Science.gov

Sample records for cowpox virus combine

  1. Cowpox virus: What’s in a Name?

    PubMed Central

    Mauldin, Matthew R.; Antwerpen, Markus; Emerson, Ginny L.; Li, Yu; Zoeller, Gudrun; Carroll, Darin S.; Meyer, Hermann

    2017-01-01

    Traditionally, virus taxonomy relied on phenotypic properties; however, a sequence-based virus taxonomy has become essential since the recent requirement of a species to exhibit monophyly. The species Cowpox virus has failed to meet this requirement, necessitating a reexamination of this species. Here, we report the genomic sequences of nine Cowpox viruses and, by combining them with the available data of 37 additional genomes, confirm polyphyly of Cowpox viruses and find statistical support based on genetic data for more than a dozen species. These results are discussed in light of the current International Committee on Taxonomy of Viruses species definition, as well as immediate and future implications for poxvirus taxonomic classification schemes. Data support the recognition of five monophyletic clades of Cowpox viruses as valid species. PMID:28486428

  2. Concomitant Human Infections with 2 Cowpox Virus Strains in Related Cases, France, 2011

    PubMed Central

    Ducournau, Corinne; Ferrier-Rembert, Audrey; Ferraris, Olivier; Joffre, Aurélie; Favier, Anne-Laure; Flusin, Olivier; Van Cauteren, Dieter; Kecir, Kaci; Auburtin, Brigitte; Védy, Serge; Bessaud, Maël

    2013-01-01

    We investigated 4 related human cases of cowpox virus infection reported in France during 2011. Three patients were infected by the same strain, probably transmitted by imported pet rats, and the fourth patient was infected by another strain. The 2 strains were genetically related to viruses previously isolated from humans with cowpox infection in Europe. PMID:24274113

  3. Vaccination with Venezuelan equine encephalitis replicons encoding cowpox virus structural proteins protects mice from intranasal cowpox virus challenge.

    PubMed

    Thornburg, Natalie J; Ray, Caroline A; Collier, Martha L; Liao, Hua-Xin; Pickup, David J; Johnston, Robert E

    2007-06-05

    An anti-poxvirus vaccine based on replicon particles of Venezuelan equine encephalitis virus (VRP) is being developed. The cowpox virus genes encoding structural proteins corresponding to vaccinia virus proteins A33, B5, and A27 were each expressed from VRP. High serum IgG titers against these proteins were generated in BALB/c mice vaccinated with each of these VRP. VRP induced both IgG1 and IgG2a with a strong predominance of IgG2a production. The response is long-lasting, as evidenced by the retention of high anti-B5 serum IgG titers through at least 50 weeks after priming immunization. Mice vaccinated with B5-, A33- or A27-VRP individually or together survived intranasal challenge with cowpox virus, with the multivalent vaccine formulation providing more effective protection from weight loss and clinical signs of illness than the monovalent vaccines. These results demonstrate that VRP may provide an effective alternative to vaccinia virus vaccines against poxvirus infection.

  4. Cowpox virus infection associated with a streptococcal septicaemia in a foal.

    PubMed

    Ellenberger, C; Schüppel, K-F; Möhring, M; Reischauer, A; Alex, M; Czerny, C-P; Fercho, A; Schoon, H-A

    2005-01-01

    Cowpox virus infection associated with a streptococcal septicaemia was diagnosed in a weak German Warmblood filly, born 29 days prematurely, and humanely destroyed on the sixth day of life. At necropsy, ulcerative lesions in the alimentary tract, colitis, polyarthritis and nephritis were observed. Transmission electron microscopical examination of specimens from ulcerative lesions revealed typical orthopox virions. Cowpox virus was unequivocally identified by virological and molecular-biological methods.

  5. In vivo imaging of cidofovir treatment of cowpox virus infection.

    PubMed

    Goff, Arthur; Twenhafel, Nancy; Garrison, Aura; Mucker, Eric; Lawler, James; Paragas, Jason

    2007-09-01

    Variola virus and other members of the genus Orthopoxviruses constitute a prominent bioterrorism and public health threat. Treatment with the anti-viral drug cidofovir inhibits replication of orthopoxviruses in vitro and in vivo. In this study, we visualized the effect of cidofovir on viral kinetics in orthopoxvirus infected mice by using whole-body fluorescence imaging (FI). We engineered a cowpox virus (CPV) expressing the enhanced green fluorescent protein (GFP). Single-step growth curves and calculated 50% lethal doses (LD(50)) of wild-type CPX (Wt-CPV) and GFP-expressing CPX (GFP-CPV) were comparable. Whole-body FI first detected GFP fluorescence in the mesenteric tissue of untreated animals on post-infection day (PID) 1. On PID 3 GFP signal was detected throughout the mesentery, in all abdominal organs by PID 5 and in most major organs, except for the heart and brain by PID 6. Infected animals treated with 25mg/kg of cidofovir also began showing signs of viral replication on PID 1, however, the fluorescent signal was limited only to discrete foci throughout the course of the infection. This work describes the first use of an established Orthopox model of infection to evaluate drug efficacy and track virus progression on a macroscopic level.

  6. Cowpox virus infection in natural field vole Microtus agrestis populations: significant negative impacts on survival

    PubMed Central

    Burthe, Sarah; Telfer, Sandra; Begon, Michael; Bennett, Malcolm; Smith, Andrew; Lambin, Xavier

    2010-01-01

    Summary Cowpox virus is an endemic virus circulating in populations of wild rodents. It has been implicated as a potential cause of population cycles in field voles Microtus agrestis L., in Britain, owing to a delayed density-dependent pattern in prevalence, but its impact on field vole demographic parameters is unknown. This study tests the hypothesis that wild field voles infected with cowpox virus have a lower probability of survival than uninfected individuals. The effect of cowpox virus infection on the probability of an individual surviving to the next month was investigated using longitudinal data collected over 2 years from four grassland sites in Kielder Forest, UK. This effect was also investigated at the population level, by examining whether infection prevalence explained temporal variation in survival rates, once other factors influencing survival had been controlled for. Individuals with a probability of infection, P(I), of 1 at a time when base survival rate was at median levels had a 22·4% lower estimated probability of survival than uninfected individuals, whereas those with a P(I) of 0·5 had a 10·4% lower survival. At the population level, survival rates also decreased with increasing cowpox prevalence, with lower survival rates in months of higher cowpox prevalence. Simple matrix projection models with 28 day time steps and two stages, with 71% of voles experiencing cowpox infection in their second month of life (the average observed seroprevalence at the end of the breeding season) predict a reduction in 28-day population growth rate during the breeding season from λ = 1·62 to 1·53 for populations with no cowpox infection compared with infected populations. This negative correlation between cowpox virus infection and field vole survival, with its potentially significant effect on population growth rate, is the first for an endemic pathogen in a cyclic population of wild rodents. PMID:18177331

  7. A cowpox virus gene required for multiplication in Chinese hamster ovary cells.

    PubMed Central

    Spehner, D; Gillard, S; Drillien, R; Kirn, A

    1988-01-01

    Cowpox virus, in contrast to vaccinia virus, can multiply in Chinese hamster ovary cells. To study the genetic basis for this difference in host range, recombinants between vaccinia and cowpox viruses were isolated and their DNA restriction patterns were examined. The ability to multiply in Chinese hamster ovary cells could be correlated with the conservation of cowpox virus sequences mapping at the left end of the genome. This was further demonstrated by marker rescue of the host range phenotype with restricted cowpox virus DNA. Marker rescue with cloned restriction fragments of decreasing size enabled the fine localization of the host range function to a 2.3-kilobase-pair fragment. Nucleotide sequencing revealed that the fragment encoded a single major polypeptide of approximately 77,000 daltons. It is suggested that the role of the host range gene from cowpox virus is to prevent the early and extensive shutoff of protein synthesis that normally occurs in Chinese hamster ovary cells infected by vaccinia virus. Images PMID:2831390

  8. Cowpox virus induces interleukin-10 both in vitro and in vivo

    PubMed Central

    Spesock, April H.; Barefoot, Brice E.; Ray, Caroline A.; Kenan, Daniel J.; Gunn, Michael D.; Ramsburg, Elizabeth A.; Pickup, David J.

    2011-01-01

    Cowpox virus infection induces interleukin-10 (IL-10) production from mouse bone marrow-derived dendritic cells (BMDCs) or cells of the mouse macrophage line (RAW264.7) at about 1800 pg/ml, whereas infections with vaccinia virus (strains WR or MVA) induced much less IL-10. Similarly, in vivo, IL-10 levels in bronchoalveolar lavage fluids of mice infected with cowpox virus were significantly higher than those after vaccinia virus infection. However, after intranasal cowpox virus infection, although dendritic and T-cell accumulations in the lungs of IL-10 deficient mice were greater than those in wild-type mice, weight-loss and viral burdens were not significantly different. IL-10 deficient mice were more susceptible than wild-type mice to reinfection with cowpox virus even though titers of neutralizing antibodies and virus-specific CD8 T cells were similar between IL-10 deficient and wild-type mice. Greater bronchopneumonia in IL-10 deficient mice than wild-type mice suggests that IL-10 contributes to the suppression of immunopathology in the lungs. PMID:21658738

  9. Genome-Wide Comparison of Cowpox Viruses Reveals a New Clade Related to Variola Virus

    PubMed Central

    Kurth, Andreas; Nitsche, Andreas

    2013-01-01

    Zoonotic infections caused by several orthopoxviruses (OPV) like monkeypox virus or vaccinia virus have a significant impact on human health. In Europe, the number of diagnosed infections with cowpox viruses (CPXV) is increasing in animals as well as in humans. CPXV used to be enzootic in cattle; however, such infections were not being diagnosed over the last decades. Instead, individual cases of cowpox are being found in cats or exotic zoo animals that transmit the infection to humans. Both animals and humans reveal local exanthema on arms and legs or on the face. Although cowpox is generally regarded as a self-limiting disease, immunosuppressed patients can develop a lethal systemic disease resembling smallpox. To date, only limited information on the complex and, compared to other OPV, sparsely conserved CPXV genomes is available. Since CPXV displays the widest host range of all OPV known, it seems important to comprehend the genetic repertoire of CPXV which in turn may help elucidate specific mechanisms of CPXV pathogenesis and origin. Therefore, 22 genomes of independent CPXV strains from clinical cases, involving ten humans, four rats, two cats, two jaguarundis, one beaver, one elephant, one marah and one mongoose, were sequenced by using massive parallel pyrosequencing. The extensive phylogenetic analysis showed that the CPXV strains sequenced clearly cluster into several distinct clades, some of which are closely related to Vaccinia viruses while others represent different clades in a CPXV cluster. Particularly one CPXV clade is more closely related to Camelpox virus, Taterapox virus and Variola virus than to any other known OPV. These results support and extend recent data from other groups who postulate that CPXV does not form a monophyletic clade and should be divided into multiple lineages. PMID:24312452

  10. Genome-wide comparison of cowpox viruses reveals a new clade related to Variola virus.

    PubMed

    Dabrowski, Piotr Wojtek; Radonić, Aleksandar; Kurth, Andreas; Nitsche, Andreas

    2013-01-01

    Zoonotic infections caused by several orthopoxviruses (OPV) like monkeypox virus or vaccinia virus have a significant impact on human health. In Europe, the number of diagnosed infections with cowpox viruses (CPXV) is increasing in animals as well as in humans. CPXV used to be enzootic in cattle; however, such infections were not being diagnosed over the last decades. Instead, individual cases of cowpox are being found in cats or exotic zoo animals that transmit the infection to humans. Both animals and humans reveal local exanthema on arms and legs or on the face. Although cowpox is generally regarded as a self-limiting disease, immunosuppressed patients can develop a lethal systemic disease resembling smallpox. To date, only limited information on the complex and, compared to other OPV, sparsely conserved CPXV genomes is available. Since CPXV displays the widest host range of all OPV known, it seems important to comprehend the genetic repertoire of CPXV which in turn may help elucidate specific mechanisms of CPXV pathogenesis and origin. Therefore, 22 genomes of independent CPXV strains from clinical cases, involving ten humans, four rats, two cats, two jaguarundis, one beaver, one elephant, one marah and one mongoose, were sequenced by using massive parallel pyrosequencing. The extensive phylogenetic analysis showed that the CPXV strains sequenced clearly cluster into several distinct clades, some of which are closely related to Vaccinia viruses while others represent different clades in a CPXV cluster. Particularly one CPXV clade is more closely related to Camelpox virus, Taterapox virus and Variola virus than to any other known OPV. These results support and extend recent data from other groups who postulate that CPXV does not form a monophyletic clade and should be divided into multiple lineages.

  11. Inference of cowpox virus transmission rates between wild rodent host classes using space-time interaction.

    PubMed

    Carslake, David; Bennett, Malcolm; Hazel, Sarah; Telfer, Sandra; Begon, Michael

    2006-04-07

    There have been virtually no studies of 'who acquires infection from whom' in wildlife populations, but patterns of transmission within and between different classes of host are likely to be reflected in the spatiotemporal distribution of infection among those host classes. Here, we use a modified form of K-function analysis to test for space-time interaction among bank voles and wood mice infectious with cowpox virus. There was no evidence for transmission between the two host species, supporting previous evidence that they act as separate reservoirs for cowpox. Among wood mice, results suggested that transmission took place primarily between individuals of the opposite sex, raising the possibility that cowpox is sexually transmitted in this species. Results for bank voles indicated that infected females might be a more important source of infection to either sex than are males. The suggestion of different modes of transmission in the two species is itself consistent with the apparent absence of transmission between species.

  12. Cowpox virus employs a two-pronged strategy to outflank MHCI antigen presentation.

    PubMed

    McCoy, William H; Wang, Xiaoli; Yokoyama, Wayne M; Hansen, Ted H; Fremont, Daved H

    2013-09-01

    Smallpox decimated humanity for thousands of years before being eradicated by vaccination, a success facilitated by the fact that humans are the only host of variola virus. In contrast, other orthopoxviruses such as cowpox virus can infect a variety of mammalian species, although its dominant reservoir appears to be rodents. This difference in host specificity suggests that cowpox may have developed promiscuous immune evasion strategies to facilitate zoonosis. Recent experiments have established that cowpox can disrupt MHCI antigen presentation during viral infection of both human and murine cells, a process enabled by two unique proteins, CPXV012 and CPXV203. While CPXV012 inhibits antigenic peptide transport from the cytosol to the ER, CPXV203 blocks MHCI trafficking to the cell surface by exploiting the KDEL-receptor recycling pathway. Our recent investigations of CPXV203 reveal that it binds a diverse array of classical and non-classical MHCI proteins with dramatically increased affinities at the lower pH of the Golgi relative to the ER, thereby providing mechanistic insight into how it works synergistically with KDEL receptors to block MHCI surface expression. The strategy used by cowpox to both limit peptide supply and disrupt trafficking of fully assembled MHCI acts as a dual-edged sword that effectively disables adaptive immune surveillance of infected cells.

  13. Concurrent infection of a cat with cowpox virus and feline parvovirus.

    PubMed

    Schaudien, D; Meyer, H; Grunwald, D; Janssen, H; Wohlsein, P

    2007-01-01

    Concurrent infection with cowpox and feline parvovirus was diagnosed in a 5-month-old male European Short Hair cat. Microscopical examination of the facial skin, ears and foot pads revealed multifocal to coalescing, ulcerative to necrotizing dermatitis and panniculitis with ballooning epidermal degeneration and eosinophilic cytoplasmic inclusion bodies. Immunohistochemistry, polymerase chain reaction testing and virus isolation confirmed infection with a strain of cowpox virus similar to that isolated from a cat in Germany 5 years previously. Lymphoid tissues were depleted and there was catarrhal enteritis caused by feline parvovirus as confirmed by immunohistochemistry and in-situ hybridization. This co-infection did not result in a more severe and rapid course of the poxvirus-associated disease.

  14. A Negative Feedback Modulator of Antigen Processing Evolved from a Frameshift in the Cowpox Virus Genome

    PubMed Central

    Lin, Jiacheng; Eggensperger, Sabine; Hank, Susanne; Wycisk, Agnes I.; Wieneke, Ralph; Mayerhofer, Peter U.; Tampé, Robert

    2014-01-01

    Coevolution of viruses and their hosts represents a dynamic molecular battle between the immune system and viral factors that mediate immune evasion. After the abandonment of smallpox vaccination, cowpox virus infections are an emerging zoonotic health threat, especially for immunocompromised patients. Here we delineate the mechanistic basis of how cowpox viral CPXV012 interferes with MHC class I antigen processing. This type II membrane protein inhibits the coreTAP complex at the step after peptide binding and peptide-induced conformational change, in blocking ATP binding and hydrolysis. Distinct from other immune evasion mechanisms, TAP inhibition is mediated by a short ER-lumenal fragment of CPXV012, which results from a frameshift in the cowpox virus genome. Tethered to the ER membrane, this fragment mimics a high ER-lumenal peptide concentration, thus provoking a trans-inhibition of antigen translocation as supply for MHC I loading. These findings illuminate the evolution of viral immune modulators and the basis of a fine-balanced regulation of antigen processing. PMID:25503639

  15. A negative feedback modulator of antigen processing evolved from a frameshift in the cowpox virus genome.

    PubMed

    Lin, Jiacheng; Eggensperger, Sabine; Hank, Susanne; Wycisk, Agnes I; Wieneke, Ralph; Mayerhofer, Peter U; Tampé, Robert

    2014-12-01

    Coevolution of viruses and their hosts represents a dynamic molecular battle between the immune system and viral factors that mediate immune evasion. After the abandonment of smallpox vaccination, cowpox virus infections are an emerging zoonotic health threat, especially for immunocompromised patients. Here we delineate the mechanistic basis of how cowpox viral CPXV012 interferes with MHC class I antigen processing. This type II membrane protein inhibits the coreTAP complex at the step after peptide binding and peptide-induced conformational change, in blocking ATP binding and hydrolysis. Distinct from other immune evasion mechanisms, TAP inhibition is mediated by a short ER-lumenal fragment of CPXV012, which results from a frameshift in the cowpox virus genome. Tethered to the ER membrane, this fragment mimics a high ER-lumenal peptide concentration, thus provoking a trans-inhibition of antigen translocation as supply for MHC I loading. These findings illuminate the evolution of viral immune modulators and the basis of a fine-balanced regulation of antigen processing.

  16. Cowpox virus infection in natural field vole Microtus agrestis populations: delayed density dependence and individual risk.

    PubMed

    Burthe, Sarah; Telfer, Sandra; Lambin, Xavier; Bennett, Malcolm; Carslake, David; Smith, Andrew; Begon, Michael

    2006-11-01

    1. Little is known about the dynamics of pathogen (microparasite) infection in wildlife populations, and less still about sources of variation in the risk of infection. Here we present the first detailed analysis of such variation. 2. Cowpox virus is an endemic sublethal pathogen circulating in populations of wild rodents. Cowpox prevalence was monitored longitudinally for 2 years, in populations of field voles exhibiting multiannual cycles of density in Kielder Forest, UK. 3. The probability that available susceptible animals seroconverted in a given trap session was significantly positively related to host density with a 3-month time lag. 4. Males were significantly more likely to seroconvert than females. 5. Despite most infection being found in young animals (because transmission rates were generally high) mature individuals were more likely to seroconvert than immature ones, suggesting that behavioural or physiological changes associated with maturity contribute to variation in infection risk. 6. Hence, these analyses confirm that there is a delayed numerical response of cowpox infection to vole density, supporting the hypothesis that endemic pathogens may play some part in shaping vole cycles.

  17. Inference of cowpox virus transmission rates between wild rodent host classes using space–time interaction

    PubMed Central

    Carslake, David; Bennett, Malcolm; Hazel, Sarah; Telfer, Sandra; Begon, Michael

    2005-01-01

    There have been virtually no studies of ‘who acquires infection from whom’ in wildlife populations, but patterns of transmission within and between different classes of host are likely to be reflected in the spatiotemporal distribution of infection among those host classes. Here, we use a modified form of K-function analysis to test for space–time interaction among bank voles and wood mice infectious with cowpox virus. There was no evidence for transmission between the two host species, supporting previous evidence that they act as separate reservoirs for cowpox. Among wood mice, results suggested that transmission took place primarily between individuals of the opposite sex, raising the possibility that cowpox is sexually transmitted in this species. Results for bank voles indicated that infected females might be a more important source of infection to either sex than are males. The suggestion of different modes of transmission in the two species is itself consistent with the apparent absence of transmission between species. PMID:16618669

  18. Treatment of Vaccinia and Cowpox Virus Infections in Mice with CMX001 and ST-246.

    PubMed

    Quenelle, Debra C; Kern, Earl R

    2010-12-01

    Although a large number of compounds have been identified with antiviral activity against orthopoxviruses in tissue culture systems, it is highly preferred that these compounds have activity in vivo before they can be seriously considered for further development. One of the most commonly used animal models for the confirmation of this activity has been the use of mice infected with either vaccinia or cowpox viruses. These model systems have the advantage that they are relatively inexpensive, readily available and do not require any special containment facilities; therefore, relatively large numbers of compounds can be evaluated in vivo for their activity. The two antiviral agents that have progressed from preclinical studies to human safety trials for the treatment of orthopoxvirus infections are the cidofovir analog, CMX001, and an inhibitor of extracellular virus formation, ST-246. These compounds are the ones most likely to be used in the event of a bioterror attack. The purpose of this communication is to review the advantages and disadvantages of using mice infected with vaccinia and cowpox virus as surrogate models for human orthopoxvirus infections and to summarize the activity of CMX001 and ST-246 in these model infections.

  19. Treatment of Vaccinia and Cowpox Virus Infections in Mice with CMX001 and ST-246

    PubMed Central

    Quenelle, Debra C.; Kern, Earl R.

    2010-01-01

    Although a large number of compounds have been identified with antiviral activity against orthopoxviruses in tissue culture systems, it is highly preferred that these compounds have activity in vivo before they can be seriously considered for further development. One of the most commonly used animal models for the confirmation of this activity has been the use of mice infected with either vaccinia or cowpox viruses. These model systems have the advantage that they are relatively inexpensive, readily available and do not require any special containment facilities; therefore, relatively large numbers of compounds can be evaluated in vivo for their activity. The two antiviral agents that have progressed from preclinical studies to human safety trials for the treatment of orthopoxvirus infections are the cidofovir analog, CMX001, and an inhibitor of extracellular virus formation, ST-246. These compounds are the ones most likely to be used in the event of a bioterror attack. The purpose of this communication is to review the advantages and disadvantages of using mice infected with vaccinia and cowpox virus as surrogate models for human orthopoxvirus infections and to summarize the activity of CMX001 and ST-246 in these model infections. PMID:21994637

  20. [Cowpox virus infection in an alpaca (Vicugna pacos) - clinical symptoms, laboratory diagnostic findings and pathological changes].

    PubMed

    Goerigk, D; Theuß, T; Pfeffer, M; Konrath, A; Kalthoff, D; Woll, D; Vahlenkamp, T W; Beer, M; Starke, A

    2014-01-01

    Orthopoxvirus infections appear to be rare in South American Camelids, because only a few cases have been reported in the literature. Based on a generalized infection with cowpox virus in an alpaca, the clinical symptoms, laboratory diagnostic findings and the pathological changes are described. The case history showed a long treatment because of chronic skin lesions. The main clinical symptom was miliary papules over the entire skin. Furthermore, a bilateral mucopurulent conjunctivitis occurred as well as excessive salivation due to a severe erosive-ulcerative stomatitis. Although the animal received intensive treatment, it died 8 days after admission to the clinic. During necropsy, an erosive-ulcerative laryngitis as well as a necrotising pneumonia and lymphadenitis were observed. Histopathological examination of representative organ samples led to the diagnosis of a suspected orthopoxvirus infection. Electron microscopy and quantitative polymerase chain reaction (qPCR) of tissue samples confirmed this diagnosis. The virus could be isolated in tissue culture and a PCR with subsequent nucleotide sequencing identified cowpox virus as the causative agent for this generalised infection.

  1. Cowpox: reservoir hosts and geographic range.

    PubMed Central

    Chantrey, J.; Meyer, H.; Baxby, D.; Begon, M.; Bown, K. J.; Hazel, S. M.; Jones, T.; Montgomery, W. I.; Bennett, M.

    1999-01-01

    It is generally accepted that the reservoir hosts of cowpox virus are wild rodents, although direct evidence for this is lacking for much of the virus's geographic range. Here, through a combination of serology and PCR, we demonstrate conclusively that the main hosts in Great Britain are bank voles, wood mice and short-tailed field voles. However, we also suggest that wood mice may not be able to maintain infection alone, explaining the absence of cowpox from Ireland where voles are generally not found. Infection in wild rodents varies seasonally, and this variation probably underlies the marked seasonal incidence of infection in accidental hosts such as humans and domestic cats. PMID:10459650

  2. Generalized fatal Cowpox virus infection in a cat with transmission to a human contact case.

    PubMed

    Schulze, C; Alex, M; Schirrmeier, H; Hlinak, A; Engelhardt, A; Koschinski, B; Beyreiss, B; Hoffmann, M; Czerny, C-P

    2007-01-01

    A 4-month-old female domestic shorthair cat was infected by a virus of the Poxvirus family. The animal developed a severe pneumonia and generalized ulcerating lesions of the skin. Histologically, typical eosinophilic intracytoplasmic inclusion bodies indicative of an Orthopoxvirus (OPV) infection were present. The lung showed grey-white to haemorrhagic nodular lesions with a central zone of complete necrosis of alveolar and bronchial tissue. Electron microscopy from skin and lung nodules revealed typical square-shaped OPV particles. Cultivation of the virus on chorio-allantoic membranes of embryonated chicken eggs resulted in haemorrhagic plaques. Restriction enzyme analysis, PCR and sequencing of the D8L gene identified the OPV isolate as a typical Cowpox virus. It was transmitted by the cat to a human contact person who developed a local nodular dermatitis at the inoculation site in association with signs of general infection and had an increase of OPV-specific neutralizing antibodies in paired serum samples.

  3. Disease dynamics in cyclic populations of field voles (Microtus agrestis): cowpox virus and vole tuberculosis (Mycobacterium microti).

    PubMed

    Cavanagh, Rachel D; Lambin, Xavier; Ergon, Torbjørn; Bennett, Malcolm; Graham, Isla M; van Soolingen, Dick; Begon, Michael

    2004-04-22

    The possible role of pathogens in rodent population cycles has been largely neglected since Elton's 'epidemic hypothesis' of 1931. To revisit this question, 12 adjacent, cyclic but out-of-phase populations of field voles (Microtus agrestis) in North East England were studied and the initial results are presented here. The prevalences of antibodies to cowpox virus and of clinical signs of Mycobacterium microti infection (vole tuberculosis) showed delayed (not direct) density dependence (with a lag of three to six months). This did not result from changes in population structure, even though there were such changes associated with the different phases of the cycle. The prevalences rose as vole numbers rose, and peaked as numbers declined. The apparent lag in the numerical response of infection prevalence to changes in host abundance is consistent with the hypothesis that diseases, singly or in combination, play a hitherto underestimated role in the dynamics of cyclic populations.

  4. Disease dynamics in cyclic populations of field voles (Microtus agrestis): cowpox virus and vole tuberculosis (Mycobacterium microti).

    PubMed Central

    Cavanagh, Rachel D.; Lambin, Xavier; Ergon, Torbjørn; Bennett, Malcolm; Graham, Isla M.; van Soolingen, Dick; Begon, Michael

    2004-01-01

    The possible role of pathogens in rodent population cycles has been largely neglected since Elton's 'epidemic hypothesis' of 1931. To revisit this question, 12 adjacent, cyclic but out-of-phase populations of field voles (Microtus agrestis) in North East England were studied and the initial results are presented here. The prevalences of antibodies to cowpox virus and of clinical signs of Mycobacterium microti infection (vole tuberculosis) showed delayed (not direct) density dependence (with a lag of three to six months). This did not result from changes in population structure, even though there were such changes associated with the different phases of the cycle. The prevalences rose as vole numbers rose, and peaked as numbers declined. The apparent lag in the numerical response of infection prevalence to changes in host abundance is consistent with the hypothesis that diseases, singly or in combination, play a hitherto underestimated role in the dynamics of cyclic populations. PMID:15255106

  5. Cowpox virus inhibits human dendritic cell immune function by nonlethal, nonproductive infection

    SciTech Connect

    Hansen, Spencer J.; Rushton, John; Dekonenko, Alexander; Chand, Hitendra S.; Olson, Gwyneth K.; Hutt, Julie A.; Pickup, David; Lyons, C. Rick; Lipscomb, Mary F.

    2011-04-10

    Orthopoxviruses encode multiple proteins that modulate host immune responses. We determined whether cowpox virus (CPXV), a representative orthopoxvirus, modulated innate and acquired immune functions of human primary myeloid DCs and plasmacytoid DCs and monocyte-derived DCs (MDDCs). A CPXV infection of DCs at a multiplicity of infection of 10 was nonproductive, altered cellular morphology, and failed to reduce cell viability. A CPXV infection of DCs did not stimulate cytokine or chemokine secretion directly, but suppressed toll-like receptor (TLR) agonist-induced cytokine secretion and a DC-stimulated mixed leukocyte reaction (MLR). LPS-stimulated NF-{kappa}B nuclear translocation and host cytokine gene transcription were suppressed in CPXV-infected MDDCs. Early viral immunomodulatory genes were upregulated in MDDCs, consistent with early DC immunosuppression via synthesis of intracellular viral proteins. We conclude that a nonproductive CPXV infection suppressed DC immune function by synthesizing early intracellular viral proteins that suppressed DC signaling pathways.

  6. The effect of cowpox virus infection on fecundity in bank voles and wood mice.

    PubMed Central

    Feore, S M; Bennett, M; Chantrey, J; Jones, T; Baxby, D; Begon, M

    1997-01-01

    Although epidemic infectious diseases are a recognized cause of changes in host population dynamics, there is little direct evidence for the effect of endemic infections on populations. Cowpox virus is an orthopoxvirus which is endemic in bank voles (Clethrionomys glareolus), wood mice (Apodemus sylvaticus) and field voles (Microtus agrestis) in Great Britain. It does not cause obvious signs of disease nor does it affect survival, but in this study we demonstrate experimentally that it can reduce the fecundity of bank voles and wood mice by increasing the time to first litter by 20-30 days. The pathogenic mechanisms causing this effect are at present not known, but this finding suggests that natural subclinical infection could have a considerable effect on the dynamics of wild populations. PMID:9364786

  7. Comparison of host cell gene expression in cowpox, monkeypox or vaccinia virus-infected cells reveals virus-specific regulation of immune response genes

    PubMed Central

    2013-01-01

    Background Animal-borne orthopoxviruses, like monkeypox, vaccinia and the closely related cowpox virus, are all capable of causing zoonotic infections in humans, representing a potential threat to human health. The disease caused by each virus differs in terms of symptoms and severity, but little is yet know about the reasons for these varying phenotypes. They may be explained by the unique repertoire of immune and host cell modulating factors encoded by each virus. In this study, we analysed the specific modulation of the host cell’s gene expression profile by cowpox, monkeypox and vaccinia virus infection. We aimed to identify mechanisms that are either common to orthopoxvirus infection or specific to certain orthopoxvirus species, allowing a more detailed description of differences in virus-host cell interactions between individual orthopoxviruses. To this end, we analysed changes in host cell gene expression of HeLa cells in response to infection with cowpox, monkeypox and vaccinia virus, using whole-genome gene expression microarrays, and compared these to each other and to non-infected cells. Results Despite a dominating non-responsiveness of cellular transcription towards orthopoxvirus infection, we could identify several clusters of infection-modulated genes. These clusters are either commonly regulated by orthopoxvirus infection or are uniquely regulated by infection with a specific orthopoxvirus, with major differences being observed in immune response genes. Most noticeable was an induction of genes involved in leukocyte migration and activation in cowpox and monkeypox virus-infected cells, which was not observed following vaccinia virus infection. Conclusion Despite their close genetic relationship, the expression profiles induced by infection with different orthopoxviruses vary significantly. It may be speculated that these differences at the cellular level contribute to the individual characteristics of cowpox, monkeypox and vaccinia virus

  8. Clinical cowpox cases in Norway.

    PubMed

    Tryland, M; Myrmel, H; Holtet, L; Haukenes, G; Traavik, T

    1998-01-01

    In 1994, a human and a feline case of cowpox virus infection appeared in the western part of Norway. Cowpox has not been diagnosed with certainty in Norway since the beginning of this century, when it was associated with the use of cowpox virus as a vaccine against smallpox. The human infection manifested as a spontaneously emerged, severe ulceration at the medial angle of the right eye in a 37-y-old woman, and developed into a relatively severe dermatitis. The ulcer healed slowly, leaving a scar. The feline infection was represented by a febrile, dehydrated and anorectic 6-months-old non-pedigree short-hair, with crater-like ulcers all over the body. After antibiotic and fluid therapy, revision of the skin lesions and amputation of a gangrenous toe, the cat recovered. Electron microscopy of the isolates and cultivation of virus on chorioallantoic membrane of chicken embryos confirmed the suspicion of cowpox virus infection.

  9. Comparison of the Cowpox Virus and Vaccinia Virus Mature Virion Proteome: Analysis of the Species- and Strain-Specific Proteome

    PubMed Central

    Doellinger, Joerg; Schaade, Lars; Nitsche, Andreas

    2015-01-01

    Cowpox virus (CPXV) causes most zoonotic orthopoxvirus (OPV) infections in Europe and Northern as well as Central Asia. The virus has the broadest host range of OPV and is transmitted to humans from rodents and other wild or domestic animals. Increasing numbers of human CPXV infections in a population with declining immunity have raised concerns about the virus’ zoonotic potential. While there have been reports on the proteome of other human-pathogenic OPV, namely vaccinia virus (VACV) and monkeypox virus (MPXV), the protein composition of the CPXV mature virion (MV) is unknown. This study focused on the comparative analysis of the VACV and CPXV MV proteome by label-free single-run proteomics using nano liquid chromatography and high-resolution tandem mass spectrometry (nLC-MS/MS). The presented data reveal that the common VACV and CPXV MV proteome contains most of the known conserved and essential OPV proteins and is associated with cellular proteins known to be essential for viral replication. While the species-specific proteome could be linked mainly to less genetically-conserved gene products, the strain-specific protein abundance was found to be of high variance in proteins associated with entry, host-virus interaction and protein processing. PMID:26556597

  10. Effects of abundance on infection in natural populations: field voles and cowpox virus.

    PubMed

    Begon, Michael; Telfer, Sandra; Burthe, Sarah; Lambin, Xavier; Smith, Matthew J; Paterson, Steve

    2009-03-01

    Detailed results on the dynamics of cowpox virus infection in four natural populations of the field vole, Microtus agrestis, are presented. Populations were sampled every 4 weeks (8 weeks in mid-winter) for 6 years. The purpose was to examine the relationships between overall or susceptible host abundance (N, S) and both the number of infected hosts (I) and the prevalence of infection (I/N). Overall, both I and I/N increased with N. However, evidence for a threshold abundance, below which infection was not found, was at best equivocal in spite of the wide range of abundances sampled. Cross-correlation analyses reflected annual and multi-annual cycles in N, I, S and I/N, but whereas N was most strongly correlated with contemporary values of I and I/N, in the case of S, the strongest correlations were with values 1 to 2 months preceding the values of I and I/N. There was no evidence for a 'juvenile dilution effect' (prevalence decreasing with abundance as new susceptibles flush into the population) and only weak evidence of a time-delayed effect of abundance on the number infected. We argue that these effects may occur only in systems with characteristics that are not found here. Transfer function analyses, which have been neglected in epidemiology, were applied. These models, with ln(S) as the input parameter, in spite of their simplicity, could be linked closely to conventional formulations of the transmission process and were highly effective in predicting the number infected. By contrast, transfer function models with ln(N) as the input parameter were less successful in predicting the number infected and/or were more complex and more difficult to interpret. Nonetheless, overall, we contend that while monitoring numbers susceptible has most to offer, monitoring overall abundance may provide valuable insights into the dynamics of infection.

  11. Cowpox Virus Outbreak in Banded Mongooses (Mungos mungo) and Jaguarundis (Herpailurus yagouaroundi) with a Time-Delayed Infection to Humans

    PubMed Central

    Kurth, Andreas; Straube, Martin; Kuczka, Annette; Dunsche, Anton Josef; Meyer, Hermann; Nitsche, Andreas

    2009-01-01

    Background Often described as an extremely rare zoonosis, cowpox virus (CPXV) infections are on the increase in Germany. CPXV is rodent-borne with a broad host range and contains the largest and most complete genome of all poxviruses, including parts with high homology to variola virus (smallpox). So far, most CPXV cases have occurred individually in unvaccinated animals and humans and were caused by genetically distinguishable virus strains. Methodology/Principal Findings Generalized CPXV infections in banded mongooses (Mungos mungo) and jaguarundis (Herpailurus yagouaroundi) at a Zoological Garden were observed with a prevalence of the affected animal group of 100% and a mortality of 30%. A subsequent serological investigation of other exotic animal species provided evidence of subclinical cases before the onset of the outbreak. Moreover, a time-delayed human cowpox virus infection caused by the identical virus strain occurred in a different geographical area indicating that handling/feeding food rats might be the common source of infection. Conclusions/Significance Reports on the increased zoonotic transmission of orthopoxviruses have renewed interest in understanding interactions between these viruses and their hosts. The list of animals known to be susceptible to CPXV is still growing. Thus, the likely existence of unknown CPXV hosts and their distribution may present a risk for other exotic animals but also for the general public, as was shown in this outbreak. Animal breeders and suppliers of food rats represent potential multipliers and distributors of CPXV, in the context of increasingly pan-European trading. Taking the cessation of vaccination against smallpox into account, this situation contributes to the increased incidence of CPXV infections in man, particularly in younger age groups, with more complicated courses of clinical infections. PMID:19727399

  12. Delay of vaccinia virus-induced apoptosis in nonpermissive Chinese hamster ovary cells by the cowpox virus CHOhr and adenovirus E1B 19K genes.

    PubMed Central

    Ink, B S; Gilbert, C S; Evan, G I

    1995-01-01

    The infection of vaccinia virus in Chinese hamster ovary (CHO) cells produces a rapid shutdown in protein synthesis, and the infection is abortive (R.R. Drillien, D. Spehner, and A. Kirn, Virology 111:488-499, 1978; D.E. Hruby, D.L. Lynn, R. Condit, and J.R. Kates, J. Gen. Virol. 47:485-488, 1980). Cowpox virus, which can productively infect CHO cells, had previously been shown to contain a host range gene, CHOhr, which confers on vaccinia virus the ability to replicate in CHO cells (D. Spehner, S. Gillard, R. Drillien, and A. Kirn, J. Virol. 62:1297-1304, 1988). We found that CHO cells underwent apoptosis when infected with vaccinia virus. The expression of the CHOhr gene in vaccinia virus allowed for the expression of late virus genes. CHOhr also delayed or prevented vaccinia virus-induced apoptosis in CHO cells such that there was sufficient time for replication of the virus before the cell died. The E1B 19K gene from adenovirus also delayed vaccinia virus-induced apoptosis; however, there was no detectable expression of late virus genes. Furthermore, E1B 19K also delayed cell death in CHO cells which had been productively infected with vaccinia virus. This study identifies a new antiapoptotic gene from cowpox virus, CHOhr, for which the protein contains an ankyrin-like repeat and shows no significant homology to other proteins. This work also indicates that an antiapoptotic gene from one virus family can delay cell death in an infection of a virus from a different family. PMID:7815529

  13. Rat-to-Human Transmission of Cowpox Infection

    PubMed Central

    Wagenaar, Jaap A.; Niesters, Hubert G.M.; Osterhaus, Albert D.M.E.

    2002-01-01

    We isolated Cowpox virus (CPXV) from the ulcerative eyelid lesions of a 14-year-old girl, who had cared for a clinically ill wild rat that later died. CPXV isolated from the rat (Rattus norvegicus) showed complete homology with the girl’s virus. Our case is the first proven rat-to-human transmission of cowpox. PMID:12498670

  14. Cowpox in a human, Russia, 2015.

    PubMed

    Popova, A Y; Maksyutov, R A; Taranov, O S; Tregubchak, T V; Zaikovskaya, A V; Sergeev, A A; Vlashchenko, I V; Bodnev, S A; Ternovoi, V A; Alexandrova, N S; Tarasov, A L; Konovalova, N V; Koroleva, A A; Bulychev, L E; Pyankov, O V; Demina, Y V; Agafonov, A P; Shchelkunov, S N; Miheev, V N

    2017-03-01

    We investigated the first laboratory-confirmed human case of cowpox virus infection in Russia since 1991. Phylogenetic studies of haemagglutinin, TNF-α receptor-like protein and thymidine kinase regions showed significant differences with known orthopoxviruses, including unique amino-acid substitutions and deletions. The described cowpox virus strain, taking into account differences, is genetically closely related to strains isolated years ago in the same geographical region (European part of Russia and Finland), which suggests circulation of viral strains with common origin in wild rodents without spread over long distances and appearance in other parts of the world.

  15. Exposure of rhesus monkeys to cowpox virus Brighton Red by large-particle aerosol droplets results in an upper respiratory tract disease.

    PubMed

    Johnson, Reed F; Hammoud, Dima A; Perry, Donna L; Solomon, Jeffrey; Moore, Ian N; Lackemeyer, Matthew G; Bohannon, Jordan K; Sayre, Philip J; Minai, Mahnaz; Papaneri, Amy B; Hagen, Katie R; Janosko, Krisztina B; Jett, Catherine; Cooper, Kurt; Blaney, Joseph E; Jahrling, Peter B

    2016-08-01

    We previously demonstrated that small-particle (0.5-3.0 µm) aerosol infection of rhesus monkeys (Macaca mulatta) with cowpox virus (CPXV)-Brighton Red (BR) results in fulminant respiratory tract disease characterized by severe lung parenchymal pathology but only limited systemic virus dissemination and limited classic epidermal pox-like lesion development (Johnson et al., 2015). Based on these results, and to further develop CPXV as an improved model of human smallpox, we evaluated a novel large-particle aerosol (7.0-9.0 µm) exposure of rhesus monkeys to CPXV-BR and monitored for respiratory tract disease by serial computed tomography (CT). As expected, the upper respiratory tract and large airways were the major sites of virus-induced pathology following large-particle aerosol exposure. Large-particle aerosol CPXV exposure of rhesus macaques resulted in severe upper airway and large airway pathology with limited systemic dissemination.

  16. A naturally occurring cowpox virus with an ectromelia virus A-type inclusion protein gene displays atypical A-type inclusions.

    PubMed

    Okeke, Malachy Ifeanyi; Hansen, Hilde; Traavik, Terje

    2012-01-01

    Human orthopoxvirus (OPV) infections in Europe are usually caused by cowpox virus (CPXV). The genetic heterogeneity of CPXVs may in part be due to recombination with other OPV species. We describe the characterization of an atypical CPXV (CPXV-No-H2) isolated from a human patient in Norway. CPXV-No-H2 was characterized on the basis of A-type inclusion (ATI) phenotype as well as the DNA region containing the p4c and atip open reading frames. CPXV-No-H2 produced atypical V(+/) ATI, in which virions are on the surface of ATI but not within the ATI matrix. Phylogenetic analysis showed that the atip gene of CPXV-No-H2 clustered closely with that of ectromelia virus (ECTV) with a bootstrap support of 100% whereas its p4c gene is diverged compared to homologues in other OPV species. By recombination analysis we identified a putative crossover event at nucleotide 147, downstream the start of the atip gene. Our results suggest that CPXV-No-H2 originated from a recombination between CPXV and ECTV. Our findings are relevant to the evolution of OPVs.

  17. Activity of the anti-orthopoxvirus compound ST-246 against vaccinia, cowpox and camelpox viruses in cell monolayers and organotypic raft cultures.

    PubMed

    Duraffour, Sophie; Snoeck, Robert; de Vos, Rita; van Den Oord, Joost J; Crance, Jean-Marc; Garin, Daniel; Hruby, Dennis E; Jordan, Robert; De Clercq, Erik; Andrei, Graciela

    2007-01-01

    The potential use of variola virus as a biological weapon has renewed efforts in the development of antiviral agents against orthopoxviruses. ST-246 [4-trifluoromethyl-N-(3,3a,4,4a,5,5a,6,6a-octahydro-1,3-di oxo-4,6-ethenocycloprop [f]isoindol-2(1 H)-yl)-benzamide] is an anti-orthopoxvirus compound active against several orthopoxviruses including vaccinia virus (VV), cowpox virus (CPV), camelpox virus (CMLV), ectromelia virus (ECTV) and variola virus in cell culture. The compound has been shown to inhibit the release of extracellular virus by targeting the F13L W protein and to protect mice from W, CPV and ECTV orthopoxvirus-induced disease. The antiviral activity of ST-246 was assessed against extracellular and intracellular W, CPV and CMLV production in human embryonic lung (HEL) fibroblasts and primary human keratinocyte (PHK) cell monolayers, as well as in three-dimensional raft cultures. ST-246 inhibited preferentially the production of extracellular virus compared with intracellular virus production in HEL and PHK cells (for W) and in PHK cells (for CMLV). In organotypic epithelial raft cultures, ST-246 at 20 microg/ml inhibited extracellular W and CMLV production by 6 logs, whereas intracellular virus yield was reduced by 2 logs. In the case of CPV, both extracellular and intracellular virus production were completely inhibited by ST-246 at 20 microg/ml. Histological sections of the infected rafts, treated with increasing amounts of drug, confirmed the antiviral activity of ST-246: the epithelium was protected and there was no evidence of viral infection. Electron microscopic examination confirmed the absence of intracellular enveloped virus forms in W-, CPV- and CMLV-infected cells treated with 10 microg/ml of ST-246. These data indicate that ST-246 is a potent anti-orthopoxvirus compound; the mode of inhibition is dependent on the virus and cell type.

  18. Vaccinia virus and Cowpox virus are not susceptible to the interferon-induced antiviral protein MxA.

    PubMed

    Lorenzo, María M; Sanchez-Puig, Juana M; Blasco, Rafael

    2017-01-01

    MxA protein is expressed in response to type I and type III Interferon and constitute an important antiviral factor with broad antiviral activity to diverse RNA viruses. In addition, some studies expand the range of MxA antiviral activity to include particular DNA viruses like Monkeypox virus (MPXV) and African Swine Fever virus (ASFV). However, a broad profile of activity of MxA to large DNA viruses has not been established to date. Here, we investigated if some well characterized DNA viruses belonging to the Poxviridae family are sensitive to human MxA. A cell line inducibly expressing MxA to inhibitory levels showed no anti-Vaccinia virus (VACV) virus activity, indicating either lack of susceptibility of the virus, or the existence of viral factors capable of counteracting MxA inhibition. To determine if VACV resistance to MxA was due to a virus-encoded anti-MxA activity, we performed coinfections of VACV and the MxA-sensitive Vesicular Stomatitis virus (VSV), and show that VACV does not protect VSV from MxA inhibition in trans. Those results were extended to several VACV strains and two CPXV strains, thus confirming that those Orthopoxviruses do not block MxA action. Overall, these results point to a lack of susceptibility of the Poxviridae to MxA antiviral activity.

  19. Effects of Nasal or Pulmonary Delivered Treatments with an Adenovirus Vectored Interferon (mDEF201) on Respiratory and Systemic Infections in Mice Caused by Cowpox and Vaccinia Viruses

    PubMed Central

    Smee, Donald F.; Wong, Min-Hui; Hurst, Brett L.; Ennis, Jane; Turner, Jeffrey D.

    2013-01-01

    An adenovirus 5 vector encoding for mouse interferon alpha, subtype 5 (mDEF201) was evaluated for efficacy against lethal cowpox (Brighton strain) and vaccinia (WR strain) virus respiratory and systemic infections in mice. Two routes of mDEF201 administration were used, nasal sinus (5-µl) and pulmonary (50-µl), to compare differences in efficacy, since the preferred treatment of humans would be in a relatively small volume delivered intranasally. Lower respiratory infections (LRI), upper respiratory infections (URI), and systemic infections were induced by 50-µl intranasal, 10-µl intranasal, and 100-µl intraperitoneal virus challenges, respectively. mDEF201 treatments were given prophylactically either 24 h (short term) or 56d (long-term) prior to virus challenge. Single nasal sinus treatments of 106 and 107 PFU/mouse of mDEF201 protected all mice from vaccinia-induced LRI mortality (comparable to published studies with pulmonary delivered mDEF201). Systemic vaccinia infections responded significantly better to nasal sinus delivered mDEF201 than to pulmonary treatments. Cowpox LRI infections responded to 107 mDEF201 treatments, but a 106 dose was only weakly protective. Cowpox URI infections were equally treatable by nasal sinus and pulmonary delivered mDEF201 at 107 PFU/mouse. Dose-responsive prophylaxis with mDEF201, given one time only 56 d prior to initiating a vaccinia virus LRI infection, was 100% protective from 105 to 107 PFU/mouse. Improvements in lung hemorrhage score and lung weight were evident, as were decreases in liver, lung, and spleen virus titers. Thus, mDEF201 was able to treat different vaccinia and cowpox virus infections using both nasal sinus and pulmonary treatment regimens, supporting its development for humans. PMID:23874722

  20. Poxvirus antigen staining of immune cells as a biomarker to predict disease outcome in monkeypox and cowpox virus infection in non-human primates.

    PubMed

    Song, Haifeng; Janosko, Krisztina; Johnson, Reed F; Qin, Jing; Josleyn, Nicole; Jett, Catherine; Byrum, Russell; St Claire, Marisa; Dyall, Julie; Blaney, Joseph E; Jennings, Gerald; Jahrling, Peter B

    2013-01-01

    Infection of non-human primates (NHPs) such as rhesus and cynomolgus macaques with monkeypox virus (MPXV) or cowpox virus (CPXV) serve as models to study poxvirus pathogenesis and to evaluate vaccines and anti-orthopox therapeutics. Intravenous inoculation of macaques with high dose of MPXV (>1-2×10(7) PFU) or CPXV (>10(2) PFU) results in 80% to 100% mortality and 66 to 100% mortality respectively. Here we report that NHPs with positive detection of poxvirus antigens in immune cells by flow cytometric staining, especially in monocytes and granulocytes succumbed to virus infection and that early positive pox staining is a strong predictor for lethality. Samples from four independent studies were analyzed. Eighteen NHPs from three different experiments were inoculated with two different MPXV strains at lethal doses. Ten NHPs displayed positive pox-staining and all 10 NHPs reached moribund endpoint. In contrast, none of the three NHPs that survived anticipated lethal virus dose showed apparent virus staining in the monocytes and granulocytes. In addition, three NHPs that were challenged with a lethal dose of MPXV and received cidofovir treatment were pox-antigen negative and all three NHPs survived. Furthermore, data from a CPXV study also demonstrated that 6/9 NHPs were pox-antigen staining positive and all 6 NHPs reached euthanasia endpoint, while the three survivors were pox-antigen staining negative. Thus, we conclude that monitoring pox-antigen staining in immune cells can be used as a biomarker to predict the prognosis of virus infection. Future studies should focus on the mechanisms and implications of the pox-infection of immune cells and the correlation between pox-antigen detection in immune cells and disease progression in human poxviral infection.

  1. Poxvirus Antigen Staining of Immune Cells as a Biomarker to Predict Disease Outcome in Monkeypox and Cowpox Virus Infection in Non-Human Primates

    PubMed Central

    Song, Haifeng; Janosko, Krisztina; Johnson, Reed F.; Qin, Jing; Josleyn, Nicole; Jett, Catherine; Byrum, Russell; Claire, Marisa St.; Dyall, Julie; Blaney, Joseph E.; Jennings, Gerald; Jahrling, Peter B.

    2013-01-01

    Infection of non-human primates (NHPs) such as rhesus and cynomolgus macaques with monkeypox virus (MPXV) or cowpox virus (CPXV) serve as models to study poxvirus pathogenesis and to evaluate vaccines and anti-orthopox therapeutics. Intravenous inoculation of macaques with high dose of MPXV (>1–2×107 PFU) or CPXV (>102 PFU) results in 80% to 100% mortality and 66 to 100% mortality respectively. Here we report that NHPs with positive detection of poxvirus antigens in immune cells by flow cytometric staining, especially in monocytes and granulocytes succumbed to virus infection and that early positive pox staining is a strong predictor for lethality. Samples from four independent studies were analyzed. Eighteen NHPs from three different experiments were inoculated with two different MPXV strains at lethal doses. Ten NHPs displayed positive pox-staining and all 10 NHPs reached moribund endpoint. In contrast, none of the three NHPs that survived anticipated lethal virus dose showed apparent virus staining in the monocytes and granulocytes. In addition, three NHPs that were challenged with a lethal dose of MPXV and received cidofovir treatment were pox-antigen negative and all three NHPs survived. Furthermore, data from a CPXV study also demonstrated that 6/9 NHPs were pox-antigen staining positive and all 6 NHPs reached euthanasia endpoint, while the three survivors were pox-antigen staining negative. Thus, we conclude that monitoring pox-antigen staining in immune cells can be used as a biomarker to predict the prognosis of virus infection. Future studies should focus on the mechanisms and implications of the pox-infection of immune cells and the correlation between pox-antigen detection in immune cells and disease progression in human poxviral infection. PMID:23577120

  2. Three cases of cowpox infection of domestic cats.

    PubMed

    Martland, M F; Poulton, G J; Done, R A

    1985-09-07

    Since October 1982 three cases of cowpox infection of the cat have been presented at a veterinary practice. The disease began as a focal dermatitis on the face or paws which spread after several days to the rest of the body. Two weeks after appearing the pocks scabbed over and fell off leaving hairless skin. There were few systemic signs and therapy did not appear to influence the course of the disease. Diagnosis was confirmed by the demonstration of pox virions or inclusion bodies in skin biopsy or scab material using electron microscopy and by isolation of cowpox virus in chick embryos. High antibody titres to cowpox were observed in the sera of two cats.

  3. The genomic sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins.

    PubMed

    Shchelkunov, S N; Safronov, P F; Totmenin, A V; Petrov, N A; Ryazankina, O I; Gutorov, V V; Kotwal, G J

    1998-04-10

    Sequencing and computer analysis of the left (52,283 bp) and right (49,649 bp) variable DNA regions of the cowpox virus strain GRI-90 (CPV-GRI) has revealed 51 and 37 potential open reading frames (ORFs), respectively. Comparison of the structure-function organization of these DNA regions of CPV-GRI with those previously published for corresponding regions of genomes of vaccinia virus, strains Copenhagen (VAC-COP) and Western Reserve (VAC-WR); and variola major virus, strains India-1967 (VAR-IND), Bangladesh-1975 (VAR-BSH); and alastrim variola minor virus, strain Garcia-1966 (VAR-GAR), was performed. Within the left terminal region under study, an extended DNA sequence (14,171 bp), unique to CPV, has been found. Within the right region of the CPV-GRI genome two segments, which are unique to CPV DNA (1579 and 3585 bp) have been found. Numerous differences have been revealed in the genetic structure of CPV-GRI DNA regions, homologous to fragments of the genomes of the above-mentioned orthopoxvirus strains. A cluster of ORFs with structural similarity ot immunomodulatory and host range function of other poxviruses have also been detected. A comparison of the sequences of ORF B, crmA, crmB, crmC, IMP, and CHO hr genes of CPV Brighton strain (CPV-BRI) with the corresponding genes in strain GRI-90 have revealed an identity at the amino acid level ranging from 82 to 96% between the two strains. The findings are significant in light of the recent demonstration of CPV as an important poxvirus model system to probe the precise in vivo role(s) of the unique virally encoded immunomodulatory proteins. Also, the presence of a complete and intact repertoire of immunomodulatory proteins, ring canal proteins family, and host range genes indicates that CPV may have been the most ancient of all studied orthopoxviruses.

  4. A longitudinal study of an endemic disease in its wildlife reservoir: cowpox and wild rodents.

    PubMed Central

    Hazel, S. M.; Bennett, M.; Chantrey, J.; Bown, K.; Cavanagh, R.; Jones, T. R.; Baxby, D.; Begon, M.

    2000-01-01

    Cowpox is an orthopoxvirus infection endemic in European wild rodents, but with a wide host range including human beings. In this longitudinal study we examined cowpox in two wild rodent species, bank voles Clethrionomys glareolus and wood mice Apodemus sylvaticus, to investigate the dynamics of a virus in its wild reservoir host. Trapping was carried out at 4-weekly intervals over 3 years and each animal caught was uniquely identified, blood sampled and tested for antibodies to cowpox. Antibody prevalence was higher in bank voles than in wood mice and seroconversion varied seasonally, with peaks in autumn. Infection was most common in males of both species but no clear association with age was demonstrated. This study provides a model for studying other zoonotic infections that derive from wild mammals since other approaches, such as one-off samples, will fail to detect the variation in infection and thus, risk to human health, demonstrated here. PMID:10982080

  5. Human cowpox 1969-93: a review based on 54 cases.

    PubMed

    Baxby, D; Bennett, M; Getty, B

    1994-11-01

    This survey of the clinical and epidemiological features of human cowpox, a rare but relatively severe zoonotic infection, is based on 54 cases, many unpublished, which we have studied since 1969. Patients present with painful, haemorrhagic pustules or black eschars, usually on the hand or face, accompanied by oedema, erythema, lymphadenopathy, and systemic involvement. Severe, occasionally fatal, cases occur in eczematous and immunosuppressed individuals, although cowpox has not yet been reported in anyone infected with the human immunodeficiency virus. Variations in the clinical features are described, and the differential clinical diagnosis of cowpox, parapox, herpes virus, and anthrax infections is discussed. The role of the laboratory in diagnosis is described, and the value of electron microscopy in providing rapid confirmation is emphasized. Care in taking a detailed history will assist in the initial clinical diagnosis, and a history of contact with domestic cats, particularly during July-October, is important. The possible influence of smallpox vaccination on the incidence and severity is discussed and discounted.

  6. Emergence of cowpox: study of the virulence of clinical strains and evaluation of antivirals.

    PubMed

    Duraffour, Sophie; Mertens, Barbara; Meyer, Hermann; van den Oord, Joost J; Mitera, Tania; Matthys, Patrick; Snoeck, Robert; Andrei, Graciela

    2013-01-01

    The last years, cowpox infections are being increasingly reported through Eurasia. Cowpox viruses (CPXVs) have been reported to have different genotypes and may be subdivided in at least five genetically distinct monophyletic clusters. However, little is known about their in vitro and in vivo features. In this report, five genetically diverse CPXVs, including one reference strain (CPXV strain Brighton) and four clinical isolates from human and animal cases, were compared with regard to growth in cells, pathogenicity in mice and inhibition by antivirals. While all CPXVs replicated similarly in vitro and showed comparable antiviral susceptibility, marked discrepancies were seen in vivo, including differences in virulence with recorded mortality rates of 0%, 20% and 100%. The four CPXV clinical isolates appeared less pathogenic than two reference strains, CPXV Brighton and vaccinia virus Western-Reserve. Disease severity seemed to correlate with high viral DNA loads in several organs, virus titers in lung tissues and levels of IL-6 cytokine in the sera. Our study highlighted that the species CPXV consists of viruses that not only differ considerably in their genotypes but also in their in vivo phenotypes, indicating that CPXVs should not be longer classified as a single species. Lung virus titers and IL-6 cytokine level in mice may be used as biomarkers for predicting disease severity. We further demonstrated the potential benefit of cidofovir, CMX001 and ST-246 use as antiviral therapy.

  7. Emergence of Cowpox: Study of the Virulence of Clinical Strains and Evaluation of Antivirals

    PubMed Central

    Duraffour, Sophie; Mertens, Barbara; Meyer, Hermann; van den Oord, Joost J.; Mitera, Tania; Matthys, Patrick; Snoeck, Robert; Andrei, Graciela

    2013-01-01

    The last years, cowpox infections are being increasingly reported through Eurasia. Cowpox viruses (CPXVs) have been reported to have different genotypes and may be subdivided in at least five genetically distinct monophyletic clusters. However, little is known about their in vitro and in vivo features. In this report, five genetically diverse CPXVs, including one reference strain (CPXV strain Brighton) and four clinical isolates from human and animal cases, were compared with regard to growth in cells, pathogenicity in mice and inhibition by antivirals. While all CPXVs replicated similarly in vitro and showed comparable antiviral susceptibility, marked discrepancies were seen in vivo, including differences in virulence with recorded mortality rates of 0%, 20% and 100%. The four CPXV clinical isolates appeared less pathogenic than two reference strains, CPXV Brighton and vaccinia virus Western-Reserve. Disease severity seemed to correlate with high viral DNA loads in several organs, virus titers in lung tissues and levels of IL-6 cytokine in the sera. Our study highlighted that the species CPXV consists of viruses that not only differ considerably in their genotypes but also in their in vivo phenotypes, indicating that CPXVs should not be longer classified as a single species. Lung virus titers and IL-6 cytokine level in mice may be used as biomarkers for predicting disease severity. We further demonstrated the potential benefit of cidofovir, CMX001 and ST-246 use as antiviral therapy. PMID:23457480

  8. Structural Mechanism of ER Retrieval of MHC Class I by Cowpox

    PubMed Central

    McCoy, William H.; Wang, Xiaoli; Yokoyama, Wayne M.; Hansen, Ted H.; Fremont, Daved H.

    2012-01-01

    One of the hallmarks of viral immune evasion is the capacity to disrupt major histocompatibility complex class I (MHCI) antigen presentation to evade T-cell detection. Cowpox virus encoded protein CPXV203 blocks MHCI surface expression by exploiting the KDEL-receptor recycling pathway, and here we show that CPXV203 directly binds a wide array of fully assembled MHCI proteins, both classical and non-classical. Further, the stability of CPXV203/MHCI complexes is highly pH dependent, with dramatically increased affinities at the lower pH of the Golgi relative to the endoplasmic reticulum (ER). Crystallographic studies reveal that CPXV203 adopts a beta-sandwich fold similar to poxvirus chemokine binding proteins, and binds the same highly conserved MHCI determinants located under the peptide-binding platform that tapasin, CD8, and natural killer (NK)-receptors engage. Mutagenesis of the CPXV203/MHCI interface identified the importance of two CPXV203 His residues that confer low pH stabilization of the complex and are critical to ER retrieval of MHCI. These studies clarify mechanistically how CPXV203 coordinates with other cowpox proteins to thwart antigen presentation. PMID:23209377

  9. Cowpox infection causing a generalized eruption in a patient with atopic dermatitis.

    PubMed

    Blackford, S; Roberts, D L; Thomas, P D

    1993-11-01

    We report a patient with a history of atopic dermatitis who developed a generalized eruption due to cowpox infection. The infection was probably acquired from the patient's cat. This is the first report from Britain of cowpox causing Kaposi's varicelliform eruption in a patient with atopic dermatitis.

  10. Intelligent design: combination therapy with oncolytic viruses.

    PubMed

    Ottolino-Perry, Kathryn; Diallo, Jean-Simon; Lichty, Brian D; Bell, John C; McCart, J Andrea

    2010-02-01

    Metastatic cancer remains an incurable disease in the majority of cases and thus novel treatment strategies such as oncolytic virotherapy are rapidly advancing toward clinical use. In order to be successful, it is likely that some type of combination therapy will be necessary to have a meaningful impact on this disease. Although it may be tempting to simply combine an oncolytic virus with the existing standard radiation or chemotherapeutics, the long-term goal of such treatments must be to have a rational, potentially synergistic combination strategy that can be safely and easily used in the clinical setting. The combination of oncolytic virotherapy with existing radiotherapy and chemotherapy modalities is reviewed along with novel biologic therapies including immunotherapies, in order to help investigators make intelligent decisions during the clinical development of these products.

  11. Pre-symptomatic Prediction of Illness in Mice Inoculated with Cowpox

    SciTech Connect

    Kercher, J R; Colston, Jr., B W; Langlois, R G; Lyons, C R; Milanovich, F P

    2007-04-19

    We describe here research directed towards early (presyndromic) diagnosis of infection. By using a mouse model and a multi-component blood protein diagnostic tool we detected cowpox infection several days in advance of overt symptoms with high accuracy. We provide details of the experimental design and measurement technique and elaborate on the long-range implication of these results.

  12. Small particle aerosol inoculation of cowpox Brighton Red in rhesus monkeys results in a severe respiratory disease

    SciTech Connect

    Johnson, Reed F.; Hammoud, Dima A.; Lackemeyer, Matthew G.; Yellayi, Srikanth; Solomon, Jeffrey; Bohannon, Jordan K.; Janosko, Krisztina B.; Jett, Catherine; Cooper, Kurt; Blaney, Joseph E.; Jahrling, Peter B.

    2015-07-15

    Cowpox virus (CPXV) inoculation of nonhuman primates (NHPs) has been suggested as an alternate model for smallpox (Kramski et al., 2010, PLoS One, 5, e10412). Previously, we have demonstrated that intrabronchial inoculation of CPXV-Brighton Red (CPXV-BR) into cynomolgus monkeys resulted in a disease that shared many similarities to smallpox; however, severe respiratory tract disease was observed (Smith et al., 2011, J. Gen. Virol.). Here we describe the course of disease after small particle aerosol exposure of rhesus monkeys using computed tomography (CT) to monitor respiratory disease progression. Subjects developed a severe respiratory disease that was uniformly lethal at 5.7 log{sub 10} PFU of CPXV-BR. CT indicated changes in lung architecture that correlated with changes in peripheral blood monocytes and peripheral oxygen saturation. While the small particle aerosol inoculation route does not accurately mimic human smallpox, the data suggest that CT can be used as a tool to monitor real-time disease progression for evaluation of animal models for human diseases. - Highlights: • Small particle aerosol exposure of rhesus results in a severe respiratory disease. • CT findings correlated with peripheral oxygen saturation and monocyte increases. • Virus dissemination was limited and mainly confined to the respiratory tract. • CT provides insight into pathogenesis to aid development of animal models of disease.

  13. Small particle aerosol inoculation of cowpox Brighton Red in rhesus monkeys results in a severe respiratory disease.

    PubMed

    Johnson, Reed F; Hammoud, Dima A; Lackemeyer, Matthew G; Yellayi, Srikanth; Solomon, Jeffrey; Bohannon, Jordan K; Janosko, Krisztina B; Jett, Catherine; Cooper, Kurt; Blaney, Joseph E; Jahrling, Peter B

    2015-07-01

    Cowpox virus (CPXV) inoculation of nonhuman primates (NHPs) has been suggested as an alternate model for smallpox (Kramski et al., 2010, PLoS One, 5, e10412). Previously, we have demonstrated that intrabronchial inoculation of CPXV-Brighton Red (CPXV-BR) into cynomolgus monkeys resulted in a disease that shared many similarities to smallpox; however, severe respiratory tract disease was observed (Smith et al., 2011, J. Gen. Virol.). Here we describe the course of disease after small particle aerosol exposure of rhesus monkeys using computed tomography (CT) to monitor respiratory disease progression. Subjects developed a severe respiratory disease that was uniformly lethal at 5.7 log10 PFU of CPXV-BR. CT indicated changes in lung architecture that correlated with changes in peripheral blood monocytes and peripheral oxygen saturation. While the small particle aerosol inoculation route does not accurately mimic human smallpox, the data suggest that CT can be used as a tool to monitor real-time disease progression for evaluation of animal models for human diseases. Published by Elsevier Inc.

  14. Small particle aerosol inoculation of cowpox Brighton Red in rhesus monkeys results in a severe respiratory disease

    PubMed Central

    Hammoud, Dima A.; Lackemeyer, Matthew G.; Yellayi, Srikanth; Solomon, Jeffrey; Bohannon, Jordan K.; Janosko, Krisztina B.; Jett, Catherine; Cooper, Kurt; Blaney, Joseph E.; Jahrling, Peter B.

    2015-01-01

    Cowpox virus (CPXV) inoculation of nonhuman primates (NHPs) has been suggested as an alternate model for smallpox (Kramski et al., 2010, PLoS One, 5, e10412). Previously, we have demonstrated that intrabronchial inoculation of CPXV-Brighton Red (CPXV-BR) into cynomolgus monkeys resulted in a disease that shared many similarities to smallpox; however, severe respiratory tract disease was observed (Smith et al., 2011, J. Gen. Virol). Here we describe the course of disease after small particle aerosol exposure of rhesus monkeys using computed tomography (CT) to monitor respiratory disease progression. Subjects developed a severe respiratory disease that was uniformly lethal at 5.7 log10 PFU of CPXV-BR. CT indicated changes in lung architecture that correlated with changes in peripheral blood monocytes and peripheral oxygen saturation. While the small particle aerosol inoculation route does not accurately mimic human smallpox, the data suggest that CT can be used as a tool to monitor real-time disease progression for evaluation of animal models for human diseases. PMID:25776759

  15. Variola Virus-Specific Diagnostic Assays: Characterization, Sensitivity, and Specificity

    PubMed Central

    Kondas, Ashley V.; Olson, Victoria A.; Li, Yu; Abel, Jason; Laker, Miriam; Rose, Laura; Wilkins, Kimberly; Turner, Jonathan; Kline, Richard

    2015-01-01

    A public health response relies upon rapid and reliable confirmation of disease by diagnostic assays. Here, we detail the design and validation of two variola virus-specific real-time PCR assays, since previous assays cross-reacted with newly identified cowpox viruses. The assay specificity must continually be reassessed as other closely related viruses are identified. PMID:25673790

  16. Rodents and risk in the Mekong Delta of Vietnam: seroprevalence of selected zoonotic viruses in rodents and humans.

    PubMed

    Van Cuong, Nguyen; Carrique-Mas, Juan; Vo Be, Hien; An, Nguyen Ngoc; Tue, Ngo Tri; Anh, Nguyet Lam; Anh, Pham Hong; Phuc, Nguyen The; Baker, Stephen; Voutilainen, Liina; Jääskeläinen, Anne; Huhtamo, Eili; Utriainen, Mira; Sironen, Tarja; Vaheri, Antti; Henttonen, Heikki; Vapalahti, Olli; Chaval, Yannick; Morand, Serge; Bryant, Juliet E

    2015-01-01

    In the Mekong Delta in southern Vietnam, rats are commonly traded in wet markets and sold live for food consumption. We investigated seroprevalence to selected groups of rodent-borne viruses among human populations with high levels of animal exposure and among co-located rodent populations. The indirect fluorescence antibody test (IFAT) was used to determine seropositivity to representative reference strains of hantaviruses (Dobrava virus [DOBV], Seoul virus [SEOV]), cowpox virus, arenaviruses (lymphocytic choriomeningitis virus [LCMV]), flaviviruses (tick-borne encephalitis virus [TBEV]), and rodent parechoviruses (Ljungan virus), using sera from 245 humans living in Dong Thap Province and 275 rodents representing the five common rodent species sold in wet markets and present in peridomestic and farm settings. Combined seropositivity to DOBV and SEOV among the rodents and humans was 6.9% (19/275) and 3.7% (9/245), respectively; 1.1% (3/275) and 4.5% (11/245) to cowpox virus; 5.4% (15/275) and 47.3% (116/245) for TBEV; and exposure to Ljungan virus was 18.8% (46/245) in humans, but 0% in rodents. Very little seroreactivity was observed to LCMV in either rodents (1/275, 0.4%) or humans (2/245, 0.8%). Molecular screening of rodent liver tissues using consensus primers for flaviviruses did not yield any amplicons, whereas molecular screening of rodent lung tissues for hantavirus yielded one hantavirus sequence (SEOV). In summary, these results indicate low to moderate levels of endemic hantavirus circulation, possible circulation of a flavivirus in rodent reservoirs, and the first available data on human exposures to parechoviruses in Vietnam. Although the current evidence suggests only limited exposure of humans to known rodent-borne diseases, further research is warranted to assess public health implications of the rodent trade.

  17. Synergistic drug combination effectively blocks Ebola virus infection.

    PubMed

    Sun, Wei; He, Shihua; Martínez-Romero, Carles; Kouznetsova, Jennifer; Tawa, Gregory; Xu, Miao; Shinn, Paul; Fisher, Ethan G; Long, Yan; Motabar, Omid; Yang, Shu; Sanderson, Philip E; Williamson, Peter R; García-Sastre, Adolfo; Qiu, Xiangguo; Zheng, Wei

    2017-01-01

    Although a group of FDA-approved drugs were previously identified with activity against Ebola virus (EBOV), most of them are not clinically useful because their human blood concentrations are not high enough to inhibit EBOV infection. We screened 795 unique three-drug combinations in an EBOV entry assay. Two sets of three-drug combinations, toremifene-mefloquine-posaconazole and toremifene-clarithromycin-posaconazole, were identified that effectively blocked EBOV entry and were further validated for inhibition of live EBOV infection. The individual drug concentrations in the combinations were reduced to clinically relevant levels. We identified mechanisms of action of these drugs: functional inhibitions of Niemann-Pick C1, acid sphingomyelinase, and lysosomal calcium release. Our findings identify the drug combinations with potential to treat EBOV infection.

  18. Smallpox virus resequencing GeneChips can also rapidly ascertain species status for some zoonotic non-variola orthopoxviruses.

    PubMed

    Sulaiman, Irshad M; Sammons, Scott A; Wohlhueter, Robert M

    2008-04-01

    We recently developed a set of seven resequencing GeneChips for the rapid sequencing of Variola virus strains in the WHO Repository of the Centers for Disease Control and Prevention. In this study, we attempted to hybridize these GeneChips with some known non-Variola orthopoxvirus isolates, including monkeypox, cowpox, and vaccinia viruses, for rapid detection.

  19. Deletion of Major Nonessential Genomic Regions in the Vaccinia Virus Lister Strain Enhances Attenuation without Altering Vaccine Efficacy in Mice▿

    PubMed Central

    Dimier, Julie; Ferrier-Rembert, Audrey; Pradeau-Aubreton, Karine; Hebben, Matthias; Spehner, Danièle; Favier, Anne-Laure; Gratier, Danielle; Garin, Daniel; Crance, Jean-Marc; Drillien, Robert

    2011-01-01

    The vaccinia virus (VACV) Lister strain was one of the vaccine strains that enabled smallpox eradication. Although the strain is most often harmless, there have been numerous incidents of mild to life-threatening accidents with this strain and others. In an attempt to further attenuate the Lister strain, we investigated the role of 5 genomic regions known to be deleted in the modified VACV Ankara (MVA) genome in virulence in immunodeficient mice, immunogenicity in immunocompetent mice, and vaccine efficacy in a cowpox virus challenge model. Lister mutants were constructed so as to delete each of the 5 regions or various combinations of these regions. All of the mutants replicated efficiently in tissue culture except region I mutants, which multiplied more poorly in human cells than the parental strain. Mutants with single deletions were not attenuated or only moderately so in athymic nude mice. Mutants with multiple deletions were more highly attenuated than those with single deletions. Deleting regions II, III, and V together resulted in total attenuation for nude mice and partial attenuation for SCID mice. In immunocompetent mice, the Lister deletion mutants induced VACV specific humoral responses equivalent to those of the parental strain but in some cases lower cell-mediated immune responses. All of the highly attenuated mutants protected mice from a severe cowpox virus challenge at low vaccine doses. The data suggest that several of the Lister mutants combining multiple deletions could be used in smallpox vaccination or as live virus vectors at doses equivalent to those used for the traditional vaccine while displaying increased safety. PMID:21367889

  20. Variola virus-specific diagnostic assays: characterization, sensitivity, and specificity.

    PubMed

    Kondas, Ashley V; Olson, Victoria A; Li, Yu; Abel, Jason; Laker, Miriam; Rose, Laura; Wilkins, Kimberly; Turner, Jonathan; Kline, Richard; Damon, Inger K

    2015-04-01

    A public health response relies upon rapid and reliable confirmation of disease by diagnostic assays. Here, we detail the design and validation of two variola virus-specific real-time PCR assays, since previous assays cross-reacted with newly identified cowpox viruses. The assay specificity must continually be reassessed as other closely related viruses are identified. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Positive Selection Drives Preferred Segment Combinations during Influenza Virus Reassortment

    PubMed Central

    Zeldovich, Konstantin B.; Liu, Ping; Renzette, Nicholas; Foll, Matthieu; Pham, Serena T.; Venev, Sergey V.; Gallagher, Glen R.; Bolon, Daniel N.; Kurt-Jones, Evelyn A.; Jensen, Jeffrey D.; Caffrey, Daniel R.; Schiffer, Celia A.; Kowalik, Timothy F.; Wang, Jennifer P.; Finberg, Robert W.

    2015-01-01

    Influenza A virus (IAV) has a segmented genome that allows for the exchange of genome segments between different strains. This reassortment accelerates evolution by breaking linkage, helping IAV cross species barriers to potentially create highly virulent strains. Challenges associated with monitoring the process of reassortment in molecular detail have limited our understanding of its evolutionary implications. We applied a novel deep sequencing approach with quantitative analysis to assess the in vitro temporal evolution of genomic reassortment in IAV. The combination of H1N1 and H3N2 strains reproducibly generated a new H1N2 strain with the hemagglutinin and nucleoprotein segments originating from H1N1 and the remaining six segments from H3N2. By deep sequencing the entire viral genome, we monitored the evolution of reassortment, quantifying the relative abundance of all IAV genome segments from the two parent strains over time and measuring the selection coefficients of the reassorting segments. Additionally, we observed several mutations coemerging with reassortment that were not found during passaging of pure parental IAV strains. Our results demonstrate how reassortment of the segmented genome can accelerate viral evolution in IAV, potentially enabled by the emergence of a small number of individual mutations. PMID:25713211

  2. STUDIES ON A LUNG TISSUE COMPONENT WHICH COMBINES WITH PNEUMONIA VIRUS OF MICE (PVM)

    PubMed Central

    Volkert, Mogens; Horsfall, Frank L.

    1947-01-01

    Evidence has been obtained which indicates that the lung tissues of mammalian species susceptible to infection with PVM contain a specific component which combines with the virus. The concentration of this tissue component appears to be directly proportional to the suceptibility of the species; in its absence infection with PVM cannot be established. The available evidence suggests that the presence of the virus-combining component in lung tissue may play a decisive ro1e in the initiation of infection with this pneumotropic virus. PMID:19871686

  3. Evaluation of the Efficacy of Modified Vaccinia Ankara (MVA)/IMVAMUNE (registered trademark) Against Aerosolized Rabbitpox Virus in a Rabbit Model

    DTIC Science & Technology

    2009-01-01

    rabbitpox virus in a rabbit model icole L. Garzaa, Josh M. Hatkina, Virginia Livingstona, Donald K. Nicholsb, aul J. Chaplind, Ariane Volkmannd, Diana...eywords: abbitpox virus a b s t r a c t Infection of rabbitswith aerosolized rabbitpox virus (RPXV) produces a disease similar tomonkeypox and smallpox...irus, amember of the genusOrthopoxvirus in the family Poxviridae. ther orthopoxviruses that can infect humans include monkeypox irus, cowpox virus , and

  4. Wheat Genotypes With Combined Resistance to Wheat Curl Mite, Wheat Streak Mosaic Virus, Wheat Mosaic Virus, and Triticum Mosaic Virus.

