Rugoho, I; Edwards, G R
2018-01-01
The objective of this study was to examine the effect of wintering pregnant, nonlactating dairy cows outdoors on either kale or grass, fed in 1 [11 kg dry matter (DM) of kale or grass + 3 kg DM of baled barley straw offered in the morning] or 2 allocations (5.5 kg DM of kale or grass grazed + 1.5 kg DM of barley straw offered morning and afternoon) per day. The body condition score (BCS) gain over the 47-d winter feeding period was higher for grass-fed (0.5 BCS units) than kale-fed cows (0.3 BCS units), but was unaffected by feeding frequency. Forage DM utilization was higher for kale-fed (97%) than grass-fed cows (76%), leading to higher estimated dry matter intake (DMI) in kale-fed (10.7 kg of DM/cow per day) than grass-fed cows (7.7 kg of DM/cow per day). Forage DM utilization and estimated DMI were not affected by feeding frequency. Prehension bite rate was greater for grass-fed (37.3 bites/min) than kale-fed cows (7.6 bites/min), but more mastication bites were required for kale-fed cows. Cumulative DMI after 2, 3, and 6 h was greater in cows allocated forage once than twice a day and for kale than grass after 3 and 6 h. Mean eating time was greater for cows offered forage once (477 min) than twice (414 min) per day. In conclusion, increasing feeding frequency from once to twice per day decreased the intake rate within the first 6 h after allocation, but did not affect total daily DMI, DM utilization or BCS gain. Thus, moving cows more frequently would not have any significant advantage. It may increase labor requirements, thereby creating a more challenging wintering management than feeding once per day. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Marston, S P; Clark, G W; Anderson, G W; Kersbergen, R J; Lunak, M; Marcinkowski, D P; Murphy, M R; Schwab, C G; Erickson, P S
2011-06-01
The objective of these experiments was to compare 4 total mixed rations fed to USDA-certified organic dairy cows in New England. Forty-eight Jersey cows from the University of New Hampshire (UNH) and 64 Holstein cows from the University of Maine (UMaine) were assigned to a 2 × 2 factorial arrangement of treatments testing the main effects of corn silage versus grass silage as the forage base and commodity concentrates versus a complete pelleted concentrate mixture. Treatment diets were fed as a total mixed ration for 8 wk during the winter and spring months of 2007, 2008, and 2009. Milk yield, component, and quality data were recorded and used to calculate the value of the milk produced for each cow. The dry matter intake (DMI) was recorded and used to calculate the average cost per cow per day of each diet. Income over feed costs were calculated for each diet using milk value and feed cost data. Feed cost and income over feed cost data were resampled using bootstrap methodology to examine potential patterns. Milk yield, milk fat and true protein concentrations, and SCC were similar among treatments. Cows at UNH fed corn silage tended to have higher DMI and lower milk urea nitrogen than did cows fed grass silage, whereas cows fed pellets had higher DMI than cows fed commodities. Cows at UNH fed commodities tended to have higher body condition scores than those fed pellets. Cows at UMaine fed commodities tended to have higher DMI than did cows fed pellets, and cows fed corn silage had lower milk urea nitrogen than did cows fed grass silage. Body weights and body condition scores were not different for cows at UMaine. Feed costs were significantly higher for corn silage diets and diets at UNH containing pellets, but not at UMaine. The calculated value of the milk and income over feed costs did not differ among treatments at either university. Bootstrap replications indicated that the corn silage with commodities diet generally had the highest feed cost at both UNH and UMaine, whereas grass silage diets containing commodities generally had the lowest cost. In contrast, the grass silage with commodities diets had the highest income over feed cost in the majority of the replications at both UNH and UMaine replications, whereas the corn silage with commodities diets had the lowest rank. Similar results were observed when forage prices were increased or decreased by 5, 10, and 25% above or below the actual feed price. Feeding a grass silage-based diet supplemented with commodity concentrates may have an economic advantage for dairy producers in New England operating under an organic system of production. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
On-farm feeding interventions to increase milk production in lactating dairy cows.
Wanapat, Metha; Foiklang, Suban; Phesatcha, Kampanat; Paoinn, Chainarong; Ampapon, Thiwakorn; Norrapoke, Thitima; Kang, Sungchhang
2017-04-01
The objective of this study was to investigate the effect of tropical legume (Phaseolus calcaratus) mixed with ruzi grass feeding on the performance of lactating dairy cows. Eighty-eight lactating dairy cows from 22 smallholder dairy farms northeast of Thailand were assigned to respective dietary treatments according to a Randomized Completely Block Design (RCBD). Four cows were selected from each farm and were allocated into two different feeding groups as follows: ruzi grass and P. calcaratus mixed with ruzi grass (1:1 ratio), respectively. All cows were fed with roughage ad libitum with 1:2 ratio of concentrate diet to milk yield. The results revealed that total dry matter intake, ruminal volatile fatty acids, and ammonia nitrogen concentration were enhanced when cows were fed with P. calcaratus mixed with ruzi grass (P < 0.05). Moreover, feeding tropical legume mixed with ruzi grass could increase milk production and milk protein in this study. Importantly, an economical assessment showed that milk income and the profit from milk sale were significantly greater in cows fed the mixture of roughage than those from the non-mixed group. This study concluded that high-quality roughage as tropical legume mixed with ruzi grass at the ratio of 1:1 brought out the remarkable and practical implementation for smallholder dairy farms, and the intervention was practical and deserving of more on-farm intervention.
Gidlund, H; Hetta, M; Krizsan, S J; Lemosquet, S; Huhtanen, P
2015-11-01
This study evaluated the effects of soybean meal (SBM) and heat-moisture-treated canola meal (TCM) on milk production and methane emissions in dairy cows fed grass silage-based diets. Twenty-eight Swedish Red cows were used in a cyclic change-over experiment with 4 periods of 21 d and with treatments in 2 × 4 factorial arrangement (however, the control diet without supplementary protein was not fed in replicate). The diets were fed ad libitum as a total mixed ration containing 600 g/kg of grass silage and 400 g/kg of concentrates on a dry matter (DM) basis. The concentrate without supplementary protein consisted of crimped barley and premix (312 and 88 g/kg of DM), providing 130 g of dietary crude protein (CP)/kg of DM. The other 6 concentrates were formulated to provide 170, 210, or 250 g of CP/kg of DM by replacing crimped barley with incremental amounts of SBM (50, 100, or 150 g/kg of diet DM) or TCM (70, 140, or 210 g/kg of diet DM). Feed intake was not influenced by dietary CP concentration, but tended to be greater in cows fed TCM diets compared with SBM diets. Milk and milk protein yield increased linearly with dietary CP concentration, with greater responses in cows fed TCM diets compared with SBM diets. Apparent N efficiency (milk N/N intake) decreased linearly with increasing dietary CP concentration and was lower for cows fed SBM diets than cows fed TCM diets. Milk urea concentration increased linearly with increased dietary CP concentration, with greater effects in cows fed SBM diets than in cows fed TCM diets. Plasma concentrations of total AA and essential AA increased with increasing dietary CP concentration, but no differences were observed between the 2 protein sources. Plasma concentrations of Lys, Met, and His were similar for both dietary protein sources. Total methane emissions were not influenced by diet, but emissions per kilogram of DM intake decreased quadratically, with the lowest value observed in cows fed intermediate levels of protein supplementation. Methane emissions per kilogram of energy-corrected milk decreased more when dietary CP concentration increased in TCM diets compared with SBM diets. Overall, replacing SBM with TCM in total mixed rations based on grass silage had beneficial effects on milk production, N efficiency, and methane emissions across a wide range of dietary CP concentrations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Rooke, J A; Duthie, C-A; Hyslop, J J; Morgan, C A; Waterhouse, T
2016-08-01
