study that when two stressors occur simultaneously, they may have severe impact on adaptive capabilities of Osmanabadi bucks as compared to that would occur individually. Further, the

  13. Adaptive capability as indicated by behavioral and physiological responses, plasma HSP70 level, and PBMC HSP70 mRNA expression in Osmanabadi goats subjected to combined (heat and nutritional) stressors.

    PubMed

    Shilja, Shaji; Sejian, V; Bagath, M; Mech, A; David, C G; Kurien, E K; Varma, Girish; Bhatta, Raghavendra

    2016-09-01

    A study was conducted to assess the impact of heat and nutritional stress simultaneously on the adaptive capability as indicated by behavioral and physiological responses, plasma heat shock protein 70 (HSP70) level, and peripheral blood mononuclear cells (PBMC) HSP70 gene expression in goats. Twenty-four adult Osmanabadi bucks (average body weight (BW) 16.0 kg) were used in the present study. The bucks were divided into four groups viz., C (n = 6; control), HS (n = 6; heat stress), NS (n = 6; nutritional stress), and CS (n = 6; combined stress). The study was conducted for a period of 45 days. C and HS bucks had ad libitum access to their feed while NS and CS bucks were under restricted feed (30 % intake of C bucks) to induce nutritional stress. The HS and CS bucks were exposed to solar radiation for 6 h a day between 10:00 a.m. and 4:00 p.m. to induce heat stress. The data was analyzed using repeated measures analysis of variance. The standing time differed significantly (P < 0.01) between ad libitum fed groups (C and HS) and restricted feeding groups (NS and CS). The highest (P < 0.01) lying time was recorded in the CS group while the lowest in the C and HS groups. The highest (P < 0.01) drinking frequency was also recorded in the CS group. Water intake recorded was significantly (P < 0.01) higher in both the HS and CS groups. The highest respiration rate (RR), pulse rate (PR), and rectal temperature (RT) during the afternoon were also recorded in the CS group. Further, skin temperature of the head, flank, and scrotum during the afternoon was also higher (P < 0.01) in the CS group. In addition, both plasma HSP70 concentration and PBMC HSP70 messenger RNA (mRNA) transcript expression were also significantly (P < 0.01) higher in the CS group. It can be concluded from this study that when two stressors occur simultaneously, they may have severe impact on adaptive capabilities of Osmanabadi bucks as compared to that would occur individually

  14. Adaptive capability as indicated by behavioral and physiological responses, plasma HSP70 level, and PBMC HSP70 mRNA expression in Osmanabadi goats subjected to combined (heat and nutritional) stressors

    NASA Astrophysics Data System (ADS)

    Shilja, Shaji; Sejian, V.; Bagath, M.; Mech, A.; David, C. G.; Kurien, E. K.; Varma, Girish; Bhatta, Raghavendra

    2015-12-01

    A study was conducted to assess the impact of heat and nutritional stress simultaneously on the adaptive capability as indicated by behavioral and physiological responses, plasma heat shock protein 70 (HSP70) level, and peripheral blood mononuclear cells (PBMC) HSP70 gene expression in goats. Twenty-four adult Osmanabadi bucks (average body weight (BW) 16.0 kg) were used in the present study. The bucks were divided into four groups viz., C (n = 6; control), HS (n = 6; heat stress), NS (n = 6; nutritional stress), and CS (n = 6; combined stress). The study was conducted for a period of 45 days. C and HS bucks had ad libitum access to their feed while NS and CS bucks were under restricted feed (30 % intake of C bucks) to induce nutritional stress. The HS and CS bucks were exposed to solar radiation for 6 h a day between 10:00 a.m. and 4:00 p.m. to induce heat stress. The data was analyzed using repeated measures analysis of variance. The standing time differed significantly (P < 0.01) between ad libitum fed groups (C and HS) and restricted feeding groups (NS and CS). The highest (P < 0.01) lying time was recorded in the CS group while the lowest in the C and HS groups. The highest (P < 0.01) drinking frequency was also recorded in the CS group. Water intake recorded was significantly (P < 0.01) higher in both the HS and CS groups. The highest respiration rate (RR), pulse rate (PR), and rectal temperature (RT) during the afternoon were also recorded in the CS group. Further, skin temperature of the head, flank, and scrotum during the afternoon was also higher (P < 0.01) in the CS group. In addition, both plasma HSP70 concentration and PBMC HSP70 messenger RNA (mRNA) transcript expression were also significantly (P < 0.01) higher in the CS group. It can be concluded from this study that when two stressors occur simultaneously, they may have severe impact on adaptive capabilities of Osmanabadi bucks as compared to that would occur individually. Further, the study

  15. Gravitational adaptation of animals

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Burton, R. R.

    1982-01-01

    The effect of gravitational adaptation is studied in a group of five Leghorn cocks which had become physiologically adapted to 2 G after 162 days of centrifugation. After this period of adaptation, they are periodically exposed to a 2 G field, accompanied by five previously unexposed hatch-mates, and the degree of retained acceleration adaptation is estimated from the decrease in lymphocyte frequency after 24 hr at 2 G. Results show that the previously adapted birds exhibit an 84% greater lymphopenia than the unexposed birds, and that the lymphocyte frequency does not decrease to a level below that found at the end of 162 days at 2 G. In addition, the capacity for adaptation to chronic acceleration is found to be highly heritable. An acceleration tolerant strain of birds shows lesser mortality during chronic acceleration, particularly in intermediate fields, although the result of acceleration selection is largely quantitative (a greater number of survivors) rather than qualitative (behavioral or physiological changes).

  16. Genetic control of reproduction in dairy cows.

    PubMed

    Butler, Stephen T

    2013-01-01

    The advent of AI has markedly improved the production potential of dairy cows in all systems of production and transformed the dairy industry in many countries. Unfortunately, for many years breeding objectives focused solely on milk production. This resulted in a major decline in genetic merit for fertility traits. In recent years, the underlying physiological mechanisms responsible for this decline have started to be unravelled. It is apparent that poor genetic merit for fertility traits is associated with multiple defects across a range of organs and tissues that are antagonistic to achieving satisfactory fertility performance. The principal defects include excessive mobilisation of body condition score, unfavourable metabolic status, delayed resumption of cyclicity, increased incidence of endometritis, dysfunctional oestrus expression and inadequate luteal phase progesterone concentrations. On a positive note, it is possible to identify sires that combine good milk production traits with good fertility traits. Sire genetic merit for daughter fertility traits is improving rapidly in the dairy breeds, including the Holstein. With advances in animal breeding, especially genomic technologies, to identify superior sires, genetic merit for fertility traits can be improved much more quickly than they initially declined.

  17. Achieving Body Weight Adjustments for Feeding Status and Pregnant or Non-Pregnant Condition in Beef Cows

    PubMed Central

    Gionbelli, Mateus P.; Duarte, Marcio S.; Valadares Filho, Sebastião C.; Detmann, Edenio; Chizzotti, Mario L.; Rodrigues, Felipe C.; Zanetti, Diego; Gionbelli, Tathyane R. S.; Machado, Marcelo G.

    2015-01-01

    Background Beef cows herd accounts for 70% of the total energy used in the beef production system. However, there are still limited studies regarding improvement of production efficiency in this category, mainly in developing countries and in tropical areas. One of the limiting factors is the difficulty to obtain reliable estimates of weight variation in mature cows. This occurs due to the interaction of weight of maternal tissues with specific physiological stages such as pregnancy. Moreover, variation in gastrointestinal contents due to feeding status in ruminant animals is a major source of error in body weight measurements. Objectives Develop approaches to estimate the individual proportion of weight from maternal tissues and from gestation in pregnant cows, adjusting for feeding status and stage of gestation. Methods and Findings Dataset of 49 multiparous non-lactating Nellore cows (32 pregnant and 17 non-pregnant) were used. To establish the relationships between the body weight, depending on the feeding status of pregnant and non-pregnant cows as a function of days of pregnancy, a set of general equations was tested, based on theoretical suppositions. We proposed the concept of pregnant compound (PREG), which represents the weight that is genuinely related to pregnancy. The PREG includes the gravid uterus minus the non-pregnant uterus plus the accretion in udder related to pregnancy. There was no accretion in udder weight up to 238 days of pregnancy. By subtracting the PREG from live weight of a pregnant cow, we obtained estimates of the weight of only maternal tissues in pregnant cows. Non-linear functions were adjusted to estimate the relationship between fasted, non-fasted and empty body weight, for pregnant and non-pregnant cows. Conclusions Our results allow for estimating the actual live weight of pregnant cows and their body constituents, and subsequent comparison as a function of days of gestation and feeding status. PMID:25793770

  18. [Aviation physiology].

    PubMed

    Frank, P W

    1999-10-01

    Aviation physiology should be known at least in parts by the physicians advising air travellers. Due to reducing atmospheric pressure at altitude gas volume in body cavities expands (Boyle's law). This might not be a problem during ascend since air can disappear easily through natural ways. However, air must return to body cavities during descend and a person with a cold may suffer from painful barotitis. Hypoxia is mostly due to a reduced pO2 in high altitude (Daltons's Law). This may be prevented by an aircraft cabin or supplemented oxygen. Decompression sickness is very rare in aviation but divers should comply to a dive free interval before flying. PMID:10568247

  19. Seasonal heat stress: Clinical implications and hormone treatments for the fertility of dairy cows.

    PubMed

    De Rensis, F; Garcia-Ispierto, I; López-Gatius, F

    2015-09-15

    Heat stress has consequences on both the physiology and reproductive performance of cows, but the most dramatic effect for dairy producers is the decrease produced in fertility. The effects of heat stress on fertility include an increased number of days open, reduced conception rate, and larger number of cows suffering different types of anestrus. Once becomes pregnant, heat stress affects also the reproductive success of the cow through its direct effects on the ovary, uterus, gametes, embryo, and early fetus. This article reviews current knowledge of the effects of heat stress on fertility in dairy cows and the hormonal strategies used to mitigate these effects at the farm level. Administration of GnRH at the moment of artificial insemination can improve the conception rate. Breeding synchronization protocols for fixed-time insemination may reduce the calving conception interval and the number of services per conception. Progesterone-based protocols seem resolve better the reproductive disorders related to a hot environment (anestrus) than GnRH-based protocols. The use of combinations of GnRH, eCG, and hCG in progesterone-based protocols can improve results. Progesterone supplementation during the late embryonic and/or early fetal period would be useful in curtailing pregnancy losses, mainly in single pregnancies, whereas a more positive effect of treatment with GnRH than progesterone has been found in twin pregnancies. Melatonin therapy is emerging as a promising strategy to improve the natural reproductive performance of cows suffering conditions of heat stress. PMID:26025242

  20. Innate and adaptive immune responses to in utero infection with bovine viral diarrhea virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection of pregnant cows with noncytopathic (ncp) BVDV induces rapid innate and adaptive immune responses resulting in clearance of the virus in less than 3 weeks. Seven to 14 days after inoculation of the cow, ncpBVDV crosses the placenta and induces a fetal viremia. Establishment of persistent ...

  1. Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents.

    PubMed

    Weimer, P J; Stevenson, D M; Mantovani, H C; Man, S L C

    2010-12-01

    The purpose of this study was to examine the stability and host specificity of a cow's ruminal bacterial community following massive challenge with ruminal microflora from another cow. In each of 2 experiments, 1 pair of cows was selected on the basis of differences in ruminal bacterial community composition (BCC), determined by automated ribosomal intergenic spacer analysis (ARISA), a culture-independent "community fingerprinting" technique. Each pair of cows was then subjected to a 1-time exchange of >95% of ruminal contents without changing the composition of a corn silage/alfalfa haylage-based TMR. In experiment 1, the 2 cows differed (P<0.01) in prefeed ruminal pH (mean = 6.88 vs. 6.14) and prefeed total VFA concentration (mean = 57 vs. 77 mM), averaged over 3 d. Following exchange of ruminal contents, ruminal pH and total VFA concentration in both cows returned to their preexchange values within 24h. Ruminal BCC also returned to near its original profile, but this change required 14 d for 1 cow and 61 d for the other cow. In experiment 2, the 2 other cows differed in prefeed ruminal pH (mean = 6.69 vs. 6.20) and total VFA concentration (mean = 101 vs. 136 mM). Following exchange of ruminal contents, the first cow returned to its preexchange pH and VFA values within 24h; the second cow's rumen rapidly stabilized to a higher prefeed pH (mean = 6.47) and lower prefeed VFA concentration (mean = 120 mM) that was retained over the 62-d test period. Both cows reached somewhat different BCC than before the exchange. However, the BCC of both cows remained distinct and were ultimately more similar to that of the preexchange BCC than of the donor animal BCC. The data indicate that the host animal can quickly reestablish its characteristic ruminal pH and VFA concentration despite dramatic perturbation of its ruminal microbial community. The data also suggest that ruminal BCC displays substantial host specificity that can reestablish itself with varying success when

  2. Mineral retention in three-week-old piglets fed goat and cow milk infant formulas.

    PubMed

    Rutherfurd, S M; Darragh, A J; Hendriks, W H; Prosser, C G; Lowry, D

    2006-12-01

    Goat milk and cow milk are commonly used in infant formula preparations and, as such, understanding the nutritional characteristics of infant formulas made from these milks is important. In this study, a goat milk infant formula was compared with an adapted (whey-enhanced) cow milk infant formula with respect to mineral absorption and deposition using the 3-wk-old piglet as a model for the 3-mo-old infant. Equal numbers of piglets (n = 8) were fed either the goat milk formula or the cow milk formula. The mineral composition of the prepared goat milk formula was higher than that of the prepared cow milk formula for most minerals, including calcium (75.1 vs. 56.7 mg/100 mL) but excluding iron, which was higher in the prepared cow milk formula (0.92 vs. 0.74 mg/100 mL). The amounts of calcium, phosphorus, and manganese absorbed by the piglets were significantly higher for the goat milk formula, whereas the amounts of zinc, iron, and magnesium absorbed were significantly higher for the cow milk formula. Apparent mineral absorption, relative to intake, was statistically higher in the cow milk formula for calcium and phosphorus, although the actual differences were very small (less than 1.3%). For copper, zinc, iron, and magnesium there was no significant difference between treatments in apparent mineral absorption, whereas for manganese, absorption was higher for the goat milk infant formula. The absolute mineral deposition was higher in piglets fed the goat milk formula for calcium, phosphorus, and manganese, whereas iron deposition was higher in the piglets fed cow milk formula. For all other minerals tested, there were no significant differences between treatments. The goat milk infant formula provided a pattern of mineral retention in the 3-wk-old piglet very similar to that of the adapted cow milk infant formula. The minor differences observed between the 2 appeared to be due to the different mineral contents of the 2 formulas.

  3. Physiology of man and animals in the Tenth Five-Year Plan: Proceedings of the Thirteenth Congress of the I. P. Pavlov All-Union Physiological Society

    NASA Technical Reports Server (NTRS)

    Lange, K. A.

    1980-01-01

    Research in the field of animal and human physiology is reviewed. The following topics on problems of physiological science and related fields of knowledge are discussed: neurophysiology and higher nervous activity, physiology of sensory systems, physiology of visceral systems, evolutionary and ecological physiology, physiological cybernetics, computer application in physiology, information support of physiological research, history and theory of development of physiology. Also discussed were: artificial intelligence, physiological problems of reflex therapy, correlation of structure and function of the brain, adaptation and activity, microcirculation, and physiological studies in nerve and mental diseases.

  4. Fecal shedding of Salmonella spp. by dairy cows on farm and at cull cow markets.

    PubMed

    Wells, S J; Fedorka-Cray, P J; Dargatz, D A; Ferris, K; Green, A

    2001-01-01

    As part of a national study of the U.S. dairy cow population, fecal samples were collected from representative cows on 91 dairies and 97 cull dairy cow markets in 19 states. Salmonella spp. were recovered from 5.4% of milk cows, 18.1% of milk cows expected to be culled within 7 days, and 14.9% of culled dairy cows at markets. On a premise basis, Salmonella shedding in milk cows was detected on 21.1% of dairies and 66% of cull dairy cow markets. The percentage of herds with at least one cow with detectable Salmonella fecal shedding was higher during the sampling period from May through July, in herds with at least 100 milk cows, and in herds in the South region. The most common Salmonella serogroups isolated were E (30.8% of isolates) and C1 (28.6%); the most common serotypes isolated were Salmonella Montevideo (21.5% of isolates), Salmonella Cerro (13.3%), and Salmonella Kentucky (8.5%). Fecal shedding of Salmonella Typhimurium or Salmonella Typhimurium var. copenhagen was infrequent (2.8% of isolates). Most isolates (88.9%) were susceptible to all 17 antimicrobials evaluated; multiple resistance was an infrequent occurrence. This study provides information describing the distribution of Salmonella fecal shedding from dairy cows on farm and at markets and will serve as a baseline for future studies.