    PubMed

    Chuang, Wen-Po; Rojas, Lina Maria Aguirre; Khalaf, Luaay Kahtan; Zhang, Guorong; Fritz, Allan K; Whitfield, Anna E; Smith, C Michael

    2017-01-13

    The wheat curl mite, Aceria tosichella Keifer, (WCM) is a global pest of bread wheat that reduces yields significantly. In addition, WCM carries Wheat streak mosaic virus (WSMV, family Potyviridae, genus Tritimovirus), the most significant wheat virus in North America; High Plains wheat mosaic virus (HPWMoV, genus Emaravirus, formerly High plains virus); and Triticum mosaic virus (TriMV, family Potyviridae, genus Poacevirus). Viruses carried by WCM have reduced wheat yields throughout the U.S. Great Plains for >50 yr, with average yield losses of 2-3% and occasional yield losses of 7-10%. Acaricides are ineffective against WCM, and delayed planting of winter wheat is not feasible. Five wheat breeding lines containing Cmc4, a WCM resistance gene from Aegilops tauschii, and Wsm2, a WSMV resistance gene from wheat germplasm CO960293-2 were selected from the breeding process and assessed for phenotypic reaction to WCM feeding, population increase, and the degree of WSMV, HPWMoV, and TriMV infection. Experiments determined that all five lines are resistant to WCM biotype 1 feeding and population increase, and that two breeding lines contain resistance to WSMV, HPWMoV, and TriMV infection as well. These WCM-, WSMV-, HPWMoV-, and TriMV-resistant genotypes can be used improve management of wheat yield losses from WCM-virus complexes.

  5. Presentation of severe combined immunodeficiency with respiratory syncytial virus and pneumocystis co-infection.

    PubMed

    Domínguez-Pinilla, Nerea; Allende-Martínez, Luis; Corral Sánchez, María Dolores; Arocena, Jaime de Inocencio; González-Granado, Luis Ignacio

    2015-04-01

    Severe combined immunodeficiency can cause severe, life-threatening viral, bacterial and fungal infections at an early age. We report a case of a 4-month-old boy with co-infection by respiratory syncytial virus and Pneumocystis jiroveci infection that led to recognition of severe combined immunodeficiency.

  6. Combining reverse-transcription multiplex PCR and microfluidic electrophoresis to simultaneously detect seven mosquito-transmitted zoonotic encephalomyelitis viruses.

    PubMed

    Wang, Yu; Ostlund, Eileen N; Jun, Yang; Nie, Fu-Ping; Li, Ying-Guo; Johnson, Donna J; Lin, Rui; Li, Zheng-Guo

    2016-06-01

    Several mosquito-transmitted viruses are causative agents for zoonotic encephalomyelitis. Rapid identification of these viruses in mosquito populations is an effective method for surveying these diseases. To detect multiple mosquito-transmitted viral agents, including West Nile virus, Saint Louis encephalitis virus, Venezuelan equine encephalomyelitis virus, Western equine encephalomyelitis virus, Eastern equine encephalomyelitis virus, Highlands J virus and Japanese encephalitis virus, an assay using multiplex reverse-transcription PCR combined with microfluidic electrophoresis was developed and evaluated. Tailed nested primers were used in the assay to amplify specific viral genomic segments, and products with specific length were further analyzed by using a microfluidic electrophoresis chip. The assay exhibited good specificity and analytical sensitivity (10(2) copies/µL). This technology can be helpful in the quarantine and surveillance of exotic encephalomyelitis viruses which are transmitted by mosquitoes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Specific detection of chikungunya virus using a RT-PCR/nested PCR combination.

    PubMed

    Pfeffer, M; Linssen, B; Parke, M D; Kinney, R M

    2002-02-01

    Chikungunya (CHIK) virus is enzootic in many countries in Asia and throughout tropical Africa. In Asia the virus is transmitted from primates to humans almost exclusively by Aedes aegypti, while various aedine mosquito species are responsible for human infections in Africa. The clinical picture is characterized by a sudden onset of fever, rash and severe pain in the joints which may persist in a small proportion of cases. Although not listed as a haemorrhagic fever virus, illness caused by CHIK virus can be confused with diseases such as dengue or yellow fever, based on the similarity of the symptoms. Thus, laboratory confirmation of suspected cases is required to launch control measures during an epidemic. CHIK virus diagnosis based on virus isolation is very sensitive, yet requires at least a week in conjunction with virus identification using monovalent sera. We developed a reverse transcription-polymerase chain reaction (RT-PCR) assay which amplifies a 427-bp fragment of the E2 gene. Specificity was confirmed by testing representative strains of all known alphavirus species. To verify further the viral origin of the amplicon and to enhance sensitivity, a nested PCR was performed subsequently. This RT-PCR/nested PCR combination was able to amplify a CHIK virus-specific 172-bp amplicon from a sample containing as few as 10 genome equivalents. This assay was successfully applied to four CHIK virus isolates from Asia and Africa as well as to a vaccine strain developed by USAMRIID. Our method can be completed in less than two working days and may serve as a sensitive alternative in CHIK virus diagnosis.

  8. Characterization of an artificial swine-origin influenza virus with the same gene combination as H1N1/2009 virus: a genesis clue of pandemic strain.

    PubMed

    Zhao, Xueli; Sun, Yipeng; Pu, Juan; Fan, Lihong; Shi, Weimin; Hu, Yanxin; Yang, Jun; Xu, Qi; Wang, Jingjing; Hou, Dongjun; Ma, Guangpeng; Liu, Jinhua

    2011-01-01

    Pandemic H1N1/2009 influenza virus, derived from a reassortment of avian, human, and swine influenza viruses, possesses a unique gene segment combination that had not been detected previously in animal and human populations. Whether such a gene combination could result in the pathogenicity and transmission as H1N1/2009 virus remains unclear. In the present study, we used reverse genetics to construct a reassortant virus (rH1N1) with the same gene combination as H1N1/2009 virus (NA and M genes from a Eurasian avian-like H1N1 swine virus and another six genes from a North American triple-reassortant H1N2 swine virus). Characterization of rH1N1 in mice showed that this virus had higher replicability and pathogenicity than those of the seasonal human H1N1 and Eurasian avian-like swine H1N1 viruses, but was similar to the H1N1/2009 and triple-reassortant H1N2 viruses. Experiments performed on guinea pigs showed that rH1N1 was not transmissible, whereas pandemic H1N1/2009 displayed efficient transmissibility. To further determine which gene segment played a key role in transmissibility, we constructed a series of reassortants derived from rH1N1 and H1N1/2009 viruses. Direct contact transmission studies demonstrated that the HA and NS genes contributed to the transmission of H1N1/2009 virus. Second, the HA gene of H1N1/2009 virus, when combined with the H1N1/2009 NA gene, conferred efficient contact transmission among guinea pigs. The present results reveal that not only gene segment reassortment but also amino acid mutation were needed for the generation of the pandemic influenza virus.

  9. Characterization of an Artificial Swine-Origin Influenza Virus with the Same Gene Combination as H1N1/2009 Virus: A Genesis Clue of Pandemic Strain

    PubMed Central

    Pu, Juan; Fan, Lihong; Shi, Weimin; Hu, Yanxin; Yang, Jun; Xu, Qi; Wang, Jingjing; Hou, Dongjun; Ma, Guangpeng; Liu, Jinhua

    2011-01-01

    Pandemic H1N1/2009 influenza virus, derived from a reassortment of avian, human, and swine influenza viruses, possesses a unique gene segment combination that had not been detected previously in animal and human populations. Whether such a gene combination could result in the pathogenicity and transmission as H1N1/2009 virus remains unclear. In the present study, we used reverse genetics to construct a reassortant virus (rH1N1) with the same gene combination as H1N1/2009 virus (NA and M genes from a Eurasian avian-like H1N1 swine virus and another six genes from a North American triple-reassortant H1N2 swine virus). Characterization of rH1N1 in mice showed that this virus had higher replicability and pathogenicity than those of the seasonal human H1N1 and Eurasian avian-like swine H1N1 viruses, but was similar to the H1N1/2009 and triple-reassortant H1N2 viruses. Experiments performed on guinea pigs showed that rH1N1 was not transmissible, whereas pandemic H1N1/2009 displayed efficient transmissibility. To further determine which gene segment played a key role in transmissibility, we constructed a series of reassortants derived from rH1N1 and H1N1/2009 viruses. Direct contact transmission studies demonstrated that the HA and NS genes contributed to the transmission of H1N1/2009 virus. Second, the HA gene of H1N1/2009 virus, when combined with the H1N1/2009 NA gene, conferred efficient contact transmission among guinea pigs. The present results reveal that not only gene segment reassortment but also amino acid mutation were needed for the generation of the pandemic influenza virus. PMID:21799774

  10. Real-time PCR to identify variola virus or other human pathogenic orthopox viruses.

    PubMed

    Scaramozzino, Natale; Ferrier-Rembert, Audrey; Favier, Anne-Laure; Rothlisberger, Corinne; Richard, Stéphane; Crance, Jean-Marc; Meyer, Hermann; Garin, Daniel

    2007-04-01

    Variola virus (family Poxviridae, genus Orthopoxvirus) and the closely related cowpox, vaccinia, and monkeypox viruses can infect humans. Efforts are mounting to replenish the smallpox vaccine stocks, optimize diagnostic methods for poxviruses, and develop new antivirals against smallpox, because it is feared that variola virus might be used as a weapon of bioterrorism. We developed an assay for the detection of variola virus DNA. The assay is based on TaqMan chemistry targeting the 14-kD protein gene. For the 1st stage of the assay we used genus consensus primers and a mixture of 2 probes (14-kD POX and 14-kD VAR) spanning the 14-kD protein-encoding gene for detection of all human pathogenic orthopoxviruses. We then tested positive samples with the specific orthopoxvirus-specific probe 14-kD POX to identify monkeypox, cowpox, and vaccinia viruses and with the 14-kD VAR probe to identify variola viruses. The assay was established on 4 different PCR cycler platforms. It was assessed in a study with 85 different orthopoxvirus species and strains that included variola, camelpox, cowpox, monkeypox, and vaccinia viruses at concentrations ranging from 100 ng/L to 1 microg/L. The assay detected as little as 0.05 fg of DNA, corresponding to 25 copies of DNA, and enabled differentiation of variola virus from the other orthopoxviruses. This real-time PCR assay provides a rapid method for the early detection and differentiation of smallpox and other human pathogenic orthopoxvirus infections.

  11. Combining mutualistic yeast and pathogenic virus - a novel method for control for codling moth control

    USDA-ARS?s Scientific Manuscript database

    Studies evaluated the lethal effectiveness of combining yeasts isolated from larvae of codling moth, Cydia pomonella (L.) with the codling moth granulosis virus (CpGV). Apples were treated with CpGV and three yeast species, including Metschnikowia pulcherrima Pitt and Miller, Cryptococcus tephrensis...

  12. Pigs with severe combined immunodeficiency (SCID) are impaired in controlling influenza A virus infection

    USDA-ARS?s Scientific Manuscript database

    Influenza A viruses (IAV) infect many host species, including humans and pigs. Severe Combined Immunodeficiency (SCID) is a condition characterized by a lack of T, B, and/or natural killer (NK) cells. Animal models of SCID have great value for biomedical research. Here, we evaluated the pathogenesis...

  13. Quantifying antiviral activity optimizes drug combinations against hepatitis C virus infection

    SciTech Connect

    Koizumi, Yoshiki; Nakajim, Syo; Ohash, Hirofumi; Tanaka, Yasuhito; Wakita, Takaji; Perelson, Alan S.; Iwami, Shingo; Watashi, Koichi

    2016-03-21

    Cell culture study combing a mathematical model and computer simulation quantifies the anti-hepatitis C virus drug efficacy at any concentrations and any combinations in preclinical settings, and can obtain rich basic evidences for selecting optimal treatments prior to costly clinical trials.

  14. EPIPOX: Immunoinformatic Characterization of the Shared T-Cell Epitome between Variola Virus and Related Pathogenic Orthopoxviruses.

    PubMed

    Molero-Abraham, Magdalena; Glutting, John-Paul; Flower, Darren R; Lafuente, Esther M; Reche, Pedro A

    2015-01-01

    Concerns that variola viruses might be used as bioweapons have renewed the interest in developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes.

  15. EPIPOX: Immunoinformatic Characterization of the Shared T-Cell Epitome between Variola Virus and Related Pathogenic Orthopoxviruses

    PubMed Central

    Molero-Abraham, Magdalena; Glutting, John-Paul; Flower, Darren R.; Lafuente, Esther M.; Reche, Pedro A.

    2015-01-01

    Concerns that variola viruses might be used as bioweapons have renewed the interest in developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes. PMID:26605344

  16. Combination Chemotherapy Using Immune Modulators and Antiviral Drugs against Togaviruses and Bunyaviruses. Antiviral Therapy Against Banzi Virus, Semliki Forest Virus, and Richinde Virus

    DTIC Science & Technology

    1988-03-30

    Immune globulins were prepared by hyperimmunization of New Zealand white rabbits. Virus stocks (10% brain suspensions) were inacti- vated by incubation...interferons, CL246,738, poly I:CLC, ribavirin, immune globulin , tumor necrosis factor, and interleukin 2. Although prophylaxis of viral infections may be...y. Both inducers were also studied in combination with anti-BZ immune globulin . Antibody was produced in mouse ascites fluid as we have detailed

  17. Combining abilities for agronomic traits and marker-assisted selection for Potato virus X and Potato virus Y resistance.

    PubMed

    Guedes, M L; Pinto, C A B P; Ribeiro, G H M R; Lyra, D H; Carneiro, O L G

    2016-09-16

    Disease-resistant potato cultivars with good tuber appearance and desirable agronomic traits are essential for meeting the demands of producers and the market. Attaining these cultivars is the focus of potato breeding programs whose aim is to benefit the productive chain. The purpose of this study was to estimate combining abilities and evaluate potato clones based on tuber appearance, yield, and resistance to the PVY and PVX viruses. Crosses between four commercial cultivars of potato with good tuber appearance were performed, using eight clones with proven resistance to PVY and PVX from the breeding program of UFLA. The clones obtained were evaluated for agronomic traits, tuber appearance, and the presence of both Ryadg and Rx1 alleles, which confer extreme resistance to the PVY and PVX viruses, respectively. The independent culling level method was used to select genotypes of commercial interest, as well as to estimate the combining abilities of the parents. We identified clones carrying the Ryadg and Rx1 alleles with agronomic traits suitable for the fresh market and for processing. The BRS Ana cultivar and CMA-399 and CMA-385 clones showed positive effects on general combining ability (GCA) for tuber yield, while the Monalisa cultivar showed positive effects on GCA for general tuber appearance.

  18. Combination of CCR5 and CXCR4 Inhibitors in Therapy of Human Immunodeficiency Virus Type 1 Infection: In Vitro Studies of Mixed Virus Infections†

    PubMed Central

    Rusconi, Stefano; La Seta Catamancio, Simona; Citterio, Paola; Bulgheroni, Elisabetta; Croce, Francesco; Herrmann, Steven H.; Offord, Robin E.; Galli, Massimo; Hirsch, Martin S.

    2000-01-01

    We studied the combined anti-human immunodeficiency virus type 1 (HIV-1) effects of a derivative of stroma-derived factor 1β (SDF-1β), Met-SDF-1β, and a modified form of RANTES, aminooxypentane (AOP)-RANTES. The antiviral agents were tested singly or in combination at 95 and 99% virus inhibitory concentrations. Clinical R5 and X4 HIV-1 isolates were used. AOP-RANTES inhibited R5 but not X4 viruses, whereas Met-SDF-1β had the opposite effect. Combinations of these compounds inhibited mixed infections with R5 and X4 viruses (95 to 99%), whereas single drugs were less inhibitory (32 to 61%). Combinations of R5 and X4 inhibitors are promising and deserve further evaluation. PMID:10982382

  19. Combined DECS Analysis and Next-Generation Sequencing Enable Efficient Detection of Novel Plant RNA Viruses.

    PubMed

    Yanagisawa, Hironobu; Tomita, Reiko; Katsu, Koji; Uehara, Takuya; Atsumi, Go; Tateda, Chika; Kobayashi, Kappei; Sekine, Ken-Taro

    2016-03-07

    The presence of high molecular weight double-stranded RNA (dsRNA) within plant cells is an indicator of infection with RNA viruses as these possess genomic or replicative dsRNA. DECS (dsRNA isolation, exhaustive amplification, cloning, and sequencing) analysis has been shown to be capable of detecting unknown viruses. We postulated that a combination of DECS analysis and next-generation sequencing (NGS) would improve detection efficiency and usability of the technique. Here, we describe a model case in which we efficiently detected the presumed genome sequence of Blueberry shoestring virus (BSSV), a member of the genus Sobemovirus, which has not so far been reported. dsRNAs were isolated from BSSV-infected blueberry plants using the dsRNA-binding protein, reverse-transcribed, amplified, and sequenced using NGS. A contig of 4,020 nucleotides (nt) that shared similarities with sequences from other Sobemovirus species was obtained as a candidate of the BSSV genomic sequence. Reverse transcription (RT)-PCR primer sets based on sequences from this contig enabled the detection of BSSV in all BSSV-infected plants tested but not in healthy controls. A recombinant protein encoded by the putative coat protein gene was bound by the BSSV-antibody, indicating that the candidate sequence was that of BSSV itself. Our results suggest that a combination of DECS analysis and NGS, designated here as "DECS-C," is a powerful method for detecting novel plant viruses.

  20. Combined DECS Analysis and Next-Generation Sequencing Enable Efficient Detection of Novel Plant RNA Viruses

    PubMed Central

    Yanagisawa, Hironobu; Tomita, Reiko; Katsu, Koji; Uehara, Takuya; Atsumi, Go; Tateda, Chika; Kobayashi, Kappei; Sekine, Ken-Taro

    2016-01-01

    The presence of high molecular weight double-stranded RNA (dsRNA) within plant cells is an indicator of infection with RNA viruses as these possess genomic or replicative dsRNA. DECS (dsRNA isolation, exhaustive amplification, cloning, and sequencing) analysis has been shown to be capable of detecting unknown viruses. We postulated that a combination of DECS analysis and next-generation sequencing (NGS) would improve detection efficiency and usability of the technique. Here, we describe a model case in which we efficiently detected the presumed genome sequence of Blueberry shoestring virus (BSSV), a member of the genus Sobemovirus, which has not so far been reported. dsRNAs were isolated from BSSV-infected blueberry plants using the dsRNA-binding protein, reverse-transcribed, amplified, and sequenced using NGS. A contig of 4,020 nucleotides (nt) that shared similarities with sequences from other Sobemovirus species was obtained as a candidate of the BSSV genomic sequence. Reverse transcription (RT)-PCR primer sets based on sequences from this contig enabled the detection of BSSV in all BSSV-infected plants tested but not in healthy controls. A recombinant protein encoded by the putative coat protein gene was bound by the BSSV-antibody, indicating that the candidate sequence was that of BSSV itself. Our results suggest that a combination of DECS analysis and NGS, designated here as “DECS-C,” is a powerful method for detecting novel plant viruses. PMID:27072419

  1. Response of Human Immunodeficiency Virus-Associated Cerebral Angiitis to the Combined Antiretroviral Therapy

    PubMed Central

    Cheron, Julian; Wyndham-Thomas, Chloé; Sadeghi, Niloufar; Naeije, Gilles

    2017-01-01

    When secondary causes are excluded, mechanisms underlying central nervous system angiitis (ACNS) in human immunodeficiency virus (HIV)-infected patients are still not understood and optimal treatment remains undefined. We report here a patient with an untreated HIV infection who presented multiple ischemic strokes probably due to HIV-ACNS. ACNS signs on vessel-wall imaging magnetic resonance monitoring retracted with combined antiretroviral therapy without adjunct immunosuppressive drugs. PMID:28348548

  2. Novel Chemical Ligands to Ebola Virus and Marburg Virus Nucleoproteins Identified by Combining Affinity Mass Spectrometry and Metabolomics Approaches

    PubMed Central

    Fu, Xu; Wang, Zhihua; Li, Lixin; Dong, Shishang; Li, Zhucui; Jiang, Zhenzuo; Wang, Yuefei; Shui, Wenqing

    2016-01-01

    The nucleoprotein (NP) of Ebola virus (EBOV) and Marburg virus (MARV) is an essential component of the viral ribonucleoprotein complex and significantly impacts replication and transcription of the viral RNA genome. Although NP is regarded as a promising antiviral druggable target, no chemical ligands have been reported to interact with EBOV NP or MARV NP. We identified two compounds from a traditional Chinese medicine Gancao (licorice root) that can bind both NPs by combining affinity mass spectrometry and metabolomics approaches. These two ligands, 18β-glycyrrhetinic acid and licochalcone A, were verified by defined compound mixture screens and further characterized with individual ligand binding assays. Accompanying biophysical analyses demonstrate that binding of 18β-glycyrrhetinic acid to EBOV NP significantly reduces protein thermal stability, induces formation of large NP oligomers, and disrupts the critical association of viral ssRNA with NP complexes whereas the compound showed no such activity on MARV NP. Our study has revealed the substantial potential of new analytical techniques in ligand discovery from natural herb resources. In addition, identification of a chemical ligand that influences the oligomeric state and RNA-binding function of EBOV NP sheds new light on antiviral drug development. PMID:27403722

  3. Rapid detection of airborne viruses by personal bioaerosol sampler combined with the PCR device

    NASA Astrophysics Data System (ADS)

    Agranovski, I. E.; Safatov, A. S.; Sergeev, A. A.; Pyankov, O. V.; Petrishchenko, V. A.; Mikheev, M. V.; Sergeev, A. N.

    A new personal sampler had been previously developed and verified for monitoring of viable airborne viruses. The aims of this project were to investigate a possibility of the utilization of the polymerase chain reaction (PCR) method to speed up the time consuming analytical procedures and to evaluate a lower detection limit of the combined (sampler-PCR) device. Tenfold serial dilutions of the initial suspension of the Vaccinia virus were aerosolized in the chamber and airborne viruses were monitored by two simultaneously operating samplers. The results of monitoring were successfully obtained by a standard plaque assay (live microbes) and by the PCR method (total DNA). The corresponding calculations to identify the minimal detectable concentration in the ambient air were then performed. It was found that the minimal detectable concentration of airborne viruses in the ambient air depends on the sampling time. As demonstrated, such concentration should be at least 125×10 3 PFU m -3 for a sampling time of as short as 1 min. The detectable concentration decreases with the increase of the sampling time and reaches 25×10 3 and 10×10 3 PFU m -3 for 5 and 12.5 min of sampling respectively.

  4. New avian influenza A virus subtype combination H5N7 identified in Danish mallard ducks.

    PubMed

    Bragstad, K; Jørgensen, P H; Handberg, K J; Mellergaard, S; Corbet, S; Fomsgaard, A

    2005-05-01

    During the past years increasing incidences of influenza A zoonosis have made it of uppermost importance to possess methods for rapid and precise identification and characterisation of influenza A viruses. We present here a convenient one-step RT-PCR method that will amplify full-length haemagglutinin (HA) and neuraminidase (NA) directly from clinical samples and from all known subtypes of influenza A. We applied the method on samples collected in September 2003 from a Danish flock of mallards with general health problems and by this a previously undescribed influenza A subtype combination, H5N7, was identified. The HA gene showed great sequence similarity to the highly pathogenic avian influenza A virus (HPAIV) A/Chicken/Italy/312/97 (H5N2); however, the cleavage site sequence between HA1 and HA2 had a motif typical for low pathogenic avian influenza viruses (LPAIV). The full-length NA sequence was most closely related to the HPAIV A/Chicken/Netherlands/01/03 (H7N7) that infected chickens and humans in the Netherlands in 2003. Ten persons with direct or indirect contact with the Danish mallard ducks showed signs of influenza-like illness 2-3 days following the killing of the ducks, but no evidence of influence infections was detected. To our knowledge this is the first report of an H5N7 influenza A virus.

  5. Synergistic Efficacy of the Combination of ST-246 with CMX001 against Orthopoxviruses▿

    PubMed Central

    Quenelle, Debra C.; Prichard, Mark N.; Keith, Kathy A.; Hruby, Dennis E.; Jordan, Robert; Painter, George R.; Robertson, Alice; Kern, Earl R.

    2007-01-01

    The combination of ST-246 and hexadecyloxypropyl-cidofovir or CMX001 was evaluated for synergistic activity in vitro against vaccinia virus and cowpox virus (CV) and in vivo against CV. In cell culture the combination was highly synergistic against both viruses, and the results suggested that combined treatment with these agents might offer superior efficacy in vivo. For animal models, ST-246 was administered orally with or without CMX001 to mice lethally infected with CV. Treatments began 1, 3, or 6 days postinfection using lower dosages than previously used for single-drug treatment. ST-246 was given at 10, 3, or 1 mg/kg of body weight with or without CMX001 at 3, 1, or 0.3 mg/kg to evaluate potential synergistic interactions. Treatment beginning 6 days post-viral inoculation with ST-246 alone only increased the mean day to death at 10 or 3 mg/kg but had no effect on survival. CMX001 alone also had no effect on survival. When the combination of the two drugs was begun 6 days after viral infection using various dosages of the two, a synergistic reduction in mortality was observed. No evidence of increased toxicity was noted with the combination either in vitro or in vivo. These results indicate that combinations of ST-246 and CMX001 are synergistic both in vitro and in vivo and suggest that combination therapy using ST-246 and CMX001 for treatment of orthopoxvirus disease in humans or animals may provide an additional benefit over the use of the two drugs by themselves. PMID:17724153

  6. Synergistic efficacy of the combination of ST-246 with CMX001 against orthopoxviruses.

    PubMed

    Quenelle, Debra C; Prichard, Mark N; Keith, Kathy A; Hruby, Dennis E; Jordan, Robert; Painter, George R; Robertson, Alice; Kern, Earl R

    2007-11-01

    The combination of ST-246 and hexadecyloxypropyl-cidofovir or CMX001 was evaluated for synergistic activity in vitro against vaccinia virus and cowpox virus (CV) and in vivo against CV. In cell culture the combination was highly synergistic against both viruses, and the results suggested that combined treatment with these agents might offer superior efficacy in vivo. For animal models, ST-246 was administered orally with or without CMX001 to mice lethally infected with CV. Treatments began 1, 3, or 6 days postinfection using lower dosages than previously used for single-drug treatment. ST-246 was given at 10, 3, or 1 mg/kg of body weight with or without CMX001 at 3, 1, or 0.3 mg/kg to evaluate potential synergistic interactions. Treatment beginning 6 days post-viral inoculation with ST-246 alone only increased the mean day to death at 10 or 3 mg/kg but had no effect on survival. CMX001 alone also had no effect on survival. When the combination of the two drugs was begun 6 days after viral infection using various dosages of the two, a synergistic reduction in mortality was observed. No evidence of increased toxicity was noted with the combination either in vitro or in vivo. These results indicate that combinations of ST-246 and CMX001 are synergistic both in vitro and in vivo and suggest that combination therapy using ST-246 and CMX001 for treatment of orthopoxvirus disease in humans or animals may provide an additional benefit over the use of the two drugs by themselves.

  7. Combined Alphavirus Replicon Particle Vaccine Induces Durable and Cross-Protective Immune Responses against Equine Encephalitis Viruses

    PubMed Central

    Glass, Pamela J.; Bakken, Russell R.; Barth, James F.; Lind, Cathleen M.; da Silva, Luis; Hart, Mary Kate; Rayner, Jonathan; Alterson, Kim; Custer, Max; Dudek, Jeanne; Owens, Gary; Kamrud, Kurt I.; Parker, Michael D.; Smith, Jonathan

    2014-01-01

    ABSTRACT Alphavirus replicons were evaluated as potential vaccine candidates for Venezuelan equine encephalitis virus (VEEV), western equine encephalitis virus (WEEV), or eastern equine encephalitis virus (EEEV) when given individually or in combination (V/W/E) to mice or cynomolgus macaques. Individual replicon vaccines or the combination V/W/E replicon vaccine elicited strong neutralizing antibodies in mice to their respective alphavirus. Protection from either subcutaneous or aerosol challenge with VEEV, WEEV, or EEEV was demonstrated out to 12 months after vaccination in mice. Individual replicon vaccines or the combination V/W/E replicon vaccine elicited strong neutralizing antibodies in macaques and demonstrated good protection against aerosol challenge with an epizootic VEEV-IAB virus, Trinidad donkey. Similarly, the EEEV replicon and V/W/E combination vaccine elicited neutralizing antibodies against EEEV and protected against aerosol exposure to a North American variety of EEEV. Both the WEEV replicon and combination V/W/E vaccination, however, elicited poor neutralizing antibodies to WEEV in macaques, and the protection conferred was not as strong. These results demonstrate that a combination V/W/E vaccine is possible for protection against aerosol challenge and that cross-interference between the vaccines is minimal. IMPORTANCE Three related viruses belonging to the genus Alphavirus cause severe encephalitis in humans: Venezuelan equine encephalitis virus (VEEV), western equine encephalitis virus (WEEV), and eastern equine encephalitis virus (EEEV). Normally transmitted by mosquitoes, these viruses can cause disease when inhaled, so there is concern that these viruses could be used as biological weapons. Prior reports have suggested that vaccines for these three viruses might interfere with one another. We have developed a combined vaccine for Venezuelan equine encephalitis, western equine encephalitis, and eastern equine encephalitis expressing the

  8. Genome characterisation of the newly discovered avian influenza A H5N7 virus subtype combination.

    PubMed

    Bragstad, K; Jørgensen, P H; Handberg, K J; Fomsgaard, A

    2007-01-01

    In Denmark, in 2003, a previously unknown subtype combination of avian influenza A virus, H5N7 (A/Mallard/Denmark/64650/03), was isolated from a flock of 12,000 mallards. The H5N7 subtype combination might be a reassortant between recent European avian influenza A H5, H7, and a third subtype, possibly an H6. The haemagglutinin and the acidic polymerase genes of the virus were closely related to a low-pathogenic Danish H5N2 virus A/Duck/Denmark/65041/04 (H5N2). The neuraminidase gene and the non-structural gene were most similar to the highly pathogenic A/Chicken/Netherlands/1/03 (H7N7) and the human-fatal A/Netherlands/219/03 (H7N7), respectively. The basic polymerase 1 and 2 genes were phylogenetically equidistant to both A/Duck/Denmark/65047/04 (H5N2) and A/Chicken/Netherlands/1/03 (H7N7). The nucleoprotein and matrix gene had highest nucleotide sequence similarity to the H6 subtypes A/Duck/Hong Kong/3096/99 (H6N2) and A/WDk/ST/1737/2000 (H6N8), respectively. All genes of the H5N7 strain were of avian origin, and no further evidence of pathogenicity to humans has been found.

  9. Combined effects of atrazine and chlorpyrifos on susceptibility of the tiger salamander to Ambystoma tigrinum virus.

    PubMed

    Kerby, Jacob L; Storfer, Andrew

    2009-03-01

    Several hypotheses have been examined as potential causes of global amphibian declines, including emerging infectious diseases and environmental contaminants. Although these factors are typically studied separately, animals are generally exposed to both stressors simultaneously. We examined the effects of the herbicide atrazine and the insecticide chlorpyrifos on the susceptibility of tiger salamander larvae, Ambystoma tigrinum, to a viral pathogen, Ambystoma tigrinum virus (ATV). Environmentally relevant concentrations of atrazine (0, 20, 200 microg/L) and chlorpyrifos (0, 2, 20, 200 microg/L) were used along with ATV in a fully factorial experimental design whereby individually housed, 4-week-old larvae were exposed for 2 weeks. Atrazine alone was not lethal to larvae, and chlorpyrifos alone was lethal only at the highest concentration. When combined with ATV, chlorpyrifos increased susceptibility to viral infection and resulted in increased larval mortality. A significant interactive effect between atrazine and ATV was detected. Atrazine treatments slightly decreased survival in virus-exposed treatments, yet slightly increased survival in the virus-free treatments. These findings corroborate earlier research on the impacts of atrazine, in particular, on disease susceptibility, but exhibit greater effects (i.e., reduced survival) when younger larvae were examined. This study is the first of its kind to demonstrate decreases in amphibian survival with the combination of pesticide and a viral disease. Further examination of these multiple stressors can provide key insights into potential significance of environmental cofactors, such as pesticides, in disease dynamics.

  10. Severe cutaneous human papilloma virus infection associated with Natural Killer cell deficiency following stem cell transplantation for severe combined immunodeficiency

    PubMed Central

    Kamili, Qurat-ul-Ain; Seeborg, Filiz O; Saxena, Kapil; Nicholas, Sarah K; Banerjee, Pinaki P; Angelo, Laura S; Mace, Emily M; Forbes, Lisa R; Martinez, Caridad; Wright, Teresa S; Orange, Jordan S.; Hanson, Imelda Celine

    2016-01-01

    Capsule Summary The authors identify Natural Killer cell deficiency in post-transplant severe combined immunodeficiency patients who developed severe human papilloma virus infections as a long term complication. PMID:25159470

  11. Augmentation of immune responses to SARS coronavirus by a combination of DNA and whole killed virus vaccines.

    PubMed

    Zakhartchouk, Alexander N; Liu, Qiang; Petric, Martin; Babiuk, Lorne A

    2005-08-15

    We studied the immunogenicity of a DNA SARS-vaccine, a whole killed virus, or a whole killed and DNA vaccine combination. The DNA vaccine contained a plasmid encoding the SARS coronavirus (SARS-CoV) S protein under the control of the human CMV promoter and intron A. The whole killed virus vaccine was comprised of SARS-CoV, propagated in Vero-E6 cells, with subsequent beta-propilactone inactivation and formulated with aluminum hydroxide adjuvant. Mice immunized twice with the DNA vaccine and once with the whole killed virus elicited higher antibody responses than mice immunized three times with the DNA vaccine or once with the whole killed virus vaccine. Mice immunized twice with the whole killed virus vaccine elicited higher antibody responses than mice immunized three times with the DNA vaccine or once with the whole killed virus vaccine. However, a combination of the vaccines induced T-helper type 1 (Th1) immune responses while the whole killed virus vaccine induced T helper type 2 (Th2) immune response. These results demonstrate that combination of the DNA vaccine and the whole killed virus vaccine can be used to enhance the magnitude and change the bias of the immune responses to SARS-CoV.

  12. Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips.

    PubMed

    Wang, Qiaochun; Cuellar, Wilmer J; Rajamäki, Minna-Liisa; Hirata, Yukimasa; Valkonen, Jari P T

    2008-03-01

    Accumulation of viruses in vegetatively propagated plants causes heavy yield losses. Therefore, supply of virus-free planting materials is pivotal to sustainable crop production. In previous studies, Raspberry bushy dwarf virus (RBDV) was difficult to eradicate from raspberry (Rubus idaeus) using the conventional means of meristem tip culture. As shown in the present study, it was probably because this pollen-transmitted virus efficiently invades leaf primordia and all meristematic tissues except the least differentiated cells of the apical dome. Subjecting plants to thermotherapy prior to meristem tip culture heavily reduced viral RNA2, RNA3 and the coat protein in the shoot tips, but no virus-free plants were obtained. Therefore, a novel method including thermotherapy followed by cryotherapy was developed for efficient virus eradication. Heat treatment caused subcellular alterations such as enlargement of vacuoles in the more developed, virus-infected cells, which were largely eliminated following subsequent cryotherapy. Using this protocol, 20-36% of the treated shoot tips survived, 30-40% regenerated and up to 35% of the regenerated plants were virus-free, as tested by ELISA and reverse transcription loop-mediated isothermal amplification. Novel cellular and molecular insights into RBDV-host interactions and the factors influencing virus eradication were obtained, including invasion of shoot tips and meristematic tissues by RBDV, enhanced viral RNA degradation and increased sensitivity to freezing caused by thermotherapy, and subcellular changes and subsequent death of cells caused by cryotherapy. This novel procedure should be helpful with many virus-host combinations in which virus eradication by conventional means has proven difficult.

  13. Combination of Paclitaxel and MG1 oncolytic virus as a successful strategy for breast cancer treatment.

    PubMed

    Bourgeois-Daigneault, Marie-Claude; St-Germain, Lauren Elizabeth; Roy, Dominic Guy; Pelin, Adrian; Aitken, Amelia Sadie; Arulanandam, Rozanne; Falls, Theresa; Garcia, Vanessa; Diallo, Jean-Simon; Bell, John Cameron

    2016-08-08

    Breast cancer is the most common malignant disease amongst Western women. The lack of treatment options for patients with chemotherapy-resistant or recurrent cancers is pushing the field toward the rapid development of novel therapies. The use of oncolytic viruses is a promising approach for the treatment of disseminated diseases like breast cancer, with the first candidate recently approved by the Food and Drug Administration for use in patients. In this report, we demonstrate the compatibility of oncolytic virotherapy and chemotherapy using various murine breast cancer models. This one-two punch has been explored in the past by several groups with different viruses and drugs and was shown to be a successful approach. Our strategy is to combine Paclitaxel, one of the most common drugs used to treat patients with breast cancer, and the oncolytic Rhabdovirus Maraba-MG1, a clinical trial candidate in a study currently recruiting patients with late-stage metastatic cancer. We used the EMT6, 4 T1 and E0771 murine breast cancer models to evaluate in vitro and in vivo the effects of co-treatment with MG1 and Paclitaxel. Treatment-induced cytotoxicity was assessed and plaque assays, flow cytometry, microscopy and immunocytochemistry analysis were performed to quantify virus production and transgene expression. Orthotopically implanted tumors were measured during and after treatment to evaluate efficacy and Kaplan-Meier survival curves were generated. Our data demonstrate not only the compatibility of the treatments, but also their synergistic cytopathic activity. With Paclitaxel, EMT6 and 4 T1 tumors demonstrated increased virus production both in vitro and in vivo. Our results also show that Paclitaxel does not impair the safety profile of the virus treatment. Importantly, when combined, MG1 and the drug controlled tumor growth and prolonged survival. The combination of MG1 and Paclitaxel improved efficacy in all of the breast cancer models we tested and thus is a

  14. Efficacy of combined porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae vaccination in piglets.

    PubMed

    Drexler, C S; Witvliet, M H; Raes, M; van de Laar, M; Eggen, A A S; Thacker, E L

    2010-01-16

    Three vaccination challenge studies were performed to evaluate the impact on vaccine efficacy of combining porcine reproductive and respiratory syndrome virus (PRRSV) and Mycoplasma hyopneumoniae vaccines. Piglets were vaccinated with either a M hyopneumoniae bacterin, a modified live PRRSV vaccine based on a European-type PRRSV strain, or a combination of both vaccines, followed by experimental infection with either M hyopneumoniae or PRRSV. Vaccine efficacy was evaluated by assessing lung lesion scores for M hyopneumoniae and measuring viraemia for PRRSV. There were no significant differences between the protective efficacy of the combined vaccine protocol and the protective efficacy of the two single vaccines, indicating that PRRSV vaccination did not interfere with M hyopneumoniae vaccine efficacy and vice versa.

  15. An Orally Bioavailable Antipoxvirus Compound (ST-246) Inhibits Extracellular Virus Formation and Protects Mice from Lethal Orthopoxvirus Challenge

    PubMed Central

    Yang, Guang; Pevear, Daniel C.; Davies, Marc H.; Collett, Marc S.; Bailey, Tom; Rippen, Susan; Barone, Linda; Burns, Chris; Rhodes, Gerry; Tohan, Sanjeev; Huggins, John W.; Baker, Robert O.; Buller, R. L. Mark; Touchette, Erin; Waller, Kem; Schriewer, Jill; Neyts, Johan; DeClercq, Erik; Jones, Kevin; Hruby, Dennis; Jordan, Robert

    2005-01-01

    ST-246 is a low-molecular-weight compound (molecular weight = 376), that is potent (concentration that inhibited virus replication by 50% = 0.010 μM), selective (concentration of compound that inhibited cell viability by 50% = >40 μM), and active against multiple orthopoxviruses, including vaccinia, monkeypox, camelpox, cowpox, ectromelia (mousepox), and variola viruses. Cowpox virus variants selected in cell culture for resistance to ST-246 were found to have a single amino acid change in the V061 gene. Reengineering this change back into the wild-type cowpox virus genome conferred resistance to ST-246, suggesting that V061 is the target of ST-246 antiviral activity. The cowpox virus V061 gene is homologous to vaccinia virus F13L, which encodes a major envelope protein (p37) required for production of extracellular virus. In cell culture, ST-246 inhibited plaque formation and virus-induced cytopathic effects. In single-cycle growth assays, ST-246 reduced extracellular virus formation by 10 fold relative to untreated controls, while having little effect on the production of intracellular virus. In vivo oral administration of ST-246 protected BALB/c mice from lethal infection, following intranasal inoculation with 10× 50% lethal dose (LD50) of vaccinia virus strain IHD-J. ST-246-treated mice that survived infection acquired protective immunity and were resistant to subsequent challenge with a lethal dose (10× LD50) of vaccinia virus. Orally administered ST-246 also protected A/NCr mice from lethal infection, following intranasal inoculation with 40,000× LD50 of ectromelia virus. Infectious virus titers at day 8 postinfection in liver, spleen, and lung from ST-246-treated animals were below the limits of detection (<10 PFU/ml). In contrast, mean virus titers in liver, spleen, and lung tissues from placebo-treated mice were 6.2 × 107, 5.2 × 107, and 1.8 × 105 PFU/ml, respectively. Finally, oral administration of ST-246 inhibited vaccinia virus-induced tail

  16. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus Challenge.

    PubMed

    Yang, Guang; Pevear, Daniel C; Davies, Marc H; Collett, Marc S; Bailey, Tom; Rippen, Susan; Barone, Linda; Burns, Chris; Rhodes, Gerry; Tohan, Sanjeev; Huggins, John W; Baker, Robert O; Buller, R L Mark; Touchette, Erin; Waller, Kem; Schriewer, Jill; Neyts, Johan; DeClercq, Erik; Jones, Kevin; Hruby, Dennis; Jordan, Robert

    2005-10-01

    ST-246 is a low-molecular-weight compound (molecular weight = 376), that is potent (concentration that inhibited virus replication by 50% = 0.010 microM), selective (concentration of compound that inhibited cell viability by 50% = >40 microM), and active against multiple orthopoxviruses, including vaccinia, monkeypox, camelpox, cowpox, ectromelia (mousepox), and variola viruses. Cowpox virus variants selected in cell culture for resistance to ST-246 were found to have a single amino acid change in the V061 gene. Reengineering this change back into the wild-type cowpox virus genome conferred resistance to ST-246, suggesting that V061 is the target of ST-246 antiviral activity. The cowpox virus V061 gene is homologous to vaccinia virus F13L, which encodes a major envelope protein (p37) required for production of extracellular virus. In cell culture, ST-246 inhibited plaque formation and virus-induced cytopathic effects. In single-cycle growth assays, ST-246 reduced extracellular virus formation by 10 fold relative to untreated controls, while having little effect on the production of intracellular virus. In vivo oral administration of ST-246 protected BALB/c mice from lethal infection, following intranasal inoculation with 10x 50% lethal dose (LD(50)) of vaccinia virus strain IHD-J. ST-246-treated mice that survived infection acquired protective immunity and were resistant to subsequent challenge with a lethal dose (10x LD(50)) of vaccinia virus. Orally administered ST-246 also protected A/NCr mice from lethal infection, following intranasal inoculation with 40,000x LD(50) of ectromelia virus. Infectious virus titers at day 8 postinfection in liver, spleen, and lung from ST-246-treated animals were below the limits of detection (<10 PFU/ml). In contrast, mean virus titers in liver, spleen, and lung tissues from placebo-treated mice were 6.2 x 10(7), 5.2 x 10(7), and 1.8 x 10(5) PFU/ml, respectively. Finally, oral administration of ST-246 inhibited vaccinia virus

  17. Role of ledipasvir/sofosbuvir combination for genotype 1 hepatitis C virus infection

    PubMed Central

    Sundaram, Vinay; Kowdley, Kris V

    2016-01-01

    Chronic hepatitis C virus (HCV) infection is one of the most common etiologies of liver-related mortality throughout the world. Among the six HCV genotypes, genotype 1 was significantly more aggressive when utilizing the combination of pegylated interferon and ribavirin, as genotype 1-infected patients had the lowest likelihood of achieving cure (40%–50%) and required twice as long duration of treatment, as compared to genotypes 2 and 3. Recently, however, significant advances have been made with the advent of all-oral direct-acting antiviral agents, which have significantly improved the safety, efficacy, and tolerability of the treatment of HCV genotype 1. Among the available treatments for HCV genotype 1, the combination therapy of ledipasvir/sofosbuvir provides several advantages compared to other regimens, including use of a single-pill regimen, possibility to shorten the duration of treatment to 8 weeks, efficacy in patients exposed to protease inhibitors, safety in decompensated cirrhosis, and potential to avoid ribavirin. In this review, we discuss the pharmacotherapy of the combination of ledipasvir/sofosbuvir therapy and summarize the results of the Phase III clinical trials for this treatment in HCV genotype 1 patients. We will also discuss the data for special populations, including decompensated cirrhosis, human immunodeficiency virus (HIV) coinfected patients, African-Americans, the elderly, and those who failed sofosbuvir-containing regimens. PMID:27418860

  18. Combining mutualistic yeast and pathogenic virus--a novel method for codling moth control.

    PubMed

    Knight, Alan L; Witzgall, Peter

    2013-07-01

    The combination of a pathogenic virus and mutualistic yeasts isolated from larvae of codling moth Cydia pomonella is proposed as a novel insect control technique. Apples were treated with codling moth granulovirus (CpGV) and either one of three yeasts, Metschnikowia pulcherrima, Cryptococcus tephrensis, or Aureobasidium pullulans. The combination of yeasts with CpGV significantly increased mortality of neonate codling moth larvae, compared with CpGV alone. The three yeasts were equally efficient in enhancing the activity of CpGV. The addition of brown cane sugar to yeast further increased larval mortality and the protection of fruit against larvae. In comparison, without yeast, the addition of sugar to CpGV did not produce a significant effect. A field trial confirmed that fruit injury and larval survival were significantly reduced when apple trees were sprayed with CpGV, M. pulcherrima, and sugar. We have shown earlier that mutualistic yeasts are an essential part of codling moth larval diet. The finding that yeast also enhances larval ingestion of an insect-pathogenic virus is an opportunity for the development of a novel plant protection technique. We expect the combination of yeasts and insect pathogens to essentially contribute to future insect management.

  19. Immunogenicity of Combination DNA Vaccines for Rift Valley Fever Virus, Tick-Borne Encephalitis Virus, Hantaan Virus, and Crimean Congo Hemorrhagic Fever Virus

    DTIC Science & Technology

    2005-08-22

    genus of the family Bunyaviridae and is one of four hantaviruses known to cause hemorrhagic fever with renal syndrome (HFRS). HFRS caused by HTNV...infection is found exclusively in Asia, with most cases occurring in China (reviewed in [2]). Hantaviruses are transmitted to humans by exposure to...before in our studies of antavirus DNA vaccines. We showed that although DNA accines for two hantaviruses , HTNV and Seoul virus, are ighly immunogenic

  20. Toward Elimination of Hepatitis B Virus Using Novel Drugs, Approaches, and Combined Modalities.

    PubMed

    Boucle, Sebastien; Bassit, Leda; Ehteshami, Maryam; Schinazi, Raymond F

    2016-11-01

    Hepatitis B virus (HBV) causes significant morbidity and mortality worldwide. The majority of chronically infected individuals do not achieve a functional and complete cure. Treated persons who achieve a long-term sustained virologic response (undetectable HBV DNA), are still at high risk of developing morbidity and mortality from liver complications. This review focuses on novel, mechanistically diverse anti-HBV therapeutic strategies currently in development or in clinical evaluation, and highlights new combination strategies that may contribute to full elimination of HBV DNA and covalently closed circular DNA from the infected liver, leading to a complete cure of chronic hepatitis B. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Active vaccination with vaccinia virus A33 protects mice against lethal vaccinia and ectromelia viruses but not against cowpoxvirus; elucidation of the specific adaptive immune response.

    PubMed

    Paran, Nir; Lustig, Shlomo; Zvi, Anat; Erez, Noam; Israely, Tomer; Melamed, Sharon; Politi, Boaz; Ben-Nathan, David; Schneider, Paula; Lachmi, Batel; Israeli, Ofir; Stein, Dana; Levin, Reuven; Olshevsky, Udy

    2013-07-10

    Vaccinia virus protein A33 (A33VACV) plays an important role in protection against orthopoxviruses, and hence is included in experimental multi-subunit smallpox vaccines. In this study we show that single-dose vaccination with recombinant Sindbis virus expressing A33VACV, is sufficient to protect mice against lethal challenge with vaccinia virus WR (VACV-WR) and ectromelia virus (ECTV) but not against cowpox virus (CPXV), a closely related orthopoxvirus. Moreover, a subunit vaccine based on the cowpox virus A33 ortholog (A33CPXV) failed to protect against cowpox and only partially protected mice against VACV-WR challenge. We mapped regions of sequence variation between A33VACV and A33CPXVand analyzed the role of such variations in protection. We identified a single protective region located between residues 104-120 that harbors a putative H-2Kd T cell epitope as well as a B cell epitope - a target for the neutralizing antibody MAb-1G10 that blocks spreading of extracellular virions. Both epitopes in A33CPXV are mutated and predicted to be non-functional. Whereas vaccination with A33VACV did not induce in-vivo CTL activity to the predicted epitope, inhibition of virus spread in-vitro, and protection from lethal VACV challenge pointed to the B cell epitope highlighting the critical role of residue L118 and of adjacent compensatory residues in protection. This epitope's critical role in protection, as well as its modifications within the orthopoxvirus genus should be taken in context with the failure of A33 to protect against CPXV as demonstrated here. These findings should be considered when developing new subunit vaccines and monoclonal antibody based therapeutics against orthopoxviruses, especially variola virus, the etiologic agent of smallpox.

  2. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-10-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses.

  3. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    PubMed Central

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-01-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses. PMID:27752100

  4. Effects of rainfall events on the occurrence and detection efficiency of viruses in river water impacted by combined sewer overflows.

    PubMed

    Hata, Akihiko; Katayama, Hiroyuki; Kojima, Keisuke; Sano, Shoichi; Kasuga, Ikuro; Kitajima, Masaaki; Furumai, Hiroaki

    2014-01-15

    Rainfall events can introduce large amount of microbial contaminants including human enteric viruses into surface water by intermittent discharges from combined sewer overflows (CSOs). The present study aimed to investigate the effect of rainfall events on viral loads in surface waters impacted by CSO and the reliability of molecular methods for detection of enteric viruses. The reliability of virus detection in the samples was assessed by using process controls for virus concentration, nucleic acid extraction and reverse transcription (RT)-quantitative PCR (qPCR) steps, which allowed accurate estimation of virus detection efficiencies. Recovery efficiencies of poliovirus in river water samples collected during rainfall events (<10%) were lower than those during dry weather conditions (>10%). The log10-transformed virus concentration efficiency was negatively correlated with suspended solid concentration (r(2)=0.86) that increased significantly during rainfall events. Efficiencies of DNA extraction and qPCR steps determined with adenovirus type 5 and a primer sharing control, respectively, were lower in dry weather. However, no clear relationship was observed between organic water quality parameters and efficiencies of these two steps. Observed concentrations of indigenous enteric adenoviruses, GII-noroviruses, enteroviruses, and Aichi viruses increased during rainfall events even though the virus concentration efficiency was presumed to be lower than in dry weather. The present study highlights the importance of using appropriate process controls to evaluate accurately the concentration of water borne enteric viruses in natural waters impacted by wastewater discharge, stormwater, and CSOs.

  5. Griffithsin and Carrageenan Combination To Target Herpes Simplex Virus 2 and Human Papillomavirus

    PubMed Central

    Levendosky, Keith; Mizenina, Olga; Martinelli, Elena; Jean-Pierre, Ninochka; Kizima, Larisa; Rodriguez, Aixa; Kleinbeck, Kyle; Bonnaire, Thierry; Robbiani, Melissa; Zydowsky, Thomas M.; O'Keefe, Barry R.

    2015-01-01

    Extensive preclinical evaluation of griffithsin (GRFT) has identified this lectin to be a promising broad-spectrum microbicide. We set out to explore the antiviral properties of a GRFT and carrageenan (CG) combination product against herpes simplex virus 2 (HSV-2) and human papillomavirus (HPV) as well as determine the mechanism of action (MOA) of GRFT against both viruses. We performed the experiments in different cell lines, using time-of-addition and temperature dependence experiments to differentiate inhibition of viral attachment from entry and viral receptor internalization. Surface plasmon resonance (SPR) was used to assess GRFT binding to viral glycoproteins, and immunoprecipitation and immunohistochemistry were used to identify the specific glycoprotein involved. We determined the antiviral activity of GRFT against HSV-2 to be a 50% effective concentration (EC50) of 230 nM and provide the first evidence that GRFT has moderate anti-HPV activity (EC50 = 0.429 to 1.39 μM). GRFT blocks the entry of HSV-2 and HPV into target cells but not the adsorption of HSV-2 and HPV onto target cells. The results of the SPR, immunoprecipitation, and immunohistochemistry analyses of HSV-2 combined suggest that GRFT may block viral entry by binding to HSV-2 glycoprotein D. Cell-based assays suggest anti-HPV activity through α6 integrin internalization. The GRFT-CG combination product but not GRFT or CG alone reduced HSV-2 vaginal infection in mice when given an hour before challenge (P = 0.0352). While GRFT significantly protected mice against vaginal HPV infection when dosed during and after HPV16 pseudovirus challenge (P < 0.026), greater CG-mediated protection was afforded by the GRFT-CG combination for up to 8 h (P < 0.0022). These findings support the development of the GRFT-CG combination as a broad-spectrum microbicide. PMID:26369967

  6. Combined effects of virus, pesticide, and predator cue on the larval tiger salamander (Ambystoma tigrinum).

    PubMed

    Kerby, Jacob L; Hart, Alison J; Storfer, Andrew

    2011-03-01

    Emerging diseases and environmental contamination are two of the leading hypotheses for global amphibian declines. Yet few studies have examined the influence of contaminants on disease susceptibility, and even fewer have incorporated the role of natural stressors such as predation. We performed a factorial study investigating the interaction of the insecticide carbaryl, dragonfly predator cue, and the emerging pathogen Ambystoma tigrinum virus (ATV) on fitness correlates and disease susceptibility in tiger salamander larvae. Four week old larvae were exposed for 22 days in a 2 (0, 500 μg/l carbaryl) × 2 (control, predator cue water) × 2 (0, 1 × 10(4) pfu ATV) factorial designed laboratory study. Results show significant impacts to survival of larvae for both virus and predator cue treatments, as well as an interactive effect between the two, in which predator cue strongly exacerbated disease-driven mortality. There was a clear pattern of reduced survival with the addition of stressors, with those where all three stressors were present exhibiting the worst effects (a decrease in survival from 93 to 60%). On those that survived, we also detected several sub-lethal impacts in mass, SVL, and development. Predator cue and pesticide treatments significantly reduced both SVL and mass. Virus and predator treatments significantly slowed development. Stressors also exhibited opposing effects on activity. Predator cue caused a significant reduction in activity, whereas virus caused a significant increase in activity over time. These results highlight the importance of examining combined natural and introduced stressors to understand potential impacts on amphibian species. Such stressors may contribute to the emergence of ATV in particular regions, raising concerns about the influence of pesticides on disease emergence in general.

  7. Ectromelia virus encodes a novel family of F-box proteins that interact with the SCF complex.

    PubMed

    van Buuren, Nick; Couturier, Brianne; Xiong, Yue; Barry, Michele

    2008-10-01

    Poxviruses are notorious for encoding multiple proteins that regulate cellular signaling pathways, including the ubiquitin-proteasome system. Bioinformatics indicated that ectromelia virus, the causative agent of lethal mousepox, encoded four proteins, EVM002, EVM005, EVM154, and EVM165, containing putative F-box domains. In contrast to cellular F-box proteins, the ectromelia virus proteins contain C-terminal F-box domains in conjunction with N-terminal ankyrin repeats, a combination that has not been previously reported for cellular proteins. These observations suggested that the ectromelia virus F-box proteins interact with SCF (Skp1, cullin-1, and F-box) ubiquitin ligases. We focused our studies on EVM005, since this protein had only one ortholog in cowpox virus. Using mass spectrometry, we identified cullin-1 as a binding partner for EVM005, and this interaction was confirmed by overexpression of hemagglutinin (HA)-cullin-1. During infection, Flag-EVM005 and HA-cullin-1 colocalized to distinct cellular bodies. Significantly, EVM005 coprecipitated with endogenous Skp1, cullin-1, and Roc1 and associated with conjugated ubiquitin, suggesting that EVM005 interacted with the components of a functional ubiquitin ligase. Interaction of EVM005 with cullin-1 and Skp1 was abolished upon deletion of the F-box, indicating that the F-box played a crucial role in interaction with the SCF complex. Additionally, EVM002 and EVM154 interacted with Skp1 and conjugated ubiquitin, suggesting that ectromelia virus encodes multiple F-box-containing proteins that regulate the SCF complex. Our results indicate that ectromelia virus has evolved multiple proteins that interact with the SCF complex.

  8. Co-administration of the broad-spectrum antiviral, brincidofovir (CMX001), with smallpox vaccine does not compromise vaccine protection in mice challenged with ectromelia virus.

    PubMed

    Parker, Scott; Crump, Ryan; Foster, Scott; Hartzler, Hollyce; Hembrador, Ed; Lanier, E Randall; Painter, George; Schriewer, Jill; Trost, Lawrence C; Buller, R Mark

    2014-11-01

    Natural orthopoxvirus outbreaks such as vaccinia, cowpox, cattlepox and buffalopox continue to cause morbidity in the human population. Monkeypox virus remains a significant agent of morbidity and mortality in Africa. Furthermore, monkeypox virus's broad host-range and expanding environs make it of particular concern as an emerging human pathogen. Monkeypox virus and variola virus (the etiological agent of smallpox) are both potential agents of bioterrorism. The first line response to orthopoxvirus disease is through vaccination with first-generation and second-generation vaccines, such as Dryvax and ACAM2000. Although these vaccines provide excellent protection, their widespread use is impeded by the high level of adverse events associated with vaccination using live, attenuated virus. It is possible that vaccines could be used in combination with antiviral drugs to reduce the incidence and severity of vaccine-associated adverse events, or as a preventive in individuals with uncertain exposure status or contraindication to vaccination. We have used the intranasal mousepox (ectromelia) model to evaluate the efficacy of vaccination with Dryvax or ACAM2000 in conjunction with treatment using the broad spectrum antiviral, brincidofovir (BCV, CMX001). We found that co-treatment with BCV reduced the severity of vaccination-associated lesion development. Although the immune response to vaccination was quantifiably attenuated, vaccination combined with BCV treatment did not alter the development of full protective immunity, even when administered two days following ectromelia challenge. Studies with a non-replicating vaccine, ACAM3000 (MVA), confirmed that BCV's mechanism of attenuating the immune response following vaccination with live virus was, as expected, by limiting viral replication and not through inhibition of the immune system. These studies suggest that, in the setting of post-exposure prophylaxis, co-administration of BCV with vaccination should be considered

  9. Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections.

    PubMed

    Wares, Joanna R; Crivelli, Joseph J; Yun, Chae-Ok; Choi, Il-Kyu; Gevertz, Jana L; Kim, Peter S

    2015-12-01

    Oncolytic viruses (OVs) are used to treat cancer, as they selectively replicate inside of and lyse tumor cells. The efficacy of this process is limited and new OVs are being designed to mediate tumor cell release of cytokines and co-stimulatory molecules, which attract cytotoxic T cells to target tumor cells, thus increasing the tumor-killing effects of OVs. To further promote treatment efficacy, OVs can be combined with other treatments, such as was done by Huang et al., who showed that combining OV injections with dendritic cell (DC) injections was a more effective treatment than either treatment alone. To further investigate this combination, we built a mathematical model consisting of a system of ordinary differential equations and fit the model to the hierarchical data provided from Huang et al. We used the model to determine the effect of varying doses of OV and DC injections and to test alternative treatment strategies. We found that the DC dose given in Huang et al. was near a bifurcation point and that a slightly larger dose could cause complete eradication of the tumor. Further, the model results suggest that it is more effective to treat a tumor with immunostimulatory oncolytic viruses first and then follow-up with a sequence of DCs than to alternate OV and DC injections. This protocol, which was not considered in the experiments of Huang et al., allows the infection to initially thrive before the immune response is enhanced. Taken together, our work shows how the ordering, temporal spacing, and dosage of OV and DC can be chosen to maximize efficacy and to potentially eliminate tumors altogether.

  10. Evaluation of the efficacy and duration of immunity of a canine combination vaccine against virulent parvovirus, infectious canine hepatitis virus, and distemper virus experimental challenges.

    PubMed

    Abdelmagid, Omar Y; Larson, Laurie; Payne, Laurie; Tubbs, Anna; Wasmoen, Terri; Schultz, Ronald

    2004-01-01

    The results of this study confirmed that dogs vaccinated subcutaneously with a commercially available multivalent vaccine containing modified-live canine distemper virus, canine adenovirus type 2, canine parvovirus type 2b, and canine parainfluenza virus antigens were protected against sequential experimental challenge 55 to 57 months after initial vaccination given at 7 to 8 weeks of age. All 10 vaccinates were protected against clinical diseases and mortality following parvovirus and infectious canine hepatitis experimental infections. All vaccinates were protected against mortality and 90% against clinical disease following distemper challenge. These data support at least a 4-year duration of immunity for these three "core" fractions in the combination vaccine.

  11. Combination ledipasvir-sofosbuvir for the treatment of chronic hepatitis C virus infection: a review and clinical perspective

    PubMed Central

    Nkuize, Marcel; Sersté, Thomas; Buset, Michel; Mulkay, Jean-Pierre

    2016-01-01

    Chronic hepatitis C treatment has continued to evolve, and interferon-free, oral treatment with direct-acting antiviral agents is the current standard of care. Recently, a new treatment, which is a combination of two direct-acting antiviral agents, ledipasvir 90 mg (anti-NS5A) and sofosbuvir 400 mg (anti-NS5B), has been approved in the US and the European Union for the treatment of chronic hepatitis C viral infection. In Phase III trials among chronic hepatitis C virus genotype 1 monoinfected (treatment-naïve, treatment-experienced, and with advanced liver disease or posttransplant) patients and HIV–hepatitis C virus coinfected patients, the ledipasvir-sofosbuvir fixed-dose combination is associated with a higher rate of sustained virologic response at 12 weeks after therapy has ceased. According to preliminary data, the ledipasvir-sofosbuvir combination also may be effective against hepatitis C genotype 4 virus infection. The ledipasvir-sofosbuvir combination taken orally is generally well-tolerated. Moreover, the combination treatment may suppress the effect of predictive factors of chronic hepatitis C that have historically been known to be associated with treatment failure. Thus, the fixed-dose single-tablet combination of ledipasvir-sofosbuvir offers a new era for the effective treatment of a variety of patients suffering from chronic hepatitis C virus infection. PMID:27350749

  12. Combination ledipasvir-sofosbuvir for the treatment of chronic hepatitis C virus infection: a review and clinical perspective.

    PubMed

    Nkuize, Marcel; Sersté, Thomas; Buset, Michel; Mulkay, Jean-Pierre

    2016-01-01

    Chronic hepatitis C treatment has continued to evolve, and interferon-free, oral treatment with direct-acting antiviral agents is the current standard of care. Recently, a new treatment, which is a combination of two direct-acting antiviral agents, ledipasvir 90 mg (anti-NS5A) and sofosbuvir 400 mg (anti-NS5B), has been approved in the US and the European Union for the treatment of chronic hepatitis C viral infection. In Phase III trials among chronic hepatitis C virus genotype 1 monoinfected (treatment-naïve, treatment-experienced, and with advanced liver disease or posttransplant) patients and HIV-hepatitis C virus coinfected patients, the ledipasvir-sofosbuvir fixed-dose combination is associated with a higher rate of sustained virologic response at 12 weeks after therapy has ceased. According to preliminary data, the ledipasvir-sofosbuvir combination also may be effective against hepatitis C genotype 4 virus infection. The ledipasvir-sofosbuvir combination taken orally is generally well-tolerated. Moreover, the combination treatment may suppress the effect of predictive factors of chronic hepatitis C that have historically been known to be associated with treatment failure. Thus, the fixed-dose single-tablet combination of ledipasvir-sofosbuvir offers a new era for the effective treatment of a variety of patients suffering from chronic hepatitis C virus infection.

  13. Clearance of BK Virus Nephropathy by Combination Antiviral Therapy With Intravenous Immunoglobulin

    PubMed Central

    Kable, Kathy; Davies, Carmen D.; O'connell, Philip J.; Chapman, Jeremy R.; Nankivell, Brian John

    2017-01-01

    Background Reactivation of BK polyoma virus causes a destructive virus allograft nephropathy (BKVAN) with graft loss in 46%. Treatment options are limited to reduced immunosuppression and largely ineffective antiviral agents. Some studies suggest benefit from intravenous immunoglobulin (IVIG). Methods We evaluated effectiveness of adjuvant IVIG to eliminate virus from blood and tissue, in a retrospective, single-center cohort study, against standard-of-care controls. Both groups underwent reduced immunosuppression; conversion of tacrolimus to cyclosporine; and mycophenolate to leflunomide, oral ciprofloxacin, and intravenous cidofovir. Results Biopsy-proven BKVAN occurred in 50 kidneys at 7 (median interquartile range, 3-12) months after transplantation, predominantly as histological stage B (92%), diagnosed following by dysfunction in 46%, screening viremia in 20%, and protocol biopsy in 34%. After treatment, mean viral loads fell from 1581 ± 4220 × 103 copies at diagnosis to 1434 ± 70 639 midtreatment, and 0.138 ± 0.331 after 3 months (P < 0.001). IVIG at 1.01 ± 0.18 g/kg was given to 22 (44%) patients. The IVIG group more effectively cleared viremia (hazard ratio, 3.68; 95% confidence interval, 1.56-8.68; P = 0.003) and BK immunohistochemistry from repeated tissue sampling (hazard ratio, 2.24; 95% confidence interval, 1.09-4.58; P = 0.028), and resulted in faster (11.3 ± 10.4 months vs 29.1 ± 31.8 months, P = 0.015) and more complete resolution of viremia (33.3% vs 77.3%, P = 0.044). Numerically, fewer graft losses occurred with IVIG (27.3% vs 53.6% for control, P = 0.06), although graft and patient survivals were not statistically different. Acute renal dysfunction requiring pulse corticosteroid was common (59.1% vs 78.6%, P = 0.09), respectively, after immunosuppression reduction. Conclusions Combination treatment incorporating adjuvant IVIG was more effective eliminating virus from BKVAN, compared with conventional therapy. Validation by multicenter

  14. Rational design and adaptive management of combination therapies for Hepatitis C virus infection

    DOE PAGES

    Ke, Ruian; Loverdo, Claude; Qi, Hangfei; ...

    2015-06-30

    Recent discoveries of direct acting antivirals against Hepatitis C virus (HCV) have raised hopes of effective treatment via combination therapies. Yet rapid evolution and high diversity of HCV populations, combined with the reality of suboptimal treatment adherence, make drug resistance a clinical and public health concern. We develop a general model incorporating viral dynamics and pharmacokinetics/ pharmacodynamics to assess how suboptimal adherence affects resistance development and clinical outcomes. We derive design principles and adaptive treatment strategies, identifying a high-risk period when missing doses is particularly risky for de novo resistance, and quantifying the number of additional doses needed to compensatemore » when doses are missed. Using data from large-scale resistance assays, we demonstrate that the risk of resistance can be reduced substantially by applying these principles to a combination therapy of daclatasvir and asunaprevir. By providing a mechanistic framework to link patient characteristics to the risk of resistance, these findings show the potential of rational treatment design.« less

  15. Rational design and adaptive management of combination therapies for Hepatitis C virus infection

    SciTech Connect

    Ke, Ruian; Loverdo, Claude; Qi, Hangfei; Sun, Ren; Lloyd-Smith, James O.; Kouyos, Roger Dimitri

    2015-06-30

    Recent discoveries of direct acting antivirals against Hepatitis C virus (HCV) have raised hopes of effective treatment via combination therapies. Yet rapid evolution and high diversity of HCV populations, combined with the reality of suboptimal treatment adherence, make drug resistance a clinical and public health concern. We develop a general model incorporating viral dynamics and pharmacokinetics/ pharmacodynamics to assess how suboptimal adherence affects resistance development and clinical outcomes. We derive design principles and adaptive treatment strategies, identifying a high-risk period when missing doses is particularly risky for de novo resistance, and quantifying the number of additional doses needed to compensate when doses are missed. Using data from large-scale resistance assays, we demonstrate that the risk of resistance can be reduced substantially by applying these principles to a combination therapy of daclatasvir and asunaprevir. By providing a mechanistic framework to link patient characteristics to the risk of resistance, these findings show the potential of rational treatment design.

  16. Identification of the Orthopoxvirus p4c Gene, Which Encodes a Structural Protein That Directs Intracellular Mature Virus Particles into A-Type Inclusions

    PubMed Central

    McKelvey, Terry A.; Andrews, Stanley C.; Miller, Sara E.; Ray, Caroline A.; Pickup, David J.

    2002-01-01

    The orthopoxvirus gene p4c has been identified in the genome of the vaccinia virus strain Western Reserve. This gene encodes the 58-kDa structural protein P4c present on the surfaces of the intracellular mature virus (IMV) particles. The gene is disrupted in the genome of cowpox virus Brighton Red (BR), demonstrating that although the P4c protein may be advantageous for virus replication in vivo, it is not essential for virus replication in vitro. Complementation and recombination analyses with the p4c gene have shown that the P4c protein is required to direct the IMV into the A-type inclusions (ATIs) produced by cowpox virus BR. The p4c gene is highly conserved among most members of the orthopoxvirus genus, including viruses that produce ATIs, such as cowpox, ectromelia, and raccoonpox viruses, as well as those such as variola, monkeypox, vaccinia, and camelpox viruses, which do not. The conservation of the p4c gene among the orthopoxviruses, irrespective of their capacities to produce ATIs, suggests that the P4c protein provides functions in addition to that of directing IMV into ATIs. These findings, and the presence of the P4c protein in IMV but not extracellular enveloped virus (D. Ulaeto, D. Grosenbach, and D. E. Hruby, J. Virol. 70:3372-3377, 1996), suggest a model in which the P4c protein may play a role in the retrograde movement of IMV particles, thereby contributing to the retention of IMV particles within the cytoplasm and within ATIs when they are present. In this way, the P4c protein may affect both viral morphogenesis and processes of virus dissemination. PMID:12388681

  17. Combination of Two Marek's Disease Virus Vectors Shows Effective Vaccination Against Marek's Disease, Infectious Bursal Disease, and Newcastle Disease.

    PubMed

    Ishihara, Yukari; Esaki, Motoyuki; Saitoh, Shuji; Yasuda, Atsushi

    2016-06-01

    Herpesvirus of turkeys (HVT) is a widely used vector for poultry vaccines. However, different HVTs expressing different foreign antigens cannot always be used simultaneously because of the risk of recombination and interference. In this study, we inoculated a mixture of an HVT-expressing the antigen of Newcastle disease virus (NDV; HVT/ND) and Marek's disease virus (MDV) serotype 1 Rispens virus expressing the antigen of infectious bursal disease virus (IBD; Ripens/IBD) into chickens. This mixture showed 94%, 100%, or 94% protection against MDV, IBDV, or NDV challenge, respectively. In conclusion, the combination of Rispens/IBD and HVT/ND is effective for vaccination against MDV, IBDV, and NDV without significant interference.

  18. [Antitumor research on mouse melanoma with combined application of Newcastle disease virus and its HN gene].

    PubMed

    Mi, Zhi-Qiang; Jin, Ning-Yi; Sun, Ying-Chun; Li, Xiao; Lian, Hai; Li, Jie; Guan, Guo-Fang

    2004-08-01

    Although Newcastle disease virus (NDV) shows antitumor effect on many tumors, its mechanism is unclear. Hemagglutinin-neuraminidase (HN) gene was found to play an important role in NDV antitumor effect and HN protein located on tumor cell surface. This research was to evaluate the possibility of HN protein as a foreign antigen of tumor cell and the antitumor effect of the combined application of HN gene and NDV. C57BL/6 mice were subcutaneously inoculated with 2 x 10(5) B16 tumor cells in the right hindlimb. Combination group: on 2nd day post-inoculation, the recombinant plasmid containing HN gene was injected intramuscularly in the left hindlimb; on 7th day post-inoculation, 2 x 10(9) pfu NDV was administrated intratumorally. The alone HN gene group, NDV group, and PBS control group were treated as above. The antitumor effect was observed through tumor suppression rate, the antitumor mechanisms were researched with specific cytotoxic T lymphocyte (CTL) assay, and the expression determination of HN protein, ICAM-I, and CD48 on the B16 tumor cells. The antitumor efficacy of the combined application of NDV and its HN gene increased compared with NDV,and its HN gene alone, the tumor suppression rates were 82.8%, 41.0%, and 56.6%; the specific CTL activity were 18.4%, 10.1%, and 4.4%, respectively. Furthermore, the expression of HN gene had been detected, and the expression of ICAM-I and CD48 were up-regulated on the tumor cells after NDV injection. HN protein located on the surface of tumor cells and mediated the specific repulsion to tumor cells; the antitumor efficacy increased after the combined application of NDV and its HN gene.

  19. Ledipasvir/sofosbuvir fixed-dose combination for treatment of hepatitis C virus genotype 4 infection.

    PubMed

    Nehra, V; Tan, E M; Rizza, S A; Temesgen, Z

    2016-02-01

    Hepatitis C virus (HCV) genotype 4 accounts for 8-13% of all chronic HCV infections worldwide. Patients with HCV genotype 4 have been reported to have poor treatment responses to PEGylated interferon and ribavirin regimens. Recently a single tablet, fixed-dose combination of sofosbuvir, an RNA-directed RNA polymerase (NS5B) inhibitor, and ledipasvir, a nonstructural protein 5A (NS5A) inhibitor, has been approved for treatment of chronic HCV infection. Two studies using the fixed-dose combination in chronic HCV genotype 4 for 12 weeks reported sustained virologic response rates at 12 weeks (SVR12) of 93-95%. Data also support the use of ledipasvir/sofosbuvir in chronic HCV genotype 4 and HIV co-infection. Administered as a single once-daily oral regimen, this ribavirin- and interferon-free regimen is well tolerated, with low potential for adverse effects and represents a significant advancement in the treatment of chronic HCV genotype 4 infection. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.

  20. The synergism of nucleoside antibiotics combined with guanine 7-N-oxide against a rhabdovirus, infectious hematopoietic necrosis virus (IHNV).

    PubMed

    Hasobe, M; Saneyoshi, M; Isono, K

    1986-09-01

    Guanine 7-N-oxide was shown to have synergistic activity in combination with neplanocin A against a rhabdovirus, infectious hematopoietic necrosis virus (IHNV), as reported previously. We examined further the antiviral activity of guanine 7-N-oxide in combination with other nucleoside antibiotics against IHNV. Synergism was seen between guanine 7-N-oxide and D-eritadenine or cordycepin. It is considered that compounds inhibiting RNA methylation show synergism with guanine 7-N-oxide.

  1. Slow CD4+ T-Cell Recovery in Human Immunodeficiency Virus/Hepatitis B Virus-Coinfected Patients Initiating Truvada-Based Combination Antiretroviral Therapy in Botswana

    PubMed Central

    Anderson, Motswedi; Gaseitsiwe, Simani; Moyo, Sikhulile; Thami, Kerapetse P.; Mohammed, Terence; Setlhare, Ditiro; Sebunya, Theresa K.; Powell, Eleanor A.; Makhema, Joseph; Blackard, Jason T.; Marlink, Richard; Essex, Max; Musonda, Rosemary M.

    2016-01-01

    Background. Hepatitis B virus (HBV) and human immunodeficiency virus (HIV) coinfection has emerged as an important cause of morbidity and mortality. We determined the response to Truvada-based first-line combination antiretroviral therapy (cART) in HIV/HBV-coinfected verus HIV-monoinfected patients in Botswana. Methods. Hepatitis B virus surface antigen (HBsAg), HBV e antigen (HBeAg), and HBV deoxyribonucleic acid (DNA) load were determined from baseline and follow-up visits in a longitudinal cART cohort of Truvada-based regimen. We assessed predictors of HBV serostatus and viral suppression (undetectable HBV DNA) using logistic regression techniques. Results. Of 300 participants, 28 were HBsAg positive, giving an HIV/HBV prevalence of 9.3% (95% confidence interval [CI], 6.3–13.2), and 5 of these, 17.9% (95% CI, 6.1–36.9), were HBeAg positive. There was a reduced CD4+ T-cell gain in HIV/HBV-coinfected compared with HIV-monoinfected patients. Hepatitis B virus surface antigen and HBeAg loss was 38% and 60%, respectively, at 24 months post-cART initiation. The HBV DNA suppression rates increased with time on cART from 54% to 75% in 6 and 24 months, respectively. Conclusions. Human immunodeficiency virus/HBV coinfection negatively affected immunologic recovery compared with HIV-1C monoinfection. Hepatitis B virus screening before cART initiation could help improve HBV/HIV treatment outcomes and help determine treatment options when there is a need to switch regimens. PMID:27800524

  2. Treating brain tumor–initiating cells using a combination of myxoma virus and rapamycin

    PubMed Central

    Zemp, Franz J.; Lun, Xueqing; McKenzie, Brienne A.; Zhou, Hongyuan; Maxwell, Lori; Sun, Beichen; Kelly, John J.P.; Stechishin, Owen; Luchman, Artee; Weiss, Samuel; Cairncross, J. Gregory; Hamilton, Mark G.; Rabinovich, Brian A.; Rahman, Masmudur M.; Mohamed, Mohamed R.; Smallwood, Sherin; Senger, Donna L.; Bell, John; McFadden, Grant; Forsyth, Peter A.

    2013-01-01

    Background Intratumoral heterogeneity in glioblastoma multiforme (GBM) poses a significant barrier to therapy in certain subpopulation such as the tumor-initiating cell population, being shown to be refractory to conventional therapies. Oncolytic virotherapy has the potential to target multiple compartments within the tumor and thus circumvent some of the barriers facing conventional therapies. In this study, we investigate the oncolytic potential of myxoma virus (MYXV) alone and in combination with rapamycin in vitro and in vivo using human brain tumor–initiating cells (BTICs). Methods We cultured fresh GBM specimens as neurospheres and assayed their growth characteristics in vivo. We then tested the susceptibility of BTICs to MYXV infection with or without rapamycin in vitro and assessed viral biodistribution/survival in vivo in orthotopic xenografts. Results The cultured neurospheres were found to retain stem cell markers in vivo, and they closely resembled human infiltrative GBM. In this study we determined that (i) all patient-derived BTICs tested, including those resistant to temozolomide, were susceptible to MYXV replication and killing in vitro; (ii) MYXV replicated within BTICs in vivo, and intratumoral administration of MYXV significantly prolonged survival of BTIC-bearing mice; (iii) combination therapy with MYXV and rapamycin improved antitumor activity, even in mice bearing “advanced” BTIC tumors; (iv) MYXV treatment decreased expression of stem cell markers in vitro and in vivo. Conclusions Our study suggests that MYXV in combination with rapamycin infects and kills both the BTICs and the differentiated compartments of GBM and may be an effective treatment even in TMZ-resistant patients. PMID:23585629

  3. Combined PCR-heteroduplex mobility assay for detection and differentiation of influenza A viruses from different animal species.