The effects on cow and calf performance of replacing grass silage with brewers grains in diets based on barley straw and fed to pregnant beef cows are reported. Using a 2 × 2 factorial arrangement of breed and diet, cows pregnant by artificial insemination (n = 34) of two breeds (cross-bred Limousin, n = 19 and pure-bred Luing, n = 15) were fed diets ad libitum which consisted of either (g/kg dry matter) barley straw (664) and grass silage (325; GS) or barley straw (783) and brewers grains (206, BG) and offered as total mixed rations. From gestation day (GD) 168 until 266, individual daily feed intakes were recorded and cow body weight (BW) and body condition score (BCS) measured weekly. Calving date, calf sex, birth and weaning BW, and calf age at weaning were also recorded. Between GD 168 and 266, cross-bred Limousin cows gained more weight than Luing cows (p < 0.05) and cows offered BG gained more weight than cows offered GS (p < 0.001). Luing cows lost more BCS than cross-bred Limousin cows (p < 0.05), but diet did not affect BCS. There were no differences in dry matter intake as a result of breed or diet. Calf birth BW, however, was greater for cows fed BG than GS (44 vs. 38 kg, SEM 1.0, p < 0.001) with no difference between breeds. At weaning, calves born to BG-fed cows were heavier than those born to GS-fed cows (330 vs. 286 kg, SEM 9.3, p < 0.01). In conclusion, replacement of grass silage with brewers grains improved the performance of beef cows and increased calf birth and weaning BW. Further analysis indicated that the superior performance of cows offered the BG diet was most likely due to increases in protein supply which may have improved both energy and protein supply to the foetus. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
Brunette, T; Baurhoo, B; Mustafa, A F
2016-01-01
This study investigated the effects of dietary replacement of grass silage (GS) with forage millet silages that were harvested at 2 stages of maturity [i.e., vegetative stage and dough to ripe seed (mature) stage] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a total mixed ration (60:40 forage:concentrate ratio). Dietary treatments included control (GS), vegetative millet silage (EM), and mature millet silage (MM) diets. Experimental silages comprised 24% of dietary dry matter (DM). Soybean meal and slow-release urea were added in millet diets to balance for crude protein (CP). Three additional ruminally fistulated cows were used to determine the effect of treatments on ruminal fermentation and total-tract nutrient utilization. Cows fed the GS diet consumed more DM (22.9 vs. 21.7 ± 1.02 kg/d) and CP (3.3 vs. 3.1 ± 0.19 kg/d), and similar starch (4.9 ± 0.39 kg/d) and neutral detergent fiber (NDF; 8.0 ± 0.27 kg/d) compared with cows fed the MM diet. Replacing the EM diet with the MM diet did not affect DM, NDF, or CP intakes. Cows fed the MM diet produced less milk (26.1 vs. 29.1 ± 0.79 kg/d), energy-corrected milk (28.0 vs.30.5 ± 0.92 kg/d), and 4% fat-corrected milk (26.5 vs. 28.3 ± 0.92 kg/d) yields than cows fed the GS diet. However, cows fed diets with EM and GS produced similar yields of milk, energy-corrected milk, and 4% fat-corrected milk. Feed efficiency (milk yield:DM intake) was greater only for cows fed the GS diet than those fed the MM diet. Milk protein yield and concentration were greater among cows fed the GS diet compared with those fed the EM or MM diets. Milk fat and lactose concentrations were not influenced by diet. However, milk urea N was lower for cows fed the GS diet than for those fed the MM diet. Ruminal NH3-N was greater for cows fed the EM diet than for those fed the GS diet. Total-tract-digestibility of DM (average = 66.1 ± 3.3%), NDF (average = 55.1 ± 2.4%), CP (average = 63.6 ± 4.2%), and gross energy (average = 64.5 ± 2.6%) were not influenced by experimental diets. We concluded that cows fed GS and EM diets had comparable performance, whereas milk yield was significantly reduced with the MM diet, likely because reduced intakes of DM and net energy for lactation. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
We investigated the interactions of molasses or corn meal [nonstructural carbohydrate (NSC) sources] with flaxseed meal or a soybean-sunflower meal protein mix [rumen-degradable protein (RDP) sources] on animal production, milk fatty acids profile, and nutrient utilization in organic Jersey cows fed...
Zebeli, Qendrim; Tafaj, Myqerem; Junck, Benjamin; Mansmann, Dominik; Steingass, Herbert; Drochner, Winfried
2008-06-01
The study evaluated the effects of three different theoretical particle lengths (TPL) of grass silage on the distribution of particle fractions of the diet and the resulting effects on fermentation profile and concentrations of protozoa and mixed bacterial mass in the rumen of three lactating Holstein cows fed total mixed rations (45% grass silage, 5% grass hay and 50% concentrate) ad libitum. Decreasing TPL of grass silage (long, medium, short) reduced particles retained on the 19-mm sieve of the Penn State Particle Separator, while particle fractions from 8 mm to 19 mm and smaller than 8 mm were increased. Different TPL did not affect pH and the concentration of volatile fatty acids in the rumen. However, lowering the TPL from long to medium increased significantly the bicarbonate concentration, acetate proportion and protozoal number in the rumen, whereas the proportion of bacterial protein in ruminal digesta and its amino acid concentration were significantly increased by the short TPL. For the current feeding conditions, it can be concluded that increasing the fraction of particles between 8 and 19 mm and probably even the fraction below 8 mm by decreasing TPL of grass silage do not adversely affect rumen conditions and can be beneficial in terms of optimising concentration and activity of ruminal microbiota in high-yielding dairy cows.
Sinclair, L A; Edwards, R; Errington, K A; Holdcroft, A M; Wright, M
2015-12-01
In total, 20 multiparous Holstein-Friesian dairy cows received one of four diets in each of four periods of 28-day duration in a Latin square design to test the hypothesis that the inclusion of lucerne in the ration of high-yielding dairy cows would improve animal performance and milk fatty acid (FA) composition. All dietary treatments contained 0.55 : 0.45 forage to concentrates (dry matter (DM) basis), and within the forage component the proportion of lucerne (Medicago sativa), grass (Lolium perenne) and maize silage (Zea mays) was varied (DM basis): control (C)=0.4 : 0.6 grass : maize silage; L20=0.2 : 0.2 : 0.6 lucerne : grass : maize silage; L40=0.4 : 0.6 lucerne : maize silage; and L60=0.6 : 0.4 lucerne : maize silage. Diets were formulated to contain a similar CP and metabolisable protein content, with the reduction of soya bean meal and feed grade urea with increasing content of lucerne. Intake averaged 24.3 kg DM/day and was lowest in cows when fed L60 (P0.05) by dietary treatment. Digestibility of DM, organic matter, CP and fibre decreased (P<0.01) with increasing content of lucerne in the diet, although fibre digestibility was similar in L40 and L60. It is concluded that first cut grass silage can be replaced with first cut lucerne silage without any detrimental effect on performance and an improvement in the milk FA profile, although intake and digestibility was lowest and plasma urea concentrations highest in cows when fed the highest level of inclusion of lucerne.
Duthie, C-A; Rooke, J A; Hyslop, J J; Waterhouse, A
2015-10-01
Increasing the concentration of dietary lipid is a promising strategy for reducing methane (CH4) emissions from ruminants. This study investigated the effect of replacing grass silage with brewers' grains on CH4 emissions of pregnant, non-lactating beef cows of two breeds. The experiment was a two×two factorial design comprising two breeds (LIMx, crossbred Limousin; and LUI, purebred Luing) and two diets consisting of (g/kg diet dry matter (DM)) barley straw (687) and grass silage (301, GS), or barley straw (763) and brewers' grains (226, BG), which were offered ad libitum. Replacing GS with BG increased the acid-hydrolysed ether extract concentration from 21 to 37 g/kg diet DM. Cows (n=48) were group-housed in equal numbers of each breed across two pens and each diet was allocated to one pen. Before measurements of CH4, individual dry matter intake (DMI), weekly BW and weekly body condition score were measured for a minimum of 3 weeks, following a 4-week period to acclimatise to the diets. CH4 emissions were subsequently measured on one occasion from each cow using individual respiration chambers. Due to occasional equipment failures, CH4 measurements were run over 9 weeks giving 10 observations for each breed×treatment combination (total n=40). There were no differences between diets for daily DMI measured in the chambers (9.92 v. 9.86 kg/day for BG and GS, respectively; P>0.05). Cows offered the BG diet produced less daily CH4 than GS-fed cows (131 v. 156 g/day: P0.05). However, when expressed as a proportion of metabolic BW (BW0.75), LUI cows had greater DMI than LIMx cows (84.5 v. 75.7 g DMI/kg BW0.75, P<0.05) and produced more CH4 per kg BW0.75 than LIMx cows (1.30 v. 1.05 g CH4/kg BW0.75; P<0.01). Molar proportions of acetate were higher (P<0.001) and propionate and butyrate lower (P<0.01) in rumen fluid samples from BG-fed compared with GS-fed cows. This study demonstrated that replacing GS with BG in barley straw-based diets can effectively reduce CH4 emissions from beef cows, with no suppression of DMI.