  5. Recent research on the effects of excess dietary nitrogen on the fertility of dairy cows.

    PubMed

    Laven, R A; Scaramuzzi, R J; Wathes, D C; Peters, A R; Parkinson, T J

    2007-03-17

    High concentrations of dietary nitrogen have been associated with reductions in the fertility of dairy cows, but the evidence is not conclusive and many studies have shown little or no effect. This paper reviews recent investigations of the effect of rapidly degradable sources of nitrogen on parameters of fertility, and concludes that high levels of dietary nitrogen do not routinely reduce fertility, even at intakes above those in normal dairy cow diets. It also concludes that cows may be able to adapt to high nitrogen diets so that diets that may reduce their fertility when introduced at critical periods, for example, when they are inseminated, do not reduce it when introduced at an earlier stage. PMID:17369475

  6. Incorporating mixed rations and formulated grain mixes into the diet of grazing cows: Effects on milk composition and coagulation properties, and the yield and quality of Cheddar cheese.

    PubMed

    Auldist, M J; Greenwood, J S; Wright, M M; Hannah, M; Williams, R P W; Moate, P J; Wales, W J

    2016-06-01

    Effects of different strategies for feeding supplements to grazing dairy cows on the composition and coagulation properties of milk and the subsequent yield and quality of Cheddar cheese were measured. The experiment used milk from 72 Holstein-Friesian cows, averaging 45d in milk, fed according to 1 of 3 feeding strategies: (1) cows grazed a restricted allowance of perennial ryegrass pasture [approximately 14kg of dry matter (DM)/cow per day, to ground level] supplemented with milled wheat grain fed in the milking parlor and alfalfa hay offered in the paddock (control); (2) same pasture and allowance as control, supplemented with a formulated grain mix containing wheat grain, corn grain, and canola meal fed in the parlor and alfalfa hay fed in the paddock (FGM); or (3) same pasture and allowance as control, supplemented with a partial mixed ration comprising the same formulated grain mix but mixed with alfalfa hay and presented on a feed pad after each milking (PMR). For all strategies, supplements provided the same metabolizable energy and grain:forage ratio (78:22, DM basis). Within each feeding strategy, milk was sampled from cows receiving either 8 or 16kg (DM) of supplement/cow per day. There were 2 replicated groups of 6 cows per supplement amount per dietary strategy; approximately 250L of milk was sampled from each for analyses of composition and coagulation properties and the manufacture of Cheddar cheese. The experiment had a 14-d adaptation period and a 14-d measurement period. For cows fed according to the control strategy, those fed 16kg/cow per day produced milk with lower concentrations of milk fat than cows fed 8kg/cow per day. This effect was not observed for cows fed according to the FGM and PMR strategies. Milk from cows fed 16kg of DM/cow per day according to the control strategy yielded less Cheddar cheese than milk from cows fed according to the PMR strategy, with cheese yields from FGM cows being intermediate. Amount of supplement offered had

  7. Physiological Acoustics

    NASA Astrophysics Data System (ADS)

    Young, Eric D.

    The analysis of physiological sound in the peripheral auditory system solves three important problems. First, sound energy impinging on the head must be captured and presented to the transduction apparatus in the ear as a suitable mechanical signal; second, this mechanical signal needs to be transduced into a neural representation that can be used by the brain; third, the resulting neural representation needs to be analyzed by central neurons to extract information useful to the animal. This chapter provides an overview of some aspects of the first two of these processes. The description is entirely focused on the mammalian auditory system, primarily on human hearing and on the hearing of a few commonly used laboratory animals (mainly rodents and carnivores). Useful summaries of non-mammalian hearing are available [1]. Because of the large size of the literature, review papers are referenced wherever possible.

  8. 33 CFR 117.965 - Cow Bayou.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Cow Bayou. 117.965 Section 117.965 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.965 Cow Bayou. The draws of the Orange...

  9. 33 CFR 117.965 - Cow Bayou.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Cow Bayou. 117.965 Section 117.965 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.965 Cow Bayou. The draws of the Orange...

  10. 33 CFR 117.965 - Cow Bayou.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Cow Bayou. 117.965 Section 117.965 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.965 Cow Bayou. The draws of the Orange...

  11. 33 CFR 117.965 - Cow Bayou.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Cow Bayou. 117.965 Section 117.965 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.965 Cow Bayou. The draws of the Orange...

  12. Systemic and local bactericidal potentiality in late lactation Holstein-Friesian cows following a combined antibiotics and Enterococcus faecium SF68 dry-cow treatment.

    PubMed

    Tiantong, Attapol; Piamya, Piya; Chen, Shuen-Ei; Liu, Wen-Bor; Chang, Fang-Yu; Lin, Pei-Chi; Nagahata, Hajime; Chang, Chai-Ju

    2015-08-01

    Antibiotic dry-cow treatment contributes a major part to the total use of antibiotics in dairy herds. Enterococcus faecium strain SF68 (SF68) was of human origin but has been authorized in EU as probiotic feed additive. In the present study, one of the front and rear quarters of twelve late lactation Holstein-Friesian cows were infused once with a commercial antibiotic dry-cow formula (antibiotics quarter) on the first milk-stasis day (d 1), when the contrallateral quarters were infused with 5 x 10(8)-CFU SF68 plus half-dose antibiotic dry-cow formula (SF68/antibiotics quarter) meanwhile. Gelatinase level and cellular reactive oxygen species (ROS) production capacity were measured for blood and quarter secretion. The results showed that the count of blood total leukocytes minorly decreased on d 3 only but the microscopic somatic cell count (MSCC) continuously increased up to d 7, especially in SF68/antibiotics quarters. Plasma level of gelatinase A remained similar up to d 7 but gelatinase B was not detectable in plasma throughout the study. The level of gelatinase A in quarter secretion increased up to d 7 but gelatinase B increased even more drastically, especially in SF68/antibiotics quarters. The ROS production capacity of blood leukocytes increased temporarily only on d 3, but that of milk cells continuously increased up to d 7, especially in SF68/antitiotics quarters. Overall, late lactation Holstein-Friesian cows were systemically adaptable to the combined antibiotics and SF68 dry-cow treatment, while the local bactericidal potentiality in mammary gland was actively responsive to additional SF68 intramammary treatment.

  13. Adaptive management for drought on rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adaptive management for drought on rangelands encompasses 1) enterprise flexibility – herd structure where the proportion of cow-calf pairs and yearlings provides plasticity to match forage availability with forage demand, with advantages to economic returns and increased resiliency of plant communi...

  14. Managing the dairy cow at calving time.

    PubMed

    Mee, John F

    2004-11-01

    Managing the dairy cow at calving, unlike artificial insemination or transrectal ultrasonography, is often perceived as an unskilled task, not requiring specialist training. This article presents the argument for the financial and welfare costs associated with poor periparturient management, and how to address them by veterinarian-led education and upskilling of herd personnel. Successful management of the dairy cow at calving will result in the birth of a healthy calf and a smooth transition of the cow into the milking string with minimal calving problems and their sequelae. The tenets of good calving management are predicting accurately when calving is due, moving cows to the maternity unit on time, discrete calving supervision, knowing when and how to intervene, and ensuring the calf is vigorous and fed colostrum and the cow is healthy postpartum. PMID:15471623

  15. [Methods of treating puerperal endometritis in cows].

    PubMed

    Radoslavov, V

    1976-01-01

    Tested were two methods for the treatment of cows affected with acute endometritis after giving birth. The experiments were carried out with a total of 92 cows of the Bulgarian Brown breed kept under equal condtions of feeding and management. Two tests and one control groups were formed. The first group of cows (48) were treated with a bilateral epipleural block after Mossin. As a result 66.7 per cent of the cows conceived up to the 80th day after calving and 43.7 per cent at the first insemination. The service period of the impregnated cows of this group was 73.3 +/- 4.94 days, on an average. The second group of cows (25) were treated muscularly with a combination of 1 per cent magnesium sulphuricum solution (40 cu. cm), vitamin C (10 cu. cum), norsulphasol (5 g), and chloramphenicol (2 g). The treatment was repeated at a three-day interval. The results of the treatment accounted for 68 per cent impregnated cows up to an 80-day service period, and 48 per cent--at first insemination. The service period of the cows of this group lasted 69.3 +/- 6.0 days, on an average. The control group cows were treated at random with penicillin and streptomycin, muscularly. The conception rate at first insemination was 36.7 per cent, and within the range of an 80-day service period--47.02 per cent of the treated cows. The average service period for this group lasted 91.80 +/- 9.28 days. PMID:1030875

  16. Development and physiology of the rumen and the lower gut: Targets for improving gut health.

    PubMed

    Steele, Michael A; Penner, Greg B; Chaucheyras-Durand, Frédérique; Guan, Le Luo

    2016-06-01

    The gastrointestinal epithelium of the dairy cow and calf faces the challenge of protecting the host from the contents of the luminal milieu while controlling the absorption and metabolism of nutrients. Adaptations of the gastrointestinal tract play an important role in animal energetics as the portal-drained viscera accounts for 20% of the total oxygen consumption of the ruminant. The mechanisms that govern growth and barrier function of the gastrointestinal epithelium have received particular attention over the past decade, especially with advancements in molecular-based techniques, such as microarrays and next-generation DNA sequencing. The rumen has been the focal point of dairy cow and calf nutritional physiology research, whereas the lower gut has received less attention. Three key areas that require discovery-based and applied research include (1) early-life intestinal gut barrier function and growth; (2) how the weaning transition affects function of the rumen and intestine; and (3) gastrointestinal adaptations during the transition to high-energy diets in early lactation. In dairy nutrition, nutrients are seen not only as metabolic substrates, but also as signals that can alter gastrointestinal growth and barrier function. Nutrients have been shown to affect epithelial cell gene expression directly and, in concert with insulin-like growth factor, growth hormone, and glucagon-like peptide 2, play a pivotal role in gut tissue growth. The latest research suggests that ruminal and intestinal barrier function is compromised during the preweaning phase, at weaning, and in early lactation. Gastrointestinal barrier function is influenced by the presence of metabolites, such as butyrate, the resident microbiota, and the microbes provided in feed. In the first studies that investigated barrier function in cows and calves, it was determined that the expression of genes encoding tight junction proteins, such as claudins, occludins, and desmosomal cadherins, are

  17. Analysis of behavioral changes in dairy cows associated with claw horn lesions.

    PubMed

    Nechanitzky, K; Starke, A; Vidondo, B; Müller, H; Reckardt, M; Friedli, K; Steiner, A

    2016-04-01

    Detecting lame cows is important in improving animal welfare. Automated tools are potentially useful to enable identification and monitoring of lame cows. The goals of this study were to evaluate the suitability of various physiological and behavioral parameters to automatically detect lameness in dairy cows housed in a cubicle barn. Lame cows suffering from a claw horn lesion (sole ulcer or white line disease) of one claw of the same hind limb (n=32; group L) and 10 nonlame healthy cows (group C) were included in this study. Lying and standing behavior at night by tridimensional accelerometers, weight distribution between hind limbs by the 4-scale weighing platform, feeding behavior at night by the nose band sensor, and heart activity by the Polar device (Polar Electro Oy, Kempele, Finland) were assessed. Either the entire data set or parts of the data collected over a 48-h period were used for statistical analysis, depending upon the parameter in question. The standing time at night over 12 h and the limb weight ratio (LWR) were significantly higher in group C as compared with group L, whereas the lying time at night over 12 h, the mean limb difference (△weight), and the standard deviation (SD) of the weight applied on the limb taking less weight were significantly lower in group C as compared with group L. No significant difference was noted between the groups for the parameters of heart activity and feeding behavior at night. The locomotion score of cows in group L was positively correlated with the lying time and △weight, whereas it was negatively correlated with LWR and SD. The highest sensitivity (0.97) for lameness detection was found for the parameter SD [specificity of 0.80 and an area under the curve (AUC) of 0.84]. The highest specificity (0.90) for lameness detection was present for Δweight (sensitivity=0.78; AUC=0.88) and LWR (sensitivity=0.81; AUC=0.87). The model considering the data of SD together with lying time at night was the best

  18. Analysis of behavioral changes in dairy cows associated with claw horn lesions.

    PubMed

    Nechanitzky, K; Starke, A; Vidondo, B; Müller, H; Reckardt, M; Friedli, K; Steiner, A

    2016-04-01

    Detecting lame cows is important in improving animal welfare. Automated tools are potentially useful to enable identification and monitoring of lame cows. The goals of this study were to evaluate the suitability of various physiological and behavioral parameters to automatically detect lameness in dairy cows housed in a cubicle barn. Lame cows suffering from a claw horn lesion (sole ulcer or white line disease) of one claw of the same hind limb (n=32; group L) and 10 nonlame healthy cows (group C) were included in this study. Lying and standing behavior at night by tridimensional accelerometers, weight distribution between hind limbs by the 4-scale weighing platform, feeding behavior at night by the nose band sensor, and heart activity by the Polar device (Polar Electro Oy, Kempele, Finland) were assessed. Either the entire data set or parts of the data collected over a 48-h period were used for statistical analysis, depending upon the parameter in question. The standing time at night over 12 h and the limb weight ratio (LWR) were significantly higher in group C as compared with group L, whereas the lying time at night over 12 h, the mean limb difference (△weight), and the standard deviation (SD) of the weight applied on the limb taking less weight were significantly lower in group C as compared with group L. No significant difference was noted between the groups for the parameters of heart activity and feeding behavior at night. The locomotion score of cows in group L was positively correlated with the lying time and △weight, whereas it was negatively correlated with LWR and SD. The highest sensitivity (0.97) for lameness detection was found for the parameter SD [specificity of 0.80 and an area under the curve (AUC) of 0.84]. The highest specificity (0.90) for lameness detection was present for Δweight (sensitivity=0.78; AUC=0.88) and LWR (sensitivity=0.81; AUC=0.87). The model considering the data of SD together with lying time at night was the best

  19. Associations of udder-health indicators with cow factors and with intramammary infection in dairy cows.

    PubMed

    Nyman, A-K; Persson Waller, K; Bennedsgaard, T W; Larsen, T; Emanuelson, U

    2014-09-01

    The objective of this study was to investigate if and how cow factors and intramammary infection (IMI) are associated with 4 different udder-health indicators in dairy cows as a first step in investigating whether the diagnostic performance of these indicators can be improved. The investigated indicators were somatic cell count (SCC), lactate dehydrogenase (LDH), N-acetyl-β-d-glucosaminidase (NAGase), and alkaline phosphatase (AP) measured in milk. In this cross-sectional study, approximately 1,000 cows from 25 dairy herds were sampled for bacteriology (quarter milk samples) during 3 consecutive days: the day before test milking, at the day of test milking, and at the day after test milking. The whole-udder test milking sample was analyzed for milk composition, SCC, LDH, NAGase, and AP. Cow data (parity, breed, milk yield, percentage of milk fat and protein, milk urea concentration, and days in milk from the sampled test milking) were collected from the Swedish milk-recording scheme. Of the sampled cows 485 were considered IMI negative and were used in multivariable mixed-effect linear regression models to investigate associations between cow factors and the udder-health indicators. A second modeling including all cows, both IMI negative and IMI positive (256 cows), was also performed. The results showed that all udder-health indicators were affected by cow factors but that different cow factors were associated with different indicators. Intramammary-infection status was significantly associated with all udder-health indicators except AP. Parity and milk urea concentration were the only cow factors associated with all indicators in all models. The significant cow factors explained 23% of the variation in SCC and >30% of the variation in LDH, NAGase, and AP in IMI-negative cows, showing that LDH, NAGase, and AP are more affected than SCC by cow factors. The IMI status explained 23% of the variation in SCC in the model with all cows but only 7% of the variation in

  20. 33 CFR 157.124 - COW tank washing machines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false COW tank washing machines. 157....124 COW tank washing machines. (a) COW machines must be permanently mounted in each cargo tank. (b) The COW machines in each tank must have sufficient nozzles with the proper diameter, working...

  1. 33 CFR 157.124 - COW tank washing machines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false COW tank washing machines. 157....124 COW tank washing machines. (a) COW machines must be permanently mounted in each cargo tank. (b) The COW machines in each tank must have sufficient nozzles with the proper diameter, working...