    PubMed

    Ellis, J S; Zambon, M C

    2001-11-01

    Transfer of influenza A viruses from animal hosts to man may lead to the emergence of new human pandemic strains. The early detection and identification of such events are therefore paramount in the surveillance of influenza viruses. To detect and partially characterize influenza A viruses from different animal species, a combined reverse transcription (RT)-PCR heteroduplex mobility assay (HMA) was designed. This M gene RT-PCR was shown to be sensitive and specific for the detection of human, avian, and swine influenza A viruses. PCR amplicons from human, avian, and swine viruses of 15 different subtypes, with between 1.9 and 21.4% nucleotide divergence, were differentiated by HMA. Sequencing of the amplicons showed that the heteroduplex mobility patterns correlated with the sequence divergence between test and reference DNA. The application of the RT-PCR HMA method for rapid screening of samples was assessed with a reference panel of viruses of human, avian, and swine origin. The avian H9N2 virus A/HongKong/1073/99, which crossed the species barrier to humans, was screened against the reference panel. It was found to be most closely related to the avian A/Quail/HongKong/G1/97 H9N2 reference PCR product. Sequence analysis showed a nucleotide divergence of 1.1% between the A/Quail/HongKong/G1/97 and A/HongKong/1073/99 amplicons. From the results of our work, we consider the RT-PCR HMA method described to offer a rapid and sensitive means for screening for novel or unusual influenza viruses.

  4. Combined PCR-Heteroduplex Mobility Assay for Detection and Differentiation of Influenza A Viruses from Different Animal Species

    PubMed Central

    Ellis, Joanna S.; Zambon, Maria C.

    2001-01-01

    Transfer of influenza A viruses from animal hosts to man may lead to the emergence of new human pandemic strains. The early detection and identification of such events are therefore paramount in the surveillance of influenza viruses. To detect and partially characterize influenza A viruses from different animal species, a combined reverse transcription (RT)-PCR heteroduplex mobility assay (HMA) was designed. This M gene RT-PCR was shown to be sensitive and specific for the detection of human, avian, and swine influenza A viruses. PCR amplicons from human, avian, and swine viruses of 15 different subtypes, with between 1.9 and 21.4% nucleotide divergence, were differentiated by HMA. Sequencing of the amplicons showed that the heteroduplex mobility patterns correlated with the sequence divergence between test and reference DNA. The application of the RT-PCR HMA method for rapid screening of samples was assessed with a reference panel of viruses of human, avian, and swine origin. The avian H9N2 virus A/HongKong/1073/99, which crossed the species barrier to humans, was screened against the reference panel. It was found to be most closely related to the avian A/Quail/HongKong/G1/97 H9N2 reference PCR product. Sequence analysis showed a nucleotide divergence of 1.1% between the A/Quail/HongKong/G1/97 and A/HongKong/1073/99 amplicons. From the results of our work, we consider the RT-PCR HMA method described to offer a rapid and sensitive means for screening for novel or unusual influenza viruses. PMID:11682536

  5. Combination treatment with hepatitis C virus protease and NS5A inhibitors is effective against recombinant genotype 1a, 2a, and 3a viruses.

    PubMed

    Gottwein, Judith M; Jensen, Sanne B; Li, Yi-Ping; Ghanem, Lubna; Scheel, Troels K H; Serre, Stéphanie B N; Mikkelsen, Lotte; Bukh, Jens

    2013-03-01

    With the development of directly acting antivirals, hepatitis C virus (HCV) therapy entered a new era. However, rapid selection of resistance mutations necessitates combination therapy. To study combination therapy in infectious culture systems, we aimed at developing HCV semi-full-length (semi-FL) recombinants relying only on the JFH1 NS3 helicase, NS5B, and the 3' untranslated region. With identified adaptive mutations, semi-FL recombinants of genotypes(isolates) 1a(TN) and 3a(S52) produced supernatant infectivity titers of ~4 log(10) focus-forming units/ml in Huh7.5 cells. Genotype 1a(TN) adaptive mutations allowed generation of 1a(H77) semi-FL virus. Concentration-response profiles revealed the higher efficacy of the NS3 protease inhibitor asunaprevir (BMS-650032) and the NS5A inhibitor daclatasvir (BMS-790052) against 1a(TN and H77) than 3a(S52) viruses. Asunaprevir had intermediate efficacy against previously developed 2a recombinants J6/JFH1 and J6cc. Daclatasvir had intermediate efficacy against J6/JFH1, while low sensitivity was confirmed against J6cc. Using a cross-titration scheme, infected cultures were treated until viral escape or on-treatment virologic suppression occurred. Compared to single-drug treatment, combination treatment with relatively low concentrations of asunaprevir and daclatasvir suppressed infection with all five recombinants. Escaped viruses primarily had substitutions at amino acids in the NS3 protease and NS5A domain I reported to be genotype 1 resistance mutations. Inhibitors showed synergism at drug concentrations reported in vivo. In summary, semi-FL HCV recombinants, including the most advanced reported genotype 3a infectious culture system, permitted genotype-specific analysis of combination treatment in the context of the complete viral life cycle. Despite differential sensitivity to lead compound NS3 protease and NS5A inhibitors, genotype 1a, 2a, and 3a viruses were suppressed by combination treatment with relatively low

  6. Liver damage and kinetics of hepatitis C virus and human immunodeficiency virus replication during the early phases of combination antiretroviral treatment.

    PubMed

    Puoti, M; Gargiulo, F; Quiros Roldan, E; Chiodera, A; Palvarini, L; Spinetti, A; Zaltron, S; Putzolu, V; Zanini, B; Favilli, F; Turano, A; Carosi, G

    2000-06-01

    In order to assess the relationship between human immunodeficiency virus (HIV) RNA, hepatitis C virus (HCV) RNA, CD4, CD8, and liver enzymes during combination antiretroviral therapy, these parameters were measured in 12 HIV-HCV-coinfected patients (who were naive for antiretrovirals) on the day before and 3, 7, 14, 28, 56, and 84 days after initiating the following treatments: stavudine and lamivudine in all patients, indinavir in 6 patients, and nevirapine in 6 patients. HIV RNA declined rapidly, CD4 cells increased slowly, and CD8 cells and liver enzymes were stable. HCV RNA showed a transient significant increase at days 14 and 21 (7.33+/-0.16 [mean +/- SE] and 7.29+/-0.2 log copies/mL vs. 7+/-0.2 log copies/mL at baseline; P<.05). These changes were similar in both treatment groups. A 2-fold alanine aminotransferase increase was observed in 4 of 12 patients; 4 of 4 patients showed increased HCV RNA. The relationship between HCV RNA increase and HIV RNA decrease indicates virus-virus interference. An HCV RNA increase may cause significant liver damage only in a minority of patients.

  7. Combination antiretroviral therapy and cell-cell spread of wild-type and drug-resistant human immunodeficiency virus-1.

    PubMed

    Titanji, Boghuma Kabisen; Pillay, Deenan; Jolly, Clare

    2017-04-01

    Human immunodeficiency virus-1 (HIV-1) disseminates between T cells either by cell-free infection or by highly efficient direct cell-cell spread. The high local multiplicity that characterizes cell-cell infection causes variability in the effectiveness of antiretroviral drugs applied as single agents. Whereas protease inhibitors (PIs) are effective inhibitors of HIV-1 cell-cell and cell-free infection, some reverse transcriptase inhibitors (RTIs) show reduced potency; however, antiretrovirals are not administered as single agents and are used clinically as combination antiretroviral therapy (cART). Here we explored the efficacy of PI- and RTI-based cART against cell-cell spread of wild-type and drug-resistant HIV-1 strains. Using a quantitative assay to measure cell-cell spread of HIV-1 between T cells, we evaluated the efficacy of different clinically relevant drug combinations. We show that combining PIs and RTIs improves the potency of inhibition of HIV-1 and effectively blocks both cell-free and cell-cell spread. Combining drugs that alone are poor inhibitors of cell-cell spread markedly improves HIV-1 inhibition, demonstrating that clinically relevant combinations of ART can inhibit this mode of HIV-1 spread. Furthermore, comparison of wild-type and drug-resistant viruses reveals that PI- and RTI-resistant viruses have a replicative advantage over wild-type virus when spreading by cell-cell means in the presence of cART, suggesting that in the context of inadequate drug combinations or drug resistance, cell-cell spread could potentially allow for ongoing viral replication.

  8. Combined Rod and Cone Transduction by Adeno-Associated Virus 2/8

    PubMed Central

    Manfredi, Anna; Marrocco, Elena; Puppo, Agostina; Cesi, Giulia; Sommella, Andrea; Della Corte, Michele; Rossi, Settimio; Giunti, Massimo; Craft, Cheryl M.; Bacci, Maria Laura; Simonelli, Francesca; Surace, Enrico M.

    2013-01-01

    Abstract Gene transfer to both cone and rod photoreceptors (PRs) is essential for gene therapy of inherited retinal degenerations that are caused by mutations in genes expressed in both PR types. Vectors based on the adeno-associated virus (AAV) efficiently transduce PRs of different species. However, these are predominantly rods and little is known about the ability of the AAV to transduce cones in combination with rods. Here we show that AAV2/8 transduces pig cones to levels that are similar to AAV2/9, and the outer nuclear layer (mainly rods) to levels that are on average higher, although not statistically significant, than both AAV2/5 and AAV2/9. We additionally found that the ubiquitous cytomegalovirus (CMV), but not the PR-specific GRK1 promoter, transduced pig cones efficiently, presumably because GRK1 is not expressed in pig cones as observed in mice and humans. Indeed, the GRK1 and CMV promoters transduce a similar percentage of murine cones with the CMV reaching the highest expression levels. Consistent with this, the AAV2/8 vectors with either the CMV or the GRK1 promoter restore cone function in a mouse model of Leber congenital amaurosis type 1 (LCA1), supporting the use of AAV2/8 for gene therapy of LCA1 as well as of other retinal diseases requiring gene transfer to both PR types. PMID:24067103

  9. Gene therapy model of X-linked severe combined immunodeficiency using a modified foamy virus vector.

    PubMed

    Horino, Satoshi; Uchiyama, Toru; So, Takanori; Nagashima, Hiroyuki; Sun, Shu-Lan; Sato, Miki; Asao, Atsuko; Haji, Yoichi; Sasahara, Yoji; Candotti, Fabio; Tsuchiya, Shigeru; Kure, Shigeo; Sugamura, Kazuo; Ishii, Naoto

    2013-01-01

    X-linked severe combined immunodeficiency (SCID-X1) is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc) gene, and characterized by a complete defect of T and natural killer (NK) cells. Gene therapy for SCID-X1 using conventional retroviral (RV) vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV) vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO) mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1.

  10. Impact of combined acute rejection on BK virus-associated nephropathy in kidney transplantation.

    PubMed

    Kim, Yoon Jung; Jeong, Jong Cheol; Koo, Tai Yeon; Kwon, Hyuk Yong; Han, Miyeun; Jeon, Hee Jung; Ahn, Curie; Yang, Jaeseok

    2013-12-01

    BK virus-associated nephropathy (BKVAN) is one of the major causes of allograft dysfunction in kidney transplant (KT) patients. We compared BKVAN combined with acute rejection (BKVAN/AR) with BKVAN alone in KT patients. We retrospectively analyzed biopsy-proven BKVAN in KT patients from 2000 to 2011 at Seoul National University Hospital. Among 414 biopsies from 951 patients, biopsy-proven BKVAN was found in 14 patients. Nine patients had BKVAN alone, while 5 patients had both BKVAN and acute cellular rejection. BKVAN in the BKVAN alone group was detected later than in BKVAN/AR group (21.77 vs 6.39 months after transplantation, P=0.03). Serum creatinine at diagnosis was similar (2.09 vs 2.00 mg/dL). Histological grade was more advanced in the BKVAN/AR group (P=0.034). Serum load of BKV, dose of immunosuppressants, and tacrolimus level showed a higher tendency in the BKVAN alone group; however it was not statistically significant. After anti-rejection therapy, immunosuppression was reduced in the BKVAN/AR group. Renal functional deterioration over 1 yr after BKVAN diagnosis was similar between the two groups (P=0.665). These findings suggest that the prognosis of BKVAN/AR after anti-rejection therapy followed by anti-BKV therapy might be similar to that of BKVAN alone after anti-BKV therapy.

  11. Gene Therapy Model of X-linked Severe Combined Immunodeficiency Using a Modified Foamy Virus Vector

    PubMed Central

    Horino, Satoshi; Uchiyama, Toru; So, Takanori; Nagashima, Hiroyuki; Sun, Shu-lan; Sato, Miki; Asao, Atsuko; Haji, Yoichi; Sasahara, Yoji; Candotti, Fabio; Tsuchiya, Shigeru; Kure, Shigeo; Sugamura, Kazuo; Ishii, Naoto

    2013-01-01

    X-linked severe combined immunodeficiency (SCID-X1) is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc) gene, and characterized by a complete defect of T and natural killer (NK) cells. Gene therapy for SCID-X1 using conventional retroviral (RV) vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV) vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO) mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1. PMID:23990961

  12. Control of equine infectious anemia virus replication following immune reconstitution in an Arabian foal with severe combined immunodeficiency

    PubMed Central

    Mealey, Robert H.; Fraser, Darrilyn G.; Oaks, J. Lindsay; Cantor, Glenn H.; McGuire, Travis C.

    2012-01-01

    Acute infection with equine infectious anemia virus (EIAV), a lentivirus of horses, results in a persistent high-level viremia in Arabian foals affected with severe combined immunodeficiency (SCID). This observation argues against the idea that the transient nature of acute lentiviral viremia is solely a function of viral population dynamics. To extend these studies, EIAV-specific immune reconstitution was attempted prior to EIAV challenge in 2 SCID foals, using adoptively transferred virus-stimulated lymphocytes derived from persistently EIAV-infected half sibling donors. Following transfer, lymphocyte engraftment occurred in 1 foal, and EIAV-specific cytotoxic T lymphocytes as well as neutralizing antibody activity developed. Following a brief period of plasma viremia in this foal, EIAV replication was controlled and plasma virus could not be detected by RT-PCR or culture. These results provide further direct evidence that a specific immune response is required for termination of plasma viremia in acute lentiviral infections. PMID:11683583

  13. Detection of hepatitis C virus RNA by a combined reverse transcription-polymerase chain reaction assay.

    PubMed Central

    Young, K K; Resnick, R M; Myers, T W

    1993-01-01

    Amplification of RNA by the polymerase chain reaction (PCR) is normally a two-step process requiring separate enzymes and buffer conditions. We describe a combined reverse transcription-PCR (RT-PCR) assay for hepatitis C virus (HCV) RNA amplification in which a single enzyme and buffer condition are used. In this assay, both the RT and PCR steps are carried out with the thermoactive DNA polymerase of Thermus thermophilus. A transcription vector containing HCV sequences has also been constructed to generate quantifiable HCV RNA templates that can be used to optimize reaction conditions and to assess the efficiency of amplification. Amplification from < or = 100 copies of RNA was detected reproducibly by gel electrophoresis. The assay sensitivity was increased to 10 RNA copies by hybridization to a probe. The patterns of viremia in three individuals infected with HCV were examined by amplification of HCV RNA from plasma samples collected serially over a period of 1 year. These results were correlated with the times of seroconversion and the onset of rise in levels of alanine aminotransferase in serum. In all three subjects, HCV RNA was detected prior to seroconversion and the initial rise in levels of alanine aminotransferase in serum. Upon seroconversion, HCV RNA fell to a level below the detection limit of the assay. This pattern of transient viremia appears to be characteristic of acute, resolving HCV infections. The combined RT-PCR assay is a sensitive method which circumvents the problems associated with PCR amplification of RNA. Using this assay, we demonstrated that three donors infected by the same index case all have similar patterns of viremia. Images PMID:8385151

  14. Lactic acidosis in patients with hepatitis C virus cirrhosis and combined ribavirin/sofosbuvir treatment.

    PubMed

    Welker, Martin-Walter; Luhne, Stefan; Lange, Christian M; Vermehren, Johannes; Farnik, Harald; Herrmann, Eva; Welzel, Tania; Zeuzem, Stefan; Sarrazin, Christoph

    2016-04-01

    Sofosbuvir (SOF) based interferon-alfa free antiviral therapy has become the treatment of choice for patients with chronic hepatitis C virus (HCV) infection. Little is known about safety of drug combinations using two nucleos(t)ide polymerase inhibitors in patients with HCV associated advanced cirrhosis. Here, we report frequent occurrence of lactic acidosis associated with acute-on-chronic hepatic decompensation during ribavirin (RBV) plus SOF based antiviral therapy. Thirty-five patients with chronic hepatitis C and advanced fibrosis, compensated cirrhosis, and decompensated cirrhosis without and after liver transplantation were treated with SOF based antiviral therapy with and without RBV. Adverse events including lactic acidosis (pH <7.35, lactate >20 mg/dl) were recorded 24 weeks before and during (mean ±SD, 18±11 weeks) antiviral therapy. Efficacy was determined by assessment of serum HCV RNA. We observed severe adverse events in 15/35 (43%) patients before (24 weeks) and in 12/35 (34%) patients during antiviral therapy, the majority in association with acute-on-chronic hepatic decompensation. Lactic acidosis occurred in 5/35 (14%) patients during therapy, while no event of lactic acidosis was observed prior to therapy. Lactic acidosis was associated with hepatic decompensation including renal failure and infection, and was severe (pH <7.3) in two patients. RBV in combination with SOF based antiviral therapy in patients with HCV associated advanced cirrhosis may be associated with the development of lactic acidosis. Impaired renal function, and higher MELD/Child-Pugh scores were identified as potential risk factors. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  15. An Investigative Peptide–Acyclovir Combination to Control Herpes Simplex Virus Type 1 Ocular Infection

    PubMed Central

    Park, Paul J.; Antoine, Thessicar E.; Farooq, Asim V.; Valyi-Nagy, Tibor; Shukla, Deepak

    2013-01-01

    Purpose. To investigate the efficacy of a combination treatment composed of the cationic, membrane-penetrating peptide G2, and acyclovir (ACV) in both in vitro and ex vivo models of herpes simplex virus 1 (HSV-1) ocular infection. Methods. The antiviral activity of a combined G2 peptide and ACV therapy (G2-ACV) was assessed in various treatment models. Viral entry, spread, and plaque assays were performed in vitro to assess the prophylactic efficacy of G2, G2-ACV, and ACV treatments. In the ex vivo model of HSV-1 infection, the level of viral inhibition was also compared among the three treatment groups via Western blot analysis and immunohistochemistry. The potential change in expression of the target receptor for G2 was also assessed using immunohistochemistry and RT-PCR. Results. Statistically significant effects against HSV-1 infection were seen in all treatment groups in the viral entry, spread, and plaque assays. The greatest effects against HSV-1 infection in vitro were seen in the G2-ACV group. In the ex vivo model, statistically significant anti–HSV-1 effects were also noted in all control groups. At 24 hours, the greatest inhibitory effect against HSV-1 infection was seen in the ACV group. At 48 hours, however, the G2-ACV–treated group demonstrated the greatest antiviral activity. Syndecan-1, a target of G2, was found to be upregulated at 12-hours postinfection. Conclusions. This study shows that G2-ACV may be an effective antiviral against HSV-1 (KOS) strain when applied as single prophylactic applications with or without continuous doses postinfection. PMID:23989188

  16. An investigative peptide-acyclovir combination to control herpes simplex virus type 1 ocular infection.

    PubMed

    Park, Paul J; Antoine, Thessicar E; Farooq, Asim V; Valyi-Nagy, Tibor; Shukla, Deepak

    2013-09-27

    To investigate the efficacy of a combination treatment composed of the cationic, membrane-penetrating peptide G2, and acyclovir (ACV) in both in vitro and ex vivo models of herpes simplex virus 1 (HSV-1) ocular infection. The antiviral activity of a combined G2 peptide and ACV therapy (G2-ACV) was assessed in various treatment models. Viral entry, spread, and plaque assays were performed in vitro to assess the prophylactic efficacy of G2, G2-ACV, and ACV treatments. In the ex vivo model of HSV-1 infection, the level of viral inhibition was also compared among the three treatment groups via Western blot analysis and immunohistochemistry. The potential change in expression of the target receptor for G2 was also assessed using immunohistochemistry and RT-PCR. Statistically significant effects against HSV-1 infection were seen in all treatment groups in the viral entry, spread, and plaque assays. The greatest effects against HSV-1 infection in vitro were seen in the G2-ACV group. In the ex vivo model, statistically significant anti-HSV-1 effects were also noted in all control groups. At 24 hours, the greatest inhibitory effect against HSV-1 infection was seen in the ACV group. At 48 hours, however, the G2-ACV-treated group demonstrated the greatest antiviral activity. Syndecan-1, a target of G2, was found to be upregulated at 12-hours postinfection. This study shows that G2-ACV may be an effective antiviral against HSV-1 (KOS) strain when applied as single prophylactic applications with or without continuous doses postinfection.

  17. Baculovirus-expressed virus-like particle vaccine in combination with DNA encoding the fusion protein confers protection against respiratory syncytial virus

    PubMed Central

    Lee, Jong Seok; Kwon, Young-Man; Hwang, Hye Suk; Lee, Yu-Na; Ko, Eun-Ju; Yoo, Si-Eun; Kim, Min-Chul; Kim, Ki-Hye; Cho, Min-Kyoung; Lee, Young-Tae; Lee, You Ri; Quan, Fu-Shi; Kang, Sang-Moo

    2014-01-01

    Respiratory syncytial virus (RSV) is a major viral agent causing significant morbidity and mortality in young infants and the elderly. There is no licensed vaccine against RSV and it is a high priority to develop a safe RSV vaccine. We determined the immunogenicity and protective efficacy of combined virus-like particle and DNA vaccines presenting RSV glycoproteins (Fd.VLP) in comparison with formalin inactivated RSV (FI-RSV). Immunization of mice with Fd.VLP induced higher ratios of IgG2a/IgG1 antibody responses compared to those with FI-RSV. Upon live RSV challenge, Fd.VLP and FI-RSV vaccines were similarly effective in clearing lung viral loads. However, FI-RSV immunized mice showed a substantial weight loss and high levels of T helper type 2 (Th2) cytokines as well as extensive lung histopathology and eosinophil infiltration. In contrast, Fd.VLP immunized mice did not exhibit Th2 type cytokines locally and systemically, which might contribute to preventing vaccine-associated RSV lung disease. These results indicate that virus-like particles in combination with DNA vaccines represent a potential approach for developing a safe and effective RSV vaccine. PMID:25173478

  18. Baculovirus-expressed virus-like particle vaccine in combination with DNA encoding the fusion protein confers protection against respiratory syncytial virus.

    PubMed

    Lee, Jong Seok; Kwon, Young-Man; Hwang, Hye Suk; Lee, Yu-Na; Ko, Eun-Ju; Yoo, Si-Eun; Kim, Min-Chul; Kim, Ki-Hye; Cho, Min Kyoung; Lee, Young-Tae; Lee, You Ri; Quan, Fu-Shi; Kang, Sang-Moo

    2014-10-07

    Respiratory syncytial virus (RSV) is a major viral agent causing significant morbidity and mortality in young infants and the elderly. There is no licensed vaccine against RSV and it is a high priority to develop a safe RSV vaccine. We determined the immunogenicity and protective efficacy of combined virus-like particle and DNA vaccines presenting RSV glycoproteins (Fd.VLP) in comparison with formalin inactivated RSV (FI-RSV). Immunization of mice with Fd.VLP induced higher ratios of IgG2a/IgG1 antibody responses compared to those with FI-RSV. Upon live RSV challenge, Fd.VLP and FI-RSV vaccines were similarly effective in clearing lung viral loads. However, FI-RSV immunized mice showed a substantial weight loss and high levels of T helper type 2 (Th2) cytokines as well as extensive lung histopathology and eosinophil infiltration. In contrast, Fd.VLP immunized mice did not exhibit Th2 type cytokines locally and systemically, which might contribute to preventing vaccine-associated RSV lung disease. These results indicate that virus-like particles in combination with DNA vaccines represent a potential approach for developing a safe and effective RSV vaccine.

  19. Companion Animals as a Source of Viruses for Human Beings and Food Production Animals.

    PubMed

    Reperant, L A; Brown, I H; Haenen, O L; de Jong, M D; Osterhaus, A D M E; Papa, A; Rimstad, E; Valarcher, J-F; Kuiken, T

    2016-07-01

    Companion animals comprise a wide variety of species, including dogs, cats, horses, ferrets, guinea pigs, reptiles, birds and ornamental fish, as well as food production animal species, such as domestic pigs, kept as companion animals. Despite their prominent place in human society, little is known about the role of companion animals as sources of viruses for people and food production animals. Therefore, we reviewed the literature for accounts of infections of companion animals by zoonotic viruses and viruses of food production animals, and prioritized these viruses in terms of human health and economic importance. In total, 138 virus species reportedly capable of infecting companion animals were of concern for human and food production animal health: 59 of these viruses were infectious for human beings, 135 were infectious for food production mammals and birds, and 22 were infectious for food production fishes. Viruses of highest concern for human health included hantaviruses, Tahyna virus, rabies virus, West Nile virus, tick-borne encephalitis virus, Crimean-Congo haemorrhagic fever virus, Aichi virus, European bat lyssavirus, hepatitis E virus, cowpox virus, G5 rotavirus, influenza A virus and lymphocytic choriomeningitis virus. Viruses of highest concern for food production mammals and birds included bluetongue virus, African swine fever virus, foot-and-mouth disease virus, lumpy skin disease virus, Rift Valley fever virus, porcine circovirus, classical swine fever virus, equine herpesvirus 9, peste des petits ruminants virus and equine infectious anaemia virus. Viruses of highest concern for food production fishes included cyprinid herpesvirus 3 (koi herpesvirus), viral haemorrhagic septicaemia virus and infectious pancreatic necrosis virus. Of particular concern as sources of zoonotic or food production animal viruses were domestic carnivores, rodents and food production animals kept as companion animals. The current list of viruses provides an objective

  20. Mitochondrial alternative oxidase is involved in both compatible and incompatible host-virus combinations in Nicotiana benthamiana.

    PubMed

    Zhu, Feng; Deng, Xing-Guang; Xu, Fei; Jian, Wei; Peng, Xing-Ji; Zhu, Tong; Xi, De-Hui; Lin, Hong-Hui

    2015-10-01

    The alternative oxidase (AOX) functions in the resistance to biotic stress. However, the mechanisms of AOX in the systemic antiviral defense response and N (a typical resistance gene)-mediated resistance to Tobacco mosaic virus (TMV) are elusive. A chemical approach was undertaken to investigate the role of NbAOX in the systemic resistance to RNA viruses. Furthermore, we used a virus-induced gene-silencing (VIGS)-based genetics approach to investigate the function of AOX in the N-mediated resistance to TMV. The inoculation of virus significantly increased the NbAOX transcript and protein levels and the cyanide-resistant respiration in the upper un-inoculated leaves. Pretreatment with potassium cyanide greatly increased the plant's systemic resistance, whereas the application of salicylhydroxamic acid significantly compromised the plant's systemic resistance. Additionally, in NbAOX1a-silenced N-transgenic Nicotiana benthamiana plants, the inoculated leaf collapsed and the movement of TMV into the systemic tissue eventually led to the spreading of HR-PCD and the death of the whole plant. The hypersensitive response marker gene HIN1 was significantly increased in the NbAOX1a-silenced plants. Significant amounts of TMV-CP mRNA and protein were detected in the NbAOX1a-silenced plants but not in the control plants. Overall, evidence is provided that AOX plays important roles in both compatible and incompatible plant-virus combinations.

  1. Broad-spectrum antiviral activity including human immunodeficiency and hepatitis C viruses mediated by a novel retinoid thiosemicarbazone derivative.

    PubMed

    Kesel, Andreas J

    2011-05-01

    Aromatic aldehyde-derived thiosemicarbazones 4-6, the S-substituted modified thiosemicarbazones 7/8, and a vitamin A-derived (retinoid) thiosemicarbazone derivative 12 were investigated as inhibitors of human hepatitis C virus (HCV) subgenomic RNA replicon Huh7 ET (luc-ubi-neo/ET) replication. Compounds 4-6 and 12 were found to be potent suppressors of HCV RNA replicon replication. The trifluoromethoxy-substituted thiosemicarbazone 6 and the retinoid thiosemicarbazone derivative 12 were even superior in selectivity to the included reference agent recombinant human alpha-interferon-2b, showing potencies in the nanomolar range of concentration. In addition, compounds 5, 6, 8 and 12 were tested as inhibitors of cytopathic effect (CPE) induced by human varicella-zoster virus (VZV) and/or human cytomegalovirus (HCMV). Compounds 4-6, 8 and 12 were additionally examined as inhibitors of CPE induced by cowpox virus and vaccinia virus. Thiosemicarbazone 4 was inhibitory on cowpox and vaccinia virus replication comparable in potency and selectivity to the reference agent cidofovir. Retinoid thiosemicarbazone derivative 12 was active as micromolar inhibitor of VZV, HCMV, and, in addition, human immunodeficiency virus type 1 (HIV-1) replication. These results indicate that thiosemicarbazone derivatives are appropriate lead structures to be evaluated in targeted antiviral therapies for hepatitis C (STAT-C), and that the vitamin A-related thiosemicarbazone derivative 12 emerges as a broad-spectrum antiviral agent, co-suppressing the multiplication of important RNA and DNA viruses.

  2. Fatal combined infection with canine distemper virus and orthopoxvirus in a group of Asian marmots (Marmota caudata).

    PubMed

    Origgi, F C; Sattler, U; Pilo, P; Waldvogel, A S

    2013-09-01

    A fatal combined infection with canine distemper virus (CDV) and orthopoxvirus (OPXV) in Asian marmots (Marmota caudata) is reported in this article. A total of 7 Asian marmots from a small zoological garden in Switzerland were found dead in hibernation during a routine check in the winter of 2011. The marmots died in February 2011. No clinical signs of disease were observed at any time. The viruses were detected in all individuals for which the tissues were available (n = 3). Detection of the viruses was performed by reverse transcription polymerase chain reaction. The most consistent gross lesion was a neck and thorax edema. A necrotizing pharyngitis and a multifocal necrotizing pneumonia were observed histologically. Numerous large intracytoplasmic eosinophilic inclusions were seen in the epithelial cells of the pharynx, of the airways, and in the skin keratinocytes. Brain lesions were limited to mild multifocal gliosis. Phylogenetic analysis revealed that the marmot CDV strain was closely related to the clusters of CDVs detected in Switzerland in wild carnivores during a local outbreak in 2002 and the 2009-2010 nationwide epidemic, suggesting a spillover of this virus from wildlife. The OPXV was most closely related to a strain of cowpoxvirus, a poxvirus species considered endemic in Europe. This is the first reported instance of CDV infection in a rodent species and of a combined CDV and OPXV infection.

  3. Evaluation of radiation effects against C6 glioma in combination with vaccinia virus-p53 gene therapy

    NASA Technical Reports Server (NTRS)

    Gridley, D. S.; Andres, M. L.; Li, J.; Timiryasova, T.; Chen, B.; Fodor, I.; Nelson, G. A. (Principal Investigator)

    1998-01-01

    The primary objective of this study was to evaluate the antitumor effects of recombinant vaccinia virus-p53 (rVV-p53) in combination with radiation therapy against the C6 rat glioma, a p53 deficient tumor that is relatively radioresistant. VV-LIVP, the parental virus (Lister strain), was used as a control. Localized treatment of subcutaneous C6 tumors in athymic mice with either rVV-p53 or VV-LIVP together with tumor irradiation resulted in low tumor incidence and significantly slower tumor progression compared to the agents given as single modalities. Assays of blood and spleen indicated that immune system activation may account, at least partly, for the enhance tumor inhibition seen with combined treatment. No overt signs of treatment-related toxicity were noted.

  4. Evaluation of radiation effects against C6 glioma in combination with vaccinia virus-p53 gene therapy

    NASA Technical Reports Server (NTRS)

    Gridley, D. S.; Andres, M. L.; Li, J.; Timiryasova, T.; Chen, B.; Fodor, I.; Nelson, G. A. (Principal Investigator)

    1998-01-01

    The primary objective of this study was to evaluate the antitumor effects of recombinant vaccinia virus-p53 (rVV-p53) in combination with radiation therapy against the C6 rat glioma, a p53 deficient tumor that is relatively radioresistant. VV-LIVP, the parental virus (Lister strain), was used as a control. Localized treatment of subcutaneous C6 tumors in athymic mice with either rVV-p53 or VV-LIVP together with tumor irradiation resulted in low tumor incidence and significantly slower tumor progression compared to the agents given as single modalities. Assays of blood and spleen indicated that immune system activation may account, at least partly, for the enhance tumor inhibition seen with combined treatment. No overt signs of treatment-related toxicity were noted.

  5. Tobacco mosaic virus disassembly by high hydrostatic pressure in combination with urea and low temperature.

    PubMed

    Bonafe, C F; Vital, C M; Telles, R C; Gonçalves, M C; Matsuura, M S; Pessine, F B; Freitas, D R; Vega, J

    1998-08-04

    We investigated the effect of low temperature and urea combined with high pressure on tobacco mosaic virus (TMV). The evaluation of its aggregation state and denaturation process was studied using gel filtration, transmission electron microscopy, and spectroscopic methods. The incubation at 2.5 kbar induced 18% dissociation, and decreasing of temperature to -19 degreesC promoted additional dissociation to 72%, with stabilization of the dissociation products. Under such conditions, extensive denaturation did not occur. The apparent enthalpy and entropy of dissociation (Delta and TDelta) were -9.04 kcal/mol subunit and -15.1 kcal/mol subunit, respectively, indicating that the TMV association is an entropicly driven process. The apparent free energy of stabilization given by the presence of RNA is at least -1.7 kcal/mol subunit. Urea-induced dissociation of TMV samples and incubation at high-pressure promoted a higher degree of dissociation. The volume change of dissociation decreased in magnitude from -16.3 to -3.1 mL/mol of dissociated subunit, respectively, in the absence and presence of 2.5 M urea, suggesting exposure of the protein-protein interface to the solvent. High-pressure induced remarkable TMV denaturation in the presence of 2.5 M urea, with a volume change of -101 mL/mol of denatured subunit. The apparent enthalpy and entropy of denaturation (Delta and TDelta) by 1.75 M urea at 2.5 kbar was -11.1 and -10.2 kcal/mol subunit, respectively, demonstrating that the TMV protein coat presents an apparent free energy of denaturation by urea close to zero. Although the processes could not be assumed to be pure equilibria, these thermodynamic parameters could be derived by assuming a steady-state condition.

  6. Significant increase in titer of Raspberry bushy dwarf virus when present in combination with Raspberry leaf mottle virus and its effect on raspberry plants

    USDA-ARS?s Scientific Manuscript database

    Raspberry crumbly fruit is a virus-induced disease widespread in the Pacific Northwest (PNW). Raspberry bushy dwarf virus (RBDV) has been attributed as the causal agent of the disease. Recently, the identification of two new viruses: Raspberry leaf mottle virus (RLMV) and Raspberry latent virus (RpL...

  7. Prime-boost using Separate Oncolytic Viruses in Combination with Checkpoint Blockade Improves Anti-tumor Therapy

    PubMed Central

    Ilett, Elizabeth; Kottke, Timothy; Thompson, Jill; Rajani, Karishma; Zaidi, Shane; Evgin, Laura; Coffey, Matt; Ralph, Christy; Diaz, Rosa; Pandha, Hardev; Harrington, Kevin; Selby, Peter; Bram, Richard; Melcher, Alan; Vile, Richard

    2017-01-01

    The anti-tumor effects associated with oncolytic virus therapy are mediated significantly through immune-mediated mechanisms which depends both on the type of virus and the route of delivery. Here, we show that intra-tumoral (i.t.) oncolysis by Reovirus induced the priming of a CD8+, Th1-type anti-tumor response. In contrast, systemically delivered VSV expressing a cDNA library of melanoma antigens (VSV-ASMEL) promoted a potent anti-tumor CD4+ Th17 response. Therefore, we hypothesised that combining the Reovirus-induced CD8+ T cell response, with the VSV-ASMEL CD4+ Th17 helper response, would produce enhanced anti-tumor activity. Consistent with this, priming with i.t. Reovirus, followed by an intra-venous VSV-ASMEL Th17 boost, significantly improved survival of mice bearing established subcutaneous (s.c.) B16 melanoma tumors. We also show that combination of either therapy alone with anti-PD-1 immune checkpoint blockade augmented both the Th1 response induced by systemically delivered Reovirus in combination with GM-CSF, and also the Th17 response induced by VSV-ASMEL. Significantly, anti-PD-1 also uncovered an anti-tumor Th1 response following VSV-ASMEL treatment that was not seen in the absence of checkpoint blockade. Finally, the combination of all three treatments (priming with systemically delivered Reovirus, followed by double boosting with systemic VSV-ASMEL and anti-PD-1) significantly enhanced survival, with long-term cures, compared to any individual, or double, combination therapies, associated with strong Th1 and Th17 responses to tumor antigens. Our data show that it is possible to generate fully systemic, highly effective anti-tumor immunovirotherapy by combining oncolytic viruses, along with immune checkpoint blockade, to induce complimentary mechanisms of anti-tumor immune responses. PMID:27779616

  8. A Combination of Serological Assays to Detect Human Antibodies to the Avian Influenza A H7N9 Virus

    PubMed Central

    Gao, Rongbao; Dong, Jie; Zhang, Ye; Guo, Junfeng; Zou, Shumei; Zhou, Jianfang; Zhu, Yun; Xin, Li; Li, Xiaodan; Xu, Cuiling; Wang, Dayan; Shu, Yuelong

    2014-01-01

    Human infection with avian influenza A H7N9 virus was first identified in March 2013 and represents an ongoing threat to public health. There is a need to optimize serological methods for this new influenza virus. Here, we compared the sensitivity and specificity of the hemagglutinin inhibition (HI), microneutralization (MN), and Western blot (WB) assays for the detection of human antibodies against avian influenza A (H7N9) virus. HI with horse erythrocytes (hRBCs) and a modified MN assay possessed greater sensitivity than turkey erythrocytes and the standard MN assay, respectively. Using these assays, 80% of tested sera from confirmed H7N9 cases developed detectable antibody to H7N9 after 21 days. To balance sensitivity and specificity, we found serum titers of ≥20 (MN) or 160 (HI) samples were most effective in determining seropositive to H7N9 virus. Single serum with HI titers of 20–80 or MN titer of 10 could be validated by each other or WB assay. Unlike serum collected from adult or elderly populations, the antibody response in children with mild disease was low or undetectable. These combinations of assays will be useful in case diagnosis and serologic investigation of human cases. PMID:24755627

  9. Using a bioaerosol personal sampler in combination with real-time PCR analysis for rapid detection of airborne viruses.

    PubMed

    Pyankov, Oleg V; Agranovski, Igor E; Pyankova, Olga; Mokhonova, Ekaterina; Mokhonov, Vlad; Safatov, Alexander S; Khromykh, Alexander A

    2007-04-01

    We have recently developed a new personal sampler and demonstrated its feasibility for detection of viable airborne microorganisms including bacteria, fungi and viruses. To accelerate the time-consuming analytical procedure involving 2-5 days of biological testing, we employed a real-time PCR protocol in conjunction with the personal sampler for collection of airborne viruses. The advantage of this approach is that if the presence of a particular pathogen in the air is detected by the PCR, the remaining collecting liquid can be further analysed by more time-consuming biological methods to estimate the number of airborne infectious/live microorganisms. As sampling of bioaerosols in natural environments is likely to be associated with substantial contamination by a range of microorganisms commonly existing in an ambient air, an investigation of the specificity of detection by targeted PCR analysis is required. Here we present the results of the study on the detection of Influenza virus in the ambient air contaminated with high concentrations of bacteria and fungi using real-time PCR protocol. The combined sampling PCR detection method was found to be fully feasible for the rapid ( approximately 2.5 h) and highly specific (no cross-reactivity) identification of the labile airborne virus in the air containing elevated concentrations of other microorganisms.

  10. Elevated Plasma Viral Loads in Romidepsin-Treated Simian Immunodeficiency Virus-Infected Rhesus Macaques on Suppressive Combination Antiretroviral Therapy

    PubMed Central

    Del Prete, Gregory Q.; Oswald, Kelli; Lara, Abigail; Shoemaker, Rebecca; Smedley, Jeremy; Macallister, Rhonda; Coalter, Vicky; Wiles, Adam; Wiles, Rodney; Li, Yuan; Fast, Randy; Kiser, Rebecca; Lu, Bing; Zheng, Jim; Alvord, W. Gregory; Trubey, Charles M.; Piatak, Michael; Deleage, Claire; Keele, Brandon F.; Estes, Jacob D.; Hesselgesser, Joseph; Geleziunas, Romas

    2015-01-01

    Replication-competent human immunodeficiency virus (HIV) persists in infected people despite suppressive combination antiretroviral therapy (cART), and it represents a major obstacle to HIV functional cure or eradication. We have developed a model of cART-mediated viral suppression in simian human immunodeficiency virus (SIV) mac239-infected Indian rhesus macaques and evaluated the impact of the histone deacetylase inhibitor (HDACi) romidepsin (RMD) on viremia in vivo. Eight macaques virologically suppressed to clinically relevant levels (<30 viral RNA copies/ml of plasma), using a three-class five-drug cART regimen, received multiple intravenous infusions of either RMD (n = 5) or saline (n = 3) starting 31 to 54 weeks after cART initiation. In vivo RMD treatment resulted in significant transient increases in acetylated histone levels in CD4+ T cells. RMD-treated animals demonstrated plasma viral load measurements for each 2-week treatment cycle that were significantly higher than those in saline control-treated animals during periods of treatment, suggestive of RMD-induced viral reactivation. However, plasma virus rebound was indistinguishable between RMD-treated and control-treated animals for a subset of animals released from cART. These findings suggest that HDACi drugs, such as RMD, can reactivate residual virus in the presence of suppressive antiviral therapy and may be a valuable component of a comprehensive HIV functional cure/eradication strategy. PMID:26711758

  11. Viruses

    USDA-ARS?s Scientific Manuscript database

    Lytic bacteriophages, viruses which infect and lyse bacterial cells, can provide a natural method to reduce bacterial pathogens on produce commodities. The use of multi-phage cocktails is most likely to be effective against bacterial pathogens on produce commodities, and minimize the development of...

  12. Efficacy and Safety of Tenofovir and Lamivudine in Combination with Efavirenz in Patients Co-infected with Human Immunodeficiency Virus and Hepatitis B Virus in China

    PubMed Central

    Wu, Ya-Song; Zhang, Wei-Wei; Ling, Xue-Mei; Yang, Lian; Huang, Shao-Biao; Wang, Xi-Cheng; Wu, Hao; Cai, Wei-Ping; Wang, Min; Wang, Hui; Liu, Yan-Fen; He, Hao-Lan; Wei, Fei-Li; Wu, Zun-You; Zhang, Fu-Jie

    2016-01-01

    Background: The prevalence of hepatitis B virus (HBV) infection is high among individuals infected with human immunodeficiency virus (HIV) in China. Both HIV and HBV can be treated with tenofovir disoproxil fumarate (TDF) and lamivudine (3TC), so we evaluated the safety and efficacy of combination antiretroviral therapy (ART) that included TDF, 3TC, and efavirenz (EFV) among ART-naive individuals who were co-infected with HIV and HBV. Methods: One hundred HIV/HBV co-infected ARV-naive individuals were started on the regimen of TDF, 3TC, and EFV, and the levels of plasma HBV DNA, HIV RNA, and biochemical evaluation related to the function of liver and kidney were analyzed. Results: Concerning efficacy, this study found that by week 48, the vast majority co-infected participants receiving this ART regimen had undetectable HBV DNA levels (71%) and/or HIV RNA levels (90%). Concerning safety, this study found that the median estimated glomerular filtration rate of participants decreased from baseline (109 ml·min−1·1.73 m−2) to week 12 (104 ml·min−1·1.73 m−2) but was almost back to baseline at week 48 (111 ml·min−1·1.73 m−2). Conclusion: This combination ART regimen is safe and effective for patients with HIV/HBV co-infection. Trial Registration: ClinicalTrials.gov, NCT01751555; https://clinicaltrials.gov/ct2/show/NCT01751555. PMID:26831232

  13. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    SciTech Connect

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin; Lee, Jong Seok; Kim, Yu-Jin; Lee, Yu-Na; Kim, Min-Chul; Cho, Minkyoung; Kang, Sang-Moo

    2016-07-15

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.

  14. Genome of Horsepox Virus

    PubMed Central

    Tulman, E. R.; Delhon, G.; Afonso, C. L.; Lu, Z.; Zsak, L.; Sandybaev, N. T.; Kerembekova, U. Z.; Zaitsev, V. L.; Kutish, G. F.; Rock, D. L.

    2006-01-01

    Here we present the genomic sequence of horsepox virus (HSPV) isolate MNR-76, an orthopoxvirus (OPV) isolated in 1976 from diseased Mongolian horses. The 212-kbp genome contained 7.5-kbp inverted terminal repeats and lacked extensive terminal tandem repetition. HSPV contained 236 open reading frames (ORFs) with similarity to those in other OPVs, with those in the central 100-kbp region most conserved relative to other OPVs. Phylogenetic analysis of the conserved region indicated that HSPV is closely related to sequenced isolates of vaccinia virus (VACV) and rabbitpox virus, clearly grouping together these VACV-like viruses. Fifty-four HSPV ORFs likely represented fragments of 25 orthologous OPV genes, including in the central region the only known fragmented form of an OPV ribonucleotide reductase large subunit gene. In terminal genomic regions, HSPV lacked full-length homologues of genes variably fragmented in other VACV-like viruses but was unique in fragmentation of the homologue of VACV strain Copenhagen B6R, a gene intact in other known VACV-like viruses. Notably, HSPV contained in terminal genomic regions 17 kbp of OPV-like sequence absent in known VACV-like viruses, including fragments of genes intact in other OPVs and approximately 1.4 kb of sequence present only in cowpox virus (CPXV). HSPV also contained seven full-length genes fragmented or missing in other VACV-like viruses, including intact homologues of the CPXV strain GRI-90 D2L/I4R CrmB and D13L CD30-like tumor necrosis factor receptors, D3L/I3R and C1L ankyrin repeat proteins, B19R kelch-like protein, D7L BTB/POZ domain protein, and B22R variola virus B22R-like protein. These results indicated that HSPV contains unique genomic features likely contributing to a unique virulence/host range phenotype. They also indicated that while closely related to known VACV-like viruses, HSPV contains additional, potentially ancestral sequences absent in other VACV-like viruses. PMID:16940536

  15. Enhanced efficacy of cidofovir combined with vaccinia immune globulin in treating progressive cutaneous vaccinia virus infections in immunosuppressed hairless mice.

    PubMed

    Smee, Donald F; Dagley, Ashley; Downs, Brittney; Hagloch, Joseph; Tarbet, E Bart

    2015-01-01

    The treatment of progressive vaccinia in individuals has involved antiviral drugs, such as cidofovir (CDV), brincidofovir, and/or tecovirimat, combined with vaccinia immune globulin (VIG). VIG is costly, and its supply is limited, so sparing the use of VIG during treatment is an important objective. VIG sparing was modeled in immunosuppressed mice by maximizing the treatment benefits of CDV combined with VIG to determine the effective treatments that delayed the time to death, reduced cutaneous lesion severity, and/or decreased tissue viral titers. SKH-1 hairless mice immunosuppressed with cyclophosphamide and hairless SCID mice (SHO strain) were infected cutaneously with vaccinia virus. Monotherapy, dual combinations (CDV plus VIG), or triple therapy (topical CDV, parenteral CDV, and VIG) were initiated 2 days postinfection and were given every 3 to 4 days through day 11. The efficacy assessment included survival rate, cutaneous lesion severity, and viral titers. Delays in the time to death and the reduction in lesion severity occurred in the following order of efficacy: triple therapy had greater efficacy than double combinations (CDV plus VIG or topical plus parenteral CDV), which had greater efficacy than VIG alone. Parenteral administration of CDV or VIG was necessary to suppress virus titers in internal organs (liver, lung, and spleen). The skin viral titers were significantly reduced by triple therapy only. The greatest efficacy was achieved by triple therapy. In humans, this regimen should translate to a faster cure rate, thus sparing the amount of VIG used for treatment.

  16. Enhanced Efficacy of Cidofovir Combined with Vaccinia Immune Globulin in Treating Progressive Cutaneous Vaccinia Virus Infections in Immunosuppressed Hairless Mice

    PubMed Central

    Dagley, Ashley; Downs, Brittney; Hagloch, Joseph; Tarbet, E. Bart

    2014-01-01

    The treatment of progressive vaccinia in individuals has involved antiviral drugs, such as cidofovir (CDV), brincidofovir, and/or tecovirimat, combined with vaccinia immune globulin (VIG). VIG is costly, and its supply is limited, so sparing the use of VIG during treatment is an important objective. VIG sparing was modeled in immunosuppressed mice by maximizing the treatment benefits of CDV combined with VIG to determine the effective treatments that delayed the time to death, reduced cutaneous lesion severity, and/or decreased tissue viral titers. SKH-1 hairless mice immunosuppressed with cyclophosphamide and hairless SCID mice (SHO strain) were infected cutaneously with vaccinia virus. Monotherapy, dual combinations (CDV plus VIG), or triple therapy (topical CDV, parenteral CDV, and VIG) were initiated 2 days postinfection and were given every 3 to 4 days through day 11. The efficacy assessment included survival rate, cutaneous lesion severity, and viral titers. Delays in the time to death and the reduction in lesion severity occurred in the following order of efficacy: triple therapy had greater efficacy than double combinations (CDV plus VIG or topical plus parenteral CDV), which had greater efficacy than VIG alone. Parenteral administration of CDV or VIG was necessary to suppress virus titers in internal organs (liver, lung, and spleen). The skin viral titers were significantly reduced by triple therapy only. The greatest efficacy was achieved by triple therapy. In humans, this regimen should translate to a faster cure rate, thus sparing the amount of VIG used for treatment. PMID:25385098

  17. A novel non-toxic combined CTA1-DD and ISCOMS adjuvant vector for effective mucosal immunization against influenza virus.

    PubMed

    Eliasson, Dubravka Grdic; Helgeby, Anja; Schön, Karin; Nygren, Caroline; El-Bakkouri, Karim; Fiers, Walter; Saelens, Xavier; Lövgren, Karin Bengtsson; Nyström, Ida; Lycke, Nils Y

    2011-05-23

    Here we demonstrate that by using non-toxic fractions of saponin combined with CTA1-DD we can achieve a safe and above all highly efficacious mucosal adjuvant vector. We optimized the construction, tested the requirements for function and evaluated proof-of-concept in an influenza A virus challenge model. We demonstrated that the CTA1-3M2e-DD/ISCOMS vector provided 100% protection against mortality and greatly reduced morbidity in the mouse model. The immunogenicity of the vector was superior to other vaccine formulations using the ISCOM or CTA1-DD adjuvants alone. The versatility of the vector was best exemplified by the many options to insert, incorporate or admix vaccine antigens with the vector. Furthermore, the CTA1-3M2e-DD/ISCOMS could be kept 1 year at 4°C or as a freeze-dried powder without affecting immunogenicity or adjuvanticity of the vector. Strong serum IgG and mucosal IgA responses were elicited and CD4 T cell responses were greatly enhanced after intranasal administration of the combined vector. Together these findings hold promise for the combined vector as a mucosal vaccine against influenza virus infections including pandemic influenza. The CTA1-DD/ISCOMS technology represents a breakthrough in mucosal vaccine vector design which successfully combines immunomodulation and targeting in a safe and stable particulate formation.

  18. Heterologous prime-boost strategy in non-human primates combining the infective dengue virus and a recombinant protein in a formulation suitable for human use.

    PubMed

    Valdés, Iris; Hermida, Lisset; Gil, Lázaro; Lazo, Laura; Castro, Jorge; Martín, Jorge; Bernardo, Lídice; López, Carlos; Niebla, Olivia; Menéndez, Tamara; Romero, Yaremis; Sánchez, Jorge; Guzmán, María G; Guillén, Gerardo

    2010-05-01

    The aim of the present work was to test the concept of the heterologous prime-boost strategy combining an infective dengue virus with a recombinant chimeric protein carrying domain III of the envelope protein. Two studies in monkeys, combining recombinant protein PD5 (domain III of the envelope protein from dengue-2 virus, fused to the protein carrier P64k) and the infective dengue virus in the same immunization schedules were carried out. Humoral and cell-mediated immunity were evaluated. In the first study, monkeys received four doses of the protein PD5 and were subsequently infected with one dose of dengue virus. Antibody response measured after virus inoculation was significantly higher compared to that in non-primed monkeys and comparable to that elicited after two doses of infective virus. In a second study, monkeys were infected with one dose of the virus and subsequently boosted with one dose of the recombinant protein, reaching high levels of neutralizing antibodies, which were still detectable 14 months after the last immunization. In addition, the cellular immune response was also recalled. The results obtained in the present work support the approach of heterologous prime-boosting, in either order prime or boost, combining the chimeric protein PD5 (formulated in alum-CPS-A) and an infective dengue virus. The latter could potentially be replaced by an attenuated vaccine candidate. Copyright 2009 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  19. Characterization of Clonality of Epstein-Barr Virus-Induced Human B Lymphoproliferative Disease in Mice with Severe Combined Immunodeficiency

    PubMed Central

    Nakamine, Hirokazu; Masih, Aneal S.; Okano, Motohiko; Taguchi, Yuichi; Pirruccello, Samuel J.; Davis, Jack R.; Mahloch, Mark L.; Beisel, Kirk W.; Kleveland, Kimberly; Sanger, Warren G.; Purtilo, David T.

    1993-01-01

    To improve the diagnostic accuracy and understanding of the pathogenesis of lymphoproliferative diseases (LPDs) occurring in immunosuppressed transplant recipients (post-transplantation LPD), clonality of Epstein-Barr virus-induced human LPDs in mice with severe combined immunodeficiency was examined by analyzing: 1) human immunoglobulin genes and their products, 2) the clonality of Epstein-Barr virus DNA, and 3) genetic alteration of c-myc or bcl-2 genes. A spectrum of clonality was found in the LPDs comparable with that reported for post-transplantation LPDs, although rearrangements of c-myc or bcl-2 genes were not detected. It is confirmed that this system is useful in terms of clonality for understanding the early phases in the pathogenesis of post-transplantation LPD or LPD in immune deficient patients. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5 PMID:8380952

  20. Orthopox virus infections in Eurasian wild rodents.

    PubMed

    Kinnunen, Paula M; Henttonen, Heikki; Hoffmann, Bernd; Kallio, Eva R; Korthase, Christian; Laakkonen, Juha; Niemimaa, Jukka; Palva, Airi; Schlegel, Mathias; Ali, Hanan Sheikh; Suominen, Paula; Ulrich, Rainer G; Vaheri, Antti; Vapalahti, Olli

    2011-08-01

    The genus Orthopoxvirus includes variola (smallpox) virus and zoonotic cowpox virus (CPXV). All orthopoxviruses (OPV) are serologically cross-reactive and cross-protective, and after the cessation of smallpox vaccination, CPXV and other OPV infections represent an emerging threat to human health. In this respect CPXV, with its reservoir in asymptomatically infected wild rodents, is of special importance. In Europe, clinical cowpox has been diagnosed in both humans and animals. The main objective of this study was to elucidate the prevalence of OPV infections in wild rodents in different parts of Eurasia and to compare the performance of three real-time polymerase chain reaction (PCR) methods in detecting OPV DNA in wildlife samples. We investigated 962 wild rodents from Northern Europe (Finland), Central Europe (Germany), and Northern Asia (Siberia, Russia) for the presence of OPV antibodies. According to a CPXV antigen-based immunofluorescence assay, animals from 13 of the 17 locations (76%) showed antibodies. Mean seroprevalence was 33% in Finland (variation between locations 0%-69%), 32% in Germany (0%-43%), and 3.2% (0%-15%) in Siberia. We further screened tissue samples from 513 of the rodents for OPV DNA using up to three real-time PCRs. Three rodents from two German and one Finnish location were OPV DNA positive. The amplicons were 96% to 100% identical to available CPXV sequences. Further, we demonstrated OPV infections as far east as the Baikal region and occurring in hamster and two other rodent species, ones previously unnoticed as possible reservoir hosts. Based on serological and PCR findings, Eurasian wild rodents are frequently but nonpersistently infected with OPVs. Results from three real-time PCR methods were highly concordant. This study extends the geographic range and wildlife species diversity in which OPV (or CPXV) viruses are naturally circulating.

  1. Comparative immunogenecity of foot and mouth disease virus antigens in FMD-haemorrhagic septicaemia combined vaccine and FMD vaccine alone in buffalo calves.

    PubMed

    Chhabra, Rajesh; Sharma, R; Kakker, N K

    2004-03-01

    Humoral immune response was evaluated by monitoring the serum antibody titres and virus specific IgM titres against Foot and Mouth Disease (FMD) virus antigens in serum samples obtained from different groups of calves inoculated with combined vaccine or FMD vaccine alone, on 0, 7, 14, 21, 28, 42 and 56 days post-vaccination (DPV). The cellular immune response was monitored by MTT based lymphoproliferation in peripheral blood mononuclear cell cultures. Higher liquid phase blocking (LPB) ELISA antibody titres were observed in calves receiving combined vaccine as compared to calves immunized with FMD vaccine alone with the peak titres in both the groups obtained on 21 days post-vaccination. However, the virus specific IgM titres were significantly higher in group of calves inoculated with combined vaccine than FMD vaccine alone. The lymphoproliferative responses against FMDV types O, A22 and Asia 1 in the groups receiving combined vaccine and FMD vaccine alone started increasing gradually after day 14 and reached peak levels on 28 DPV followed by a gradual decline subsequently. The group receiving combined vaccine showed higher proliferative responses on in vitro stimulation with FMD virus type O, whereas, with FMD virus type Asia 1, the responses were significantly higher on 14 and 21 DPV as compared to the group immunized with FMD vaccine alone. However, in the group receiving combined vaccine, the responses on in vitro stimulation with FMD virus type A22 were significantly higher than FMD vaccine alone group on all DPV except on 42 DPV.

  2. Avian influenza virus with Hemagglutinin-Neuraminidase combination H8N8, isolated in Russia

    USDA-ARS?s Scientific Manuscript database

    This study reports the genome sequence of an avian influenza virus (AIV) subtype H8N8 isolated in Russia. The genome analysis shows that all genes belong to AIV Eurasian lineages. The PB2 gene was similar to a Mongolian low pathogenic (LP) AIV H7N1 and a Chinese high pathogenic (HP) AIV H5N2....

  3. Laninamivir Octanoate and Artificial Surfactant Combination Therapy Significantly Increases Survival of Mice Infected with Lethal Influenza H1N1 Virus

    PubMed Central

    Fukushi, Masaya; Yamashita, Makoto; Miyoshi-Akiyama, Tohru; Kubo, Shuku; Yamamoto, Kenji; Kudo, Koichiro

    2012-01-01

    Background Patients with influenza virus infection can develop severe pneumonia and acute respiratory distress syndrome (ARDS) which have a high mortality. Influenza virus infection is treated worldwide mainly by neuraminidase inhibitors (NAIs). However, monotherapy with NAIs is insufficient for severe pneumonia secondary to influenza virus infection. We previously demonstrated that mice infected with a lethal dose of influenza virus develop diffuse alveolar damage (DAD) with alveolar collapse similar to that seen in ARDS in humans. Additionally, pulmonary surfactant proteins were gradually increased in mouse serum, suggesting a decrease in pulmonary surfactant in the lung. Therefore, the present study examined whether combination therapy of NAI with exogenous artificial surfactant affects mortality of influenza virus-infected mice. Methodology/Principal Findings BALB/c mice were inoculated with several viral doses of influenza A/Puerto Rico/8/34 (PR8) virus (H1N1). The mice were additionally administered exogenous artificial surfactant in the presence or absence of a new NAI, laninamivir octanoate. Mouse survival, body weight and general condition were observed for up to 20 days after inoculation. Viral titer and cytokine/chemokine levels in the lungs, lung weight, pathological analysis, and blood O2 and CO2 pressures were evaluated. Infected mice treated with combination therapy of laninamivir octanoate with artificial surfactant showed a significantly higher survival rate compared with those that received laninamivir octanoate monotherapy (p = 0.003). However, virus titer, lung weight and cytokine/chemokine responses were not different between the groups. Histopathological examination, a hydrostatic lung test and blood gas analysis showed positive results in the combination therapy group. Conclusions/Significance Combination therapy of laninamivir octanoate with artificial surfactant reduces lethality in mice infected with influenza virus, and eventually

  4. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease.

    PubMed

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin; Lee, Jong Seok; Kim, Yu-Jin; Lee, Yu-Na; Kim, Min-Chul; Cho, Minkyoung; Kang, Sang-Moo

    2016-07-01

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. Copyright © 2016. Published by Elsevier Inc.

  5. Efficacy of combined vaccination against Mycoplasma hyopneumoniae and porcine reproductive and respiratory syndrome virus in dually infected pigs.

    PubMed

    Bourry, Olivier; Fablet, Christelle; Simon, Gaëlle; Marois-Créhan, Corinne

    2015-11-18

    Porcine respiratory disease complex (PRDC) is one of the main causes of economic losses for swine producers. This complex is due to a combination of different pathogens and their interactions. Two major pathogens involved in PRDC are Mycoplasma hyopneumoniae (Mhp) and porcine reproductive and respiratory syndrome virus (PRRSV). The objectives of this study were (i) to develop an experimental model of dual Mhp/PRRSV infection in SPF pigs with European strains of Mhp and PRRSV and (ii) to assess and compare the effects of single Mhp, single PRRSV or combined Mhp/PRRSV vaccination against this dual infection. Pigs dually infected with Mhp and PRRSV showed a combination of symptoms characteristic of each pathogen but no significant exacerbation of pathogenicity. Thus, the co-infected pigs displayed coughing and pneumonia typical of Mhp infection in addition to PRRSV-related hyperthermia and decrease in average daily gain (ADG). Hyperthermia was reduced in PRRSV vaccinated animals (single or combined vaccination), whereas ADG was restored in Mhp/PRRSV vaccinated pigs only. Regarding respiratory symptoms and lung lesions, no vaccine decreased coughing. However, all vaccines reduced the pneumonia score but more so in animals receiving the Mhp vaccine, whether single or combined. This vaccine also decreased the Mhp load in the respiratory tract. In conclusion, combined vaccination against both Mhp and PRRSV efficiently pooled the efficacy of each single PRRSV and Mhp vaccination and could be an interesting tool to control PRDC in European swine production.

  6. Transmission of Hepatitis A Virus through Combined Liver–Small Intestine–Pancreas Transplantation

    PubMed Central

    Weil, Lauren M.; Jin, Sherry; Johnson, Thomas; Hayden-Mixson, Tonya R.; Khudyakov, Yury; Annambhotla, Pallavi D.; Basavaraju, Sridhar V.; Kamili, Saleem; Ritter, Jana M.; Nelson, Noele; Mazariegos, George; Green, Michael; Himes, Ryan W.; Kuhar, David T.; Kuehnert, Matthew J.; Miller, Jeffrey A.; Wiseman, Rachel; Moorman, Anne C.

    2017-01-01

    Although transmission of hepatitis A virus (HAV) through blood transfusion has been documented, transmission through organ transplantation has not been reported. In August 2015, state health officials in Texas, USA, were notified of 2 home health nurses with HAV infection whose only common exposure was a child who had undergone multi–visceral organ transplantation 9 months earlier. Specimens from the nurses, organ donor, and all organ recipients were tested and medical records reviewed to determine a possible infection source. Identical HAV RNA sequences were detected from the serum of both nurses and the organ donor, as well as from the multi–visceral organ recipient’s serum and feces; this recipient’s posttransplant liver and intestine biopsy specimens also had detectable virus. The other organ recipients tested negative for HAV RNA. Vaccination of the donor might have prevented infection in the recipient and subsequent transmission to the healthcare workers. PMID:28322704

  7. Combination treatment with oncolytic Vaccinia virus and cyclophosphamide results in synergistic antitumor effects in human lung adenocarcinoma bearing mice

    PubMed Central

    2014-01-01

    Background The capacity of the recombinant Vaccinia virus GLV-1h68 as a single agent to efficiently treat different human or canine cancers has been shown in several preclinical studies. Currently, its human safety and efficacy are investigated in phase I/II clinical trials. In this study we set out to evaluate the oncolytic activity of GLV-1h68 in the human lung adenocarcinoma cell line PC14PE6-RFP in cell cultures and analyzed the antitumor potency of a combined treatment strategy consisting of GLV-1h68 and cyclophosphamide (CPA) in a mouse model of PC14PE6-RFP lung adenocarcinoma. Methods PC14PE6-RFP cells were treated in cell culture with GLV-1h68. Viral replication and cell survival were determined by plaque assays and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. Subcutaneously implanted PC14PE6-RFP xenografts were treated by systemic injection of GLV-1h68, CPA or a combination of both. Tumor growth and viral biodistribution were monitored and immune-related antigen profiling of tumor lysates was performed. Results GLV-1h68 efficiently infected, replicated in and lysed human PC14PE6-RFP cells in cell cultures. PC14PE6-RFP tumors were efficiently colonized by GLV-1h68 leading to much delayed tumor growth in PC14PE6-RFP tumor-bearing nude mice. Combination treatment with GLV-1h68 and CPA significantly improved the antitumor efficacy of GLV-1h68 and led to an increased viral distribution within the tumors. Pro-inflammatory cytokines and chemokines were distinctly elevated in tumors of GLV-1h68-treated mice. Factors expressed by endothelial cells or present in the blood were decreased after combination treatment. A complete loss in the hemorrhagic phenotype of the PC14PE6-RFP tumors and a decrease in the number of blood vessels after combination treatment could be observed. Conclusions CPA and GLV-1h68 have synergistic antitumor effects on PC14PE6-RFP xenografts. We strongly suppose that in the PC14PE6-RFP model the

  8. Synergistic combinations of favipiravir and oseltamivir against wild-type pandemic and oseltamivir-resistant influenza A virus infections in mice

    PubMed Central

    Smee, Donald F; Tarbet, E Bart; Furuta, Yousuke; Morrey, John D; Barnard, Dale L

    2014-01-01

    Aim Favipiravir and oseltamivir are antiviral compounds used for the treatment of influenza infections. We have aimed to investigate the efficacy of the compounds in combination to treat influenza H1N1 virus infections in mice. Materials & methods Mice infected with pandemic influenza A/California/04/2009 (H1N1pdm) virus or an oseltamivir-resistant (H275Y neuraminidase mutation) influenza A/Mississippi/ 3/2001 (H1N1) virus were treated orally with inhibitors twice a day for 5 days starting 4 h after infection. Results Complete protection from death was afforded by favipiravir treatments of 100 mg/kg/day, but lower doses were less effective. Combinations of oseltamivir (1 and 3 mg/kg/day) with favipiravir (3, 10 and 30 mg/kg/day) resulted in a synergistic improvement in survival rates against H1N1pdm infections. Significant reductions in lung virus titers also occurred. Against the H275Y virus infection, oseltamivir alone was only 30% protective from death at 100 mg/kg/day, but combinations of the two compounds produced a synergistic improvement in survival rate. Conclusion The utility of treating H1N1 influenza virus infections with oseltamivir and favipiravir in combination has been established. PMID:24563658

  9. Immunosuppression in sheep induced by cyclophosphamide, bluetongue virus and their combination: Effect on clinical reaction and viremia.

    PubMed

    Chatzinasiou, Evangelia; Chaintoutis, Serafeim C; Dovas, Chrysostomos I; Papanastassopoulou, Maria; Papadopoulos, Orestis

    2017-03-01

    The main purpose of this work was to establish an experimental model for immunosuppression in sheep, and evaluate its possible effects on bluetongue viremia. Animals were allocated in 4 groups: Cy (cyclophosphamide), BT (bluetongue), CyBT (combined Cy and BT) and Co (control), and underwent clinical evaluations, virological testing, peripheral blood immunophenotyping and determination of antiviral humoral immune responses. Intravenous administration of cyclophosphamide (37.5 mg/kg body weight) resulted in immunosuppresion induction, as significant drops were observed in blood leukocytes and lymphocyte subset counts (CD2(+), CD4(+), CD8(+), CD19(+)), lasting 3-10 days after its administration. Reduction in B-cell (CD19(+)) counts was more pronounced than in T-/NK-cell (CD2(+)) counts (92% and 59%, respectively). BTV-9 inoculation resulted in pronounced lymphocytopenia observed from day 1 post-inoculation. Their combined administration resulted in a more intense immunosuppressive effect, as indicated by the greater reduction in lymphocyte, granulocyte, CD4(+) and CD8(+) cell counts. In group CyBT, earlier initiation of fever by one day (day 6 p.i.) compared to group BT (day 7 p.i.), and delay in antibody responses by one day was observed, compared to group BT. Neutralizing antibodies in both groups (BT, CyBT) were detectable from day 10 p.i., but no significant titer differences were observed. Infectious virus titers were detected from day 4 p.i. in group BT and from day 3 in group CyBT. Statistical significances in virus titers were also observed (greatest mean titer difference: 1.4 log10 CEID50/ml RBCs at day 5 p.i., P < 0.001), indicating possible impact of immunosuppression on virus transmission and epidemiology of bluetongue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A Pilot Study of Raltegravir Plus Combination Antiretroviral Therapy in Early Human Immunodeficiency Virus Infection: Challenges and Lessons Learned

    PubMed Central

    Collier, Ann C.; Chun, Tae-Wook; Maenza, Janine; Coombs, Robert W.; Tapia, Kenneth; Chang, Ming; Stevens, Claire E.; Justement, J. Shawn; Murray, Danielle; Stekler, Joanne D.; Mullins, James I; Holte, Sarah E.

    2016-01-01

    Abstract Availability of integrase strand transfer inhibitors created interest in determining whether their use would decrease persistently infected cell numbers. This study hypothesized that adding raltegravir (RAL) to standard antiretroviral therapy (ART) would decrease human immunodeficiency virus (HIV)-infected CD4+ T cells more than standard combination ART. This was a pilot, randomized study comparing open-label standard triple ART to standard triple ART plus RAL over 96 weeks in ART-naive adults with early HIV infection. The primary objective was to compare quantity and trajectory of HIV DNA. Eighty-two persons were referred. A diverse set of reasons precluded the enrollment of all but 10. Those who enrolled and completed the study had an estimated median duration of HIV infection of 74 days at ART start. The groups had similar baseline characteristics. The RAL group had more rapid first phase plasma HIV RNA decay (0.67 log10 copies/mL/day) than with combination ART (0.34 log10copies/mL/day), p = 0.037. Second phase HIV RNA decay, residual viremia, cell-associated RNA, HIV DNA, CD4+ T-cells with replication-competent virus, and 2LTR circle levels did not differ between groups. Among those with entry plasma HIV RNA levels above the median, 2LTR circles were significantly lower over time than in those with lower entry HIV RNA levels (p = 0.02). Our results suggest homogeneity of responses in cell-associated RNA, HIV DNA, CD4+ T-cells with replication-competent virus, and 2LTR circles with early HIV in both ART groups. The kinetics of 2LTR DNA did not reflect the kinetics of plasma HIV RNA decline following ART initiation. PMID:26862469

  11. Superior Efficacy of a Human Immunodeficiency Virus Vaccine Combined with Antiretroviral Prevention in Simian-Human Immunodeficiency Virus-Challenged Nonhuman Primates

    PubMed Central

    Le Grand, Roger; Dereuddre-Bosquet, Nathalie; Dispinseri, Stefania; Gosse, Leslie; Desjardins, Delphine; Shen, Xiaoying; Tolazzi, Monica; Ochsenbauer, Christina; Saidi, Hela; Tomaras, Georgia; Prague, Mélanie; Barnett, Susan W.; Thiebaut, Rodolphe; Scarlatti, Gabriella

    2016-01-01

    ABSTRACT Although vaccines and antiretroviral (ARV) prevention have demonstrated partial success against human immunodeficiency virus (HIV) infection in clinical trials, their combined introduction could provide more potent protection. Furthermore, combination approaches could ameliorate the potential increased risk of infection following vaccination in the absence of protective immunity. We used a nonhuman primate model to determine potential interactions of combining a partially effective ARV microbicide with an envelope-based vaccine. The vaccine alone provided no protection from infection following 12 consecutive low-dose intravaginal challenges with simian-HIV strain SF162P3, with more animals infected compared to naive controls. The microbicide alone provided a 68% reduction in the risk of infection relative to that of the vaccine group and a 45% reduction relative to that of naive controls. The vaccine-microbicide combination provided an 88% reduction in the per-exposure risk of infection relative to the vaccine alone and a 79% reduction relative to that of the controls. Protected animals in the vaccine-microbicide group were challenged a further 12 times in the absence of microbicide and demonstrated a 98% reduction in the risk of infection. A total risk reduction of 91% was observed in this group over 24 exposures (P = 0.004). These important findings suggest that combined implementation of new biomedical prevention strategies may provide significant gains in HIV prevention. IMPORTANCE There is a pressing need to maximize the impact of new biomedical prevention tools in the face of the 2 million HIV infections that occur each year. Combined implementation of complementary biomedical approaches could create additive or synergistic effects that drive improved reduction of HIV incidence. Therefore, we assessed a combination of an untested vaccine with an ARV-based microbicide in a nonhuman primate vaginal challenge model. The vaccine alone provided no

  12. Heterologous immunity triggered by a single, latent virus in Mus musculus: combined costimulation- and adhesion- blockade decrease rejection.

    PubMed

    Beus, Jonathan M; Hashmi, Salila S; Selvaraj, Saranya A; Duan, Danxia; Stempora, Linda L; Monday, Stephanie A; Cheeseman, Jennifer A; Hamby, Kelly M; Speck, Samuel H; Larsen, Christian P; Kirk, Allan D; Kean, Leslie S

    2013-01-01

    The mechanisms underlying latent-virus-mediated heterologous immunity, and subsequent transplant rejection, especially in the setting of T cell costimulation blockade, remain undetermined. To address this, we have utilized MHV68 to develop a rodent model of latent virus-induced heterologous alloimmunity. MHV68 infection was correlated with multimodal immune deviation, which included increased secretion of CXCL9 and CXCL10, and with the expansion of a CD8(dim) T cell population. CD8(dim) T cells exhibited decreased expression of multiple costimulation molecules and increased expression of two adhesion molecules, LFA-1 and VLA-4. In the setting of MHV68 latency, recipients demonstrated accelerated costimulation blockade-resistant rejection of skin allografts compared to non-infected animals (MST 13.5 d in infected animals vs 22 d in non-infected animals, p<.0001). In contrast, the duration of graft acceptance was equivalent between non-infected and infected animals when treated with combined anti-LFA-1/anti-VLA-4 adhesion blockade (MST 24 d for non-infected and 27 d for infected, p = n.s.). The combination of CTLA-4-Ig/anti-CD154-based costimulation blockade+anti-LFA-1/anti-VLA-4-based adhesion blockade led to prolonged graft acceptance in both non-infected and infected cohorts (MST>100 d for both, p<.0001 versus costimulation blockade for either). While in the non-infected cohort, either CTLA-4-Ig or anti-CD154 alone could effectively pair with adhesion blockade to prolong allograft acceptance, in infected animals, the prolonged acceptance of skin grafts could only be recapitulated when anti-LFA-1 and anti-VLA-4 antibodies were combined with anti-CD154 (without CTLA-4-Ig, MST>100 d). Graft acceptance was significantly impaired when CTLA-4-Ig alone (no anti-CD154) was combined with adhesion blockade (MST 41 d). These results suggest that in the setting of MHV68 infection, synergy occurs predominantly between adhesion pathways and CD154-based costimulation, and

  13. Re-Assembly and Analysis of an Ancient Variola Virus Genome.

    PubMed

    Smithson, Chad; Imbery, Jacob; Upton, Chris

    2017-09-08

    We report a major improvement to the assembly of published short read sequencing data from an ancient variola virus (VARV) genome by the removal of contig-capping sequencing tags and manual searches for gap-spanning reads. The new assembly, together with camelpox and taterapox genomes, permitted new dates to be calculated for the last common ancestor of all VARV genomes. The analysis of recently sequenced VARV-like cowpox virus genomes showed that single nucleotide polymorphisms (SNPs) and amino acid changes in the vaccinia virus (VACV)-Cop-O1L ortholog, predicted to be associated with VARV host specificity and virulence, were introduced into the lineage before the divergence of these viruses. A comparison of the ancient and modern VARV genome sequences also revealed a measurable drift towards adenine + thymine (A + T) richness.

  14. Patterns of longitudinal change in hepatitis C virus neutralization titers correlate with the outcome of peginterferon and ribavirin combination therapy.

    PubMed

    Lin, Jianguo; Wang, Weihua; Xu, Yanjuan; Di Bisceglie, Adrian M; Fan, Xiaofeng

    2015-05-01

    In chronic hepatitis C virus (HCV) infection, combination therapy of peginterferon and ribavirin does not guarantee viral eradication. Among factors relevant to therapeutic efficacy, the role of humoral immunity has not been examined thoroughly. In the current study, HCV pseudoparticles (HCVpp) were first generated with 80 patient-derived full-length HCV envelope clones, followed by detailed characterization with regard to virus productivity, infectivity and neutralizing activity. Selective HCVpp were used to measure HCV neutralization titers in two independent patient cohorts consisting of 102 patients undergoing antiviral therapy. The HCV neutralization titers at the baseline fitted with a power-law distribution among patients. Pretreatment neutralization titers in both patient cohorts were not correlated with treatment outcomes. In the patient cohort 2 (n = 28) that had samples available at multiple time points, however, HCV neutralization titers displayed clearly distinct patterns over therapeutic course and follow-up. No virological responders (n = 10) had neutralization titers stabilized at low level while it was increased significantly in both sustained virological responders (n = 10) and relapsers (n = 8). High HCV neutralization titers were maintained only in sustained virological responders but not in relapsers after treatment cessation. Therefore, patterns of longitudinal change of HCV neutralization titers, but not pretreatment titers, correlate with the treatment outcome in patients undergoing peginterferon and ribavirin combination therapy.

  15. Efficacy of combined therapy with amantadine, oseltamivir, and ribavirin in vivo against susceptible and amantadine-resistant influenza A viruses.

    PubMed

    Nguyen, Jack T; Smee, Donald F; Barnard, Dale L; Julander, Justin G; Gross, Matthew; de Jong, Menno D; Went, Gregory T

    2012-01-01

    The limited efficacy of existing antiviral therapies for influenza--coupled with widespread baseline antiviral resistance--highlights the urgent need for more effective therapy. We describe a triple combination antiviral drug (TCAD) regimen composed of amantadine, oseltamivir, and ribavirin that is highly efficacious at reducing mortality and weight loss in mouse models of influenza infection. TCAD therapy was superior to dual and single drug regimens in mice infected with drug-susceptible, low pathogenic A/H5N1 (A/Duck/MN/1525/81) and amantadine-resistant 2009 A/H1N1 influenza (A/California/04/09). Treatment with TCAD afforded >90% survival in mice infected with both viruses, whereas treatment with dual and single drug regimens resulted in 0% to 60% survival. Importantly, amantadine had no activity as monotherapy against the amantadine-resistant virus, but demonstrated dose-dependent protection in combination with oseltamivir and ribavirin, indicative that amantadine's activity had been restored in the context of TCAD therapy. Furthermore, TCAD therapy provided survival benefit when treatment was delayed until 72 hours post-infection, whereas oseltamivir monotherapy was not protective after 24 hours post-infection. These findings demonstrate in vivo efficacy of TCAD therapy and confirm previous reports of the synergy and broad spectrum activity of TCAD therapy against susceptible and resistant influenza strains in vitro.