Hynes, D N; Stergiadis, S; Gordon, A; Yan, T
2016-11-01
Although many studies have investigated mitigation strategies for methane (CH 4 ) output from dairy cows fed a wide variety of diets, research on the effects of concentrate crude protein (CP) content on CH 4 emissions from dairy cows offered fresh grass is limited. The present study was designed to evaluate the effects of cow genotype and concentrate CP level on nutrient digestibility, energy utilization, and CH 4 emissions in dairy cows offered fresh-grass diets. Twelve multiparous lactating dairy cows (6 Holstein and 6 Holstein × Swedish Red) were blocked into 3 groups for each breed and assigned to a low-, medium-, or high-CP concentrate diet [14.1, 16.1, and 18.1% CP on a dry matter (DM) basis, respectively], in a 3-period changeover study (25d per period). Total diets contained (DM basis) 32.8% concentrates and 67.2% perennial ryegrass, which was harvested daily. All measurements were undertaken during the final 6d of each period: digestibility measurements for 6d and calorimetric measurements in respiration chambers for 3d. Feed intake and milk production data were reported in a previous paper. We observed no significant interaction between concentrate CP level and cow genotype on any parameter. Concentrate CP level had no significant effect on any energy utilization parameter, except for urinary energy output, which was positively related to concentrate CP level. Similarly, concentrate CP content had no effect on CH 4 emission (g/d), CH 4 per kg feed intake, or nutrient digestibility. Cross breeding of Holstein cows significantly reduced gross energy, digestible energy, and metabolizable energy intake, heat production, and milk energy output. However, cow genotype had no significant effect on energy utilization efficiency or CH 4 parameters. Furthermore, the present study yielded a value for gross energy lost as CH 4 (5.6%) on fresh grass-based diets that was lower than the widely accepted value of 6.5%. The present findings indicate that reducing concentrate CP content from 18.1 to 14.1% may not be a successful way of alleviating CH 4 emissions from lactating dairy cows offered good-quality fresh grass, but grazing cows could be offered a low-CP concentrate without compromising energy utilization efficiency. Further research is needed to investigate whether larger differences in dietary CP content may yield positive results. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Petit, Helene V
2002-06-01
A total of 90 lactating Holstein cows averaging 628 kg (SE = 8) of body weight (BW) were allotted at calving to 30 groups of three cows blocked for similar calving dates to determine the effects of feeding whole untreated flaxseed on milk production and composition, fatty acid composition of blood and milk, and digestibility, and to determine whether flaxseed could substitute for other sources of fat such as Megalac and micronized soybeans. Cows were fed a total mixed diet based on grass and corn silage and fat supplements for ad libitum intake. The experiment was carried out from calving up to wk 16 of lactation. Cows within each block were assigned to one of the three isonitrogenous, isoenergetic, and isolipidic supplements based on either whole flaxseed (FLA), Megalac (MEG), or micronized soybeans (SOY). Intake of dry matter and change in BW were similar among diets. Cows fed FLA had greater milk yield than those fed MEG (35.7 vs. 33.5 kg/d) and there was no difference between cows fed FLA and those fed SOY (34.4 kg/d). Fat percentage was higher in the milk of cows fed MEG (4.14%) than in the milk of those fed FLA (3.81%) or SOY (3.70%), but milk protein percentage was higher for cows fed FLA (2.98%) than for those fed MEG (2.86%) and SOY (2.87%). Digestibilities of acid detergent fiber, neutral detergent fiber, and ether extract were lower for cows fed FLA than for those fed SOY and MEG. Retention of N was similar among diets. Feeding FLA resulted in the lowest omega-6-to-omega-3-fatty-acids ratio, which would improve the nutritive value of milk from a human health point of view. The data suggest that micronized soybeans and Megalac can be completely substituted by whole untreated flaxseed as the fat source in the diet of early lactating cows without any adverse effect on production and that flaxseed increased milk protein percentage and its omega-6-to-omega-3-fatty-acids ratio.
USDA-ARS?s Scientific Manuscript database
Ergot alkaloids in endophyte-infected grasses inhibit prolactin (PRL) secretion and reduce milk production when fed to lactating cows. However, we have shown this affect is temporal in that pre-partum consumption of inflected seed throughout the dry period does not inhibit subsequent milk productio...
Sinclair, L A; Johnson, D; Wilson, S; Mackenzie, A M
2017-06-01
To test the hypothesis that the metabolism of Cu in dairy cows is affected by basal forage and added S and Mo, 56 dairy cows that were 35 (standard error ± 2.2) days postcalving and yielding 38.9 kg of milk/d (standard error ± 0.91) were offered 1 of 4 diets in a 2 × 2 factorial design for a 14-wk period. The 4 diets contained approximately 20 mg of Cu/kg of dry matter (DM), and had a corn silage-to-grass silage ratio of 0.75:0.25 (C) or 0.25:0.75 (G) and were either unsupplemented (-) or supplemented (+) with an additional 2 g of S/kg of DM and 6.5 mg of Mo/kg of DM. We found an interaction between forage source and added S and Mo on DM intake, with cows offered G+ having a 2.1 kg of DM lower intake than those offered G-, but no effect on the corn silage-based diets. Mean milk yield was 38.9 kg/d and we observed an interaction between basal forage and added S and Mo, with yield being decreased in cows offered G+ but increased on C+. No effect of dietary treatment on milk composition or live weight was noted, but body condition was lower in cows fed added S and Mo irrespective of forage source. We found an interaction between forage source and added S and Mo on milk somatic cell count, which was higher in cows offered G+ compared with G-, but not in cows fed the corn silage-based diets, although all values were low (mean values of 1.72, 1.50, 1.39, and 1.67 log 10 /mL for C-, C+, G-, and G+, respectively). Mean plasma Cu, Fe, and Mn concentrations were 13.8, 41.3, and 0.25 µmol/L, respectively, and were not affected by dietary treatment, whereas plasma Mo was 0.2 µmol/L higher in cows receiving added S and Mo. The addition of dietary S and Mo decreased liver Cu balance over the study period in cows fed either basal forage, but the decrease was considerably greater in cows receiving the grass silage-based diet. Similarly, hepatic Fe decreased more in cows receiving G than C when S and Mo were included in the diet. We concluded that added S and Mo reduces hepatic Cu reserves irrespective of basal forage source, but this decrease is considerably more pronounced in cows receiving grass silage- than corn silage-based rations and is associated with a decrease in intake and milk performance and an increase in milk somatic cell count. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bougouin, A; Ferlay, A; Doreau, M; Martin, C
2018-04-18
The aim of the study was to compare the effect of fiber- or starch-rich diets based on grass silage, supplemented or not with bicarbonate, on CH 4 emissions and milk fatty acid (FA) profile in dairy cows. The experiment was conducted as a 4 × 4 Latin square design with a 2 × 2 factorial arrangement: carbohydrate type [starch- or fiber-rich diets with dietary starch level of 23.1 and 5.9% on a dry matter basis, respectively], without or with bicarbonate addition [0 and 1% of the dry matter intake, respectively]. Four multiparous lactating Holstein cows were fed 4 diets with 42% grass silage, 8% hay, and 50% concentrate in 4 consecutive 4-wk periods: (1) starch-rich diet, (2) starch-rich diet with bicarbonate, (3) fiber-rich diet, and (4) fiber-rich diet with bicarbonate. Intake and milk production were measured daily and milk composition was measured weekly; CH 4 emission and total-tract digestibility were measured simultaneously (5 d, wk 4) when animals were in open-circuit respiration chambers. Sensors continuously monitored rumen pH (3 d, wk 4), and fermentation parameters were analyzed from rumen fluid samples taken before feeding (1 d, wk 3). Cows fed starch-rich diets had less CH 4 emissions (on average, -18% in g/d; -15% in g/kg of dry matter intake; -19% in g/kg of milk) compared with fiber-rich diets. Carbohydrate type did not affect digestion of nutrients, except starch, which increased with starch-rich diets. The decrease in rumen protozoa number (-36%) and the shift in rumen fermentation toward propionate at the expense of butyrate for cows fed the starch-rich diets may be the main factor in reducing CH 4 emissions. Milk of cows fed starch-rich diets had lower concentrations in trans-11 C18:1, sum of cis-C18, cis-9,trans-11 conjugated linoleic acid (CLA), and sum of CLA, along with greater concentration of some minor isomers of CLA and saturated FA in comparison to the fiber-rich diet. Bicarbonate addition did not influence CH 4 emissions or nutrient digestibility regardless of the carbohydrate type in the diet. Rumen pH increased with bicarbonate addition, whereas other rumen parameters and milk FA composition were almost comparable between diets. Feeding dairy cows a starch-rich diet based on grass silage helps to limit the negative environmental effect of ruminants, but does not lead to greater milk nutritional value because milk saturated FA content is increased. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Hart, K J; Huntington, J A; Wilkinson, R G; Bartram, C G; Sinclair, L A