  2. 33 CFR 157.124 - COW tank washing machines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false COW tank washing machines. 157....124 COW tank washing machines. (a) COW machines must be permanently mounted in each cargo tank. (b) The COW machines in each tank must have sufficient nozzles with the proper diameter, working...

  3. 33 CFR 157.124 - COW tank washing machines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false COW tank washing machines. 157....124 COW tank washing machines. (a) COW machines must be permanently mounted in each cargo tank. (b) The COW machines in each tank must have sufficient nozzles with the proper diameter, working...

  4. 33 CFR 157.124 - COW tank washing machines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false COW tank washing machines. 157....124 COW tank washing machines. (a) COW machines must be permanently mounted in each cargo tank. (b) The COW machines in each tank must have sufficient nozzles with the proper diameter, working...

  5. Massive vulvar edema in 2 prepartum dairy cows.

    PubMed

    Cheong, Soon Hon; Gilbert, Robert O

    2014-05-01

    Two late gestation Holstein cows about to begin the third lactation developed massive vulvar edema. These were the only affected animals in the herd of 500 milking cows. The vulvar edema spontaneously regressed postpartum for both cows. Massive vulvar swelling is seldom observed in dairy cows in advanced pregnancy and is not described in the literature.

  6. 33 CFR 157.170 - COW equipment: Removal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.170 COW equipment: Removal. (a... removed from a cargo tank for the carriage of cargoes other than crude oil and then reinstalled, the master shall ensure that, before COW operations are conducted, the system has no crude oil leakage....

  7. 33 CFR 157.170 - COW equipment: Removal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.170 COW equipment: Removal. (a... removed from a cargo tank for the carriage of cargoes other than crude oil and then reinstalled, the master shall ensure that, before COW operations are conducted, the system has no crude oil leakage....

  8. Swimming physiology.

    PubMed

    Holmér, I

    1992-05-01

    Swimming takes place in a medium, that presents different gravitational and resistive forces, respiratory conditions and thermal stress compared to air. The energy cost of propulsion in swimming is high, but a considerable reduction occurs at a given velocity as result of regular swim training. In medley swimmers the energy cost is lowest for front crawl, followed by backstroke, butterfly and breast-stroke. Cardiac output is probably not limiting for performance since swimmers easily achieve higher values during running. Maximal heart rate, however, is lowered by approx. 10 beats/min during swimming compared to running. Most likely active muscle mass is smaller and rate of power production lesser in swimming. Local factors, such as peripheral circulation, capillary density, perfusion pressure and metabolic capacity of active muscles, are important determinants of the power production capacity and emphasize the role of swim specific training movements. Improved swimming technique and efficiency are likely to explain much of the continuous progress in performance. Rational principles based on improved understanding of the biomechanics and physiology of swimming should be guidelines for swimmers and coaches in their efforts to explore the limits of human performance. PMID:1642724

  9. Effects of different strategies for feeding supplements on milk production responses in cows grazing a restricted pasture allowance.

    PubMed

    Auldist, M J; Marett, L C; Greenwood, J S; Hannah, M; Jacobs, J L; Wales, W J

    2013-02-01

    Milk production responses of grazing cows offered supplements in different ways were measured. Holstein-Friesian cows, averaging 227 d in milk, were allocated into 6 groups of 36, with 2 groups randomly assigned to each of 3 feeding strategies: (1) cows grazed perennial ryegrass pasture supplemented with milled barley grain fed in the milking parlor and pasture silage offered in the paddock (control); (2) same pasture and allotment supplemented with the same amounts of milled barley grain and pasture silage, but presented as a mixed ration after each milking (PMR 1); and (3) same pasture and allotment, supplemented with a mixed ration of milled barley grain, alfalfa hay, corn silage, and crushed corn grain (PMR 2). For all strategies, supplements provided the same metabolizable energy and grain:forage ratio. [75:25, dry matter (DM) basis]. Each group of 36 cows was further allocated into 4 groups of 9, which were assigned to receive 6, 8, 10, or 12 kg of supplement DM/cow per day. Thus, there were 2 replicated groups per supplement amount per dietary strategy. The experiment had a 14-d adaptation period and an 11-d measurement period. Pasture allotment was approximately 14 kg of DM/d for all cows and was offered in addition to the supplement. Positive quadratic responses to increasing amounts of supplement were observed for yield of milk, energy-corrected milk (ECM), and fat and protein, and positive linear responses for concentrations of fat and protein for cows on all 3 supplement feeding strategies. No difference existed between feeding strategy groups in yield of milk, ECM, or protein at any amount of supplement offered, but yield and concentration of fat was higher in PMR 2 cows compared with control and PMR 1 cows at the highest amounts of supplementation. Responses in marginal ECM production per additional kilogram of supplement were also greater for PMR 2 than control and PMR 1 cows when large amounts of supplement were consumed. For all diets, marked daily

  10. Effects of Supplemental Levels of Saccharomyces cerevisiae Fermentation Product on Lactation Performance in Dairy Cows under Heat Stress.

    PubMed

    Zhu, W; Zhang, B X; Yao, K Y; Yoon, I; Chung, Y H; Wang, J K; Liu, J X

    2016-06-01

    The objectives of this study were to evaluate the effects of different supplemental levels of Saccharomyces cerevisiae fermentation product (SCFP; Original XP; Diamond V) on lactation performance in Holstein dairy cows under heat stress. Eighty-one multiparous Holstein dairy cows were divided into 27 blocks of 3 cows each based on milk yield (23.6±0.20 kg/d), parity (2.88±0.91) and day in milk (204±46 d). The cows were randomly assigned within blocks to one of three treatments: 0 (control), 120, or 240 g/d of SCFP mixed with 240, 120, or 0 g of corn meal, respectively. The experiment was carried out during the summer season of 2014, starting from 14 July 2014 and lasting for 9 weeks with the first week as adaption period. During the experimental period, average daily temperature-humidity index (measured at 08:00, 14:00, and 20:00) was above 68, indicating that cows were exposed to heat stress throughout the study. Rectal temperatures tended to decrease linearly (p = 0.07) for cows supplemented with SCFP compared to the control cows at 14:30, but were not different at 06:30 (p>0.10). Dry matter intake was not affected by SCFP supplementation (p>0.10). Milk yield increased linearly (p<0.05) with increasing levels of SCFP. Feed efficiency (milk yield/dry matter intake) was highest (p<0.05) for cows fed 240 g/d SCFP. Cows supplemented with SCFP gained (p<0.01) body weight, while cows in the control lost body weight. Net energy balance also increased linearly (p<0.01) with increasing levels of SCFP. Concentrations of milk urea nitrogen (p<0.01) decreased linearly with increasing levels of SCFP, while no difference (p>0.10) was observed among the treatments in conversion of dietary crude protein to milk protein yield. In summary, supplementation of SCFP alleviated the negative effect of heat stress in lactating Holstein dairy cows and allowed cows to maintain higher milk production, feed efficiency and net energy balance. Effects of SCFP were dose-dependent and

  11. Effects of Supplemental Levels of Saccharomyces cerevisiae Fermentation Product on Lactation Performance in Dairy Cows under Heat Stress

    PubMed Central

    Zhu, W.; Zhang, B. X.; Yao, K. Y.; Yoon, I.; Chung, Y. H.; Wang, J. K.; Liu, J. X.

    2016-01-01

    The objectives of this study were to evaluate the effects of different supplemental levels of Saccharomyces cerevisiae fermentation product (SCFP; Original XP; Diamond V) on lactation performance in Holstein dairy cows under heat stress. Eighty-one multiparous Holstein dairy cows were divided into 27 blocks of 3 cows each based on milk yield (23.6±0.20 kg/d), parity (2.88±0.91) and day in milk (204±46 d). The cows were randomly assigned within blocks to one of three treatments: 0 (control), 120, or 240 g/d of SCFP mixed with 240, 120, or 0 g of corn meal, respectively. The experiment was carried out during the summer season of 2014, starting from 14 July 2014 and lasting for 9 weeks with the first week as adaption period. During the experimental period, average daily temperature-humidity index (measured at 08:00, 14:00, and 20:00) was above 68, indicating that cows were exposed to heat stress throughout the study. Rectal temperatures tended to decrease linearly (p = 0.07) for cows supplemented with SCFP compared to the control cows at 14:30, but were not different at 06:30 (p>0.10). Dry matter intake was not affected by SCFP supplementation (p>0.10). Milk yield increased linearly (p<0.05) with increasing levels of SCFP. Feed efficiency (milk yield/dry matter intake) was highest (p<0.05) for cows fed 240 g/d SCFP. Cows supplemented with SCFP gained (p<0.01) body weight, while cows in the control lost body weight. Net energy balance also increased linearly (p<0.01) with increasing levels of SCFP. Concentrations of milk urea nitrogen (p<0.01) decreased linearly with increasing levels of SCFP, while no difference (p>0.10) was observed among the treatments in conversion of dietary crude protein to milk protein yield. In summary, supplementation of SCFP alleviated the negative effect of heat stress in lactating Holstein dairy cows and allowed cows to maintain higher milk production, feed efficiency and net energy balance. Effects of SCFP were dose-dependent and

  12. Physiology of Mycobacteria

    PubMed Central

    Cook, Gregory M.; Berney, Michael; Gebhard, Susanne; Heinemann, Matthias; Cox, Robert A.; Danilchanka, Olga; Niederweis, Michael

    2013-01-01

    Mycobacterium tuberculosis is a prototrophic, metabolically flexible bacterium that has achieved a spread in the human population that is unmatched by any other bacterial pathogen. The success of M. tuberculosis as a pathogen can be attributed to its extraordinary stealth and capacity to adapt to environmental changes throughout the course of infection. These changes include: nutrient deprivation, hypoxia, various exogenous stress conditions and, in the case of the pathogenic species, the intraphagosomal environment. Knowledge of the physiology of M. tuberculosis during this process has been limited by the slow growth of the bacterium in the laboratory and other technical problems such as cell aggregation. Advances in genomics and molecular methods to analyse the M. tuberculosis genome have revealed that adaptive changes are mediated by complex regulatory networks and signals, resulting in temporal gene expression coupled to metabolic and energetic changes. An important goal for bacterial physiologists will be to elucidate the physiology of M. tuberculosis during the transition between the diverse conditions encountered by M. tuberculosis. This review covers the growth of the mycobacterial cell and how environmental stimuli are sensed by this bacterium. Adaptation to different environments is described from the viewpoint of nutrient acquisition, energy generation and regulation. To gain quantitative understanding of mycobacterial physiology will require a systems biology approach and recent efforts in this area are discussed. “It is now 100 years since the first mycobacterium was isolated by Hansen (1874). Somewhat ironically, this was the leprosy bacillus, Mycobacterium leprae, which even today is still resisting all attempts to cultivate it in the laboratory. The tubercle bacillus, M. tuberculosis was not discovered until eight years later (Koch, 1882) and this has remained an object of intensive investigation ever since. The widespread interest in the

  13. 33 CFR 157.156 - COW operations: Meeting manual requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.156 COW operations... COW system under §§ 157.10(e), 157.10a(a)(2), or 157.10c(b)(2) that has the Crude Oil Washing....10c(b)(2) shall ensure that during each COW operation— (a) The procedures listed in the Crude...

  14. 33 CFR 157.156 - COW operations: Meeting manual requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.156 COW operations... COW system under §§ 157.10(e), 157.10a(a)(2), or 157.10c(b)(2) that has the Crude Oil Washing....10c(b)(2) shall ensure that during each COW operation— (a) The procedures listed in the Crude...

  15. Whole cow's milk in early life.

    PubMed

    Thorsdottir, Inga; Thorisdottir, Asa V

    2011-01-01

    Cow's milk is a major food for young children. Whole cow's milk is known to be detrimental to infants, mainly due to its low iron content. The negative association with iron status led to recommending the introduction of formula feeding in infancy during the weaning period or when breastfeeding ceased. More recently, the literature suggests that consuming whole cow's milk in infancy has unfortunate effects on growth, especially weight acceleration and development of overweight in childhood. These issues are discussed in the following chapter. Other suggested reasons for the avoidance of whole cow's milk in infancy are touched upon, such as milk protein allergy and high renal solute load. The hypothesis about early cow's milk introduction in the pathology of certain diseases, mainly through the peptide β-casomorphin-7, is briefly reviewed, showing that there is no clear evidence for the suggested associations. The chapter gives a recent example of introducing formula at 6 months of age instead of whole cow's milk in infants' diet in Iceland. Several aspects of consuming whole cow's milk in infancy can be found in recent reviews. PMID:21335988

  16. Evolution of increased competitiveness in cows trades off with reduced milk yield, fertility and more masculine morphology.

    PubMed

    Sartori, Cristina; Mazza, Serena; Guzzo, Nadia; Mantovani, Roberto

    2015-08-01

    In some species females compete for food, foraging territories, mating, and nesting sites. Competing females can exhibit morphological, physiological, and behavioral adaptations typical of males, which are commonly considered as secondary sexual traits. Competition and the development of traits increasing competitiveness require much energy and may exert adverse effects on fecundity and survival. From an evolutionary perspective, positive selection for increased competitiveness would then result in evolution of reduced values for traits related to fitness such as fecundity and survival. There is recent evidence for such evolutionary trade-offs involving male competition, but no study has considered competing females so far. Using data from competitions for dominance in cows (Bos taurus), we found negative genetic correlations between traits providing success in competition, that is, fighting ability and fitness traits related to milk production and with fertility (the inverse of parity-conception interval). Fighting ability also showed low but positive genetic correlations with "masculine" morphological traits, and negative correlations with "feminine" traits. A genetic change in traits over time has occurred due to selection on competitiveness, corresponding to an evolutionary process of "masculinization" counteracting the official selection for milk yield. Similar evolutionary trade-off between success in competition and fitness components may be present in various species experiencing female competition.

  17. Evolution of adaptation mechanisms: Adaptation energy, stress, and oscillating death.

    PubMed

    Gorban, Alexander N; Tyukina, Tatiana A; Smirnova, Elena V; Pokidysheva, Lyudmila I

    2016-09-21

    In 1938, Selye proposed the notion of adaptation energy and published 'Experimental evidence supporting the conception of adaptation energy.' Adaptation of an animal to different factors appears as the spending of one resource. Adaptation energy is a hypothetical extensive quantity spent for adaptation. This term causes much debate when one takes it literally, as a physical quantity, i.e. a sort of energy. The controversial points of view impede the systematic use of the notion of adaptation energy despite experimental evidence. Nevertheless, the response to many harmful factors often has general non-specific form and we suggest that the mechanisms of physiological adaptation admit a very general and nonspecific description. We aim to demonstrate that Selye׳s adaptation energy is the cornerstone of the top-down approach to modelling of non-specific adaptation processes. We analyze Selye׳s axioms of adaptation energy together with Goldstone׳s modifications and propose a series of models for interpretation of these axioms. Adaptation energy is considered as an internal coordinate on the 'dominant path' in the model of adaptation. The phenomena of 'oscillating death' and 'oscillating remission' are predicted on the base of the dynamical models of adaptation. Natural selection plays a key role in the evolution of mechanisms of physiological adaptation. We use the fitness optimization approach to study of the distribution of resources for neutralization of harmful factors, during adaptation to a multifactor environment, and analyze the optimal strategies for different systems of factors.

  18. Regulatory physiology discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the Regulatory Physiology discipline of the Space Physiology and Countermeasures Program is twofold. First, to determine and study how microgravity and associated factors of space flight affect the regulatory mechanisms by which humans adapt and achieve homeostasis and thereby regulate their ability to respond to internal and external signals; and, second, to study selected physiological systems that have been demonstrated to be influenced by gravity. The Regulatory Physiology discipline, as defined here, is composed of seven subdisciplines: (1) Circadian Rhythms, (2) Endocrinology, (3) Fluid and Electrolyte Regulation, (4) Hematology, (5) Immunology, (6) Metabolism and Nutrition, and (7) Temperature Regulation. The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the area of regulatory physiology. It covers the research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in regulatory physiology. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  19. Effect of a phase I Coxiella burnetii inactivated vaccine on body temperature and milk yield in dairy cows.