  16. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions

    PubMed Central

    Chow, Cheryl-Emiliane T.; Winget, Danielle M.; White, Richard A.; Hallam, Steven J.; Suttle, Curtis A.

    2015-01-01

    Viral diversity and virus-host interactions in oxygen-starved regions of the ocean, also known as oxygen minimum zones (OMZs), remain relatively unexplored. Microbial community metabolism in OMZs alters nutrient and energy flow through marine food webs, resulting in biological nitrogen loss and greenhouse gas production. Thus, viruses infecting OMZ microbes have the potential to modulate community metabolism with resulting feedback on ecosystem function. Here, we describe viral communities inhabiting oxic surface (10 m) and oxygen-starved basin (200 m) waters of Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia using viral metagenomics and complete viral fosmid sequencing on samples collected between April 2007 and April 2010. Of 6459 open reading frames (ORFs) predicted across all 34 viral fosmids, 77.6% (n = 5010) had no homology to reference viral genomes. These fosmids recruited a higher proportion of viral metagenomic sequences from Saanich Inlet than from nearby northeastern subarctic Pacific Ocean (Line P) waters, indicating differences in the viral communities between coastal and open ocean locations. While functional annotations of fosmid ORFs were limited, recruitment to NCBI's non-redundant “nr” database and publicly available single-cell genomes identified putative viruses infecting marine thaumarchaeal and SUP05 proteobacteria to provide potential host linkages with relevance to coupled biogeochemical cycling processes in OMZ waters. Taken together, these results highlight the power of coupled analyses of multiple sequence data types, such as viral metagenomic and fosmid sequence data with prokaryotic single cell genomes, to chart viral diversity, elucidate genomic and ecological contexts for previously unclassifiable viral sequences, and identify novel host interactions in natural and engineered ecosystems. PMID:25914678

  17. ZMPSTE24 defends against influenza and other pathogenic viruses.

    PubMed

    Fu, Bishi; Wang, Lingyan; Li, Shitao; Dorf, Martin E

    2017-02-28

    Zinc metallopeptidase STE24 (ZMPSTE24) is a transmembrane metalloprotease whose catalytic activity is critical for processing lamin A on the inner nuclear membrane and clearing clogged translocons on the endoplasmic reticulum. We now report ZMPSTE24 is a virus-specific effector that restricts enveloped RNA and DNA viruses, including influenza A, Zika, Ebola, Sindbis, vesicular stomatitis, cowpox, and vaccinia, but not murine leukemia or adenovirus. ZMPSTE24-mediated antiviral action is independent of protease activity. Coimmunoprecipitation studies indicate ZMPSTE24 can complex with proteins of the interferon-induced transmembrane protein (IFITM) family. IFITM proteins impede viral entry, and ZMPSTE24 expression is necessary for IFITM antiviral activity. In vivo studies demonstrate ZMPSTE24-deficient mice display higher viral burdens, enhanced cytokine production, and increased mortality after influenza infection. Collectively, these findings identify ZMPSTE24 as an intrinsic broad-spectrum antiviral protein and provide insights into antiviral defense mechanisms.

  18. Immune Modulation in Primary Vaccinia virus Zoonotic Human Infections

    PubMed Central

    Gomes, Juliana Assis Silva; de Araújo, Fernanda Fortes; Trindade, Giliane de Souza; Quinan, Bárbara Resende; Drumond, Betânia Paiva; Ferreira, Jaqueline Maria Siqueira; Mota, Bruno Eduardo Fernandes; Nogueira, Maurício Lacerda; Kroon, Erna Geessien; Abrahão, Jônatas Santos; Côrrea-Oliveira, Rodrigo; da Fonseca, Flávio Guimarães

    2012-01-01

    In 2010, the WHO celebrated the 30th anniversary of the smallpox eradication. Ironically, infections caused by viruses related to smallpox are being increasingly reported worldwide, including Monkeypox, Cowpox, and Vaccinia virus (VACV). Little is known about the human immunological responses elicited during acute infections caused by orthopoxviruses. We have followed VACV zoonotic outbreaks taking place in Brazil and analyzed cellular immune responses in patients acutely infected by VACV. Results indicated that these patients show a biased immune modulation when compared to noninfected controls. Amounts of B cells are low and less activated in infected patients. Although present, T CD4+ cells are also less activated when compared to noninfected individuals, and so are monocytes/macrophages. Similar results were obtained when Balb/C mice were experimentally infected with a VACV sample isolated during the zoonotic outbreaks. Taking together, the data suggest that zoonotic VACVs modulate specific immune cell compartments during an acute infection in humans. PMID:22229039

  19. Replication-Competent Influenza Virus and Respiratory Syncytial Virus Luciferase Reporter Strains Engineered for Co-Infections Identify Antiviral Compounds in Combination Screens

    PubMed Central

    Yan, Dan; Weisshaar, Marco; Lamb, Kristen; Chung, Hokyung K; Lin, Michael Z; Plemper, Richard K

    2016-01-01

    Myxoviruses such as influenza A virus (IAV) and respiratory syncytial virus (RSV) are major human pathogens, mandating the development of novel therapeutics. To establish a high-throughput screening protocol for the simultaneous identification of pathogen- and host-targeted hit candidates against either or both pathogens, we have attempted coinfection of cells with IAV and RSV. However, viral replication kinetics were incompatible, RSV signal window was low, and an IAV-driven minireplicon reporter assay used in initial screens narrowed the host cell range and restricted to single-cycle infections. To overcome these limitations, we developed an RSV strain carrying firefly luciferase fused to an innovative universal small-molecule assisted shut-off domain, which boosted assay signal window, and a hyperactive fusion protein that synchronized IAV and RSV reporter expression kinetics and suppresses the identification of RSV entry inhibitors sensitive to a recently reported RSV pan-resistance mechanism. Combined with a replication-competent recombinant IAV strain harboring nano-luciferase, the assay performed well on a human respiratory cell line and supports multi-cycle infections. Miniaturized to 384-well format, the protocol was validated through screening of a set of the NIH Clinical Collection (NCC) in quadruplicate. These test screens demonstrated favorable assay parameters and reproducibility. Application to a LOPAC library of bioactive compounds in a proof-of-concept campaign detected licensed anti-myxovirus therapeutics, ribavirin and the neuraminidase inhibitor zanamivir, and identified two unexpected RSV-specific hit candidates, Fenretinide and the opioid receptor antagonist BNTX-7. Hits were evaluated in direct and orthogonal dose-response counterscreens using a standard recRSV reporter strain expressing renilla luciferase. PMID:26307636

  20. Combined use of the ASK and SHK-1 cell lines to enhance the detection of infectious salmon anemia virus

    USGS Publications Warehouse

    Rolland, J.B.; Bouchard, D.; Coll, J.; Winton, J.R.

    2005-01-01

    Infectious salmon anemia (ISA) is a severe disease primarily affecting commercially farmed Atlantic salmon (Salmo salar) in seawater. The disease has been reported in portions of Canada, the United Kingdom, the Faroe Islands, and the United States. Infectious salmon anemia virus (ISAV), the causative agent of ISA, has also been isolated from several asymptomatic marine and salmonid fish species. Diagnostic assays for the detection of ISAV include virus isolation in cell culture, a reverse transcriptase-PCR, an enzyme-linked immunosorbent assay, and an indirect fluorescent antibody test. Virus isolation is considered the gold standard, and 5 salmonid cell lines are known to support growth of ISAV. In this study, the relative performance of the salmon head kidney 1 (SHK-1), Atlantic salmon kidney (ASK), and CHSE-214 cell lines in detecting ISAV was evaluated using samples from both experimentally and naturally infected Atlantic salmon. Interlaboratory comparisons were conducted using a quality control-quality assurance ring test. Both the ASK and SHK-1 cell lines performed well in detecting ISAV, although the SHK-1 line was more variable in its sensitivity to infection and somewhat slower in the appearance of cytopathic effect. Relative to the SHK-1 and ASK lines, the CHSE-214 cell line performed poorly. Although the ASK line appeared to represent a good alternative to the more commonly used SHK-1 line, use of a single cell line for diagnostic assays may increase the potential for false-negative results. Thus, the SHK-1 and ASK cell lines can be used in combination to provide enhanced ability to detect ISAV.

  1. Single-tube multiplexed molecular detection of endemic porcine viruses in combination with background screening for transboundary diseases.

    PubMed

    Wernike, Kerstin; Hoffmann, Bernd; Beer, Martin

    2013-03-01

    Detection of several pathogens with multiplexed real-time quantitative PCR (qPCR) assays in a one-step setup allows the simultaneous detection of two endemic porcine and four different selected transboundary viruses. Reverse transcription (RT)-qPCR systems for the detection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2), two of the most economically important pathogens of swine worldwide, were combined with a screening system for diseases notifiable to the World Organization of Animal Health, namely, classical and African swine fever, foot-and-mouth disease, and Aujeszky's disease. Background screening was implemented using the identical fluorophore for all four different RT-qPCR assays. The novel multiplex RT-qPCR system was validated with a large panel of different body fluids and tissues from pigs and other animal species. Both reference samples and clinical specimens were used for a complete evaluation. It could be demonstrated that a highly sensitive and specific parallel detection of the different viruses was possible. The assays for the notifiable diseases were even not affected by the simultaneous amplification of very high loads of PRRSV- and PCV2-specific sequences. The novel broad-spectrum multiplex assay allows in a unique form the routine investigation for endemic porcine pathogens with exclusion diagnostics of the most important transboundary diseases in samples from pigs with unspecific clinical signs, such as fever or hemorrhages. The new system could significantly improve early detection of the most important notifiable diseases of swine and could lead to a new approach in syndromic surveillance.

  2. Single-Tube Multiplexed Molecular Detection of Endemic Porcine Viruses in Combination with Background Screening for Transboundary Diseases

    PubMed Central

    Wernike, Kerstin; Hoffmann, Bernd

    2013-01-01

    Detection of several pathogens with multiplexed real-time quantitative PCR (qPCR) assays in a one-step setup allows the simultaneous detection of two endemic porcine and four different selected transboundary viruses. Reverse transcription (RT)-qPCR systems for the detection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2), two of the most economically important pathogens of swine worldwide, were combined with a screening system for diseases notifiable to the World Organization of Animal Health, namely, classical and African swine fever, foot-and-mouth disease, and Aujeszky's disease. Background screening was implemented using the identical fluorophore for all four different RT-qPCR assays. The novel multiplex RT-qPCR system was validated with a large panel of different body fluids and tissues from pigs and other animal species. Both reference samples and clinical specimens were used for a complete evaluation. It could be demonstrated that a highly sensitive and specific parallel detection of the different viruses was possible. The assays for the notifiable diseases were even not affected by the simultaneous amplification of very high loads of PRRSV- and PCV2-specific sequences. The novel broad-spectrum multiplex assay allows in a unique form the routine investigation for endemic porcine pathogens with exclusion diagnostics of the most important transboundary diseases in samples from pigs with unspecific clinical signs, such as fever or hemorrhages. The new system could significantly improve early detection of the most important notifiable diseases of swine and could lead to a new approach in syndromic surveillance. PMID:23303496

  3. Herpes Simplex Virus 1 Tropism for Human Sensory Ganglion Neurons in the Severe Combined Immunodeficiency Mouse Model of Neuropathogenesis

    PubMed Central

    Che, Xibing; Reichelt, Mike; Qiao, Yanli; Gu, Haidong; Arvin, Ann

    2013-01-01

    The tropism of herpes simplex virus (HSV-1) for human sensory neurons infected in vivo was examined using dorsal root ganglion (DRG) xenografts maintained in mice with severe combined immunodeficiency (SCID). In contrast to the HSV-1 lytic infectious cycle in vitro, replication of the HSV-1 F strain was restricted in human DRG neurons despite the absence of adaptive immune responses in SCID mice, allowing the establishment of neuronal latency. At 12 days after DRG inoculation, 26.2% of human neurons expressed HSV-1 protein and 13.1% expressed latency-associated transcripts (LAT). Some infected neurons showed cytopathic changes, but HSV-1, unlike varicella-zoster virus (VZV), only rarely infected satellite cells and did not induce fusion of neuronal and satellite cell plasma membranes. Cell-free enveloped HSV-1 virions were observed, indicating productive infection. A recombinant HSV-1-expressing luciferase exhibited less virulence than HSV-1 F in the SCID mouse host, enabling analysis of infection in human DRG xenografts for a 61-day interval. At 12 days after inoculation, 4.2% of neurons expressed HSV-1 proteins; frequencies increased to 32.1% at 33 days but declined to 20.8% by 61 days. Frequencies of LAT-positive neurons were 1.2% at 12 days and increased to 40.2% at 33 days. LAT expression remained at 37% at 61 days, in contrast to the decline in neurons expressing viral proteins. These observations show that the progression of HSV-1 infection is highly restricted in human DRG, and HSV-1 genome silencing occurs in human neurons infected in vivo as a consequence of virus-host cell interactions and does not require adaptive immune control. PMID:23269807

  4. Herpes simplex virus 1 tropism for human sensory ganglion neurons in the severe combined immunodeficiency mouse model of neuropathogenesis.

    PubMed

    Zerboni, Leigh; Che, Xibing; Reichelt, Mike; Qiao, Yanli; Gu, Haidong; Arvin, Ann

    2013-03-01

    The tropism of herpes simplex virus (HSV-1) for human sensory neurons infected in vivo was examined using dorsal root ganglion (DRG) xenografts maintained in mice with severe combined immunodeficiency (SCID). In contrast to the HSV-1 lytic infectious cycle in vitro, replication of the HSV-1 F strain was restricted in human DRG neurons despite the absence of adaptive immune responses in SCID mice, allowing the establishment of neuronal latency. At 12 days after DRG inoculation, 26.2% of human neurons expressed HSV-1 protein and 13.1% expressed latency-associated transcripts (LAT). Some infected neurons showed cytopathic changes, but HSV-1, unlike varicella-zoster virus (VZV), only rarely infected satellite cells and did not induce fusion of neuronal and satellite cell plasma membranes. Cell-free enveloped HSV-1 virions were observed, indicating productive infection. A recombinant HSV-1-expressing luciferase exhibited less virulence than HSV-1 F in the SCID mouse host, enabling analysis of infection in human DRG xenografts for a 61-day interval. At 12 days after inoculation, 4.2% of neurons expressed HSV-1 proteins; frequencies increased to 32.1% at 33 days but declined to 20.8% by 61 days. Frequencies of LAT-positive neurons were 1.2% at 12 days and increased to 40.2% at 33 days. LAT expression remained at 37% at 61 days, in contrast to the decline in neurons expressing viral proteins. These observations show that the progression of HSV-1 infection is highly restricted in human DRG, and HSV-1 genome silencing occurs in human neurons infected in vivo as a consequence of virus-host cell interactions and does not require adaptive immune control.

  5. Insecticidal activity of the granulosis virus in combination with neem products and talc powder against the potato tuberworm Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae).

    PubMed

    Mascarin, G M; Delalibera, I

    2012-06-01

    The potato tuberworm Phthorimaea operculella (Zeller) is an important agricultural pest that causes significant economic losses to potato growers worldwide. The addition of an effective method of biological control for the potato tuberworm is greatly needed, and is currently unavailable in Brazil. The granulosis virus (Baculoviridae) is a promising biological control agent to protect post-harvest potatoes and in storage from the potato tuberworm. However, the control measure must be economically feasible. Liquid suspensions of a granulosis virus applied alone or in mixture with two commercial neem oil-based products (DalNeem™ and NeemAzal™), and a dry powder formulation of viral granules were evaluated for control of potato tuberworm larvae by treating potato tubers under laboratory conditions. High larval mortality (86.7%) was achieved when DalNeem and virus were applied together at 4 mg of azadirachtin/L and 10(4) occlusion bodies (OBs)/mL, respectively. This combination resulted in ≥50% efficacy in relation to their counterparts alone. Conversely, NeemAzal did not enhance virus effectiveness against larvae of the potato tuberworm. The talc-based virus formulation was used for dusting seed tubers at different concentrations and resulted in 100% larval mortality at 5 × 10(8) OBs/g. Formulated and unformulated virus provided 50% mortality at 166 OBs/g and at 5.0 × 10(5) OBs/mL, respectively. As a result, talc-based virus formulation had a better control efficiency on potato tuberworm than the aqueous virus suspension. The granulosis virus combined with DalNeem at low rates or formulated with talc powder is a viable option to control the potato tuberworm under storage conditions.

  6. The Combined Influence of Oral Contraceptives and Human Papillomavirus Virus on Cutaneous Squamous Cell Carcinoma

    PubMed Central

    Efird, Jimmy T.; Toland, Amanda E.; Lea, C. Suzanne; Phillips, Christopher J.

    2011-01-01

    The vast majority of cutaneous squamous cell carcinoma (CSCC) will occur in those with fair complexion, tendency to burn, and high ultraviolet radiation (UVR) exposure. Organ transplant recipients also are an important population at great risk for CSCC. An association has been reported between oral contraceptive (OC) use, human papillomavirus virus (HPV) and cervical cancer, and there could be a similar association for CSCC. The cutaneous HPV β-E6 protein, a close cousin of the transformative E6 protein underlying anogenital cancers, has been shown to inhibit apoptosis in response to UVR damage and stimulate morphologic transformation in rodent fibroblast cell lines. Furthermore, OC use has been shown to enhance HPV transcription and may contribute to CSCC risk through this pathway. PMID:21499554

  7. Enhanced resistance to Sendai virus infection in DBA/2J mice with a botanical drug combination (Sinupret).

    PubMed

    Schmolz, M; Ottendorfer, D; März, R W; Sieder, C

    2001-09-01

    It was investigated whether the botanical drug combination Sinupret is able to modulate the resistance of mice to a respiratory tract infection with Sendai virus (Parainfluenza viridae) if given prophylactically to the animals. Three doses of Sinupret drops (SD) and Sinupret tablets (ST, p.o.), and two active controls, the chemical secretolytic ambroxol (p.o.) and the immunomodulator Muramyldipeptide (MDP, i.v.) were used. Test and reference substances were applied at days - 3 and -1 before infection, except MDP, which was given once on day--before infection. CD4+ and CD8 + lymphocyte subpopulations were measured after infection as indicators of immunological treatment response. Groups of 20 mice each were infected by intranasal application of Sendai virus under anaesthesia. We found that the 1 x and 5 x human doses of Sinupret drops significantly prolonged the survival times (p < 0.05) compared to placebo. Additionally, ambroxol and MDP were comparably less effective. In all groups, changes in CD4 + and CD8 + T-lymphocyte subpopulations of the peripheral blood were observed, but no clear relationship to the treatment results was seen. It was concluded that Sinupret increases the resistance to an experimentally induced respiratory tract infection in mice. Moreover, the effect of Sinupret was superior to that of an immunostimulant (MDP) and of a synthetic secretagogue (ambroxolhydrochloride).

  8. Visual detection of Ebola virus using reverse transcription loop-mediated isothermal amplification combined with nucleic acid strip detection.

    PubMed

    Xu, Changping; Wang, Hualei; Jin, Hongli; Feng, Na; Zheng, Xuexing; Cao, Zengguo; Li, Ling; Wang, Jianzhong; Yan, Feihu; Wang, Lina; Chi, Hang; Gai, Weiwei; Wang, Chong; Zhao, Yongkun; Feng, Yan; Wang, Tiecheng; Gao, Yuwei; Lu, Yiyu; Yang, Songtao; Xia, Xianzhu

    2016-05-01

    Ebola virus (species Zaire ebolavirus) (EBOV) is highly virulent in humans. The largest recorded outbreak of Ebola hemorrhagic fever in West Africa to date was caused by EBOV. Therefore, it is necessary to develop a detection method for this virus that can be easily distributed and implemented. In the current study, we developed a visual assay that can detect EBOV-associated nucleic acids. This assay combines reverse transcription loop-mediated isothermal amplification and nucleic acid strip detection (RT-LAMP-NAD). Nucleic acid amplification can be achieved in a one-step process at a constant temperature (58 °C, 35 min), and the amplified products can be visualized within 2-5 min using a nucleic acid strip detection device. The assay is capable of detecting 30 copies of artificial EBOV glycoprotein (GP) RNA and RNA encoding EBOV GP from 10(2) TCID50 recombinant viral particles per ml with high specificity. Overall, the RT-LAMP-NAD method is simple and has high sensitivity and specificity; therefore, it is especially suitable for the rapid detection of EBOV in African regions.

  9. Human Immunodeficiency Virus Viral Load Rebound Near Delivery in Previously Suppressed, Combination Antiretroviral Therapy-Treated Pregnant Women.

    PubMed

    Boucoiran, Isabelle; Albert, Arianne Y K; Tulloch, Karen; Wagner, Emily C; Pick, Neora; van Schalkwyk, Julie; Harrigan, P Richard; Money, Deborah

    2017-09-01

    To assess the stability of human immunodeficiency virus (HIV) viral load suppression within 1 month before birth in pregnant women receiving antenatal combination antiretroviral therapy (CART). This is a retrospective cohort study of a Canadian provincial perinatal HIV database from 1997 to 2015. Inclusion criteria were live birth and CART received for at least 4 weeks. Viral load rebound, defined as viral load greater than 50 copies/mL (or greater than 400 copies/mL for 1997-1998) and measured within 1 month before delivery, was identified in women who had at least one previous undetectable viral load during pregnancy. Logistic regressions were conducted to identify the risk factors for viral load rebound. Among the 470 women in the database, 318 met inclusion criteria. Viral load rebound was experienced by 19 women (6.0%, 95% CI 3.7-9.3%) with a mean log10 viral load near delivery of 2.71 copies/mL (=513 copies/mL). Six (32%) had a viral load above 1,000 copies/mL. The rebound was detected within 1 day before delivery in 50% of the women. Aboriginal ethnicity, cocaine use, and hepatitis C virus polymerase chain reaction positivity were significantly associated with viral load rebound. There were no HIV vertical transmissions. Even women attending for HIV care and achieving viral suppression in pregnancy can experience viral load rebound predelivery.

  10. Lethal exacerbation of Pneumocystis carinii pneumonia in severe combined immunodeficiency mice after infection by pneumonia virus of mice.

    PubMed

    Roths, J B; Smith, A L; Sidman, C L

    1993-04-01

    Mice homozygous for the mutant allele scid (severe combined immunodeficiency) have been described as excellent models for Pneumocystis carinii (Pc) pneumonia (PCP), a major health problem in patients with acquired immune deficiency syndrome (AIDS) and other immunodeficiency states. Other microorganisms have been shown to infect AIDS patients simultaneously with Pc, but whether one opportunist is able to directly influence the pathogenicity of another has not been determined previously. We have deliberately coinfected scid mice (with extent Pc infection) with a variety of primarily pneumotropic viruses and bacteria and have identified pneumonia virus of mice as causing a dramatic increase in the density of Pc organisms and the morbidity due to PCP in immunodeficient scid mice. This finding has clinical significance in the management of PCP, in that the identification and treatment of coinfecting pneumotropic pathogens may be as important as treatment targeted at Pc. A search for other synergistic (or antagonistic) microorganisms and determination of their mechanism(s) of action in altering the progression of PCP is indicated.

  11. Non-viral adeno-associated virus-based platform for stable expression of antibody combination therapeutics

    PubMed Central

    Wilmes, Gwendolyn M; Carey, Kimberly L; Hicks, Stuart W; Russell, Hugh H; Stevenson, Jesse A; Kocjan, Paulina; Lutz, Stephen R; Quesenberry, Rachel S; Shulga-Morskoy, Sergey V; Lewis, Megan E; Clark, Ethan; Medik, Violetta; Cooper, Anthony B; Reczek, Elizabeth E

    2014-01-01

    Antibody combination therapeutics (ACTs) are polyvalent biopharmaceuticals that are uniquely suited for the control of complex diseases, including antibiotic resistant infectious diseases, autoimmune disorders and cancers. However, ACTs also represent a distinct manufacturing challenge because the independent manufacture and subsequent mixing of monoclonal antibodies quickly becomes cost prohibitive as more complex mixtures are envisioned. We have developed a virus-free recombinant protein expression platform based on adeno-associated viral (AAV) elements that is capable of rapid and consistent production of complex antibody mixtures in a single batch format. Using both multiplexed immunoassays and cation exchange (CIEX) chromatography, cell culture supernatants generated using our system were assessed for stability of expression and ratios of the component antibodies over time. Cultures expressing combinations of three to ten antibodies maintained consistent expression levels and stable ratios of component antibodies for at least 60 days. Cultures showed remarkable reproducibility following cell banking, and AAV-based cultures showed higher stability and productivity than non-AAV based cultures. Therefore, this non-viral AAV-based expression platform represents a predictable, reproducible, quick and cost effective method to manufacture or quickly produce for preclinical testing recombinant antibody combination therapies and other recombinant protein mixtures. PMID:24758837

  12. Ivermectin alone or in combination with benzyl benzoate in the treatment of human immunodeficiency virus-associated scabies.

    PubMed

    Alberici, F; Pagani, L; Ratti, G; Viale, P

    2000-05-01

    In order to establish a safe and reliable treatment for human immunodeficiency virus (HIV)-associated scabies, we have treated 60 episodes of scabies in this setting, occurring in 39 patients, with one of the following regimens: (i) topical treatment with benzyl benzoate solution; (ii) single-dose oral treatment with ivermectin alone; and (iii) combination therapy with benzyl benzoate solution and oral ivermectin, employing the same regimens as single-agent therapy. Patients were stratified according to the severity score of the disease and the outcome (eradication, relapse, failure). We found that both benzyl benzoate and ivermectin alone were quite effective in mild to moderate scabies, but they were both associated with an unacceptable rate of relapse and failure in severe or crusted scabies. In contrast, combined treatment produced an optimal rate of success, without significant treatment-related side-effects. Therefore, we consider that combination treatment with benzyl benzoate solution and oral ivermectin is preferable to single-agent therapy in crusted scabies occurring in HIV/acquired immune deficiency syndrome patients.

  13. Disinfection of human enteric viruses in water by copper and silver in combination with low levels of chlorine.

    PubMed Central

    Abad, F X; Pintó, R M; Diez, J M; Bosch, A

    1994-01-01

    The efficacy of copper and silver ions, in combination with low levels of free chlorine (FC), was evaluated for the disinfection of hepatitis A virus (HAV), human rotavirus (HRV), human adenovirus, and poliovirus (PV) in water. HAV and HRV showed little inactivation in all conditions. PV showed more than a 4 log10 titer reduction in the presence of copper and silver combined with 0.5 mg of FC per liter or in the presence of 1 mg of FC per liter alone. Human adenovirus persisted longer than PV with the same treatments, although it persisted significantly less than HRV or HAV. The addition of 700 micrograms of copper and 70 micrograms of silver per liter did not enhance the inactivation rates after the exposure to 0.5 or 0.2 mg of FC per liter, although on some occasions it produced a level of inactivation similar to that induced by a higher dose of FC alone. Virus aggregates were observed in the presence of copper and silver ions, although not in the presence of FC alone. Our data indicate that the use of copper and silver ions in water systems may not provide a reliable alternative to high levels of FC for the disinfection of viral pathogens. Gene probe-based procedures were not adequate to monitor the presence of infectious HAV after disinfection. PV does not appear to be an adequate model viral strain to be used in disinfection studies. Bacteroides fragilis bacteriophages were consistently more resistant to disinfection than PV, suggesting that they would be more suitable indicators, although they survived significantly less than HAV or HRV. Images PMID:8074518

  14. Combination of Leflunomide and Everolimus for treatment of BK virus nephropathy.

    PubMed

    Jaw, Juli; Hill, Prue; Goodman, David

    2017-04-01

    BK nephropathy (BKN) is a common cause of graft dysfunction following kidney transplantation. Minimization of immunosuppressive therapy remains the first line of therapy, but this may lead to rejection and graft loss. In some cases, despite lowering immunosuppression, BK infection can persist, leading to chronic damage and kidney failure. Currently, there is no specific anti-BK viral therapy. Recent in vitro experiments have demonstrated a reduction in BK viral replication when infected cells are treated with the combination of Leflunomide and Everolimus. This study aims to explore the effect of this drugs combination on viral clearance and graft function in patients with persistent disease despite reduction in immunosuppression. We treated three patients with combination Leflunomide and Everolimus. Data on medical history, biochemical parameters and viral loads were collected. Significant improvement in viral loads was observed in two cases with resolution of viremia in another (Table 1). Two recipients had preserved allograft function. The remaining graft was lost because of combination of obstruction and BKN. No adverse reactions such as bone marrow toxicity were observed. Combination of Leflunomide and Everolimus is safe and should be considered as a rescue therapy in treatment of BKN, especially in those who fail to clear this infection despite reduction of immunosuppressive therapy.

  15. A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases.

    PubMed

    Chen, Xilin; Han, Jianfeng; Chu, Jianhong; Zhang, Lingling; Zhang, Jianying; Chen, Charlie; Chen, Luxi; Wang, Youwei; Wang, Hongwei; Yi, Long; Elder, J Bradley; Wang, Qi-En; He, Xiaoming; Kaur, Balveen; Chiocca, E Antonio; Yu, Jianhua

    2016-05-10

    Breast cancer brain metastases (BCBMs) are common in patients with metastatic breast cancer and indicate a poor prognosis. These tumors are especially resistant to currently available treatments due to multiple factors. However, the combination of chimeric antigen receptor (CAR)-modified immune cells and oncolytic herpes simplex virus (oHSV) has not yet been explored in this context. In this study, NK-92 cells and primary NK cells were engineered to express the second generation of EGFR-CAR. The efficacies of anti-BCBMs of EGFR-CAR NK cells, oHSV-1, and their combination were tested in vitro and in a breast cancer intracranial mouse model. In vitro, compared with mock-transduced NK-92 cells or primary NK cells, EGFR-CAR-engineered NK-92 cells and primary NK cells displayed enhanced cytotoxicity and IFN-γ production when co-cultured with breast cancer cell lines MDA-MB-231, MDA-MB-468, and MCF-7. oHSV-1 alone was also capable of lysing and destroying these cells. However, a higher cytolytic effect of EGFR-CAR NK-92 cells was observed when combined with oHSV-1 compared to the monotherapies. In the mice intracranially pre-inoculated with EGFR-expressing MDA-MB-231 cells, intratumoral administration of either EGFR-CAR-transduced NK-92 cells or oHSV-1 mitigated tumor growth. Notably, the combination of EGFR-CAR NK-92 cells with oHSV-1 resulted in more efficient killing of MDA-MB-231 tumor cells and significantly longer survival of tumor-bearing mice when compared to monotherapies. These results demonstrate that regional administration of EGFR-CAR NK-92 cells combined with oHSV-1 therapy is a potentially promising strategy to treat BCBMs.

  16. A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases

    PubMed Central

    Zhang, Jianying; Chen, Charlie; Chen, Luxi; Wang, Youwei; Wang, Hongwei; Yi, Long; Elder, J. Bradley; Wang, Qi-En; He, Xiaoming; Kaur, Balveen; Chiocca, E. Antonio; Yu, Jianhua

    2016-01-01

    Breast cancer brain metastases (BCBMs) are common in patients with metastatic breast cancer and indicate a poor prognosis. These tumors are especially resistant to currently available treatments due to multiple factors. However, the combination of chimeric antigen receptor (CAR)-modified immune cells and oncolytic herpes simplex virus (oHSV) has not yet been explored in this context. In this study, NK-92 cells and primary NK cells were engineered to express the second generation of EGFR-CAR. The efficacies of anti-BCBMs of EGFR-CAR NK cells, oHSV-1, and their combination were tested in vitro and in a breast cancer intracranial mouse model. In vitro, compared with mock-transduced NK-92 cells or primary NK cells, EGFR-CAR-engineered NK-92 cells and primary NK cells displayed enhanced cytotoxicity and IFN-γ production when co-cultured with breast cancer cell lines MDA-MB-231, MDA-MB-468, and MCF-7. oHSV-1 alone was also capable of lysing and destroying these cells. However, a higher cytolytic effect of EGFR-CAR NK-92 cells was observed when combined with oHSV-1 compared to the monotherapies. In the mice intracranially pre-inoculated with EGFR-expressing MDA-MB-231 cells, intratumoral administration of either EGFR-CAR-transduced NK-92 cells or oHSV-1 mitigated tumor growth. Notably, the combination of EGFR-CAR NK-92 cells with oHSV-1 resulted in more efficient killing of MDA-MB-231 tumor cells and significantly longer survival of tumor-bearing mice when compared to monotherapies. These results demonstrate that regional administration of EGFR-CAR NK-92 cells combined with oHSV-1 therapy is a potentially promising strategy to treat BCBMs. PMID:27050072

  17. Combinations of polyclonal or monoclonal antibodies to proteins of the outer membranes of the two infectious forms of vaccinia virus protect mice against a lethal respiratory challenge.

    PubMed

    Lustig, Shlomo; Fogg, Christiana; Whitbeck, J Charles; Eisenberg, Roselyn J; Cohen, Gary H; Moss, Bernard

    2005-11-01

    Previous studies demonstrated that antibodies to live vaccinia virus infection are needed for optimal protection against orthopoxvirus infection. The present report is the first to compare the protective abilities of individual and combinations of specific polyclonal and monoclonal antibodies that target proteins of the intracellular (IMV) and extracellular (EV) forms of vaccinia virus. The antibodies were directed to one IMV membrane protein, L1, and to two outer EV membrane proteins, A33 and B5. In vitro studies showed that the antibodies to L1 neutralized IMV and that the antibodies to A33 and B5 prevented the spread of EV in liquid medium. Prophylactic administration of individual antibodies to BALB/c mice partially protected them against disease following intranasal challenge with lethal doses of vaccinia virus. Combinations of antibodies, particularly anti-L1 and -A33 or -L1 and -B5, provided enhanced protection when administered 1 day before or 2 days after challenge. Furthermore, the protection was superior to that achieved with pooled immune gamma globulin from human volunteers inoculated with live vaccinia virus. In addition, single injections of anti-L1 plus anti-A33 antibodies greatly delayed the deaths of severe combined immunodeficiency mice challenged with vaccinia virus. These studies suggest that antibodies to two or three viral membrane proteins optimally derived from the outer membranes of IMV and EV, may be beneficial for prophylaxis or therapy of orthopoxvirus infections.

  18. Deciphering the Effects of Injectable Pre-exposure Prophylaxis for Combination Human Immunodeficiency Virus Prevention

    PubMed Central

    Glaubius, Robert L.; Parikh, Urvi M.; Hood, Greg; Penrose, Kerri J.; Bendavid, Eran; Mellors, John W.; Abbas, Ume L.

    2016-01-01

    Background. A long-acting injectable formulation of rilpivirine (RPV), under investigation as antiretroviral pre-exposure prophylaxis (PrEP), may facilitate PrEP adherence. In contrast, cross-resistance between RPV and nonnucleoside reverse-transcriptase inhibitors comprising first-line antiretroviral therapy (ART) could promote human immunodeficiency virus (HIV) drug resistance and reduce PrEP's effectiveness. Methods. We use novel mathematical modeling of different RPV PrEP scale-up strategies in KwaZulu-Natal, South Africa, to investigate their effects on HIV prevention and drug resistance, compared with a reference scenario without PrEP. Results. Pre-exposure prophylaxis scale-up modestly increases the proportion of prevalent drug-resistant infections, from 33% to ≤37%. The change in the number of prevalent drug-resistant infections depends on the interplay between PrEP factors (coverage, efficacy, delivery reliability, and scale-up strategy) and the level of cross-resistance between PrEP and ART. An optimistic scenario of 70% effective RPV PrEP (90% efficacious and 80% reliable delivery), among women aged 20–29 years, prevents 17% of cumulative infections over 10 years while decreasing prevalent resistance; however, prevention decreases and resistance increases with more conservative assumptions. Uncertainty analysis assuming 40%–70% cross-resistance prevalence predicts an increase in prevalent resistance unless PrEP's effectiveness exceeds 90%. Conclusions. Prioritized scale-up of injectable PrEP among women in KwaZulu-Natal could reduce HIV infections, but suboptimal effectiveness could promote the spread of drug resistance. PMID:27703992

  19. A clinical pilot study of lignin--ascorbic acid combination treatment of herpes simplex virus.

    PubMed

    Lopez, Blanca Silvia Gonzalez; Yamamoto, Masaji; Utsumi, Katsuaki; Aratsu, Chiaki; Sakagami, Hiroshi

    2009-01-01

    Antiviral drugs as well as natural remedies have been used to reduce symptoms and the rate of recurrences of herpes simplex virus type 1 (HSV-1) infection, a common disease. To evaluate anti-HSV-1 activity of a pine cone lignin and ascorbic acid treatment, a clinical pilot study was carried out. Forty-eight healthy patients of both genders between 4 and 61 years old (mean: 31+/-16 years), with active lesions of HSV-1, took part in the study. According to the HSV-1 stage at the presentation, the patients were classified into the prodromic (16 patients), erythema (11 patients), papule edema (1 patient), vesicle/pustule (13 patients) and ulcer stages (7 patients). One mg of lignin-ascorbic acid tablet or solution was orally administered three times daily for a month. Clinical evaluations were made daily the first week and at least three times a week during the second week after the onset and every six months during the subsequent year to identify recurrence episodes. The patients who began the lignin-ascorbic acid treatment within the first 48 hours of symptom onset did not develop HSV-1 characteristic lesions, whereas those patients who began the treatment later experienced a shorter duration of cold sore lesions and a decrease in the symptoms compared with previous episodes. The majority of the patients reported the reduction in the severity of symptoms and the reduction in the recurrence episodes after the lignin-ascorbic acid treatment compared with previous episodes, suggesting its possible applicability for the prevention and treatment of HSV-1 infection.

  20. Combinations of oseltamivir and peramivir for the treatment of influenza A (H1N1) virus infections in cell culture and in mice

    PubMed Central

    Smee, Donald F.; Hurst, Brett L.; Wong, Min-Hui; Tarbet, E. Bart; Babu, Y.S.; Klumpp, Klaus; Morrey, John D.

    2010-01-01

    Oseltamivir and peramivir are being considered for combination treatment of serious influenza virus infections in humans. Both compounds are influenza virus neuraminidase inhibitors, and since peramivir binds tighter to the enzyme than oseltamivir carboxylate (the active form of oseltamivir), the possibility exists that antagonistic interactions might result when using the two compounds together. To study this possibility, combination chemotherapy experiments were conducted in vitro and in mice infected with influenza A/NWS/33 (H1N1) virus. Treatment of infected MDCK cells was performed with combinations of oseltamivir carboxylate and peramivir at 0.32-100 μM for 3 days, followed by virus yield determinations. Additive drug interactions with a narrow region of synergy were found using the MacSynergy method. In a viral neuraminidase assay with combinations of inhibitors at 0.01-10 nM, no significant antagonistic or synergistic interactions were observed across the range of concentrations. Infected mice were treated twice-daily for 5 days starting 2 hours prior to virus challenge using drug doses of 0.05-0.4 mg/kg/day. Consistent and statistically significant increases in the numbers of survivors were seen when twice daily oral oseltamivir (0.4 mg/kg/day) was combined with twice daily intramuscular peramivir (0.1 and 0.2 mg/kg/day) compared to single drug treatments The data demonstrate that combinations of oseltamivir and peramivir perform better than suboptimal doses of each compound alone to treat influenza infections in mice. Treatment with these two compounds should be considered as an option. PMID:20633577

  1. Combination Immunosuppressive Therapy Including Rituximab for Epstein-Barr Virus-Associated Hemophagocytic Lymphohistiocytosis in Adult-Onset Still's Disease

    PubMed Central

    Schäfer, Eva Johanna; Jung, Wolfram

    2016-01-01

    Hemophagocytic lymphopcytosis (HLH) is a life-threatening condition. It can occur either as primary form with genetic defects or secondary to other conditions, such as hematological or autoimmune diseases. Certain triggering factors can predispose individuals to the development of HLH. We report the case of a 25-year-old male patient who was diagnosed with HLH in the context of adult-onset Still's disease (AOSD) during a primary infection with Epstein-Barr virus (EBV). During therapy with anakinra and dexamethasone, he was still symptomatic with high-spiking fevers, arthralgia, and sore throat. His laboratory values showed high levels of ferritin and C-reactive protein. His condition improved after the addition of rituximab and cyclosporine to his immunosuppressive regimen with prednisolone and anakinra. This combination therapy led to a sustained clinical and serological remission of his condition. While rituximab has been used successfully for HLH in the context of EBV-associated lymphoma, its use in autoimmune diseases is uncommon. We hypothesize that the development of HLH was triggered by a primary EBV infection and that rituximab led to elimination of EBV-infected B-cells, while cyclosporine ameliorated the cytokine excess. We therefore propose that this combination immunosuppressive therapy might be successfully used in HLH occurring in the context of autoimmune diseases. PMID:28018698

  2. Combination Immunosuppressive Therapy Including Rituximab for Epstein-Barr Virus-Associated Hemophagocytic Lymphohistiocytosis in Adult-Onset Still's Disease.

    PubMed

    Schäfer, Eva Johanna; Jung, Wolfram; Korsten, Peter

    2016-01-01

    Hemophagocytic lymphopcytosis (HLH) is a life-threatening condition. It can occur either as primary form with genetic defects or secondary to other conditions, such as hematological or autoimmune diseases. Certain triggering factors can predispose individuals to the development of HLH. We report the case of a 25-year-old male patient who was diagnosed with HLH in the context of adult-onset Still's disease (AOSD) during a primary infection with Epstein-Barr virus (EBV). During therapy with anakinra and dexamethasone, he was still symptomatic with high-spiking fevers, arthralgia, and sore throat. His laboratory values showed high levels of ferritin and C-reactive protein. His condition improved after the addition of rituximab and cyclosporine to his immunosuppressive regimen with prednisolone and anakinra. This combination therapy led to a sustained clinical and serological remission of his condition. While rituximab has been used successfully for HLH in the context of EBV-associated lymphoma, its use in autoimmune diseases is uncommon. We hypothesize that the development of HLH was triggered by a primary EBV infection and that rituximab led to elimination of EBV-infected B-cells, while cyclosporine ameliorated the cytokine excess. We therefore propose that this combination immunosuppressive therapy might be successfully used in HLH occurring in the context of autoimmune diseases.

  3. A new permanent cell line derived from the bank vole (Myodes glareolus) as cell culture model for zoonotic viruses

    PubMed Central

    2011-01-01

    Background Approximately 60% of emerging viruses are of zoonotic origin, with three-fourths derived from wild animals. Many of these zoonotic diseases are transmitted by rodents with important information about their reservoir dynamics and pathogenesis missing. One main reason for the gap in our knowledge is the lack of adequate cell culture systems as models for the investigation of rodent-borne (robo) viruses in vitro. Therefore we established and characterized a new cell line, BVK168, using the kidney of a bank vole, Myodes glareolus, the most abundant member of the Arvicolinae trapped in Germany. Results BVK168 proved to be of epithelial morphology expressing tight junctions as well as adherence junction proteins. The BVK168 cells were analyzed for their infectability by several arbo- and robo-viruses: Vesicular stomatitis virus, vaccinia virus, cowpox virus, Sindbis virus, Pixuna virus, Usutu virus, Inkoo virus, Puumalavirus, and Borna disease virus (BDV). The cell line was susceptible for all tested viruses, and most interestingly also for the difficult to propagate BDV. Conclusion In conclusion, the newly established cell line from wildlife rodents seems to be an excellent tool for the isolation and characterization of new rodent-associated viruses and may be used as in vitro-model to study properties and pathogenesis of these agents. PMID:21729307

  4. Clinical Potential of the Acyclic Nucleoside Phosphonates Cidofovir, Adefovir, and Tenofovir in Treatment of DNA Virus and Retrovirus Infections

    PubMed Central

    De Clercq, Erik

    2003-01-01

    The acyclic nucleoside phosphonates HPMPC (cidofovir), PMEA (adefovir), and PMPA (tenofovir) have proved to be effective in vitro (cell culture systems) and in vivo (animal models and clinical studies) against a wide variety of DNA virus and retrovirus infections: cidofovir against herpesvirus (herpes simplex virus types 1 and 2 varicella-zoster virus, cytomegalovirus [CMV], Epstein-Barr virus, and human herpesviruses 6, 7, and 8), polyomavirus, papillomavirus, adenovirus, and poxvirus (variola virus, cowpox virus, vaccinia virus, molluscum contagiosum virus, and orf virus) infections; adefovir against herpesvirus, hepadnavirus (human hepatitis B virus), and retrovirus (human immunodeficiency virus types 1 [HIV-1] and 2 [HIV-2], simian immunodeficiency virus, and feline immunodeficiency virus) infections; and tenofovir against both hepadnavirus and retrovirus infections. Cidofovir (Vistide) has been officially approved for the treatment of CMV retinitis in AIDS patients, tenofovir disoproxil fumarate (Viread) has been approved for the treatment of HIV infections (i.e., AIDS), and adefovir dipivoxil (Hepsera) has been approved for the treatment of chronic hepatitis B. Nephrotoxicity is the dose-limiting side effect for cidofovir (Vistide) when used intravenously (5 mg/kg); no toxic side effects have been described for adefovir dipivoxil and tenofovir disoproxil fumarate, at the approved doses (Hepsera at 10 mg orally daily and Viread at 300 mg orally daily). PMID:14557287

  5. Response-Guided Telaprevir Combination Treatment for Hepatitis C Virus Infection

    PubMed Central

    Sherman, Kenneth E.; Flamm, Steven L.; Afdhal, Nezam H.; Nelson, David R.; Sulkowski, Mark S.; Everson, Gregory T.; Fried, Michael W.; Adler, Michael; Reesink, Hendrik W.; Martin, Marie; Sankoh, Abdul J.; Adda, Nathalie; Kauffman, Robert S.; George, Shelley; Wright, Christopher I.; Poordad, Fred

    2013-01-01

    BACKGROUND Patients with chronic infection with hepatitis C virus (HCV) genotype 1 often need 48 weeks of peginterferon–ribavirin treatment for a sustained virologic response. We designed a noninferiority trial (noninferiority margin, −10.5%) to compare rates of sustained virologic response among patients receiving two treatment durations. METHODS We enrolled patients with chronic infection with HCV genotype 1 who had not previously received treatment. All patients received telaprevir at a dose of 750 mg every 8 hours, peginterferon alfa-2a at a dose of 180 μg per week, and ribavirin at a dose of 1000 to 1200 mg per day, for 12 weeks (T12PR12), followed by peginterferon–ribavirin. Patients who had an extended rapid virologic response (undetectable HCV RNA levels at weeks 4 and 12) were randomly assigned after week 20 to receive the dual therapy for 4 more weeks (T12PR24) or 28 more weeks (T12PR48). Patients without an extended rapid virologic response were assigned to T12PR48. RESULTS Of the 540 patients, a total of 352 (65%) had an extended rapid virologic response. The overall rate of sustained virologic response was 72%. Among the 322 patients with an extended rapid virologic response who were randomly assigned to a study group, 149 (92%) in the T12PR24 group and 140 (88%) in the T12PR48 group had a sustained virologic response (absolute difference, 4 percentage points; 95% confidence interval, −2 to 11), establishing noninferiority. Adverse events included rash (in 37% of patients, severe in 5%) and anemia (in 39%, severe in 6%). Discontinuation of all the study drugs was based on adverse events in 18% of patients overall, as well as in 1% of patients (all of whom were randomly assigned) in the T12PR24 group and 12% of the patients randomly assigned to the T12PR48 group (P<0.001). CONCLUSIONS In this study, among patients with chronic HCV infection who had not received treatment previously, a regimen of peginterferon–ribavirin for 24 weeks, with

  6. Combined prophylactic and therapeutic intranasal vaccination against human papillomavirus type-16 using different adeno-associated virus serotype vectors.

    PubMed

    Nieto, Karen; Kern, Andrea; Leuchs, Barbara; Gissmann, Lutz; Müller, Martin; Kleinschmidt, Jürgen A

    2009-01-01

    Cervical cancer is the second most frequent cancer among woman worldwide and is considered to be caused by infection with high-risk papilloma viruses. Genetic immunization using recombinant adeno-associated virus (rAAV) vectors has shown great promise for vaccination against human papillomavirus (HPV) infections. rAAV5, -8 and -9 vectors expressing an HPV16 L1/E7 fusion gene were generated and applied intranasally for combined prophylactic and therapeutic vaccination of mice. The rAAV5 and the rAAV9 vectors showed efficient induction of both humoral and cellular immune responses, whereas rAAV8 failed to immunize mice by the intranasal route. The L1-specific immune response evoked by expression of the L1/E7 fusion gene, however, was lower than that evoked by expression of the L1 antigen alone. This deficiency could be compensated by application of Escherichia coli heat-labile enterotoxin or monophsphoryl lipid as adjuvant upon vaccination with rAAV5-L1/E7. Coimmunization of rAAV9-L1/E7 with rAAV5-L1 or boosting of rAAV9-L1/E7 with rAAV5-L1 strongly increased L1-specific neutralizing antibody titres to levels above those achieved by vaccination with vectors expressing L1 alone. Both vectors elicited a vibrant cytotoxic T-lymphocyte response against L1 or E7. Nasal immunization with rAAV5 or rAAV9 was superior to vaccination with HPV16-L1 virus-like particles (VLPs) or HPV16-L1/E7 CVLPs with respect to humoral and cellular immune responses. Vaccination with the rAAV vectors led to a significant protection of animals against a challenge with different HPV tumour cell lines. Our results show that rAAV5 and rAAV9 vectors are promising candidates for a non-invasive nasal vaccination strategy.

  7. Combined hepatitis C virus (HCV) antigen-antibody detection assay does not improve diagnosis for seronegative individuals with occult HCV infection.

    PubMed

    Quiroga, Juan A; Castillo, Inmaculada; Pardo, Margarita; Rodríguez-Iñigo, Elena; Carreño, Vicente

    2006-12-01

    A combined hepatitis C virus (HCV) antigen-antibody assay was evaluated for 115 seronegative individuals with occult HCV infection. The assay was reactive in one patient and negative to weakly reactive in three others (all four gave indeterminate results by supplemental assay) but failed to detect HCV in the remaining patients. Despite increased sensitivity the combined assay does not improve serodiagnosis of occult HCV infection.

  8. Humoral Immune Response in Mice Elicited by Combined Yeast-Derived Hepatitis B Virus Core, Surface, and Mosaic Surface Antigens.

    PubMed

    Granovski, Vladimir; Yokosawa, Jonny; Rodrigues-Granovski, Vanessa; Castro, Carlos Cueto; Urbina, Alfonso Camacho; Granovski, Nikolai

    2017-09-29

    Although successful, the second-generation hepatitis B vaccine programs around the world have a small group of immunized individuals that does not respond efficiently to the vaccination. Other issues of these vaccines are individuals that are low or nonresponders and/or have incomplete protection against heterologous hepatitis B virus (HBV) genotypes/subtypes and against HBV escape mutants. In addition, there are approximately 240 million people chronically infected with HBV worldwide and 620,000 deaths per year caused by the infection. In this study we developed three Hansenula polymorpha plasmids containing the following sequences: (a) HBsAg subtype ayw, (b) HBcAg sequence subtype adw2, and (c) chimeric HBsAg (adw4/ ayw) - preS1 (adw2) - 3 repetitions of preS2 (genotypes A, B, and C). The sequences were successfully expressed and the antigens purified. Using Balb/c mice the antigens were tested in different dosage combinations. Three antigens were obtained at a high purity level and with high reproducibility. We also assessed their immunogenic properties, showing that the antigens, individually or in combination, generated anti-HBs, anti-preS1, anti-preS2, and anti-HBc antibodies efficiently in mice. The formulation tests showed that a combination of 0.02 μg of HBs, 0.2 μg of preS1-preS2-HBs, and 0.02 μg of HBc was effective in eliciting specific antibodies in mice. © 2017 S. Karger AG, Basel.

  9. Combined approaches to flexible fitting and assessment in virus capsids undergoing conformational change☆

    PubMed Central

    Pandurangan, Arun Prasad; Shakeel, Shabih; Butcher, Sarah Jane; Topf, Maya

    2014-01-01

    Fitting of atomic components into electron cryo-microscopy (cryoEM) density maps is routinely used to understand the structure and function of macromolecular machines. Many fitting methods have been developed, but a standard protocol for successful fitting and assessment of fitted models has yet to be agreed upon among the experts in the field. Here, we created and tested a protocol that highlights important issues related to homology modelling, density map segmentation, rigid and flexible fitting, as well as the assessment of fits. As part of it, we use two different flexible fitting methods (Flex-EM and iMODfit) and demonstrate how combining the analysis of multiple fits and model assessment could result in an improved model. The protocol is applied to the case of the mature and empty capsids of Coxsackievirus A7 (CAV7) by flexibly fitting homology models into the corresponding cryoEM density maps at 8.2 and 6.1 Å resolution. As a result, and due to the improved homology models (derived from recently solved crystal structures of a close homolog – EV71 capsid – in mature and empty forms), the final models present an improvement over previously published models. In close agreement with the capsid expansion observed in the EV71 structures, the new CAV7 models reveal that the expansion is accompanied by ∼5° counterclockwise rotation of the asymmetric unit, predominantly contributed by the capsid protein VP1. The protocol could be applied not only to viral capsids but also to many other complexes characterised by a combination of atomic structure modelling and cryoEM density fitting. PMID:24333899

  10. Discovery of Influenza A Virus Sequence Pairs and Their Combinations for Simultaneous Heterosubtypic Targeting that Hedge against Antiviral Resistance

    PubMed Central

    Lin, Jing; Pramono, Zacharias Aloysius Dwi; Maurer-Stroh, Sebastian

    2016-01-01

    The multiple circulating human influenza A virus subtypes coupled with the perpetual genomic mutations and segment reassortment events challenge the development of effective therapeutics. The capacity to drug most RNAs motivates the investigation on viral RNA targets. 123,060 segment sequences from 35,938 strains of the most prevalent subtypes also infecting humans–H1N1, 2009 pandemic H1N1, H3N2, H5N1 and H7N9, were used to identify 1,183 conserved RNA target sequences (≥15-mer) in the internal segments. 100% theoretical coverage in simultaneous heterosubtypic targeting is achieved by pairing specific sequences from the same segment (“Duals”) or from two segments (“Doubles”); 1,662 Duals and 28,463 Doubles identified. By combining specific Duals and/or Doubles to form a target graph wherein an edge connecting two vertices (target sequences) represents a Dual or Double, it is possible to hedge against antiviral resistance besides maintaining 100% heterosubtypic coverage. To evaluate the hedging potential, we define the hedge-factor as the minimum number of resistant target sequences that will render the graph to become resistant i.e. eliminate all the edges therein; a target sequence or a graph is considered resistant when it cannot achieve 100% heterosubtypic coverage. In an n-vertices graph (n ≥ 3), the hedge-factor is maximal (= n– 1) when it is a complete graph i.e. every distinct pair in a graph is either a Dual or Double. Computational analyses uncover an extensive number of complete graphs of different sizes. Monte Carlo simulations show that the mutation counts and time elapsed for a target graph to become resistant increase with the hedge-factor. Incidentally, target sequences which were reported to reduce virus titre in experiments are included in our target graphs. The identity of target sequence pairs for heterosubtypic targeting and their combinations for hedging antiviral resistance are useful toolkits to construct target graphs for

  11. Influenza A virus in swine breeding herds: Combination of vaccination and biosecurity practices can reduce likelihood of endemic piglet reservoir.

    PubMed

    White, L A; Torremorell, M; Craft, M E

    2017-03-01

    Recent modelling and empirical work on influenza A virus (IAV) suggests that piglets play an important role as an endemic reservoir. The objective of this study is to test intervention strategies aimed at reducing the incidence of IAV in piglets and ideally, preventing piglets from becoming exposed in the first place. These interventions include biosecurity measures, vaccination, and management options that swine producers may employ individually or jointly to control IAV in their herds. We have developed a stochastic Susceptible-Exposed-Infectious-Recovered-Vaccinated (SEIRV) model that reflects the spatial organization of a standard breeding herd and accounts for the different production classes of pigs therein. Notably, this model allows for loss of immunity for vaccinated and recovered animals, and for vaccinated animals to have different latency and infectious periods from unvaccinated animals as suggested by the literature. The interventions tested include: (1) varied timing of gilt introductions to the breeding herd, (2) gilt separation (no indirect transmission to or from the gilt development unit), (3) gilt vaccination upon arrival to the farm, (4) early weaning, and (5) vaccination strategies of sows with different timing (mass and pre-farrow) and efficacy (homologous vs. heterologous). We conducted a Latin Hypercube Sampling and Partial Rank Correlation Coefficient (LHS-PRCC) analysis combined with a random forest analysis to assess the relative importance of each epidemiological parameter in determining epidemic outcomes. In concert, mass vaccination, early weaning of piglets (removal 0-7days after birth), gilt separation, gilt vaccination, and longer periods between introductions of gilts (6 months) were the most effective at reducing prevalence. Endemic prevalence overall was reduced by 51% relative to the null case; endemic prevalence in piglets was reduced by 74%; and IAV was eliminated completely from the herd in 23% of all simulations. Importantly

  12. A polyvalent Clade B virus-like particle HIV vaccine combined with partially protective oral preexposure prophylaxis prevents simian-human immunodeficiency virus Infection in macaques and primes for virus-amplified immunity.

    PubMed

    Ross, Ted M; Pereira, Lara E; Luckay, Amara; McNicholl, Janet M; García-Lerma, J Gerardo; Heneine, Walid; Eugene, Hermancia S; Pierce-Paul, Brooke R; Zhang, Jining; Hendry, R Michael; Smith, James M

    2014-11-01

    Vaccination and preexposure prophylaxis (PrEP) with antiretrovirals have shown only partial protection from HIV-1 infection in human trials. Oral Truvada (emtricitabine/tenofovir disoproxil fumarate) is FDA approved as PrEP but partial adherence reduces efficacy. If combined as biomedical preventions (CBP), an HIV vaccine could protect when PrEP adherence is low and PrEP could prevent vaccine breakthroughs. The efficacy of combining oral PrEP with an HIV vaccine has not been evaluated in humans. We determined the efficacy of combining a DNA/virus-like particle (VLP) vaccine with partially effective intermittent PrEP in Indian rhesus macaques (RM). Eight RM received intramuscular inoculations of five DNA plasmids encoding four HIV-1 Clade B primary isolate Envs and SIVmac239 Gag (at weeks 0 and 4), followed by intramuscular and intranasal inoculations of homologous Gag VLPs and four Env VLPs (at weeks 12, 16, and 53). At week 61, we initiated weekly rectal exposures with heterologous SHIV162p3 (10 TCID50) along with oral Truvada (TDF, 22 mg/kg; FTC 20 mg/kg) dosing 2 h before and 22 h after each exposure. This PrEP regimen previously demonstrated 50% efficacy. Five controls (no vaccine, no PrEP) received weekly SHIV162p3. All controls were infected after a median of four exposures; the mean peak plasma viral load (VL) was 3.9×10(7) vRNA copies/ml. CBP protected seven of eight (87.5%) RM. The one infected CBP RM had a reduced peak VL of 8.8×10(5) copies/ml. SHIV exposures during PrEP amplified Gag and Env antibody titers in protected RM. These results suggest that combining oral PrEP with HIV vaccines could enhance protection against HIV-1 infection.

  13. A Polyvalent Clade B Virus-Like Particle HIV Vaccine Combined with Partially Protective Oral Preexposure Prophylaxis Prevents Simian–Human Immunodeficiency Virus Infection in Macaques and Primes for Virus-Amplified Immunity

    PubMed Central

    Ross, Ted M.; Pereira, Lara E.; Luckay, Amara; McNicholl, Janet M.; García-Lerma, J. Gerardo; Heneine, Walid; Eugene, Hermancia S.; Pierce-Paul, Brooke R.; Zhang, Jining; Hendry, R. Michael

    2014-01-01

    Abstract Vaccination and preexposure prophylaxis (PrEP) with antiretrovirals have shown only partial protection from HIV-1 infection in human trials. Oral Truvada (emtricitabine/tenofovir disoproxil fumarate) is FDA approved as PrEP but partial adherence reduces efficacy. If combined as biomedical preventions (CBP), an HIV vaccine could protect when PrEP adherence is low and PrEP could prevent vaccine breakthroughs. The efficacy of combining oral PrEP with an HIV vaccine has not been evaluated in humans. We determined the efficacy of combining a DNA/virus-like particle (VLP) vaccine with partially effective intermittent PrEP in Indian rhesus macaques (RM). Eight RM received intramuscular inoculations of five DNA plasmids encoding four HIV-1 Clade B primary isolate Envs and SIVmac239 Gag (at weeks 0 and 4), followed by intramuscular and intranasal inoculations of homologous Gag VLPs and four Env VLPs (at weeks 12, 16, and 53). At week 61, we initiated weekly rectal exposures with heterologous SHIV162p3 (10 TCID50) along with oral Truvada (TDF, 22 mg/kg; FTC 20 mg/kg) dosing 2 h before and 22 h after each exposure. This PrEP regimen previously demonstrated 50% efficacy. Five controls (no vaccine, no PrEP) received weekly SHIV162p3. All controls were infected after a median of four exposures; the mean peak plasma viral load (VL) was 3.9×107 vRNA copies/ml. CBP protected seven of eight (87.5%) RM. The one infected CBP RM had a reduced peak VL of 8.8×105 copies/ml. SHIV exposures during PrEP amplified Gag and Env antibody titers in protected RM. These results suggest that combining oral PrEP with HIV vaccines could enhance protection against HIV-1 infection. PMID:24914761

  14. The genome of camelpox virus.

    PubMed

    Afonso, C L; Tulman, E R; Lu, Z; Zsak, L; Sandybaev, N T; Kerembekova, U Z; Zaitsev, V L; Kutish, G F; Rock, D L

    2002-03-30

    Camelpox virus (CMLV), a member of the Orthopoxvirus genus in the Poxviridae, is the etiologic agent of a disease of camels. Here we report the CMLV genomic sequence with analysis. The 205,719-bp CMLV genome contains 211 putative genes and consists of a central region bound by identical inverted terminal repeats of approximately 7 kb. A high degree of similarity in gene order, gene content, and amino acid composition in the region located between CMLV017 and CMLV184 (average 96% amino acid identity to vaccinia virus (VACV)) indicates a close structural and functional relationship between CMLV and other known orthopoxviruses (OPVs). Notably, CMLV contains a unique region of approximately 3 kb, which encodes three ORFs (CMLV185, CMLV186, CMLV187) absent in other OPVs. These ORFs are most similar to B22R homologues found in other chordopoxvirus genera. Among OPVs, CMLV is the most closely related to variola virus (VARV), sharing all genes involved in basic replicative functions and the majority of genes involved in other host-related functions. Differences between CMLV and VARV include deletion and disruption of a large number of genes. Twenty-seven CMLV ORFs are absent in VARV, including seven full-length homologues of NMDA-like receptor, phospholipase D, Schlafen, MT-4 virulence, kelch, VACV C8L, and cowpox (CPXV) B21R proteins. Thirty-eight CMLV ORFs, some of which are fragments of larger genes, differ in size from corresponding VARV ORFs by more than 10% (amino acids). Genome structure and phylogenetic analysis of DNA sequences for all ORFs indicate that CMLV is clearly distinct from VARV and VACV and, as it has been suggested for VARV, it may have originated from a CPXV virus-like ancestor.

  15. Combination vascular delivery of herpes simplex oncolytic viruses and amplicon mediated cytokine gene transfer is effective therapy for experimental liver cancer.

    PubMed Central

    Zager, J. S.; Delman, K. A.; Malhotra, S.; Ebright, M. I.; Bennett, J. J.; Kates, T.; Halterman, M.; Federoff, H.; Fong, Y.

    2001-01-01

    BACKGROUND: Herpes simplex type I (HSV)-based vectors have been used experimentally for suicide gene therapy, immunomodulatory gene delivery, and direct oncolytic therapy. The current study utilizes the novel concept of regional delivery of an oncolytic virus in combination with or serving as the helper virus for packaging herpes-based amplicon vectors carrying a cytokine transgene, with the goal of identifying if this combination is more efficacious than either modality alone. MATERIALS AND METHODS: A replication competent oncolytic HSV (G207) and a replication incompetent HSV amplicon carrying the gene for the immunomodulatory cytokine IL-2 (HSV-IL2) were tested in murine syngeneic colorectal carcinoma and in rat hepatocellular carcinoma models. Liver tumors were treated with vascular delivery of (1) phosphate-buffered saline (PBS), (2) G207, (3) HSV-IL2, (4) G207 and HSV-IL2 mixed in combination (mG207/HSV- IL2), and (5) G207 as the helper virus for packaging the construct HSV-IL2 (pG207/HSV-IL2). RESULTS: Tumor burden was significantly reduced in all treatment groups in both rats and mice treated with high-dose G207, HSV-IL2, or both (p < 0.02). When a low dose of virus was used in mice, anti-tumor efficacy was improved by use of G207 and HSV-IL2 in combination or with HSV-IL2 packaged by G207 (p < 0.001). This improvement was abolished when CD4(+) and CD8(+) lymphocytes were depleted, implying that the enhanced anti-tumor response to low-dose combined therapy is immune mediated. CONCLUSIONS: Vascular regional delivery of oncolytic and amplicon HSV vectors can be used to induce improved anti-tumor efficacy by combining oncolytic and immunostimulatory strategies. PMID:11591892

  16. Effects of mTOR and calcineurin inhibitors combined therapy in Epstein-Barr virus positive and negative Burkitt lymphoma cells.

    PubMed

    Wowro, Sylvia J; Schmitt, Katharina R L; Tong, Giang; Berger, Felix; Schubert, Stephan

    2016-01-01

    Post-transplant lymphoproliferative disorder is a severe complication in solid organ transplant recipients, which is highly associated with Epstein-Barr virus infection in pediatric patients and occasionally presents as Burkitt- or Burkitt-like lymphoma. The mammalian target of rapamycin (mTOR) pathway has been described as a possible antitumor target whose inhibition may influence lymphoma development and proliferation after pediatric transplantation. We treated Epstein-Barr virus positive (Raji and Daudi) and negative (Ramos) human Burkitt lymphoma derived cells with mTOR inhibitor everolimus alone and in combination with clinically relevant immunosuppressive calcineurin inhibitors (tacrolimus or cyclosporin A). Cell proliferation, toxicity, and mitochondrial metabolic activity were analyzed. The effect on mTOR Complex 1 downstream targets p70 S6 kinase, eukaryotic initiation factor 4G, and S6 ribosomal protein activation was also investigated. We observed that treatment with everolimus alone significantly decreased Burkitt lymphoma cell proliferation and mitochondrial metabolic activity. Everolimus in combination with cyclosporin A had a stronger suppressive effect in Epstein-Barr virus negative but not in Epstein-Barr virus positive cells. In contrast, tacrolimus completely abolished the everolimus-mediated suppressive effects. Moreover, we showed a significant decrease in activation of mTOR Complex 1 downstream targets after treatment with everolimus that was attenuated when combined with tacrolimus, but not with cyclosporin A. For the first time we showed the competitive effect between everolimus and tacrolimus when used as combination therapy on Burkitt lymphoma derived cells. Thus, according to our in vitro data, the combination of calcineurin inhibitor cyclosporin A with everolimus is preferred to the combination of tacrolimus and everolimus.

  17. Combined local and systemic immunization is essential for durable T-cell mediated heterosubtypic immunity against influenza A virus

    PubMed Central

    Uddback, Ida E. M.; Pedersen, Line M. I.; Pedersen, Sara R.; Steffensen, Maria A.; Holst, Peter J.; Thomsen, Allan R.; Christensen, Jan P.

    2016-01-01

    The threat from unpredictable influenza virus pandemics necessitates the development of a new type of influenza vaccine. Since the internal proteins are highly conserved, induction of T cells targeting these antigens may provide the solution. Indeed, adenoviral (Ad) vectors expressing flu nucleoprotein have previously been found to induce short-term protection in mice. In this study we confirm that systemic (subcutaneous (s.c.) immunization rapidly induced heterosubtypic protection predominantly mediated by CD8 T cells, but within three months clinical protection completely disappeared. Local (intranasal (i.n.)) immunization elicited delayed, but more lasting protection despite relatively inefficient immunization. However, by far, the most robust protection was induced by simultaneous, combined (i.n. + s.c.) vaccination, and, notably, in this case clinical protection lasted at least 8 months without showing any evidence of fading. Interestingly, the superior ability of the latter group to resist reinfection correlated with a higher number of antigen-specific CD8 T cells in the spleen. Thus, detailed analysis of the underlying CD8 T cell responses highlights the importance of T cells already positioned in the lungs prior to challenge, but at the same time underscores an important back-up role for circulating antigen-specific cells with the capacity to expand and infiltrate the infected lungs. PMID:26831578

  18. The rational of catalytic activity of herpes simplex virus thymidine kinase. a combined biochemical and quantum chemical study.

    PubMed

    Sulpizi, M; Schelling, P; Folkers, G; Carloni, P; Scapozza, L

    2001-06-15

    Most antiherpes therapies exploit the large substrate acceptance of herpes simplex virus type 1 thymidine kinase (TK(HSV1)) relative to the human isoenzyme. The enzyme selectively phosphorylates nucleoside analogs that can either inhibit viral DNA polymerase or cause toxic effects when incorporated into viral DNA. To relate structural properties of TK(HSV1) ligands to their chemical reactivity we have carried out ab initio quantum chemistry calculations within the density functional theory framework in combination with biochemical studies. Calculations have focused on a set of ligands carrying a representative set of the large spectrum of sugar-mimicking moieties and for which structural information of the TK(HSV1)-ligand complex is available. The k(cat) values of these ligands have been measured under the same experimental conditions using an UV spectrophotometric assay. The calculations point to the crucial role of electric dipole moment of ligands and its interaction with the negatively charged residue Glu(225). A striking correlation is found between the energetics associated with this interaction and the k(cat) values measured under homogeneous conditions. This finding uncovers a fundamental aspect of the mechanism governing substrate diversity and catalytic turnover and thus represents a significant step toward the rational design of novel and powerful prodrugs for antiviral and TK(HSV1)-linked suicide gene therapies.

  19. Mefenamic acid in combination with ribavirin shows significant effects in reducing chikungunya virus infection in vitro and in vivo.

    PubMed

    Rothan, Hussin A; Bahrani, Hirbod; Abdulrahman, Ammar Y; Mohamed, Zulqarnain; Teoh, Teow Chong; Othman, Shatrah; Rashid, Nurshamimi Nor; Rahman, Noorsaadah A; Yusof, Rohana

    2016-03-01

    Chikungunya virus (CHIKV) infection is a persistent problem worldwide due to efficient adaptation of the viral vectors, Aedes aegypti and Aedes albopictus mosquitoes. Therefore, the absence of effective anti-CHIKV drugs to combat chikungunya outbreaks often leads to a significant impact on public health care. In this study, we investigated the antiviral activity of drugs that are used to alleviate infection symptoms, namely, the non-steroidal anti-inflammatory drugs (NSAIDs), on the premise that active compounds with potential antiviral and anti-inflammatory activities could be directly subjected for human use to treat CHIKV infections. Amongst the various NSAID compounds, Mefenamic acid (MEFE) and Meclofenamic acid (MECLO) showed considerable antiviral activity against viral replication individually or in combination with the common antiviral drug, Ribavirin (RIBA). The 50% effective concentration (EC50) was estimated to be 13 μM for MEFE, 18 μM for MECLO and 10 μM for RIBA, while MEFE + RIBA (1:1) exhibited an EC50 of 3 μM, and MECLO + RIBA (1:1) was 5 μM. Because MEFE is commercially available and its synthesis is easier compared with MECLO, MEFE was selected for further in vivo antiviral activity analysis. Treatment with MEFE + RIBA resulted in a significant reduction of hypertrophic effects by CHIKV on the mouse liver and spleen. Viral titre quantification in the blood of CHIKV-infected mice through the plaque formation assay revealed that treatment with MEFE + RIBA exhibited a 6.5-fold reduction compared with untreated controls. In conclusion, our study demonstrated that MEFE in combination with RIBA exhibited significant anti-CHIKV activity by impairing viral replication in vitro and in vivo. Indeed, this finding may lead to an even broader application of these combinatorial treatments against other viral infections.

  20. Clinical outcome of interferon and ribavirin combination treatment in hepatitis C virus infected patients with congenital bleeding disorders in Iran.

    PubMed

    Rahmani, M; Toosi, M N; Ghannadi, K; Lari, G R; Jazebi, M; Rasoulzadegan, M; Ala, F

    2009-09-01

    Hepatitis C virus (HCV) infection is a major cause of morbidity and mortality in patients with inherited bleeding disorders. The results of interferon and ribavirin combination therapy have been reported in a limited number of clinical trials on these patients. Peginterferon is a costly treatment. Conventional interferon and ribavirin therapy is still the main available and affordable antiviral therapy in some countries. The goal of this study was to assess the effectiveness and safety of interferon alfa-2b plus ribavirin in HIV seronegative, non-alcoholic, non-cirrhotic, naïve subjects with congenital coagulopathy. Between May 2003 and August 2007, 103 haemophiliacs were treated consecutively with standard inclusion and exclusion criteria, with interferon alfa-2b (PDferon B) 3MIU three times a week subcutaneously plus ribavirin, for 24-48 weeks, with appropriate dose adjustments. They were all scheduled to have serial visits and laboratory tests. Among 7(6.8%) female and 96(93.2%) male haemophiliacs, 11(10.68%) cases did not complete the study because of psychological side effects. With intent-to-treat analysis, end-of-treatment response was 63.1%, and sustained virological response (SVR) was 56.3%. There was a significant correlation between SVR and genotype, baseline HCV viral load, rapid virological response, early virological response and BMI. A decrease in the haemoglobin level of two patients required ribavirin dose reduction. One developed thrombocytopenia at the end of treatment, but none had neutropenia. Hypothyroidism was observed in two patients. Interferon plus ribavirin combination therapy in HCV-infected haemophilic patients is well tolerated and treatment outcomes appear to be similar to those seen in the general population.

  1. PegIFNα/ribavirin/protease inhibitor combination in severe hepatitis C virus-associated mixed cryoglobulinemia vasculitis.

    PubMed

    Saadoun, David; Resche Rigon, Matthieu; Pol, Stanislas; Thibault, Vincent; Blanc, François; Pialoux, Gilles; Karras, Alexandre; Bazin-Kara, Dorothée; Cazorla, Cécile; Vittecoq, Daniel; Musset, Lucile; Peltier, Julie; Decaux, Olivier; Ziza, Jean-Marc; Lambotte, Olivier; Cacoub, Patrice

    2015-01-01

    The aim of this study was to analyse the safety and efficacy of the PegIFNα/ribavirin/protease inhibitor combination in severe and/or refractory hepatitis C virus (HCV)-mixed cryoglobulinemia (MC) vasculitis. This prospective cohort study included 30 patients (median age 59 years [53-66] and 57% of women) with HCV-MC vasculitis. PegIFNα/ribavirin (for 48 weeks) was associated with telaprevir (375 mg three times daily, for 12 weeks, [n = 17]) or boceprevir (800 mg three times daily, for 44 weeks, (n = 13]). Twenty three patients (76.7%) were non-responders to previous antiviral therapy. At week 72, twenty patients (66.7%) were complete clinical and sustained virological responders. The cryoglobulin level decreased from 0.45 to 0 g/L (p<0.0001) and the C4 level increased from 0.09 to 0.14 g/L (p = 0.017). Complete clinical responders had a higher frequency of purpura (16/20 [80%] vs. 4/10 [40%], p = 0.045), and a trend towards lower frequency of neuropathy (9/20 (45%) vs. 8/10 [80%], p = 0.12) compared with partial responders. Serious adverse events occurred in 14 patients (46.6%) during the 72 weeks of follow-up. Twenty eight patients (93.3%) received erythropoietin, 14 (46.6%) had red blood cell transfusion and 2 (6.6%) received granulocyte stimulating agent. The baseline factors associated with serious adverse events included liver fibrosis (p = 0.045) and a low platelet count (p = 0.021). The PegIFNα/ribavirin/protease inhibitor combination is highly effective in severe and/or refractory HCV-MC at the cost of frequent side effects. Baseline platelet count and liver fibrosis are useful in guiding treatment decisions. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  2. Exploiting the Combination of Natural and Genetically Engineered Resistance to Cassava Mosaic and Cassava Brown Streak Viruses Impacting Cassava Production in Africa

    PubMed Central

    Vanderschuren, Hervé; Moreno, Isabel; Anjanappa, Ravi B.; Zainuddin, Ima M.; Gruissem, Wilhelm

    2012-01-01

    Cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) are currently two major viral diseases that severely reduce cassava production in large areas of Sub-Saharan Africa. Natural resistance has so far only been reported for CMD in cassava. CBSD is caused by two virus species, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). A sequence of the CBSV coat protein (CP) highly conserved between the two virus species was used to demonstrate that a CBSV-CP hairpin construct sufficed to generate immunity against both viral species in the cassava model cultivar (cv. 60444). Most of the transgenic lines showed high levels of resistance under increasing viral loads using a stringent top-grafting method of inoculation. No viral replication was observed in the resistant transgenic lines and they remained free of typical CBSD root symptoms 7 month post-infection. To generate transgenic cassava lines combining resistance to both CBSD and CMD the hairpin construct was transferred to a CMD-resistant farmer-preferred Nigerian landrace TME 7 (Oko-Iyawo). An adapted protocol allowed the efficient Agrobacterium-based transformation of TME 7 and the regeneration of transgenic lines with high levels of CBSV-CP hairpin-derived small RNAs. All transgenic TME 7 lines were immune to both CBSV and UCBSV infections. Further evaluation of the transgenic TME 7 lines revealed that CBSD resistance was maintained when plants were co-inoculated with East African cassava mosaic virus (EACMV), a geminivirus causing CMD. The innovative combination of natural and engineered virus resistance in farmer-preferred landraces will be particularly important to reducing the increasing impact of cassava viral diseases in Africa. PMID:23049780

  3. Hexon based PCRs combined with restriction enzyme analysis for rapid detection and differentiation of fowl adenoviruses and egg drop syndrome virus.

    PubMed

    Raue, R; Hess, M

    1998-08-01

    Three different polymerase chain reactions (PCRs), two of them combined with restriction enzyme analysis (REA), were developed for detection and differentiation of all 12 fowl adenovirus (FAV) serotypes and the egg drop syndrome (EDS) virus. For primer construction FAV1, FAV10 and EDS virus hexon proteins were aligned and conserved and variable regions were determined. Two primer sets (H1/H2 and H3/H4) for single use were constructed which hybridize in three conserved regions of hexon genes. Each primer pair amplifies approximately half of the hexon gene including two loop regions. An amplification product was detected with both primer sets using purified DNA from all FAV1-12 reference strains. Viral EDS DNA was negative using the H1/H2 or H3/H4 primer pair. HaeII digestion of the H1/H2 amplification products differentiates between all viruses except FAV4 and FAV5. In comparison, much more clustering among genomic closely related FAV serotypes was seen after HpaII digestion of the H3/H4 PCR products. Oligonucleotides H5/H6 located in the variable regions of EDS virus hexon gene do not detect any of the FAV serotypes. The PCRs and REA described are suitable to detect all avian adenoviruses infecting chickens, to distinguish all 12 FAV reference strains and to differentiate FAVs from the EDS virus.

  4. Clearance of Hepatitis C Virus After Fixed-Dose Combination Ledipasvir/Sofosbuvir in an Adolescent Female With Decompensated Cirrhosis.