2015-06-01
It is well-established that altering the proportion of starch and fibre in ruminant diets can alter ruminal and post-ruminal digestion, although quantitative evidence that this reduces enteric methane (CH4) production in dairy cattle is lacking. The objective of this study was to examine the effect of varying grass-to-maize silage ratio (70 : 30 and 30 : 70 DM basis), offered ad libitum, with either a concentrate that was high in starch or fibre, on CH4 production, intake, performance and milk composition of dairy cows. A total of 20 cows were allocated to one of the four experimental diets in a two-by-two factorial design run as a Latin square with each period lasting 28 days. Measurements were conducted during the final 7 days of each period. Cows offered the high maize silage ration had a higher dry matter intake (DMI), milk yield, milk energy output and lower CH4 emissions when expressed per kg DMI and per unit of ingested gross energy, but there was no difference in total CH4 production. Several of the milk long-chain fatty acids (FA) were affected by forage treatment with the most notable being an increase in 18:0, 18:1 c9, 18:2 c9 c12 and total mono unsaturated FA, observed in cows offered the higher inclusion of maize silage, and an increase in 18:3 c9 c12 c15 when offered the higher grass silage ration. Varying the composition of the concentrate had no effect on DMI or milk production; however, when the high-starch concentrate was fed, milk protein concentration and milk FAs, 10:0, 14:1, 15:0, 16:1, increased and 18:0 decreased. Interactions were observed for milk fat concentration, being lower in cows offered high-grass silage and high-fibre concentrates compared with the high-starch concentrate, and FA 17:0, which was the highest in milk from cows fed the high-grass silage diet supplemented with the high-starch concentrate. In conclusion, increasing the proportion of maize silage in the diets of dairy cows increased intake and performance, and reduced CH4 production, but only when expressed on a DM or energy intake basis, whereas starch-to-fibre ratio in the concentrate had little effect on performance or CH4 production.
Halmemies-Beauchet-Filleau, A; Kairenius, P; Ahvenjärvi, S; Crosley, L K; Muetzel, S; Huhtanen, P; Vanhatalo, A; Toivonen, V; Wallace, R J; Shingfield, K J
2013-04-01
The effect of forage conservation method on ruminal lipid metabolism and microbial ecology was examined in 2 complementary experiments in cows. Treatments comprised fresh chopped grass, barn-dried hay, or untreated (UTS) or formic acid-treated silage (FAS) prepared from the same grass sward. Preparation of conserved forages coincided with the collection of samples from cows offered fresh grass. In the first experiment, 5 multiparous Finnish Ayrshire cows (229 d in milk) were used to compare the effects of feeding diets based on grass followed by hay during 2 consecutive 14-d periods separated by a 5-d transition during which extensively wilted grass was fed. In the second experiment, 5 multiparous Finnish Ayrshire cows (53 d in milk) were assigned to 1 of 2 blocks and allocated treatments according to a replicated 3×3 Latin square design with 14-d periods to compare the effects of hay, UTS, and FAS. Cows received 7 or 9 kg/d of the same concentrate in experiments 1 and 2, respectively. Conservation of grass by drying, but not ensiling, decreased forage fatty acid content primarily due to losses of 18:2n-6 and 18:3n-3. Compared with grass, feeding hay had no effect on dry matter intake (DMI), rumen pH, or fermentation characteristics, other than increasing ammonia content, but lowered whole-tract organic matter and fiber digestibility (experiment 1). Relative to hay, silage increased DMI, rumen volatile fatty acid (VFA) concentrations, and molar proportions of butyrate, and decreased molar acetate proportions (experiment 2). Compared with UTS, FAS increased DMI, had no effect on rumen ammonia or VFA concentrations, but tended to lower rumen pH and the molar ratio of lipogenic to glucogenic VFA. Conservation method had no substantial effect on ruminal or whole-tract digestibility coefficients. Compared with fresh grass and silages, hay decreased lipolysis and biohydrogenation (BH) of dietary unsaturates in the rumen, resulting in similar flows of 18:2n-6 and 18:3n-3, but lower amounts of trans-11 18:1 and Δ11,13 18:2 at the omasum. The extent of silage fermentation had minimal influence on ruminal lipid metabolism. Treatments were not associated with changes in the relative abundance of specific bacteria known to be capable of BH or rumen protozoal numbers. In conclusion, conservation method altered forage lipids, the extent of lipolysis and BH in the rumen, and the flow of fatty acids at the omasum, in the absence of substantial changes in ruminal Butyrivibrio populations. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
TA study was conducted to compare nutrient flows determined by a reticular sampling technique with those made by sampling of digesta from the omasal canal. Six lactating dairy cows fitted with ruminal cannulas were used in a design with a 3 x 2 factorial arrangement of treatments and 4 periods. Trea...
Zafeiraki, Effrosyni; Vassiliadou, Irene; Costopoulou, Danae; Leondiadis, Leondios; Schafft, Helmut A; Hoogenboom, Ron L A P; van Leeuwen, Stefan P J
2016-08-01
Perfluoroalkylated substances (PFASs) present a potential health risk for consumers. In animals these compounds are known to accumulate in livers. In order to determine potential PFASs contamination in commercially available livers, samples from farmed sheep, horses, cows, pigs and chicken were collected from the Dutch market. PFOS was the only detectable PFAS and its concentration was higher in free ranging animals like cows and sheep. The detected levels of PFOS in the liver samples were very low (up to 4.5 ng g(-1) ww). To further study the kinetic behaviour in foraging animals, samples from a study in which sheep were fed with grass obtained from a river floodplain, were examined. PFOS was the only detectable PFAS in the contaminated grass pellets, showing a level of about 0.5 μg kg(-1). Young blackhead sheep were fed with either clean or contaminated grass for a period up to 112 days. A time-dependent increase in liver PFOS concentrations was observed from 2.4 to 10.9 ng g(-1) ww after 8 and 112 days respectively. A time-dependent depuration was observed in livers of animals switched to clean grass after 56 days of exposure, from 9.2 to 4.7 ng g(-1) ww after 64 and 112 days respectively. The percentage of PFOS ingested from the grass and retained in the liver was estimated to be 12% at day 56, and decreased gradually to 6% after 56 days on clean grass, showing that the decrease in levels is not only caused by an increase in liver weight. Levels detected in commercial livers but also those in the sheep study would not lead to exceedance of the current TDI for PFOS set by EFSA. Therefore, it can be assumed that they do not present a risk for human health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kammes, K L; Allen, M S
2012-09-01