    PubMed

    Schulze, L S-Ch; Borchardt, S; Ouellet, V; Heuwieser, W

    2016-01-01

    Q fever is a zoonotic disease caused by Coxiella burnetii. The pathogen is prevalent in ruminants (goats, sheep, cows), which are the main sources of human infection. In the cattle industry around the world, animal (15 to 20%) and herd (38 to 72%) level prevalences of C. burnetii are high. Vaccination of ruminants against Q fever is considered important to prevent spreading of the disease and risk of infection in humans. However, published information on side effects of the Q fever vaccination under field conditions is limited for cows. The objective of this study was to investigate the effect of the phase I C. burnetii inactivated vaccine Coxevac on body temperature and milk yield in dairy cows. In 2 experiments, a total of 508 cows were randomly divided into 2 groups to determine the effect of first vaccination on body temperature and milk yield. The C. burnetii serostatus of all cows was tested before vaccination with an indirect ELISA. The first experiment took place in the teaching and research barn of the Clinic of Animal Reproduction at the Freie Universität Berlin. Temperature was measured vaginally in 10 cows in a crossover design. The second experiment was conducted on a commercial dairy farm. Milk yield of 498 cows was measured 1 wk before and 1 wk after vaccination. In a subset of 41 cows, temperature was measured rectally. In both experiments, body temperature increased significantly after vaccination (1.0 ± 0.9°C and 0.7 ± 0.8°C). A significant difference was also found in body temperature between vaccinated and control cows. Thirty percent of the vaccinated animals in experiment 1 showed reversible swelling at the injection site as a reaction to the vaccination. The results indicate that vaccination against Q fever causes a transient increase of body temperature that peaks in the first 12 to 24h and declines after that. In experiment 2, vaccinated cows (26.8 ± 0.39 kg/d) produced significantly less milk than did control cows (28.2 ± 0.44 kg

  20. Effect of a phase I Coxiella burnetii inactivated vaccine on body temperature and milk yield in dairy cows.

    PubMed

    Schulze, L S-Ch; Borchardt, S; Ouellet, V; Heuwieser, W

    2016-01-01

    Q fever is a zoonotic disease caused by Coxiella burnetii. The pathogen is prevalent in ruminants (goats, sheep, cows), which are the main sources of human infection. In the cattle industry around the world, animal (15 to 20%) and herd (38 to 72%) level prevalences of C. burnetii are high. Vaccination of ruminants against Q fever is considered important to prevent spreading of the disease and risk of infection in humans. However, published information on side effects of the Q fever vaccination under field conditions is limited for cows. The objective of this study was to investigate the effect of the phase I C. burnetii inactivated vaccine Coxevac on body temperature and milk yield in dairy cows. In 2 experiments, a total of 508 cows were randomly divided into 2 groups to determine the effect of first vaccination on body temperature and milk yield. The C. burnetii serostatus of all cows was tested before vaccination with an indirect ELISA. The first experiment took place in the teaching and research barn of the Clinic of Animal Reproduction at the Freie Universität Berlin. Temperature was measured vaginally in 10 cows in a crossover design. The second experiment was conducted on a commercial dairy farm. Milk yield of 498 cows was measured 1 wk before and 1 wk after vaccination. In a subset of 41 cows, temperature was measured rectally. In both experiments, body temperature increased significantly after vaccination (1.0 ± 0.9°C and 0.7 ± 0.8°C). A significant difference was also found in body temperature between vaccinated and control cows. Thirty percent of the vaccinated animals in experiment 1 showed reversible swelling at the injection site as a reaction to the vaccination. The results indicate that vaccination against Q fever causes a transient increase of body temperature that peaks in the first 12 to 24h and declines after that. In experiment 2, vaccinated cows (26.8 ± 0.39 kg/d) produced significantly less milk than did control cows (28.2 ± 0.44 kg

  1. Respiratory heat loss of Holstein cows in a tropical environment

    NASA Astrophysics Data System (ADS)

    Campos Maia, Alex Sandro; Gomes Dasilva, Roberto; Battiston Loureiro, Cintia Maria

    2005-05-01

    In order to develop statistical models to predict respiratory heat loss in dairy cattle using simple physiological and environmental measurements, 15 Holstein cows were observed under field conditions in a tropical environment, in which the air temperature reached up to 40°C. The measurements of latent and sensible heat loss from the respiratory tract of the animals were made by using a respiratory mask. The results showed that under air temperatures between 10 and 35°C sensible heat loss by convection decreased from 8.24 to 1.09 W m-2, while the latent heat loss by evaporation increased from 1.03 to 56.51 W m-2. The evaporation increased together with the air temperature in almost a linear fashion until 20°C, but it became increasingly high as the air temperature rose above 25°C. Convection was a mechanism of minor importance for respiratory heat transfer. In contrast, respiratory evaporation was an effective means of thermoregulation for Holsteins in a hot environment. Mathematical models were developed to predict both the sensible and latent heat loss from the respiratory tract in Holstein cows under field conditions, based on measurements of the ambient temperature, and other models were developed to predict respiration rate, tidal volume, mass flow rate and expired air temperature as functions of the ambient temperature and other variables.

  2. Effects of feeding birdsfoot trefoil hay on neutral detergent fiber digestion, nitrogen utilization efficiency, and lactational performance by dairy cows.

    PubMed

    Christensen, R G; Yang, S Y; Eun, J-S; Young, A J; Hall, J O; MacAdam, J W

    2015-11-01

    This experiment was conducted to determine effects of feeding birdsfoot trefoil hay-based diets in comparison with an alfalfa hay-based diet on N utilization efficiency, ruminal fermentation, and lactational performance by mid-lactation dairy cows. Nine multiparous lactating Holstein cows (131 ± 22.6 d in milk), 3 of which were rumen fistulated, were fed 3 experimental diets in a replicated 3 × 3 Latin square design with 3 periods of 14 d of adaptation and 7 d of data and sample collection. Within squares, cows were randomly assigned to diets as follows: alfalfa hay-based diet (AHT), alfalfa and birdsfoot trefoil hay-based diet (ABT), and birdsfoot trefoil hay-based diet (BT). Intakes of dry matter and crude protein were similar across treatments, whereas ABT and BT diets resulted in decreased fiber intake compared with AHT. Feeding BT tended to increase neutral detergent fiber digestibility compared with AHT and ABT. Milk yield tended to increase for cows consuming ABT or BT diets. Milk true protein concentration and yield were greater for cows consuming ABT relative to those fed AHT. Concentration of total volatile fatty acids tended to increase by cows fed BT compared with those fed AHT and ABT. Feeding birdsfoot trefoil hay in a total mixed ration resulted in a tendency to decrease acetate proportion, but it tended to increase propionate proportion, leading to a tendency to decrease acetate-to-propionate ratio. Whereas concentration of ammonia-N was similar across treatments, cows offered BT exhibited greater microbial protein yield relative to those fed AHT and ABT. Cows offered birdsfoot trefoil hay diets secreted more milk N than AHT, resulting in improved N utilization efficiency for milk N. The positive effects due to feeding birdsfoot trefoil hay were attributed to enhanced neutral detergent fiber digestion, and thus it could replace alfalfa hay in high-forage dairy diets while improving N utilization efficiencies and maintaining lactational performance

  3. Effects of feeding birdsfoot trefoil hay on neutral detergent fiber digestion, nitrogen utilization efficiency, and lactational performance by dairy cows.

    PubMed

    Christensen, R G; Yang, S Y; Eun, J-S; Young, A J; Hall, J O; MacAdam, J W

    2015-11-01

    This experiment was conducted to determine effects of feeding birdsfoot trefoil hay-based diets in comparison with an alfalfa hay-based diet on N utilization efficiency, ruminal fermentation, and lactational performance by mid-lactation dairy cows. Nine multiparous lactating Holstein cows (131 ± 22.6 d in milk), 3 of which were rumen fistulated, were fed 3 experimental diets in a replicated 3 × 3 Latin square design with 3 periods of 14 d of adaptation and 7 d of data and sample collection. Within squares, cows were randomly assigned to diets as follows: alfalfa hay-based diet (AHT), alfalfa and birdsfoot trefoil hay-based diet (ABT), and birdsfoot trefoil hay-based diet (BT). Intakes of dry matter and crude protein were similar across treatments, whereas ABT and BT diets resulted in decreased fiber intake compared with AHT. Feeding BT tended to increase neutral detergent fiber digestibility compared with AHT and ABT. Milk yield tended to increase for cows consuming ABT or BT diets. Milk true protein concentration and yield were greater for cows consuming ABT relative to those fed AHT. Concentration of total volatile fatty acids tended to increase by cows fed BT compared with those fed AHT and ABT. Feeding birdsfoot trefoil hay in a total mixed ration resulted in a tendency to decrease acetate proportion, but it tended to increase propionate proportion, leading to a tendency to decrease acetate-to-propionate ratio. Whereas concentration of ammonia-N was similar across treatments, cows offered BT exhibited greater microbial protein yield relative to those fed AHT and ABT. Cows offered birdsfoot trefoil hay diets secreted more milk N than AHT, resulting in improved N utilization efficiency for milk N. The positive effects due to feeding birdsfoot trefoil hay were attributed to enhanced neutral detergent fiber digestion, and thus it could replace alfalfa hay in high-forage dairy diets while improving N utilization efficiencies and maintaining lactational performance

  4. Physiologic monitoring systems.

    PubMed

    2005-01-01

    Physiologic monitoring systems monitor vital physiologic parameters so that clinicians can be informed of changes in a patient's condition. For this study, we evaluated systems from six monitoring suppliers--Dräger Medical, GE Healthcare, Nihon Kohden, Philips Medical Systems, Spacelabs Medical, and Welch Allyn. The intent of this study is to help facilities choose not just the most appropriate system, but also the most appropriate version of that system--the combination of components that will best suit the facility's needs. Our testing focused primarily on adaptability, alarm implementation, and human factors design. We rated the systems based on their capabilities and performance for each of seven care settings: critical care unit, emergency department, intermediate care unit and general medical/surgical floor, operating room (with separate ratings for use during conscious sedation and general anesthesia), postanesthesia care unit, and transport. The systems performed well against the majority of our criteria. Nevertheless, we found notable differences in specific features and performance areas. These differences will have varying levels of significance for different hospitals. PMID:15794523

  5. Welfare assessment based on metabolic and endocrine aspects in primiparous cows milked in a parlor or with an automatic milking system.

    PubMed

    Abeni, F; Calamari, L; Calza, F; Speroni, M; Bertoni, G; Pirlo, G

    2005-10-01

    An automatic milking system (AMS) was compared with a traditional milking parlor (MP) to evaluate metabolic and psycho-physiological aspects of animal welfare. Twenty Italian Friesian heifers were allocated to 2 groups of 10 cows each after calving and maintained in the same free-stall barn. The first group was milked twice daily in a MP; the second group was milked in a single box AMS. Feed and diet characteristics were analyzed. Health status and body condition score (BCS) were evaluated in each cow. Blood samples were obtained from -14 to 154 d in milk (DIM) to determine metabolic profile and basal concentrations of cortisol in plasma. Data collected from 10 cows per group were processed. No significant difference was detected in milk yield, BCS, and energy-related metabolites (glucose, nonesterified fatty acids, beta-hydroxybutyrate, and triglycerides) from cows in MP or in AMS during the first 22 wk of lactation. These results, jointly with the absence of significant differences in plasma metabolites related to protein metabolism, mineral metabolism, and liver function during the first 22 wk of lactation, indicates that cows in AMS did not suffer metabolically. Greater basal concentrations of plasma cortisol in AMS cows, even if absolute values were considered to be in an acceptable range, might indicate chronic stress in these primiparous cows. Further research is necessary to confirm this hypothesis.

  6. A cow-level association of ruminal pH on body condition score, serum beta-hydroxybutyrate and postpartum disorders in Thai dairy cattle.

    PubMed

    Chaidate, Inchaisri; Somchai, Chanpongsang; Jos, Noordhuizen; Henk, Hogeveen

    2014-09-01

    Subacute ruminal acidosis in dairy cows occurs when ruminal pH is below about 5.5. However, the exact threshold level of ruminal pH affecting cow health is still in debate. This investigation was carried out in 505 cows within 31 farms. The postpartum disorders, including dystocia, retained placenta, anestrus, cystic ovary, metritis, clinical mastitis and lameness, were analyzed. Ruminal pH, serum beta-hydroxy butyrate (SBHB), serum urea nitrogen and body condition score (BCS) were measured once during the 3 to 6 weeks postpartum, while BCS was determined once more at 1 week before calving. Ruminal pH was determined by ruminocentesis technique. The ruminal pH was evaluated to study the association with BCS, SBHB and postpartum disorders using linear regression in a generalized linear mixed model with farm as a random effect. The results show that low ruminal pH was associated with dystocia, metritis and lameness. Moreover, a low ruminal pH can be found in cows with a high loss of BCS after calving and also in cows with low SBHB postpartum. These findings confirmed the feasibility of the ruminocentesis technique and the association of low ruminal pH on various postpartum disorders at the individual cow level. However, the consequences of low ruminal pH on dairy cow health still needs more exploration for a better understanding of the physiological mechanisms.

  7. Effects of high concentrations of dietary crude glycerin on dairy cow productivity and milk quality.

    PubMed

    Ezequiel, J M B; Sancanari, J B D; Machado Neto, O R; da Silva, Z F; Almeida, M T C; Silva, D A V; van Cleef, F O S; van Cleef, E H C B

    2015-11-01

    An increasing worldwide interest in alternative fuel sources and in a more diversified energy matrix has provided incentives for the biodiesel industry, generating large amounts of the by-product crude glycerin, a potential alternative feed for dairy cows. A replicated 3×3 Latin square study was conducted to evaluate the effects of high concentrations of crude glycerin on dry matter intake, milk yield and composition, milk fatty acid profile, and blood metabolites of medium-yield cows. Ruminally cannulated Holstein cows (n=6; 587 ± 39 kg of body weight; 114 ± 29 d in milk; and 20 ± 1.5 kg/d milk yield) were used in the study. The experimental period included 2 wk for adaptation and 1 wk for data collection. Cows were fed diets containing 0 (control), 15, or 30% crude glycerin (83% glycerol). Cows were milked, milk weights were recorded twice daily, and milk samples were collected for milk quality analyses at d 18 and 19 in each experimental period. Feeding cows with crude glycerin linearly decreased dry-matter intake, the 3.5% fat-corrected milk, and the solid-corrected milk yield. Hepatic enzymes were not affected by dietary treatments, except gamma-glutamyl transferase, which was decreased with the 15% crude glycerin diet. Serum glucose and albumin showed quadratic effect with increasing inclusion of crude glycerin. Plasma cholesterol as well as total protein linearly decreased with increasing inclusion of crude glycerin. Milk fat concentration and yield showed a quadratic effect of treatments. Solid yield decreased linearly with increasing inclusion of crude glycerin. Odd-chain fatty acids and conjugated linoleic acid in milk fat linearly increased with addition of crude glycerin in the diets. Together, these results suggest that crude glycerin has potential to replace corn; however, feeding diets in which corn is replaced with crude glycerin at 30% of dietary DM greatly reduces animal performance. PMID:26298757

  8. Trueperella pyogenes and Escherichia coli as an etiological factor of endometritis in cows and the susceptibility of these bacteria to selected antibiotics.

    PubMed

    Brodzki, P; Bochniarz, M; Brodzki, A; Wrona, Z; Wawron, W

    2014-01-01

    The aim of this study was to determine the percentage of participation of particular species of microorganisms, isolated from the uterus of cows with endometritis and from cows without inflammatory lesions of the uterus, in the same postpartum period. The aim of the study was also to examine how long after parturition non-treated endometritis persists. Moreover, antibiotic susceptibility tests were carried out of the bacterial isolates dominating in the uterus. Forty cows were included in the study: 20 cows with endometritis (experimental group) and 20 cows without any inflammatory condition of the uterus (control group). The material for cytological and bacteriological tests was collected on the 5th, 26th, 40th and 60th day after parturition, using an intrauterine brush adapted for cows. The total number of collected isolates was 149, including 120 isolates from the uterus of cows with endometritis and 29 isolates from the uterus of cows without endometritis. The following species of microorganisms were isolated from the material collected from cows with endometritis: T. pyogenes (49.2%), E.coli (22.5%), F. necrophorum (11.7%), Staphylococcus sp. (6.7%), B. melaninogenicus (5.8%), and Streptococcus sp. (4.1%). The participation percentage of particular species of bacteria in the material collected from the uterus of cows without endometritis was as follows: T. pyogenes (27.6%), E.coli (24.2%), Staphylococcus sp. (20.7%), Streptococcus sp. (20.7%), B. melaninogenicus (3.4%) and F. necrophorum (3.4%). The highest percentage of T. pyogenes isolates was susceptible to ceftiofur (89.6%); cefoperazone (85.1%) and amoxicillin combined with clavulanic acid (79.1%). E. coli isolates were most susceptible to amoxicillin combined with clavulanic acid (100%), cefoperazone (94.1%) and oxytetracycline (82.3%). PMID:25638979

  9. New guidelines for managing cow's milk allergy in infants.

    PubMed

    Meyer, Rosan

    2008-01-01

    The prevalence of allergic disease has increased markedly over the last 50 years. Food allergy usually manifests in early childhood as part of the so-called atopic march and most commonly includes one or more of the following foods: cow's milk, hen's egg, soy, peanuts and tree nuts, wheat, sesame seed, kiwi fruit and seafood. In the UK about 2% of infants develop cow's milk protein allergy (CMPA), but as many as 15% of infants present with symptoms suggestive of an adverse reaction to cow's milk protein. The diagnosis of CMPA is based on one or more of the following: a detailed clinical history, allergy test results (skin prick testing [SPT] and/or specific immunoglobulin E [IgE]) and, if required, supervised incremental milk challenges. The majority of UK primary care centres do not have access to these tests and may also be unfamiliar with the interpretation or results. In addition, they do not have the facilities for supervised food challenges. Empirical treatment is often required pending confirmation of allergy or referral to a specialist centre, but requires clear guidelines. No consensus guidelines currently exist for the diagnosis and management of CMPA in the UK. An international task force has recently published proposed guidelines for the management of CMPA. These provide separate algorithms covering the diagnosis and management of CMPA for both breast-fed and formula-fed infants and discuss the use of hypoallergenic formulae, elimination diets and diagnostic tests. Revisions and adaptations for the UK market are required and are discussed in this article. PMID:18494429

  10. Effects of the precalving administration of omega-3 fatty acids alone or in combination with acetylsalicylic acid in periparturient dairy cows.