    PubMed

    Smith, Sara K; Rosenthal, Philip

    2016-11-01

    Currently the only Food and Drug Administration-approved treatment for children with chronic hepatitis C virus is pegylated interferon with ribavirin, which is associated with significant adverse effects and low sustained virologic response rates. In this report, we discuss the use of ledipasvir/sofosbuvir to treat an adolescent with cirrhosis secondary to chronic hepatitis C virus.

  5. Intranasal immunization with live recombinant Lactococcus lactis combined with heat-labile toxin B subunit protects chickens from highly pathogenic avian influenza H5N1 virus.

    PubMed

    Lei, Han; Peng, Xiaojue; Shu, Handing; Zhao, Daxian

    2015-01-01

    Development of safe and effective vaccines to prevent highly pathogenic avian influenza H5N1 virus infection is a challenging goal. Lactococcus lactis (L. lactis) is an ideal delivery vector for vaccine development, and it has been shown previously that oral immunization of encapsulated secretory L. lactis-hemagglutinin (HA) could provide complete protection against homologous H5N1 virus challenge in the mice model. While intranasal immunization is an appealing approach, it is now reported that secretory L. lactis-HA combined with mucosal adjuvant heat-labile toxin B subunit (LTB) could provide protective immunity in the chicken model. As compared to intranasal immunization with L. lactis-HA alone, L. lactis-HA combined with LTB (L. lactis-HA + LTB) could elicit robust neutralizing antibody responses and mucosal IgA responses, as well as strong cellular immune responses in the vaccinated chickens. Importantly, intranasal immunization with L. lactis-HA + LTB could provide 100% protection against H5N1 virus challenge. Taken together, these results suggest that intranasal immunization with L. lactis-HA + LTB can be considered as an effective approach for preventing and controlling infection of H5N1 virus in poultry during an avian influenza A/H5N1 pandemic.

  6. Synergistic neutralization of a chimeric SIV/HIV type 1 virus with combinations of human anti-HIV type 1 envelope monoclonal antibodies or hyperimmune globulins.

    PubMed

    Li, A; Baba, T W; Sodroski, J; Zolla-Pazner, S; Gorny, M K; Robinson, J; Posner, M R; Katinger, H; Barbas, C F; Burton, D R; Chou, T C; Ruprecht, R M

    1997-05-20

    A panel of 14 human IgG monoclonal antibodies (MAbs) specific for envelope antigens of the human immunodeficiency virus type 1 (HIV-1), 2 high-titer human anti-HIV-1 immunoglobulin (HIVIG) preparations, and 15 combinations of MAbs or MAb/HIVIG were tested for their ability to neutralize infection of cultured human T cells (MT-2) with a chimeric simian immunodeficiency virus (SHIV-vpu+), which expressed HIV-1 IIIB envelope antigens. Eleven MAbs and both HIVIGs were neutralizing. When used alone, the anti-CD4-binding site MAb b12, the anti-gp41 MAb 2F5, and the anti-gp120 MAb 2G12 were the most potent. When combination regimens involving two MAbs targeting different epitopes were tested, synergy was seen in all paired MAbs, except for one combination that revealed additive effects. The lowest effective antibody concentration for 50% viral neutralization (EC50) and EC90 were achieved with combinations of MAbs b12, 2F5, 2G12, and the anti-V3 MAb 694/98D. Depending on the combination regimen, the concentration of MAbs required to reach 90% virus neutralization was reduced approximately 2- to 25-fold as compared to the dose requirement of individual MAbs to produce the same effect. Synergy of the combination regimens implies that combinations of antibodies may have a role in passive immunoprophylaxis against HIV-1. The ability of SHIV to replicate in rhesus macaques will allow us to test such approaches in vivo.

  7. Engineering of a parainfluenza virus type 5 fusion protein (PIV-5 F): development of an autonomous and hyperfusogenic protein by a combinational mutagenesis approach.

    PubMed

    Terrier, O; Durupt, F; Cartet, G; Thomas, L; Lina, B; Rosa-Calatrava, M

    2009-12-01

    The entry of enveloped viruses into host cells is accomplished by fusion of the viral envelope with the target cell membrane. For the paramyxovirus parainfluenza virus type 5 (PIV-5), this fusion involves an attachment protein (HN) and a class I viral fusion protein (F). We investigated the effect of 20 different combinations of 12 amino-acid substitutions within functional domains of the PIV-5 F glycoprotein, by performing cell surface expression measurements, quantitative fusion and syncytia assays. We found that combinations of mutations conferring an autonomous phenotype with mutations leading to an increased fusion activity were compatible and generated functional PIV-5 F proteins. The addition of mutations in the heptad-repeat domains led to both autonomous and hyperfusogenic phenotypes, despite the low cell surface expression of the corresponding mutants. Such engineering approach may prove useful not only for deciphering the fundamental mechanism behind viral-mediated membrane fusion but also in the development of potential therapeutic applications.

  8. CD4 Response Up to 5 Years After Combination Antiretroviral Therapy in Human Immunodeficiency Virus-Infected Patients in Latin America and the Caribbean

    PubMed Central

    Luz, Paula M.; Belaunzarán-Zamudio, Pablo F.; Crabtree-Ramírez, Brenda; Caro-Vega, Yanink; Hoces, Daniel; Rebeiro, Peter F.; Blevins, Meridith; Pape, Jean W.; Cortes, Claudia P.; Padgett, Denis; Cahn, Pedro; Veloso, Valdilea G.; McGowan, Catherine C.; Grinsztejn, Beatriz; Shepherd, Bryan E.

    2015-01-01

    We describe CD4 counts at 6-month intervals for 5 years after combination antiretroviral therapy initiation among 12 879 antiretroviral-naive human immunodeficiency virus-infected adults from Latin America and the Caribbean. Median CD4 counts increased from 154 cells/mm3 at baseline (interquartile range [IQR], 60–251) to 413 cells/mm3 (IQR, 234–598) by year 5. PMID:26180829

  9. Randomized trial of combined triple therapy comprising two types of peginterferon with simeprevir in patients with hepatitis C virus genotype 1b.

    PubMed

    Tamori, Akihiro; Yoshida, Kanako; Kurai, Osamu; Kioka, Kiyohide; Hai, Hoang; Kozuka, Ritsuzo; Motoyama, Hiroyuki; Kawamura, Etsushi; Hagihara, Atsushi; Uchida-Kobayashi, Sawako; Morikawa, Hiroyasu; Enomoto, Masaru; Murakami, Yoshiki; Kawada, Norifumi

    2016-12-01

    Simeprevir (SMV) is a potent, macrocyclic hepatitis C virus (HCV) non-structural 3/4 A protease inhibitor. This prospective study compared the efficacy and safety of SMV in combination with peginterferon α2a + ribavirin (P2aR) and with peginterferon α2b + ribavirin (P2bR) in Japanese patients with HCV genotype 1b infection.

  10. The Risk of West Nile Virus Infection Is Associated with Combined Sewer Overflow Streams in Urban Atlanta, Georgia, USA

    PubMed Central

    Vazquez-Prokopec, Gonzalo M.; Vanden Eng, Jodi L.; Kelly, Rosmarie; Mead, Daniel G.; Kolhe, Priti; Howgate, James; Kitron, Uriel; Burkot, Thomas R.

    2010-01-01

    Background At present, the factors favoring transmission and amplification of West Nile Virus (WNV) within urban environments are poorly understood. In urban Atlanta, Georgia, the highly polluted waters of streams affected by combined sewer overflow (CSO) represent significant habitats for the WNV mosquito vector Culex quinquefasciatus. However, their contribution to the risk of WNV infection in humans and birds remains unclear. Objectives Our goals were to describe and quantify the spatial distribution of WNV infection in mosquitoes, humans, and corvids, such as blue jays and American crows that are particularly susceptible to WNV infection, and to assess the relationship between WNV infection and proximity to CSO-affected streams in the city of Atlanta, Georgia. Materials and methods We applied spatial statistics to human, corvid, and mosquito WNV surveillance data from 2001 through 2007. Multimodel analysis was used to estimate associations of WNV infection in Cx. quinquefasciatus, humans, and dead corvids with selected risk factors including distance to CSO streams and catch basins, land cover, median household income, and housing characteristics. Results We found that WNV infection in mosquitoes, corvids, and humans was spatially clustered and statistically associated with CSO-affected streams. WNV infection in Cx. quinquefasciatus was significantly higher in CSO compared with non-CSO streams, and WNV infection rates among humans and corvids were significantly associated with proximity to CSO-affected streams, the extent of tree cover, and median household income. Conclusions Our study strongly suggests that CSO-affected streams are significant sources of Cx. quinquefasciatus mosquitoes that may facilitate WNV transmission to humans within urban environments. Our findings may have direct implications for the surveillance and control of WNV in other urban centers that continue to use CSO systems as a waste management practice. PMID:20529765

  11. The risk of West Nile Virus infection is associated with combined sewer overflow streams in urban Atlanta, Georgia, USA.

    PubMed

    Vazquez-Prokopec, Gonzalo M; Vanden Eng, Jodi L; Kelly, Rosmarie; Mead, Daniel G; Kolhe, Priti; Howgate, James; Kitron, Uriel; Burkot, Thomas R

    2010-10-01

    At present, the factors favoring transmission and amplification of West Nile Virus (WNV) within urban environments are poorly understood. In urban Atlanta, Georgia, the highly polluted waters of streams affected by combined sewer overflow (CSO) represent significant habitats for the WNV mosquito vector Culex quinquefasciatus. However, their contribution to the risk of WNV infection in humans and birds remains unclear. Our goals were to describe and quantify the spatial distribution of WNV infection in mosquitoes, humans, and corvids, such as blue jays and American crows that are particularly susceptible to WNV infection, and to assess the relationship between WNV infection and proximity to CSO-affected streams in the city of Atlanta, Georgia. We applied spatial statistics to human, corvid, and mosquito WNV surveillance data from 2001 through 2007. Multimodel analysis was used to estimate associations of WNV infection in Cx. quinquefasciatus, humans, and dead corvids with selected risk factors including distance to CSO streams and catch basins, land cover, median household income, and housing characteristics. We found that WNV infection in mosquitoes, corvids, and humans was spatially clustered and statistically associated with CSO-affected streams. WNV infection in Cx. quinquefasciatus was significantly higher in CSO compared with non-CSO streams, and WNV infection rates among humans and corvids were significantly associated with proximity to CSO-affected streams, the extent of tree cover, and median household income. Our study strongly suggests that CSO-affected streams are significant sources of Cx. quinquefasciatus mosquitoes that may facilitate WNV transmission to humans within urban environments. Our findings may have direct implications for the surveillance and control of WNV in other urban centers that continue to use CSO systems as a waste management practice.

  12. Use of an Oncolytic Virus Secreting GM-CSF as Combined Oncolytic and Immunotherapy for Treatment of Colorectal and Hepatic Adenocarcinomas

    PubMed Central

    Malhotra, Sandeep; Kim, Teresa; Zager, Jonathan; Bennett, Joseph; Ebright, Michael; D’Angelica, Michael; Fong, Yuman

    2007-01-01

    Oncolytic cancer therapy using herpes simplex viruses (HSV) that have direct tumoricidal effects and cancer immunotherapy using the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) have each been effective in preclinical testing. NV1034 is a multi-mutated oncolytic HSV carrying the gene for murine GM-CSF that attempts to combine these two anticancer strategies. The purpose of this study was to compare NV1034 to NV1023, the parent HSV mutants lacking GM-CSF, in order to determine if such combined oncolytic and immunotherapy using a single vector has advantages over oncolytic therapy alone. In vitro, expression GM-CSF did not alter the infectivity, in vitro cytotoxicity, or replication of NV1034 compared to the non-cytokine secreting control. Tumors infected with NV1034 produced GM-CSF in picogram quantities. In vivo efficacy of the viruses against murine colorectal carcinoma CT26 and murine hepatoma Hepa l–6 was then tested in subcutaneous tumors in syngeneic Balb/c and C57 L/J mice respectively. In these immune competent models, NV1034 or NV1023 each demonstrated potent antitumor activity. Treatment with NV1034 had significantly better antitumor effect compared to treatment with NV1023. Furthermore, in mice depleted of CD4+ and CD8+ T-lymphocytes, there was no difference in the antitumor efficacy of these viruses. Viral vectors combining oncolytic and immunotherapy are promising agents in treatment of colorectal carcinoma and hepatoma. PMID:17383529

  13. The Synergistic Effect of Combined Immunization with a DNA Vaccine and Chimeric Yellow Fever/Dengue Virus Leads to Strong Protection against Dengue

    PubMed Central

    Azevedo, Adriana S.; Gonçalves, Antônio J. S.; Archer, Marcia; Freire, Marcos S.; Galler, Ricardo; Alves, Ada M. B.

    2013-01-01

    The dengue envelope glycoprotein (E) is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2) and a chimeric yellow fever/dengue 2 virus (YF17D-D2). The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes. PMID:23472186

  14. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    PubMed

    Azevedo, Adriana S; Gonçalves, Antônio J S; Archer, Marcia; Freire, Marcos S; Galler, Ricardo; Alves, Ada M B

    2013-01-01

    The dengue envelope glycoprotein (E) is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2) and a chimeric yellow fever/dengue 2 virus (YF17D-D2). The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  15. The combined effects of irradiation and herpes simplex virus type 1 infection on an immortal gingival cell line

    PubMed Central

    2014-01-01

    Background Oral mucosa is frequently exposed to Herpes simplex virus type 1 (HSV-1) infection and irradiation due to dental radiography. During radiotherapy for oral cancer, the surrounding clinically normal tissues are also irradiated. This prompted us to study the effects of HSV-1 infection and irradiation on viability and apoptosis of oral epithelial cells. Methods Immortal gingival keratinocyte (HMK) cells were infected with HSV-1 at a low multiplicity of infection (MOI) and irradiated with 2 Gy 24 hours post infection. The cells were then harvested at 24, 72 and 144 hours post irradiation for viability assays and qRT-PCR analyses for the apoptosis-related genes caspases 3, 8, and 9, bcl-2, NFκB1, and viral gene VP16. Mann–Whitney U-test was used for statistical calculations. Results Irradiation improved the cell viability at 144 hours post irradiation (P = 0.05), which was further improved by HSV-1 infection at MOI of 0.00001 (P = 0.05). Simultaneously, the combined effects of infection at MOI of 0.0001 and irradiation resulted in upregulation in NFκB1 (P = 0.05). The combined effects of irradiation and HSV infection also significantly downregulated the expression of caspases 3, 8, and 9 at 144 hours (P = 0.05) whereas caspase 3 and 8 significantly upregulated in non-irradiated, HSV-infected cells as compared to uninfected controls (P = 0.05). Infection with 0.0001 MOI downregulated bcl-2 in non-irradiated cells but was upregulated by 27% after irradiation when compared to non-irradiated infected cells (P = 0.05). Irradiation had no effect on HSV-1 shedding or HSV gene expression at 144 hours. Conclusions HSV-1 infection may improve the viability of immortal cells after irradiation. The effect might be related to inhibition of apoptosis. PMID:25005804

  16. Ledipasvir/sofosbuvir fixed-dose combination tablet in Taiwanese patients with chronic genotype 1 hepatitis C virus.

    PubMed

    Chuang, Wan-Long; Chien, Rong-Nan; Peng, Cheng-Yuan; Chang, Ting-Tsung; Lo, Gin-Ho; Sheen, I-Shyan; Wang, Horng-Yuan; Chen, Jyh-Jou; Yang, Jenny C; Knox, Steven J; Gao, Bing; Garrison, Kimberly L; Mo, Hongmei; Pang, Phillip S; Hsu, Yu-Chun; Hu, Tsung-Hui; Chu, Chi-Jen; Kao, Jia-Horng

    2016-07-01

    Pegylated-interferon-alpha plus ribavirin is the current standard-of-care regimen for treating chronic hepatitis C virus (HCV) infection in Taiwan; however, interferon-based regimens can be poorly tolerated. The interferon-free, two-drug, fixed-dose combination tablet ledipasvir/sofosbuvir is approved in Europe, the USA, and Japan for treating chronic genotype 1 HCV infection. Little is known about its efficacy/safety in Taiwanese patients. In this multicenter, open-label, phase 3b (NCT02021656) study, 85 Taiwanese patients (n = 42, treatment-naïve; n = 43, treatment-experienced) with chronic genotype 1 HCV infection (±compensated cirrhosis) received 12 weeks of ledipasvir/sofosbuvir fixed-dose combination tablet. The primary efficacy end point was the proportion of patients with sustained virologic response 12 weeks after treatment discontinuation (SVR12). Safety and pharmacokinetic data were collected. The overall SVR12 rate was 98% (83/85), with 100% (42/42) and 95% (41/43) of treatment-naïve and treatment-experienced patients, respectively, achieving SVR12. There were no on-treatment virologic failures. One patient relapsed after treatment discontinuation; one patient withdrew consent on day 2. The most common treatment-emergent adverse event (AE) was headache (14%, 12/85). There was one grade 3 AE (small cell lung cancer unrelated to ledipasvir/sofosbuvir), no grade 4 AEs, and four grade 3-4 laboratory abnormalities. Only the patient with small cell lung cancer prematurely discontinued treatment. Two patients reported three serious AEs; none was considered related to ledipasvir/sofosbuvir. Data from this phase 3b study suggest that 12 weeks of once-daily treatment with the interferon-free, ribavirin-free regimen ledipasvir/sofosbuvir is effective and well-tolerated in Taiwanese patients with chronic genotype 1 HCV infection, irrespective of treatment history. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons

  17. Combined administration of (L)-cystine and (L)-theanine enhances immune functions and protects against influenza virus infection in aged mice.

    PubMed

    Takagi, Yasuhiro; Kurihara, Shigekazu; Higashi, Natsumi; Morikawa, Saeko; Kase, Tetsuo; Maeda, Akiko; Arisaka, Harumi; Shibahara, Susumu; Akiyama, Yukio

    2010-02-01

    Cell-mediated and humoral immune responses are attenuated with aging. Intracellular glutathione (GSH) levels also decrease with aging. Previously, we have reported that combined administration of (L)-cystine and (L)-theanine enhances antigen-specific IgG production, partly through augmentation of GSH levels and T helper 2-mediated responses in 12-week-old mice. These findings suggest that combined administration of (L)-cystine and (L)-theanine to aged mice improves immune responses via increase of GSH synthesis. Here, we examined the effects of combined administration of (L)-cystine and (L)-theanine on antigen-specific antibody production and influenza virus infection in aged mice. Combined administration of these amino acids for 14 days before primary immunization significantly enhanced the serum antigen-specific IgM and IgG levels in 24-month-old mice. Furthermore, 13-month-old mice co-treated with these amino acids orally for 10 days had significantly lower lung viral titers than controls at 6 days after influenza virus infection. In addition, this co-treatment also significantly prevented the weight loss associated with infection. Enhancement of anti-influenza-virus IgG antibodies by combined administration of (L)-cystine and (L)-theanine was seen 10 days after infection. The significantly elevated serum interleukin-10/interferon-gamma ratio and gamma-glutamylcysteine synthetase mRNA expression, which is the rate-limiting enzyme of GSH synthesis, in the spleen 3 days after infection may have contributed to the observed beneficial effects. These results suggest that combined administration of (L)-cystine and (L)-theanine enhances immune function and GSH synthesis which are compromised with advanced age, and may become a useful strategy in healthy aging.

  18. Inhibition of Interferons by Ectromelia Virus

    PubMed Central

    Smith, Vincent P.; Alcami, Antonio

    2002-01-01

    Ectromelia virus (EV) is an orthopoxvirus (OPV) that causes mousepox, a severe disease of laboratory mice. Mousepox is a useful model of OPV infection because EV is likely to be a natural mouse pathogen, unlike its close relatives vaccinia virus (VV) and variola virus. Several studies have highlighted the importance of mouse interferons (IFNs) in resistance to and recovery from EV infection, but little is known of the anti-IFN strategies encoded by the virus itself. We have determined that 12 distinct strains and isolates of EV encode soluble, secreted receptors for IFN-γ (vIFN-γR) and IFN-α/β (vIFN-α/βR) that are homologous to those identified in other OPVs. We demonstrate for the first time that the EV vIFN-γR has the unique ability to inhibit the biological activity of mouse IFN-γ. The EV vIFN-α/βR was a potent inhibitor of human and mouse IFN-α and human IFN-β but, surprisingly, was unable to inhibit mouse IFN-β. The replication of all of the EVs included in our study and of cowpox virus was more resistant than VV to the antiviral effects induced in mouse L-929 cells by IFN-α/β and IFN-γ. Sequencing studies showed that this EV resistance is likely to be partly mediated by the double-stranded-RNA-binding protein encoded by an intact EV homolog of the VV E3L gene. The absence of a functional K3L gene, which encodes a viral eIF-2α homolog, in EV suggests that the virus encodes a novel mechanism to counteract the IFN response. These findings will facilitate future studies of the role of viral anti-IFN strategies in mousepox pathogenesis. Their significance in the light of earlier data on the role of IFNs in mousepox is discussed. PMID:11773388

  19. Treatment with the smallpox antiviral tecovirimat (ST-246) alone or in combination with ACAM2000 vaccination is effective as a postsymptomatic therapy for monkeypox virus infection.

    PubMed

    Berhanu, Aklile; Prigge, Jonathan T; Silvera, Peter M; Honeychurch, Kady M; Hruby, Dennis E; Grosenbach, Douglas W

    2015-07-01

    The therapeutic efficacies of smallpox vaccine ACAM2000 and antiviral tecovirimat given alone or in combination starting on day 3 postinfection were compared in a cynomolgus macaque model of lethal monkeypox virus infection. Postexposure administration of ACAM2000 alone did not provide any protection against severe monkeypox disease or mortality. In contrast, postexposure treatment with tecovirimat alone or in combination with ACAM2000 provided full protection. Additionally, tecovirimat treatment delayed until day 4, 5, or 6 postinfection was 83% (days 4 and 5) or 50% (day 6) effective. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Treatment with the Smallpox Antiviral Tecovirimat (ST-246) Alone or in Combination with ACAM2000 Vaccination Is Effective as a Postsymptomatic Therapy for Monkeypox Virus Infection

    PubMed Central

    Prigge, Jonathan T.; Silvera, Peter M.; Honeychurch, Kady M.; Hruby, Dennis E.; Grosenbach, Douglas W.

    2015-01-01

    The therapeutic efficacies of smallpox vaccine ACAM2000 and antiviral tecovirimat given alone or in combination starting on day 3 postinfection were compared in a cynomolgus macaque model of lethal monkeypox virus infection. Postexposure administration of ACAM2000 alone did not provide any protection against severe monkeypox disease or mortality. In contrast, postexposure treatment with tecovirimat alone or in combination with ACAM2000 provided full protection. Additionally, tecovirimat treatment delayed until day 4, 5, or 6 postinfection was 83% (days 4 and 5) or 50% (day 6) effective. PMID:25896687

  1. Inhibition of herpes simplex virus type 1 replication by adeno-associated virus rep proteins depends on their combined DNA-binding and ATPase/helicase activities.

    PubMed

    Glauser, Daniel L; Seyffert, Michael; Strasser, Regina; Franchini, Marco; Laimbacher, Andrea S; Dresch, Christiane; de Oliveira, Anna Paula; Vogel, Rebecca; Büning, Hildegard; Salvetti, Anna; Ackermann, Mathias; Fraefel, Cornel

    2010-04-01

    Adeno-associated virus (AAV) has previously been shown to inhibit the replication of its helper virus herpes simplex virus type 1 (HSV-1), and the inhibitory activity has been attributed to the expression of the AAV Rep proteins. In the present study, we assessed the Rep activities required for inhibition of HSV-1 replication using a panel of wild-type and mutant Rep proteins lacking defined domains and activities. We found that the inhibition of HSV-1 replication required Rep DNA-binding and ATPase/helicase activities but not endonuclease activity. The Rep activities required for inhibition of HSV-1 replication precisely coincided with the activities that were responsible for induction of cellular DNA damage and apoptosis, suggesting that these three processes are closely linked. Notably, the presence of Rep induced the hyperphosphorylation of a DNA damage marker, replication protein A (RPA), which has been reported not to be normally hyperphosphorylated during HSV-1 infection and to be sequestered away from HSV-1 replication compartments during infection. Finally, we demonstrate that the execution of apoptosis is not required for inhibition of HSV-1 replication and that the hyperphosphorylation of RPA per se is not inhibitory for HSV-1 replication, suggesting that these two processes are not directly responsible for the inhibition of HSV-1 replication by Rep.

  2. Enhanced cytotoxicity with a novel system combining the paclitaxel-2'-ethylcarbonate prodrug and an HSV amplicon with an attenuated replication-competent virus, HF10 as a helper virus.

    PubMed

    Ishida, Daisuke; Nawa, Akihiro; Tanino, Tadatoshi; Goshima, Fumi; Luo, Chen Hong; Iwaki, Masahiro; Kajiyama, Hiroaki; Shibata, Kiyosumi; Yamamoto, Eiko; Ino, Kazuhiko; Tsurumi, Tatsuya; Nishiyama, Yukihiro; Kikkawa, Fumitaka

    2010-02-01

    We previously demonstrated that HF10, which is a natural, non-engineered HSV-1, has potent oncolytic activity in the treatment of solid malignant tumors in vitro and in vivo [H. Takakuwa, F. Goshima, N. Nozawa, T. Yoshikawa, H. Kimata, A. Nakao, et al., Oncolytic viral therapy using a spontaneously generated herpes simplex virus type 1 variant for disseminated peritoneal tumor in immunocompetent mice, Arch. Virol. 148 (2003) 813-825; S. Kohno, C. Lou, F. Goshima, Y. Nishiyama, T. Sata, Y. Ono, Herpes simplex virus type 1 mutant HF10 oncolytic viral therapy for bladder cancer, Urology 66 (2005) 1116-1121; D. Watanabe, F. Goshima, I. Mori, Y. Tamada, Y. Matsumoto, Y. Nishiyama, Oncolytic virotherapy for malignant melanoma with herpes simplex virus type 1 mutant HF10, J. Dermatol. Sci. 50 (2008) 185-196; A. Nawa, C. Luo, L. Zhang, Y. Ushijima, D. Ishida, M. Kamakura, et al., Non-engineered, naturally oncolytic herpes simplex virus HSV1 HF10: applications for cancer gene therapy, Curr. Gene. Ther. 8 (2008) 208-221]. Previous reports have also shown that a combination of HF10 and paclitaxel (TAX) was more efficacious than either regimen alone for some types of malignant tumors [S. Shimoyama, F. Goshima, O. Teshigahara, H. Kasuya, Y. Kodera, A. Nakao, et al., Enhanced efficacy of herpes simplex virus mutant HF10 combined with paclitaxel in peritoneal cancer dissemination models, Hepatogastroenterology 54 (2007) 1038-1042]. In this study, we investigated the efficacy of gene-directed enzyme prodrug therapy (GDEPT) using a novel system that combines the paclitaxel-2'-ethylcarbonate prodrug (TAX-2'-Et) and an HSV amplicon expressing rabbit-carboxylesterase (CES) with HF10 as a helper virus. This GDEPT system aims to produce high level of CES at the tumor site, resulting in efficient local conversion of the TAX-2'-Et prodrug into the active drug TAX [A. Nawa, T. Tanino, C. Lou, M. Iwaki, H. Kajiyama, K. Shibata, et al., Gene directed enzyme prodrug therapy for ovarian cancer

  3. Complete genome sequence and integrated protein localization and interaction map for alfalfa dwarf virus, which combines properties of both cytoplasmic and nuclear plant rhabdoviruses

    SciTech Connect

    Bejerman, Nicolás; Giolitti, Fabián; Breuil, Soledad de; Trucco, Verónica; Nome, Claudia; Lenardon, Sergio; Dietzgen, Ralf G.

    2015-09-15

    Summary: We have determined the full-length 14,491-nucleotide genome sequence of a new plant rhabdovirus, alfalfa dwarf virus (ADV). Seven open reading frames (ORFs) were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, in the order 3′-N-P-P3-M-G-P6-L-5′. The ORFs are separated by conserved intergenic regions and the genome coding region is flanked by complementary 3′ leader and 5′ trailer sequences. Phylogenetic analysis of the nucleoprotein amino acid sequence indicated that this alfalfa-infecting rhabdovirus is related to viruses in the genus Cytorhabdovirus. When transiently expressed as GFP fusions in Nicotiana benthamiana leaves, most ADV proteins accumulated in the cell periphery, but unexpectedly P protein was localized exclusively in the nucleus. ADV P protein was shown to have a homotypic, and heterotypic nuclear interactions with N, P3 and M proteins by bimolecular fluorescence complementation. ADV appears unique in that it combines properties of both cytoplasmic and nuclear plant rhabdoviruses. - Highlights: • The complete genome of alfalfa dwarf virus is obtained. • An integrated localization and interaction map for ADV is determined. • ADV has a genome sequence similarity and evolutionary links with cytorhabdoviruses. • ADV protein localization and interaction data show an association with the nucleus. • ADV combines properties of both cytoplasmic and nuclear plant rhabdoviruses.

  4. The Origin of the Variola Virus

    PubMed Central

    Babkin, Igor V.; Babkina, Irina N.

    2015-01-01

    The question of the origin of smallpox, one of the major menaces to humankind, is a constant concern for the scientific community. Smallpox is caused by the agent referred to as the variola virus (VARV), which belongs to the genus Orthopoxvirus. In the last century, smallpox was declared eradicated from the human community; however, the mechanisms responsible for the emergence of new dangerous pathogens have yet to be unraveled. Evolutionary analyses of the molecular biological genomic data of various orthopoxviruses, involving a wide range of epidemiological and historical information about smallpox, have made it possible to date the emergence of VARV. Comparisons of the VARV genome to the genomes of the most closely related orthopoxviruses and the examination of the distribution their natural hosts’ ranges suggest that VARV emerged 3000 to 4000 years ago in the east of the African continent. The VARV evolution rate has been estimated to be approximately 2 × 10−6 substitutions/site/year for the central conserved genomic region and 4 × 10−6 substitutions/site/year for the synonymous substitutions in the genome. Presumably, the introduction of camels to Africa and the concurrent changes to the climate were the particular factors that triggered the divergent evolution of a cowpox-like ancestral virus and thereby led to the emergence of VARV. PMID:25763864

  5. The origin of the variola virus.

    PubMed

    Babkin, Igor V; Babkina, Irina N

    2015-03-10

    The question of the origin of smallpox, one of the major menaces to humankind, is a constant concern for the scientific community. Smallpox is caused by the agent referred to as the variola virus (VARV), which belongs to the genus Orthopoxvirus. In the last century, smallpox was declared eradicated from the human community; however, the mechanisms responsible for the emergence of new dangerous pathogens have yet to be unraveled. Evolutionary analyses of the molecular biological genomic data of various orthopoxviruses, involving a wide range of epidemiological and historical information about smallpox, have made it possible to date the emergence of VARV. Comparisons of the VARV genome to the genomes of the most closely related orthopoxviruses and the examination of the distribution their natural hosts' ranges suggest that VARV emerged 3000 to 4000 years ago in the east of the African continent. The VARV evolution rate has been estimated to be approximately 2 × 10-6 substitutions/site/year for the central conserved genomic region and 4 × 10-6 substitutions/site/year for the synonymous substitutions in the genome. Presumably, the introduction of camels to Africa and the concurrent changes to the climate were the particular factors that triggered the divergent evolution of a cowpox-like ancestral virus and thereby led to the emergence of VARV.

  6. The combination of PRRS virus and bacterial endotoxin as a model for multifactorial respiratory disease in pigs.

    PubMed

    Van Gucht, Steven; Labarque, Geoffrey; Van Reeth, Kristien

    2004-12-08

    This paper reviews in vivo studies on the interaction between porcine reproductive and respiratory syndrome virus (PRRSV) and LPS performed in the authors' laboratory. The main aim was to develop a reproducible model to study the pathogenesis of PRRSV-induced multifactorial respiratory disease. The central hypothesis was that respiratory disease results from an overproduction of proinflammatory cytokines in the lungs. In a first series of studies, PRRSV was shown to be a poor inducer of TNF-alpha and IFN-alpha in the lungs, whereas IL-1 and the anti-inflammatory cytokine IL-10 were produced consistently during infection. We then set up a dual inoculation model in which pigs were inoculated intratracheally with PRRSV and 3-14 days later with LPS. PRRSV-infected pigs developed acute respiratory signs for 12-24h upon intratracheal LPS inoculation, in contrast to pigs inoculated with PRRSV or LPS only. Moreover, peak TNF-alpha, IL-1 and IL-6 titers were 10-100 times higher in PRRSV-LPS inoculated pigs than in the singly inoculated pigs and the cytokine overproduction was associated with disease. To further prove the role of proinflammatory cytokines, we studied the effect of pentoxifylline, a known inhibitor of TNF-alpha and IL-1, on PRRSV-LPS induced cytokine production and disease. The clinical effects of two non-steroidal anti-inflammatory drugs (NSAIDs), meloxicam and flunixin meglumine, were also examined. Pentoxifylline, but not the NSAIDs, significantly reduced fever and respiratory signs from 2 to 6h after LPS. The levels of TNF-alpha and IL-1 in the lungs of pentoxifylline-treated pigs were moderately reduced, but were still 26 and 3.5-fold higher than in pigs inoculated with PRRSV or LPS only. This indicates that pathways other than inhibition of cytokine production contributed to the clinical improvement. Finally, we studied a mechanism by which PRRSV may sensitize the lungs for LPS. We hypothesized that PRRSV would increase the amount of LPS receptor

  7. Crop border and mineral oil sprays used in combination as physical control methods of the aphid-transmitted potato virus Y in potato.

    PubMed

    Boiteau, Gilles; Singh, Mathuresh; Lavoie, Jacques

    2009-03-01

    The objectives of this work were to determine if the control of potato virus Y (PVY, genus Potyvirus, family Potyviridae) in seed potato could be improved by combining border crops and mineral oil sprays, and if the border crop acts as a barrier or a virus sink. Field tests over 3 years confirmed that mineral oils alone are an effective barrier to PVY, and showed that borders alone act as a PVY sink. Combining the familiar mineral oil and the more recent crop border methods was almost twice as effective in reducing PVY incidence as either one used alone. The combination provided consistently high PVY control compared with the variable and often lower level of control by either method alone. The contribution of the oil to PVY reduction was similar whether it was applied to the border, the center seed plot, or both. Oil application to the border alone should not affect efficacy and would help keep control costs down. Combining border and oil provided the best reduction in PVY incidence 3 years out of 3, providing producers with a tool to reduce year-to-year variation in the effectiveness of crop borders or oil sprays used separately. John Wiley and Sons, Ltd

  8. Combinations of Oseltamivir and T-705 Extend the Treatment Window for Highly Pathogenic Influenza A(H5N1) Virus Infection in Mice.

    PubMed

    Marathe, Bindumadhav M; Wong, Sook-San; Vogel, Peter; Garcia-Alcalde, Fernando; Webster, Robert G; Webby, Richard J; Najera, Isabel; Govorkova, Elena A

    2016-05-25

    Current anti-influenza therapy depends on administering drugs soon after infection, which is often impractical. We assessed whether combinations of oseltamivir (a neuraminidase inhibitor) and T-705 (a nonspecific inhibitor of viral polymerases) could extend the window for treating lethal infection with highly pathogenic A(H5N1) influenza virus in mice. Combination therapy protected 100% of mice, even when delayed until 96 h postinoculation. Compared to animals receiving monotherapy, mice receiving combination therapy had reduced viral loads and restricted viral spread in lung tissues, limited lung damage, and decreased inflammatory cytokine production. Next-generation sequencing showed that virus populations in T-705-treated mice had greater genetic variability, with more frequent transversion events, than did populations in control and oseltamivir-treated mice, but no substitutions associated with resistance to oseltamivir or T-705 were detected. Thus, combination therapy extended the treatment window for A(H5N1) influenza infection in mice and should be considered for evaluation in a clinical setting.

  9. Combinations of Oseltamivir and T-705 Extend the Treatment Window for Highly Pathogenic Influenza A(H5N1) Virus Infection in Mice

    PubMed Central

    Marathe, Bindumadhav M.; Wong, Sook-San; Vogel, Peter; Garcia-Alcalde, Fernando; Webster, Robert G.; Webby, Richard J.; Najera, Isabel; Govorkova, Elena A.

    2016-01-01

    Current anti-influenza therapy depends on administering drugs soon after infection, which is often impractical. We assessed whether combinations of oseltamivir (a neuraminidase inhibitor) and T-705 (a nonspecific inhibitor of viral polymerases) could extend the window for treating lethal infection with highly pathogenic A(H5N1) influenza virus in mice. Combination therapy protected 100% of mice, even when delayed until 96 h postinoculation. Compared to animals receiving monotherapy, mice receiving combination therapy had reduced viral loads and restricted viral spread in lung tissues, limited lung damage, and decreased inflammatory cytokine production. Next-generation sequencing showed that virus populations in T-705–treated mice had greater genetic variability, with more frequent transversion events, than did populations in control and oseltamivir-treated mice, but no substitutions associated with resistance to oseltamivir or T-705 were detected. Thus, combination therapy extended the treatment window for A(H5N1) influenza infection in mice and should be considered for evaluation in a clinical setting. PMID:27221530

  10. Lipopolysaccharide, immune activation, and liver abnormalities in HIV/hepatitis B virus (HBV)-coinfected individuals receiving HBV-active combination antiretroviral therapy.

    PubMed

    Crane, Megan; Avihingsanon, Anchalee; Rajasuriar, Reena; Velayudham, Pushparaj; Iser, David; Solomon, Ajantha; Sebolao, Baotuti; Tran, Andrew; Spelman, Tim; Matthews, Gail; Cameron, Paul; Tangkijvanich, Pisit; Dore, Gregory J; Ruxrungtham, Kiat; Lewin, Sharon R

    2014-09-01

    We investigated the relationship between microbial translocation, immune activation, and liver disease in human immunodeficiency virus (HIV)/hepatitis B virus (HBV) coinfection. Lipopolysaccharide (LPS), soluble CD14, CXCL10, and CCL-2 levels were elevated in patients with HIV/HBV coinfection. Levels of LPS, soluble CD14, and CCL-2 declined following receipt of HBV-active combination antiretroviral therapy (cART), but the CXCL10 level remained elevated. No markers were associated with liver disease severity on liver biopsy (n = 96), but CXCL10, interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor α, and interferon γ (IFN-γ) were all associated with elevated liver enzyme levels during receipt of HBV-active cART. Stimulation of hepatocyte cell lines in vitro with IFN-γ and LPS induced a profound synergistic increase in the production of CXCL10. LPS may contribute to liver disease via stimulating persistent production of CXCL10.

  11. A combination HIV reporter virus system for measuring post-entry event efficiency and viral outcome in primary CD4+ T cell subsets.

    PubMed

    Tilton, Carisa A; Tabler, Caroline O; Lucera, Mark B; Marek, Samantha L; Haqqani, Aiman A; Tilton, John C

    2014-01-01

    Fusion between the viral membrane of human immunodeficiency virus (HIV) and the host cell marks the end of the HIV entry process and the beginning of a series of post-entry events including uncoating, reverse transcription, integration, and viral gene expression. The efficiency of post-entry events can be modulated by cellular factors including viral restriction factors and can lead to several distinct outcomes: productive, latent, or abortive infection. Understanding host and viral proteins impacting post-entry event efficiency and viral outcome is critical for strategies to reduce HIV infectivity and to optimize transduction of HIV-based gene therapy vectors. Here, we report a combination reporter virus system measuring both membrane fusion and viral promoter-driven gene expression. This system enables precise determination of unstimulated primary CD4+ T cell subsets targeted by HIV, the efficiency of post-entry viral events, and viral outcome and is compatible with high-throughput screening and cell-sorting methods.

  12. Genotype-specific real-time PCR combined with high-resolution melting analysis for rapid identification of red-spotted grouper nervous necrosis virus.

    PubMed

    Toubanaki, Dimitra K; Karagouni, Evdokia

    2017-08-01

    A real-time genotype-specific polymerase chain reaction (PCR) assay combined with high-resolution melting (HRM) analysis was developed to assess the most common genotypes of nervous necrosis viruses or nodaviruses. Nodaviruses are the causal agents of viral nervous necrosis infections, which have been wreaking havoc in the aquaculture industry worldwide, with fish mortality up to 100%. The four different genotypes of nodaviruses correlate with differences in viral pathogenicity. Therefore, rational development of effective vaccines and diagnostics requires analysis of genetic variation among viruses. The aim of the present study was to develop a real-time tetra-primer genotype-specific PCR assay for genotype identification. Four primers were utilized for simultaneous amplification of nodavirus genotype-specific products in a single closed-tube PCR after a reverse-transcription reaction using RNA isolated from fish samples. For high-throughput sample analysis, SYBR Green-based real-time PCR was used in combination with HRM analysis. The assay was evaluated in terms of specificity and sensitivity. The analysis resulted in melting curves that were indicative of each genotype. The detection limit when using reference plasmids was 100 ag/µL for both genotypes, while the sensitivity of the assays when testing a complex mixture was 10 fg/µL for red-spotted grouper nervous necrosis virus (RGNNV) and 100 fg/µL for striped jack nervous necrosis virus (SJNNV). To test the capability of this method under real-world conditions, 58 samples were examined. All samples belonged to the RGNNV genotype, which was fully validated. The results were in full agreement with genotyping by reference methods. The proposed methodology provides a rapid, sensitive, specific, robust and automatable assay for nodavirus genotyping, making it a useful tool for diagnosis and screening for epidemiological studies.

  13. T-Cell Receptor/CD28 Engagement When Combined with Prostaglandin E2 Treatment Leads to Potent Activation of Human T-Cell Leukemia Virus Type 1

    PubMed Central

    Dumais, Nancy; Paré, Marie-Ève; Mercier, Simon; Bounou, Salim; Marriot, Susan J.; Barbeau, Benoit; Tremblay, Michel J.

    2003-01-01

    Infection with human T-cell leukemia virus type 1 (HTLV-1) is characterized by long latency periods, indicating that viral gene expression is under tight control. There is presently little information available regarding the nature of extracellular stimuli that can transactivate the regulatory elements of HTLV-1 (i.e., long terminal repeat [LTR]). To gain insight into the biological importance of externally induced activation pathways in virus gene expression, primary and established T cells were transfected with HTLV-1-based reporter gene vectors and then were treated with agents that cross-linked the T-cell receptor (TCR) or the costimulatory CD28 molecule with prostaglandin E2 (PGE2). We demonstrated that a potent induction of HTLV-1 LTR-driven reporter gene activity was seen only when the three agents were used in combination. Interestingly, similar observations were made when using C91/PL, a cell line that carries integrated HTLV-1 proviral DNA. This TCR-CD28-PGE2-mediated increase in virus transcription was dependent on protein kinase A activation and induction of the cAMP response element binding protein. Experiments with a mutated reporter construct further revealed the importance of the Tax-responsive elements in the HTLV-1 LTR in the observed up regulation of virus gene expression when TCR/CD28 engagement was combined with PGE2 treatment. The protein tyrosine kinases p56lck and the transmembrane tyrosine phosphatase CD45 were all found to be involved in TCR-CD28-PGE2-directed increase in HTLV-1 LTR activity. This study presents new information on the possible mechanisms underlying reactivation of this retrovirus. PMID:14512564

  14. T-cell receptor/CD28 engagement when combined with prostaglandin E2 treatment leads to potent activation of human T-cell leukemia virus type 1.

    PubMed

    Dumais, Nancy; Paré, Marie-Eve; Mercier, Simon; Bounou, Salim; Marriot, Susan J; Barbeau, Benoit; Tremblay, Michel J

    2003-10-01

    Infection with human T-cell leukemia virus type 1 (HTLV-1) is characterized by long latency periods, indicating that viral gene expression is under tight control. There is presently little information available regarding the nature of extracellular stimuli that can transactivate the regulatory elements of HTLV-1 (i.e., long terminal repeat [LTR]). To gain insight into the biological importance of externally induced activation pathways in virus gene expression, primary and established T cells were transfected with HTLV-1-based reporter gene vectors and then were treated with agents that cross-linked the T-cell receptor (TCR) or the costimulatory CD28 molecule with prostaglandin E(2) (PGE(2)). We demonstrated that a potent induction of HTLV-1 LTR-driven reporter gene activity was seen only when the three agents were used in combination. Interestingly, similar observations were made when using C91/PL, a cell line that carries integrated HTLV-1 proviral DNA. This TCR-CD28-PGE(2)-mediated increase in virus transcription was dependent on protein kinase A activation and induction of the cAMP response element binding protein. Experiments with a mutated reporter construct further revealed the importance of the Tax-responsive elements in the HTLV-1 LTR in the observed up regulation of virus gene expression when TCR/CD28 engagement was combined with PGE(2) treatment. The protein tyrosine kinases p56(lck) and the transmembrane tyrosine phosphatase CD45 were all found to be involved in TCR-CD28-PGE(2)-directed increase in HTLV-1 LTR activity. This study presents new information on the possible mechanisms underlying reactivation of this retrovirus.

  15. Serological survey of rodent-borne viruses in Finnish field voles.

    PubMed

    Forbes, Kristian M; Voutilainen, Liina; Jääskeläinen, Anne; Sironen, Tarja; Kinnunen, Paula M; Stuart, Peter; Vapalahti, Olli; Henttonen, Heikki; Huitu, Otso

    2014-04-01

    In northern Europe, rodent populations display cyclic density fluctuations that can be correlated with the human incidence of zoonotic diseases they spread. During density peaks, field voles (Microtus agrestis) become one of the most abundant rodent species in northern Europe, yet little is known of the viruses they host. We screened 709 field voles, trapped from 14 sites over 3 years, for antibodies against four rodent-borne, potentially zoonotic viruses or virus groups-hantaviruses, lymphocytic choriomeningitis virus (LCMV), Ljungan virus (LV), and orthopoxviruses (OPV). Antibodies against all four viruses were detected. However, seroprevalence of hantaviruses, LV, and LCMV was low. OPV antibodies (most likely cowpox) were more common but restricted geographically to southeastern Finland. Within these sites, antibody prevalence showed delayed density dependence in spring and direct density dependence in fall. Higher seroprevalence was found in spring than fall. These results substantially increase knowledge of the presence and distribution of viruses of field voles in Finland, as well as CPXV infection dynamics.

  16. Increased Efficacy of Zinc Complexes With Picolinic and Aspartic Acids Against Herpes Simplex Virus (HSV) Infection When Combined With the Pavine Alkaloid (-)-Thalimonine

    PubMed Central

    Angelova, Assia L.

    2000-01-01

    Complexes of zinc with picolinic and aspartic acids inhibit key steps of HSV-1 replication affecting different virus-specific targets. As was recently demonstrated by us, the pavine alkaloid (-)-thalimonine irreversibly inhibits HSV-1 infection in cultured cells. The aim of the present study was the evaluation of the combined effect of zinc complexes and (-)-thalimonine on uninfected and HSV-1 infected cells. The data obtained have shown that zinc complexes and the alkaloid exert decreased cytotoxicity (antagonistic effect) and significantly increased anti-HSV-1 activity (synergistic effect) when applied in dual chess-board combinations as compared to the individual effects of compounds tested. These combinations are also effective against the infection caused by a resistant to acyclovir (ACV) HSV-1 mutant and the effect has been recognised as synergistic. PMID:18475954

  17. Combination of an unbiased amplification method and a resequencing microarray for detecting and genotyping equine arteritis virus.

    PubMed

    Hans, Aymeric; Gaudaire, Delphine; Manuguerra, Jean-Claude; Leon, Albertine; Gessain, Antoine; Laugier, Claire; Berthet, Nicolas; Zientara, Stephan

    2015-01-01

    This study shows that an unbiased amplification method applied to equine arteritis virus RNA significantly improves the sensitivity of the real-time reverse transcription-quantitative PCR (RT-qPCR) recommended by the World Organization for Animal Health. Twelve viral RNAs amplified using this method were hybridized on a high-density resequencing microarray for effective viral characterization.

  18. Combined immunoaffinity cDNA-RNA hybridization assay for detection of hepatitis A virus in clinical specimens.

    PubMed Central

    Jansen, R W; Newbold, J E; Lemon, S M

    1985-01-01

    To apply cDNA-RNA hybridization methods to the detection of hepatitis A virus (HAV) in clinical materials, we developed a two-step method in which a microtiter-based, solid-phase immunoadsorption procedure incorporating a monoclonal anti-HAV capture antibody was followed by direct blotting of virus eluates to nitrocellulose and hybridization with 32P-labeled recombinant HAV cDNA. This immunoaffinity hybridization method is simple and involves few sample manipulations, yet it retains high sensitivity (10- to 30-fold more than radioimmunoassay) and is capable of detecting approximately 1 X 10(5) to 2 X 10(5) genome copies of virus. The inclusion of the immunoaffinity step removes most contaminating proteins and thus facilitates subsequent immobilization of the virus for hybridization. It also permits positive hybridization signals to be related to specific antigens and adds a level of specificity to the hybridization procedure. When the method was applied to 23 fecal specimens collected from individuals during week 1 of symptoms due to hepatitis A, 13 specimens were found to be reproducibly positive for HAV RNA by immunoaffinity hybridization, whereas only 11 contained viral antigen detectable by radioimmunoassay. Images PMID:2999190

  19. The combined effects of oncolytic reovirus plus Newcastle disease virus and reovirus plus parvovirus on U87 and U373 cells in vitro and in vivo.

    PubMed

    Alkassar, Muhannad; Gärtner, Barbara; Roemer, Klaus; Graesser, Friedrich; Rommelaere, Jean; Kaestner, Lars; Haeckel, Isabelle; Graf, Norbert

    2011-09-01

    Previous results had documented oncolytic capacity of reovirus, parvovirus and Newcastle disease virus (NDV) on several tumor cell types. To test whether combinations of these viruses may increase this capacity, human U87- and U373-glioblastoma cells, in vitro or xenografted into immuno-compromised mice, were subjected to simultaneous double infections and analyzed. Our results show that reovirus (serotype-3) plus NDV (Hitcher-B1) and reovirus plus parvovirus-H1 lead to a significant increase in tumor cell killing in vitro in both cell lines (Kruskal-Wallis test, P < 0.01) and in vivo. Immunofluorescence and flow cytometry analyses demonstrated the simultaneous replication of the viruses in nearly all cells (>95%) after combined infection. These data thus indicate that a synergistic anti-tumor effect can be achieved by the combined infection with oncolytic viruses.

  20. Combined administration of oseltamivir and hochu-ekki-to (TJ-41) dramatically decreases the viral load in lungs of senescence-accelerated mice during influenza virus infection.

    PubMed

    Ohgitani, Eriko; Kita, Masakazu; Mazda, Osam; Imanishi, Jiro

    2014-02-01

    To enhance the effect of anti-influenza-virus agent treatment, the effect of combined administration of oseltamivir phosphate and hochu-ekki-to (Japanese traditional herbal medicine, HET) on early viral clearance was examined. Senescence-accelerated mice were given HET in drinking water for 2 weeks, followed by intranasal infection with influenza A virus strain PR8. After 4 hours of infection, oseltamivir was administered orally for 5 days. The viral loads in the lungs of the group receiving combined treatment were dramatically lower when compared with the viral loads in the lungs of the group receiving oseltamivir alone. HET significantly increased the induction of IL-1β and TNF-α in the lungs of PR8-infected mice and stimulated alveolar macrophage phagocytosis. From these results, we conclude that these functions may be responsible the increased effect on viral load reduction. Here, we show that the combined administration of oseltamivir and HET is very useful for influenza treatment in senescence-accelerated mice.

  1. The development of persistent duck hepatitis B virus infection can be prevented using antiviral therapy combined with DNA or recombinant fowlpoxvirus vaccines.

    PubMed

    Feng, Feng; Teoh, Chee Quin; Qiao, Qiao; Boyle, David; Jilbert, Allison R

    2010-10-28

    We recently reported the development of a successful post-exposure combination antiviral and "prime-boost" vaccination strategy using the duck hepatitis B virus (DHBV) model of human hepatitis B virus infection. The current study aimed to simplify the vaccination strategy and to test the post-exposure efficacy of combination therapy with the Bristol-Myers Squibb antiviral drug, entecavir (ETV) and either a single dose of DHBV DNA vaccines on day 0 post-infection (p.i.) or a single dose of recombinant fowlpoxvirus (rFPV-DHBV) vaccines on day 7 p.i. Whilst untreated control ducks infected with an equal dose of DHBV all developed persistent and wide spread DHBV infection of the liver, ducks treated with ETV combined with either the DHBV DNA vaccines on day 0 p.i. or the rFPV-DHBV vaccines on day 7 p.i. had no detectable DHBV-infected hepatocytes by day 14 p.i. and were protected from the development of persistent DHBV infection.

  2. Differential antiviral activity of two TIBO derivatives against the human immunodeficiency and murine leukemia viruses alone and in combination with other anti-HIV agents.

    PubMed

    Buckheit, R W; Germany-Decker, J; Hollingshead, M G; Allen, L B; Shannon, W M; Janssen, P A; Chirigos, M A

    1993-11-01

    R82913 and R86183, two derivatives of tetrahydroimidazo[4,5,1-jk][1,4]-benzodiazepin-2(1H)-thione (TIBO), were found to potently and selectively inhibit the replication and cell killing effects of a panel of biologically diverse laboratory and clinical strains of HIV-1. The two compounds exhibited significant activity in all human cell lines tested, as well as in fresh human peripheral blood lymphocytes and macrophages. One of these two compounds (R82913) was found to significantly inhibit the replication of a murine retrovirus (Rauscher murine leukemia virus) in both UV-XC plaque formation and virus yield reduction assays. R86183, despite differing from R82913 only in the positioning of a single chlorine molecule, was not active against the murine retrovirus but was 10-fold more potent in inhibiting HIV-1 replication. Combination antiviral assays with other reverse transcriptase inhibitors, including AZT, ddC, and carbovir, yielded synergistic anti-HIV activity with both TIBO derivatives. Additive to slightly synergistic results were obtained in combinations with ddI and phosphonoformic acid whereas additive to antagonistic activity was detected in combination with dextran sulfate.

  3. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    PubMed

    Das, Sanchita; Rundell, Mark S; Mirza, Aashiq H; Pingle, Maneesh R; Shigyo, Kristi; Garrison, Aura R; Paragas, Jason; Smith, Scott K; Olson, Victoria A; Larone, Davise H; Spitzer, Eric D; Barany, Francis; Golightly, Linnie M

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus).

  4. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus

    PubMed Central

    Das, Sanchita; Rundell, Mark S.; Mirza, Aashiq H.; Pingle, Maneesh R.; Shigyo, Kristi; Garrison, Aura R.; Paragas, Jason; Smith, Scott K.; Olson, Victoria A.; Larone, Davise H.; Spitzer, Eric D.; Barany, Francis; Golightly, Linnie M.

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus). PMID:26381398

  5. Protective effects of broadly neutralizing immunoglobulin against homologous and heterologous equine infectious anemia virus infection in horses with severe combined immunodeficiency.

    PubMed

    Taylor, Sandra D; Leib, Steven R; Wu, Wuwei; Nelson, Robert; Carpenter, Susan; Mealey, Robert H

    2011-07-01

    Using the equine infectious anemia virus (EIAV) lentivirus model system, we previously demonstrated protective effects of broadly neutralizing immune plasma in young horses (foals) with severe combined immunodeficiency (SCID). However, in vivo selection of a neutralization-resistant envelope variant occurred. Here, we determined the protective effects of purified immunoglobulin with more potent broadly neutralizing activity. Overall, protection correlated with the breadth and potency of neutralizing activity in vitro. Four of five SCID foals were completely protected against homologous challenge, while partial protection occurred following heterologous challenge. These results support the inclusion of broadly neutralizing antibodies in lentivirus control strategies.

  6. Protective Effects of Broadly Neutralizing Immunoglobulin against Homologous and Heterologous Equine Infectious Anemia Virus Infection in Horses with Severe Combined Immunodeficiency▿

    PubMed Central

    Taylor, Sandra D.; Leib, Steven R.; Wu, Wuwei; Nelson, Robert; Carpenter, Susan; Mealey, Robert H.

    2011-01-01

    Using the equine infectious anemia virus (EIAV) lentivirus model system, we previously demonstrated protective effects of broadly neutralizing immune plasma in young horses (foals) with severe combined immunodeficiency (SCID). However, in vivo selection of a neutralization-resistant envelope variant occurred. Here, we determined the protective effects of purified immunoglobulin with more potent broadly neutralizing activity. Overall, protection correlated with the breadth and potency of neutralizing activity in vitro. Four of five SCID foals were completely protected against homologous challenge, while partial protection occurred following heterologous challenge. These results support the inclusion of broadly neutralizing antibodies in lentivirus control strategies. PMID:21543497

  7. Effectiveness of Ledipasvir-Sofosbuvir Combination in Patients With Hepatitis C Virus Infection and Factors Associated With Sustained Virologic Response.

    PubMed

    Terrault, Norah A; Zeuzem, Stefan; Di Bisceglie, Adrian M; Lim, Joseph K; Pockros, Paul J; Frazier, Lynn M; Kuo, Alexander; Lok, Anna S; Shiffman, Mitchell L; Ben Ari, Ziv; Akushevich, Lucy; Vainorius, Monika; Sulkowski, Mark S; Fried, Michael W; Nelson, David R

    2016-12-01

    The combination of ledipasvir and sofosbuvir has been approved for treatment of genotype 1 hepatitis C virus (HCV) infection, including an 8-week regimen for treatment-naïve patients without cirrhosis and a baseline level of HCV RNA <6 million IU/mL. We analyzed data from a multicenter, prospective, observational study to determine real-world sustained virologic responses 12 weeks after treatment (SVR12) with regimens containing ledipasvir and sofosbuvir and identify factors associated with treatment failure. We collected data from 2099 participants in the HCV-TARGET study with complete virologic data (per-protocol population). We analyzed data from 1788 patients receiving ledipasvir-sofosbuvir (282 for 8 weeks, 910 for 12 weeks, 510 for 24 weeks, and 86 for a different duration) and 311 receiving ledipasvir-sofosbuvir plus ribavirin (212 for 12 weeks and 81 for 24 weeks, 18 for other duration) to estimate SVR12 (with 95% confidence interval [CI]), and logistic regression methods to identify factors that predicted an SVR12. The overall study population was 25% black, 66% with HCV genotype 1A infection, 41% with cirrhosis, 50% treatment-experienced, and 30% receiving proton pump inhibitors at start of treatment. In the per-protocol population, SVR12s were achieved by 96% of patients receiving ledipasvir-sofosbuvir for 8 weeks (95% CI, 93%-98%), 97% receiving the drugs for 12 weeks (95% CI, 96%-98%), and 95% receiving the drugs for 24 weeks (95% CI, 93%-97%). Among patients also receiving ribavirin, SVR12 was achieved by 97% of the patients receiving the drugs for 12 weeks (95% CI, 94%-99%) and 95% receiving the drugs for 24 weeks (95% CI, 88%-99%). Of the 586 patients who qualified for 8 weeks of treatment, only 255 (44%) received the drugs for 8 weeks. The rate of SVR12 among those who qualified for and received 8 weeks of therapy was similar in those who qualified for 8 weeks but received 12 weeks therapy (96%; 95% CI, 92%-99% vs 98%; 95% CI, 95%-99%). Factors

  8. Visual Detection of West Nile Virus Using Reverse Transcription Loop-Mediated Isothermal Amplification Combined with a Vertical Flow Visualization Strip.

    PubMed

    Cao, Zengguo; Wang, Hualei; Wang, Lina; Li, Ling; Jin, Hongli; Xu, Changping; Feng, Na; Wang, Jianzhong; Li, Qian; Zhao, Yongkun; Wang, Tiecheng; Gao, Yuwei; Lu, Yiyu; Yang, Songtao; Xia, Xianzhu

    2016-01-01

    West Nile virus (WNV) causes a severe zoonosis, which can lead to a large number of casualties and considerable economic losses. A rapid and accurate identification method for WNV for use in field laboratories is urgently needed. Here, a method utilizing reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip (RT-LAMP-VF) was developed to detect the envelope (E) gene of WNV. The RT-LAMP-VF assay could detect 10(2) copies/μl of an WNV RNA standard using a 40 min amplification reaction followed by a 2 min incubation of the amplification product on the visualization strip, and no cross-reaction with other closely related members of the Flavivirus genus was observed. The assay was further evaluated using cells and mouse brain tissues infected with a recombinant rabies virus expressing the E protein of WNV. The assay produced sensitivities of 10(1.5) TCID50/ml and 10(1.33) TCID50/ml for detection of the recombinant virus in the cells and brain tissues, respectively. Overall, the RT-LAMP-VF assay developed in this study is rapid, simple and effective, and it is therefore suitable for clinical application in the field.

  9. Potent Synergistic Anti-Human Immunodeficiency Virus (HIV) Effects Using Combinations of the CCR5 Inhibitor Aplaviroc with Other Anti-HIV Drugs▿

    PubMed Central

    Nakata, Hirotomo; Steinberg, Seth M.; Koh, Yasuhiro; Maeda, Kenji; Takaoka, Yoshikazu; Tamamura, Hirokazu; Fujii, Nobutaka; Mitsuya, Hiroaki

    2008-01-01

    Aplaviroc (AVC), an experimental CCR5 inhibitor, potently blocks in vitro the infection of R5-tropic human immunodeficiency virus type 1 (R5-HIV-1) at subnanomolar 50% inhibitory concentrations. Although maraviroc is presently clinically available, further studies are required to determine the role of CCR5 inhibitors in combinations with other drugs. Here we determined anti-HIV-1 activity using combinations of AVC with various anti-HIV-1 agents, including four U.S. Food and Drug Administration-approved drugs, two CCR5 inhibitors (TAK779 and SCH-C) and two CXCR4 inhibitors (AMD3100 and TE14011). Combination effects were defined as synergistic or antagonistic when the activity of drug A combined with B was statistically greater or less, respectively, than the additive effects of drugs A and A combined and drugs B and B combined by using the Combo method, described in this paper, which provides (i) a flexible choice of interaction models and (ii) the use of nonparametric statistical methods. Synergistic effects against R5-HIV-1Ba-L and a 50:50 mixture of R5-HIV-1Ba-L and X4-HIV-1ERS104pre (HIV-1Ba-L/104pre) were seen when AVC was combined with zidovudine, nevirapine, indinavir, or enfuvirtide. Mild synergism and additivity were observed when AVC was combined with TAK779 and SCH-C, respectively. We also observed more potent synergism against HIV-1Ba-L/104pre when AVC was combined with AMD3100 or TE14011. The data demonstrate a tendency toward greater synergism with AVC plus either of the two CXCR4 inhibitors compared to the synergism obtained with combinations of AVC and other drugs, suggesting that the development of effective CXCR4 inhibitors may be important for increasing the efficacies of CCR5 inhibitors. PMID:18378711

  10. Evaluation of the immunomodulatory and antiviral effects of the cytokine combination IFN-α and IL-7 in the lymphocytic choriomeningitis virus and Friend retrovirus mouse infection models.

    PubMed

    Audigé, Annette; Hofer, Ursula; Dittmer, Ulf; van den Broek, Maries; Speck, Roberto F

    2011-10-01

    Existing therapies for chronic viral infections are still suboptimal or have considerable side effects, so new therapeutic strategies need to be developed. One option is to boost the host's immune response with cytokines. We have recently shown in an acute ex vivo HIV infection model that co-administration of interferon (IFN)-α and interleukin (IL)-7 allows us to combine the potent anti-HIV activity of IFN-α with the beneficial effects of IL-7 on T-cell survival and function. Here we evaluated the effect of combining IFN-α and IL-7 on viral replication in vivo in the chronic lymphocytic choriomeningitis virus (LCMV) and acute Friend retrovirus (FV) infection models. In the chronic LCMV model, cytokine treatment was started during the early replication phase (i.e., on day 7 post-infection [pi]). Under the experimental conditions used, exogenous IFN-α inhibited FV replication, but had no effect on viral replication in the LCMV model. There was no therapeutic benefit of IL-7 either alone or in combination with IFN-α in either of the two infection models. In the LCMV model, dose-dependent effects of the cytokine combination on T-cell phenotype/function were observed. It is possible that these effects would translate into antiviral activity in re-challenged mice. It is also possible that another type of IFN-α/β or induction of endogenous IFN-α/β alone or in combination with IL-7 would have antiviral activity in the LCMV model. Furthermore, we cannot exclude that some effect on viral titers would have been seen at later time points not investigated here (i.e., beyond day 34 pi). Finally, IFN-α/IL-7 may inhibit the replication of other viruses. Thus it might be worth testing these cytokines in other in vivo models of chronic viral infections.

  11. Combined action of influenza virus and Staphylococcus aureus panton-valentine leukocidin provokes severe lung epithelium damage.

    PubMed

    Niemann, Silke; Ehrhardt, Christina; Medina, Eva; Warnking, Kathrin; Tuchscherr, Lorena; Heitmann, Vanessa; Ludwig, Stephan; Peters, Georg; Löffler, Bettina

    2012-10-01

    Staphylococcus aureus necrotizing pneumonia is a life-threatening disease that is frequently preceded by influenza infection. The S. aureus toxin Panton-Valentine leukocidin (PVL) is most likely causative for necrotizing diseases, but the precise pathogenic mechanisms of PVL and a possible contribution of influenza virus remain to be elucidated. In this study, we present a model that explains how influenza virus and PVL act together to cause necrotizing pneumonia: an influenza infection activates the lung epithelium to produce chemoattractants for neutrophils. Upon superinfection with PVL-expressing S. aureus, the recruited neutrophils are rapidly killed by PVL, resulting in uncontrolled release of neutrophil proteases that damage the airway epithelium. The host counteracts this pathogen strategy by generating PVL-neutralizing antibodies and by neutralizing the released proteases via protease inhibitors present in the serum. These findings explain why necrotizing infections mainly develop in serum-free spaces (eg, pulmonary alveoli) and open options for new therapeutic approaches.

  12. Ghost probiotics with a combined regimen: a novel therapeutic approach against the Zika virus, an emerging world threat.

    PubMed

    Bajpai, Vivek K; Chandra, Vishal; Kim, Na-Hyung; Rai, Rajni; Kumar, Pradeep; Kim, Kangmin; Aeron, Abhinav; Kang, Sun Chul; Maheshwari, D K; Na, MinKyun; Rather, Irfan A; Park, Yong-Ha

    2017-09-07

    The Zika virus (ZIKV) used to be an obscure flavivirus closely related to dengue virus (DENV). Transmission of this epidemic pathogen occurs mainly via mosquitoes, but it is also capable of placental and sexual transmission. Although the characteristics of these viruses are well defined, infections are unpredictable in terms of disease severity, unusual clinical manifestations, unexpected methods of transmission, long-term persistence, and the development of new strains. Recently, ZIKV has gained huge medical attention following the large-scale epidemics around the world, and reported cases of congenital abnormalities associated with Zika virus infections which have created a public health emergency of international concern. Despite continuous research on ZIKV, no specific treatment or vaccine has been developed, excepting a preventive strategy for congenital ZIKV infection. Probiotics, known as GRAS, are bacteria that confer various health beneficial effects, and have been shown to be effective at curing a number of viral diseases by modulating the immune system. Furthermore, probiotic preparations consisting of dead cells and cellular metabolites, so-called "Ghost probiotics", can also act as biological response modifiers. Here, we review available information on the epidemiology, transmission, and clinical features of ZIKV, and on treatment and prevention strategies. In addition, we emphasize the use of probiotics and plant-based natural remedies and describe their action mechanisms, and the green technologies for microbial conversion, which could contribute to the development of novel therapies that may reduce the pathogenicity of ZIKV. Accordingly, we draw attention to new findings, unanswered questions, unresolved issues, and controversies regarding ZIKV.

  13. Proteomics approach combined with biochemical attributes to elucidate compatible and incompatible plant-virus interactions between Vigna mungo and Mungbean Yellow Mosaic India Virus

    PubMed Central

    2013-01-01

    Background Vigna mungo, a tropical leguminous plant, highly susceptible to yellow mosaic disease caused by Mungbean Yellow Mosaic India Virus (MYMIV) resulting in high yield penalty. The molecular events occurring during compatible and incompatible interactions between V. mungo and MYMIV pathosystem are yet to be explored. In this study biochemical analyses in conjunction with proteomics of MYMIV-susceptible and -resistant V. mungo genotypes were executed to get an insight in the molecular events during compatible and incompatible plant-virus interactions. Results Biochemical analysis revealed an increase in phenolics, hydrogen peroxide and carbohydrate contents in both compatible and incompatible interactions; but the magnitudes were higher during incompatible interaction. In the resistant genotype the activities of superoxide dismutase and ascorbate peroxidase increased significantly, while catalase activity decreased. Comparative proteome analyses using two-dimensional gel electrophoresis coupled with mass spectrometry identified 109 differentially abundant proteins at 3, 7 and 14 days post MYMIV-inoculation. Proteins of several functional categories were differentially changed in abundance during both compatible and incompatible interactions. Among these, photosynthesis related proteins were mostly affected in the susceptible genotype resulting in reduced photosynthesis rate under MYMIV-stress. Differential intensities of chlorophyll fluorescence and chlorophyll contents are in congruence with proteomics data. It was revealed that Photosystem II electron transports are the primary targets of MYMIV during pathogenesis. Quantitative real time PCR analyses of selected genes corroborates with respective protein abundance during incompatible interaction. The network of various cellular pathways that are involved in inducing defense response contains several conglomerated cores of nodal proteins, of which ascorbate peroxidase, rubisco activase and serine

  14. Inhibition of vaccinia virus replication by two small interfering RNAs targeting B1R and G7L genes and their synergistic combination with cidofovir.

    PubMed

    Vigne, Solenne; Duraffour, Sophie; Andrei, Graciela; Snoeck, Robert; Garin, Daniel; Crance, Jean-Marc

    2009-06-01

    In view of the threat of the potential use of variola virus in a terrorist attack, considerable efforts have been performed to develop new antiviral strategies against orthopoxviruses. Here we report on the use of RNA interference, either alone or in combination with cidofovir, as an approach to inhibit orthopoxvirus replication. Two selected small interfering RNAs (siRNAs), named siB1R-2 and siG7L-1, and a previously reported siRNA, i.e., siD5R-2 (which targets the viral D5R mRNA), were evaluated for antiviral activity against vaccinia virus (VACV) by plaque reduction and virus yield assays. siB1R-2 and siG7L-1, administered before or after viral infection, reduced VACV replication by more than 90%. Also, these two siRNAs decreased monkeypox virus replication by 95% at a concentration of 1 nM. siB1R-2 and siG7L-1 were demonstrated to specifically silence their corresponding transcripts, i.e., B1R and G7L mRNAs, without induction of a beta interferon response. Strong synergistic effects were observed when siB1R-2, siG7L-1, or siD5R-2 was combined with cidofovir. In addition, the antiviral activities of these three siRNAs were evaluated against VACV resistant to cidofovir and other acyclic nucleoside phosphonates. siG7L-1 and siD5R-2 remained active against four of five VACV mutants, while siB1R-2 showed activity against only one of the mutants. Our results showed that siRNAs are potent inhibitory agents in vitro, not only against wild-type VACV but also against several cidofovir-resistant VACV. Furthermore, we showed that a combined therapy using siRNA and cidofovir may be useful in the treatment of poxvirus infections.

  15. Long term impacts of combined sewer overflow remediation on water quality and population dynamics of Culex quinquefasciatus, the main urban West Nile virus vector in Atlanta, GA.

    PubMed

    Lund, Andrea; McMillan, Joseph; Kelly, Rosmarie; Jabbarzadeh, Shirin; Mead, Daniel G; Burkot, Thomas R; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M

    2014-02-01

    Combined sewers are a significant source of urban water pollution due to periodic discharges into natural streams. Such events (called combined sewer overflows, or CSOs) contribute to the impairment of natural waterways and are associated with increased mosquito productivity and elevated risk of West Nile virus transmission. We investigated the impact of CSOs on water quality and immature mosquito productivity in the city of Atlanta, Georgia, one year before and four years after CSO facility remediation. Water quality (ammonia, phosphate, nitrate and dissolved oxygen concentrations), immature mosquitoes (larvae and pupae), water temperature and rainfall were quantified biweekly between June-October at two urban creeks during 2008-2012. A before-after control-intervention design tested the impact of remediation on mosquito productivity and water quality, whereas generalized linear mixed-effect models quantified the factors explaining the long term impacts of remediation on mosquito productivity. Ammonia and phosphate concentrations and late immature (fourth-instar and pupae) mosquito populations were significantly higher in CSO than in non-CSO creeks, while dissolved oxygen concentrations were lower. Remediation significantly improved water quality estimates (particularly ammonia and dissolved oxygen) and reduced the number of overflows, mosquito productivity and the overall contribution of CSO-affected streams as sources of vectors of West Nile virus. The quality of water in CSOs provided a suitable habitat for immature mosquitoes. Remediation of the CSO facility through the construction of a deep storage tunnel improved water quality indices and reduced the productivity of mosquito species that can serve as vectors of West Nile virus. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Genotypic characterization of Indian isolates of infectious bursal disease virus strains by reverse transcription-polymerase chain reaction combined with restriction fragment length polymorphism analysis.

    PubMed

    Priyadharsini, C V; Senthilkumar, T M A; Raja, P; Kumanan, K

    2016-03-01

    The reverse transcription PCR (RT-PCR) combined with restriction fragment length polymorphism (RFLP) is used for the differentiation of classical virulent (cv), virulent (v) and very virulent (vv) strains of infectious bursal disease virus (IBDV) isolates from chicken bursal tissues in southern states of India. In the present study, six different isolates (MB11, HY12, PY12, BGE14, VCN14 and NKL14) of IBDV strains were subjected for genotyping along with vaccine virus (Georgia, intermediate strain) using RT-PCR for amplification of a 743 bp sequence in the hypervariable region of VP2 gene followed by restriction enzyme digestion with 5 different restriction enzymes (BspMI, SacI, HhaI, StuI and SspI). The RT-PCR products obtained from vvIBDV strains were digested by SspI enzyme except PY12, BGE14 and MB11 isolates. The SacI digested the isolate MB11, PY12 and the vaccine strain, but it did not cleave the very virulent isolates of IBDV. HhaI cleaved all the isolates with different restriction profile patterns. StuI digested all the vvIBDV isolates and BspMI was not able to differentiate field isolates from vaccine strain. Though RT-PCR combined with RFLP is a genotypic method, further confirmation of serotypes to distinguish the vvIBDV from cvIBDV has to be carried out using pathogenicity studies.

  17. Evaluation of three experimental bovine viral diarrhea virus killed vaccines adjuvanted with combinations of Quil A cholesterol and dimethyldioctadecylammonium (DDA) bromide.

    PubMed

    Ridpath, Julia F; Dominowski, Paul; Mannan, Ramasany; Yancey, Robert; Jackson, James A; Taylor, Lucas; Mediratta, Sangita; Eversole, Robert; Mackenzie, Charles D; Neill, John D

    2010-12-01

    Bovine viral diarrhea virus (BVDV) infections cause respiratory, reproductive, and enteric disease in cattle. Vaccination raises herd resistance and limits the spread of BVDV among cattle. Both killed and modified live vaccines against BVDV are available. While modified live vaccines elicit an immune response with a broader range and a longer duration of immunity, killed vaccines are considered to be safer. One way to improve the performance of killed vaccines is to develop new adjuvants. The goal of this research was evaluate new adjuvants, consisting of combinations of Quil A cholesterol and dimethyldioctadecylammonium (DDA) bromide, for use in killed vaccines. Responses to three novel killed vaccines, using combinations of Quil A and DDA as adjuvants, were compared to responses to a commercial modified live and a commercial killed vaccine. Vaccination response was monitored by measuring viral neutralizing antibodies (VN) levels and by response to challenge. All three novel vaccines were efficacious based on reduction in virus isolation, pyrexia, and depression. Compared to a commercial killed vaccine, the three novel vaccines elicited higher VN levels and reduced injection site inflammation.

  18. Combination electro-gene therapy using herpes virus thymidine kinase and interleukin-12 expression plasmids is highly efficient against murine carcinomas in vivo.

    PubMed

    Goto, Tomoaki; Nishi, Toru; Kobayashi, Osamu; Tamura, Takahiko; Dev, Sukhendu B; Takeshima, Hideo; Kochi, Masato; Kuratsu, Jun-ichi; Sakata, Tsuneaki; Ushio, Yukitaka

    2004-11-01

    We report the use of plasmid DNA-mediated combination gene therapy for tumor-bearing mice using in vivo electroporation, also called electro-gene therapy (EGT), that resulted in uncomplicated and complete cures in more than 90% of the mice. Subcutaneously inoculated CT26 tumors in syngeneic BALB/c mice were subjected to repeated EGT treatments consisting of intratumoral co-injection of naked plasmids encoding the cytokine interleukin-12 (IL-12) (p35 and p40 subunits) and the suicide gene herpes simplex virus thymidine kinase (HSV-tk), followed by in vivo electroporation. The early anti-tumor effect was always stronger, and the rate of cure, as seen in the long-term follow-up, was always greater in the groups treated with combination EGT than in those treated with IL-12 or HSV-tk EGT alone. Systemic levels of IL-12 and IFN-gamma increased in both combination and IL-12-alone EGT-treated groups. Moreover, combination EGT for established subcutaneous tumors strongly reduced hematogenous lung metastases and increased survival time when live CT26 tumor cells were injected through the tail vein. Limited experiments on C57/B16 mice with murine melanoma also showed very similar trends. These results suggest that this simple and safe method of plasmid-mediated combination EGT may provide a potentially effective gene therapy for cancer.

  19. Ebola Virus and Marburg Virus

    MedlinePlus

    Diseases and Conditions Ebola virus and Marburg virus By Mayo Clinic Staff Ebola virus and Marburg virus are related viruses that cause hemorrhagic ... Africa, where sporadic outbreaks have occurred for decades. Ebola virus and Marburg virus live in animal hosts, ...

  20. Combination of PB2 271A and SR polymorphism at positions 590/591 is critical for viral replication and virulence of swine influenza virus in cultured cells and in vivo.

    PubMed

    Liu, Qinfang; Qiao, Chuanling; Marjuki, Henju; Bawa, Bhupinder; Ma, Jingqun; Guillossou, Stephane; Webby, Richard J; Richt, Jürgen A; Ma, Wenjun

    2012-01-01

    Triple reassortant swine influenza viruses (SIVs) and 2009 pandemic H1N1 (pH1N1) virus contain an avian-origin PB2 with 271A, 590S, 591R, and 627E. To evaluate the role of PB2 271A, 590S, and 591R in the replication and virulence of SIV, single (1930-TX98-PB2-271T)-, double (1930-TX98-PB2-590A591A)-, and triple (1930-TX98-PB2-271T590A591A)-mutated viruses were generated in the background of the H1N1 A/swine/Iowa/15/30 (1930) virus with an avian-origin PB2 from the triple-reassortant A/swine/Texas/4199-2/98 (TX98) virus, called the parental 1930-TX98-PB2. Compared to parental virus and single- and double-mutated viruses, the triple-mutated virus replicated less efficiently in cell cultures and was attenuated in mice. These results suggest that a combination of 271A with the 590/591 SR polymorphism is critical for pH1N1 and triple-reassortant SIVs for efficient replication and adaptation in mammals.

  1. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy

    PubMed Central

    Liu, Zuqiang; Ravindranathan, Roshni; Kalinski, Pawel; Guo, Z. Sheng; Bartlett, David L.