Effects of grass maturity on dry matter intake (DMI), milk production, ruminal fermentation and pool sizes, digestion and passage kinetics, and chewing activity and the relationship of these effects with preliminary DMI (pDMI) were evaluated using 13 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 18-d treatment periods. During the preliminary period, pDMI of individual cows ranged from 23.5 to 28.2 kg/d (mean=26.1 kg/d) and 3.5% fat-corrected milk (FCM) yield ranged from 30.8 to 57.2 kg/d (mean=43.7 kg/d). Experimental treatments were diets containing orchardgrass silage harvested either (1) early-cut, less mature (EC) or (2) late-cut, more mature (LC) as the sole forage. Early- and late-cut orchardgrass contained 44.9 and 54.4% neutral detergent fiber (NDF) and 20.1 and 15.3% crude protein, respectively. Forage:concentrate ratio was 58:42 and 46:54 for EC and LC, respectively; both diets contained approximately 25% forage NDF and 30% total NDF. Preliminary DMI, an index of nutrient demand, was determined during the last 4d of the preliminary period when cows were fed a common diet and used as a covariate. Main effects of grass maturity and their interaction with pDMI were tested by ANOVA. The EC diet decreased milk yield and increased milk fat concentration compared with the LC diet. Grass maturity and its interaction with pDMI did not affect FCM yield, DMI, rumen pH, or microbial efficiency. The EC diet increased rates of ruminal digestion of potentially digestible NDF and passage of indigestible NDF (iNDF) compared with the LC diet. The lower concentration and faster passage rate of iNDF for EC resulted in lower rumen pools of iNDF, total NDF, organic matter, and dry matter for EC than LC. Ruminal passage rates of potentially digestible NDF and starch were related to level of intake (quadratic and linear interactions, respectively) and subsequently affected ruminal digestibility of these nutrients. The EC diet decreased eating, ruminating, and total chewing time per unit of forage NDF intake compared with the LC diet. When grass silage was the only source of forage in the diet, cows supplemented with additional concentrate to account for decreasing protein and increasing fiber concentrations associated with more mature grass had similar feed intake and produced similar FCM yields as cows fed less mature grass. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Warner, D; Hatew, B; Podesta, S C; Klop, G; van Gastelen, S; van Laar, H; Dijkstra, J; Bannink, A
2016-01-01
Grass silage is typically fed to dairy cows in temperate regions. However, in vivo information on methane (CH(4)) emission from grass silage of varying quality is limited. We evaluated the effect of two rates of nitrogen (N) fertilisation of grassland (low fertilisation (LF), 65 kg of N/ha; and high fertilisation (HF), 150 kg of N/ha) and of three stages of maturity of grass at cutting: early maturity (EM; 28 days of regrowth), mid maturity (MM; 41 days of regrowth) and late maturity (LM; 62 days of regrowth) on CH(4) production by lactating dairy cows. In a randomised block design, 54 lactating Holstein-Friesian dairy cows (168±11 days in milk; mean±standard error of mean) received grass silage (mainly ryegrass) and compound feed at 80 : 20 on dry matter basis. Cows were adapted to the diet for 12 days and CH(4) production was measured in climate respiration chambers for 5 days. Dry matter intake (DMI; 14.9±0.56 kg/day) decreased with increasing N fertilisation and grass maturity. Production of fat- and protein-corrected milk (FPCM; 24.0±1.57 kg/day) decreased with advancing grass maturity but was not affected by N fertilisation. Apparent total-tract feed digestibility decreased with advancing grass maturity but was unaffected by N fertilisation except for an increase and decrease in N and fat digestibility with increasing N fertilisation, respectively. Total CH(4) production per cow (347±13.6 g/day) decreased with increasing N fertilisation by 4% and grass maturity by 6%. The smaller CH(4) production with advancing grass maturity was offset by a smaller FPCM and lower feed digestibility. As a result, with advancing grass maturity CH(4) emission intensity increased per units of FPCM (15.0±1.00 g CH(4)/kg) by 31% and digestible organic matter intake (33.1±0.78 g CH(4)/kg) by 15%. In addition, emission intensity increased per units of DMI (23.5±0.43 g CH(4)/kg) by 7% and gross energy intake (7.0±0.14% CH(4)) by 9%, implying an increased loss of dietary energy with advancing grass maturity. Rate of N fertilisation had no effect on CH(4) emissions per units of FPCM, DMI and gross energy intake. These results suggest that despite a lower absolute daily CH(4) production with a higher N fertilisation rate, CH(4) emission intensity remains unchanged. A significant reduction of CH(4) emission intensity can be achieved by feeding dairy cows silage of grass harvested at an earlier stage of maturity.
Miyaji, M; Matsuyama, H; Hosoda, K
2014-02-01
The effects of the substitution of brown rice (Oryza sativa L.; BR) for corn (Zea mays L.) in ensiled total mixed ration (TMR) that had a high proportion of grain on feed intake, lactation performance, ruminal fermentation, digestion, and N utilization were evaluated. Nine multiparous Holstein cows (51 ± 9 d in milk) were used in a replicated 3 × 3 Latin square design with 3 dietary treatments: a diet containing 0, 20, or 40% steam-flaked BR and 40, 20, or 0% steam-flaked corn (dry matter basis). Cows were fed ad libitum an ensiled TMR consisting of 40.7% alfalfa silage, 11.8% grass silage, 7.1% soybean meal, and 40.0% steam-flaked grain (dry matter basis). The ensiled TMR was prepared by baling fresh TMR, and then sealed by a bale wrapper and stored outdoors at 5 to 30 °C for over 6 mo. Dry matter intake and milk yield were lower for cows fed 40% BR than for cows fed 40% corn. The ruminal pH and total volatile fatty acid concentrations were not affected by dietary treatment. The ruminal ammonia-N concentration decreased as the percentage of BR in the diets was elevated. The proportion of acetate decreased, and that of propionate and butyrate increased with the increasing levels of BR. Plasma urea-N concentrations was lower and glucose and insulin concentrations were higher for cows fed 40% BR than for cows fed 40% corn. The whole-tract apparent digestibility of dry matter, organic matter, and starch increased, and the digestibility of neutral detergent fiber and acid detergent fiber decreased with the increasing BR level in the diet, with no dietary effect on crude protein digestion. As a proportion of N intake, the urinary N excretion was lower and the retention of N was higher for cows fed 40% BR than for cows fed 40% corn, with no dietary effect observed on N secretion in milk and fecal N excretion. These results show that substituting BR for corn decreases urinary N losses and improves N utilization, but causes adverse effects on milk production when cows are fed high-grain diets at 40% of dietary dry matter. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Does the diurnal pattern of enteric methane emissions from dairy cows change over time?
Bell, M J; Craigon, J; Saunders, N; Goodman, J R; Garnsworthy, P C
2018-02-22
Diet manipulation and genetic selection are two important mitigation strategies for reducing enteric methane (CH4) emissions from ruminant livestock. The aim of this study was to assess whether the diurnal pattern of CH4 emissions from individual dairy cows changes over time when cows are fed on diets varying in forage composition. Emissions of CH4 from 36 cows were measured during milking in an automatic (robotic) milking station in three consecutive feeding periods, for a total of 84 days. In Periods 1 and 2, the 36 cows were fed a high-forage partial mixed ration (PMR) containing 75% forage, with either a high grass silage or high maize silage content. In Period 3, cows were fed a commercial PMR containing 69% forage. Cows were offered PMR ad libitum plus concentrates during milking and CH4 emitted by individual cows was sampled during 8662 milkings. A linear mixed model was used to assess differences among cows, feeding periods and time of day. Considerable variation was observed among cows in daily mean and diurnal patterns of CH4 emissions. On average, cows produced less CH4 when fed on the commercial PMR in feeding Period 3 than when the same cows were fed on high-forage diets in feeding Periods 1 and 2. The average diurnal pattern for CH4 emissions did not significantly change between feeding periods and as lactation progressed. Emissions of CH4 were positively associated with dry matter (DM) intake and forage DM intake. It is concluded that if the management of feed allocation remains constant then the diurnal pattern of CH4 emissions from dairy cows will not necessarily alter over time. A change in diet composition may bring about an increase or decrease in absolute emissions over a 24-h period without significantly changing the diurnal pattern unless management of feed allocation changes. These findings are important for CH4 monitoring techniques that involve taking measurements over short periods within a day rather than complete 24-h observations.
Rumen passage kinetics of forage- and concentrate-derived fiber in dairy cows.