    PubMed

    Grossi, P; Bertoni, G; Cappelli, F Piccioli; Trevisi, E

    2013-06-01

    This study investigated the effects of the administration of long chain omega-3 fatty acids (ω-3 FA) and acetylsalicylic acid (ASA) on inflammation, performance, and fertility in periparturient dairy cows. Five weeks before calving, 26 multiparous dairy cows were randomly assigned to 1 of 3 treatments: ω-3 FA (n = 9; OME), ω-3 FA and ASA (n = 9; OMAS), or palm oil (n = 8; CTR). During the last 3 wk of pregnancy, OME and OMAS groups received daily 12.0 g of fish-derived ω-3 FA, whereas CTR cows received only SFA. In addition, OMAS cows received daily 6.0 mg ASA/kg BW starting at 7 d before calving. Only a few cows had health problems after calving, but those in OMAS were most affected (n = 3 vs. 1 in CTR). Inflammatory status around calving did not improve in OME cows, as confirmed by the patterns of concentration of acute-phase proteins (APP), which were similar to CTR. Compared with CTR and OME, the increase of the positive APP and the decrease of the negative APP (e.g., albumin; P < 0.01) observed in OMAS cows suggested a severe inflammatory status after calving. Compared with OMAS, postcalving energy metabolism was better in OME cows as shown by a lower degree of lipomobilization (smaller BCS drop, greater glucose) and milder ketogenesis (less β-hydroxybutyrate; P < 0.01). Cows in CTR had optimal fertility indices, whereas OMAS was the worst group. The severe inflammation and the more negative energy balance likely contributed to the poor fertility parameters in those cows. It is known that ASA exerts an inhibitory effect on cyclooxygenases, causing a possible decrease in the synthesis of PGF2α. A decreased concentration of PGF2α is connected with alterations in the physiologic processes related to labor and to uterine motility. Cows in OMAS had a longer pregnancy (P < 0.10 vs.OME) and a greater frequency of retained placenta, which may be attributed to decreased synthesis of PGF2α. The administration of ω-3 FA alone did not delay calving or the

  11. Leptin, GH, PRL, insulin and metabolic parameters throughout the dry period and lactation in dairy cows.

    PubMed

    Accorsi, P A; Govoni, N; Gaiani, R; Pezzi, C; Seren, E; Tamanini, C

    2005-06-01

    Leptin may play a role in the endocrine-metabolic processes that guarantee the physiological course of lactation in dairy cattle. This study was aimed at determining the changes in plasma concentrations of leptin and some of the main hormones and metabolites involved in the lactogenetic process in high-yielding dairy cows throughout lactation; we also wanted to assess whether leptin secretion is subjected to seasonal influences. Blood samples were collected from 23 Italian Friesian dairy cows from the end of a lactation to the ninth month of the subsequent one; in addition, blood was sampled from 47 dairy cows in different phases of lactation during February and July. Plasma concentrations of leptin, growth hormone (GH), insulin, prolactin (PRL), glucose, non-esterified fatty acids (NEFA) and urea were quantified by either validated radioimmunoassay (RIA) or enzymatic colorimetric methods. At the beginning of lactation, GH concentrations significantly increased, while a significant reduction occurred in leptin and insulin. This endocrine condition, such as the significant increase in NEFA plasma concentrations, is indicative of a marked lipid mobilization. In the more advanced stages of lactation, when both energy and protein balances become positive, leptin plasma concentrations increased, whereas GH and NEFA concentrations declined. During the summer months, a significant increase in leptin plasma concentrations, irrespective of the phase of lactation, was observed. Collectively, our findings suggest that, in dairy cows, leptin may represent a 'metabolic signal' of animal's status of fattening and nutritional level; in addition, leptin seems to be influenced by photoperiod and environmental temperature.

  12. Marine worms (genus Osedax) colonize cow bones

    PubMed Central

    Jones, William J; Johnson, Shannon B; Rouse, Greg W; Vrijenhoek, Robert C

    2007-01-01

    Bone-eating worms of the genus Osedax colonized and grew on cow bones deployed at depths ranging from 385 to 2893 m in Monterey Bay, California. Colonization occurred as rapidly as two months following deployment of the cow bones, similar to the time it takes to colonize exposed whalebones. Some Osedax females found on the cow bones were producing eggs and some hosted dwarf males in their tubes. Morphological and molecular examinations of these worms confirmed the presence of six Osedax species, out of the eight species presently known from Monterey Bay. The ability of Osedax species to colonize, grow and reproduce on cow bones challenges previous notions that these worms are ‘whale-fall specialists.’ PMID:18077256

  13. Cow's Milk Allergy with Severe Eosinophilia.

    PubMed

    Imamura, Takashi; Watanabe, Masahiro; Kaneko, Mariko; Shibukawa, Yasuko; Fukuda, Yutaka; Nagasawa, Katsutoshi

    2016-02-01

    Because the role of eosinophils in neonates is not well understood, the clinical significance of eosinophilia in neonates is unclear. We encountered a rare case of cow's milk allergy in a premature male infant with severe eosinophilia in the neonatal period. The peripheral blood eosinophil count in this infant was 7,404/μL at birth, and he produced stools with fresh blood immediately after birth and prior to the first feedings with regular cow's milk. Although the patient's eosinophil count normalized without specific treatment within 6 weeks after birth, it is possible that the causes of the eosinophilia in this infant prior to the first feedings with regular cow's milk were different from those after the first feedings. Cow's milk allergy was diagnosed on the basis of the patient's positivity for this allergy in the challenge test and subsequent allergen-specific lymphocyte stimulation test performed at 6 months of age. PMID:24094685

  14. Lunar Cycle Influences Spontaneous Delivery in Cows.

    PubMed

    Yonezawa, Tomohiro; Uchida, Mona; Tomioka, Michiko; Matsuki, Naoaki

    2016-01-01

    There is a popular belief that the lunar cycle influences spontaneous delivery in both humans and cattle. To assess this relationship, we investigated the synodic distribution of spontaneous deliveries in domestic Holstein cows. We used retrospective data from 428 spontaneous, full-term deliveries within a three-year period derived from the calving records of a private farm in Hokkaido, Japan. Spontaneous birth frequency increased uniformly from the new moon to the full moon phase and decreased until the waning crescent phase. There was a statistically significant peak between the waxing gibbous and full moon phases compared with those between the last quarter and the waning crescent. These changes were clearly observed in deliveries among multiparous cows, whereas they were not evident in deliveries among nulliparous cows. These data suggest the utility of dairy cows as models for bio-meteorological studies, and indicate that monitoring lunar phases may facilitate comprehensive understanding of parturition. PMID:27580019

  15. Lunar Cycle Influences Spontaneous Delivery in Cows

    PubMed Central

    Yonezawa, Tomohiro; Uchida, Mona; Tomioka, Michiko; Matsuki, Naoaki

    2016-01-01

    There is a popular belief that the lunar cycle influences spontaneous delivery in both humans and cattle. To assess this relationship, we investigated the synodic distribution of spontaneous deliveries in domestic Holstein cows. We used retrospective data from 428 spontaneous, full-term deliveries within a three-year period derived from the calving records of a private farm in Hokkaido, Japan. Spontaneous birth frequency increased uniformly from the new moon to the full moon phase and decreased until the waning crescent phase. There was a statistically significant peak between the waxing gibbous and full moon phases compared with those between the last quarter and the waning crescent. These changes were clearly observed in deliveries among multiparous cows, whereas they were not evident in deliveries among nulliparous cows. These data suggest the utility of dairy cows as models for bio-meteorological studies, and indicate that monitoring lunar phases may facilitate comprehensive understanding of parturition. PMID:27580019

  16. Peripartum heart disease in cows.

    PubMed

    Yamagishi, N; Okada, H; Koiwa, M; Kudo, K; Matsuo, N; Naito, Y

    1995-11-01

    Thirteen Holstein dairy cows aged 5.1-10.6 years died or were killed as a result of severe illness during the peripartum period, associated with lateral recumbency, moaning, tachycardia and dyspnoea. They were all high milk producers (> 9000 kg/year) and had experienced at least three pregnancies. The average duration of the clinical course was 2.5 +/- 1.7 days. Electro-cardiography revealed marked tachycardia associated with atrial fibrillation or atrioventricular dissociation. Serum clinical chemistry showed severe hypocalcaemia (3.6 +/- 1.3 mg/dl) and at necropsy multifocal myocardial necrosis was invariably found. Myocardial necrosis was accompanied by neutrophilic and mononuclear cellular infiltrates with interstitial fibrosis. The cause of this lesion was not established. PMID:8746959

  17. Mustard bran in lactating dairy cow diets.

    PubMed

    Maiga, H A; Bauer, M L; Dahlen, C R; Badaruddin, M; Scholljegerdes, E J

    2011-06-01

    Two trials using lactating Holstein cows were conducted to evaluate effects of a diet containing oriental mustard bran on dry matter intake (DMI), milk production, milk components, and organoleptic properties. In experiment 1, 34 lactating cows (24 multiparous and 10 primiparous; days in milk ≥ 50 d) were used in a switchback design to determine the lactational response and organoleptic quality of milk when the diet contained 8% oriental mustard bran (MB) versus a control diet (CON). Mustard bran replaced a portion of soybean meal and all the beet pulp in the CON diet. Milk yields were greater for cows fed the MB diet; however, no differences were found in DMI, 3.5% fat- (FCM) or solids-corrected milk. Milk components and components production were not affected by treatment. Milk organoleptic qualities were not affected by diet. In experiment 2, 22 lactating cows (16 multiparous and 6 primiparous; days in milk ≥ 21 d) were assigned randomly within parity to receive MB or CON from wk 4 to 19 postpartum in a randomized complete block design. Cows were fed CON wk 1 to 3 postpartum. The MB diet contained the same ingredients as the CON, except sunflower seed and a portion of soybean meal were replaced with mustard bran. Milk and components data were collected during wk 3 postpartum and used as covariates to adjust treatment means. Intake was greater for cows fed the MB diet; however, daily milk, 3.5% FCM, and solids-corrected milk yields were not different between diets. Milk components and component yields were not affected by treatment. Milk urea concentration was less for cows fed the MB diet. Although cows fed the MB diet had greater DMI, this was not translated into a higher milk 3.5% FCM/DMI production efficiency ratio. During experiment 2, many cows fed MB experienced minor to severe hemolysis with bloody urine. This hemolysis believed to be caused by the S-methyl-cysteine sulfoxide contained in mustard bran could have affected milk production efficiency

  18. Hydrogen fermentation properties of undiluted cow dung.

    PubMed

    Yokoyama, Hiroshi; Waki, Miyoko; Ogino, Akifumi; Ohmori, Hideyuki; Tanaka, Yasuo

    2007-07-01

    Anaerobic treatment of undiluted cow dung (15% total solids), so-called dry fermentation, produced hydrogen (743 ml-H(2)/kg-cow dung) at an optimum temperature of 60 degrees C, with butyrate and acetate formation. The hydrogen production was inhibited by the addition of NH(4)(+) in a dose-dependent manner. A bacterium with similarity to Clostridium cellulosi was detected in the fermented dung by a 16S rDNA analysis.

  19. Liver functional genomics in beef cows on grazing systems: novel genes and pathways revealed.

    PubMed

    Laporta, Jimena; Rosa, Guilherme J M; Naya, Hugo; Carriquiry, Mariana

    2014-02-15

    The adaptation of the liver to periods of negative energy balance is largely unknown in beef cattle on grazing systems. We evaluated liver transcriptome throughout gestation and early lactation of purebred and crossbred beef cows [Angus, Hereford, and their F1 crossbreeds (CR)], grazing high or low herbage allowances (HA) of native grasslands (4 and 2.5 kg dry matter/kg body wt annual mean; n = 16) using an Agilent 4 × 44k bovine array. A total of 4,661 transcripts were affected by days [272 ≥ 2.5-fold difference, false discovery rate (FDR) ≤ 0.10] and 47 pathways were altered during winter gestation (-165 to -15 days relative to calving), when cows experienced decreased body condition score, decreased insulin, and increased nonesterified fatty acid concentrations. Gluconeogenesis and fatty acid oxidation pathways were upregulated, while cell growth, DNA replication, and transcription pathways were downregulated (FDR ≤ 0.25). We observed only small changes in the liver transcriptome during early lactation (+15 to +60 days). A total of 225 genes were differentially expressed (47 ≥ 2-fold difference, FDR ≤ 0.10) between HA. The majority of those were related to glucose and pyruvate metabolism and were upregulated in high HA, reflecting their better metabolic status. Two genes were upregulated in CR cows, but 148 transcripts (74 ≥ 2-fold change difference, FDR ≤ 0.10) were affected by the HA and cow genotype interaction. The transcriptional changes observed indicated a complex and previously unrecognized, hepatic adaptive program of grazing beef cows in different nutritional environments. Novel target candidate genes, metabolic pathways, and regulatory mechanisms were reported.

  20. Response of the Cholesterol Metabolism to a Negative Energy Balance in Dairy Cows Depends on the Lactational Stage

    PubMed Central

    Albrecht, Christiane; Bruckmaier, Rupert M.