    2017-01-01

    Both anti-PD1/PD-L1 therapy and oncolytic virotherapy have demonstrated promise, yet have exhibited efficacy in only a small fraction of cancer patients. Here we hypothesized that an oncolytic poxvirus would attract T cells into the tumour, and induce PD-L1 expression in cancer and immune cells, leading to more susceptible targets for anti-PD-L1 immunotherapy. Our results demonstrate in colon and ovarian cancer models that an oncolytic vaccinia virus attracts effector T cells and induces PD-L1 expression on both cancer and immune cells in the tumour. The dual therapy reduces PD-L1+ cells and facilitates non-redundant tumour infiltration of effector CD8+, CD4+ T cells, with increased IFN-γ, ICOS, granzyme B and perforin expression. Furthermore, the treatment reduces the virus-induced PD-L1+ DC, MDSC, TAM and Treg, as well as co-inhibitory molecules-double-positive, severely exhausted PD-1+CD8+ T cells, leading to reduced tumour burden and improved survival. This combinatorial therapy may be applicable to a much wider population of cancer patients. PMID:28345650

  2. In vitro combination of PNU-140690, a human immunodeficiency virus type 1 protease inhibitor, with ritonavir against ritonavir-sensitive and -resistant clinical isolates.

    PubMed Central

    Chong, K T; Pagano, P J

    1997-01-01

    PNU-140690 (sulfonamide-containing 5,6-dihydro-4-hydroxy-2-pyrone) is a potent, nonpeptidic inhibitor of the human immunodeficiency virus type 1 (HIV-1) protease currently under clinical evaluation. PNU-140690 and ritonavir were studied in two-drug combinations against the replication of HIV-1 clinical isolates in peripheral blood mononuclear cells. A ritonavir-sensitive (301-1x) and -resistant (301-6x) isolate pair derived from an individual before and after monotherapy with ritonavir were used. These isolates showed no significant difference in sensitivity to PNU-140690, but isolate 301-6x was more than 50-fold less sensitive to ritonavir than isolate 301-1x. Mathematical analysis showed that the combination of various concentrations of PNU-140690 with ritonavir yielded additive to moderately synergistic antiviral effects against the ritonavir-sensitive isolate and stronger synergy against the ritonavir-resistant isolate. The mechanism of synergy was not investigated, but the results suggested that both the virological and the observed in vitro pharmacological effects may have contributed to the observed synergy. Importantly, no significant antagonism was observed with the drug combinations studied. These data suggest that PNU-140690 may be useful in combination regimens with a structurally unrelated protease inhibitor such as ritonavir. PMID:9371335

  3. Oncolytic vaccinia virus combined with radiotherapy induces apoptotic cell death in sarcoma cells by down-regulating the inhibitors of apoptosis

    PubMed Central

    Wilkinson, Michelle J.; Smith, Henry G.; McEntee, Gráinne; Kyula-Currie, Joan; Mansfield, David C.; Khan, Aadil A.; Roulstone, Victoria

    2016-01-01

    Advanced extremity melanoma and sarcoma present a significant therapeutic challenge, requiring multimodality therapy to treat or even palliate disease. These aggressive tumours are relatively chemo-resistant, therefore new treatment approaches are urgently required. We have previously reported on the efficacy of oncolytic virotherapy (OV) delivered by isolated limb perfusion. In this report, we have improved therapeutic outcomes by combining OV with radiotherapy. In vitro, the combination of oncolytic vaccinia virus (GLV-1h68) and radiotherapy demonstrated synergistic cytotoxicity. This effect was not due to increased viral replication, but mediated through induction of intrinsic apoptosis. GLV-1h68 therapy downregulated the anti-apoptotic BCL-2 proteins (MCL-1 and BCL-XL) and the downstream inhibitors of apoptosis, resulting in cleavage of effector caspases 3 and 7. In an in vivo ILP model, the combination of OV and radiotherapy significantly delayed tumour growth and prolonged survival compared to single agent therapy. These data suggest that the virally-mediated down-regulation of anti-apoptotic proteins may increase the sensitivity of tumour cells to the cytotoxic effects of ionizing radiation. Oncolytic virotherapy represents an exciting candidate for clinical development when delivered by ILP. Its ability to overcome anti-apoptotic signals within tumour cells points the way to further development in combination with conventional anti-cancer therapies. PMID:27783991

  4. A Rapid Screening Assay Identifies Monotherapy with Interferon-ß and Combination Therapies with Nucleoside Analogs as Effective Inhibitors of Ebola Virus.

    PubMed

    McCarthy, Stephen D S; Majchrzak-Kita, Beata; Racine, Trina; Kozlowski, Hannah N; Baker, Darren P; Hoenen, Thomas; Kobinger, Gary P; Fish, Eleanor N; Branch, Donald R

    2016-01-01

    To date there are no approved antiviral drugs for the treatment of Ebola virus disease (EVD). While a number of candidate drugs have shown limited efficacy in vitro and/or in non-human primate studies, differences in experimental methodologies make it difficult to compare their therapeutic effectiveness. Using an in vitro model of Ebola Zaire replication with transcription-competent virus like particles (trVLPs), requiring only level 2 biosafety containment, we compared the activities of the type I interferons (IFNs) IFN-α and IFN-ß, a panel of viral polymerase inhibitors (lamivudine (3TC), zidovudine (AZT) tenofovir (TFV), favipiravir (FPV), the active metabolite of brincidofovir, cidofovir (CDF)), and the estrogen receptor modulator, toremifene (TOR), in inhibiting viral replication in dose-response and time course studies. We also tested 28 two- and 56 three-drug combinations against Ebola replication. IFN-α and IFN-ß inhibited viral replication 24 hours post-infection (IC50 0.038μM and 0.016μM, respectively). 3TC, AZT and TFV inhibited Ebola replication when used alone (50-62%) or in combination (87%). They exhibited lower IC50 (0.98-6.2μM) compared with FPV (36.8μM), when administered 24 hours post-infection. Unexpectedly, CDF had a narrow therapeutic window (6.25-25μM). When dosed >50μM, CDF treatment enhanced viral infection. IFN-ß exhibited strong synergy with 3TC (97.3% inhibition) or in triple combination with 3TC and AZT (95.8% inhibition). This study demonstrates that IFNs and viral polymerase inhibitors may have utility in EVD. We identified several 2 and 3 drug combinations with strong anti-Ebola activity, confirmed in studies using fully infectious ZEBOV, providing a rationale for testing combination therapies in animal models of lethal Ebola challenge. These studies open up new possibilities for novel therapeutic options, in particular combination therapies, which could prevent and treat Ebola infection and potentially reduce drug

  5. Combined treatment of adenosine nucleoside inhibitor NITD008 and histone deacetylase inhibitor vorinostat represents an immunotherapy strategy to ameliorate West Nile virus infection.

    PubMed

    Nelson, Jacob; Roe, Kelsey; Orillo, Beverly; Shi, Pei-Yong; Verma, Saguna

    2015-10-01

    West Nile virus (WNV), a member of the Flaviviridae family, is the leading cause of viral encephalitis in the United States. Despite efforts to control the spread of WNV, there has been an increase in the number of outbreaks and clinical cases with neurological problems. There are no antiviral compounds currently in trials for WNV. NITD008 is an adenosine analogue inhibitor that interrupts the RNA-dependent RNA polymerase of flaviviruses. Previous studies demonstrated NITD008 as a potent antiviral for dengue virus, however this drug was associated with preclinical toxicity. The ability of NITD008 to block WNV replication is only shown in Vero cells. Neuroinflammation is also a major cause of the WNV-associated pathology, therefore we evaluated the effect of NITD008 and a newly characterized anti-inflammatory drug vorinostat (SAHA), a histone deacetylase inhibitor, on WNV replication and disease progression in a mouse model. When administered at 10 and 25mg/kg at days 1-6 after WNV infection in C57BL/6 mice, NITD008 conferred complete protection from clinical symptoms and death, which correlated with reduced viral load in the serum and restriction of virus-CNS entry. Delay of NITD008 treatment to days 3-6 and days 5-9 after infection, when WNV replication was high in the periphery and brain, resulted in the gradual loss of protection against WNV infection. However, co-treatment with SAHA and NITD008 during the CNS phase of disease improved disease outcome significantly by reducing inflammation and neuronal death. Our results support potential synergistic effect of combination therapy of NITD008 with SAHA for the treatment of WNV encephalitis. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Dynamics of PBMC gene expression in hepatitis C virus genotype 1-infected patients during combined peginterferon/ribavirin therapy

    PubMed Central

    Lu, Ming-Ying; Huang, Ching-I; Hsieh, Ming-Yen; Hsieh, Tusty-Juan; Hsi, Edward; Tsai, Pei-Chien; Tsai, Yi-Shan; Lin, Ching-Chih; Hsieh, Meng-Hsuan; Liang, Po-Cheng; Lin, Yi-Hung; Hou, Nai-Jen; Yeh, Ming-Lun; Huang, Chung-Feng; Lin, Zu-Yau; Chen, Shinn-Cherng; Huang, Jee-Fu; Chuang, Wan-Long; Dai, Chia-Yen; Yu, Ming-Lung

    2016-01-01

    Hepatitis C virus (HCV) can replicate in peripheral blood mononuclear cells (PBMCs), which can produce interferon to defend against virus infection. We hypothesized that dynamic gene expression in PBMCs might impact the treatment efficacy of peginterferon/ribavirin in HCV patients. PBMCs were collected at baseline, 1st week and 4th week of treatment from 27 chronic HCV-1 patients with 48-week peginterferon/ribavirin therapy (screening dataset n = 7; validation dataset n = 20). A sustained virologic response (SVR) was defined as undetectable HCV RNA throughout the 24 weeks after end-of-treatment. A complete early virologic response (cEVR) was defined as negative HCV RNA at treatment week 12. Forty-three differentially expressed genes identified by Affymetrix microarray were validated by quantitative polymerase chain reaction. Thirteen genes at week 1 and 24 genes at week 4 were upregulated in the SVR group compared with the non-SVR group. We selected 8 target genes (RSAD2, LOC26010, HERC5, HERC6, IFI44, SERPING1, IFITM3, and DDX60) at week 1 as the major components of the predictive model. This predictive model reliably stratified the responders and non-responders at week 1 (AUC = 0.89, p = 0.007 for SVR; AUC = 0.95, p = 0.003 for cEVR), especially among patients carrying the IL28B rs8099917 TT genotype (AUC = 0.89, p = 0.02 for SVR; AUC = 1.0, p = 0.008 for cEVR). The performance of this predictive model was superior to traditional predictors, including the rapid virologic response, viral load and IL28B genotype. PMID:27542257

  7. Response to hepatitis A and B vaccine alone or in combination in patients with chronic hepatitis C virus and advanced fibrosis.

    PubMed

    Kramer, Erik Seth; Hofmann, Charlotte; Smith, Paula G; Shiffman, Mitchell L; Sterling, Richard K

    2009-09-01

    Patients with advanced fibrosis are at increased risk of severe outcomes if they develop acute infection with hepatitis A (HAV) or hepatitis B (HBV) viruses. There are no data on the efficacy of combined HAV/HBV vaccination in patients with advanced fibrosis. Our aim was to evaluate the response to the HAV and HBV vaccine alone or in combination for patients with chronic hepatitis C (HCV) and advanced fibrosis and to evaluate the impact of administering the vaccine while patients were receiving peginterferon for treatment of chronic HCV. In this prospective study of patients with advanced fibrosis (Ishak 3-6), those without serologic evidence of prior exposure were vaccinated with either Havrix HAV, Engerix( HBV, or the TWINRIX HAV/HBV combination vaccine as appropriate, and response was defined as the development of anti-HAV or anti-HBV surface antibodies. Of the 162 eligible patients, the prevalence of prior exposure to HAV and HBV was 30 and 18%, respectively. Of the 84 patients vaccinated, 38% received Havrix, 14% Engerix, and 48% TWINRIX. The response to the HAV vaccine was 75% in those receiving Havrix compared to 78% receiving TWINRIX. In contrast, the response to HBV vaccination was 42% in patients receiving Engerix compared to 60% in those vaccinated with TWINRIX (difference 18.3%; OR 0.29; 95% CI: 0.57-7.79). The presence of diabetes was the only risk factor identified for reduced HBV response (P = 0.01). Responses to both HAV and HBV vaccines when administered alone or in combination were lower than expected in patients with HCV and advanced fibrosis, especially in those with diabetes. The observation that the decline in HBV vaccine response was somewhat lower when this was administered alone as opposed to the combination A/B vaccine suggests that the administration of a combination vaccine may enhance the vaccination response to HBV.

  8. Oral Combination Vaccine, Comprising Bifidobacterium Displaying Hepatitis C Virus Nonstructural Protein 3 and Interferon-α, Induces Strong Cellular Immunity Specific to Nonstructural Protein 3 in Mice.

    PubMed

    Kitagawa, Koichi; Omoto, Chika; Oda, Tsugumi; Araki, Ayame; Saito, Hiroki; Shigemura, Katsumi; Katayama, Takane; Hotta, Hak; Shirakawa, Toshiro

    2017-01-23

    We previously generated an oral hepatitis C virus (HCV) vaccine using Bifidobacterium displaying the HCV nonstructural protein 3 (NS3) polypeptide. NS3-specific cellular immunity is important for viral clearance and recovery from HCV infection. In this study, we enhanced the cellular immune responses induced by our oral HCV vaccine, Bifidobacterium longum 2165 (B. longum 2165), by combining interferon-α (IFN-α) as an adjuvant with the vaccine in a mouse experimental model. IFN-α is a widely used cytokine meeting the standard of care (SOC) for HCV infection and plays various immunoregulatory roles. We treated C57BL/6N mice with B. longum 2165 every other day and/or IFN-α twice a week for a month and then analyzed the immune responses using spleen cells. We determined the induction of NS3-specific cellular immunity by cytokine quantification, intracellular cytokine staining, and a cytotoxic T lymphocyte (CTL) assay targeting EL4 tumor cells expressing NS3/4A protein (EL4-NS3/4A). We also treated mice bearing EL4-NS3/4A tumor with the combination therapy in vivo. The results confirmed that the combination therapy of B. longum 2165 and IFN-α induced significantly higher IFN-γ secretion, higher population of CD4(+)T and CD8(+)T cells secreting IFN-γ, and higher CTL activity against EL4-NS3/4A cells compared with the control groups of phosphate-buffered saline, B. longum 2165 alone, and IFN-α alone (p < 0.05). We also confirmed that the combination therapy strongly enhanced tumor growth inhibitory effects in vivo with no serious adverse effects (p < 0.05). These results suggest that the combination of B. longum 2165 and IFN-α could induce a strong cellular immunity specific to NS3 protein as a combination therapy augmenting the current SOC immunotherapy against chronic HCV infection.

  9. Liver Fibrosis Regression Measured by Transient Elastography in Human Immunodeficiency Virus (HIV)-Hepatitis B Virus (HBV)-Coinfected Individuals on Long-Term HBV-Active Combination Antiretroviral Therapy

    PubMed Central

    Audsley, Jennifer; Robson, Christopher; Aitchison, Stacey; Matthews, Gail V.; Iser, David; Sasadeusz, Joe; Lewin, Sharon R.

    2016-01-01

    Background. Advanced fibrosis occurs more commonly in human immunodeficiency virus (HIV)-hepatitis B virus (HBV) coinfected individuals; therefore, fibrosis monitoring is important in this population. However, transient elastography (TE) data in HIV-HBV coinfection are lacking. We aimed to assess liver fibrosis using TE in a cross-sectional study of HIV-HBV coinfected individuals receiving combination HBV-active (lamivudine and/or tenofovir/tenofovir-emtricitabine) antiretroviral therapy, identify factors associated with advanced fibrosis, and examine change in fibrosis in those with >1 TE assessment. Methods. We assessed liver fibrosis in 70 HIV-HBV coinfected individuals on HBV-active combination antiretroviral therapy (cART). Change in fibrosis over time was examined in a subset with more than 1 TE result (n = 49). Clinical and laboratory variables at the time of the first TE were collected, and associations with advanced fibrosis (≥F3, Metavir scoring system) and fibrosis regression (of least 1 stage) were examined. Results. The majority of the cohort (64%) had mild to moderate fibrosis at the time of the first TE, and we identified alanine transaminase, platelets, and detectable HIV ribonucleic acid as associated with advanced liver fibrosis. Alanine transaminase and platelets remained independently advanced in multivariate modeling. More than 28% of those with >1 TE subsequently showed liver fibrosis regression, and higher baseline HBV deoxyribonucleic acid was associated with regression. Prevalence of advanced fibrosis (≥F3) decreased 12.3% (32.7%–20.4%) over a median of 31 months. Conclusions. The observed fibrosis regression in this group supports the beneficial effects of cART on liver stiffness. It would be important to study a larger group of individuals with more advanced fibrosis to more definitively assess factors associated with liver fibrosis regression. PMID:27006960

  10. Liver Fibrosis Regression Measured by Transient Elastography in Human Immunodeficiency Virus (HIV)-Hepatitis B Virus (HBV)-Coinfected Individuals on Long-Term HBV-Active Combination Antiretroviral Therapy.

    PubMed

    Audsley, Jennifer; Robson, Christopher; Aitchison, Stacey; Matthews, Gail V; Iser, David; Sasadeusz, Joe; Lewin, Sharon R

    2016-01-01

    Background.  Advanced fibrosis occurs more commonly in human immunodeficiency virus (HIV)-hepatitis B virus (HBV) coinfected individuals; therefore, fibrosis monitoring is important in this population. However, transient elastography (TE) data in HIV-HBV coinfection are lacking. We aimed to assess liver fibrosis using TE in a cross-sectional study of HIV-HBV coinfected individuals receiving combination HBV-active (lamivudine and/or tenofovir/tenofovir-emtricitabine) antiretroviral therapy, identify factors associated with advanced fibrosis, and examine change in fibrosis in those with >1 TE assessment. Methods.  We assessed liver fibrosis in 70 HIV-HBV coinfected individuals on HBV-active combination antiretroviral therapy (cART). Change in fibrosis over time was examined in a subset with more than 1 TE result (n = 49). Clinical and laboratory variables at the time of the first TE were collected, and associations with advanced fibrosis (≥F3, Metavir scoring system) and fibrosis regression (of least 1 stage) were examined. Results.  The majority of the cohort (64%) had mild to moderate fibrosis at the time of the first TE, and we identified alanine transaminase, platelets, and detectable HIV ribonucleic acid as associated with advanced liver fibrosis. Alanine transaminase and platelets remained independently advanced in multivariate modeling. More than 28% of those with >1 TE subsequently showed liver fibrosis regression, and higher baseline HBV deoxyribonucleic acid was associated with regression. Prevalence of advanced fibrosis (≥F3) decreased 12.3% (32.7%-20.4%) over a median of 31 months. Conclusions.  The observed fibrosis regression in this group supports the beneficial effects of cART on liver stiffness. It would be important to study a larger group of individuals with more advanced fibrosis to more definitively assess factors associated with liver fibrosis regression.

  11. Potent and synergistic neutralization of human immunodeficiency virus (HIV) type 1 primary isolates by hyperimmune anti-HIV immunoglobulin combined with monoclonal antibodies 2F5 and 2G12.

    PubMed Central

    Mascola, J R; Louder, M K; VanCott, T C; Sapan, C V; Lambert, J S; Muenz, L R; Bunow, B; Birx, D L; Robb, M L

    1997-01-01

    Three antibody reagents that neutralize primary human immunodeficiency virus type 1 (HIV-1) isolates were tested for magnitude and breadth of neutralization when used alone or in double or triple combinations. Hyperimmune anti-HIV immunoglobulin (HIVIG) is derived from the plasma of HIV-1-infected donors, and monoclonal antibodies (MAbs) 2F5 and 2G12 bind to distinct regions of the HIV-1 envelope glycoprotein. The antibodies were initially tested against a panel of 15 clade B HIV-1 isolates, using a single concentration that is achievable in vivo (HIVIG, 2,500 microg/ml; MAbs, 25 microg/ml). Individual antibody reagents neutralized many of the viruses tested, but antibody potency varied substantially among the viruses. The virus neutralization produced by double combinations of HIVIG plus 2F5 or 2G12, the two MAbs together, or the triple combination of HIVIG, 2F5, and 2G12 was generally equal to or greater than that predicted by the effect of individual antibodies. Overall, the triple combination displayed the greatest magnitude and breadth of neutralization. Synergistic neutralization was evaluated by analyzing data from dose-response curves of each individual antibody reagent compared to the triple combination and was demonstrated against each of four viruses tested. Therefore, combinations of polyclonal and monoclonal anti-HIV antibodies can produce additive or synergistic neutralization of primary HIV-1 isolates. Passive immunotherapy for treatment or prophylaxis of HIV-1 should consider mixtures of potent neutralizing antibody reagents to expand the magnitude and breadth of virus neutralization. PMID:9311792

  12. Potent and synergistic neutralization of human immunodeficiency virus (HIV) type 1 primary isolates by hyperimmune anti-HIV immunoglobulin combined with monoclonal antibodies 2F5 and 2G12.

    PubMed

    Mascola, J R; Louder, M K; VanCott, T C; Sapan, C V; Lambert, J S; Muenz, L R; Bunow, B; Birx, D L; Robb, M L

    1997-10-01

    Three antibody reagents that neutralize primary human immunodeficiency virus type 1 (HIV-1) isolates were tested for magnitude and breadth of neutralization when used alone or in double or triple combinations. Hyperimmune anti-HIV immunoglobulin (HIVIG) is derived from the plasma of HIV-1-infected donors, and monoclonal antibodies (MAbs) 2F5 and 2G12 bind to distinct regions of the HIV-1 envelope glycoprotein. The antibodies were initially tested against a panel of 15 clade B HIV-1 isolates, using a single concentration that is achievable in vivo (HIVIG, 2,500 microg/ml; MAbs, 25 microg/ml). Individual antibody reagents neutralized many of the viruses tested, but antibody potency varied substantially among the viruses. The virus neutralization produced by double combinations of HIVIG plus 2F5 or 2G12, the two MAbs together, or the triple combination of HIVIG, 2F5, and 2G12 was generally equal to or greater than that predicted by the effect of individual antibodies. Overall, the triple combination displayed the greatest magnitude and breadth of neutralization. Synergistic neutralization was evaluated by analyzing data from dose-response curves of each individual antibody reagent compared to the triple combination and was demonstrated against each of four viruses tested. Therefore, combinations of polyclonal and monoclonal anti-HIV antibodies can produce additive or synergistic neutralization of primary HIV-1 isolates. Passive immunotherapy for treatment or prophylaxis of HIV-1 should consider mixtures of potent neutralizing antibody reagents to expand the magnitude and breadth of virus neutralization.

  13. Pharmacophore modeling, resistant mutant isolation, docking, and MM-PBSA analysis: Combined experimental/computer-assisted approaches to identify new inhibitors of the bovine viral diarrhea virus (BVDV).

    PubMed

    Tonelli, Michele; Boido, Vito; La Colla, Paolo; Loddo, Roberta; Posocco, Paola; Paneni, Maria Silvia; Fermeglia, Maurizio; Pricl, Sabrina

    2010-03-15

    Starting from a series of our new 2-phenylbenzimidazole derivatives, shown to be selectively and potently active against the bovine viral diarrhea virus (BVDV), we developed a hierarchical combined experimental/molecular modeling strategy to explore the drug leads for the BVDV RNA-dependent RNA-polymerase. Accordingly, a successful 3D pharmacophore model was developed, characterized by distinct chemical features that may be responsible for the activity of the inhibitors. BVDV mutants resistant to lead compounds in our series were then isolated, and the mutant residues on the viral molecular target, the RNA-dependent RNA-polymerase, were identified. Docking procedures upon pharmacophoric constraints and mutational data were carried out, and the binding affinity of all active compounds for the RdRp were estimated. Given the excellent agreement between in silico and in vitro data, this procedure is currently being employed in the design a new series of more selective and potent BVDV inhibitors.

  14. An economic evaluation of universal infant vaccination against hepatitis B virus using a combination vaccine (Hib-HepB): a decision analytic approach to cost effectiveness.

    PubMed

    Harris, A; Yong, K; Kermode, M

    2001-06-01

    To evaluate the health impact and cost effectiveness of two infant vaccination strategies for protection against hepatitis B virus (HBV) infection in the Australian population. Vaccinating only high-risk infants, assuming 65% compliance, was compared with universal vaccination of infants using a combination Hib-HepB vaccine, with 87.4% compliance. A Markov model simulated the natural history of HBV infection and disease in an Australian birth cohort. The cohort was divided into those at high risk of infection (infants born into high-risk families) and low-risk infants. Clinical and epidemiological data used were obtained from published reports and a survey of clinical experts. The model included the health costs associated with acute and chronic HBV infection, and the sequelae of chronic HBV infection. The model predicted that universal hepatitis B vaccination of an Australian birth cohort (260,000 births) would result in a 77% reduction in cases of HBV infection. The incremental cost per life year gained was $11,862, which is low compared with many other health care interventions. With no discounting of costs or consequences, universal vaccination with the combination vaccine was predicted to save lives and reduce costs. There is no socially accepted threshold value for cost per life year gained to guide decisions about funding Australian health care interventions. Nevertheless, based on these results, universal hepatitis B vaccination of Australian infants using a combination Hib-HepB vaccine would almost certainly be regarded as a worthwhile investment of public funds.

  15. Antiviral therapy with entecavir combined with post-exposure "prime-boost" vaccination eliminates duck hepatitis B virus-infected hepatocytes and prevents the development of persistent infection.

    PubMed

    Miller, D S; Boyle, D; Feng, F; Reaiche, G Y; Kotlarski, I; Colonno, R; Jilbert, A R

    2008-04-10

    Short-term antiviral therapy with the nucleoside analogue entecavir (ETV), given at an early stage of duck hepatitis B virus (DHBV) infection, restricts virus spread and leads to clearance of DHBV-infected hepatocytes in approximately 50% of ETV-treated ducks, whereas widespread and persistent DHBV infection develops in 100% of untreated ducks. To increase the treatment response rate, ETV treatment was combined in the current study with a post-exposure "prime-boost" vaccination protocol. Four groups of 14-day-old ducks were inoculated intravenously with a dose of DHBV previously shown to induce persistent DHBV infection. One hour post-infection (p.i.), ducks were primed with DNA vaccines that expressed DHBV core (DHBc) and surface (pre-S/S and S) antigens (Groups A, B) or the DNA vector alone (Groups C, D). ETV (Groups A, C) or water (Groups B, D) was simultaneously administered by gavage and continued for 14 days. Ducks were boosted 7 days p.i. with recombinant fowlpoxvirus (rFPV) strains also expressing DHBc and pre-S/S antigens (Groups A, B) or the FPV-M3 vector (Groups C, D). DHBV-infected hepatocytes were observed in the liver of all ducks at day 4 p.i. with reduced numbers in the ETV-treated ducks. Ducks treated with ETV plus the control vectors showed restricted spread of DHBV infection during ETV treatment, but in 60% of cases, infection became widespread after ETV was stopped. In contrast, at 14 and 67 days p.i., 100% of ducks treated with ETV and "prime-boost" vaccination had no detectable DHBV-infected hepatocytes and had cleared the DHBV infection. These findings suggest that ETV treatment combined with post-exposure "prime-boost" vaccination induced immune responses that eliminated DHBV-infected hepatocytes and prevented the development of persistent DHBV infection.

  16. Identification of Optimal Donor-Recipient Combinations Among Human Immunodeficiency Virus (HIV)-Positive Kidney Transplant Recipients.

    PubMed

    Locke, J E; Shelton, B A; Reed, R D; MacLennan, P A; Mehta, S; Sawinski, D; Segev, D L

    2016-08-01

    For some patient subgroups, human immunodeficiency virus (HIV) infection has been associated with worse outcomes after kidney transplantation (KT); potentially modifiable factors may be responsible. The study goal was to identify factors that predict a higher risk of graft loss among HIV-positive KT recipients compared with a similar transplant among HIV-negative recipients. In this study, 82 762 deceased donor KT recipients (HIV positive: 526; HIV negative: 82 236) reported to the Scientific Registry of Transplant Recipients (SRTR) (2001-2013) were studied by interaction term analysis. Compared to HIV-negative recipients, the hepatitis C virus (HCV) amplified risk 2.72-fold among HIV-positive KT recipients (adjusted hazard ratio [aHR]: 2.72, 95% confidence interval [CI]: 1.75-4.22, p < 0.001). Forty-three percent of the excess risk was attributable to the interaction between HIV and HCV (attributable proportion of risk due to the interaction [AP]: 0.43, 95% CI: 0.23-0.63, p = 0.02). Among HIV-positive recipients with more than three HLA mismatches (MMs), risk was amplified 1.80-fold compared to HIV-negative (aHR: 1.80, 95% CI: 1.31-2.47, p < 0.001); 42% of the excess risk was attributable to the interaction between HIV and more than three HLA MMs (AP: 0.42, 95% CI: 0.24-0.60, p = 0.01). High-HIV-risk (HIV-positive/HCV-positive HLAwith more than three MMs) recipients had a 3.86-fold increased risk compared to low-HIV-risk (HIV-positive/HCV-negative HLA with three or fewer MMs)) recipients (aHR: 3.86, 95% CI: 2.37-6.30, p < 0.001). Avoidance of more than three HLA MMs in HIV-positive KT recipients, particularly among coinfected patients, may mitigate the increased risk of graft loss associated with HIV infection.

  17. Single and combination diagnostic test efficiency and cost analysis for detection and isolation of avian influenza virus from wild bird cloacal swabs.

    PubMed

    Lira, Jennifer; Moresco, Kira A; Stallknecht, David E; Swayne, David E; Fisher, Dwight S

    2010-03-01

    Effective laboratory methods for identifying avian influenza virus (AIV) in wild bird populations are crucial to understanding the ecology of this pathogen. The standard method has been AIV isolation in chorioallantoic sac (CAS) of specific-pathogen-free embryonating chicken eggs (ECE), but in one study, combined use of yolk-sac (YS) and chorioallantoic membrane inoculation routes increased the number of virus isolations. In addition, cell culture for AIV isolation has been used. Most recently, real-time reverse transcriptase (RRT)-PCR has been used to detect AIV genome in surveillance samples. The purpose of this study was to develop a diagnostic decision tree that would increase AIV isolations from wild bird surveillance samples when using combinations of detection and isolation methods under our laboratory conditions. Attempts to identify AIV for 50 wild bird surveillance samples were accomplished via isolation in ECE using CAS and YS routes of inoculation, and in Madin-Darby canine kidney (MDCK) cells, and by AIV matrix gene detection using RRT-PCR. AIV was isolated from 36% of samples by CAS inoculation and 46% samples by YS inoculation using ECE, isolated from 20% of samples in MDCK cells, and detected in 54% of the samples by RRT-PCR. The AIV was isolated in ECE in 13 samples by both inoculation routes, five additional samples by allantoic, and 10 additional samples by yolk-sac inoculation, increasing the positive isolation of AIV in ECE to 56%. Allantoic inoculation and RRT-PCR detected AIV in 14 samples, with four additional samples by allantoic route alone and 13 additional samples by RRT-PCR. Our data indicate that addition of YS inoculation of ECE will increase isolation of AIV from wild bird surveillance samples. If we exclude the confirmation RT-PCR test, cost analysis for our laboratory indicates that RRT-PCR is an economical choice for screening samples before doing virus isolation in ECE if the AIV frequency is low in the samples. In contrast

  18. The Efficacy and Safety of Entecavir and Interferon Combination Therapy for Chronic Hepatitis B Virus Infection: A Meta-Analysis

    PubMed Central

    Xie, Qiao-Ling; Zhu, Ying; Wu, Ling-Hong; Fu, Lin-Lin; Xiang, Yan

    2015-01-01

    The objective of this study was to evaluate the effectiveness and safety of entecavir (ETV) and interferon (IFN) combination therapy in the treatment of chronic hepatitis B (CHB) mono-infection via a meta-analysis of randomized controlled trials (RCTs). All eligible RCTs evaluating combination therapy for treating CHB were identified from nine electronic databases. A meta-analysis was performed in accordance with the Cochrane Systemic Review handbook. Eleven trials encompassing 1010 participants were included in this meta-analysis. It showed that at 12 and ≥ 96 weeks of therapy, the combination of ETV and IFN was not better than ETV in improving the undetectable HBV DNA (12 weeks: RR=1.12, 95% CI=0.88-1.42; ≥ 96 weeks: RR = 0.64, 95% CI=0.21-1.98, respectively) and HBeAg seroconversion rates (12 weeks: RR=1.35, 95% CI=0.60-3.04; ≥ 96 weeks: RR=1.36, 95% CI=0.75-2.64, respectively). But at 48 weeks of therapy and approximately 2 years of follow up, combination therapy was superior to ETV in improving the undetectable HBV DNA (48 weeks: RR=1.46, 95% CI=1.13-1.90; follow up: RR=2.20, 95% CI=1.26-3.81, respectively) and HBeAg seroconversion rates (48 weeks: RR=1.82, 95% CI=1.44-2.30; follow up: RR=1.92, 95% CI=1.19-3.11, respectively). When compared to IFN group, at 24 and 48 weeks of therapy, combination group showed a greater undetectable HBV DNA (24 weeks: RR=2.14, 95% CI=1.59-2.89; 48 weeks: RR=2.28, 95% CI=1.54-3.37, respectively) and ALT normalization rate (24 weeks: RR=1.56, 95% CI= 1.24-1.96; 48 weeks: RR=1.55, 95% CI = 1.16-2.07, respectively). At 48 weeks of therapy, combination group achieved a greater HBeAg seroconversion rate than IFN (48 weeks: RR=1.58, 95% CI=1.24-2.00). No significant differences were observed in the side effects of the three therapies. So we can conclude that ETV and IFN combination therapy is more effective than ETV or IFN mono-therapy in CHB treatment. ETV, IFN, and the combination of the two are safe in CHB treatment. PMID

  19. Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins

    PubMed Central

    Usman Mirza, Muhammad; Rafique, Shazia; Ali, Amjad; Munir, Mobeen; Ikram, Nazia; Manan, Abdul; Salo-Ahen, Outi M. H.; Idrees, Muhammad

    2016-01-01

    The recent outbreak of Zika virus (ZIKV) infection in Brazil has developed to a global health concern due to its likely association with birth defects (primary microcephaly) and neurological complications. Consequently, there is an urgent need to develop a vaccine to prevent or a medicine to treat the infection. In this study, immunoinformatics approach was employed to predict antigenic epitopes of Zika viral proteins to aid in development of a peptide vaccine against ZIKV. Both linear and conformational B-cell epitopes as well as cytotoxic T-lymphocyte (CTL) epitopes were predicted for ZIKV Envelope (E), NS3 and NS5 proteins. We further investigated the binding interactions of altogether 15 antigenic CTL epitopes with three class I major histocompatibility complex (MHC I) proteins after docking the peptides to the binding groove of the MHC I proteins. The stability of the resulting peptide-MHC I complexes was further studied by molecular dynamics simulations. The simulation results highlight the limits of rigid-body docking methods. Some of the antigenic epitopes predicted and analyzed in this work might present a preliminary set of peptides for future vaccine development against ZIKV. PMID:27934901

  20. Antibodies to parvovirus, distemper virus and adenovirus conferred to household dogs using commercial combination vaccines containing Leptospira bacterin.

    PubMed

    Taguchi, M; Namikawa, K; Maruo, T; Lynch, J; Sahara, H

    2010-12-11

    To examine how the inclusion (+) or exclusion (-) of inactivated Leptospira antigens in a vaccine for canine parvovirus type 2 (CPV-2), canine distemper virus (CDV) and canine adenovirus type 2 (CAdV-2) affects antibody titres to CPV-2, CDV and CAdV-1 antigens, household dogs were vaccinated with commercially available vaccines from one of three manufacturers. CPV-2, CDV and CAdV-1 antibody titres were measured 11 to 13 months later and compared within three different age groups and three different bodyweight groups. There were significant differences between CPV-2 antibody titres in dogs vaccinated with (+) vaccine and those vaccinated with (-) vaccine for two products in the two-year-old group and for one product in the greater than seven-year-old group; no significant differences were seen that could be attributed to bodyweight. No differences in CDV antibody titres were observed within age groups, but a significant difference was seen in the 11 to 20 kg weight group for one product. Significant differences in CAdV-1 antibody titres were seen for one product in both the two-year-old group and the ≤10 kg weight group.

  1. Murine hypothalamic destruction with vascular cell apoptosis subsequent to combined administration of human papilloma virus vaccine and pertussis toxin

    PubMed Central

    Aratani, Satoko; Fujita, Hidetoshi; Kuroiwa, Yoshiyuki; Usui, Chie; Yokota, Shumpei; Nakamura, Ikuro; Nishioka, Kusuki; Nakajima, Toshihiro

    2016-01-01

    Vaccination is the most powerful way to prevent human beings from contracting infectious diseases including viruses. In the case of the human papillomavirus (HPV) vaccine, an unexpectedly novel disease entity, HPV vaccination associated neuro-immunopathetic syndrome (HANS), has been reported and remains to be carefully verified. To elucidate the mechanism of HANS, we applied a strategy similar to the active experimental autoimmune encephalitis (EAE) model - one of the most popular animal models used to induce maximum immunological change in the central nervous system. Surprisingly, mice vaccinated with pertussis toxin showed neurological phenotypes that include low responsiveness of the tail reflex and locomotive mobility. Pathological analyses revealed the damage to the hypothalamus and circumventricular regions around the third ventricle, and these regions contained apoptotic vascular endothelial cells. These data suggested that HPV-vaccinated donners that are susceptible to the HPV vaccine might develop HANS under certain environmental factors. These results will give us the new insight into the murine pathological model of HANS and help us to find a way to treat of patients suffering from HANS. PMID:27833142

  2. Evidence for Persistence of Ectromelia Virus in Inbred Mice, Recrudescence Following Immunosuppression and Transmission to Naïve Mice.

    PubMed

    Sakala, Isaac G; Chaudhri, Geeta; Scalzo, Anthony A; Eldi, Preethi; Newsome, Timothy P; Buller, Robert M; Karupiah, Gunasegaran

    2015-12-01

    Orthopoxviruses (OPV), including variola, vaccinia, monkeypox, cowpox and ectromelia viruses cause acute infections in their hosts. With the exception of variola virus (VARV), the etiological agent of smallpox, other OPV have been reported to persist in a variety of animal species following natural or experimental infection. Despite the implications and significance for the ecology and epidemiology of diseases these viruses cause, those reports have never been thoroughly investigated. We used the mouse pathogen ectromelia virus (ECTV), the agent of mousepox and a close relative of VARV to investigate virus persistence in inbred mice. We provide evidence that ECTV causes a persistent infection in some susceptible strains of mice in which low levels of virus genomes were detected in various tissues late in infection. The bone marrow (BM) and blood appeared to be key sites of persistence. Contemporaneous with virus persistence, antiviral CD8 T cell responses were demonstrable over the entire 25-week study period, with a change in the immunodominance hierarchy evident during the first 3 weeks. Some virus-encoded host response modifiers were found to modulate virus persistence whereas host genes encoded by the NKC and MHC class I reduced the potential for persistence. When susceptible strains of mice that had apparently recovered from infection were subjected to sustained immunosuppression with cyclophosphamide (CTX), animals succumbed to mousepox with high titers of infectious virus in various organs. CTX treated index mice transmitted virus to, and caused disease in, co-housed naïve mice. The most surprising but significant finding was that immunosuppression of disease-resistant C57BL/6 mice several weeks after recovery from primary infection generated high titers of virus in multiple tissues. Resistant mice showed no evidence of a persistent infection. This is the strongest evidence that ECTV can persist in inbred mice, regardless of their resistance status.

  3. Real-time PCR assay to detect smallpox virus.

    PubMed

    Sofi Ibrahim, M; Kulesh, David A; Saleh, Sharron S; Damon, Inger K; Esposito, Joseph J; Schmaljohn, Alan L; Jahrling, Peter B

    2003-08-01

    We developed a highly sensitive and specific assay for the rapid detection of smallpox virus DNA on both the Smart Cycler and LightCycler platforms. The assay is based on TaqMan chemistry with the orthopoxvirus hemagglutinin gene used as the target sequence. With genomic DNA purified from variola virus Bangladesh 1975, the limit of detection was estimated to be approximately 25 copies on both machines. The assay was evaluated in a blinded study with 322 coded samples that included genomic DNA from 48 different isolates of variola virus; 25 different strains and isolates of camelpox, cowpox, ectromelia, gerbilpox, herpes, monkeypox, myxoma, rabbitpox, raccoonpox, skunkpox, vaccinia, and varicella-zoster viruses; and two rickettsial species at concentrations mostly ranging from 100 fg/ microl to 1 ng/ microl. Contained within those 322 samples were variola virus DNA, obtained from purified viral preparations, at concentrations of 1 fg/ microl to 1 ng/ microl. On the Smart Cycler platform, 2 samples with false-positive results were detected among the 116 samples not containing variola virus tested; i.e., the overall specificity of the assay was 98.3%. On the LightCycler platform, five samples with false-positive results were detected (overall specificity, 95.7%). Of the 206 samples that contained variola virus DNA ranging in concentrations from 100 fg/ microl to 1 ng/ microl, 8 samples were considered negative on the Smart Cycler platform and 1 sample was considered negative on the LightCycler platform. Thus, the clinical sensitivities were 96.1% for the Smart Cycler instrument and 99.5% for the LightCycler instrument. The vast majority of these samples were derived from virus-infected cell cultures and variola virus-infected tissues; thus, the DNA material contained both viral DNA and cellular DNA. Of the 43 samples that contained purified variola virus DNA ranging in concentration from 1 fg/ microl to 1 ng/ microl, the assay correctly detected the virus in all 43

  4. Real-Time PCR Assay To Detect Smallpox Virus

    PubMed Central

    Sofi Ibrahim, M.; Kulesh, David A.; Saleh, Sharron S.; Damon, Inger K.; Esposito, Joseph J.; Schmaljohn, Alan L.; Jahrling, Peter B.

    2003-01-01

    We developed a highly sensitive and specific assay for the rapid detection of smallpox virus DNA on both the Smart Cycler and LightCycler platforms. The assay is based on TaqMan chemistry with the orthopoxvirus hemagglutinin gene used as the target sequence. With genomic DNA purified from variola virus Bangladesh 1975, the limit of detection was estimated to be approximately 25 copies on both machines. The assay was evaluated in a blinded study with 322 coded samples that included genomic DNA from 48 different isolates of variola virus; 25 different strains and isolates of camelpox, cowpox, ectromelia, gerbilpox, herpes, monkeypox, myxoma, rabbitpox, raccoonpox, skunkpox, vaccinia, and varicella-zoster viruses; and two rickettsial species at concentrations mostly ranging from 100 fg/μl to 1 ng/μl. Contained within those 322 samples were variola virus DNA, obtained from purified viral preparations, at concentrations of 1 fg/μl to 1 ng/μl. On the Smart Cycler platform, 2 samples with false-positive results were detected among the 116 samples not containing variola virus tested; i.e., the overall specificity of the assay was 98.3%. On the LightCycler platform, five samples with false-positive results were detected (overall specificity, 95.7%). Of the 206 samples that contained variola virus DNA ranging in concentrations from 100 fg/μl to 1 ng/μl, 8 samples were considered negative on the Smart Cycler platform and 1 sample was considered negative on the LightCycler platform. Thus, the clinical sensitivities were 96.1% for the Smart Cycler instrument and 99.5% for the LightCycler instrument. The vast majority of these samples were derived from virus-infected cell cultures and variola virus-infected tissues; thus, the DNA material contained both viral DNA and cellular DNA. Of the 43 samples that contained purified variola virus DNA ranging in concentration from 1 fg/μl to 1 ng/μl, the assay correctly detected the virus in all 43 samples on both the Smart Cycler

  5. Real-World Effectiveness and Safety of Oral Combination Antiviral Therapy for Hepatitis C Virus Genotype 4 Infection.

    PubMed

    Crespo, Javier; Calleja, Jose Luis; Fernández, Inmaculada; Sacristan, Begoña; Ruiz-Antorán, Belén; Ampuero, Javier; Hernández-Conde, Marta; García-Samaniego, Javier; Gea, Francisco; Buti, Maria; Cabezas, Joaquin; Lens, Sabela; Morillas, Rosa Maria; Salcines, Jose Ramon; Pascasio, Juan Manuel; Turnes, Juan; Sáez-Royuela, Federico; Arenas, Juan; Rincón, Diego; Prieto, Martin; Jorquera, Francisco; Sanchez Ruano, Juan Jose; Navascués, Carmen A; Molina, Esther; Moya, Adolfo Gallego; Moreno-Planas, José Maria

    2017-06-01

    Patients with hepatitis C virus (HCV) genotype 4 infection are poorly represented in clinical trials of second-generation direct-acting antiviral agents (DAAs). More data are needed to help guide treatment decisions. We investigated the effectiveness and safety of DAAs in patients with genotype 4 infection in routine practice. In this cohort study, HCV genotype 4-infected patients treated with ombitasvir/paritaprevir/ritonavir (OMV/PTVr) + ribavirin (RBV) (n=122) or ledipasvir/sofosbuvir (LDV/SOF) ± RBV (n=130) included in a national database were identified and prospectively followed up. Demographic, clinical and virologic data and serious adverse events (SAEs) were analyzed. Differences between treatment groups mean that data cannot be compared directly. Overall sustained virologic response at Week 12 post treatment (SVR12) was 96.2% with OMV/PTVr+RBV and 95.4% with LDV/SOF±RBV. In cirrhotic patients, SVR12 was 91.2% with OMV/PTVr+RBV and 93.2% with LDV/SOF±RBV. There was no significant difference in SVR12 according to degree of fibrosis in either treatment group (P = .243 and P = .244, respectively). On multivariate analysis, baseline albumin <3.5 g/dL (OMV/PTVr) and bilirubin >2 mg/dL (both cohorts) were significantly associated with failure to achieve SVR (P < .05). Rates of SAEs and SAE-associated discontinuation were 5.7% and 2.5%, respectively, in the OMV/PTVr subcohort and 4.6% and 0.8%, respectively, in the LDV/SOF subcohort. DAA-based regimens returned high rates of SVR12, comparable to limited data from clinical trials, in cirrhotic and non-cirrhotic HCV genotype 4 patients managed in a realworld setting. Safety profiles of both regimens were good and comparable to those reported for other HCV genotypes. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. Beech Fructification and Bank Vole Population Dynamics - Combined Analyses of Promoters of Human Puumala Virus Infections in Germany

    PubMed Central

    Reil, Daniela; Imholt, Christian; Eccard, Jana Anja; Jacob, Jens

    2015-01-01

    The transmission of wildlife zoonoses to humans depends, amongst others, on complex interactions of host population ecology and pathogen dynamics within host populations. In Europe, the Puumala virus (PUUV) causes nephropathia epidemica in humans. In this study we investigated complex interrelations within the epidemic system of PUUV and its rodent host, the bank vole (Myodes glareolus). We suggest that beech fructification and bank vole abundance are both decisive factors affecting human PUUV infections. While rodent host dynamics are expected to be directly linked to human PUUV infections, beech fructification is a rather indirect predictor by serving as food source for PUUV rodent hosts. Furthermore, we examined the dependence of bank vole abundance on beech fructification. We analysed a 12-year (2001-2012) time series of the parameters: beech fructification (as food resource for the PUUV host), bank vole abundance and human incidences from 7 Federal States of Germany. For the first time, we could show the direct interrelation between these three parameters involved in human PUUV epidemics and we were able to demonstrate on a large scale that human PUUV infections are highly correlated with bank vole abundance in the present year, as well as beech fructification in the previous year. By using beech fructification and bank vole abundance as predictors in one model we significantly improved the degree of explanation of human PUUV incidence. Federal State was included as random factor because human PUUV incidence varies considerably among states. Surprisingly, the effect of rodent abundance on human PUUV infections is less strong compared to the indirect effect of beech fructification. Our findings are useful to facilitate the development of predictive models for host population dynamics and the related PUUV infection risk for humans and can be used for plant protection and human health protection purposes. PMID:26214509

  7. Evaluating histologic differentiation of hepatitis B virus-related hepatocellular carcinoma using intravoxel incoherent motion and AFP levels alone and in combination.

    PubMed

    Shan, Qungang; Chen, Jingbiao; Zhang, Tianhui; Yan, Ronghua; Wu, Jun; Shu, Yunhong; Kang, Zhuang; He, Bingjun; Zhang, Zhongping; Wang, Jin

    2017-08-01

    To evaluate histologic differentiation of hepatitis B virus (HBV)-related hepatocellular carcinomas (HCCs) using apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM)-derived metrics and to compare findings with alpha-fetoprotein (AFP) levels alone and in combination. One hundred and six chronic HBV-related HCC patients who underwent IVIM diffusion-weighted magnetic resonance imaging with eleven b values were enrolled. Mean ADC, diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) values were determined for all detected lesions. The metrics and AFP levels of different histologically differentiated groups were compared. Spearman's rank correlation was used to assess the statistical dependence among the histologically differentiated HCCs. Receiver operating characteristic (ROC) analysis was performed to evaluate diagnostic performance of these metrics and AFP levels alone and in combination. ADC, D, and f values and AFP levels were significantly different among well-, moderately, and poorly differentiated HCCs. The four metrics were significantly correlated with histologic differentiation. The area under the ROC curve (AUC-ROC) of ADC, D, f, and AFP for diagnosing well-differentiated HCCs was 0.903, 0.84, 0.782, and 0.806, respectively, and the AUC-ROC of above metrics for diagnosing poorly differentiated HCCs was 0.787, 0.726, 0.624, and 0.633, respectively. The combination of ADC and AFP provided an AUC-ROC of 0.945 for well-differentiated HCC. However, this did not provide better performance for diagnosing poorly differentiated HCC. ADC, IVIM metrics, and AFP levels may be useful for evaluating histologic differentiation of HBV-related HCCs, and the combination of ADC and AFP provides better diagnostic performance for well-differentiated HCC.

  8. The combination of MK-5172, peginterferon, and ribavirin is effective in treatment-naive patients with hepatitis C virus genotype 1 infection without cirrhosis.

    PubMed

    Manns, Michael P; Vierling, John M; Bacon, Bruce R; Bruno, Savino; Shibolet, Oren; Baruch, Yaacov; Marcellin, Patrick; Caro, Luzelena; Howe, Anita Y M; Fandozzi, Christine; Gress, Jacqueline; Gilbert, Christopher L; Shaw, Peter M; Cooreman, Michael P; Robertson, Michael N; Hwang, Peggy; Dutko, Frank J; Wahl, Janice; Mobashery, Niloufar

    2014-08-01

    MK-5172 is an inhibitor of the hepatitis C virus (HCV) nonstructural protein 3/4A protease; MK-5172 is taken once daily and has a higher potency and barrier to resistance than licensed protease inhibitors. We investigated the efficacy and tolerability of MK-5172 with peginterferon and ribavirin (PR) in treatment-naive patients with chronic HCV genotype 1 infection without cirrhosis. We performed a multicenter, double-blind, randomized, active-controlled, dose-ranging, response-guided therapy study. A total of 332 patients received MK-5172 (100, 200, 400, or 800 mg) once daily for 12 weeks in combination with PR. Patients in the MK-5172 groups received PR for an additional 12 or 36 weeks, based on response at week 4. Patients in the control group (n = 66) received a combination of boceprevir and PR, dosed in accordance with boceprevir's US product circular. At 24 weeks after the end of therapy, sustained virologic responses were achieved in 89%, 93%, 91%, and 86% of the patients in the groups given the combination of PR and MK-5172 (100, 200, 400, or 800 mg), respectively, vs 61% of controls. In the MK-5172 group receiving 100 mg, 91% of patients had undetectable levels of HCV RNA at week 4 and qualified for the short duration of therapy. The combination of MK-5172 and PR generally was well tolerated. Transient increases in transaminase levels were noted in the MK-5172 groups given 400 and 800 mg, at higher frequencies than in the MK-5172 groups given 100 or 200 mg, or control groups. Once-daily MK-5172 (100 mg) with PR for 24 or 48 weeks was highly effective and well tolerated among treatment-naive patients with HCV genotype 1 infection without cirrhosis. Studies are underway to evaluate interferon-free MK-5172-based regimens. ClinicalTrials.gov number: NCT01353911. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Combining Linear-Scaling DFT with Subsystem DFT in Born-Oppenheimer and Ehrenfest Molecular Dynamics Simulations: From Molecules to a Virus in Solution.

    PubMed

    Andermatt, Samuel; Cha, Jinwoong; Schiffmann, Florian; VandeVondele, Joost

    2016-07-12

    In this work, methods for the efficient simulation of large systems embedded in a molecular environment are presented. These methods combine linear-scaling (LS) Kohn-Sham (KS) density functional theory (DFT) with subsystem (SS) DFT. LS DFT is efficient for large subsystems, while SS DFT is linear scaling with a smaller prefactor for large sets of small molecules. The combination of SS and LS, which is an embedding approach, can result in a 10-fold speedup over a pure LS simulation for large systems in aqueous solution. In addition to a ground-state Born-Oppenheimer SS+LS implementation, a time-dependent density functional theory-based Ehrenfest molecular dynamics (EMD) using density matrix propagation is presented that allows for performing nonadiabatic dynamics. Density matrix-based EMD in the SS framework is naturally linear scaling and appears suitable to study the electronic dynamics of molecules in solution. In the LS framework, linear scaling results as long as the density matrix remains sparse during time propagation. However, we generally find a less than exponential decay of the density matrix after a sufficiently long EMD run, preventing LS EMD simulations with arbitrary accuracy. The methods are tested on various systems, including spectroscopy on dyes, the electronic structure of TiO2 nanoparticles, electronic transport in carbon nanotubes, and the satellite tobacco mosaic virus in explicit solution.

  10. RNAi combining Sleeping Beauty transposon system inhibits ex vivo expression of foot-and-mouth disease virus VP1 in transgenic sheep cells.

    PubMed

    Deng, Shoulong; Li, Guangdong; Yu, Kun; Tian, Xiuzhi; Wang, Feng; Li, Wenting; Jiang, Wuqi; Ji, Pengyun; Han, Hongbing; Fu, Juncai; Zhang, Xiaosheng; Zhang, Jinlong; Liu, Yixun; Lian, Zhengxing; Liu, Guoshi

    2017-08-30

    Foot and mouth disease, which is induced by the foot and mouth disease virus (FMDV), takes its toll on the cloven-hoofed domestic animals. The VP1 gene in FMDV genome encodes the viral capsid, a vital element for FMDV replication. Sleeping Beauty (SB) is an active DNA-transposon system responsible for genetic transformation and insertional mutagenesis in vertebrates. In this study, a conserved VP1-shRNA which specifically targets the ovine FMDV-VP1 gene was constructed and combined with SB transposase and transposon. Then, they were microinjected into pronuclear embryos to breed transgenic sheep. Ninety-two lambs were born and the VP1-shRNA was positively integrated into eight of them. The rate of transgenic sheep production in SB transposon system was significantly higher than that in controls (13.04% vs. 3.57% and 7.14%, P < 0.05). The ear fibroblasts of the transgenic lambs transfected with the PsiCheck2-VP1 vector had a significant inhibitory effect on the VP1 gene of the FMDV. In conclusion, the VP1-shRNA transgenic sheep were successfully generated by the current new method. The ear fibroblasts from these transgenic sheep possess a great resistance to FMDV. The result indicated that RNAi technology combining the "Sleeping Beauty" transposon system is an efficient method to produce transgenic animals.

  11. Combined detection of liver stiffness and C-reactive protein in patients with hepatitis B virus-related liver cirrhosis, with and without hepatocellular carcinoma.

    PubMed

    Liu, Xiao-Yan; Ma, Li-Na; Yan, Ting-Ting; Lu, Zhen-Hui; Tang, Yuan-Yuan; Luo, Xia; Ding, Xiang-Chun

    2016-04-01

    The aim of the present study was to investigate the usefulness of combined detection of liver stiffness (LS) and serum C-reactive protein (CRP) level in patients with hepatitis B virus (HBV)-related liver cirrhosis (LC). A total of 156 cases of previously untreated patients with HBV-related LC were classified into the LC group [LC without hepatocellular carcinoma (HCC)] and the HCC group (LC with HCC). Comparative analyses of LS and serum CRP level were conducted between these two groups. LS values and serum CRP levels were found to be significantly higher in the HCC group compared with those in the LC group (P<0.01). The LS values and serum CRP levels were not significantly different between α-fetoprotein (AFP)-positive and -negative patients. A high LS value was a high-risk factor for HCC in patients with chronic hepatitis B. The CRP-positive rate was significantly higher in the HCC group compared with that in LC group in a subset of patients with high LS values (P<0.01). In conclusion, the combined detection of LS and serum CRP may complement the measurement of AFP in the diagnosis of HBV-related HCC, improve the identification of patients with AFP-negative HCC and help distinguish HCC from LC.

  12. The combination of type I IFN, TNF-α, and cell surface receptor engagement with dendritic cells enables NK cells to overcome immune evasion by dengue virus.

    PubMed

    Lim, Daniel Say Liang; Yawata, Nobuyo; Selva, Kevin John; Li, Na; Tsai, Chen Yu; Yeong, Lai Han; Liong, Ka Hang; Ooi, Eng Eong; Chong, Mun Keat; Ng, Mah Lee; Leo, Yee Sin; Yawata, Makoto; Wong, Soon Boon Justin

    2014-11-15

    Clinical studies have suggested the importance of the NK cell response against dengue virus (DenV), an arboviral infection that afflicts >50 million individuals each year. However, a comprehensive understanding of the NK cell response against dengue-infected cells is lacking. To characterize cell-contact mechanisms and soluble factors that contribute to the antidengue response, primary human NK cells were cocultured with autologous DenV-infected monocyte-derived dendritic cells (DC). NK cells responded by cytokine production and the lysis of target cells. Notably, in the absence of significant monokine production by DenV-infected DC, it was the combination of type I IFNs and TNF-α produced by DenV-infected DC that was important for stimulating the IFN-γ and cytotoxic responses of NK cells. Cell-bound factors enhanced NK cell IFN-γ production. In particular, reduced HLA class I expression was observed on DenV-infected DC, and IFN-γ production was enhanced in licensed/educated NK cell subsets. NK-DC cell contact was also identified as a requirement for a cytotoxic response, and there was evidence for both perforin/granzyme as well as Fas/Fas ligand-dependent pathways of killing by NK cells. In summary, our results have uncovered a previously unappreciated role for the combined effect of type I IFNs, TNF-α, and cell surface receptor-ligand interactions in triggering the antidengue response of primary human NK cells.

  13. Rapid and simple detection of Japanese encephalitis virus by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick.

    PubMed

    Deng, Jieru; Pei, Jingjing; Gou, Hongchao; Ye, Zuodong; Liu, Cuicui; Chen, Jinding

    2015-03-01

    Japanese encephalitis virus (JEV) is a major cause of viral encephalitis in geographical areas, such as Asia and Western Pacific, where it is a threat to human and animal health. To control this disease, it is necessary to develop a rapid, simple, accurate method for diagnosis. In this study, a method based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) coupled with a lateral flow dipstick (LFD) has been developed to detect JEV (JEV RT-LAMP-LFD). The entire assay can be completed within 70 min, and in this study, no false positive results were observed when other pathogens were tested, indicating that the assay is a highly specific method for the detection of JEV. Additionally, the sensitivity of the RT-LAMP-LFD assay for SA14-14-2 strain was 50 pg of RNA, which was similar to that of RT-PCR and RT-LAMP combined with gel electrophoresis, and was 10-fold more sensitive than RT-LAMP combined with calcein. The limit of detection for this assay was 5 pg of RNA. In addition, no false positive results were obtained with 14 serum samples. Our results indicate that this RT-LAMP-LFD assay will be of great value for JEV infection testing due to its rapid and highly specific and sensitive properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The efficacy of combined therapy of arsenic trioxide and alpha interferon in human T-cell leukemia virus type-1-infected squirrel monkeys (Saimiri sciureus).

    PubMed

    Heraud, Jean Michel; Mortreux, Frank; Merien, Fabrice; Contamin, Hugues; Mahieux, Renaud; Pouliquen, Jean Francois; Wattel, Eric; Gessain, Antoine; de Thé, Hugues; Bazarbachi, Ali; Hermine, Olivier; Kazanji, Mirdad

    2006-07-01

    Human T-cell lymphotropic virus type 1 (HTLV-1)-associated adult T-cell leukemia/lymphoma (ATLL) has a poor prognosis owing to its intrinsic resistance to chemotherapy. Although zidovudine (AZT) and alpha interferon (IFN-alpha) give rise to some response and improve the prognosis of ATLL, alternative therapies are needed. Arsenic trioxide (As(2)O(3)) has been shown to synergize with IFN-alpha in arresting cell growth and inducing apoptosis of ATLL cells in vitro. In this study, we evaluated the toxicity and the efficacy of this combined treatment in HTLV-1-infected squirrel monkeys (Saimiri sciureus) and HTLV-1 infected cell lines derived therefrom. We first show that treatment with As(2)O(3) and IFN-alpha can induce growth arrest in HTLV-1-transformed monkey T-cell lines in vitro. We then show that treatment of squirrel monkeys with As(2)O(3) in vivo is highly toxic at 0.9 or 0.3mg/day but not at 0.14mg/day for up to 2 weeks. Although the combination of As(2)O(3) and IFN-alpha did not affect significantly the HTLV-1 proviral load in infected monkeys, it reduced the absolute numbers of CD3(+), CD4(+) and CD8(+) cells during treatment, with a significant reduction in the total number of circulating HTLV-1 flower cells in the infected monkeys with chronic ATLL-like disease.

  15. Combination hepatitis C virus antigen and antibody immunoassay as a new tool for early diagnosis of infection.

    PubMed

    Ansaldi, F; Bruzzone, B; Testino, G; Bassetti, M; Gasparini, R; Crovari, P; Icardi, G

    2006-01-01

    Reduction of the window period of hepatitis C virus (HCV) infection represents an important goal in the transfusional and diagnostic setting. A prototype assay designed to simultaneously detect circulating HCV antigen and anti-HCV, has been developed. Aim of this study was to evaluate the performance of this new assay in terms of specificity and sensitivity and to compare its efficacy with commercial assays. To evaluate the specificity of the assay, 400 samples from the general population and 100 'difficult' sera, negative for anti-HCV, were tested. To assess sensitivity, the new test was used on 76 PCR-positive and anti-HCV negative sera, seven natural or commercial seroconversion panels that included 17 RNA-positive and anti-HCV negative sera and 31 anti-HCV positive sera, 20 weak anti-HCV positive sera, 80 viraemic and anti-HCV-positive sera from patients infected with different subtypes and 10 sera from patients with HBV-HCV or HIV-HCV co-infections. Of 500 anti-HCV negative samples, 499 (99.8%) were negative with a cut-off index <0.5, while one sample was within the grey zone. Of the 93 HCV-RNA positive and anti-HCV negative sera from patients and panels, 85 (91.4%) resulted positive, and one had the cut-off index in the grey zone. The reduction in the diagnostic window period observed with the new test and HCV-RNA assays were equal, on average, to 24 and 34.4 days respectively. All anti-HCV positive sera were positive. The new assay shows high sensitivity and specificity and could be a useful tool not only in the diagnostic setting, where procedures to reduce the window period, such as antigen or HCV-RNA detection, are not currently recommended, but also in the screening of blood donations, when nucleic acid technologies is not feasible because of costs, organization, emergency and/or logistic difficulties.

  16. Oncolytic viral therapy with a combination of HF10, a herpes simplex virus type 1 variant and granulocyte-macrophage colony-stimulating factor for murine ovarian cancer.

    PubMed

    Goshima, Fumi; Esaki, Shinichi; Luo, Chenhong; Kamakura, Maki; Kimura, Hiroshi; Nishiyama, Yukihiro

    2014-06-15

    Ovarian cancer is the most frequent cause of gynecological cancer-related mortality as a majority of patients are diagnosed at an advanced stage with intraperitoneal dissemination because of the absence of initial symptoms. Granulocyte-macrophage colony-stimulating factor (GM-CSF) plays an important role in the maturation of specialized antigen-presenting cells. In this study, we utilized a herpes simplex virus (HSV) amplicon expressing murine GM-CSF combined with HF10 (mGM-CSF amplicon), a highly attenuated HSV type 1 strain functioning as a helper virus to strengthen anti-tumor immune response, for the treatment of ovarian cancer with intraperitoneal dissemination. A mouse ovarian cancer cell line, OV2944-HM-1 (HM-1), was intraperitoneally injected, following which HF10 only or the mGM-CSF amplicon was injected intraperitoneally three times. HF10 injection prolonged survival and decreased intraperitoneal dissemination, but to a lesser extent than the mGM-CSF amplicon. Although HF10 replication was not observed in HM-1 cells, expression of VP5, a late gene coding the major capsid protein of HSV, was detected. Moreover, mGM-CSF production was detected in transfected HM-1 cells. Immunohistochemical staining revealed the infiltration of CD4- and CD8-positive cells into the peritoneal tumor(s). A significantly increased CD4+ T cell concentration was observed in the spleen. Murine splenic cells after each treatment were stimulated with HM-1 cells, and the strongest immune response was observed in the mice that received mGM-CSF amplicon injections. These results suggested that the mGM-CSF amplicon is a promising agent for the treatment of advanced ovarian cancer with intraperitoneal dissemination. © 2013 UICC.

  17. Detection of hepatitis A virus in seeded oyster digestive tissue by ricin A-linked magnetic separation combined with reverse transcription PCR.

    PubMed

    Ko, Sang-Mu; Vaidya, Bipin; Kwon, Joseph; Lee, Hee-Min; Oh, Myung-Joo; Shin, Tai-Sun; Cho, Se-Young; Kim, Duwoon

    2015-05-01

    Outbreaks of hepatitis A virus (HAV) infections are most frequently associated with the consumption of contaminated oysters. A rapid and selective concentration method is necessary for the recovery of HAV from contaminated oysters prior to detection using PCR. In this study, ricin extracted from castor beans (Ricinus communis) was tested as an alternative to antibody used in immunomagnetic separation while concentrating HAV prior to its detection using reverse transcription PCR. Initially, the extracted proteins from castor beans were fractionated into 13 fractions by gel filtration chromatography. Pretreatment of different protein fractions showed a variation in binding of HAV viral protein (VP) 1 to oyster digestive tissue in the range of 25.9 to 63.9%. The protein fraction, which caused the highest reduction in binding of VP1 to the tissue, was identified as ricin A by quadrupole time-of-flight mass spectrometry. Ricin A could significantly inhibit binding of VP1 to the tissue with a 50% inhibitory concentration of 4.5 μg/ml and a maximal inhibitory concentration of 105.2%. The result showed that the rate of inhibition of HAV binding to tissue was higher compared to the rate of ricin itself binding to HAV (slope: 0.0029 versus 0.00059). However, ricin A concentration showed a higher correlation to the relative binding of ricin itself to HAV than the inhibition of binding of HAV to the tissue (coefficient of determination, R(2): 0.9739 versus 0.6804). In conclusion, ricin A-linked magnetic bead separation combined with reverse transcription PCR can successfully detect HAV in artificially seeded oyster digestive tissue up to a 10(-4) dilution of the virus stock (titer: 10(4) 50% tissue culture infective dose per ml).

  18. Rapid and sensitive detection of novel avian-origin influenza A (H7N9) virus by reverse transcription loop-mediated isothermal amplification combined with a lateral-flow device.

    PubMed

    Ge, Yiyue; Wu, Bin; Qi, Xian; Zhao, Kangchen; Guo, Xiling; Zhu, Yefei; Qi, Yuhua; Shi, Zhiyang; Zhou, Minghao; Wang, Hua; Cui, Lunbiao

    2013-01-01

    A severe disease in humans caused by a novel avian-origin influenza A (H7N9) virus emerged in China recently, which has caused at least 128 cases and 26 deaths. Rapid detection of the novel H7N9 virus is urgently needed to differentiate the disease from other infections, and to facilitate infection control as well as epidemiologic investigations. In this study, a reverse transcription loop-mediated isothermal amplification combined with a lateral flow device (RT-LAMP-LFD) assay to rapidly detect H7N9 virus was developed and evaluated. The RT-LAMP primers were designed to target the haemagglutinin (HA) and neuraminidase (NA) genes of H7N9 virus. Results of 10-fold dilution series assays showed that analysis of RT-LAMP products by the LFD method was as sensitive as real-time turbidity detection, and that the analytic sensitivities of the HA and NA RT-LAMP assays were both 10 copies of synthetic RNA. Furthermore, both the assays showed 100% clinical specificity for identification of H7N9 virus. The performance characteristics of the RT-LAMP-LFD assay were evaluated with 80 clinical specimens collected from suspected H7N9 patients. The NA RT-LAMP-LFD assay was more sensitive than real time RT-PCR assay. Compared with a combination of virus culture and real-time RT-PCR, the sensitivity, specificity, positive predictive value, and negative predictive value of the RT-LAMP-LFD assay were all 100%. Overall, The RT-LAMP-LFD assay established in this study can be used as a reliable method for early diagnosis of the avian-origin influenza A (H7N9) virus infection.

  19. Rapid and Sensitive Detection of Novel Avian-Origin Influenza A (H7N9) Virus by Reverse Transcription Loop-Mediated Isothermal Amplification Combined with a Lateral-Flow Device

    PubMed Central

    Qi, Xian; Zhao, Kangchen; Guo, Xiling; Zhu, Yefei; Qi, Yuhua; Shi, Zhiyang; Zhou, Minghao; Wang, Hua; Cui, Lunbiao

    2013-01-01

    A severe disease in humans caused by a novel avian-origin influenza A (H7N9) virus emerged in China recently, which has caused at least 128 cases and 26 deaths. Rapid detection of the novel H7N9 virus is urgently needed to differentiate the disease from other infections, and to facilitate infection control as well as epidemiologic investigations. In this study, a reverse transcription loop-mediated isothermal amplification combined with a lateral flow device (RT-LAMP-LFD) assay to rapidly detect H7N9 virus was developed and evaluated. The RT-LAMP primers were designed to target the haemagglutinin (HA) and neuraminidase (NA) genes of H7N9 virus. Results of 10-fold dilution series assays showed that analysis of RT-LAMP products by the LFD method was as sensitive as real-time turbidity detection, and that the analytic sensitivities of the HA and NA RT-LAMP assays were both 10 copies of synthetic RNA. Furthermore, both the assays showed 100% clinical specificity for identification of H7N9 virus. The performance characteristics of the RT-LAMP-LFD assay were evaluated with 80 clinical specimens collected from suspected H7N9 patients. The NA RT-LAMP-LFD assay was more sensitive than real time RT-PCR assay. Compared with a combination of virus culture and real-time RT-PCR, the sensitivity, specificity, positive predictive value, and negative predictive value of the RT-LAMP-LFD assay were all 100%. Overall, The RT-LAMP-LFD assay established in this study can be used as a reliable method for early diagnosis of the avian-origin influenza A (H7N9) virus infection. PMID:23936359

  20. Modified vaccinia virus Ankara can activate NF-kappaB transcription factors through a double-stranded RNA-activated protein kinase (PKR)-dependent pathway during the early phase of virus replication.

    PubMed

    Lynch, Heather E; Ray, Caroline A; Oie, Katrina L; Pollara, Justin J; Petty, Ian T D; Sadler, Anthony J; Williams, Bryan R G; Pickup, David J

    2009-09-01

    Modified vaccinia virus Ankara (MVA), which is a promising replication-defective vaccine vector, is unusual among the orthopoxviruses in activating NF-kappaB transcription factors in cells of several types. In human embryonic kidney (HEK 293T) cells, the MVA-induced depletion of IkappaBalpha required to activate NF-kappaB is inhibited by UV-inactivation of the virus, and begins before viral DNA replication. In HEK 293T, CHO, or RK13 cells, expression of the cowpox virus CP77 early gene, or the vaccinia virus K1L early gene suppresses MVA-induced IkappaBalpha depletion. In mouse embryonic fibroblasts (MEFs), MVA induction of IkappaBalpha depletion is dependent on the expression of mouse or human double-stranded RNA-activated protein kinase (PKR). These results demonstrate that events during the early phase of MVA replication can induce PKR-mediated processes contributing both to the activation of NF-kappaB signaling, and to processes that may restrict viral replication. This property may contribute to the efficacy of this vaccine virus.

  1. Effect of Hepatitis C Virus Genotype 1b Core and NS5A Mutations on Response to Peginterferon Plus Ribavirin Combination Therapy.

    PubMed

    Nakamoto, Shingo; Imazeki, Fumio; Arai, Makoto; Yasui, Shin; Nakamura, Masato; Haga, Yuki; Sasaki, Reina; Kanda, Tatsuo; Shirasawa, Hiroshi; Yokosuka, Osamu

    2015-09-07

    We examined whether hepatitis C virus (HCV) genotype 1b core- and NS5A-region mutations are associated with response to peginterferon α-2b plus ribavirin combination therapy. A total of 103 patients with high HCV genotype 1b viral loads (≥ 100 KIU/mL) were treated with the combination therapy. Pretreatment mutations in the core region and interferon sensitivity determining region (ISDR) in the NS5A region were analyzed. In univariate analysis, arginine and leucine at positions 70 and 91 in the core region, defined as double wild (DW)-type, were associated with early virologic response (p = 0.002), sustained virologic response (SVR) (p = 0.004), and non-response (p = 0.005). Non-threonine at position 110 was associated with SVR (p = 0.004). Multivariate analysis showed the following pretreatment predictors of SVR: hemoglobin level ≥ 14 g/dL (odds ratio (OR) 6.2, p = 0.04); platelet count ≥ 14 × 10⁴/mm³ (OR 5.2, p = 0.04); aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio < 0.9 (OR 6.17, p = 0.009); DW-type (OR 6.8, p = 0.02); non-threonine at position 110 (OR 14.5, p = 0.03); and ≥ 2 mutations in the ISDR (OR 12.3, p = 0.02). Patients with non-DW-type, non-threonine at position 110, and < 2 ISDR mutations showed significantly lower SVR rates than others (11/45 (24.4%) vs. 27/37 (73.0%), respectively; p < 0.001). SVR can be predicted through core and NS5A region mutations and host factors like hemoglobin, platelet count, and AST/ALT ratio in HCV genotype 1b-infected patients treated with peginterferon and ribavirin combination therapy.

  2. [Clinical study of Ruiyun procedure for hemorrhoids combined with Xiaozhiling injections in treatment of hemorrhoids complicated with human immunodeficiency virus infection].

    PubMed

    Wei, Guo; Hua, Xin; Zhao, Yong; Hu, Minghui; Gou, Fang; Liu, Lin; Cai, Lin; He, Yong; He, Shenghua

    2014-12-01

    To explore the efficacy of Ruiyun procedure for hemorrhoids (RPH) combined with Xiaozhiling injection in the treatment of hemorrhoids complicated with human immunodeficiency virus (HIV) infection and its influence on cellular immune function. Clinical data of 76 hemorrhoid patients, including 36 positive HIV and 40 negative HIV, undergoing RPH combined with Xiaozhiling injections in our center from January 2010 to December 2012 were retrospectively analyzed. Clinical efficacy and cellular immune function preoperative day 1, postoperative day 7, 30 were compared between positive and negative groups. Recurrence rates of positive group and negative group postoperative 6 months were 22.2% (8/36) and 22.5% (9/40), postoperative 1 year were 30.6% (11/36) and 30.0% (12/40) without significant differences (all P>0.05). Morbidity of postoperative complication was also not significantly different between two groups (P>0.05). According to HIV classification, peripheral lymph cell ratio, CD4 count, CD4/CD8, white blood cell count and neutrophil ratio were not significantly different between preoperative day 1 and postoperative day 7 in both groups (all P>0.05). Decreasing velocity and amplitude of CD4 in both groups from high to low was HIV III, HIV II, HIV I, HIV-, while after 30 days the increase of CD4 from high to low was HIV-, HIV I, HIV II, HIV III, which were significantly different as compared to postoperative day 7 (all P<0.05). RPH combined with Xiaozhiling injection in the treatment of hemorrhoids complicated with HIV infection is effective and safe. Postoperative inhibited cellular immune function can recover quickly.

  3. Immunological evaluation of Vibrio alginolyticus, Vibrio harveyi, Vibrio vulnificus and infectious spleen and kidney necrosis virus (ISKNV) combined-vaccine efficacy in Epinephelus coioides.

    PubMed

    Huang, Zhijian; Tang, Jingjing; Li, Mei; Fu, Yacheng; Dong, Chuanfu; Zhong, Jiang F; He, Jianguo

    2012-11-15

    Combined vaccines are immunological products intended for immunization against multifactorial infectious diseases caused by different types or variants of pathogens. In this study, the effectiveness of Vibrio alginolyticus (Va), Vibrio harveyi (Vh), Vibrio vulnificus (Vv) and infectious spleen and kidney necrosis virus (ISKNV), an iridovirus, combined-vaccine (Vibrio and ISKNV combined vaccines, VICV), Va+Vh+Vv inactive vaccine (VIV) and ISKNV whole cell inactive vaccine (IWCIV) in Epinephelus coioides were evaluated using various immunological parameters including antibody titer, serum lysozyme activity (LA), respiratory burst (RB) activity, bactericidal activity (BA) and relative percentage survival (RPS). E. coioides immunized with VICV and challenged with Va+Vh+Vv+ISKNV had an RPS of 80%. The RPS was 73.3% in E. coioides immunized with VIV and challenged with Va+Vh+Vv. E. coioides immunized with IWCIV and challenged with ISKNV had an RPS of 69.6%. Serum LA in the vaccinated group was significantly higher than the control group on days 21 and 28 post-vaccination (P<0.01). The RB activity of head kidney cells in the vaccinated group was significantly higher (P<0.01) compared to that in the control group. However, RB activity of spleen cells in the vaccinated group and the control group were not significantly different (P>0.05). After immunization with VICV, BA values of blood leucocytes and head kidney cells increased significantly more than spleen cells. BA value of blood leucocytes was higher than that in head kidney cells. There were distinct difference between BA values in head kidney cells and in spleen cells (P<0.05) as well as between BA value of blood leucocytes and head kidney cells (P<0.01). E. coioides vaccinated with VICV have significantly higher antibody levels than control groupers (P<0.01). Our study suggests that the VICV candidate can effectively protect groupers against multiple bacterial and viral pathogens.

  4. Heartland Virus

    MedlinePlus

    ... Vector-Borne Diseases (DVBD) NCEZID Share Compartir Heartland virus On this Page What is Heartland virus? How ... Do I Need to Know? What is Heartland virus? Heartland virus belongs to a family of viruses ...

  5. A virulence factor of myxoma virus colocalizes with NF-kappaB in the nucleus and interferes with inflammation.

    PubMed

    Camus-Bouclainville, Christelle; Fiette, Laurence; Bouchiha, Sophie; Pignolet, Béatrice; Counor, Dorian; Filipe, Cédric; Gelfi, Jacqueline; Messud-Petit, Frédérique

    2004-03-01

    NF-kappaB is one of the most important elements that coordinate stress-induced, immune, and inflammatory responses. Myxoma virus, a member of the Poxviridae family responsible for rabbit myxomatosis, codes for several factors that help its survival in the host. In this study, we focused on the product of the M150R gene. We show that the protein has nine ankyrin repeats (ANKs), with the eighth having a close similarity with the nuclear localization signal-containing ANK of I-kappaBalpha, which regulates NF-kappaB activity by sequestering it in the cytosol. Because the viral protein is targeted to the nucleus, it was named MNF, for myxoma nuclear factor. This localization was lost when the eighth ANK was removed. In tumor necrosis factor alpha-treated cells, MNF and NF-kappaB colocalized as dotted spots in the nucleus. In vivo experiments with a knockout virus showed that MNF is a critical virulence factor, with its deletion generating an almost apathogenic virus. Detailed histological examinations revealed an increase in the inflammatory process in the absence of MNF, consistent with the interference of MNF with the NF-kappaB-induced proinflammatory pathway. Because MNF has homologs in other poxviruses, such as vaccinia, cowpox, and variola viruses, this protein is probably part of a key mechanism that contributes to the immunogenic and pathogenic properties of these viruses.