Krämer, M; Lund, P; Weisbjerg, M R
2013-05-01
Rumen passage kinetics of forage and concentrate fiber were analyzed to determine intrinsic feed effects and extrinsic ration effects on the retention time of fiber in the rumen. Sixteen Danish Holstein cows (557 ± 37 kg of body weight, 120 ± 21 d in milk, mean ± SD), 8 fitted with ruminal cannulas, were used in a completely randomized block experiment. Treatments differed in forage type (corn silage vs. grass silage) and forage:concentrate ratio (50:50 vs. 75:25 on organic matter basis). Fiber passage kinetics were studied based on rumen evacuations and on marker excretion profiles in feces fitted to 1 and 2 pool models. Each cow received ytterbium (Yb)-labeled fiber of the forage fed in the ration, samarium (Sm)-labeled fiber of the forage not fed in the ration, and concentrate fiber labeled with lanthanum (La), all as a single pulse dose. Nineteen fecal grab samples were taken per cow. Rumen liquid passage was studied using chromium-EDTA dosed as a single pulse into the rumen, followed by sampling of rumen liquid from both the ventral and medial rumen. Rumen mean retention time did not differ between forages when based on Yb-excretion profiles but was numerically longer for grass silage- than for corn silage-based rations using rumen evacuation data. Liquid rate of passage did not differ when calculated from medial or ventral rumen liquid samples, indicating that estimates for the probability of rumen liquid escape were independent of rumen sampling site. Total mean retention time decreased from forage fiber to concentrate fiber to liquid. The forage type itself (corn silage or grass silage) rather than the ration composition seemed to determine the total-tract retention time of forage fiber. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Utilization of kura clover-reed canarygrass silage versus alfalfa silage by lactating dairy cows.
Kammes, K L; Heemink, G B H; Albrecht, K A; Combs, D K
2008-08-01
The mixture of kura clover (Trifolium ambiguum M. Bieb.) and reed canarygrass (Phalaris arundinacea L.) has proven to be extremely persistent in the northern United States, but information about dairy cow performance on this mixture is lacking. Twenty lactating Holstein cows were used in a crossover design to compare dry matter (DM) intake and milk production from diets containing kura clover-reed canarygrass silage (KRS) or alfalfa (Medicago sativa L.) silage (AS). Forages were cut, wilted, ensiled in horizontal plastic bags, and allowed to ferment for at least 50 d before beginning the feeding experiment. The KRS was approximately 40% kura clover and 60% reed canarygrass. Treatments were total mixed rations formulated with either 57% of total DM from 1) AS or 2) KRS. Experimental periods were 28 d, with the first 14 d for diet adaptation and the last 14 d for measurement of intake and milk production. The neutral detergent fiber (NDF) concentrations of AS and KRS were 37.3 and 47.3%, respectively. The fermentation analyses indicated that both silages underwent a restricted fermentation, producing primarily lactic acid and some acetic acid. Dry matter intake (24.2 vs. 22.8 kg) and 4% fat-corrected milk (32.8 vs. 30.9 kg) were significantly higher for cows fed AS than for cows fed KRS. Cows consumed less NDF (6.7 vs. 8.0 kg) and less digestible NDF (3.0 vs. 4.4 kg) when fed AS diets compared with KRS diets, but the pool of ruminally undegraded NDF was similar (3.7 kg) between diets. Cows produced 1.5 kg of milk/kg of DM consumed regardless of the diet, indicating that digestible NDF of KRS was utilized with similar efficiency as the cell wall constituents of AS, but the intake of cows fed KRS may have been limited by rumen fill. Milk fat concentration tended to be higher for cows fed AS, but the milk true protein concentration and yields of fat and protein did not differ by treatment. Milk urea nitrogen content was higher when cows consumed AS (16.4 mg/ dL) compared with KRS (13.4 mg/dL). The cows fed KRS consumed more NDF but less total DMI, based on the results from this trial with diets formulated to contain approximately 60% of DM as forage, resulting in slightly lower milk yields than cows fed excellent-quality AS. This grass-legume mixture has the potential to be a source of quality forage for dairy cows in regions where alfalfa persistence is a problem.
Wilson, T B; Faulkner, D B; Shike, D W
2015-12-01
Spring-calving, mature cows ( = 191 total) and their progeny were used to evaluate the effects of late gestation drylot rations differing in RUP and fat content on cow performance as well as performance and carcass characteristics of subsequent progeny. Cows were blocked by BW and anticipated calving date and assigned to 16 pens. Pens were randomly allotted to 1 of 2 treatments: limit-fed corn coproducts and ground cornstalks (COP; TDN = 64.4%, CP = 11.1%, RDP = 60.2% of CP, and fat = 5.1%) or limit-fed ground mixed, cool-season grass hay (HY; TDN = 55.7%, CP = 9.5%, RDP = 86.0% of CP, and fat = 2.3%). Treatments were limit fed as isocaloric, isonitrogenous rations from 88 ± 11 d prepartum to calving. All cows were fed a common diet postpartum. Cow BW and BCS were collected at the beginning of the feeding period, within 48 h after calving, and at breeding. Calf BW was collected at birth and at 64 ± 11 and 124 ± 11 d of age. Milk production was determined using the weigh-suckle-weigh technique at 64 ± 11 and 124 ± 11 d postpartum. At 124 ± 11 d of age, steers ( = 68) and nonreplacement heifer calves ( = 25) were weaned and placed on a common feedlot diet with individual feed intake monitored using GrowSafe. Feedlot calves were slaughtered at a commercial facility 35 ± 10 d after a minimum ultrasound 12-rib fat thickness estimation of 0.9 cm. After calving, cow BW was greater ( < 0.01) and BCS was greater ( < 0.01) for cows fed COP than for cows fed HY. Calf birth BW was greater ( = 0.04) for those born to cows fed COP with no difference ( = 0.43) in percentage of unassisted births across treatment. Cows fed HY were lighter ( < 0.01) at breeding with lower BCS ( = 0.03); nevertheless, overall pregnancy rate was not different ( = 0.80). No differences ( ≥ 0.22) in milk production were detected. For feedlot progeny, initial feedlot BW, final BW, and days on feed were not different ( ≥ 0.23), and as a result, no difference ( = 0.21) in feedlot ADG was detected. Feedlot DMI and G:F were not different ( ≥ 0.19) across treatments. Feedlot calf health was monitored with no differences ( ≥ 0.68) in morbidity and mortality observed. No differences ( ≥ 0.27) were detected for HCW, LM area, backfat, marbling score, yield grade, or KPH. Increased dietary RUP and fat content during late gestation increased cow BW and BCS but did not alter milk production, subsequent reproduction, or subsequent calf performance or carcass characteristics.