    2015-01-01

    The response of cholesterol metabolism to a negative energy balance (NEB) induced by feed restriction for 3 weeks starting at 100 days in milk (DIM) compared to the physiologically occurring NEB in week 1 postpartum (p.p.) was investigated in 50 dairy cows (25 control (CON) and 25 feed-restricted (RES)). Blood samples, liver biopsies and milk samples were taken in week 1 p.p., and in weeks 0 and 3 of feed restriction. Plasma concentrations of total cholesterol (C), phospholipids (PL), triglycerides (TAG), very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C) increased in RES cows from week 0 to 3 during feed restriction and were higher in week 3 compared to CON cows. In contrast, during the physiologically occurring NEB in week 1 p.p., C, PL, TAG and lipoprotein concentrations were at a minimum. Plasma phospholipid transfer protein (PLTP) and lecithin:cholesterol acyltransferase (LCAT) activities did not differ between week 0 and 3 for both groups, whereas during NEB in week 1 p.p. PLTP activity was increased and LCAT activity was decreased. Milk C concentration was not affected by feed restriction in both groups, whereas milk C mass was decreased in week 3 for RES cows. In comparison, C concentration and mass in milk were elevated in week 1 p.p. Hepatic mRNA abundance of sterol regulatory element-binding factor-2 (SREBF-2), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and ATP-binding cassette transporter (ABCA1) were similar in CON and RES cows during feed restriction, but were upregulated during NEB in week 1 p.p. compared to the non-lactating stage without a NEB. In conclusion, cholesterol metabolism in dairy cows is affected by nutrient and energy deficiency depending on the stage of lactation. PMID:26034989

  1. Heart Rate and Heart Rate Variability in Dairy Cows with Different Temperament and Behavioural Reactivity to Humans

    PubMed Central

    Tőzsér, János; Szenci, Ottó; Póti, Péter; Pajor, Ferenc

    2015-01-01

    From the 1990s, extensive research was started on the physiological aspects of individual traits in animals. Previous research has established two extreme (proactive and reactive) coping styles in several animal species, but the means of reactivity with the autonomic nervous system (ANS) activity has not yet been investigated in cattle. The aim of this study was the characterization of cardiac autonomic activity under different conditions in cows with different individual characteristics. For this purpose, we investigated heart rate and ANS-related heart rate variability (HRV) parameters of dairy cows (N = 282) on smaller- and larger-scale farms grouped by (1) temperament and (2) behavioural reactivity to humans (BRH). Animals with high BRH scores were defined as impulsive, while animals with low BRH scores were defined as reserved. Cardiac parameters were calculated for undisturbed lying (baseline) and for milking bouts, the latter with the presence of an unfamiliar person (stressful situation). Sympathetic tone was higher, while vagal activity was lower in temperamental cows than in calm animals during rest both on smaller- and larger-scale farms. During milking, HRV parameters were indicative of a higher sympathetic and a lower vagal activity of temperamental cows as compared to calm ones in farms of both sizes. Basal heart rate did not differ between BRH groups either on smaller- or larger-scale farms. Differences between basal ANS activity of impulsive and reserved cows reflected a higher resting vagal and lower sympathetic activity of reserved animals compared to impulsive ones both on smaller- and larger-scale farms. There was no difference either in heart rate or in HRV parameters between groups during milking neither in smaller- nor in larger-scale farms. These two groupings allowed to draw possible parallels between personality and cardiac autonomic activity during both rest and milking in dairy cows. Heart rate and HRV seem to be useful for

  2. Response of the cholesterol metabolism to a negative energy balance in dairy cows depends on the lactational stage.

    PubMed

    Gross, Josef J; Kessler, Evelyne C; Albrecht, Christiane; Bruckmaier, Rupert M

    2015-01-01

    The response of cholesterol metabolism to a negative energy balance (NEB) induced by feed restriction for 3 weeks starting at 100 days in milk (DIM) compared to the physiologically occurring NEB in week 1 postpartum (p.p.) was investigated in 50 dairy cows (25 control (CON) and 25 feed-restricted (RES)). Blood samples, liver biopsies and milk samples were taken in week 1 p.p., and in weeks 0 and 3 of feed restriction. Plasma concentrations of total cholesterol (C), phospholipids (PL), triglycerides (TAG), very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C) increased in RES cows from week 0 to 3 during feed restriction and were higher in week 3 compared to CON cows. In contrast, during the physiologically occurring NEB in week 1 p.p., C, PL, TAG and lipoprotein concentrations were at a minimum. Plasma phospholipid transfer protein (PLTP) and lecithin:cholesterol acyltransferase (LCAT) activities did not differ between week 0 and 3 for both groups, whereas during NEB in week 1 p.p. PLTP activity was increased and LCAT activity was decreased. Milk C concentration was not affected by feed restriction in both groups, whereas milk C mass was decreased in week 3 for RES cows. In comparison, C concentration and mass in milk were elevated in week 1 p.p. Hepatic mRNA abundance of sterol regulatory element-binding factor-2 (SREBF-2), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and ATP-binding cassette transporter (ABCA1) were similar in CON and RES cows during feed restriction, but were upregulated during NEB in week 1 p.p. compared to the non-lactating stage without a NEB. In conclusion, cholesterol metabolism in dairy cows is affected by nutrient and energy deficiency depending on the stage of lactation. PMID:26034989

  3. Effects of different feeding time and frequency on metabolic conditions and milk production in heat-stressed dairy cows

    NASA Astrophysics Data System (ADS)

    Calamari, L.; Petrera, F.; Stefanini, L.; Abeni, F.

    2013-09-01

    The aim of this paper was to evaluate the effects of three different feeding management (FM) schedules on physiological markers of heat stress (HS), metabolic conditions, milk yield and quality during the hot season in dairy cows. The study involved 27 mid-lactating cows, subdivided in three homogeneous groups differing in feeding time and frequency: total mixed ration (TMR) delivered once daily in the morning (M); twice daily, half in the morning and half in the evening (ME); once daily in the evening (E). During the trial, blood samples were collected in the morning (a.m.) and in the evening (p.m.), breathing rate (BR), rectal temperature (RT), and milk yield were recorded and individual milk samples were collected. Microclimate data indicated that cows were subjected to mild-moderate HS. During the hotter days, cows receiving M treatment showed higher values of RT (38.97 °C vs 38.68 °C and 38.62 °C, in ME and E) and BR (71.44 vs 66.52 and 65.26 breaths min-1, in ME and E), a.m. plasma glucose was lower in M (3.69 vs 3.83 and 3.83 mmol L-1, in ME and E) and a.m. plasma urea was lower in E (4.82 vs 5.48 and 5.35 mmol L-1, in M and ME). Milk yield was unaffected by FM, as well as milk composition and cheese-making properties. Only milk protein content and yield were higher in M (3.42 vs 3.36 and 3.27 g 100 mL-1; and 1.11 vs 1.08 and 1.02 kg day-1, for ME and E). Our results on cow physiology indicate that M seems a less suitable FM to match cow welfare during the summer season.

  4. Development of a physiologically based pharmacokinetic model for flunixin in cattle (Bos taurus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Violative residues of flunixin in tissues from bob veal calves and cull dairy cows has been attributed to noncompliance with the FDA-approved route of administration and withdrawal time, however, the effect of administration route and physiological differences among animals on tissue residue depleti...

  5. Profiling of urinary proteins in Karan Fries cows reveals more than 1550 proteins.

    PubMed

    Bathla, Shveta; Rawat, Preeti; Baithalu, Rubina; Yadav, Munna Lal; Naru, Jasmine; Tiwari, Anurag; Kumar, Sudarshan; Balhara, Ashok K; Singh, Surender; Chaudhary, Suman; Kumar, Rajesh; Lotfan, Masoud; Behare, Pradip; Phulia, Sushil K; Mohanty, Tushar K; Kaushik, Jai K; Nallapeta, Shivramaiah; Singh, Inderjeet; Ambatipudi, Srinivas K; Mohanty, Ashok K

    2015-09-01

    Urine is a non-invasive source of biological fluid, which reflects the physiological status of the mammals. We have profiled the cow urinary proteome and analyzed its functional significance. The urine collected from three healthy cows was concentrated by diafiltration (DF) followed by protein extraction using three methods, namely methanol, acetone, and ammonium sulphate (AS) precipitation and Proteo Spin urine concentration kit (PS). The quality of the protein was assessed by two-dimensional gel electrophoresis (2DE). In-gel digestion method revealed more proteins (1191) in comparison to in-solution digestion method (541). Collectively, 938, 606 and 444 proteins were identified in LC-MS/MS after in-gel and in-solution tryptic digestion of proteins prepared by AS, PS and DF methods, respectively resulting in identification of a total of 1564 proteins. Gene ontology (GO) using Panther7.0 grouped the majority of the proteins into cytoplasmic (location), catalytic activity (function), and metabolism (biological processes), while Cytoscape grouped proteins into complement and coagulation cascades; protease inhibitor activity and wound healing. Functional significance of few selected proteins seems to play important role in their physiology. Comparative analysis with human urine revealed 315 overlapping proteins. This study reports for the first time evidence of more than 1550 proteins in urine of healthy cow donors. This article is part of a Special Issue entitled: Proteomics in India.

  6. Modeling milk urea of Walloon dairy cows in management perspectives.

    PubMed

    Bastin, C; Laloux, L; Gillon, A; Miglior, F; Soyeurt, H; Hammami, H; Bertozzi, C; Gengler, N

    2009-07-01

    The aim of this study was to develop an adapted random regression test-day model for milk urea (MU) and to study the possibility of using predictions and solutions given by the model for management purposes. Data included 607,416 MU test-day records of first-lactation cows from 632 dairy herds in the Walloon Region of Belgium. Several advanced features were used. First, to detect the herd influence, the classical herd x test-day effect was split into 3 new effects: a fixed herd x year effect, a fixed herd x month-period effect, and a random herd test-day effect. A fixed time period regression was added in the model to take into account the yearly oscillations of MU on a population scale. Moreover, first autoregressive processes were introduced and allowed us to consider the link between successive test-day records. The variance component estimation indicated that large variance was associated with the random herd x test-day effect (48% of the total variance), suggesting the strong influence of herd management on the MU level. The heritability estimate was 0.13. By comparing observed and predicted MU levels at both the individual and herd levels, target ranges for MU concentrations were defined to take into account features of each cow and each herd. At the cow level, an MU record was considered as deviant if it was <200 or >400 mg/L (target range used in the field) and if the prediction error was >50 mg/L (indicating a significant deviation from the expected level). Approximately 7.5% of the MU records collected between June 2007 and May 2008 were beyond these thresholds. This combination allowed for the detection of potentially suspicious cows. At the herd level, the expected MU level was considered as the sum of the solutions for specific herd effects. A herd was considered as deviant from its target range when the prediction error was greater than the standard deviation of MU averaged by herd test day. Results showed that 6.7% of the herd test-day MU levels

  7. Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress.

    PubMed

    Allen, J D; Hall, L W; Collier, R J; Smith, J F

    2015-01-01

    Cattle show several responses to heat load, including spending more time standing. Little is known about what benefit this may provide for the animals. Data from 3 separate cooling management trials were analyzed to investigate the relationship between behavioral patterns in lactating dairy cows experiencing mild to moderate heat stress and their body temperature. Cows (n=157) were each fitted with a leg data logger that measured position and an intravaginal data logger that measures core body temperature (CBT). Ambient conditions were also collected. All data were standardized to 5-min intervals, and information was divided into several categories: when standing and lying bouts were initiated and the continuance of each bout (7,963 lying and 6,276 standing bouts). In one location, cows were continuously subjected to heat-stress levels according to temperature-humidity index (THI) range (THI≥72). The THI range for the other 2 locations was below and above a heat-stress threshold of 72 THI. Overall and regardless of period of day, cows stood up at greater CBT compared with continuing to stand or switching to a lying position. In contrast, cows lay down at lower CBT compared with continuing to lie or switching to a standing position, and lying bouts lasted longer when cows had lower CBT. Standing bouts also lasted longer when cattle had greater CBT, and they were less likely to lie down (less than 50% of lying bouts initiated) when their body temperature was over 38.8°C. Also, cow standing behavior was affected once THI reached 68. Increasing CBT decreased lying duration and increased standing duration. A CBT of 38.93°C marked a 50% likelihood a cow would be standing. This is the first physiological evidence that standing may help cool cows and provides insight into a communally observed behavioral response to heat.

  8. Effect of changes in diet energy density on feed intake, milk yield and metabolic parameters in dairy cows in early lactation.

    PubMed

    Nielsen, N I; Friggens, N C; Larsen, T; Andersen, J B; Nielsen, M O; Ingvartsen, K L

    2007-03-01

    The purpose of this experiment was to investigate how early lactating cows adjust their metabolism and production to acute, but moderate changes in the energy density of the diet. Sixty dairy cows were randomly assigned to one of four treatments: two change-over groups (HNH and NHN) and two control groups (HHH and NNN), where H and N refer to a high and normal energy density in the total mixed ration (TMR), respectively. The experimental period covered the first 9 weeks post calving, which was split up in three 3-week periods. Thus, cows assigned to HNH or NHN shifted TMR in weeks 4 and 7 after calving while cows assigned to HHH or NNN were fed the same TMR for all 9 weeks. Results from cows on treatment HNH were compared with group HHH while cows on treatment NHN were compared with group NNN. When the diet changed from N to H and H to N, cows increased and decreased their dry-matter intake (DMI), respectively compared with control groups. Cows adjusted milk yield accordingly to changes in DMI, although not always significantly. Energy-corrected milk yield was not significantly affected by any of the changes in the energy density of the diet but generally showed same tendencies as milk yield. Non-esterified fatty acids (NEFA), beta-hydroxybutyrate in blood and milk and triacylglycerol and glycogen content in the liver were not significantly affected by changes in the energy density of the diet, except from NEFA at one change. Glucose increased more when the diet changed from N to H and increased less when the diet changed from H to N, compared with control groups, although not always significantly. Collectively, these results suggest that cows adjust their DMI and partly milk yield according to the energy density of the diet and therefore only limited effects were observed in physiological parameters. PMID:22444331

  9. Dry period plane of energy: Effects on glucose tolerance in transition dairy cows.

    PubMed

    Mann, S; Leal Yepes, F A; Duplessis, M; Wakshlag, J J; Overton, T R; Cummings, B P; Nydam, D V

    2016-01-01

    Overfeeding energy in the dry period can affect glucose metabolism and the energy balance of transition dairy cows with potential detrimental effects on the ability to successfully adapt to early lactation. The objectives of this study were to investigate the effect of different dry cow feeding strategies on glucose tolerance and on resting concentrations of blood glucose, glucagon, insulin, nonesterified fatty acids (NEFA), and β-hydroxybutyrate (BHB) in the peripartum period. Cows entering second or greater lactation were enrolled at dry-off (57 d before expected parturition) into 1 of 3 treatment groups following a randomized block design: cows that received a total mixed ration (TMR) formulated to meet but not exceed energy requirements during the dry period (n=28, controlled energy); cows that received a TMR supplying approximately 150% of energy requirements during the dry period (n=28, high energy); and cows that were fed the same diet as the controlled energy group for the first 28 d, after which the TMR was formulated to supply approximately 125% of energy requirements until calving (n=28, intermediate energy). Intravenous glucose tolerance tests (IVGTT) with rapid administration of 0.25 g of glucose/kg of body weight were performed 28 and 10d before expected parturition, as well as at 4 and 21 d after calving. Area under the curve for insulin and glucose, maximal concentration and time to half-maximal concentration of insulin and glucose, and clearance rates were calculated. Insulin resistance (IR) indices were calculated from baseline samples obtained during IVGTT and Spearman rank correlations determined between IVGTT parameters and IR indices. Treatment did not affect IVGTT parameters at any of the 4 time points. Correlation between IR indices and IVGTT parameters was generally poor. Overfeeding cows energy in excess of predicted requirements by approximately 50% during the entire dry period resulted in decreased postpartum basal plasma glucose and

  10. Dry period plane of energy: Effects on glucose tolerance in transition dairy cows.

    PubMed

    Mann, S; Leal Yepes, F A; Duplessis, M; Wakshlag, J J; Overton, T R; Cummings, B P; Nydam, D V

    2016-01-01

    Overfeeding energy in the dry period can affect glucose metabolism and the energy balance of transition dairy cows with potential detrimental effects on the ability to successfully adapt to early lactation. The objectives of this study were to investigate the effect of different dry cow feeding strategies on glucose tolerance and on resting concentrations of blood glucose, glucagon, insulin, nonesterified fatty acids (NEFA), and β-hydroxybutyrate (BHB) in the peripartum period. Cows entering second or greater lactation were enrolled at dry-off (57 d before expected parturition) into 1 of 3 treatment groups following a randomized block design: cows that received a total mixed ration (TMR) formulated to meet but not exceed energy requirements during the dry period (n=28, controlled energy); cows that received a TMR supplying approximately 150% of energy requirements during the dry period (n=28, high energy); and cows that were fed the same diet as the controlled energy group for the first 28 d, after which the TMR was formulated to supply approximately 125% of energy requirements until calving (n=28, intermediate energy). Intravenous glucose tolerance tests (IVGTT) with rapid administration of 0.25 g of glucose/kg of body weight were performed 28 and 10d before expected parturition, as well as at 4 and 21 d after calving. Area under the curve for insulin and glucose, maximal concentration and time to half-maximal concentration of insulin and glucose, and clearance rates were calculated. Insulin resistance (IR) indices were calculated from baseline samples obtained during IVGTT and Spearman rank correlations determined between IVGTT parameters and IR indices. Treatment did not affect IVGTT parameters at any of the 4 time points. Correlation between IR indices and IVGTT parameters was generally poor. Overfeeding cows energy in excess of predicted requirements by approximately 50% during the entire dry period resulted in decreased postpartum basal plasma glucose and

  11. [Adaptive optics for ophthalmology].

    PubMed

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy.