  6. The Effect of Antiretroviral Combination Treatment on Epstein-Barr Virus (EBV) Genome Load in HIV-Infected Patients

    PubMed Central

    Friis, Anna M. C.; Gyllensten, Katarina; Aleman, Anna; Ernberg, Ingemar; Åkerlund, Börje

    2010-01-01

    We evaluated the effect of combination anti-retroviral treatment (cART) on the host control of EBV infection in moderately immunosuppressed HIV-1 patients. Twenty HIV-1 infected individuals were followed for five years with repeated measurements of EBV DNA load in peripheral blood lymphocytes in relation to HIV-RNA titers and CD4+ cell counts. Individuals with optimal response, i.e. durable non-detectable HIV-RNA, showed a decline of EBV load to the level of healthy controls. Individuals with non-optimal HIV-1 control did not restore their EBV control. Long-lasting suppression of HIV-replication after early initiation of cART is a prerequisite for re-establishing the immune control of EBV. PMID:21994658

  7. Recombinant adeno-associated virus-mediated gene transfer for the potential therapy of adenosine deaminase-deficient severe combined immune deficiency.

    PubMed

    Silver, Jared N; Elder, Melissa; Conlon, Thomas; Cruz, Pedro; Wright, Amy J; Srivastava, Arun; Flotte, Terence R

    2011-08-01

    Severe combined immune deficiency due to adenosine deaminase (ADA) deficiency is a rare, potentially fatal pediatric disease, which results from mutations within the ADA gene, leading to metabolic abnormalities and ultimately profound immunologic and nonimmunologic defects. In this study, recombinant adeno-associated virus (rAAV) vectors based on serotypes 1 and 9 were used to deliver a secretory version of the human ADA (hADA) gene to various tissues to promote immune reconstitution following enzyme expression in a mouse model of ADA deficiency. Here, we report that a single-stranded rAAV vector, pTR2-CB-Igκ-hADA, (1) facilitated successful gene delivery to multiple tissues, including heart, skeletal muscle, and kidney, (2) promoted ectopic expression of hADA, and (3) allowed enhanced serum-based enzyme activity over time. Moreover, the rAAV-hADA vector packaged in serotype 9 capsid drove partial, prolonged, and progressive immune reconstitution in ADA-deficient mice. Overview Summary Gene therapies for severe combined immune deficiency due to adenosine deaminase (ADA) deficiency (ADA-SCID) over two decades have exclusively involved retroviral vectors targeted to lymphocytes and hematopoietic progenitor cells. These groundbreaking gene therapies represented an unprecedented revolution in clinical medicine but in most cases did not fully correct the immune deficiency and came with the potential risk of insertional mutagenesis. Alternatively, recombinant adeno-associated virus (rAAV) vectors have gained attention as valuable tools for gene transfer, having demonstrated no pathogenicity in humans, minimal immunogenicity, long-term efficacy, ease of administration, and broad tissue tropism (Muzyczka, 1992 ; Flotte et al., 1993 ; Kessler et al., 1996 ; McCown et al., 1996 ; Lipkowitz et al., 1999 ; Marshall, 2001 ; Chen et al., 2003 ; Conlon and Flotte, 2004 ; Griffey et al., 2005 ; Pacak et al., 2006 ; Stone et al., 2008 ; Liu et al., 2009 ; Choi et al., 2010

  8. Foodborne viruses.

    PubMed

    Koopmans, Marion; von Bonsdorff, Carl Henrik; Vinjé, Jan; de Medici, Dario; Monroe, Steve

    2002-06-01

    culture systems. As currently available routine monitoring systems exclusively focus on bacterial pathogens, efforts should be made to combine epidemiological and virological information for a combined laboratory-based rapid detection system for foodborne viruses. With better surveillance, including typing information, outbreaks of foodborne infections could be reported faster to prevent further spread.

  9. Neoadjuvant administration of Semliki Forest virus expressing interleukin-12 combined with attenuated Salmonella eradicates breast cancer metastasis and achieves long-term survival in immunocompetent mice.

    PubMed

    Kramer, M Gabriela; Masner, Martín; Casales, Erkuden; Moreno, María; Smerdou, Cristian; Chabalgoity, José A

    2015-09-07

    Metastatic breast cancer is a major cause of death among women worldwide; therefore efficient therapeutic strategies are extremely needed. In this work we have developed a gene therapy- and bacteria-based combined neoadjuvant approach and evaluated its antitumor effect in a clinically relevant animal model of metastatic breast cancer. 2×10(8) particles of a Semliki Forest virus vector expressing interleukin-12 (SFV-IL-12) and/or 2×10(7) units of an aroC (-) Samonella Typhimurium strain (LVR01) were injected into 4T1 tumor nodules orthotopically implanted in mice. Tumors were surgically resected and long-term survival was determined. IL-12 and interferon-γ were quantified by Enzyme-Linked ImmunoSorbent Assay, bacteria was visualized by inmunohistochemistry and the number of lung metastasis was calculated with a clonogenic assay. SFV-IL-12 and LVR01 timely inoculated and followed by surgical resection of tumors succeeded in complete inhibition of lethal lung metastasis and long-term survival in 90% of treated mice. The combined therapy was markedly synergistic compared to each treatment alone, since SFV-IL-12 monotherapy showed a potent antiangiogenic effect, being able to inhibit tumor growth and extend survival, but could not prevent establishment of distant metastasis and death of tumor-excised animals. On the other hand, LVR01 alone also showed a significant, although limited, antitumor potential, despite its ability to invade breast cancer cells and induce granulocyte recruitment. The efficacy of the combined therapy depended on the order in which both factors were administered; inasmuch the therapeutic effect was only observed when SFV-IL-12 was administered previous to LVR01, whereas administration of LVR01 before SFV-IL-12 had negligible antitumor activity. Moreover, pre-treatment with LVR01 seemed to suppress SFV-IL-12 antiangiogenic effects associated to lower IL-12 expression in this group. Re-challenged mice were unable to reject a second 4T1 tumor

  10. Infectious Lassa virus, but not filoviruses, is restricted by BST-2/tetherin.

    PubMed

    Radoshitzky, Sheli R; Dong, Lian; Chi, Xiaoli; Clester, Jeremiah C; Retterer, Cary; Spurgers, Kevin; Kuhn, Jens H; Sandwick, Sarah; Ruthel, Gordon; Kota, Krishna; Boltz, Dutch; Warren, Travis; Kranzusch, Philip J; Whelan, Sean P J; Bavari, Sina

    2010-10-01

    Bone marrow stromal antigen 2 (BST-2/tetherin) is a cellular membrane protein that inhibits the release of HIV-1. We show for the first time, using infectious viruses, that BST-2 also inhibits egress of arenaviruses but has no effect on filovirus replication and spread. Specifically, infectious Lassa virus (LASV) release significantly decreased or increased in human cells in which BST-2 was either stably expressed or knocked down, respectively. In contrast, replication and spread of infectious Zaire ebolavirus (ZEBOV) and Lake Victoria marburgvirus (MARV) were not affected by these conditions. Replication of infectious Rift Valley fever virus (RVFV) and cowpox virus (CPXV) was also not affected by BST-2 expression. Elevated cellular levels of human or murine BST-2 inhibited the release of virus-like particles (VLPs) consisting of the matrix proteins of multiple highly virulent NIAID Priority Pathogens, including arenaviruses (LASV and Machupo virus [MACV]), filoviruses (ZEBOV and MARV), and paramyxoviruses (Nipah virus). Although the glycoproteins of filoviruses counteracted the antiviral activity of BST-2 in the context of VLPs, they could not rescue arenaviral (LASV and MACV) VLP release upon BST-2 overexpression. Furthermore, we did not observe colocalization of filoviral glycoproteins with BST-2 during infection with authentic viruses. None of the arenavirus-encoded proteins rescued budding of VLPs in the presence of BST-2. Our results demonstrate that BST-2 might be a broad antiviral factor with the ability to restrict release of a wide variety of human pathogens. However, at least filoviruses, RVFV, and CPXV are immune to its inhibitory effect.

  11. Recombinant domains III of Tick-Borne Encephalitis Virus envelope protein in combination with dextran and CpGs induce immune response and partial protectiveness against TBE virus infection in mice.

    PubMed

    Ershova, Anna S; Gra, Olga A; Lyaschuk, Alexander M; Grunina, Tatyana M; Tkachuk, Artem P; Bartov, Mikhail S; Savina, Darya M; Sergienko, Olga V; Galushkina, Zoya M; Gudov, Vladimir P; Kozlovskaya, Liubov I; Kholodilov, Ivan S; Gmyl, Larissa V; Karganova, Galina G; Lunin, Vladimir G; Karyagina, Anna S; Gintsburg, Alexander L

    2016-10-07

    E protein of tick-borne encephalitis virus (TBEV) and other flaviviruses is located on the surface of the viral particle. Domain III of this protein seems to be a promising component of subunit vaccines for prophylaxis of TBE and kits for diagnostics of TBEV. Three variants of recombinant TBEV E protein domain III of European, Siberian and Far Eastern subtypes fused with dextran-binding domain of Leuconostoc citreum KM20 were expressed in E. coli and purified. The native structure of domain III was confirmed by ELISA antibody kit and sera of patients with tick-borne encephalitis. Immunogenic and protective properties of the preparation comprising these recombinant proteins immobilized on a dextran carrier with CpG oligonucleotides as an adjuvant were investigated on the mice model. All 3 variants of recombinant proteins immobilized on dextran demonstrate specific interaction with antibodies from the sera of TBE patients. Thus, constructed recombinant proteins seem to be promising for TBE diagnostics. The formulation comprising the 3 variants of recombinant antigens immobilized on dextran and CpG oligonucleotides, induces the production of neutralizing antibodies against TBEV of different subtypes and demonstrates partial protectivity against TBEV infection. Studied proteins interact with the sera of TBE patients, and, in combination with dextran and CPGs, demonstrate immunogenicity and limited protectivity on mice compared with reference "Tick-E-Vac" vaccine.

  12. Genome Sequence of an H9N2 Avian Influenza Virus Strain with Hemagglutinin-Neuraminidase Combination, Isolated from a Quail in Guangxi, Southern China.

    PubMed

    Xie, Liji; Xie, Zhixun; Li, Dan; Luo, Sisi; Zhang, Minxiu; Huang, Li; Xie, Zhiqin; Huang, Jiaoling; Zhang, Yanfang; Zeng, Tingting; Deng, Xianwen

    2017-09-21

    We isolated a strain of H9N2 avian influenza virus from a quail in southern China in May 2015 and named it A/quail/Guangxi/198Q39/2015. All eight gene segments of the strain were sequenced. Sequence analysis indicated that the amino acid motif of the hemagglutinin cleavage site of this H9N2 virus was RSSR↓GLF, which is a typical characteristic of the low pathogenic avian influenza virus. This study will help in better understanding the epidemiology and molecular characteristics of avian influenza virus in wild birds. Copyright © 2017 Xie et al.

  13. Systemic Cytokine Levels Do Not Predict CD4+ T-Cell Recovery After Suppressive Combination Antiretroviral Therapy in Chronic Human Immunodeficiency Virus Infection

    PubMed Central

    Norris, Philip J.; Zhang, Jinbing; Worlock, Andrew; Nair, Sangeetha V.; Anastos, Kathryn; Minkoff, Howard L.; Villacres, Maria C.; Young, Mary; Greenblatt, Ruth M.; Desai, Seema; Landay, Alan L.; Gange, Stephen J.; Nugent, C. Thomas; Golub, Elizabeth T.; Keating, Sheila M.

    2016-01-01

    Background. Subjects on suppressive combination antiretroviral therapy (cART) who do not achieve robust reconstitution of CD4+ T cells face higher risk of complications and death. We studied participants in the Women's Interagency HIV Study with good (immunological responder [IR]) or poor (immunological nonresponder [INR]) CD4+ T-cell recovery after suppressive cART (n = 50 per group) to determine whether cytokine levels or low-level viral load correlated with INR status. Methods. A baseline sample prior to viral control and 2 subsequent samples 1 and 2 years after viral control were tested. Serum levels of 30 cytokines were measured at each time point, and low-level human immunodeficiency virus (HIV) viral load and anti-HIV antibody levels were measured 2 years after viral suppression. Results. There were minimal differences in cytokine levels between IR and INR subjects. At baseline, macrophage inflammatory protein-3β levels were higher in IR subjects; after 1 year of suppressive cART, soluble vascular endothelial growth factor-R3 levels were higher in IR subjects; and after 2 years of suppressive cART, interferon gamma-induced protein 10 levels were higher in INR subjects. Very low-level HIV viral load and anti-HIV antibody levels did not differ between IR and INR subjects. Conclusions. These results imply that targeting residual viral replication might not be the optimum therapeutic approach for INR subjects. PMID:26966697

  14. High Cellular Monocyte Activation in People Living With Human Immunodeficiency Virus on Combination Antiretroviral Therapy and Lifestyle-Matched Controls Is Associated With Greater Inflammation in Cerebrospinal Fluid

    PubMed Central

    Booiman, Thijs; Wit, Ferdinand W.; Maurer, Irma; De Francesco, Davide; Sabin, Caroline A.; Harskamp, Agnes M.; Prins, Maria; Garagnani, Paolo; Pirazzini, Chiara; Franceschi, Claudio; Fuchs, Dietmar; Gisslén, Magnus; Winston, Alan; Reiss, Peter; Reiss, P.; Wit, F. W. N. M.; Schouten, J.; Kooij, K. W.; van Zoest, R. A.; Elsenga, B. C.; Janssen, F. R.; Heidenrijk, M.; Zikkenheiner, W.; van der Valk, M.; Kootstra, N. A.; Booiman, T.; Harskamp-Holwerda, A. M.; Boeser-Nunnink, B.; Maurer, I.; Mangas Ruiz, M. M.; Girigorie, A. F.; Villaudy, J.; Frankin, E.; Pasternak, A.; Berkhout, B.; van der Kuyl, T.; Portegies, P.; Schmand, B. A.; Geurtsen, G. J.; ter Stege, J. A.; Klein Twennaar, M.; Majoie, C. B. L. M.; Caan, M. W. A.; Su, T.; Weijer, K.; Bisschop, P. H. L. T.; Kalsbeek, A.; Wezel, M.; Visser, I.; Ruhé, H. G.; Franceschi, C.; Garagnani, P.; Pirazzini, C.; Capri, M.; Dall’Olio, F.; Chiricolo, M.; Salvioli, S.; Hoeijmakers, J.; Pothof, J.; Prins, M.; Martens, M.; Moll, S.; Berkel, J.; Totté, M.; Kovalev, S.; Gisslén, M.; Fuchs, D.; Zetterberg, H.; Winston, A.; Underwood, J.; McDonald, L.; Stott, M.; Legg, K.; Lovell, A.; Erlwein, O.; Doyle, N.; Kingsley, C.; Sharp, D. J.; Leech, R.; Cole, J. H.; Zaheri, S.; Hillebregt, M. M. J.; Ruijs, Y. M. C.; Benschop, D. P.; Burger, D.; de Graaff-Teulen, M.; Guaraldi, G.; Bürkle, A.; Sindlinger, T.; Moreno-Villanueva, M.; Keller, A.; Sabin, C.; de Francesco, D.; Libert, C.; Dewaele, S.

    2017-01-01

    Abstract Background. Increased monocyte activation and intestinal damage have been shown to be predictive for the increased morbidity and mortality observed in treated people living with human immunodeficiency virus (PLHIV). Methods. A cross-sectional analysis of cellular and soluble markers of monocyte activation, coagulation, intestinal damage, and inflammation in plasma and cerebrospinal fluid (CSF) of PLHIV with suppressed plasma viremia on combination antiretroviral therapy and age and demographically comparable HIV-negative individuals participating in the Comorbidity in Relation to AIDS (COBRA) cohort and, where appropriate, age-matched blood bank donors (BBD). Results. People living with HIV, HIV-negative individuals, and BBD had comparable percentages of classical, intermediate, and nonclassical monocytes. Expression of CD163, CD32, CD64, HLA-DR, CD38, CD40, CD86, CD91, CD11c, and CX3CR1 on monocytes did not differ between PLHIV and HIV-negative individuals, but it differed significantly from BBD. Principal component analysis revealed that 57.5% of PLHIV and 62.5% of HIV-negative individuals had a high monocyte activation profile compared with 2.9% of BBD. Cellular monocyte activation in the COBRA cohort was strongly associated with soluble markers of monocyte activation and inflammation in the CSF. Conclusions. People living with HIV and HIV-negative COBRA participants had high levels of cellular monocyte activation compared with age-matched BBD. High monocyte activation was predictive for inflammation in the CSF. PMID:28680905

  15. Development of a loop-mediated isothermal amplification assay combined with a lateral flow dipstick for rapid and simple detection of classical swine fever virus in the field.

    PubMed

    Chowdry, Vinay Kumar; Luo, Yuzi; Widén, Frederik; Qiu, Hua-Ji; Shan, Hu; Belák, Sándor; Liu, Lihong

    2014-03-01

    Classical swine fever (CSF) is a highly contagious viral disease and may cause heavy economic loss to farmers. The rapid, simple and accurate diagnosis of the disease at the frontline, for example on the farms of concern is crucial for disease control. This study describes the development and evaluation of a new loop-mediated isothermal amplification (LAMP) assay coupled with lateral flow dipstick (LFD) for the detection of classical swine fever virus (CSFV). This RT-LAMP-LFD assay combines the efficient one-step isothermal amplification of CSF viral RNA and the simplicity of the LFD to read the results within two to five minutes. Seven genotypes (1.1, 1.2, 1.3, 2.1, 2.2, 2.3 and 3.1), but not genotype 3.4, were successfully detected by the RT-LAMP-LFD assay, indicating that the method has a broad range of detection and can be applied in different geographical areas where CSFV strains belonging to these genotypes are present. The performance of this RT-LAMP-LFD assay was similar to that of the real-time RT-PCR. The analytical sensitivity was about 100copies per reaction when testing two genotypes (1.1 and 2.3). No cross-reactivity to non-CSFV pestiviruses was observed. This RT-LAMP-LFD assay can be a useful novel tool for the rapid, simple and economic diagnosis of classical swine fever in the field.

  16. Poly(I:C) combined with multi-epitope protein vaccine completely protects against virulent foot-and-mouth disease virus challenge in pigs.

    PubMed

    Cao, Yimei; Lu, Zengjun; Li, Yanli; Sun, Pu; Li, Dong; Li, Pinghua; Bai, Xingwen; Fu, Yuanfang; Bao, Huifang; Zhou, Chunxue; Xie, Baoxia; Chen, Yingli; Liu, Zaixin

    2013-02-01

    We designed a series of epitope proteins containing the G-H loops of three topotypes of foot-and-mouth disease virus (FMDV) serotype O and promiscuous artificial Th sites and selected one epitope protein (designated as B4) with optimal immunogenicity and cross-reactivity. Three out of five pigs immunized intramuscularly with this B4 were protected against virulent FMDV challenge after a single inoculation, while all pigs co-immunized with B4 and polyinosinic-cytidylic acid [poly(I:C)] conferred complete protection following FMDV challenge. Additionally, we demonstrated that all pigs co-immunized with B4 and poly(I:C) elicited FMDV-specific neutralizing antibodies, total IgG antibodies, type I interferon (IFN-α/β) and cytokines IFN-γ. In contrast, some pigs immunized with B4 alone produced parameters mentioned above, while some not, suggesting that poly(I:C) reduced animal-to-animal variations in both cellular and humoral responses often observed in association with epitope-based vaccines and up-regulated T-cell immunity often poorly observed in protein-based vaccines. We propose that poly(I:C) is an effective adjuvant for this epitope-based vaccine of FMDV. This combination could yield an effective and safe candidate vaccine for the control and eradication of FMD in pigs.

  17. Characterization of Epstein-Barr virus-induced lymphoproliferation derived from human peripheral blood mononuclear cells transferred to severe combined immunodeficient mice.

    PubMed Central

    Okano, M.; Taguchi, Y.; Nakamine, H.; Pirruccello, S. J.; Davis, J. R.; Beisel, K. W.; Kleveland, K. L.; Sanger, W. G.; Fordyce, R. R.; Purtilo, D. T.

    1990-01-01

    Mice with severe combined immunodeficiency (SCID) received 6 X 10(7) fresh human peripheral blood mononuclear cells (PBMC) intraperitoneally from Epstein-Barr virus (EBV)-seropositive and -seronegative donors. B95-8 EBV was inoculated intraperitoneally and intravenously to the mice 6 weeks after transfer of seronegative PBMC. Three of four mice transferred with PBMC from two EBV-seropositive donors and two of four mice from two EBV-seronegative donors inoculated with EBV developed fatal EBV-induced lymphoproliferative disease within 6 to 10 weeks. These tumors were oligoclonal or polyclonal by cytoplasmic immunoglobulin expression. Furthermore no consistent clonal chromosomal abnormalities were shown. Cell lines established from these tumors showed low cloning efficiency in soft agarose. In addition, latent membrane protein, B-lymphocyte activation antigen (CD23), and cell-adhesion molecules (ICAM-1, CD18) all were expressed in the EBV-positive infiltrating lymphoproliferative lesions in each mouse. These results suggest that lymphoid tumors are comparable to lymphoblastoid cell lines immortalized by EBV and are not malignant lymphomas such as Burkitt's lymphoma. This model may be useful for investigating mechanisms responsible for the growing numbers of lymphoproliferative diseases that are occurring in patients with inherited or acquired immunodeficiencies. Images Figure 1 PMID:1975985

  18. Screening for hepatitis C virus infection in a high prevalence country by an antigen/antibody combination assay versus a rapid test.

    PubMed

    Tagny, Claude Tayou; Mbanya, Dora; Murphy, Edward L; Lefrère, Jean-Jacques; Laperche, Syria

    2014-04-01

    In low-income-countries, screening for hepatitis C virus (HCV) infection is often based on rapid tests (RT). Their lower sensitivity compared to enzyme immunoassay (EIA) suggests that newer HCV Antigen/Antibody (Ag/Ab) combination assays might have a role in such countries. To test this idea, 1998 blood donors were tested at the University Teaching Hospital blood bank in Yaoundé, Cameroon simultaneously with a RT (HCV rapid test, Human Diagnostics, Berlin, Germany) according to standard practice (S1) and with an Ag/Ab assay (Monolisa HCV Ag/Ab Ultra, Biorad, France) (S2). All discordant, borderline and reactive samples were submitted to confirmatory testing by immunoblot and/or HCV-RNA. Of the 86 (4.3%) samples positive with one or both strategies, 29 were confirmed negative, 37 positive and 20 were false positive or resolved infection. There was a significant difference in test sensitivity (p=0.01) between S1 (70.3%) and S2 (91.9%) but not in test specificity (99.4% and 98.6%, respectively). The benefit of the Ag/Ab assay in the detection of recent HCV seronegative infections could not be evaluated since no Antigen-only donations were identified. However, better Ag/Ab test sensitivity compared to RT supports the implementation of these newer immunoassays for HCV screening in the African blood bank setting. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Rotavirus capsid VP6 protein acts as an adjuvant in vivo for norovirus virus-like particles in a combination vaccine

    PubMed Central

    Blazevic, Vesna; Malm, Maria; Arinobu, Daisuke; Lappalainen, Suvi; Vesikari, Timo

    2016-01-01

    ABSTRACT Rotavirus (RV) and norovirus (NoV) are the 2 leading causes of acute viral gastroenteritis worldwide. We have developed a non-live NoV and RV vaccine candidate consisting of NoV virus-like particles (VLPs) and recombinant polymeric RV VP6 protein produced in baculovirus-insect cell expression system. Both components have been shown to induce strong potentially protective immune responses. As VP6 nanotubes are highly immunogenic, we investigated here a possible adjuvant effect of these structures on NoV-specific immune responses in vivo. BALB/c mice were immunized intramuscularly with a suboptimal dose (0.3 μg) of GII.4 or GI.3 VLPs either alone or in a combination with 10 μg dose of VP6 and induction of NoV-specific antibodies in sera of experimental animals were measured. Blocking assay using human saliva or synthetic histo-blood group antigens was employed to test NoV blocking antibodies. Suboptimal doses of the VLPs alone did not induce substantial anti-NoV antibodies. When co-administered with the VP6, considerable titers of not only type-specific but also cross-reactive IgG antibodies against NoV VLP genotypes not included in the vaccine composition were induced. Most importantly, NoV-specific blocking antibodies, a surrogate for neutralizing antibodies, were generated. Our results show that RV VP6 protein has an in vivo adjuvant effect on NoV-specific antibody responses and support the use of VP6 protein as a part of the NoV-RV combination vaccine, especially when addition of external adjuvants is not desirable. PMID:26467630

  20. New classes of orthopoxvirus vaccine candidates by functionally screening a synthetic library for protective antigens.

    PubMed

    Borovkov, Alexandre; Magee, D Mitch; Loskutov, Andrey; Cano, Jose A; Selinsky, Cheryl; Zsemlye, Jason; Lyons, C Rick; Sykes, Kathryn

    2009-12-05

    The licensed smallpox vaccine, comprised of infectious vaccinia, is no longer popular as it is associated with a variety of adverse events. Safer vaccines have been explored such as further attenuated viruses and component designs. However, these alternatives typically provide compromised breadth and strength of protection. We conducted a genome-level screening of cowpox, the ancestral poxvirus, in the broadly immune-presenting C57BL/6 mouse as an approach to discovering novel components with protective capacities. Cowpox coding sequences were synthetically built and directly assayed by genetic immunization for open-reading frames that protect against lethal pulmonary infection. Membrane and non-membrane antigens were identified that partially protect C57BL/6 mice against cowpox and vaccinia challenges without adjuvant or regimen optimization, whereas the 4-pox vaccine did not. New vaccines might be developed from productive combinations of these new and existing antigens to confer potent, broadly efficacious protection and be contraindicated for none.

  1. Continued high prevalence and adverse clinical impact of human immunodeficiency virus-associated sensory neuropathy in the era of combination antiretroviral therapy: the CHARTER Study.

    PubMed

    Ellis, Ronald J; Rosario, Debralee; Clifford, David B; McArthur, Justin C; Simpson, David; Alexander, Terry; Gelman, Benjamin B; Vaida, Florin; Collier, Ann; Marra, Christina M; Ances, Beau; Atkinson, J Hampton; Dworkin, Robert H; Morgello, Susan; Grant, Igor

    2010-05-01

    To provide updated estimates of the prevalence and clinical impact of human immunodeficiency virus-associated sensory neuropathy (HIV-SN) and neuropathic pain due to HIV-SN in the combination antiretroviral therapy (CART) era. Prospective, cross-sectional analysis. Clinical correlates for HIV-SN and neuropathic pain, including age, exposure to CART, CD4 levels, plasma viral load, hepatitis C virus infection, and alcohol use disorders, were evaluated in univariate and multivariate models. Six US academic medical centers. One thousand five hundred thirty-nine HIV-infected individuals enrolled in the CNS (Central Nervous System) HIV Anti-Retroviral Therapy Effects Research study. The presence of HIV-SN, defined by 1 or more clinical signs (diminished vibration or sharp sensation in the legs and feet; reduced ankle reflexes) in a distal, symmetrical pattern. Neuropathic pain was defined as aching, stabbing, or burning in a similar distribution. The effect on quality of life was assessed with the Medical Outcomes Study HIV Health Survey. We found HIV-SN in 881 participants. Of these, 38.0% reported neuropathic pain. Neuropathic pain was significantly associated with disability in daily activities, unemployment, and reduced quality of life. Risk factors for HIV-SN after adjustment were advancing age (odds ratio, 2.1 [95% confidence interval, 1.8-2.5] per 10 years), lower CD4 nadir (1.2 [1.1-1.2] per 100-cell decrease), current CART use (1.6 [1.3-2.8]), and past "D-drug" use (specific dideoxynucleoside analogue antiretrovirals) (2.0 [1.3-2.6]). Risk factors for neuropathic pain were past D-drug use and higher CD4 nadir. Neuropathic pain and HIV-SN remain prevalent, causing substantial disability and reduced quality of life even with successful CART. The clinical correlates of HIV-SN have changed with the evolution of treatment. These findings argue for redoubled efforts to determine HIV-SN pathogenesis and the development of symptomatic and neuroregenerative therapies.

  2. Human CD4 T cell epitopes selective for Vaccinia versus Variola virus.

    PubMed

    Probst, Alicia; Besse, Aurore; Favry, Emmanuel; Imbert, Gilles; Tanchou, Valérie; Castelli, Florence Anne; Maillere, Bernard

    2013-04-01

    Due to the high degree of sequence identity between Orthopoxvirus species, the specific B and T cell responses raised against these viruses are largely cross-reactive and poorly selective. We therefore searched for CD4 T cell epitopes present in the conserved parts of the Vaccinia genome (VACV) but absent from Variola viruses (VARV), with a view to identifying immunogenic sequences selective for VACV. We identified three long peptide fragments from the B7R, B10R and E7R proteins by in silico comparisons of the poxvirus genomes, and evaluated the recognition of these fragments by VACV-specific T cell lines derived from healthy donors. For the 12 CD4 T cell epitopes identified, we assessed their binding to common HLA-DR allotypes and their capacity to induce peptide-specific CD4 T-cell lines. Four peptides from B7R and B10R displayed a broad binding specificity for HLA-DR molecules and induced multiple T cell lines from healthy donors. Besides their absence from VARV, the two B10R peptide sequences were mutated in the Cowpox virus and completely absent from the Monkeypox genome. This work contributes to the development of differential diagnosis of poxvirus infections. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Evaluation of Three Experimental Bovine Viral Diarrhea Virus Killed Vaccines Adjuvanted with Combinations of QuilA Cholesterol and Dimethyldioctadecylammonium (DDA) Bromide

    USDA-ARS?s Scientific Manuscript database

    Bovine viral diarrhea virus (BVDV) infections cause respiratory, reproductive, and enteric disease in cattle. Vaccination raises herd resistance and then limits the spread of bovine viral diarrhea viruses (BVDV) among cattle. The goal of this research was to evaluate new adjuvants, consisting of c...

  4. [Investigation of oxidative stress and antioxidant defense in patients with hepatitis B virus infection and the effect of interferon-alpha plus lamivudine combination therapy on oxidative stress].

    PubMed

    Acar, Ali; Görenek, Levent; Aydin, Ahmet; Eyigün, Can Polat; Eken, Ayşe; Sayal, Ahmet; Pahsa, Alaaddin

    2009-07-01

    The aim of our study is to determine the role of oxidative stress on hepatic damage in patients with acute and chronic hepatitis B virus (HBV) infection and the efficacy of antioxidant-enzyme system against oxidative stress. Furthermore, the effect of interferon-alpha (IFN-alpha) plus lamivudine therapy on oxidative stress was also investigated. Nineteen patients with acute hepatitis B virus (AHBV) infection, 17 patients with chronic hepatitis B virus (CHBV) infection, 24 inactive HBsAg carriers and 21 healthy controls were included in the study. In control and patient groups, serum alanine-aminotransferase (ALT) and aspartate aminotransferase (AST) levels, erythrocyte malondialdehyde (MDA) levels, erythrocyte superoxide dismutase (CuZn-SOD) and glutathione peroxidase (GSH-Px) activities were measured. In CHBV group, after IFN-alpha plus lamivudine therapy for 6 months, these parameters were measured again. In all patient groups erythrocyte MDA levels were detected higher than control group (p < 0.05). Activity of CuZn-SOD was found to be the highest in AHBV (p < 0.05), and the lowest before the treatment in CHBV group (p < 0.05) compared with other groups. Activity of GSH-Px was found to be the highest in AHBV compared with inactive HBsAg carriers (p < 0.05) and CHBV group before treatment (p < 0.05). Activity of GSH-Px was found to be the lowest in CHBV group before treatment compared with other groups (p < 0.05). In CHBV group there was a significant decrease of MDA levels after treatment (p < 0.05) while there was a significant increase in activity of CuZn-SOD and GSH-Px compared with pretreatment levels (p < 0.05). A significant positive correlation was determined between MDA values and serum ALT levels, before and after the treatment (p < 0.05). Detection of the increase of MDA levels which is a product of lipid peroxidation in all patient groups, indicates that the oxidative stress is increased in HBV infection. Correlation between the levels of erythrocyte

  5. Virus-PEDOT Biocomposite Films

    PubMed Central

    Donavan, Keith C.; Arter, Jessica A.

    2012-01-01

    Virus-poly(3,4-ethylenedioxythiophene) (virus-PEDOT) biocomposite films are prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous electrolytes containing 12 mM LiClO4 and the bacteriophage M13. The concentration of virus in these solutions, [virus]soln, is varied from 3 nM to 15 nM. A quartz crystal microbalance is used to directly measure the total mass of the biocomposite film during its electrodeposition. In combination with a measurement of the electrodeposition charge, the mass of the virus incorporated into the film is calculated. These data show that concentration of the M13 within the electropolymerized film, [virus]film, increases linearly with [virus]soln. The incorporation of virus particles into the PEDOT film from solution is efficient, resulting in a concentration ratio: [virus]film:[virus]soln ≈450. Virus incorporation into the PEDOT causes roughening of the film topography that is observed using scanning electron microscopy and atomic force microscopy (AFM). The electrical conductivity of the virus-PEDOT film, measured perpendicular to the plane of the film using conductive tip AFM, decreases linearly with virus loading, from 270 μS/cm for pure PE-DOT films to 50 μS/cm for films containing 100 μM virus. The presence on the virus surface of displayed affinity peptides did not significantly influence the efficiency of incorporation into virus-PEDOT biocomposite films. PMID:22856875

  6. A new generation of modified live-attenuated avian influenza viruses using a two-strategy combination as potential vaccine candidates.

    PubMed

    Song, Haichen; Nieto, Gloria Ramirez; Perez, Daniel R

    2007-09-01

    In light of the recurrent outbreaks of low pathogenic avian influenza (LPAI) and highly pathogenic avian influenza (HPAI), there is a pressing need for the development of vaccines that allow rapid mass vaccination. In this study, we introduced by reverse genetics temperature-sensitive mutations in the PB1 and PB2 genes of an avian influenza virus, A/Guinea Fowl/Hong Kong/WF10/99 (H9N2) (WF10). Further genetic modifications were introduced into the PB1 gene to enhance the attenuated (att) phenotype of the virus in vivo. Using the att WF10 as a backbone, we substituted neuraminidase (NA) for hemagglutinin (HA) for vaccine purposes. In chickens, a vaccination scheme consisting of a single dose of an att H7N2 vaccine virus at 2 weeks of age and subsequent challenge with the wild-type H7N2 LPAI virus resulted in complete protection. We further extended our vaccination strategy against the HPAI H5N1. In this case, we reconstituted an att H5N1 vaccine virus, whose HA and NA genes were derived from an Asian H5N1 virus. A single-dose immunization in ovo with the att H5N1 vaccine virus in 18-day-old chicken embryos resulted in more than 60% protection for 4-week-old chickens and 100% protection for 9- to 12-week-old chickens. Boosting at 2 weeks posthatching provided 100% protection against challenge with the HPAI H5N1 virus for chickens as young as 4 weeks old, with undetectable virus shedding postchallenge. Our results highlight the potential of live att avian influenza vaccines for mass vaccination in poultry.

  7. Pegylated Interferon Alfa-2b Monotherapy and Pegylated Interferon Alfa-2b plus Lamivudine Combination Therapy for Patients with Hepatitis B Virus E Antigen-Negative Chronic Hepatitis B▿

    PubMed Central

    Kaymakoglu, Sabahattin; Oguz, Dilek; Gur, Gurden; Gurel, Selim; Tankurt, Ethem; Ersöz, Galip; Ozenirler, Seren; Kalayci, Cem; Poturoglu, Sule; Cakaloglu, Yılmaz; Okten, Atilla

    2007-01-01

    Forty-eight hepatitis B virus (HBV) E antigen-negative chronic hepatitis B patients received pegylated interferon alfa-2b either alone or with lamivudine for 48 weeks and were followed for an additional 24 weeks. At the end of follow-up, virological response rates (HBV DNA levels of <400 copies/ml) were similar in the monotherapy (24%) and combination therapy (26%) groups. PMID:17517832

  8. Combined administration of synthetic RNA and a conventional vaccine improves immune responses and protection against foot-and-mouth disease virus in swine.

    PubMed

    Borrego, Belén; Blanco, Esther; Rodríguez Pulido, Miguel; Mateos, Francisco; Lorenzo, Gema; Cardillo, Sabrina; Smitsaart, Eliana; Sobrino, Francisco; Sáiz, Margarita

    2017-03-16

    Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious disease and a major concern in animal health worldwide. We have previously reported the use of RNA transcripts mimicking structural domains in the non-coding regions of the FMDV RNA as potent type-I interferon (IFN) inducers showing antiviral effect in vivo, as well as their immunomodulatory properties in combination with an FMD vaccine in mice. Here, we describe the enhancing effect of RNA delivery on the immunogenicity and protection induced by a suboptimal dose of a conventional FMD vaccine in pigs. Animals receiving the RNA developed earlier and higher levels of neutralizing antibodies against homologous and heterologous isolates, compared to those immunized with the vaccine alone, and had higher anti-FMDV titers at late times post-vaccination. RNA delivery also induced higher specific T-cell response and protection levels against FMDV challenge. Peripheral blood mononuclear cells from pigs inoculated with RNA and the vaccine had a higher IFN-γ specific response than those from pigs receiving the vaccine alone. When challenged with FMDV, all three animals immunized with the conventional vaccine developed antibodies to the non-structural viral proteins 3ABC and two of them developed severe signs of disease. In the group receiving the vaccine together with the RNA, two pigs were fully protected while one showed delayed and mild signs of disease. Our results support the immunomodulatory effect of these RNA molecules in natural hosts and suggest their potential use for improvement of FMD vaccines strategies.

  9. Moderate Sustained Virologic Response Rates With 6-Week Combination Directly Acting Anti–Hepatitis C Virus Therapy in Patients With Advanced Liver Disease

    PubMed Central

    Kattakuzhy, Sarah; Wilson, Eleanor; Sidharthan, Sreetha; Sims, Zayani; McLaughlin, Mary; Price, Angie; Silk, Rachel; Gross, Chloe; Akoth, Elizabeth; McManus, Maryellen; Emmanuel, Benjamin; Shrivastava, Shikha; Tang, Lydia; Nelson, Amy; Teferi, Gebeyehu; Chavez, Jose; Lam, Brian; Mo, Hongmei; Osinusi, Anuoluwapo; Polis, Michael A.; Masur, Henry; Kohli, Anita; Kottilil, Shyamasundaran

    2016-01-01

    Background. Treatment of genotype 1 hepatitis C virus (HCV) infection with combination directly acting antivirals (DAA) for 8–24 weeks is associated with high rates of sustained virologic response (SVR). We previously demonstrated that adding a third DAA to ledipasvir and sofosbuvir (LDV/SOF) can result in high SVR rates in patients without cirrhosis. In this study, we investigated whether a similar regimen would yield equivalent rates of cure in patients with advanced liver fibrosis. Methods. Fifty patients were enrolled at the Clinical Research Center of the National Institutes of Health and associated healthcare centers. Enrollment and follow-up data from April 2014 to June 2015 are reported here. Eligible participants were aged ≥18 years, had chronic HCV genotype 1 infection (serum HCV RNA ≥2000 IU/mL), and stage 3–4 liver fibrosis. HCV RNA was measured using a reverse-transcription polymerase chain reaction assay. Results. Of patients treated with LDV, SOF, and the NS3/4A protease inhibitor GS-9451 for 6 weeks, 76% (38 of 50; 95% confidence interval, 60%–85%) had SVR achieved 12 weeks after the end of treatment. There was no statistically significant difference in treatment efficacy between treatment-naive patients (72%, 18 of 25) and those with treatment experience (80%; 20 of 25) (P = .51). Overall, 11 patients (22%) experienced virologic relapse, and 1 (2%) was lost to follow-up at 4 weeks after treatment. No serious adverse events, discontinuations, or deaths were associated with this regimen. Conclusions. Adding a third DAA to LDV/SOF may result in a moderate SVR rate, lower than that observed in patients without cirrhosis. Significant liver fibrosis remains an impediment to achieving SVR with short-duration DAA therapy. Chinese Clinical Trials Registration. CT01805882. PMID:26503379

  10. Pharmacokinetics of dolutegravir and rilpivirine in combination with simeprevir and sofosbuvir in HIV/hepatitis C virus-coinfected patients with liver cirrhosis.

    PubMed

    Merli, Marco; Galli, Laura; Marinaro, Letizia; Ariaudo, Alessandra; Messina, Emanuela; Uberti-Foppa, Caterina; Castagna, Antonella; D'Avolio, Antonio; Lazzarin, Adriano; Bonora, Stefano; Hasson, Hamid

    2017-03-01

    To evaluate the plasma trough concentrations ( C trough ) of dolutegravir and rilpivirine used in combination with simeprevir and sofosbuvir in HIV/hepatitis C virus (HCV)-coinfected patients with liver cirrhosis. Virological efficacy and safety of both ART and anti-HCV therapy were assessed. A prospective observational study in HIV/HCV-coinfected patients with liver cirrhosis on ART with dolutegravir plus rilpivirine and treated with simeprevir plus sofosbuvir (±ribavirin) was conducted. Dolutegravir, rilpivirine, GS-331007 (sofosbuvir metabolite) and simeprevir C trough were evaluated with a validated HPLC method at anti-HCV treatment baseline and weeks 2 and 4. Geometric means were calculated to summarize C trough values. Twelve patients were evaluated: 75% were males and the median (IQR) age was 53 (53-55) years. All patients were Child-Pugh stage A, except one who was stage B. The geometric mean (95% CI) of C trough of rilpivirine and dolutegravir did not change between baseline and week 4 ( P  =   0.654 and P  =   0.268, respectively), with corresponding overall values of 135 (102-177) and 1357 (970-1897) ng/mL. The overall geometric mean (95% CI) of GS-331007 and simeprevir C trough was 370 (268-512) and 2537 (1569-4101) ng/mL, respectively, without significant variation between weeks 2 and 4 ( P  =   0.643 and P  =   0.179, respectively). All patients completed anti-HCV treatment, achieving sustained virological response. All but two patients maintained undetectable HIV-RNA up to post-treatment week 24. Dolutegravir and rilpivirine C trough appeared not to be affected by concomitant treatment with simeprevir plus sofosbuvir in these HIV/HCV-coinfected patients with liver cirrhosis, supporting the use of this antiretroviral regimen in this setting.

  11. Combined treatment of the experimental human papilloma virus-16-positive cervical and head and neck cancers with cisplatin and radioimmunotherapy targeting viral E6 oncoprotein.

    PubMed

    Harris, M; Wang, X G; Jiang, Z; Phaeton, R; Koba, W; Goldberg, G L; Casadevall, A; Dadachova, E

    2013-03-05

    Human papilloma virus (HPV) is implicated in >99% of cervical cancers and ∼40% of head and neck squamous cell carcinoma (HNSCC). We previously targeted E6 oncogene with (188)Rhenium-labelled monoclonal antibody (mAb) C1P5 to HPV16 E6 in cervical cancer and HNSCC. Intranuclear E6 can be accessed by mAbs in non-viable cells with leaky membranes. As radioimmunotherapy (RIT) efficacy depends on the availability of target protein-we hypothesised that pretreatment with cisplatin will kill some tumour cells and increase E6 availability for RIT. Mice with subcutaneous HPV16+ cervical (CasKi) and HNSCC (2A3) tumours were pretreated with 0-7.5 mg kg(-1) per day cisplatin for 3 days followed by (188)Re-C1P5 and biodistribution was performed 24 h later. For RIT, the animals were treated with: 5 mg kg(-1) per day cisplatin for 3 days; or 5 mg kg(-1) per day cisplatin for 3 days followed 200 or 400μCi (188)Re-C1P5 mAb; or 200 or 400μCi (188)Re-C1P5 mAb; or left untreated, and observed for tumour growth for 24 days. Pretreatment with cisplatin increased the uptake of (188)Re-C1P5 in the tumours 2.5 to 3.5-fold and caused significant retardation in tumour growth for CasKi and 2A3 tumours in both RIT alone and cisplatin, and RIT groups in comparison with the untreated control and cisplatin alone groups (P<0.05). The combined treatment was more effective than either modality alone (P<0.05). Our study demonstrates that preceding RIT targeting E6 oncogene with chemotherapy is effective in suppressing tumour growth in mouse models of HPV16+ cancers.

  12. A Single Quantifiable Viral Load Is Predictive of Virological Failure in Human Immunodeficiency Virus (HIV)-Infected Patients on Combination Antiretroviral Therapy: The Austrian HIV Cohort Study.

    PubMed

    Leierer, Gisela; Grabmeier-Pfistershammer, Katharina; Steuer, Andrea; Sarcletti, Mario; Geit, Maria; Haas, Bernhard; Taylor, Ninon; Kanatschnig, Manfred; Rappold, Michaela; Ledergerber, Bruno; Zangerle, Robert

    2016-04-01

    Background.  Viral loads (VLs) detectable at low levels are not uncommon in patients on combination antiretroviral therapy (cART). We investigated whether a single quantifiable VL predicted virological failure (VF). Methods.  We analyzed patients receiving standard regimens with at least 1 VL measurement below the limit of quantification (BLQ) in their treatment history. The first VL measurement after 6 months of unmodified cART served as baseline VL for the subsequent analyses of the time to reach single VL levels of ≥200, ≥400, and ≥1000 copies/mL. Roche TaqMan 2.0 was used to quantify human immunodeficiency virus-1 ribonucleic acid. Factors associated with VF were determined by Cox proportional hazards models. Results.  Of 1614 patients included in the study, 68, 44, and 34 experienced VF ≥200, ≥400, and ≥1000 copies/mL, respectively. In multivariable analyses, compared with patients who were BLQ, a detectable VL ≤ 50 and VL 51-199 copies/mL predicted VF ≥ 200 copies/mL (hazards ratio [HR] = 2.19, 95% confidence interval [CI] = 1.06-4.55 and HR = 4.21, 95% CI = 2.15-8.22, respectively). In those with VL 51-199 copies/mL, a trend for an increased risk of VF ≥400 and VF ≥1000 copies/mL could be found (HR = 2.13, 95% CI = 0.84-5.39 and HR = 2.52, 95% CI = 0.96-6.60, respectively). Conclusions.  These findings support closer monitoring and adherence counseling for patients with a single measurement of quantifiable VL <200 copies/mL.

  13. Stability of hepatitis C virus (HCV) RNA levels among interferon-naïve HIV/HCV-coinfected individuals treated with combination antiretroviral therapy.

    PubMed

    Grint, D; Peters, L; Reekie, J; Soriano, V; Kirk, O; Knysz, B; Suetnov, O; Lazzarin, A; Ledergerber, B; Rockstroh, J K; Mocroft, A

    2013-07-01

    Infection with hepatitis C virus (HCV) is a major cause of chronic liver disease. High HCV RNA levels have been associated with poor treatment response. This study aimed to examine the natural history of HCV RNA in chronically HCV/HIV-coinfected individuals. Mixed models were used to analyse the natural history of HCV RNA changes over time in HIV-positive patients with chronic HCV infection. A total of 1541 individuals, predominantly White (91%), male (73%), from southern (35%) and western central Europe (23%) and with HCV genotype 1 (58%), were included in the analysis. The median follow-up time was 5.0 years [interquartile range (IQR) 2.8 to 8.3 years]. Among patients not on combination antiretroviral therapy (cART), HCV RNA levels increased by a mean 27.6% per year [95% confidence interval (CI) 6.1-53.5%; P = 0.0098]. Among patients receiving cART, HCV RNA levels were stable, increasing by a mean 2.6% per year (95% CI -1.1 to 6.5%; P = 0.17). Baseline HCV RNA levels were 25.5% higher (95% CI 8.8 to 39.1%; P = 0.0044) in individuals with HCV genotype 1 compared with HCV genotypes 2, 3 and 4. A 1 log HIV-1 RNA copies/mL increase in HIV RNA was associated with a 10.9% increase (95% CI 2.3 to 20.2%; P = 0.012) in HCV RNA. While HCV RNA levels increased significantly in patients prior to receiving cART, among those treated with cART HCV RNA levels remained stable over time. © 2013 British HIV Association.

  14. Ability to Work and Employment Rates in Human Immunodeficiency Virus (HIV)-1-Infected Individuals Receiving Combination Antiretroviral Therapy: The Swiss HIV Cohort Study.

    PubMed

    Elzi, Luigia; Conen, Anna; Patzen, Annalea; Fehr, Jan; Cavassini, Matthias; Calmy, Alexandra; Schmid, Patrick; Bernasconi, Enos; Furrer, Hansjakob; Battegay, Manuel

    2016-01-01

    Background.  Limited data exist on human immunodeficiency virus (HIV)-infected individuals' ability to work after receiving combination antiretroviral therapy (cART). We aimed to investigate predictors of regaining full ability to work at 1 year after starting cART. Methods.  Antiretroviral-naive HIV-infected individuals <60 years who started cART from January 1998 through December 2012 within the framework of the Swiss HIV Cohort Study were analyzed. Inability to work was defined as a medical judgment of the patient's ability to work as 0%. Results.  Of 5800 subjects, 4382 (75.6%) were fully able to work, 471 (8.1%) able to work part time, and 947 (16.3%) were unable to work at baseline. Of the 947 patients unable to work, 439 (46.3%) were able to work either full time or part time at 1 year of treatment. Predictors of recovering full ability to work were non-white ethnicity (odds ratio [OR], 2.06; 95% confidence interval [CI], 1.20-3.54), higher education (OR, 4.03; 95% CI, 2.47-7.48), and achieving HIV-ribonucleic acid <50 copies/mL (OR, 1.83; 95% CI, 1.20-2.80). Older age (OR, 0.55; 95% CI, .42-.72, per 10 years older) and psychiatric disorders (OR, 0.24; 95% CI, .13-.47) were associated with lower odds of ability to work. Recovering full ability to work at 1 year increased from 24.0% in 1998-2001 to 41.2% in 2009-2012, but the employment rates did not increase. Conclusions.  Regaining full ability to work depends primarily on achieving viral suppression, absence of psychiatric comorbidity, and favorable psychosocial factors. The discrepancy between patients' ability to work and employment rates indicates barriers to reintegration of persons infected with HIV.

  15. Detection of potato mop-top virus in potato tubers and sprouts: combinations of RNA2 and RNA3 variants and incidence of symptomless infections.

    PubMed

    Latvala-Kilby, Satu; Aura, Johanna M; Pupola, Neda; Hannukkala, Asko; Valkonen, Jari P T

    2009-05-01

    Potato mop-top virus (PMTV, genus Pomovirus) causes severe quality problems by inducing necrotic arcs (spraing symptoms) in potato tubers. In this study, coat protein (CP) gene and read-through domain of RNA2 and 8K gene and 3' untranslated region of RNA3 were characterized from 37 PMTV isolates detected in tubers from fields in Finland and a screenhouse in Latvia. Two distinguishable types of RNA2 and RNA3 were found, each showing only little genetic variability. Sequencing and restriction fragment length polymorphism analysis of polymerase chain reaction amplicons indicated that the majority of PMTV isolates infecting tubers comprise restrictotypes RNA2-II and RNA3-B. The incidence of PMTV-infected tubers in 2006 (2007) was 55 (60), 33 (39), and 62 (68)% in cvs. Kardal, Saturna, and Nicola, respectively, grown in the same field in 2006 (2007). Incidence of PMTV-infected tubers that were symptomless was 100 (90)% in Kardal and 88 (44)% in Saturna, and also high in cvs. Bintje (95%) and Van Gogh (63%), tested only in 2006, whereas it was only 12 (2)% in Nicola. Hence, reliance on visual inspection of spraing will miss a large proportion of infected tubers and risk spreading PMTV to new fields in seed tubers. No specific combination of the types of RNA2 and RNA3 was associated with spraing-expressing or symptomless tubers. Using recombinant PMTV CP for comparison, the concentrations of PMTV CP in tuber and sprout tissue were estimated to reach 57 mug/g. Sprout sap interfered less with enzyme-linked immunosorbent assay than did tuber sap.

  16. [A novel immunization strategy to induce strong humoral responses against HIV-1 using combined DNA, recombinant vaccinia virus and protein vaccines].

    PubMed

    Liu, Chang; Wang, Shu-hui; Ren, Li; Hao, Yan-ling; Zhang, Qi-cheng; Liu, Ying

    2014-11-01

    To optimize the immunization strategy against HIV-1, a DNA vaccine was combined with a recombinant vaccinia virus (rTV) vaccine and a protein vaccine. Immune responses against HIV-1 were detected in 30 female guinea pigs divided into six groups. Three groups of guinea pigs were primed with HIV-1 DNA vaccine three times, boosted with rTV at week 14, and then boosted with gp140 protein at intervals of 4, 8 or 12 weeks. Simultaneously, the other three groups of animals were primed with rTV vaccine once, and then boosted with gp140 after 4, 8 or 12 weeks. The HIV-1 specific binding antibody and neutralizing antibody, in addition to the relative affinity of these antibodies, were detected at different time points after the final administration of vaccine in each group. The DNA-rTV-gp140 immune regimen induced higher titers and affinity levels of HIV-1 gp120/gp140 antibodies and stronger V1V2-gp70 antibodies than the rTV-gp140 regimen. In the guinea pigs that underwent the DNA-rTV-gp140 regimen, the highest V1V2-gp70 antibody was induced in the 12-week-interval group. However, the avidity of antibodies was improved in the 4-week-interval group. Using the rTV-gp140 immunization strategy, guinea pigs boosted at 8 or 12 weeks after rTV priming elicited stronger humoral responses than those boosted at 4 weeks after priming. In conclusion, this study shows that the immunization strategy of HIV-1 DNA vaccine priming, followed by rTV and protein vaccine boosting, could strengthen the humoral response against HIV-1. Longer intervals were better to induce V1V2-gp70-specific antibodies, while shorter intervals were more beneficial to enhance the avidity of antibodies.

  17. Ability to Work and Employment Rates in Human Immunodeficiency Virus (HIV)-1-Infected Individuals Receiving Combination Antiretroviral Therapy: The Swiss HIV Cohort Study

    PubMed Central

    Elzi, Luigia; Conen, Anna; Patzen, Annalea; Fehr, Jan; Cavassini, Matthias; Calmy, Alexandra; Schmid, Patrick; Bernasconi, Enos; Furrer, Hansjakob; Battegay, Manuel

    2016-01-01

    Background. Limited data exist on human immunodeficiency virus (HIV)-infected individuals' ability to work after receiving combination antiretroviral therapy (cART). We aimed to investigate predictors of regaining full ability to work at 1 year after starting cART. Methods. Antiretroviral-naive HIV-infected individuals <60 years who started cART from January 1998 through December 2012 within the framework of the Swiss HIV Cohort Study were analyzed. Inability to work was defined as a medical judgment of the patient's ability to work as 0%. Results. Of 5800 subjects, 4382 (75.6%) were fully able to work, 471 (8.1%) able to work part time, and 947 (16.3%) were unable to work at baseline. Of the 947 patients unable to work, 439 (46.3%) were able to work either full time or part time at 1 year of treatment. Predictors of recovering full ability to work were non-white ethnicity (odds ratio [OR], 2.06; 95% confidence interval [CI], 1.20–3.54), higher education (OR, 4.03; 95% CI, 2.47–7.48), and achieving HIV-ribonucleic acid <50 copies/mL (OR, 1.83; 95% CI, 1.20–2.80). Older age (OR, 0.55; 95% CI, .42–.72, per 10 years older) and psychiatric disorders (OR, 0.24; 95% CI, .13–.47) were associated with lower odds of ability to work. Recovering full ability to work at 1 year increased from 24.0% in 1998–2001 to 41.2% in 2009–2012, but the employment rates did not increase. Conclusions. Regaining full ability to work depends primarily on achieving viral suppression, absence of psychiatric comorbidity, and favorable psychosocial factors. The discrepancy between patients' ability to work and employment rates indicates barriers to reintegration of persons infected with HIV. PMID:26955645

  18. Combination of intratypic and intertypic recombinant events in EV71: a novel evidence for the "triple-recombinant" strains of genotype A viruses in Mainland China from 2008 to 2010.

    PubMed

    Liu, Yongjuan; Zhang, Fengfeng; Fu, Chong; Wu, Suying; Chen, Xiong; Shi, Yingying; Zhou, Bingfei; Zhang, Lianglu; Zhang, Yingying; Han, Song; Yin, Jun; Peng, Biwen; He, Xiaohua; Liu, Wanhong

    2015-06-01

    The first Enterovirus 71 (EV71) strain isolated in 1969 was classified as genotype A. It is interesting that the genotype A disappeared nearly 40 years until its re-emergence in mainland China in 2008-2010. Few studies on genetic characterization of the re-emerged genotype A viruses have been reported. In this study, a series of analyses were performed on molecular epidemiology and genome recombination of genotype A viruses in China. Phylogenetic analysis indicated that except for 17 reported genotype A strains and 3 orphan strains (C0, C3 and B5), almost all EV71 strains in mainland China were belonging to subgenotype C4 during 1987-2011. The subgenotype C4 was further divided into 3 clades C4a1, C4a2, and C4b. The genotype A viruses co-circulated with the predominant clade C4a2 and the re-emerged clade C4b both in eastern and central China in 2008-2009. Moreover, comprehensive recombination analysis showed that the genotype A viruses were "triple-recombinant" by combination of intratypic and intertypic recombination. Intertypic recombination between the oldest C4b strain (SHZH98) and Coxsackievirus A5 (CVA5) and intratypic recombination between the SHZH98 and C1 strains both with one junction in 5'-UTR were observed for some specific C4a2 strains and the re-emerged C4b strain, respectively. And intratypic recombination between the re-emerged C4b strain and the specific C4a2 strains with one junction in 5'-UTR was observed for the Chinese genotype A viruses. Taken together, these results provided potential explanations for the genesis of Chinese genotype A viruses which were significant for preventing and controlling outbreaks.

  19. Multiple Viral Ligands Naturally Presented by Different Class I Molecules in Transporter Antigen Processing-Deficient Vaccinia Virus-Infected Cells

    PubMed Central

    Lorente, Elena; Infantes, Susana; Barnea, Eilon; Beer, Ilan; García, Ruth; Lasala, Fátima; Jiménez, Mercedes; Vilches, Carlos; Lemonnier, François A.; Admon, Arie

    2012-01-01

    The transporter associated with antigen processing (TAP) delivers the viral proteolytic products generated by the proteasome in the cytosol to the endoplasmic reticulum lumen that are subsequently recognized by cytotoxic T lymphocytes (CTLs). However, several viral epitopes have been identified in TAP-deficient models. Using mass spectrometry to analyze complex human leukocyte antigen (HLA)-bound peptide pools isolated from large numbers of TAP-deficient vaccinia virus-infected cells, we identified 11 ligands naturally presented by four different HLA-A, HLA-B, and HLA-C class I molecules. Two of these ligands were presented by two different HLA class I alleles, and, as a result, 13 different HLA-peptide complexes were formed simultaneously in the same vaccinia virus-infected cells. In addition to the high-affinity ligands, one low-affinity peptide restricted by each of the HLA-A, HLA-B, and HLA-C class I molecules was identified. Both high- and low-affinity ligands generated long-term memory CTL responses to vaccinia virus in an HLA-A2-transgenic mouse model. The processing and presentation of two vaccinia virus-encoded HLA-A2-restricted antigens took place via proteasomal and nonproteasomal pathways, which were blocked in infected cells with chemical inhibitors specific for different subsets of metalloproteinases. These data have implications for the study of the effectiveness of early empirical vaccination with cowpox virus against smallpox disease. PMID:22031944

  20. [Comparison of combined immunization schemes influence on anti-HBs of babies born to mothers with high-load hepatitis B virus infection].

    PubMed

    Wang, Cuimin; Han, Guorong; Jiang, Hongxiu; Kan, Naiying; Wang, Yan; Shi, Jinmei

    2015-07-01

    To compare the various combined immunization schemes available for treatment of babies born to mothers with high-load hepatitis B virus (HBV) infection. A total of 118 mothers with HBV infection status of hepatitis B surface antigen-positive (HBsAg+), hepatitis B e antigen-positive (HBeAg+) and HBV DNA load of more than 1.0 * 61og10 IU/mL were included in the study. All of the participants' babies received the main-passive immunization therapy according to the wishes of their families. For analysis,the infants were grouped according to the various dosages of the vaccine program (group A: hepatitis B immunoglobulin (HBIG) 200 IU and HBVac 20 mug intramuscular;group B:HBIG 200 IU and HBVac 10 mug intramuscular; group C HBIG 100 IU and HBVac 20 mug intramuscular injection) and times, and followed-up to 7 months of age.All results were statistically analyzed using SPSS software. All of the infants produced anti-HBs after vaccination.After the HBIG injection schedule was completed in January, the mean concentrations of anti-HBs in groups A, B, and C were 263.56 ± 50.98,231.06 ± 74.07, and 99.23 ± 29.82 mIU/mL respectively;the concentrations were significantly different between groups A and C, and between groups B and C (P < 0.001). In July, the titers of anti-HBs in groups A, B, and C were 788.10 ± 281.96,428.39 ± 347.48, and 708.44 ± 315.69 mIU/mL respectively; the concentrations were significantly different between groups A and B, and between groups B and C (P < 0.05). AdminisWation of the hepatitis B vaccine combined with HBIG at birth can achieve immune protection for babies born to highly viremic mothers. In January, the HBIG dosage of 200 IU was more reliable than 100 IU. The hepatitis B 20 tg dose vaccine was safe and effective.

  1. Inactivation of the Hutchinson strain of non-A, non-B hepatitis virus by combined use of beta-propiolactone and ultraviolet irradiation

    SciTech Connect

    Prince, A.M.; Stephan, W.; Dichtelmueller, H.B.; Brotman, B.; Huima, T.

    1985-06-01

    A beta-propiolactone/ultraviolet irradiation procedure (beta PL/UV) has been evaluated for its ability to inactivate 30,000 chimpanzee infectious doses of the Hutchinson strain of non-A, non-B (NANB) virus. The chimpanzees were inoculated with plasma to which this dose of the titrated virus had been added prior to application of the beta PL/UV process in accordance with a procedure used for licensed blood derivatives in Germany. Neither animal developed hepatitis. When subsequently challenged with the same contaminated plasma, which had not been sterilized, both animals promptly developed typical NANB hepatitis. This study extends the high (approximately 10(7)-fold) process efficiency of the beta PL/UV procedure previously reported for hepatitis B virus to a blood-borne NANB virus.

  2. Combining Single RNA Sensitive Probes with Subdiffraction-Limited and Live-Cell Imaging Enables the Characterization of Virus Dynamics in Cells

    PubMed Central

    2013-01-01

    The creation of fluorescently labeled viruses is currently limited by the length of imaging observation time (e.g., labeling an envelope protein) and the rescue of viral infectivity (e.g., encoding a GFP protein). Using single molecule sensitive RNA hybridization probes delivered to the cytoplasm of infected cells, we were able to isolate individual, infectious, fluorescently labeled human respiratory syncytial virus virions. This was achieved without affecting viral mRNA expression, viral protein expression, or infectivity. Measurements included the characterization of viral proteins and genomic RNA in a single virion using dSTORM, the development of a GFP fusion assay, and the development of a pulse-chase assay for viral RNA production that allowed for the detection of both initial viral RNA and nascent RNA production at designated times postinfection. Live-cell measurements included imaging and characterization of filamentous virion fusion and the quantification of virus replication within the same cell over an eight-hour period. Using probe-labeled viruses, individual viral particles can be characterized at subdiffraction-limited resolution, and viral infections can be quantified in single cells over an entire cycle of replication. The implication of this development is that MTRIP labeling of viral RNA during virus assembly has the potential to become a general methodology for the labeling and study of many important RNA viruses. PMID:24351207

  3. Combined Treatment with Antiviral Therapy and Rituximab in Patients with Mixed Cryoglobulinemia: Review of the Literature and Report of a Case Using Direct Antiviral Agents-Based Antihepatitis C Virus Therapy

    PubMed Central

    Urraro, Teresa; Gragnani, Laura; Piluso, Alessia; Fabbrizzi, Alessio; Monti, Monica; Boldrini, Barbara; Ranieri, Jessica; Zignego, Anna Linda

    2015-01-01

    Mixed cryoglobulinemia (MC) is an autoimmune/B-cell lymphoproliferative disorder associated with Hepatitis C Virus (HCV) infection, manifesting as a systemic vasculitis. In the last decade, antiviral treatment (AT) with pegylated interferon (Peg-IFN) plus ribavirin (RBV) was considered the first therapeutic option for HCV-MC. In MC patients ineligible or not responsive to antivirals, the anti-CD20 monoclonal antibody rituximab (RTX) is effective. A combined AT plus RTX was also suggested. Since the introduction of direct acting antivirals (DAAs), few data were published about MC and no data about a combined schedule. Here, we report a complete remission of MC after a sustained virological response following a combined RTX/Peg-IFN+RBV+DAA (boceprevir) treatment and review the literature about the combined RTX/AT. PMID:25815218

  4. Rift Valley Fever Virus MP-12 Vaccine Is Fully Attenuated by a Combination of Partial Attenuations in the S, M, and L Segments

    PubMed Central

    Hill, Terence E.; Smith, Jennifer K.; Zhang, Lihong; Juelich, Terry L.; Gong, Bin; Slack, Olga A. L.; Ly, Hoai J.; Lokugamage, Nandadeva; Freiberg, Alexander N.

    2015-01-01

    ABSTRACT Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and characterized by a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), which has a tripartite negative-stranded RNA genome (consisting of the S, M, and L segments). Further spread of RVF into countries where the disease is not endemic may affect the economy and public health, and vaccination is an effective approach to prevent the spread of RVFV. A live-attenuated MP-12 vaccine is one of the best-characterized RVF vaccines for safety and efficacy and is currently conditionally licensed for use for veterinary purposes in the United States. Meanwhile, as of 2015, no other RVF vaccine has been conditionally or fully licensed for use in the United States. The MP-12 strain is derived from wild-type pathogenic strain ZH548, and its genome encodes 23 mutations in the three genome segments. However, the mechanism of MP-12 attenuation remains unknown. We characterized the attenuation of wild-type pathogenic strain ZH501 carrying a mutation(s) of the MP-12 S, M, or L segment in a mouse model. Our results indicated that MP-12 is attenuated by the mutations in the S, M, and L segments, while the mutations in the M and L segments confer stronger attenuation than those in the S segment. We identified a combination of 3 amino acid changes, Y259H (Gn), R1182G (Gc), and R1029K (L), that was sufficient to attenuate ZH501. However, strain MP-12 with reversion mutations at those 3 sites was still highly attenuated. Our results indicate that MP-12 attenuation is supported by a combination of multiple partial attenuation mutations and a single reversion mutation is less likely to cause a reversion to virulence of the MP-12 vaccine. IMPORTANCE Rift Valley fever (RVF) is a mosquito-transmitted viral disease that is endemic to Africa and that has the potential to

  5. Rift Valley Fever Virus MP-12 Vaccine Is Fully Attenuated by a Combination of Partial Attenuations in the S, M, and L Segments.

    PubMed

    Ikegami, Tetsuro; Hill, Terence E; Smith, Jennifer K; Zhang, Lihong; Juelich, Terry L; Gong, Bin; Slack, Olga A L; Ly, Hoai J; Lokugamage, Nandadeva; Freiberg, Alexander N

    2015-07-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and characterized by a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), which has a tripartite negative-stranded RNA genome (consisting of the S, M, and L segments). Further spread of RVF into countries where the disease is not endemic may affect the economy and public health, and vaccination is an effective approach to prevent the spread of RVFV. A live-attenuated MP-12 vaccine is one of the best-characterized RVF vaccines for safety and efficacy and is currently conditionally licensed for use for veterinary purposes in the United States. Meanwhile, as of 2015, no other RVF vaccine has been conditionally or fully licensed for use in the United States. The MP-12 strain is derived from wild-type pathogenic strain ZH548, and its genome encodes 23 mutations in the three genome segments. However, the mechanism of MP-12 attenuation remains unknown. We characterized the attenuation of wild-type pathogenic strain ZH501 carrying a mutation(s) of the MP-12 S, M, or L segment in a mouse model. Our results indicated that MP-12 is attenuated by the mutations in the S, M, and L segments, while the mutations in the M and L segments confer stronger attenuation than those in the S segment. We identified a combination of 3 amino acid changes, Y259H (Gn), R1182G (Gc), and R1029K (L), that was sufficient to attenuate ZH501. However, strain MP-12 with reversion mutations at those 3 sites was still highly attenuated. Our results indicate that MP-12 attenuation is supported by a combination of multiple partial attenuation mutations and a single reversion mutation is less likely to cause a reversion to virulence of the MP-12 vaccine. Rift Valley fever (RVF) is a mosquito-transmitted viral disease that is endemic to Africa and that has the potential to spread into other

  6. Rapid Detection of Hepatitis B Virus Variants Associated with Lamivudine and Adefovir Resistance by Multiplex Ligation-Dependent Probe Amplification Combined with Real-Time PCR

    PubMed Central

    Jia, Shuangrong; Wang, Feng; Li, Fake; Chang, Kai; Yang, Shaojun; Zhang, Kejun; Jiang, Wenbin; Shang, Ya

    2014-01-01

    Drug-resistant mutations of hepatitis B virus (HBV) are the major obstacles to successful therapy for chronic hepatitis B infection. Although there are many methods for detecting the antiviral drug-resistant mutations of HBV, their applications are restricted because of their shortcomings, such as low sensitivity, the time required, and the high cost. For this study, a multiplex ligation-dependent probe real-time PCR (MLP-RT-PCR) method was developed to simultaneously detect lamivudine (LAM)- and adefovir (ADV)-resistant HBV mutants (those with the mutations rtM204V/I, rtA181V/T, and rtN236T). The new method combined the high-throughput nature of multiplex ligation-dependent probe amplification (MLPA) with the rapid and sensitive detection of real-time PCR. In this report, MLP-RT-PCR was evaluated by detecting drug-resistant mutants in 116 patients with chronic hepatitis B infection. By MLP-RT-PCR analysis, LAM-resistant mutations were detected in 41 patients (35.3%), ADV-resistant mutations were detected in 17 patients (14.7%), and LAM- and-ADV-resistant mutations were detected in 5 patients (4.3%). Based on the results of MLP-RT-PCR, the mutations rtM204V, rtM204I, rtA181T, rtA181V, and rtN236T were 95.7% (111/116 patients), 98.3% (114/116 patients), 99.1% (115/116 patients), 98.3% (114/116 patients), and 99.1% (115/116 patients) concordant, respectively, with those of direct sequencing. The MLP-RT-PCR assay was more sensitive than direct sequencing for detecting mutations with low frequencies. Four samples containing the low-frequency (<10%) mutants were identified by MLP-RT-PCR and further confirmed by clonal sequencing. MLP-RT-PCR is a rapid and sensitive method that enables the detection of multidrug-resistant HBV mutations in clinical practice. PMID:24478474

  7. Combined treatment of the experimental human papilloma virus-16-positive cervical and head and neck cancers with cisplatin and radioimmunotherapy targeting viral E6 oncoprotein

    PubMed Central

    Harris, M; Wang, X G; Jiang, Z; Phaeton, R; Koba, W; Goldberg, G L; Casadevall, A; Dadachova, E

    2013-01-01

    Background: Human papilloma virus (HPV) is implicated in >99% of cervical cancers and ∼40% of head and neck squamous cell carcinoma (HNSCC). We previously targeted E6 oncogene with 188Rhenium-labelled monoclonal antibody (mAb) C1P5 to HPV16 E6 in cervical cancer and HNSCC. Intranuclear E6 can be accessed by mAbs in non-viable cells with leaky membranes. As radioimmunotherapy (RIT) efficacy depends on the availability of target protein—we hypothesised that pretreatment with cisplatin will kill some tumour cells and increase E6 availability for RIT. Methods Mice with subcutaneous HPV16+ cervical (CasKi) and HNSCC (2A3) tumours were pretreated with 0–7.5 mg kg−1 per day cisplatin for 3 days followed by 188Re-C1P5 and biodistribution was performed 24 h later. For RIT, the animals were treated with: 5 mg kg−1 per day cisplatin for 3 days; or 5 mg kg−1 per day cisplatin for 3 days followed 200 or 400μCi 188Re-C1P5 mAb; or 200 or 400μCi 188Re-C1P5 mAb; or left untreated, and observed for tumour growth for 24 days. Results: Pretreatment with cisplatin increased the uptake of 188Re-C1P5 in the tumours 2.5 to 3.5-fold and caused significant retardation in tumour growth for CasKi and 2A3 tumours in both RIT alone and cisplatin, and RIT groups in comparison with the untreated control and cisplatin alone groups (P<0.05). The combined treatment was more effective than either modality alone (P<0.05). Conclusion: Our study demonstrates that preceding RIT targeting E6 oncogene with chemotherapy is effective in suppressing tumour growth in mouse models of HPV16+ cancers. PMID:23385729

  8. Antibodies to CD40 prevent Epstein-Barr virus-mediated human B-cell lymphomagenesis in severe combined immune deficient mice given human peripheral blood lymphocytes.

    PubMed

    Murphy, W J; Funakoshi, S; Beckwith, M; Rushing, S E; Conley, D K; Armitage, R J; Fanslow, W C; Rager, H C; Taub, D D; Ruscetti, F W

    1995-09-01

    CD40 is expressed on both normal and neoplastic B lymphocytes. Signal transduction through CD40 in vitro has been shown to exert stimulatory effects on normal B cells and inhibitory effects on Epstein-Barr virus (EBV)-induced B-cell lymphoma lines and some other cell lines derived from patients with aggressive histology lymphoma. The transfer of normal human peripheral blood lymphocytes (huPBL) from EBV-seropositive donors into severe combined immune deficient (SCID) mice has been previously shown to result in the generation of human B-cell lymphomas. These tumors are similar to the highly aggressive EBV-induced lymphomas that can arise clinically after transplantation or in the setting of immunodeficiency. Treatment of huPBL-SCID chimeric mice with anti-CD40 or anti-CD20 monoclonal antibodies (MoAb) significantly delayed the development of EBV-induced B-cell lymphoma. However, the effects of the two MoAb were mechanistically distinct. Anti-CD40 treatment prevented lymphoma generation, while still allowing for functional human B-cell engraftment in the huPBL-SCID mice compared with mice receiving no treatment, all of which succumbed to lymphoma. By contrast, treatment with anti-CD20 significantly inhibited total human B-cell engraftment in the SCID recipients, which accounted for the absence of lymphomas. In vitro assays examining the transformation of human B cells by EBV also indicated that anti-CD40 could directly inhibit EBV-transformation, whereas anti-CD20 antibodies had no effect. Thus, anti-CD40 exerts selective effects to allow for the engraftment of normal human B cells and prevent the emergence of EBV lymphomas. Stimulation of CD40 by antibodies or its physiologic ligand may, therefore, be of significant clinical use in the prevention of EBV-induced B lymphomas that may arise when EBV-seropositive individuals receive immunosuppressive regimens after transplantation or in immune deficiency states, such as acquired immune deficiency syndrome.

  9. Impact of hepatitis C virus coinfection on T-cell dynamics in long-term HIV-suppressors under combined antiretroviral therapy.

    PubMed

    Zaegel-Faucher, Olivia; Bregigeon, Sylvie; Cano, Carla Eliana; Obry-Roguet, Véronique; Nicolino-Brunet, Corinne; Tamalet, Catherine; Dignat-George, Françoise; Poizot-Martin, Isabelle

    2015-07-31

    The objective of this study is to evaluate the impact of hepatitis C virus (HCV) serostatus on the evolution of CD8 cells and CD4 : CD8 ratio in HIV-infected patients on combined antiretroviral therapy (cART) who achieve sustained undetectable viral load (HIV-pVL). A longitudinal study performed in an outpatient HIV-unit following 1495 HIV-infected patients. Data of patients on cART achieving undetectable HIV-pVL for at least 3 years were collected retrospectively from our medical e-database NADIS from January 1997 to April 2005, a period defined in order to select patients who were naive of hepatitis treatment. T-cell counts were assessed every 6 months from HIV-suppression over the study period. Two hundred and twenty-six HIV mono-infected (group 1) and 130 HCV-coinfected patients (group 2; genotype prevalence: 42% HCV-G1, 26% HCV-G3, 11% HCV-G4 and 21% HCV-G2) fulfilled the selection criteria. cART regimens were comparable between the groups, as were CD4 and CD8 cell counts at the first undetectable HIV-pVL. After 3 years, both groups displayed similar CD4 cell reconstitution, although CD4 percentage was higher in group 1 (30.3 ± 1.1 vs. 27 ± 1.1%; P < 0.001). HIV suppression led to a significant drop of median CD8 cell counts in group 1 (P = 0.027), but not in group 2, which displayed higher CD8 cell counts all through the follow-up (mean diff. = 135.71 ± 26.89 cells/μl, P < 0.001). Moreover, the fraction of patients reaching CD4 : CD8 ratio ≥ 1 was lower in group 2 (14 vs. 27.7%; P < 0.05). Despite sustained HIV suppression under cART, HCV coinfection was found to hamper CD8 downregulation. Further studies will determine the impact of treatment with direct-acting antiviral agents on the CD8 pool, and the advantage of systematic HCV-targeted therapy for HIV/HCV-coinfected patients.

  10. Development of high-yield influenza B virus vaccine viruses.

    PubMed

    Ping, Jihui; Lopes, Tiago J S; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-12-20

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six "internal" influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production.

  11. Development of high-yield influenza B virus vaccine viruses

    PubMed Central

    Ping, Jihui; Lopes, Tiago J. S.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-01-01

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six “internal” influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production. PMID:27930325

  12. Effect of suberoylanilide hydroxamic acid (SAHA) administration on the residual virus pool in a model of combination antiretroviral therapy-mediated suppression in SIVmac239-infected indian rhesus macaques.

    PubMed

    Del Prete, Gregory Q; Shoemaker, Rebecca; Oswald, Kelli; Lara, Abigail; Trubey, Charles M; Fast, Randy; Schneider, Douglas K; Kiser, Rebecca; Coalter, Vicky; Wiles, Adam; Wiles, Rodney; Freemire, Brandi; Keele, Brandon F; Estes, Jacob D; Quiñones, Octavio A; Smedley, Jeremy; Macallister, Rhonda; Sanchez, Rosa I; Wai, John S; Tan, Christopher M; Alvord, W Gregory; Hazuda, Daria J; Piatak, Michael; Lifson, Jeffrey D

    2014-11-01

    Nonhuman primate models are needed for evaluations of proposed strategies targeting residual virus that persists in HIV-1-infected individuals receiving suppressive combination antiretroviral therapy (cART). However, relevant nonhuman primate (NHP) models of cART-mediated suppression have proven challenging to develop. We used a novel three-class, six-drug cART regimen to achieve durable 4.0- to 5.5-log reductions in plasma viremia levels and declines in cell-associated viral RNA and DNA in blood and tissues of simian immunodeficiency virus SIVmac239-infected Indian-origin rhesus macaques, then evaluated the impact of treatment with the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA; Vorinostat) on the residual virus pool. Ex vivo SAHA treatment of CD4(+) T cells obtained from cART-suppressed animals increased histone acetylation and viral RNA levels in culture supernatants. cART-suppressed animals each received 84 total doses of oral SAHA. We observed SAHA dose-dependent increases in acetylated histones with evidence for sustained modulation as well as refractoriness following prolonged administration. In vivo virologic activity was demonstrated based on the ratio of viral RNA to viral DNA in peripheral blood mononuclear cells, a presumptive measure of viral transcription, which significantly increased in SAHA-treated animals. However, residual virus was readily detected at the end of treatment, suggesting that SAHA alone may be insufficient for viral eradication in the setting of suppressive cART. The effects observed were similar to emerging data for repeat-dose SAHA treatment of HIV-infected individuals on cART, demonstrating the feasibility, utility, and relevance of NHP models of cART-mediated suppression for in vivo assessments of AIDS virus functional cure/eradication approaches.