Pereira, A B D; Whitehouse, N L; Aragona, K M; Schwab, C S; Reis, S F; Brito, A F
2017-08-01
Previous research has shown that cows fed ≥24% of the diet dry matter (DM) as field peas decreased milk yield as well as concentration and yield of milk protein, possibly due to reduced DM intake and limited supply of Lys and Met. Twelve multiparous and 4 primiparous lactating Holstein cows were randomly assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design. The diets contained (DM basis) 34.8% corn silage, 15.2% grass-legume silage, 5.9% roasted soybean, 2.4% mineral-vitamin premix, 2.0% alfalfa pellets, and either (1) 36% ground corn, 2.4% soybean meal, and 1.3% urea (UR), (2) 29.7% ground corn, 9.8% soybean meal, 0.13% ruminally protected (RP) Lys, and 0.07% RP-Met (CSBAA), (3) 25% ground field peas, 12.3% ground corn, and 2.4% soybean meal (FP), or (4) FP supplemented with 0.15% RP-Lys and 0.05% RP-Met (FPAA). Our objective was to test the effects of FP versus UR, FPAA versus CSBAA, and FPAA versus FP on milk yield and composition, N utilization, nutrient digestibility, ruminal fermentation profile, and plasma concentration of AA. Milk yield did not differ across diets. Compared with cows fed UR, those fed FP had greater DM intake, concentration and yield of milk true protein, apparent total-tract digestibility of fiber, urinary excretion of purine derivatives, and concentrations of total volatile fatty acids in the rumen and Lys in plasma, and less milk urea N and ruminal NH 3 -N. The concentration of milk urea N, as well as the concentration and yield of milk fat increased in cows fed FPAA versus CSBAA. Moreover, cows fed FPAA had greater ruminal concentration of total volatile fatty acids, increased proportions of acetate and isobutyrate, and decreased proportions of propionate and valerate than those fed CSBAA. The plasma concentrations of His, Leu, and Phe decreased, whereas plasma Met increased and plasma Lys tended to increase in cows fed FPAA versus CSBAA. Concentration of milk true protein, but not yield, was increased in cows fed FPAA versus FP. However, cows fed FPAA showed decreased concentrations of His and Leu in plasma compared with those fed FP. Overall, compared with the CSBAA diet, feeding FPAA did not negatively affect milk yield and milk protein synthesis. Furthermore, RP-Lys and RP-Met supplementation of the FP diet did not improve milk yield or milk protein synthesis, but decreased urinary urea N excretion. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Selim, S; Kokkonen, T; Taponen, J; Vanhatalo, A; Elo, K
2015-08-01
Prepartal energy overfeeding may predispose cows to a state of increased insulin resistance with greater lipolysis after parturition. The aim of the study was to evaluate the effects of prepartal overfeeding in terms of abundant grass silage ration on the liver and subcutaneous adipose tissue (SAT) gene expression around parturition. Sixteen multiparous Finnish Ayrshire dairy cows were fed ad libitum either grass silage [high energy, HE; 144 MJ/d of metabolizable energy (ME) intake, n=8] or a mixture of grass silage, wheat straw, and rapeseed meal [55:40:5 (CON), 109 MJ/d of ME, n=8] during the dry period (58.2±4.89 d, mean ± standard deviation). Tissue biopsies and blood samples were collected at -14 (±4.98), 1, and 7 d relative to the actual parturition date. The HE cows had greater total dry matter intake, ME intake, and ME balance during the dry period than the CON cows. Compared with CON, the increases in body weight and body condition score were greater in HE during the dry period. Milk yield during the first 2 wk of lactation was not different between the groups. Plasma glucose, nonesterified fatty acids, insulin, glucagon, and β-hydroxybutyrate did not differ between the groups during the transition period. Dietary treatment did not affect hepatic triglyceride content; however, a delayed increase in hepatic total lipid content was observed in the HE cows at d 1 postpartum. Hepatic cytosolic phosphoenolpyruvate carboxykinase 1 mRNA expression was lower in HE than in CON at d 1 and 7 postpartum. Adiponectin receptor 1 and 2 mRNA abundance tended to be lower in SAT of HE than CON. Lower lipoprotein lipase, leptin, and stearoyl-coenzyme A desaturase mRNA abundances were observed at d 7 postpartum in SAT of the HE cows compared with the CON cows. We concluded that prepartal ad libitum feeding of grass silage may decrease insulin sensitivity and lipogenesis in SAT during peripartal period and may attenuate the increase of hepatic gluconeogenic capacity from propionate compared with a controlled-energy diet. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bayat, A R; Kairenius, P; Stefański, T; Leskinen, H; Comtet-Marre, S; Forano, E; Chaucheyras-Durand, F; Shingfield, K J
2015-05-01
The potential of dietary supplements of 2 live yeast strains (Saccharomyces cerevisiae) or camelina oil to lower ruminal methane (CH4) and carbon dioxide (CO2) production and the associated effects on animal performance, rumen fermentation, rumen microbial populations, nutrient metabolism, and milk fatty acid (FA) composition of cows fed grass silage-based diets were examined. Four Finnish Ayrshire cows (53±7 d in milk) fitted with rumen cannula were used in a 4×4 Latin square with four 42-d periods. Cows received a basal total mixed ration (control treatment) with a 50:50 forage-to-concentrate ratio [on a dry matter (DM) basis] containing grass silage, the same basal total mixed ration supplemented with 1 of 2 live yeasts, A or B, administered directly in the rumen at 10(10) cfu/d (treatments A and B), or supplements of 60g of camelina oil/kg of diet DM that replaced concentrate ingredients in the basal total mixed ration (treatment CO). Relative to the control, treatments A and B had no effects on DM intake, rumen fermentation, ruminal gas production, or apparent total-tract nutrient digestibility. In contrast, treatment CO lowered DM intake and ruminal CH4 and CO2 production, responses associated with numerical nonsignificant decreases in total-tract organic matter digestibility, but no alterations in rumen fermentation characteristics or changes in the total numbers of rumen bacteria, methanogens, protozoa, and fungi. Compared with the control, treatment CO decreased the yields of milk, milk fat, lactose, and protein. Relative to treatment B, treatment CO improved nitrogen utilization due to a lower crude protein intake. Treatment A had no influence on milk FA composition, whereas treatment B increased cis-9 10:1 and decreased 11-cyclohexyl 11:0 and 24:0 concentrations. Treatment CO decreased milk fat 8:0 to 16:0 and total saturated FA, and increased 18:0, 18:1, 18:2, conjugated linoleic acid, 18:3n-3, and trans FA concentrations. Decreases in ruminal CH4 production to treatment CO were related, at least in part to lowered DM intake, whereas treatments had no effect on ruminal CH4 emission intensity (g/kg of digestible organic matter intake or milk yield). Results indicated that live yeasts A and B had no influence on animal performance, ruminal gas production, rumen fermentation, or nutrient utilization in cows fed grass silage-based diets. Dietary supplements of camelina oil decreased ruminal CH4 and CO2 production, but also lowered the yields of milk and milk constituents due to an adverse effect on intake. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Salin, S; Vanhatalo, A; Elo, K; Taponen, J; Boston, R C; Kokkonen, T
2017-07-01
We assessed whether high energy intake during the early dry period [144% of metabolizable energy (ME) requirements/d] followed by a gradual restriction of energy intake in the close-up dry period (119% of ME/d; HEI) impaired whole-body insulin sensitivity compared with a controlled energy intake (100% of ME/d; CEI) throughout the 6-wk dry period. Multiparous Ayrshire dairy cows (n = 16) were blocked by body weight, body condition score, and expected date of parturition and were used in a randomized complete block design until 10 d after parturition. Cows were fed either HEI or CEI diets based on grass silage during the first 3 wk of the dry period and grass silage supplemented with a commercial concentrate (30% of ME intake) during the final 3 wk of gestation. After calving, all cows were fed grass silage ad libitum and an increasing amount of commercial concentrate (maximum 9 kg at d 10 postpartum). Intravenous glucose tolerance tests (IVGTT) and intravenous insulin challenges were performed -10 ± 5 d (n = 15) and +10 ± 1 d (n = 14) relative to parturition. Following glucose injection, we did not find any treatment effects on glucose and insulin responses. The prepartal nonesterified fatty acid (NEFA) response of the HEI group was blunted, basal NEFA and the decrement of NEFA were smaller, and the area under the response curve (AUC) of NEFA was less negative in HEI cows than in CEI cows. The NEFA response reversed after parturition; the NEFA AUC of the HEI group was more negative than that of the CEI group. We did not find similar responses after insulin injection. Across the treatments, NEFA AUC correlated strongly with the basal NEFA concentration during the IVGTT pre- and postpartum. Calculated and model-based indices characterizing the overall glucose tolerance and β-cell function and the insulin sensitivity were higher after parturition than during the dry period. Consistent with the lower basal insulin, the acute insulin release after the glucose infusion was smaller in postpartal IVGTT than in prepartal IVGTT. The results suggest that whole-body insulin sensitivity of the cows increased after parturition. However, the role of peripheral insulin sensitivity in the regulation of glucose partitioning seems to be minor relative to the major change in insulin secretion and clearance during the periparturient period. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Davis, Amanda N; Clegg, J L; Perry, C A; McFadden, J W
2017-09-01
The progression of insulin resistance in dairy cows represents a maternal adaptation to support milk production during heightened energy demand; however, excessive adipose tissue lipolysis can develop. In diabetic non-ruminants, the mechanisms that mediate insulin resistance involve the sphingolipid ceramide. We tested the hypothesis that ceramide accumulates in dairy cows experiencing lipolysis and insulin resistance. Nine dairy cows were utilized in a replicated 3 × 3 Latin square design. Cows were ad libitum fed, nutrient-restricted (NR), or NR with nicotinic acid (NA; 5 mg of NA/h per kg BW; delivered i.v.) for 34 h. When provided access, cows were ad libitum fed a mixed ration of grass hay and ground corn to meet requirements. Intake for NR cows was limited to vitamins and minerals. Nicotinic acid was administered to suppress lipolysis. Saline was infused in cows not provided NA. At 32 and 33 h of treatment, a liver biopsy and insulin tolerance test were performed, respectively. Samples were analyzed using colorimetry, immunoassay, and mass spectrometry. Nutrient restriction increased serum fatty acids and ceramide levels, and impaired insulin sensitivity; however, NA infusion was unable to prevent these responses. We also show that NR increases hepatic ceramide accumulation, a response that was positively associated with serum ceramide supply. Our data demonstrate that circulating and hepatic 24:0-Cer are inversely associated with systemic insulin tolerance, an effect not observed for the 16:0 moiety. In conclusion, our results suggest that ceramide accrual represents a metabolic adaptation to nutrient restriction and impaired insulin action in dairy cows.