  12. Associations of dairy cow behavior, barn hygiene, cow hygiene, and risk of elevated somatic cell count.

    PubMed

    Devries, T J; Aarnoudse, M G; Barkema, H W; Leslie, K E; von Keyserlingk, M A G

    2012-10-01

    Poor dairy cow hygiene has been consistently associated with elevated somatic cell count (SCC) and the risk of subclinical mastitis. The objective of this study was to determine the associations between dairy cow standing and lying behavior, barn hygiene, cow hygiene, and the risk of experiencing elevated SCC. Lactating Holstein dairy cows (n=69; 86 ± 51 DIM; parity: 2.0 ± 1.2; means ± SD), kept in 1 of 2 groups, were monitored over a 4-mo period. Each group contained 61 ± 1 (mean ± SD) cows over the study period; complete data were obtained from 37 and 32 animals within each respective group. Cows were housed in a sand-bedded, freestall barn with 2 symmetrical pens, each with a free cow traffic automatic milking system. To vary barn hygiene, in 4 consecutive 28-d periods, alley manure scrapers in each of the 2 pens were randomly assigned to frequencies of operation of 3, 6, 12, and 24 times per day. During the last 7 d of each period, cow hygiene (upper leg/flank, lower legs, and udder; scale of 1 = very clean to 4 = very dirty) and stall hygiene (number of 0.15×0.15-m squares contaminated with manure in a 1.20×1.65-m grid) were recorded. Standing and lying behavior of the cows were collected during those days using data loggers. Individual-cow SCC was recorded at the beginning and end of each 28-d period. Elevated SCC was used as an indicator of subclinical mastitis; incidence of elevated SCC was defined as having a SCC >200,000 cells/mL at the end of each 28-d period, when SCC was <100,000 cells/mL at the beginning of the period. Less frequent scraping of the barn alleys was associated with cows having poorer hygiene. Poor udder hygiene was associated with poor stall hygiene. Longer lying duration was associated with poor hygiene of the upper legs/flank and udder. Greater premilking standing duration was associated with poor udder hygiene and decreased frequency of lying bouts was associated with poor hygiene of the lower legs. Higher milk yield was

  13. Effects of evaporative cooling on reproductive performance and milk production of dairy cows in hot wet conditions

    NASA Astrophysics Data System (ADS)

    Khongdee, S.; Chaiyabutr, N.; Hinch, G.; Markvichitr, K.; Vajrabukka, C.

    2006-05-01

    Fourteen animals of second and third lactation of Thai Friesian crossbred cows (87.5% Friesian × 12.5% Bos indicus) located at Sakol Nakhon Research and Breeding Centre, Department of Livestock Development, Ministry of Agriculture and Cooperatives, were divided randomly into two groups of seven each to evaluate the effects of evaporative cooling on reproductive and physiological traits under hot, humid conditions. Results indicated that installation of evaporating cooling in the open shed gave a further improvement in ameliorating heat stress in dairy cows in hot-wet environments by utilising the low humidity conditions that naturally occur during the day. The cows housed in an evaporatively cooled environment had both a rectal temperature and respiration rate (39.09°C, 61.39 breaths/min, respectively) significantly lower than that of the non-cooled cows (41.21°C; 86.87 breaths/min). The former group also had higher milk yield and more efficient reproductive performance (pregnancy rate and reduced days open) than the latter group. It is suggested that the non-evaporatively cooled cows did not gain benefit from the naturally lower heat stress during night time.

  14. Human heat adaptation.

    PubMed

    Taylor, Nigel A S

    2014-01-01

    In this overview, human morphological and functional adaptations during naturally and artificially induced heat adaptation are explored. Through discussions of adaptation theory and practice, a theoretical basis is constructed for evaluating heat adaptation. It will be argued that some adaptations are specific to the treatment used, while others are generalized. Regarding ethnic differences in heat tolerance, the case is put that reported differences in heat tolerance are not due to natural selection, but can be explained on the basis of variations in adaptation opportunity. These concepts are expanded to illustrate how traditional heat adaptation and acclimatization represent forms of habituation, and thermal clamping (controlled hyperthermia) is proposed as a superior model for mechanistic research. Indeed, this technique has led to questioning the perceived wisdom of body-fluid changes, such as the expansion and subsequent decay of plasma volume, and sudomotor function, including sweat habituation and redistribution. Throughout, this contribution was aimed at taking another step toward understanding the phenomenon of heat adaptation and stimulating future research. In this regard, research questions are posed concerning the influence that variations in morphological configuration may exert upon adaptation, the determinants of postexercise plasma volume recovery, and the physiological mechanisms that modify the cholinergic sensitivity of sweat glands, and changes in basal metabolic rate and body core temperature following adaptation.

  15. Short communication: Relationship between competitive success during displacements at an overstocked feed bunk and measures of physiology and behavior in Holstein dairy cattle.

    PubMed

    Huzzey, J M; Grant, R J; Overton, T R

    2012-08-01

    The objective of this study was to evaluate how behavioral and physiological parameters are affected based on a cow's level of success at displacing others at an overstocked feed bunk. Forty Holstein nonlactating, late-gestation dairy cattle were housed in an overstocked pen [5 stalls/10 cows and 0.34 m of linear feed bunk (FB) space/cow] in groups of 10 (4 heifers and 6 multiparous cows) for 14 d. Plasma nonesterified fatty acids, glucose, and fecal cortisol metabolites (11,17-dioxoandrostanes) were measured in blood and feces sampled every 2d. A glucose tolerance test and an ACTH challenge were conducted on all cows on d 13 and 14, respectively to further explore the effects of competitive success on energy metabolism and stress physiology. Feeding behavior and displacements at the FB were recorded between d 7 to 10 of the observation period. A competition index (CInd) was calculated for each cow by dividing the number of times the cow displaced another at the FB by the total number of displacements the cow was involved in, either as an actor or reactor. Cows were then divided into 3 subgroups based on their CInd: high success (HS: CInd ≥0.6), medium success (0.4 ≤ CInd <0.6), and low success (LS: CInd <0.4). Heifers accounted for 7, 36, and 79% of the total number of animals in the HS (n=15), medium success (n=11), and LS (n=14) groups, respectively. No differences were observed in daily feeding time, total number of displacements, and time to approach the FB following fresh feed delivery between the 3 CInd groups; however, cows in the LS group had greater daily nonesterified fatty acid and 11,17-dioxoandrostane concentrations relative to cows in the HS group. No differences existed in cortisol response to an ACTH stimulation test between CInd categories. During the glucose tolerance test, glucose response curves were the same between all 3 CInd categories; however, the peak insulin response of LS cows was 130 μIU/mL greater than the peak HS response

  16. Alteration of the endometrial EGF profile as a potential mechanism connecting the alterations in the ovarian steroid hormone profile to embryonic loss in repeat breeders and high-producing cows.

    PubMed

    Katagiri, Seiji; Moriyoshi, Masaharu

    2013-10-01

    Poor reproductive efficiency is a worldwide problem that has affected the dairy industry during the last several decades. In an attempt to explain the changes in reproductive physiology caused by high milk production, a model of elevated steroid metabolism in lactating dairy cows has been proposed. A slow increase in levels and low peak levels of estradiol (E₂) and progesterone (P₄) characterize endocrine changes in high producing cows. Similar changes have been reported in the repeat breeder cows. The abnormal changes in E₂ and P₄ concentrations of these cows may cause an improper uterine environment due to disturbed expression of growth factors and cytokines in the endometrium. This review focuses on the alteration in epidermal growth factor (EGF) profile in the endometrium during the estrous cycle. The normal cow has two peaks of EGF concentrations on days 2-4 and 13-14. Low concentrations of EGF on these days distinguished both high-producing and repeat breeder cows from normal cows. Alteration of the EGF profile could be found in 70 and 40% of the repeat breeder and high-producing cows, respectively. Treatment with a high dose of estradiol benzoate and an intravaginal progesterone-releasing device restored the normal EGF profile in about 70% of the affected cows. The cows having a normal EGF profile after treatment showed a higher pregnancy rate than the cows with the altered profile. Further studies to understand the etiology of the alteration in the EGF profile are needed to develop another treatment option and preventive management for this problem. PMID:24162805

  17. The effects of milk yield and stage of lactation on the partitioning of nutrients in lactating dairy cows.

    PubMed

    Kirkland, R M; Gordon, F J

    2001-01-01

    The objective of the experiment was to examine, using indirect calorimetry, the effects of milk yield and stage of lactation on the response in milk and body tissue energy, and heat production, to a reduction (decrement) in nutrient intake (assessed as metabolizable energy intake). Eight lactating dairy cows, four representing each of two stages of lactation [either mean initial days in milk (DIM) 158 (SD 6.1) or 414 (SD 51.1)] were used. Each cow underwent four 17-d periods incorporating two physiological states [number of mammary glands milked: either four (periods 1 and 2), or two (periods 3 and 4)], and two levels of metabolizable energy intake within each physiological state [either sufficient to meet requirements for zero tissue balance plus 10 MJ/d (periods 1 and 3)] or these allowances reduced by 20 MJ/d in the subsequent period (periods 2 and 4, respectively). Partitioning was calculated from the changes in metabolizable energy intake, milk energy, tissue energy, and heat production between DIM groups and between four and two gland milking (milk yield) components of the study. Partitioning of the changes in metabolizable energy intake was not influenced by DIM, but milk yield response was greater in the early lactation cows compared with the late group. Cows milked in four glands (higher milk yield) partitioned a significantly greater proportion of decremental changes in metabolizable energy intake to milk energy and less to tissue energy, than when milked in only two glands (lower milk yield). PMID:11210038

  18. Leukotriene B4 in cows with normal calving, and in cows with retained fetal membranes and/or uterine subinvolution.

    PubMed Central

    Slama, H; Vaillancourt, D; Goff, A K

    1993-01-01

    Two experiments were performed to study the relationship between leukotriene B4 (LTB4) synthesis and placental separation and uterine involution in the cow. In experiment I, the concentration and synthesis of LTB4 by caruncular tissue was lower in cows with retained fetal membranes (RFM cows, n = 11) than in cows that expelled the fetal membranes normally (NFM cows, n = 19). The presence of bacterial cell wall, especially of alpha-hemolytic streptococci and coagulase positive staphylococci enhanced LTB4 synthesis by allantochorion only in NFM cows. In the RFM group, Escherichia coli lipopolysaccharide decreased allantochorionic LTB4 synthesis. With caruncle, only epidermal growth factor increased LTB4 production in NFM cows. In experiment II, the caruncular and endometrial secretion of LTB4 was lower in cows with subuterine involution (SUI cows, n = 5) or cows with SUI and RFM (SUI+RFM cows, n = 4) than in cows with normal uterine involution (NUI cows, n = 8). This decrease was especially noticeable in the previously gravid horn. In the three uterine involution groups, there were no differences in LTB4 synthesis by caruncular tissue taken from the previously gravid horn. However, progesterone and a bacterial suspension of E. coli reduced the synthesis of LTB4. Estradiol had no effect on LTB4 synthesis at the end of the postpartum period. These results suggest that LTB4 may play an important role in both placental separation and uterine involution in cattle and LTB4 synthesis may be modulated by endocrine and bacterial factors. PMID:8269369

  19. Heart Rate Variability as an Indicator of Chronic Stress Caused by Lameness in Dairy Cows

    PubMed Central

    Kulcsár-Huszenicza, Margit; Tőzsér, János

    2015-01-01

    Most experimental studies on animal stress physiology have focused on acute stress, while chronic stress, which is also encountered in intensive dairy cattle farming–e.g. in case of lameness–, has received little attention. We investigated heart rate (HR) and heart rate variability (HRV) as indicators of the autonomic nervous system activity and fecal glucocorticoid concentrations as the indicator of the hypothalamic–pituitary–adrenal axis activity in lame (with locomotion scores 4 and 5; n = 51) and non-lame (with locomotion scores 1 and 2; n = 52) Holstein-Friesian cows. Data recorded during the periods of undisturbed lying–representing baseline cardiac activity–were involved in the analysis. Besides linear analysis methods of the cardiac inter-beat interval (time-domain geometric, frequency domain and Poincaré analyses) non-linear HRV parameters were also evaluated. With the exception of standard deviation 1 (SD1), all HRV indices were affected by lameness. Heart rate was lower in lame cows than in non-lame ones. Vagal tone parameters were higher in lame cows than in non-lame animals, while indices of the sympathovagal balance reflected on a decreased sympathetic activity in lame cows. All geometric and non-linear HRV measures were lower in lame cows compared to non-lame ones suggesting that chronic stress influenced linear and non-linear characteristics of cardiac function. Lameness had no effect on fecal glucocorticoid concentrations. Our results demonstrate that HRV analysis is a reliable method in the assessment of chronic stress, however, it requires further studies to fully understand the elevated parasympathetic and decreased sympathetic tone in lame animals. PMID:26270563

  20. Cow Dung Ingestion and Inhalation Dependence: A Case Report

    ERIC Educational Resources Information Center

    Khairkar, Praveen; Tiple, Prashant; Bang, Govind

    2009-01-01

    Although abuse of several unusual inhalants had been documented, addiction to cow dung fumes or their ashes has not been reported in medical literature as yet. We are reporting a case of cow dung dependence in ingestion and inhalational form.

  1. The relationship of cow size and calf birth weight to calf weaning weight in a commercial Brangus cow/calf operation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Profitability and sustainability of cow/calf operations are dependent on cow efficiency. Annual forage consumption is a logical input component included in cow efficiency models and large cows generally consume more forage annually than small cows. The ratio of additional kg of calf weaning BW to ea...

  2. Everest Physiology Pre-2008.

    PubMed

    West, John B

    2016-01-01

    When Edmund Hillary and Tenzing Norgay reached the summit of Mt. Everest in 1953, it was the culmination of many attempts beginning in 1921. Alexander Kellas had actually predicted as early as 1920 that the mountain could be climbed, but the extreme altitude of 8848 m with the consequent oxygen deprivation had foiled previous attempts. One reason for the success of the 1953 expedition was the work done by the British physiologist Griffith Pugh in 1952 when he studied many of the physiological factors at high altitude including the oxygen requirements. Seven years later, Pugh and Hillary teamed up again for the Silver Hut Expedition in 1960-1961 that elucidated many of the problems of very high altitude. A group of physiologists spent several months at an altitude of 5800 m in a prefabricated hut and studied many aspects of exercise, pulmonary gas exchange, control of ventilation, and blood changes. Maximal exercise was measured as high as 7440 m and raised anew the question of whether Everest could ever be climbed without supplementary oxygen. The answer was shown to be yes in 1978 by Messner and Habeler, and 3 years later the American Medical Research Expedition to Everest clarified the physiological adaptations that allow humans to reach the highest point on earth. Five people reached the summit, the barometric pressure there was measured for the first time, and alveolar gas samples from the summit showed the critical importance of the extreme hyperventilation. However, the maximal oxygen consumption for the summit inspired PO2 of 43 mmHg was shown to be only about 1 l min(-1). In other words, the highest point on earth is very close to the limit of human tolerance to oxygen deprivation. As we celebrate the anniversary of Charles Darwin, it would be nice to have an evolutionary explanation for this, but in fact it is a cosmic coincidence.

  3. Everest Physiology Pre-2008.

    PubMed

    West, John B

    2016-01-01

    When Edmund Hillary and Tenzing Norgay reached the summit of Mt. Everest in 1953, it was the culmination of many attempts beginning in 1921. Alexander Kellas had actually predicted as early as 1920 that the mountain could be climbed, but the extreme altitude of 8848 m with the consequent oxygen deprivation had foiled previous attempts. One reason for the success of the 1953 expedition was the work done by the British physiologist Griffith Pugh in 1952 when he studied many of the physiological factors at high altitude including the oxygen requirements. Seven years later, Pugh and Hillary teamed up again for the Silver Hut Expedition in 1960-1961 that elucidated many of the problems of very high altitude. A group of physiologists spent several months at an altitude of 5800 m in a prefabricated hut and studied many aspects of exercise, pulmonary gas exchange, control of ventilation, and blood changes. Maximal exercise was measured as high as 7440 m and raised anew the question of whether Everest could ever be climbed without supplementary oxygen. The answer was shown to be yes in 1978 by Messner and Habeler, and 3 years later the American Medical Research Expedition to Everest clarified the physiological adaptations that allow humans to reach the highest point on earth. Five people reached the summit, the barometric pressure there was measured for the first time, and alveolar gas samples from the summit showed the critical importance of the extreme hyperventilation. However, the maximal oxygen consumption for the summit inspired PO2 of 43 mmHg was shown to be only about 1 l min(-1). In other words, the highest point on earth is very close to the limit of human tolerance to oxygen deprivation. As we celebrate the anniversary of Charles Darwin, it would be nice to have an evolutionary explanation for this, but in fact it is a cosmic coincidence. PMID:27343114

  4. Metabolic Response to Heat Stress in Late-Pregnant and Early Lactation Dairy Cows: Implications to Liver-Muscle Crosstalk.