  13. Combined use of an immunotoxin and cyclosporine to prevent both activated and quiescent peripheral blood T cells from producing type 1 human immunodeficiency virus.

    PubMed Central

    Bell, K D; Ramilo, O; Vitetta, E S

    1993-01-01

    Two different populations of infected T cells are present in human immunodeficiency virus (HIV)-infected individuals: activated cells that produce virions and quiescent cells that harbor the viral genome but are unable to produce virus unless they are activated. Using an in vitro model of acute HIV infection, we have evaluated the effect of depleting activated T cells with an immunotoxin and subsequently inhibiting activation of quiescent T cells with an immunosuppressive agent. CD25 (Tac, p55), the alpha chain of the interleukin 2 receptor, is expressed on activated, but not quiescent, T cells. An anti-CD25-ricin A chain immunotoxin eliminated activated, CD25+ HIV-infected cells and, thereby, inhibited viral production by these cells. Subsequent addition of cyclosporine to the residual CD25- cells prevented their activation and thereby suppressed their ability to produce virus and to propagate the infection to uninfected T cells. Images PMID:8434001

  14. Improved cell mediated immune responses after successful re-vaccination of non-responders to the hepatitis B virus surface antigen (HBsAg) vaccine using the combined hepatitis A and B vaccine.

    PubMed

    Nyström, Jessica; Cardell, Kristina; Björnsdottir, Thora Björg; Fryden, Aril; Hultgren, Catharina; Sällberg, Matti

    2008-11-05

    We successfully re-vaccinated hepatitis B virus (HBV) vaccine non-responders using a double dose of the combined hepatitis A virus (HAV) and HBV vaccine. The hope was to improve priming of hepatitis B surface antigen (HBsAg)-specific cell mediated immune response (CMI) by an increased antigen dose and a theoretical adjuvant-effect from the local presence of a HAV-specific CMI. A few non-responders had a detectable HBsAg-specific CMI before re-vaccination. An in vitro detectable HBsAg-specific CMI was primed equally effective in non-responders (58%) as in first time vaccine recipients (68%). After the third dose a weak, albeit significant, association was observed between the magnitude of HBsAg-specific proliferation and anti-HBs levels. This regimen improves the priming of HBsAg-specific CMIs and antibodies.

  15. Identification from diverse mammalian poxviruses of host-range regulatory genes functioning equivalently to vaccinia virus C7L.

    PubMed

    Meng, Xiangzhi; Chao, Jie; Xiang, Yan

    2008-03-15

    Vaccinia virus (VACV) C7L is a host-range gene that regulates cellular tropism of VACV. Distantly related C7L homologues are encoded by nearly all mammalian poxviruses, but whether they are host-range genes functioning similar to VACV C7L has not been determined. Here, we used VACV as a model system to analyze five different C7L homologues from diverse mammalian poxviruses for their abilities to regulate poxvirus cellular tropism. Three C7L homologues (myxoma virus M63R, M64R and cowpox virus 020), when expressed with an epitope tag and from a VACV mutant lacking the host-range genes K1L and C7L (vK1L-C7L-), failed to support productive viral replication in human and murine cells. In nonpermissive cells, these viruses did not synthesize viral late proteins, expressed a reduced level of the early protein E3L, and were defective at suppressing cellular PKR activation. In contrast, two other C7L homologues, myxoma virus (MYXV) M62R and yaba-like disease virus (YLDV) 67R, when expressed with an epitope tag and from vK1L(-)C7L(-), supported normal viral replication in human and murine cells and restored the ability of the virus to suppress PKR activation. Furthermore, M62R rescued the defect of vK1L(-)C7L(-) at replicating and disseminating in mice following intranasal inoculation. These results show that MYXV M62R and YLDV 67R function equivalently to C7L at supporting VACV replication in mammalian hosts and suggest that a C7L-like host-range gene is essential for the replication of many mammalian poxviruses in mammalian hosts.

  16. Identification from Diverse Mammalian Poxviruses of Host-range Regulatory Genes Functioning Equivalently to Vaccinia Virus C7L

    PubMed Central

    Meng, Xiangzhi; Chao, Jie; Xiang, Yan

    2008-01-01

    Vaccinia virus (VACV) C7L is a host-range gene that regulates cellular tropism of VACV. Distantly related C7L homologues are encoded by nearly all mammalian poxviruses, but whether they are host-range genes functioning similar to VACV C7L has not been determined. Here, we used VACV as a model system to analyze five different C7L homologues from diverse mammalian poxviruses for their abilities to regulate poxvirus cellular tropism. Three C7L homologues (myxoma virus M63R, M64R and cowpox virus 020), when expressed with an epitope tag and from a VACV mutant lacking the host-range genes K1L and C7L (vK1L−C7L−), failed to support productive viral replication in human and murine cells. In nonpermissive cells, these viruses did not synthesize viral late proteins, expressed a reduced level of the early protein E3L, and were defective at suppressing cellular PKR activation. In contrast, two other C7L homologues, myxoma virus (MYXV) M62R and Yaba-like disease virus (YLDV) 67R, when expressed with an epitope tag and from vK1L−C7L−, supported normal viral replication in human and murine cells and restored the ability of the virus to suppress PKR activation. Furthermore, M62R rescued the defect of vK1L−C7L− at replicating and disseminating in mice following intranasal inoculation. These results show that MYXV M62R and YLDV 67R function equivalently to C7L at supporting VACV replication in mammalian hosts and suggest that a C7L-like host-range gene is essential for the replication of many mammalian poxviruses in mammalian hosts. PMID:18054061

  17. Evaluation of Rice Resistance to Southern Rice Black-Streaked Dwarf Virus and Rice Ragged Stunt Virus through Combined Field Tests, Quantitative Real-Time PCR, and Proteome Analysis

    PubMed Central

    Wang, Zhenchao; Yu, Lu; Jin, Linhong; Wang, Wenli; Zhao, Qi; Ran, Longlu; Li, Xiangyang; Chen, Zhuo; Guo, Rong; Wei, Yongtian; Yang, Zhongcheng; Liu, Enlong; Hu, Deyu; Song, Baoan

    2017-01-01

    Diseases caused by southern rice black-streaked dwarf virus (SRBSDV) and rice ragged stunt virus (RRSV) considerably decrease grain yield. Therefore, determining rice cultivars with high resistance to SRBSDV and RRSV is necessary. In this study, rice cultivars with high resistance to SRBSDV and RRSV were evaluated through field trials in Shidian and Mangshi county, Yunnan province, China. SYBR Green I-based quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to quantitatively detect virus gene expression levels in different rice varieties. The following parameters were applied to evaluate rice resistance: acre yield (A.Y.), incidence of infected plants (I.I.P.), virus load (V.L.), disease index (D.I.), and insect quantity (I.Q.) per 100 clusters. Zhongzheyou1 (Z1) and Liangyou2186 (L2186) were considered the most suitable varieties with integrated higher A.Y., lower I.I.P., V.L., D.I. and I.Q. features. In order to investigate the mechanism of rice resistance, comparative label-free shotgun liquid chromatography tandem-mass spectrometry (LC-MS/MS) proteomic approaches were applied to comprehensively describe the proteomics of rice varieties’ SRBSDV tolerance. Systemic acquired resistance (SAR)-related proteins in Z1 and L2186 may result in the superior resistance of these varieties compared with Fengyouxiangzhan (FYXZ). PMID:28241456

  18. Three-year rabies duration of immunity in dogs following vaccination with a core combination vaccine against canine distemper virus, canine adenovirus type-1, canine parvovirus, and rabies virus.

    PubMed

    Lakshmanan, Nallakannu; Gore, Thomas C; Duncan, Karen L; Coyne, Michael J; Lum, Melissa A; Sterner, Frank J

    2006-01-01

    Thirty-two seronegative pups were vaccinated at 8 weeks of age with modified-live canine distemper virus (CDV), canine adenovirus type-2 (CAV-2), and canine parvovirus (CPV) vaccine and at 12 weeks with a modified-live CDV, CAV-2, CPV, and killed rabies virus vaccine. An additional 31 seronegative pups served as age-matched, nonvaccinated controls. All test dogs were strictly isolated for 3 years after receiving the second vaccination and then were challenged with virulent rabies virus. Clinical signs of rabies were prevented in 28 (88%) of the 32 vaccinated dogs. In contrast, 97% (30 of 31) of the control dogs died of rabies infection. These study results indicated that no immunogenic interference occurred between the modified-live vaccine components and the killed rabies virus component. Furthermore, these results indicated that the rabies component in the test vaccine provided protection against virulent rabies challenge in dogs 12 weeks of age or older for a minimum of 3 years following vaccination.

  19. Evaluation of Rice Resistance to Southern Rice Black-Streaked Dwarf Virus and Rice Ragged Stunt Virus through Combined Field Tests, Quantitative Real-Time PCR, and Proteome Analysis.

    PubMed

    Wang, Zhenchao; Yu, Lu; Jin, Linhong; Wang, Wenli; Zhao, Qi; Ran, Longlu; Li, Xiangyang; Chen, Zhuo; Guo, Rong; Wei, Yongtian; Yang, Zhongcheng; Liu, Enlong; Hu, Deyu; Song, Baoan

    2017-02-22

    Diseases caused by southern rice black-streaked dwarf virus (SRBSDV) and rice ragged stunt virus (RRSV) considerably decrease grain yield. Therefore, determining rice cultivars with high resistance to SRBSDV and RRSV is necessary. In this study, rice cultivars with high resistance to SRBSDV and RRSV were evaluated through field trials in Shidian and Mangshi county, Yunnan province, China. SYBR Green I-based quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to quantitatively detect virus gene expression levels in different rice varieties. The following parameters were applied to evaluate rice resistance: acre yield (A.Y.), incidence of infected plants (I.I.P.), virus load (V.L.), disease index (D.I.), and insect quantity (I.Q.) per 100 clusters. Zhongzheyou1 (Z1) and Liangyou2186 (L2186) were considered the most suitable varieties with integrated higher A.Y., lower I.I.P., V.L., D.I. and I.Q. In order to investigate the mechanism of rice resistance, comparative label-free shotgun liquid chromatography tandem-mass spectrometry (LC-MS/MS) proteomic approaches were applied to comprehensively describe the proteomics of rice varieties' SRBSDV tolerance. Systemic acquired resistance (SAR)-related proteins in Z1 and L2186 may result in the superior resistance of these varieties compared with Fengyouxiangzhan (FYXZ).

  20. Combined prime-boost vaccination against tick-borne encephalitis (TBE) using a recombinant vaccinia virus and a bacterial plasmid both expressing TBE virus non-structural NS1 protein

    PubMed Central

    Aleshin, SE; Timofeev, AV; Khoretonenko, MV; Zakharova, LG; Pashvykina, GV; Stephenson, JR; Shneider, AM; Altstein, AD

    2005-01-01

    Background Heterologous prime-boost immunization protocols using different gene expression systems have proven to be successful tools in protecting against various diseases in experimental animal models. The main reason for using this approach is to exploit the ability of expression cassettes to prime or boost the immune system in different ways during vaccination procedures. The purpose of the project was to study the ability of recombinant vaccinia virus (VV) and bacterial plasmid, both carrying the NS1 gene from tick-borne encephalitis (TBE) virus under the control of different promoters, to protect mice against lethal challenge using a heterologous prime-boost vaccination protocol. Results The heterologous prime-boost vaccination protocol, using a VV recombinant and bacterial plasmid, both containing the NS1 TBE virus protein gene under the control of different promoters, achieved a high level of protection in mice against lethal challenge with a highly pathogenic TBE virus strain. No signs of pronounced TBE infection were detected in the surviving animals. Conclusion Heterologous prime-boost vaccination protocols using recombinant VV and bacterial plasmids could be used for the development of flavivirus vaccines. PMID:16076390

  1. Evolutionary ecology of virus emergence.

    PubMed

    Dennehy, John J

    2017-02-01

    The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment. © 2016 New York Academy of Sciences.

  2. [Fusion proteins encoded by orf 129L of ectromelia and orf A30L of smallpox viruses cross-react with neutralizing monoclonal antibodies].

    PubMed

    razumov, I A; Gileva, I P; Vasil'eva, M A; Nepomniashchikh, T S; Mishina, M N; Belanov, E F; Kochneva, G V; Konovalov, E E; Shchelkunov, S N; Loktev, V B

    2005-01-01

    Open reading frame (orf) 129L of ectromelia (EV) and orf A30L of smallpox viruses (SPV) encoding fusion proteins were cloned and expressed in E. coli cells. The recombinant polypeptides (prA30L H pr129L) were purified from cell lysates by Ni-NTA chromatography. Recombinant polypeptides were able to form trimers in buffered saline and they destroyed under treatment with SDS and 2-mercaptoethanol. Reactivity of prA30L, pr129L and orthopoxvirus proteins was analyzed by ELISA and Western blotting with panel of 22 monoclonal antibodies (MAbs) against orthopoxviruses (19 against EV, 2 MAbs against vaccinia virus and 1 Mabs against cowpox virus). This data allowed us to conclude that there are 12 EV-specific epitopes of pr129L and EV fusion proteins, ten orthopox-specific epitopes of EV, VV, CPV fusion proteins, from them 9 orthopox-specific epitopes of prA30L and SPV fusion proteins. Five Mabs, which cross-reacted with orthopox-specific epitopes, were able to neutralize the VV on Vero cells and from them two MAbs has neutralizing activity against smallpox virus. Our findings demonstrate that 129L fusion protein have EV-specific epitopes, that EV 129L and SPV A30L fusion proteins have a several orthopox-specific epitopes to induce a neutralizing antibodies against human pathogenic orthopoxviruses.

  3. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family.

    PubMed

    Antonets, Denis V; Nepomnyashchikh, Tatyana S; Shchelkunov, Sergei N

    2010-10-27

    Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein.

  4. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family

    PubMed Central

    2010-01-01

    Background Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. Findings De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Conclusions Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein. PMID:20979600

  5. Virus trafficking – learning from single-virus tracking

    PubMed Central

    Brandenburg, Boerries; Zhuang, Xiaowei

    2009-01-01

    What could be a better way to study virus trafficking than ‘miniaturizing oneself’ and ‘taking a ride with the virus particle’ on its journey into the cell? Single-virus tracking in living cells potentially provides us with the means to visualize the virus journey. This approach allows us to follow the fate of individual virus particles and monitor dynamic interactions between viruses and cellular structures, revealing previously unobservable infection steps. The entry, trafficking and egress mechanisms of various animal viruses have been elucidated using this method. The combination of single-virus trafficking with systems approaches and state-of-the-art imaging technologies should prove exciting in the future. PMID:17304249

  6. Development of a real-time RT-PCR assay combined with ethidium monoazide treatment for RNA viruses and its application to detect viral RNA after heat exposure.

    PubMed

    Kim, K; Katayama, H; Kitajima, M; Tohya, Y; Ohgaki, S

    2011-01-01

    A method was developed for discriminating damaged viruses or naked viral RNA from intact viruses by ethidium monoazide (EMA) treatment before RT-PCR. The applied EMA treatment consisted of three steps: (1) EMA dose, (2) exposure to light, and (3) additional purification by spin-column gel filtration. Approximately 4-log reduction in viral RNA concentration was observed by adding a dose of 10 μg/mL-EMA with 300 s of light irradiation. Although residual EMA can be an inhibitor of RT-PCR, its effect was reduced by spin-column gel filtration or a QIAamp® Viral RNA Mini Kit. EMA-RT-PCR was applied to the thermally treated PV1. Results of EMA-RT-PCR were similar to the plaque assay when PV1 was thermally inactivated. Although this is a preliminary study investigating applicability of the EMA-RT-PCR method for RNA viruses, the results suggest that the method is potentially applicable for the selective detection of epidemiologically important enteric viruses in water such as enteroviruses and noroviruses.

  7. Single and combination diagnostic test efficiency and cost analysis for detection and isolation of avian influenza virus from wild bird cloacal swabs

    USDA-ARS?s Scientific Manuscript database

    Effective laboratory methods for identifying avian influenza virus (AIV) in wild bird populations are crucial to understanding the ecology of this pathogen. The gold standard method has been AIV isolation in chorioallantoic sac (CAS) of specific-pathogen-free (SPF) embryonating chicken eggs (ECE), ...

  8. Viruses in artichoke.

    PubMed

    Gallitelli, Donato; Mascia, Tiziana; Martelli, Giovanni P

    2012-01-01

    Most of the 25 viruses found in globe artichoke (Cynara scolymus L.) and cardoon (Cynara cardunculus L.) were recorded from Europe and the Mediterranean basin, where they decrease both the productivity and the quality of the crop. Although, sometimes, these viruses are agents of diseases of different severity, most often their infections are symptomless. These conditions have contributed to spread virus-infected material since farmers multiply traditional artichoke types vegetatively with no effective selection of virus-free plants. This review reports the main properties of these viruses and the techniques used for their detection and identification. ELISA kits are commercially available for most of the viruses addressed in this review but have seldom been used for their detection in artichoke. Conversely, nucleic acid-based diagnostic reagents, some of which are commercially available, have successfully been employed to identify some viruses in artichoke sap. Control measures mainly use virus-free stocks for new plantations. A combined procedure of meristem-tip culture and thermotherapy proved useful for producing virus-free regenerants of the reflowering southern Italian cultivar Brindisino, which kept earliness and typical heads shape. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. ECHO virus

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that can lead ...

  10. CD4 T cell control primary measles virus infection of the CNS: regulation is dependent on combined activity with either CD8 T cells or with B cells: CD4, CD8 or B cells alone are ineffective.

    PubMed

    Tishon, Antoinette; Lewicki, Hanna; Andaya, Abegail; McGavern, Dorian; Martin, Lee; Oldstone, Michael B A

    2006-03-30

    Measles virus (MV), one of the most infectious of human pathogens, still infects over 30 million humans and causes over 500,000 deaths each year [Griffin, D., 2001. Measles virus. In: Fields, B., Knipe, D., Howley, P. (Eds.), Fields Virology. Lippincott-Raven, Philadelphia, pp. 1401-1442; ]. Death is primarily due to secondary microbial infections associated with the immunosuppression caused by MV. Studies of humans with genetic or acquired deficiencies of either the humoral or cellular arm of the immune system, and rodent models have implicated T cells in the control of the ongoing MV infection but the precise role and activities of the specific T cell subset or the molecules they produce is not clear. Using a transgenic mouse model in conjunction with depletion and reconstitution of individual B and T cell subsets alone or in combination, we show that neither CD4, CD8 nor B cells per se control acute MV infection. However, combinations of either CD4 T cells and B cells, or of CD4 and CD8 T cells are essential but CD8 T with B cells are ineffective. Interferon-gamma and neutralizing antibodies, but neither perforin nor TNF-alpha alone are associated with clearance of MV infection. TNF-alpha combined with interferon-gamma is more effective in protection than interferon alone. Further, the lack of an interferon-gamma response leads to persistence of MV.

  11. Virus Carcinogenesis

    DTIC Science & Technology

    1961-01-01

    viruses are capable of inducing cancer, it is obvious that virus carcinogenesis cannot be considered in an isolated fashion, without some reference to...intradermal inoculations of vaccinia virus . One of the viruses most widely investigated with respect to quantitative dose- response relationships is the...than the rule. Figure 6 shows the type of deviation most commonly observed with viruses of infectious diseases. VIRUS CARCINOGENESIS 131 It is a

  12. A combination microbicide gel protects macaques against vaginal simian human immunodeficiency virus-reverse transcriptase infection, but only partially reduces herpes simplex virus-2 infection after a single high-dose cochallenge.

    PubMed

    Hsu, Mayla; Aravantinou, Meropi; Menon, Radhika; Seidor, Samantha; Goldman, Daniel; Kenney, Jessica; Derby, Nina; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D; Fernández-Romero, Jose A; Zydowsky, Thomas M; Robbiani, Melissa

    2014-02-01

    Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides.

  13. A Combination Microbicide Gel Protects Macaques Against Vaginal Simian Human Immunodeficiency Virus-Reverse Transcriptase Infection, But Only Partially Reduces Herpes Simplex Virus-2 Infection After a Single High-Dose Cochallenge

    PubMed Central

    Hsu, Mayla; Aravantinou, Meropi; Menon, Radhika; Seidor, Samantha; Goldman, Daniel; Kenney, Jessica; Derby, Nina; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D.; Fernández-Romero, Jose A.; Zydowsky, Thomas M.

    2014-01-01

    Abstract Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides. PMID:24117013

  14. Induction of murine tumors in adult mice by a combination of either avian sarcoma virus or human adenovirus and syngeneic mouse embryo cells.

    PubMed

    Takeuchi, M; Nitta, K

    1983-01-01

    Primary murine Rous sarcoma was produced in adult mice of seven strains, C57BL/6, DBA/2, BALB/c, C3H/He, CBAJ, AKR, and DDD, by s.c. inoculation of a mixture of 5 X 10(6) chicken tumor cells containing Schmidt-Ruppin Rous sarcoma virus and 9- to 12-day-old mouse embryo cells (MEC) (2 X 10(6) ) of the syngeneic strain. The sarcoma developed at the site of injection in almost all mice tested, but there were some differences in the latent period and the survival time among mouse strains. When the number of cells inoculated was reduced to 5 X 10(4) for chicken tumor cells induced by the Schmidt-Ruppin strain of Rous sarcoma virus (SR-CTC) and 2 X 10(4) for MEC, no tumor was produced in C3H/He mice. These tumors had strain specificity and the Schmidt-Ruppin strain of Rous sarcoma virus genome in masked form. The tumor at the site of injection originated in the embryo cells injected along with SR-CTC. This was confirmed by CBAT6/T6 marker chromosome analysis of the tumor cells of CBA mice induced with SR-CTC plus CBAT6/T6 MEC and also confirmed by transplantation of a C57BL/6 X C3H/He F1 tumor which had been induced with SR-CTC plus C3H/He or C57BL/6 MEC. Tumor induction in adult mouse by a mixture of virus and syngeneic 9- to 14-day-old embryo cells was tested for human adenovirus serotype 12 (Ad12) and simian virus 40. Primary Ad12 tumor was also induced in adult CBA, C3H/He, and DDD mice by 4 X 10(5 to 6) 50% tissue culture infective dose of Ad12 with 5 X 10(6) syngeneic embryo cells. This tumor contained Ad12 T-antigen-positive particles in cells. But in the case of simian virus 40, the tumor did not appear for about 300 days of observation.

  15. Robust Protection against Highly Virulent Foot-and-Mouth Disease Virus in Swine by Combination Treatment with Recombinant Adenoviruses Expressing Porcine Alpha and Gamma Interferons and Multiple Small Interfering RNAs

    PubMed Central

    Park, Jong-Hyeon; Lee, Kwang-Nyeong; Kim, Se-Kyung; You, Su-Hwa; Kim, Taeseong; Tark, Dongseob; Lee, Hyang-Sim; Seo, Min-Goo; Kim, Byounghan

    2015-01-01

    ABSTRACT Because the currently available vaccines against foot-and-mouth disease (FMD) provide no protection until 4 to 7 days postvaccination, the only alternative method to halt the spread of the FMD virus (FMDV) during outbreaks is the application of antiviral agents. Combination treatment strategies have been used to enhance the efficacy of antiviral agents, and such strategies may be advantageous in overcoming viral mechanisms of resistance to antiviral treatments. We have developed recombinant adenoviruses (Ads) for the simultaneous expression of porcine alpha and gamma interferons (Ad-porcine IFN-αγ) as well as 3 small interfering RNAs (Ad-3siRNA) targeting FMDV mRNAs encoding nonstructural proteins. The antiviral effects of Ad-porcine IFN-αγ and Ad-3siRNA expression were tested in combination in porcine cells, suckling mice, and swine. We observed enhanced antiviral effects in porcine cells and mice as well as robust protection against the highly pathogenic strain O/Andong/SKR/2010 and increased expression of cytokines in swine following combination treatment. In addition, we showed that combination treatment was effective against all serotypes of FMDV. Therefore, we suggest that the combined treatment with Ad-porcine IFN-αγ and Ad-3siRNA may offer fast-acting antiviral protection and be used with a vaccine during the period that the vaccine does not provide protection against FMD. IMPORTANCE The use of current foot-and-mouth disease (FMD) vaccines to induce rapid protection provides limited effectiveness because the protection does not become effective until a minimum of 4 days after vaccination. Therefore, during outbreaks antiviral agents remain the only available treatment to confer rapid protection and reduce the spread of foot-and-mouth disease virus (FMDV) in livestock until vaccine-induced protective immunity can become effective. Interferons (IFNs) and small interfering RNAs (siRNAs) have been reported to be effective antiviral agents against

  16. Robust Protection against Highly Virulent Foot-and-Mouth Disease Virus in Swine by Combination Treatment with Recombinant Adenoviruses Expressing Porcine Alpha and Gamma Interferons and Multiple Small Interfering RNAs.

    PubMed

    Kim, Su-Mi; Park, Jong-Hyeon; Lee, Kwang-Nyeong; Kim, Se-Kyung; You, Su-Hwa; Kim, Taeseong; Tark, Dongseob; Lee, Hyang-Sim; Seo, Min-Goo; Kim, Byounghan

    2015-08-01

    Because the currently available vaccines against foot-and-mouth disease (FMD) provide no protection until 4 to 7 days postvaccination, the only alternative method to halt the spread of the FMD virus (FMDV) during outbreaks is the application of antiviral agents. Combination treatment strategies have been used to enhance the efficacy of antiviral agents, and such strategies may be advantageous in overcoming viral mechanisms of resistance to antiviral treatments. We have developed recombinant adenoviruses (Ads) for the simultaneous expression of porcine alpha and gamma interferons (Ad-porcine IFN-αγ) as well as 3 small interfering RNAs (Ad-3siRNA) targeting FMDV mRNAs encoding nonstructural proteins. The antiviral effects of Ad-porcine IFN-αγ and Ad-3siRNA expression were tested in combination in porcine cells, suckling mice, and swine. We observed enhanced antiviral effects in porcine cells and mice as well as robust protection against the highly pathogenic strain O/Andong/SKR/2010 and increased expression of cytokines in swine following combination treatment. In addition, we showed that combination treatment was effective against all serotypes of FMDV. Therefore, we suggest that the combined treatment with Ad-porcine IFN-αγ and Ad-3siRNA may offer fast-acting antiviral protection and be used with a vaccine during the period that the vaccine does not provide protection against FMD. The use of current foot-and-mouth disease (FMD) vaccines to induce rapid protection provides limited effectiveness because the protection does not become effective until a minimum of 4 days after vaccination. Therefore, during outbreaks antiviral agents remain the only available treatment to confer rapid protection and reduce the spread of foot-and-mouth disease virus (FMDV) in livestock until vaccine-induced protective immunity can become effective. Interferons (IFNs) and small interfering RNAs (siRNAs) have been reported to be effective antiviral agents against FMDV, although the

  17. Combination Emtricitabine and Tenofovir Disoproxil Fumarate Prevents Vaginal Simian/Human Immunodeficiency Virus Infection in Macaques Harboring Chlamydia trachomatis and Trichomonas vaginalis.

    PubMed

    Radzio, Jessica; Henning, Tara; Jenkins, Leecresia; Ellis, Shanon; Farshy, Carol; Phillips, Christi; Holder, Angela; Kuklenyik, Susan; Dinh, Chuong; Hanson, Debra; McNicholl, Janet; Heneine, Walid; Papp, John; Kersh, Ellen N; García-Lerma, J Gerardo

    2016-05-15

    Genital inflammation associated with sexually transmitted infections increases susceptibility to human immunodeficiency virus (HIV), but it is unclear whether the increased risk can reduce the efficacy of pre-exposure prophylaxis (PrEP). We investigated whether coinfection of macaques with Chlamydia trachomatis and Trichomonas vaginalis decreases the prophylactic efficacy of oral emtricitabine (FTC)/tenofovir disoproxil fumarate (TDF). Macaques were exposed to simian/human immunodeficiency virus (SHIV) vaginally each week for up to 16 weeks and received placebo or FTC/TDF pericoitally. All animals in the placebo group were infected with SHIV, while 4 of 6 PrEP recipients remained uninfected (P= .03). Oral FTC/TDF maintains efficacy in a macaque model of sexually transmitted coinfection, although the infection of 2 macaques signals a modest loss of PrEP activity.

  18. Co-expression of multiple target proteins in plants from a tobacco mosaic virus vector using a combination of homologous and heterologous subgenomic promoters.

    PubMed

    Roy, Gourgopal; Weisburg, Sangeetha; Foy, Kelly; Rabindran, Shailaja; Mett, Vadim; Yusibov, Vidadi

    2011-11-01

    To co-express multiple target proteins, we engineered a single-component chimeric tobacco mosaic virus (TMV)-based vector containing homologous and heterologous capsid protein subgenomic RNA promoters. Delivery of this vector into Nicotiana benthamiana plants via agroinfiltration resulted in co-expression of two reporter genes within a single cell. Furthermore, co-expression of a host-specific antisense RNA or a silencing suppressor protein from this vector augmented the accumulation of green fluorescent protein or a vaccine antigen, hemagglutinin from avian influenza virus A/Vietnam/1194/04. These findings suggest that this chimeric vector utilizing the homologous and heterologous subgenomic TMV promoters has a potential for high-level production of multiple therapeutic proteins including monoclonal antibodies.

  19. SR-2P Vaginal Microbicide Gel Provides Protection against Herpes Simplex Virus 2 When Administered as a Combined Prophylactic and Postexposure Therapeutic

    PubMed Central

    Fields, Scott A.; Bhatia, Gaurav; Fong, Julie M.; Liu, Mingtao

    2015-01-01

    Previously, we demonstrated that a single prophylactic dose of SR-2P, a novel dual-component microbicide gel comprising acyclovir and tenofovir, led to a modest increase in mouse survival following a lethal challenge of herpes simplex virus 2 (HSV-2). Here, we show that a dose of SR-2P administered 24 h prior to infection provides some protection against the virus, but to a lesser degree than SR-2P administered either once a day for 2 days or 1 h prior to infection. None of the prophylactic doses blocked infection by the virus, and all resulted in 80 to 100% lethality. However, given that a prophylactic dose still provided a significant reduction in overall clinical score, reduced rate of body weight loss, and increased median survival of the mice, we examined whether a repetitive dose regimen (postinfection) in addition to the prophylactic dose could prevent death and reduce the levels of virus in mice. Nearly all (9 of 10 in each group) of the mice that received SR-2P for 2 days prior to infection or that received SR-2P 1 h prior to infection and were administered SR-2P once a day for 10 days after infection showed no clinical symptoms of infection and no viral loads in vaginal swabs and survived for 28 days postinfection. Conversely, mice receiving no treatment or an identical vehicle treatment demonstrated advanced clinical signs and did not survive past day 9 postinfection. We conclude that SR-2P is an effective anti-HSV-2 agent in mice. PMID:26149989

  20. A novel tetravalent formulation combining the four aggregated domain III-capsid proteins from dengue viruses induces a functional immune response in mice and monkeys.

    PubMed

    Suzarte, Edith; Gil, Lázaro; Valdés, Iris; Marcos, Ernesto; Lazo, Laura; Izquierdo, Alienys; García, Angélica; López, Lázaro; Álvarez, Maylin; Pérez, Yusleydis; Castro, Jorge; Romero, Yaremis; Guzmán, María G; Guillén, Gerardo; Hermida, Lisset

    2015-08-01

    Our group developed a subunit vaccine candidate against dengue virus based on two different viral regions: the domain III of the envelope protein and the capsid protein. The novel chimeric protein from dengue-2 virus [domain III-capsid (DIIIC-2)], when presented as aggregated incorporating oligodeoxynucleotides, induced anti-viral and neutralizing antibodies, a cellular immune response and conferred significant protection to mice and monkeys. The remaining constructs were already obtained and properly characterized. Based on this evidence, this work was aimed at assessing the immune response in mice of the chimeric proteins DIIIC of each serotype, as monovalent and tetravalent formulations. Here, we demonstrated the immunogenicity of each protein in terms of humoral and cell-mediated immunity, without antigen competition on the mixture forming the formulation tetra DIIIC. Accordingly, significant protection was afforded as measured by the limited viral load in the mouse encephalitis model. The assessment of the tetravalent formulation in non-human primates was also conducted. In this animal model, it was demonstrated that the formulation induced neutralizing antibodies and memory cell-mediated immune response with IFN-γ-secreting and cytotoxic capacity, regardless the route of immunization used. Taken together, we can assert that the tetravalent formulation of DIIIC proteins constitutes a promising vaccine candidate against dengue virus, and propose it for further efficacy experiments in monkeys or in the dengue human infection model, as it has been recently proposed.

  1. Foodborne viruses

    USDA-ARS?s Scientific Manuscript database

    Testing for human pathogenic viruses in foods represents a formidable task requiring the extraction, concentration, and assay of a host of viruses from a wide range of food matrices. The enteric viruses, particularly genogroup I and II (GI and GII) noroviruses and hepatitis A virus, are the princip...

  2. Executive summary of the Consensus Document of GeSIDA and Spanish Secretariat for the National Plan on AIDS on combined antiretroviral treatment in adults infected by the human immunodeficiency virus (January 2013).

    PubMed

    2013-11-01

    In the present update of the guidelines, a starting combination antiretroviral treatment (cART) is recommended in symptomatic patients, in pregnant women, in serodiscordant couples with a high risk of transmission, in patients co-infected with hepatitis B virus requiring treatment, and in patients with HIV-related nephropathy. Guidelines on cART are included in the event of a concurrent diagnosis of HIV infection with an AIDS-defining event. In asymptomatic naïve patients, cART is recommended if the CD4(+) lymphocyte count is <500cells/μL; if the CD4(+) lymphocyte count is >500cells/μL, cART can be delayed, although it may be considered in patients with liver cirrhosis, chronic infection due to hepatitis C virus, high cardiovascular risk, plasma viral load (PVL) >10(5)copies/mL, CD4(+) lymphocyte percentage <14%, cognitive impairment, and age >55 years. cART in naïve patients requires a combination of 3 drugs, and its aim is to achieve undetectable PVL. Treatment adherence plays a key role in sustaining a favorable response. cART can, and should be, changed if virological failure occurs, in order to return to undetectable PVL. Approaches to cART in acute HIV infection, in women, in pregnancy, in tuberculosis, and post-exposure prophylaxis are also examined.

  3. Inventing Viruses.

    PubMed

    Summers, William C

    2014-11-01

    In the nineteenth century, "virus" commonly meant an agent (usually unknown) that caused disease in inoculation experiments. By the 1890s, however, some disease-causing agents were found to pass through filters that retained the common bacteria. Such an agent was called "filterable virus," the best known being the virus that caused tobacco mosaic disease. By the 1920s there were many examples of filterable viruses, but no clear understanding of their nature. However, by the 1930s, the term "filterable virus" was being abandoned in favor of simply "virus," meaning an agent other than bacteria. Visualization of viruses by the electron microscope in the late 1930s finally settled their particulate nature. This article describes the ever-changing concept of "virus" and how virologists talked about viruses. These changes reflected their invention and reinvention of the concept of a virus as it was revised in light of new knowledge, new scientific values and interests, and new hegemonic technologies.

  4. Vaccinia virus K1L protein mediates host-range function in RK-13 cells via ankyrin repeat and may interact with a cellular GTPase-activating protein.

    PubMed

    Bradley, Ritu R; Terajima, Masanori

    2005-12-01

    The K1L protein of vaccinia virus is required for its growth in certain cell lines (RK-13 and human). The cowpox host-range protein CP77 has been shown to complement K1L function in RK-13 cells, despite a lack of homology between the two proteins except for ankyrin repeats. We investigated the role of ankyrin repeats of K1L protein in RK-13 cells. The growth of a recombinant vaccinia virus, with K1L gene mutated in the most conserved ankyrin repeat, was severely impaired. Infection with the mutant virus caused shutdown of cellular and viral protein synthesis early in infection. We also investigated the interaction of K1L protein with cellular proteins and found that K1L interacts with the rabbit homologue of human ACAP2, a GTPase-activating protein with ankyrin repeats. Our result suggests the importance of ankyrin repeat for host-range function of K1L in RK-13 cells and identifies ACAP2 as a cellular protein, which may be interacting with K1L.

  5. Combination of targeting gene-viro therapy with recombinant Fowl-pox viruses with HN and VP3 genes on mouse osteosarcoma.

    PubMed

    Zhang, Z-Y; Wang, L-Q; Fu, C-F; Li, X; Cui, Z-L; Zhang, J-Y; Xue, S-H; Sun, N; Xu, F

    2013-03-01

    Osteosarcoma is an aggressive cancerous neoplasm arising from primitive transformed cells of mesenchymal origin that exhibit osteoblastic differentiation and produce malignant osteoid. With the rapid development of tumor molecular biology, gene and viral therapy, a highly promising strategy for the treatment, has shown some therapeutic effects. To study the strategy of cooperative cancer gene therapy, previously, we explored the antitumor effects of recombinant Fowl-pox viruses (FPVs) with both HN (hemagglutinin-neuramidinase) and VP3 genes on mouse osteosarcoma. We constructed vFV-HN, vFV-VP3 and vFV-HN-VP3 inserting CAV VP3 gene, NDV HN gene into fowlpox virus. S180 osteosarcoma were transfected with Recombinant Fowl-pox viruses (FPVs). These cell lines stably expressing tagged proteins were selected by culturing in medium containing puromycin (2 µg/ml) and confirmed by immunoblotting and immunostaining. S180 osteosarcoma model with BALB/c mice and nude mice were established and the vFPV viruses as control, vFV-HN, vFV-VP3, vFV-HN-VP3 were injected into the tumor directly. The rate of tumor growth, tumor suppression and the sialic acid levels in serum were examined and the tumor tissues were analyzed by the method of immunohistochemistry. Flow cytometric analysis was performed using a FACSCalibur flow cytometer. A total of 100,000 events were analyzed for each sample and the experiment was repeated at least twice. Our data indicated that vFV-HN, vFV-VP3 and vFV-HN-VP3 all had growth inhibition effects, the inhibition rate of vFV-HN-VP3 group was 51.7%, which was higher than that of vFV-HN, vFV-VP3 group and control group (p < 0.01). The sialic acid level of vFV-HN-VP3 group in mouse serum was 4.22±0.27 mmol/l, which was lower than that of other groups (p < 0.01). These results suggest that genes into mouse osteosarcoma cancer cells can cause cell a specificity anti-tumor immune activity, suppress tumor growth, and increase the survival rate of the tumor within

  6. The combination of attenuated Newcastle disease (ND) vaccine with rHVT-ND vaccine at 1 day old is more protective against ND virus challenge than when combined with inactivated ND vaccine.

    PubMed

    Rauw, F; Gardin, Y; Palya, V; van den Berg, T; Lambrecht, B

    2014-01-01

    The recurrent outbreaks of fatal Newcastle disease (ND) in commercial poultry flocks throughout the world indicate that routine vaccinations are failing to sufficiently induce the high levels of immunity necessary to control ND. There is a need for vaccination programmes that could be initiated at 1-day-old for mass application and which would induce a long-lasting immunity, with no need for a booster vaccination at a later age. In this context, the duration of immunity delivered by a vaccination programme including a recombinant herpesvirus of turkeys expressing the F gene of ND virus (rHVT-ND) and live ND vaccine at 1-day-old was compared with a classical programme that included a conventional live and an inactivated ND vaccine at the same age in commercial layer chickens. The humoral, cell-mediated and local immunity were followed weekly and birds were challenged with a viscerotropic velogenic ND virus strain at 6 and 10 weeks of age. We determined that immunity induced by the vaccination programme involving the rHVT-ND vaccine was more protective than that provided by the conventional vaccine-based regime. This might be related to a T-helper type 1 (Th1) cellular-driven immunological response, in contrast to the T-helper type 2 (Th2) humoral-oriented immune response provided by the current conventional vaccine-based vaccination programmes.

  7. Tissue distribution of mucosal antibody-producing cells specific for respiratory syncytial virus in severe combined immune deficiency (SCID) mice engrafted with human tonsils.

    PubMed Central

    Nadal, D; Albini, B; Schläpfer, E; Chen, C; Brodsky, L; Ogra, P L

    1991-01-01

    Groups of C.B-17 SCID mice were reconstituted intraperitoneally with human tonsillar mononuclear cells (hu-TMC) from children seropositive for antibody to respiratory syncytial virus (RSV) and subsequently challenged intraperitoneally with inactivated RSV or sham-immunized. The synthesis and the distribution characteristics of human antibody to RSV in various murine tissues were studied using an enzyme-linked immunospot assay (ELISPOT). No specific antibody was observed in sham-immunized animals. In contrast, mice engrafted with hu-TMC exhibited the appearance of specific human antibody secreting cells (hu-ASC) after i.p. immunization with inactivated RSV. RSV-specific hu-ASC were detected only in animals engrafted with cells from donors seropositive for antibodies to Epstein-Barr virus. Hu-TMC engrafted mice showed RSV-specific IgM and, in lower numbers, IgG hu-ASC in several tissues including the lungs. Numbers of RSV-specific IgA hu-ASC were low, however, and detected only in the lung. No RSV-specific hu-ASC were detected in the intestine. These data demonstrate for the first time that hu-TMC-SCID chimeras respond to immunization with viral antigen. Furthermore, the results suggest that hu-TMC engraft in lungs but not in the intestinal tissue. PMID:1893614

  8. Maternal immunization with respiratory syncytial virus fusion protein formulated with a novel combination adjuvant provides protection from RSV in newborn lambs.

    PubMed

    Garg, R; Latimer, L; Wang, Y; Simko, E; Gerdts, V; Potter, A; van Drunen Littel-van den Hurk, S

    2016-01-04

    Respiratory syncytial virus (RSV) is the causative agent of serious upper and lower respiratory tract infections in newborns and infants. Protection from RSV is crucial for neonates, and maternal immunization is one approach that holds promise for providing immediate protection to young infants against severe RSV infection. We previously reported efficacy of a subunit vaccine consisting of the fusion (F) protein formulated with a novel adjuvant (ΔF/TriAdj) in neonates. The goal of the current study was to evaluate the ΔF/TriAdj as a maternal vaccine. Pregnant ewes were vaccinated intramuscularly with ΔF/TriAdj or PBS six weeks prior to lambing, and re-vaccinated four weeks later, which resulted in transfer of maternal antibodies (MatAbs) to the newborn lambs through the colostrum. Significantly higher levels of RSV ΔF-specific serum IgG were detected in vaccinated pregnant ewes and their lambs when compared to control animals, which revealed that MatAbs were passively transferred to the offspring. All newborn lambs were challenged with RSV at three days of age. After RSV challenge, virus production and lung pathology were significantly lower in lambs that had received passively transferred antibodies than in control animals. These results indicate that maternal immunization with ΔF/TriAdj might be an alternative, safe and effective approach to provide protection against RSV in newborn and young infants.

  9. The Combination of Grazoprevir, a Hepatitis C Virus (HCV) NS3/4A Protease Inhibitor, and Elbasvir, an HCV NS5A Inhibitor, Demonstrates a High Genetic Barrier to Resistance in HCV Genotype 1a Replicons

    PubMed Central

    Bystol, Karin; Curry, Stephanie; McMonagle, Patricia; Xia, Ellen; Ingravallo, Paul; Chase, Robert; Liu, Rong; Black, Todd; Hazuda, Daria; Howe, Anita Y. M.; Asante-Appiah, Ernest

    2016-01-01

    The selection of resistance-associated variants (RAVs) against single agents administered to patients chronically infected with hepatitis C virus (HCV) necessitates that direct-acting antiviral agents (DAAs) targeting multiple viral proteins be developed to overcome failure resulting from emergence of resistance. The combination of grazoprevir (formerly MK-5172), an NS3/4A protease inhibitor, and elbasvir (formerly MK-8742), an NS5A inhibitor, was therefore studied in genotype 1a (GT1a) replicon cells. Both compounds were independently highly potent in GT1a wild-type replicon cells, with 90% effective concentration (EC90) values of 0.9 nM and 0.006 nM for grazoprevir and elbasvir, respectively. No cross-resistance was observed when clinically relevant NS5A and NS3 RAVs were profiled against grazoprevir and elbasvir, respectively. Kinetic analyses of HCV RNA reduction over 14 days showed that grazoprevir and elbasvir inhibited prototypic NS5A Y93H and NS3 R155K RAVs, respectively, with kinetics comparable to those for the wild-type GT1a replicon. In combination, grazoprevir and elbasvir interacted additively in GT1a replicon cells. Colony formation assays with a 10-fold multiple of the EC90 values of the grazoprevir-elbasvir inhibitor combination suppressed emergence of resistant colonies, compared to a 100-fold multiple for the independent agents. The selected resistant colonies with the combination harbored RAVs that required two or more nucleotide changes in the codons. Mutations in the cognate gene caused greater potency losses for elbasvir than for grazoprevir. Replicons bearing RAVs identified from resistant colonies showed reduced fitness for several cell lines and may contribute to the activity of the combination. These studies demonstrate that the combination of grazoprevir and elbasvir exerts a potent effect on HCV RNA replication and presents a high genetic barrier to resistance. The combination of grazoprevir and elbasvir is currently approved for

  10. A Conformational Restriction in the Influenza A Virus Neuraminidase Binding Site by R152 Results in a Combinational Effect of I222T and H274Y on Oseltamivir Resistance

    PubMed Central

    Huang, Lan; Cao, Yang; Zhou, Jianfang; Qin, Kun; Zhu, Wenfei; Zhu, Yun; Yang, Lei; Wang, Dayan

    2014-01-01

    The I222K, I222R, and I222T substitutions in neuraminidase (NA) have been found in clinically derived 2009 pandemic influenza A/H1N1 viruses with altered susceptibilities to NA inhibitors (NAIs). The effects of these substitutions, together with the most frequently observed resistance-related substitution, H274Y, on viral fitness and resistance mechanisms were further investigated in this study. Reduced sensitivities to oseltamivir were observed in all three mutants (I222K, I222R, and I222T). Furthermore, the I222K and I222T substitutions had a combinational effect of further increasing resistance in the presence of H274Y, which might result from a conformational restriction in the NA binding site. Of note, by using molecular dynamics simulations, R152, the neighbor of T222, was observed to translate to a position closer to T222, resulting in the narrowing of the binding pocket, which otherwise only subtends the residue substitution of H274Y. Moreover, significantly attenuated NA function and viral growth abilities were found in the I222K+H274Y double mutant, while the I222T+H274Y double mutant exhibited slightly delayed growth but had a peak viral titer similar to that of the wild-type virus in MDCK cells. The relative growth advantage of the I222T mutant versus the I222K mutant and the higher frequency of I222T emerging in N1 subtype influenza viruses raise concerns necessitating close monitoring of the dual substitutions I222T and H274Y. PMID:24366752

  11. Serological behaviour of influenza viruses

    PubMed Central

    Fiset, P.; Depoux, R.

    1954-01-01

    By antibody absorption it was found that strains of influenza virus exhibiting P-Q differences were related according to certain patterns. In the course of this investigation it was also revealed that some viruses possessed masked antigens capable of stimulating antibody production but incapable of combining efficiently with antibody. PMID:14364182

  12. Swine Influenza Virus: Emerging Understandings

    USDA-ARS?s Scientific Manuscript database

    Introduction: In March-April 2009, a novel pandemic H1N1 emerged in the human population in North America [1]. The gene constellation of the emerging virus was demonstrated to be a combination of genes from swine influenza A viruses (SIV) of North American and Eurasian lineages that had never before...

  13. Studies of inactivation, retardation and accumulation of viruses in porous media by a combination of dye labeled and native bacteriophage probes

    NASA Astrophysics Data System (ADS)

    Gitis, Vitaly; Dlugy, Christina; Gun, Jenny; Lev, Ovadia

    2011-06-01

    Penetration of viruses through soils is governed by the processes of transport, reversible adsorption, accumulation and inactivation. Until now, it was difficult to decouple the latter two processes and accurately predict viral fate. The present work describes a novel method—tracer studies with a mixture of native and fluorescent-dyed bacteriophages—that facilitates parallel quantification of the two processes. When the native phages are experiencing both accumulation and inactivation, the labeled ones are inactivated already and therefore can only be accumulated. Thus the effect of inactivation is applicable to native bacteriophages only and depletion of phage concentration due to inactivation can be elucidated from a total phage balance. The novel approach is exemplified by batch and column studies of the effects of temperature, pH, and saturation, on inactivation of MS2 bacteriophage. A three-parameter model accounting for inactivation, reversible adsorption (i.e., retardation), and accumulation is implemented.

  14. Detection and differentiation of Japanese encephalitis virus genotype I and genotype III by reverse transcription loop-mediated isothermal amplification combined with restriction fragment length polymorphism.

    PubMed

    Zhang, Liang; Cao, Sanjie; Wu, Rui; Zhu, Shuquan; Liu, Hanyang; Yuan, Lei; Shi, Shuangyan; Zhang, Dan; Huang, Xiaobo; Wen, Xintian; Wen, Yiping; Yan, Qigui; Huang, Yong; Ma, Xiaoping

    2015-04-01

    Japanese encephalitis (JE), which is a mosquito-borne arboviral infection, is the leading cause of viral encephalitis in Asian countries. The causative agent of JE is Japanese encephalitis virus (JEV), in which the predominant genotype has changed from genotype III (G III) to genotype I (G I). However, a method for the rapid differentiation between JEV G I and G III remains unavailable. This study aimed to establish a rapid JEV genotyping method using reverse transcription loop-mediated isothermal amplification (RT-LAMP). An Spe I site, which was located in the target sequence (C gene) of JEV G III strains but not in JEV G I strains, was selected as the RT-LAMP target. After testing 64 specimens, results showed that RT-LAMP can detect and differentiate JEV G I and G III specifically. Thus, a novel RT-LAMP system for the rapid detection and differentiation of JEV G I and G III was developed successfully.

  15. Incidence of Wheat streak mosaic virus, Triticum mosaic virus, and Wheat mosaic virus in wheat curl mites recovered from maturing winter wheat spikes

    USDA-ARS?s Scientific Manuscript database

    Wheat curl mites (WCM; Aceria tosichella) transmit Wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), and Wheat mosaic virus (WMoV) to wheat (Triticum aestivum L.) in the Great Plains region of the United States. These viruses can be detected in single, double, or triple combinations i...

  16. Rapid detection method for hepatitis A virus from lettuce by a combination of filtration and integrated cell culture-real-time reverse transcription PCR.

    PubMed

    Hyeon, Ji-Yeon; Chon, Jung-Whan; Park, Chankyu; Lee, Joong-Bok; Choi, In-Soo; Kim, Moo-Sang; Seo, Kun-Ho

    2011-10-01

    We have developed a rapid and simple method for filtration using a positively charged membrane to concentrate hepatitis A virus (HAV) from lettuce and an integrated cell culture-real-time reverse transcription PCR (ICC-real-time RT-PCR) to detect infectious HAV. The most suitable buffer for HAV concentration by filtration was 100 mM Tris-HCl, 50 mM glycine (pH 9.5). Filtration using the NanoCeram matrix was compared with polyethylene glycol precipitation for viral concentration from lettuce inoculated with 6 log RNA copies of HAV. The recovery rate of filtration was statistically higher than that of polyethylene glycol precipitation (47.3 versus 24.9%, respectively). The sensitivity of ICC-real-time RT-PCR for detection of infectious HAV was determined by inoculation of FRhK-4 cells with HAV (4 log to 0 log RNA copies). ICC-real-time RT-PCR detected infectious HAV on average 5 days earlier than cytopathic effects at all inoculation levels. HAV recovered from lettuce (approximately 3 log RNA copies) was also analyzed with ICC-real-time RT-PCR. Infectious HAV was detected within 2 days postinfection by ICC-real-time RT-PCR, whereas cytopathic effects were not observed until 7 days postinfection. Coupled with a virus concentration and purification system using a positively charged membrane, ICC-real-time RT-PCR has the potential to become a novel and rapid method for the detection of infectious HAV in vegetables.

  17. Combined cytotoxic activity of an infectious, but non-replicative herpes simplex virus type 1 and plasmacytoid dendritic cells against tumour cells

    PubMed Central

    Thomann, Sabrina; Boscheinen, Jan B; Vogel, Karin; Knipe, David M; DeLuca, Neal; Gross, Stefanie; Schuler-Thurner, Beatrice; Schuster, Philipp; Schmidt, Barbara

    2015-01-01

    Malignant melanoma is an aggressive tumour of the skin with increasing incidence, frequent metastasis and poor prognosis. At the same time, it is an immunogenic type of cancer with spontaneous regressions. Most recently, the tumoricidal effect of plasmacytoid dendritic cells (pDC) and their capacity to overcome the immunosuppressive tumour microenvironment are being investigated. In this respect, we studied the effect of the infectious, but replication-deficient, herpes simplex virus 1 (HSV-1) d106S vaccine strain, which lacks essential immediate early genes, in pDC co-cultures with 11 melanoma cell lines. We observed a strong cytotoxic activity, inducing apoptotic and necrotic cell death in most melanoma cell lines. The cytotoxic activity of HSV-1 d106S plus pDC was comparable to the levels of cytotoxicity induced by natural killer cells, but required only a fraction of cells with effector : target ratios of 1 : 20 (P < 0·05). The suppressive activity of cell-free supernatants derived from virus-stimulated pDC was significantly neutralized using antibodies against the interferon-α receptor (P < 0·05). In addition to type I interferons, TRAIL and granzyme B contributed to the inhibitory effect of HSV-1 d106S plus pDC to a minor extent. UV-irradiated viral stocks were significantly less active than infectious particles, both in the absence and presence of pDC (P < 0·05), indicating that residual activity of HSV-1 d106S is a major component and sensitizes the tumour cells to interferon-producing pDC. Three leukaemic cell lines were also susceptible to this treatment, suggesting a general anti-tumour effect. In conclusion, the potential of HSV-1 d106S for therapeutic vaccination should be further evaluated in patients suffering from different malignancies. PMID:26194553

  18. Virologic failure in first-line human immunodeficiency virus therapy with a CCR5 entry inhibitor, aplaviroc, plus a fixed-dose combination of lamivudine-zidovudine: nucleoside reverse transcriptase inhibitor resistance regardless of envelope tropism.

    PubMed

    Demarest, James F; Amrine-Madsen, Heather; Irlbeck, David M; Kitrinos, Kathryn M

    2009-03-01

    The CCR102881 (ASCENT) study evaluated the antiviral activity of the novel CCR5 entry inhibitor aplaviroc plus a fixed-dose combination of lamivudine-zidovudine (Combivir) in drug-naïve human immunodeficiency virus type 1-infected subjects with only CCR5-tropic virus detected in plasma. Although the trial was stopped prematurely due to idiosyncratic hepatotoxicity, eight subjects met protocol-defined virologic failure criteria. Clonal analyses of the viral envelope tropism, aplaviroc susceptibility, and env sequencing were performed on plasma at baseline and at the time of virologic failure. Molecular evolutionary analyses were also performed. The majority of the subjects with virologic failure (six of eight) acquired the lamivudine resistance-associated mutation M184V, and none had evidence of reduced susceptibility to aplaviroc at the time of virologic failure, even at the clonal level. Six subjects with virologic failure maintained CCR5 tropism, while two exhibited a change in population tropism readout to dual/mixed-tropic with R5X4-tropic clones detected prior to therapy. Two evolutionary patterns were observed: five subjects had no evidence of population turnover, while three subjects had multiple lines of evidence for env population turnover. The acquisition of the M184V mutation is the primary characteristic of virologic failure in first-line therapy with aplaviroc plus lamivudine-zidovudine, regardless of the envelope tropism.

  19. Genetic characterization and phylogenetic analysis of host-range genes of Camelpox virus isolates from India.

    PubMed

    Bera, B C; Barua, S; Shanmugasundaram, K; Anand, T; Riyesh, T; Vaid, R K; Virmani, N; Kundu, S; Yadav, N K; Malik, P; Singh, R K

    2015-09-01

    Camelpox virus (CMLV), a close variant of variola virus (VARV) infects camels worldwide. The zoonotic infections reported from India signify the need to study the host-range genes-responsible for host tropism. We report sequence and phylogenetic analysis of five host-range genes: cytokine response modifier B (crmB), chemokine binding protein (ckbp), viral schlafen-like (v-slfn), myxomavirus T4-like (M-T4-like) and b5r of CMLVs isolated from outbreaks in India. Comparative analysis revealed that these genes are conserved among CMLVs and shared 94.5-100 % identity at both nucleotide (nt) and amino acid (aa) levels. All genes showed identity (59.3-98.4 %) with cowpox virus (CPXV) while three genes-crmB, ckbp and b5r showed similarity (92-96.5 %) with VARVs at both nt and aa levels. Interestingly, three consecutive serine residue insertions were observed in CKBP protein of CMLV-Delhi09 isolate which was similar to CPXV-BR and VACVs, besides five point mutations (K53Q, N67I, F84S, A127T and E182G) were also similar to zoonotic OPXVs. Further, few inconsistent point mutation(s) were also observed in other gene(s) among Indian CMLVs. These indicate that different strains of CMLVs are circulating in India and these mutations could play an important role in adaptation of CMLVs in humans. The phylogeny revealed clustering of all CMLVs together except CMLV-Delhi09 which grouped separately due to the presence of specific point mutations. However, the topology of the concatenated phylogeny showed close evolutionary relationship of CMLV with VARV and TATV followed by CPXV-RatGer09/1 from Germany. The availability of this genetic information will be useful in unveiling new strategies to control emerging zoonotic poxvirus infections.

  20. Chikungunya Virus

    MedlinePlus

    ... is key! Prevent Infection. Use mosquito repellent. Chikungunya Virus Distribution Chikungunya in the U.S. What's New Surveillance ... Clinical Challenge For Travelers CDC Travelers' Health Chikungunya Virus Home Prevention Transmission Symptoms & Treatment Geographic Distribution Chikungunya ...

  1. Zika Virus

    MedlinePlus

    Zika is a virus that is spread mostly by mosquitoes. A pregnant mother can pass it to ... through blood transfusions. There have been outbreaks of Zika virus in the United States, Africa, Southeast Asia, ...

  2. Use of dual priming oligonucleotide system-based multiplex RT-PCR combined with high performance liquid chromatography assay for simultaneous detection of five enteric viruses associated with acute enteritis.

    PubMed

    Fan, Wen-Lu; Wang, Zi-Wei; Qin, Yue; Sun, Chao; Liu, Zhong-Mei; Jiang, Yan-Ping; Qiao, Xin-Yuan; Tang, Li-Jie; Li, Yi-Jing; Xu, Yi-Gang

    2017-05-01

    In this study, a specific and sensitive method for simultaneous detection of human astrovirus, human rotavirus, norovirus, sapovirus and enteric adenovirus associated with acute enteritis was developed, based on the specific dual priming oligonucleotide (DPO) system and the sensitive high-performance liquid chromatography (HPLC) analysis. The DPO system-based multiplex reverse transcription-polymerase chain reaction (RT-PCR) combined with HPLC assay was more sensitive than agarose gel electrophoresis analysis and real-time SYBR Green PCR assay, and showed a specificity of 100% and sensitivity of 96%-100%. The high sensitivity and specificity of the assay indicates its great potential to be a useful tool for the accurate diagnosis of enteric virus infections.

  3. Hepadna viruses

    SciTech Connect

    Robinson, W.; Koike, K.; Will, H.

    1987-01-01

    This book examines the molecular biology, disease pathogenesis, epidemiology, and clinical features of hepadna and other viruses with hepatic tropism and outlines future directions and approaches for their management. The volume's six sections provide a review of the various features, mechanisms, and functions of these viruses, ranging from hepadna virus replication and regulation of gene expression to the structure and function of hepadna-virus gene products.

  4. Combinations of two amino acids (Ala40 and Phe75 or Ser40 and Tyr75) in the coat protein of apple chlorotic leaf spot virus are crucial for infectivity.

    PubMed

    Yaegashi, Hajime; Isogai, Masamichi; Tajima, Hiroko; Sano, Teruo; Yoshikawa, Nobuyuki

    2007-09-01

    Amino acid sequences of apple chlorotic leaf spot virus (ACLSV) coat protein (CP) were compared between 12 isolates from apple, plum and cherry, and 109 cDNA clones that were amplified directly from infected apple tissues. Phylogenetic analysis based on the amino acid sequences of CP showed that the isolates and cDNA clones were separated into two major clusters in which the combinations of the five amino acids at positions 40, 59, 75, 130 and 184 (Ala(40)-Val(59)-Phe(75)-Ser(130)-Met(184) or Ser(40)-Leu(59)-Tyr(75)-Thr(130)-Leu(184)) were highly conserved within each cluster. Site-directed mutagenesis using an infectious cDNA clone of ACLSV indicated that the combinations of two amino acids (Ala(40) and Phe(75) or Ser(40) and Tyr(75)) are necessary for infectivity to Chenopodium quinoa plants by mechanical inoculation. Moreover, an agroinoculation assay indicated that the substitution of a single amino acid (Ala(40) to Ser(40) or Phe(75) to Tyr(75)) resulted in extreme reduction in the accumulation of viral genomic RNA, double-stranded RNAs and viral proteins (movement protein and CP) in infiltrated tissues, suggesting that the combinations of the two amino acids at positions 40 and 75 are important for effective replication in host plant cells.

  5. Combinations of mutations in the connection domain of human immunodeficiency virus type 1 reverse transcriptase: assessing the impact on nucleoside and nonnucleoside reverse transcriptase inhibitor resistance.

    PubMed

    Gupta, Soumi; Fransen, Signe; Paxinos, Ellen E; Stawiski, Eric; Huang, Wei; Petropoulos, Christos J

    2010-05-01

    Recent reports have described the effect of mutations in the connection and RNase H domains of reverse transcriptase (RT) on nucleoside and nonnucleoside reverse transcriptase inhibitor (NRTI and NNRTI, respectively) resistance in the presence of thymidine analog resistance mutations (TAMs) and NNRTI mutations (J. H. Brehm, D. Koontz, J. D. Meteer, V. Pathak, N. Sluis-Cremer, and J. W. Mellors, J. Virol. 81:7852-7859, 2007; K. A. Delviks-Frankenberry, G. N. Nikolenko, R. Barr, and V. K. Pathak, J. Virol. 81:6837-6845, 2007; G. N. Nikolenko, K. A. Delviks-Frankenberry, S. Palmer, F. Maldarelli, M. J. Fivash, Jr., J. M. Coffin, and V. K. Pathak, Proc. Natl. Acad. Sci. U. S. A. 104:317-322, 2007; G. N. Nikolenko, S. Palmer, F. Maldarelli, J. W. Mellors, J. M. Coffin, and V. K. Pathak, Proc. Natl. Acad. Sci. U. S. A. 102:2093-2098, 2005; and S. H. Yap, C. W. Sheen, J. Fahey, M. Zanin, D. Tyssen, V. D. Lima, B. Wynhoven, M. Kuiper, N. Sluis-Cremer, P. R. Harrigan, and G. Tachedjian, PLoS Med. 4:e335, 2007). In the present study, novel mutations in the connection domain of RT (T369I/V), first identified in patient-derived viruses, were characterized, and their effects on NNRTI and NNRTI susceptibility were determined. Furthermore, the effect of N348I on NRTI and NNRTI resistance was confirmed. HIV-1 with either N348I or T369I/V demonstrated reduced susceptibility to nevirapine (NVP), efavirenz (EFV), delaviridine (DLV), and zidovudine (ZDV) compared to wild-type HIV-1. However, HIV-1 with T369I and N348I demonstrated 10- to 60-fold resistance to these same drugs. In clinical samples, these two connection domain RT mutations were predominantly observed in viruses containing TAMs and NNRTI mutations and did not alter the susceptible-resistant classifications of these samples. Introduction of T369I, N348I, or T369I/N348I also reduced replication capacity (RC). These observations suggest that it may be of scientific interest to test these mutations against new NNRTI

  6. The combination of IκB kinase β inhibitor and everolimus modulates expression of interleukin‐10 in human T‐cell lymphotropic virus type‐1‐infected T cells

    PubMed Central

    Nishioka, Chie; Ikezoe, Takayuki; Yang, Jing; Udaka, Keiko; Yokoyama, Akihito

    2013-01-01

    Summary Adult T‐cell leukaemia‐lymphoma (ATLL) is an aggressive malignancy of CD4+ CD25+ T lymphocytes, characterized by a severely compromised immunosystem, in which the human T‐cell lymphotropic virus type 1 (HTLV‐1) has been recognized as the aetiological agent. This study found that an IκB kinase β (IKKβ) inhibitor Bay11‐7082 inactivated mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 and transcription factor nuclear factor‐κB in HTLV‐1‐infected T cells; this was significantly enhanced in the presence of the mTOR inhibitor everolimus. In addition, Bay11‐7082 decreased production of the immunosuppressive cytokine interleukin‐10 (IL‐10), which was further down‐regulated when Bay11‐7082 was combined with evelolimus in HTLV‐1‐infected T and ATLL cells isolated from patients. Interleukin‐10 is known to inhibit maturation and the antigen‐presenting function of dendritic cells (DCs). The culture media of HTLV‐1‐infected MT‐1 cells, which contained a large amout of IL‐10, hampered tumour necrosis factor‐α‐induced maturation of DCs isolated from healthy volunteers. Culture supernatant of MT‐1 cells treated with a combination of Bay11‐7082 and everolimus augmented maturation of DCs in association with a decrease in production of IL‐10 and enhanced the allostimulatory function of DCs. Similarly, when DCs isolated from patients with ATLL were treated with the combination of Bay11‐7082 and everolimus, they were fully matured and their capability to stimulate proliferation of lymphocytes was augmented. Taken together, the combination of Bay11‐7082 and everolimus might exhibit immunostimulatory properties in HTLV‐1‐infected T and ATLL cells isolated from patients, and this combination may be potentially therapeutic to regain the compromised immunosystem in ATLL patients. PMID:23278479

  7. Combined Linkage and Association Studies Show that HLA Class II Variants Control Levels of Antibodies against Epstein-Barr Virus Antigens

    PubMed Central

    Cobat, Aurélie; Guergnon, Julien; Brice, Pauline; Fermé, Christophe; Carde, Patrice; Hermine, Olivier; Pendeven, Catherine Le-; Amiel, Corinne; Taoufik, Yassine; Alcaïs, Alexandre; Theodorou, Ioannis; Besson, Caroline; Abel, Laurent

    2014-01-01

    Over 95% of the adult population worldwide is infected with Epstein-Barr virus (EBV). EBV infection is associated with the development of several cancers, including Hodgkin lymphoma (HL). Elevated levels of anti-EBV antibodies have been associated with increased risk of HL. There is growing evidence that genetic factors control the levels of antibodies against EBV antigens. Here, we conducted linkage and association studies to search for genetic factors influencing either anti-viral capsid antigen (VCA) or anti-Epstein Barr nuclear antigen-1 (EBNA-1) IgG levels in a unique cohort of 424 individuals of European origin from 119 French families recruited through a Hodgkin lymphoma (HL) patient. No major locus controlling anti-VCA antibody levels was identified. However, we found that the HLA region influenced anti-EBNA-1 IgG titers. Refined association studies in this region identified a cluster of HLA class II variants associated with anti-EBNA-1 IgG titers (e.g. p = 5×10–5 for rs9268403). The major allele of rs9268403 conferring a predisposition to high anti-EBNA-1 antibody levels was also associated with an increased risk of HL (p = 0.02). In summary, this study shows that HLA class II variants influenced anti-EBNA-1 IgG titers in a European population. It further shows the role of the same variants in the risk of HL. PMID:25025336

  8. Recombinase polymerase amplification combined with a lateral flow dipstick for discriminating between infectious Penaeus stylirostris densovirus and virus-related sequences in shrimp genome.

    PubMed

    Jaroenram, Wansadaj; Owens, Leigh

    2014-11-01

    Penaeus stylirostris densovirus (PstDV) is an important shrimp pathogen that causes mortality in P. stylirostris and runt deformity syndrome (RDS) in Penaeus vannamei and Penaeus monodon. Recently, PstDV-related sequences were found in the genome of P. monodon and P. vannamei. This led to false positive results by PCR-based detection system. Here, a more efficient detection platform based on recombinase polymerase amplification (RPA) and a lateral flow dipstick (LFD) was developed for detecting PstDV. Under the optimal conditions, 30 min at 37°C for RPA followed by 5 min at room temperature for LFD, the protocol was 10 times more sensitive than the Saksmerphrome et al's interim 3-tube nested PCR and showed no cross-reaction with other shrimp viruses. It also reduced false positive results arising from viral inserts to ∼5% compared to 76-78% by the IQ2000™ nested PCR kit and the 309F/R PCR protocol currently recommended by World Organization for Animal Health (OIE) for PstDV detection. Together with simplicity and portability, the protocol serves as an alternative tool to PCR for primarily screening PstDV, which is suitable for both laboratory and field application.

  9. Studies of inactivation, retardation and accumulation of viruses in porous media by a combination of dye labeled and native bacteriophage probes.

    PubMed

    Gitis, Vitaly; Dlugy, Christina; Gun, Jenny; Lev, Ovadia

    2011-06-01

    Penetration of viruses through soils is governed by the processes of transport, reversible adsorption, accumulation and inactivation. Until now, it was difficult to decouple the latter two processes and accurately predict viral fate. The present work describes a novel method-tracer studies with a mixture of native and fluorescent-dyed bacteriophages-that facilitates parallel quantification of the two processes. When the native phages are experiencing both accumulation and inactivation, the labeled ones are inactivated already and therefore can only be accumulated. Thus the effect of inactivation is applicable to native bacteriophages only and depletion of phage concentration due to inactivation can be elucidated from a total phage balance. The novel approach is exemplified by batch and column studies of the effects of temperature, pH, and saturation, on inactivation of MS2 bacteriophage. A three-parameter model accounting for inactivation, reversible adsorption (i.e., retardation), and accumulation is implemented. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Efficacy and Tolerability of Pegylated Interferon and Ribavirin in Combination with Simeprevir to Treat Hepatitis C Virus Infections After Living Donor Liver Transplantation.

    PubMed

    Miuma, Satoshi; Ichikawa, Tatsuki; Miyaaki, Hisamitsu; Haraguchi, Masafumi; Tamada, Yoko; Shibata, Hidetaka; Taura, Naota; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Eguchi, Susumu; Nakao, Kazuhiko

    2016-06-01

    Pegylated interferon and ribavirin plus simeprevir therapy (simeprevir-based triple therapy) has been recently introduced, providing excellent results for nontransplant patients with hepatitis C virus (HCV) infection. However, there are limited data available on its effect on liver transplant recipients. In the present study, we evaluated the efficacy and tolerability of simeprevir-based triple therapy in liver transplant recipients. We treated 9 liver transplant recipients for genotype 1b HCV reinfection with simeprevir-based triple therapy. The efficacy and adverse effects were evaluated until 24 weeks after therapy. All recipients continued immunosuppressive therapy at the same dose as that before therapy induction. Seven of the 9 recipients (77.8%) achieved sustained virological response at 24 weeks. Two recipients (22.2%) experienced viral breakthrough (BT) at 12 and 16 weeks; NS3 HCV mutations conferring resistance to simeprevir were detected in both these patients after BT. Anemia was the most common adverse effect, requiring ribavirin dose reduction and blood transfusion. However, all recipients, except those with BT, completed the 24-week therapy. No recipient experienced cellular rejection during therapy. In conclusion, simeprevir-based triple therapy exhibited high efficacy and tolerability in liver transplant recipients with genotype 1b HCV reinfection.

  11. Combined linkage and association studies show that HLA class II variants control levels of antibodies against Epstein-Barr virus antigens.

    PubMed

    Pedergnana, Vincent; Syx, Laurène; Cobat, Aurélie; Guergnon, Julien; Brice, Pauline; Fermé, Christophe; Carde, Patrice; Hermine, Olivier; Le-Pendeven, Catherine; Amiel, Corinne; Taoufik, Yassine; Alcaïs, Alexandre; Theodorou, Ioannis; Besson, Caroline; Abel, Laurent

    2014-01-01

    Over 95% of the adult population worldwide is infected with Epstein-Barr virus (EBV). EBV infection is associated with the development of several cancers, including Hodgkin lymphoma (HL). Elevated levels of anti-EBV antibodies have been associated with increased risk of HL. There is growing evidence that genetic factors control the levels of antibodies against EBV antigens. Here, we conducted linkage and association studies to search for genetic factors influencing either anti-viral capsid antigen (VCA) or anti-Epstein Barr nuclear antigen-1 (EBNA-1) IgG levels in a unique cohort of 424 individuals of European origin from 119 French families recruited through a Hodgkin lymphoma (HL) patient. No major locus controlling anti-VCA antibody levels was identified. However, we found that the HLA region influenced anti-EBNA-1 IgG titers. Refined association studies in this region identified a cluster of HLA class II variants associated with anti-EBNA-1 IgG titers (e.g. p = 5×10(-5) for rs9268403). The major allele of rs9268403 conferring a predisposition to high anti-EBNA-1 antibody levels was also associated with an increased risk of HL (p = 0.02). In summary, this study shows that HLA class II variants influenced anti-EBNA-1 IgG titers in a European population. It further shows the role of the same variants in the risk of HL.

  12. [Utilization of Uracil-DNA glycosylase for combining reverse transcription and anti-contamination with polymerase chain reaction in hepatitis C virus].

    PubMed

    DU, Shao Cai; Zhang, Rui; Li, Jun Qiang; Wei, Lai

    2007-08-18

    To develop a hepatitis C virus(HCV) reverse transcription-polymerase chain reaction (RT-PCR) assay using Uracil-DNA glycosylase (UDG) for amplicon contamination control and evaluate the temperature and UDG concentrations for anti-contamination. In this new HCV RT-PCR assay, reverse transcription, UDG anti-contamination and the first PCR were carried out at the same time. The layer candles were used to prevent the contamination in the second PCR. dU-DNA was used as quality control for UDG anti-contamination and templates to determine the sensitivity of the new HCV RT-PCR assay. HCV cDNA was detected by DNA enzyme immunoassay (DNA-EIA). Complete degradation of amplicon DNA was observed on the conditions of 0.2au UDG per reaction volume respectively at 37 degrees C and 42 degrees C for 40 min. The anti-contamination condition also could eliminate all detectible dU-DNA, including the highest concentration of amplicon DNA.The 1:10(4) dilution of the HCV RNA sample containing 2.110x 10(5)copies /mL copies of RNA could be detected. Our results indicate that this new RT-PCR assay can control the contamination stringently and is sensitive as well.

  13. Virus maturation.

    PubMed

    Delgui, Laura R; Rodríguez, José F

    2013-01-01

    The formation of infectious virus particles is a highly complex process involving a series of sophisticated molecular events. In most cases, the assembly of virus structural elements results in the formation of immature virus particles unable to initiate a productive infection. Accordingly, for most viruses the final stage of the assembly pathway entails a set of structural transitions and/or biochemical modifications that transform inert precursor particles into fully infectious agents. In this chapter, we review the most relevant maturation mechanisms involved in the generation of infectious virions for a wide variety of viruses.

  14. Hepatitis E virus coinfection with hepatotropic viruses in Egyptian children.

    PubMed

    Zaki, Maysaa El Sayed; Salama, Osama Saad; Mansour, Fathy Awaad; Hossein, Shaimaa

    2008-06-01

    Major hepatotropic viruses continue to be important causes of acute viral hepatitis in developing countries. This work was carried out to detect the seroprevalence of hepatitis E virus (HEV) markers in children with acute viral hepatitis due to hepatotropic viruses (A, B and C) and non-A, non-B, non-C acute hepatitis, and to ascertain the influence of HEV superinfection in individuals infected with hepatitis viruses (A, B and C). We studied prospectively 162 children with sporadic acute hepatitis who reported to our hospital. Thirteen healthy controls were also included in the study. Laboratory investigations were performed, including complete liver function tests. Complete serological profiles for hepatitis viruses A, B, C and E were evaluated. HEV immunoglobulin G was detected with highest percentage among patients with hepatitis B (56.7%), followed by patients with hepatitis C virus (52.0%), hepatitis A virus (34.1%) and combined hepatitis B and C viruses (30.0%). The detection rate among patients with non-A, non-B, non-C hepatitis was 7.1%. HEV immunoglobulin M was found in 4.5% of hepatitis A virus patients and in 3.3% of hepatitis B patients. The prevalence of HEV immunoglobulin G and immunoglobulin M correlated with the levels of hepatic aspartate aminotransferase and alanine aminotransferase in patients with dual markers of infection with hepatitis E and other viruses compared to patients with acute hepatitis due to A and C viruses. HEV serological markers are common among children with acute viral hepatitis, especially from hepatitis C and B viruses. There may be increased sensitivity to HEV coinfection in association with hepatitis B and C infections. Dual infection with HEV and other hepatotropic viruses was associated with greater elevation of aspartate and alanine aminotransferases.

  15. Liver toxicity of antiretroviral combinations including fosamprenavir plus ritonavir 1400/100 mg once daily in HIV/hepatitis C virus-coinfected patients.

    PubMed

    Merchante, Nicolás; López-Cortés, Luis F; Delgado-Fernández, Marcial; Ríos-Villegas, Maria J; Márquez-Solero, Manuel; Merino, Dolores; Pasquau, Juan; García-Figueras, Carolina; Martínez-Pérez, Maria Angeles; Omar, Mohamed; Rivero, Antonio; Macías, Juan; Mata, Rosario; Pineda, Juan Antonio

    2011-07-01

    Abstract Our objective was to evaluate the liver toxicity of antiretroviral regimens including fosamprenavir plus ritonavir (FPV/r) 1400/100 mg once daily (QD) in HIV/hepatitis C virus (HCV)-coinfected patients. This was a prospective cohort study that included 117 HIV/HCV-coinfected patients who started FPV/r 1400/100 mg QD-based antiretroviral therapy (ART) and who neither had received a previous antiretroviral regimen containing FPV nor had a past history of virologic failure while receiving protease inhibitors (PI). The primary end point of the study was the occurrence of grade 3-4 liver enzymes elevations (LEE) within 1 year after starting FPV/r QD. Factors potentially associated with grade 3-4 LEE, including baseline liver fibrosis, were analyzed. Eleven (9%) patients had a grade 3-4 LEE during the follow-up, resulting in an incidence of severe liver toxicity of 9% (95% confidence interval 4.1-14.6%). None of these cases led to FPV/r discontinuation. Baseline liver fibrosis could be assessed in 97 (83%) patients. Six of 71 patients (8%) with significant fibrosis had a grade 3-4 LEE versus 2 of 26 (8%) without significant fibrosis (p=1.0). Twenty (21%) patients had cirrhosis at baseline. There were no cases of LEE among cirrhotics. In conclusion, the incidence of severe liver toxicity after 1