    PubMed

    Koch, Franziska; Lamp, Ole; Eslamizad, Mehdi; Weitzel, Joachim; Kuhla, Björn

    2016-01-01

    Climate changes lead to rising temperatures during summer periods and dramatic economic losses in dairy production. Modern high-yielding dairy cows experience severe metabolic stress during the transition period between late gestation and early lactation to meet the high energy and nutrient requirements of the fetus or the mammary gland, and additional thermal stress during this time has adverse implications on metabolism and welfare. The mechanisms enabling metabolic adaptation to heat apart from the decline in feed intake and milk yield are not fully elucidated yet. To distinguish between feed intake and heat stress related effects, German Holstein dairy cows were first kept at thermoneutral conditions at 15°C followed by exposure to heat-stressed (HS) at 28°C or pair-feeding (PF) at 15°C for 6 days; in late-pregnancy and again in early lactation. Liver and muscle biopsies and plasma samples were taken to assess major metabolic pathway regulation using real-time PCR and Western Blot. The results indicate that during heat stress, late pregnant cows activate Cahill but reduce Cori cycling, prevent increase in skeletal muscle fatty acid oxidation, and utilize increased amounts of pyruvate for gluconeogenesis, without altering ureagenesis despite reduced plane of nutrition. These homeorhetic adaptations are employed to reduce endogenous heat production while diverting amino acids to the growing fetus. Metabolic adaptation to heat stress in early lactation involves increased long-chain fatty acid degradation in muscle peroxisomes, allowance for muscle glucose utilization but diminished hepatic use of amino acid-derived pyruvate for gluconeogenesis and reduced peroxisomal fatty acid oxidation and ATP production in liver of HS compared to PF cows in early lactation. Consequently, metabolic adaptation to heat stress and reduced feed intake differ between late pregnancy and early lactation of dairy cows to maintain energy supply for fetus development or milk production

  5. Metabolic Response to Heat Stress in Late-Pregnant and Early Lactation Dairy Cows: Implications to Liver-Muscle Crosstalk

    PubMed Central

    Eslamizad, Mehdi; Weitzel, Joachim; Kuhla, Björn

    2016-01-01

    Climate changes lead to rising temperatures during summer periods and dramatic economic losses in dairy production. Modern high-yielding dairy cows experience severe metabolic stress during the transition period between late gestation and early lactation to meet the high energy and nutrient requirements of the fetus or the mammary gland, and additional thermal stress during this time has adverse implications on metabolism and welfare. The mechanisms enabling metabolic adaptation to heat apart from the decline in feed intake and milk yield are not fully elucidated yet. To distinguish between feed intake and heat stress related effects, German Holstein dairy cows were first kept at thermoneutral conditions at 15°C followed by exposure to heat-stressed (HS) at 28°C or pair-feeding (PF) at 15°C for 6 days; in late-pregnancy and again in early lactation. Liver and muscle biopsies and plasma samples were taken to assess major metabolic pathway regulation using real-time PCR and Western Blot. The results indicate that during heat stress, late pregnant cows activate Cahill but reduce Cori cycling, prevent increase in skeletal muscle fatty acid oxidation, and utilize increased amounts of pyruvate for gluconeogenesis, without altering ureagenesis despite reduced plane of nutrition. These homeorhetic adaptations are employed to reduce endogenous heat production while diverting amino acids to the growing fetus. Metabolic adaptation to heat stress in early lactation involves increased long-chain fatty acid degradation in muscle peroxisomes, allowance for muscle glucose utilization but diminished hepatic use of amino acid-derived pyruvate for gluconeogenesis and reduced peroxisomal fatty acid oxidation and ATP production in liver of HS compared to PF cows in early lactation. Consequently, metabolic adaptation to heat stress and reduced feed intake differ between late pregnancy and early lactation of dairy cows to maintain energy supply for fetus development or milk production

  6. Effect of ovulatory follicle size on steroidogenic capacity and molecular markers of oocyte competence prior to GnRH-induced ovulation in non-lactating beef cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gonadotropin releasing hormone (GnRH)-induced ovulation of small dominant follicles decreased pregnancy rates and increased late embryonic/fetal mortality in beef cows. Inadequate oocyte competence, as affected by the physiological status of the dominant follicle, is a potential explanation for the...

  7. Cardiovascular physiology and diseases of amphibians.

    PubMed

    Heinz-Taheny, Kathleen M

    2009-01-01

    The class Amphibia includes three orders of amphibians: the anurans (frogs and toads), urodeles (salamanders, axolotls, and newts), and caecilians. The diversity of lifestyles across these three orders has accompanying differences in the cardiovascular anatomy and physiology allowing for adaptations to aquatic or terrestrial habitats, pulmonic or gill respiration, hibernation, and body elongation (in the caecilian). This article provides a review of amphibian cardiovascular anatomy and physiology with discussion of unique species adaptations. In addition, amphibians as cardiovascular animal models and commonly encountered natural diseases are covered.

  8. Cardiovascular physiology and diseases of amphibians.

    PubMed

    Heinz-Taheny, Kathleen M

    2009-01-01

    The class Amphibia includes three orders of amphibians: the anurans (frogs and toads), urodeles (salamanders, axolotls, and newts), and caecilians. The diversity of lifestyles across these three orders has accompanying differences in the cardiovascular anatomy and physiology allowing for adaptations to aquatic or terrestrial habitats, pulmonic or gill respiration, hibernation, and body elongation (in the caecilian). This article provides a review of amphibian cardiovascular anatomy and physiology with discussion of unique species adaptations. In addition, amphibians as cardiovascular animal models and commonly encountered natural diseases are covered. PMID:19131029

  9. Metabotypes with properly functioning mitochondria and anti-inflammation predict extended productive life span in dairy cows

    PubMed Central

    Huber, K.; Dänicke, S.; Rehage, J.; Sauerwein, H.; Otto, W.; Rolle-Kampczyk, U.; von Bergen, M.

    2016-01-01

    The failure to adapt metabolism to the homeorhetic demands of lactation is considered as a main factor in reducing the productive life span of dairy cows. The so far defined markers of production performance and metabolic health in dairy cows do not predict the length of productive life span satisfyingly. This study aimed to identify novel pathways and biomarkers related to productive life in dairy cows by means of (targeted) metabolomics. In a longitudinal study from 42 days before up to 100 days after parturition, we identified metabolites such as long-chain acylcarnitines and biogenic amines associated with extended productive life spans. These metabolites are mainly secreted by the liver and depend on the functionality of hepatic mitochondria. The concentrations of biogenic amines and some acylcarnitines differed already before the onset of lactation thus indicating their predictive potential for continuation or early ending of productive life. PMID:27089826

  10. Milk production and composition of mid-lactation cows consuming perennial ryegrass-and chicory-based diets.

    PubMed

    Muir, S K; Ward, G N; Jacobs, J L

    2014-02-01

    Dry matter intakes (DMI), nutrient selection, and milk production responses of dairy cows grazing 3 herbage-based diets offered at 2 allowances were measured. The 2 allowances were 20 (low) and 30 (high) kg of dry matter (DM)/cow per day and these were applied to 3 herbage types: perennial ryegrass (PRG) and chicory (CHIC+) monocultures and a mixed sward of chicory and perennial ryegrass (MIX). The CHIC+ diet was supplemented with alfalfa hay (approximately 2 kg of DM/cow per day) to maintain dietary neutral detergent fiber (NDF) concentration and all diets were supplemented with energy-based pellets (6 kg of DM/cow per day). Holstein-Friesian dairy cows averaging 136 ± 30 d in milk were allocated to 4 replicates of the 6 treatments using stratified randomization procedures. Cows were adapted to their experimental diets over a 14-d period, with measurements of DMI, milk yield, and composition conducted over the following 10 d. Herbage DMI was lowest (12.8 vs. 14.0 kg of DM/d) for CHIC+ compared with the MIX and PRG, although total forage intake (grazed herbage plus hay) was similar (14.0 to 15.0 kg of DM/d) across the 3 treatments. Milk production, milk protein, and milk fat concentrations were not different between herbage types. Grazed herbage DMI increased with increasing herbage allowance and this was associated with increased milk protein concentration (3.23 to 3.34%) and total casein production (41.7 to 43.6 mg/g). Concentrations of polyunsaturated fatty acids in milk fat, particularly linoleic acid, were increased in milk from cows offered the CHIC+ or the MIX diets, indicating potential benefits of chicory herbage on milk fatty acid concentrations. Although feeding CHIC+ or MIX did not increase milk yield, these herbage types could be used as an alternative to perennial ryegrass pasture in spring. PMID:24290818

  11. Modelling the extinction of Steller's sea cow

    PubMed Central

    Turvey, S.T; Risley, C.L

    2005-01-01

    Steller's sea cow, a giant sirenian discovered in 1741 and extinct by 1768, is one of the few megafaunal mammal species to have died out during the historical period. The species is traditionally considered to have been exterminated by ‘blitzkrieg’-style direct overharvesting for food, but it has also been proposed that its extinction resulted from a sea urchin population explosion triggered by extirpation of local sea otter populations that eliminated the shallow-water kelps on which sea cows fed. Hunting records from eighteenth century Russian expeditions to the Commander Islands, in conjunction with life-history data extrapolated from dugongs, permit modelling of sea cow extinction dynamics. Sea cows were massively and wastefully overexploited, being hunted at over seven times the sustainable limit, and suggesting that the initial Bering Island sea cow population must have been higher than suggested by previous researchers to allow the species to survive even until 1768. Environmental changes caused by sea otter declines are unlikely to have contributed to this extinction event. This indicates that megafaunal extinctions can be effected by small bands of hunters using pre-industrial technologies, and highlights the catastrophic impact of wastefulness when overexploiting resources mistakenly perceived as ‘infinite’. PMID:17148336

  12. Modelling the extinction of Steller's sea cow.

    PubMed

    Turvey, S T; Risley, C L

    2006-03-22

    Steller's sea cow, a giant sirenian discovered in 1741 and extinct by 1768, is one of the few megafaunal mammal species to have died out during the historical period. The species is traditionally considered to have been exterminated by 'blitzkrieg'-style direct overharvesting for food, but it has also been proposed that its extinction resulted from a sea urchin population explosion triggered by extirpation of local sea otter populations that eliminated the shallow-water kelps on which sea cows fed. Hunting records from eighteenth century Russian expeditions to the Commander Islands, in conjunction with life-history data extrapolated from dugongs, permit modelling of sea cow extinction dynamics. Sea cows were massively and wastefully overexploited, being hunted at over seven times the sustainable limit, and suggesting that the initial Bering Island sea cow population must have been higher than suggested by previous researchers to allow the species to survive even until 1768. Environmental changes caused by sea otter declines are unlikely to have contributed to this extinction event. This indicates that megafaunal extinctions can be effected by small bands of hunters using pre-industrial technologies, and highlights the catastrophic impact of wastefulness when overexploiting resources mistakenly perceived as 'infinite'.

  13. Cow's milk proteins in human milk.

    PubMed

    Coscia, A; Orrù, S; Di Nicola, P; Giuliani, F; Rovelli, I; Peila, C; Martano, C; Chiale, F; Bertino, E

    2012-01-01

    Cow's milk proteins (CMPs) are among the best characterized food allergens. Cow's milk contains more than twenty five different proteins, but only whey proteins alpha-lactalbumin, beta-lactoglobulin, bovine serum albumin (BSA), and lactoferrin, as well as the four caseins, have been identified as allergens. Aim of this study was to investigate by proteomics techniques cow's milk allergens in human colostrum of term and preterm newborns' mothers, not previously detected, in order to understand if such allergens could be cause of sensitization during lactation. Term colostrum samples from 62 healthy mothers and preterm colostrum samples from 11 healthy mothers were collected for this purpose. The most relevant finding was the detection of the intact bovine alpha-S1-casein in both term and preterm colostrum. Using this method, which allows direct proteins identification, beta-lactoglobulin was not detected in any of colostrum samples. According to our results bovine alpha 1 casein that is considered a major cow's milk allergen is readily secreted in human milk: further investigations are needed in order to clarify if alpha-1-casein has a major role in sensitization or tolerance to cow's milk of exclusively breastfed predisposed infants.

  14. Treatment of Cow's Milk Protein Allergy

    PubMed Central

    De Greef, Elisabeth; Devreker, Thierry

    2014-01-01

    The diagnosis and treatment of cow's milk protein allergy (CMPA) is still a challenge. A systematic literature search was performed using Embase, Medline, The Cochrane Database of Systematic Reviews and Cochrane Central Register of Controlled Clinical Trials for the diagnosis and treatment of cow's milk allergy (CMA). Since none of the symptoms of CMPA is specific and since there is no sensitive diagnostic test (except a challenge test), the diagnosis of CMPA remains difficult. A "symptom-based score" is useful in children with symptoms involving different organ systems. The recommended dietary treatment is an extensive cow milk based hydrolysate. Amino acid based formula is recommended in the most severe cases. However, soy infant formula and hydrolysates from other protein sources (rice) are gaining popularity, as they taste better and are cheaper than the extensive cow's milk based hydrolysates. Recent meta-analyses confirmed the safety of soy and estimate that not more than 10-15% of CMPA-infants become allergic to soy. An accurate diagnosis of CMA is still difficult. The revival of soy and the development of rice hydrolysates challenge the extensive cow's milk based extensive hydrolysates as first option and amino acid formula. PMID:24749081

  15. The effect of conspecific removal on behavioral and physiological responses of dairy cattle.

    PubMed

    Walker, Jessica K; Arney, David R; Waran, Natalie K; Handel, Ian G; Phillips, Clive J C

    2015-12-01

    Adverse social and welfare implications of mixing dairy cows or separating calves from their mothers have been documented previously. Here we investigated the behavioral and physiological responses of individuals remaining after conspecifics were removed. We conducted a series of 4 experiments incorporating a range of types of different dairy cattle groupings [experiment 1 (E1), 126 outdoor lactating dairy cows; experiment 2 (E2), 120 housed lactating dairy cows; experiment 3 (E3), 18 housed dairy calves; and experiment 4 (E4), 22 housed dairy bulls] from which a subset of individuals were permanently removed (E1, n=7; E2, n=5; E3, n=9; E4, n=18). Associations between individuals were established using near-neighbor scores (based upon identities and distances between animals recorded before removal) in E1, E2, and E3. Behavioral recordings were taken for 3 to 5 d, before and after removal on a sample of cattle in all 4 experiments (E1, n=20; E2, n=20; E3, n=9; E4, n=4). In 2 experiments with relatively large groups of dairy cows, E1 and E2, the responses of cows that did and did not associate with the removed cows were compared. An increase in time that both nonassociates and associates spent eating was observed after conspecific removal in E1. In E2, this increase was restricted to cows that had not associated with the removed cows. A reduction in ruminating in remaining cattle was observed in E3 and eating in E4. Immunoglobulin A concentrations increased after separation in both E3 and E4 cattle, but did not differ significantly between associates and nonassociates in E2. Blood and milk cortisol concentrations were not affected by conspecific removal. These findings suggest that some animals had affected feeding behavior and IgA concentrations after removal of conspecifics.

  16. Characterization of Dutch dairy farms using sensor systems for cow management.

    PubMed

    Steeneveld, W; Hogeveen, H

    2015-01-01

    To improve cow management in large dairy herds, sensors have been developed that can measure physiological, behavioral, and production indicators on individual cows. Recently, the number of dairy farms using sensor systems has increased. It is not known, however, to what extent sensor systems are used on dairy farms, and the reasons why farmers invest or not in sensor systems are unclear. The first objective of this study was to give an overview of the sensor systems currently used in the Netherlands. The second objective was to investigate the reasons for investing or not investing in sensor systems. The third objective was to characterize farms with and without sensor systems. A survey was developed to investigate first, the reasons for investing or not in sensor systems and, then, how the sensor systems are used in daily cow management. The survey was sent to 1,672 Dutch dairy farmers. The final data set consisted of 512 dairy farms (response rate of 30.6%); 202 farms indicated that they had sensor systems and 310 farms indicated that they did not have sensor systems. A wide variety of sensor systems was used on Dutch dairy farms; those for mastitis detection and estrus detection were the most-used sensor systems. The use of sensor systems was different for farms using an automatic milking system (AMS) and a conventional milking system (CMS). Reasons for investing were different for different sensor systems. For sensor systems attached to the AMS, the farmers made no conscious decision to invest: they answered that the sensors were standard in the AMS or were bought for reduced cost with the AMS. The main reasons for investing in estrus detection sensor systems were improving detection rates, gaining insights into the fertility level of the herd, improving profitability of the farm, and reducing labor. Main reasons for not investing in sensor systems were economically related. It was very difficult to characterize farms with and without sensor systems. Farms

  17. On the Art Career Track: Behold... the Cow as Art

    ERIC Educational R