Feeding Moringa oleifera fresh or ensiled to dairy cows--effects on milk yield and milk flavor.
Mendieta-Araica, Bryan; Spörndly, Eva; Reyes-Sánchez, Nadir; Spörndly, Rolf
2011-06-01
Moringa oleifera, either fresh or ensiled, was compared with Elephant grass as a main feedstuff for dairy cows. To test the effects feed had on milk yield, milk composition, ration digestibility, and the organoleptic characteristics of milk, six lactating dairy cows were used in a Changeover 3 × 3 Latin Square experiment, replicated twice. With equal intake of metabolizable energy the intake of protein and fiber differed (p < 0.001) between all diets where fresh Moringa had the highest and the Elephant grass diet had the lowest intake. Compared with the control diet, ensiled Moringa had higher digestibility (P < 0.05) of both protein and fiber. With the exception of DM digestibility, no digestibility differences were found between fresh Moringa and Moringa silage treatments. Milk yield did not differ between any of the treatments and averaged 13.7 kg cow day(-1). Milk composition was similar among all treatments. Milk from the fresh Moringa treatment, however, had a grassy flavor and aroma, significantly different from the other two treatments, even though it was normal in color and appearance. No organoleptic differences were found between milk from the control treatment and the Moringa silage treatment. The conclusion is that Moringa silage can be fed to dairy cows in large quantities to produce the same quantity and quality of milk as traditional diets.
Alstrup, L; Søegaard, K; Weisbjerg, M R
2016-01-01
This study examined the effects of maturity and season of harvest of grass-clover silages and forage:concentrate ratio (FCR) on feed intake, milk production, chewing activity, digestibility, and fecal consistency of Holstein dairy cows. Comparison included 2 cuts in spring season (early and late) and 2 cuts in summer season (early and late) combined with high FCR (80:20; HFCR) and low FCR (50:50; LFCR). The experiment included 24 lactating Holstein cows arranged as 2 repeated 4 × 4 Latin squares with four 21-d periods and included measurements of feed composition, feed intake, milk production and composition, chewing activities, digestibilities, and fecal dry matter (DM) concentration and scoring. Forages were fed as two-thirds grass-clover and one-third corn silage supplemented with either 20 or 50% concentrate. Rations were fed ad libitum as total mixed rations. Early maturity cuts were more digestible than late maturity cuts, which was also reflected in a lower concentration of neutral detergent fiber (NDF) in early maturity cuts, whereas summer cuts had a higher crude protein concentration than spring cuts. Increased maturity decreased the intake of DM and energy, increased NDF intake, and decreased the yield of energy-corrected milk (ECM). Summer cuts increased the ECM yield compared with spring cuts. Milk yield (kg and kilogram of ECM) was numerically higher for cows fed early summer cut, independent of FCR in the ration. Milk protein concentration decreased, or tended to decrease, with maturity. For LFCR, the milk fat concentration increased with maturity resulting in a decreased protein:fat ratio. At HFCR, increased maturity increased the time spent chewing per kilogram of DM. Digestibility of silages was positively correlated with the fecal DM concentration. The DM intake and ECM yield showed no significant response to FCR in the ration, but the milk composition was affected. The LFCR decreased the milk fat percentage and increased the milk protein percentage numerically followed by a higher protein:fat ratio. Total chewing time per kilogram of DM decreased and total chewing time per kilogram of NDF increased with LFCR. This study indicates that silages from summer cuts have a similar value for milk production as do spring cuts, when forage digestibility is taken into account. Moreover, it appears that supplementation of extra concentrate has no effect on ECM production when forages with a high digestibility are fed, and that the physical structural value is adequate even when feeding high digestible forages. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Klein, S I; Steichen, P L; Islas, A; Goulart, R S; Gilbery, T C; Bauer, M L; Swanson, K C; Dahlen, C R
2014-06-01
Forty-six nonlactating beef cows were used to examine effects of dried distiller's grains plus solubles (DG) supplementation strategies to cows fed grass hay during mid- to late gestation on BW, ultrasound body composition characteristics, concentrations of serum NEFA and urea, feeding behavior, and calf birth weight. Cows were assigned to dietary treatments in a completely randomized design: 1) control, where hay was fed each day of the week (CON), 2) both hay and DG fed daily during the week (DG7), 3) hay fed daily but DG fed 3 d of the week (DG3), and 4) hay fed 4 d of the week alternating with DG fed on the remaining 3 d (DGA). Hay was offered ad libitum on days it was fed. The DG were fed at 0.40% of BW when offered daily and 0.93% of BW when offered 3 d per week (Monday, Wednesday, and Friday). Feed intake was monitored continuously over the 84-d feeding period. Hay intake and total DMI were reduced (P < 0.05) in DGA compared with DG7 and DG3. Gain and G:F were decreased (P < 0.05) for CON compared with other treatments. No differences (P > 0.05) were observed among treatments for change in BCS, intramuscular fat, rib fat, or rump fat from d 1 to 84. On a day when DG7, DG3, and DGA all received DG (Friday), DGA had reduced (P < 0.05) concentrations of urea compared with DG3 and DG7. On a day when only DG7 received DG (Saturday), urea was greater (P < 0.01) for DG3 and DGA compared with DG7, and concentrations of NEFA were greater (P < 0.01) in CON and DGA compared with DG7. On the second consecutive day when only DG7 received DG (Sunday), concentrations of NEFA were less (P < 0.001) for DG7 compared with other treatments. On days when all cows received hay, DGA spent more time eating (P < 0.05) compared with DG7 and DG3. Cows fed DGA had greater (P < 0.05) hay intake per meal and time per meal compared with other treatments. On days when DG7, DG3, and DGA all received DG, cows in the DG3 and DGA treatments had greater (P < 0.05) number of DG meals, time spent eating, intake per meal, and time per meal but a slower (P < 0.05) rate of DG intake compared with DG7. No differences (P > 0.05) were observed in calf birth weights among treatments. The alternate-day feeding strategy reduced hay and total intake, altered concentrations of serum urea and NEFA, and altered feeding behavior compared with other supplementation methods.
Kholif, S M; El-Shewy, A A; Morsy, T A; Abd El-Rahman, H H
2015-02-01
This study aimed at determining the variations in milk constituents which could be varied by feed and animal species. To achieve this goal, two groups of homoparity Baladi cows and Egyptian buffaloes (n = 20 per species) were used. Each group was divided into two subgroups (n = 10): subgroup I received legume forage (Egyptian clover) and subgroup II received grass forage (sorghum forage). All experimental animals were fed the diet consisting of concentrate, forage and rice straw as 50, 25 and 25% of dry matter intake respectively. Milk samples were taken for analysis. The trial lasted until the 3rd month of parturition. The main results indicated that lactating cattle fed legume forage significantly (p ≤ 0.01) had more content of casein nitrogen (513 mg/100 ml milk), lower content of glutamic acid (23.56 g/100 g milk protein) and more content of cis-9, trans-11 18:2 conjugated linoleic acid (CLA) (0.77 g/100 g milk fat) compared with 433, 26.67 and 0.53, respectively, for cattle fed grass forage. With regard to the species effect, results showed that buffalo milk appeared to contain significantly higher (p ≤ 0.01) contents of casein nitrogen, phenylalanine, glutamic and arachidonic acid compared with cow's milk. However, the latter was significantly (p ≤ 0.01) more in the cis-9, trans-11CLA (0.59 g/100 g milk fat) than that in buffalo milk (0.47 g/100 g milk fat). The results revealed that not only forage type played a critical role in determining the variations of milk nitrogen distribution, milk amino acids and fatty acids but also animal species had a significant effect on these parameters. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
Bainbridge, Melissa L; Egolf, Emily; Barlow, John W; Alvez, Juan P; Roman, Joe; Kraft, Jana
2017-02-15
The demand for dairy products from grass-fed cows is driven, in part, by their more desirable fatty acid (FA) profile, containing more n-3 FA and conjugated linoleic acids (CLA) than conventionally produced dairy products. This study investigated the effects of pearl millet (PM) vs. cool-season pasture (CSP) on animal performance and milk FA in a grazing system. Eight Holstein dairy cows were used in a repeated measures design with four-week periods. Forage type had no effect on animal performance (estimated dry matter intake, milk production, fat, or protein). The contents of CLA and n-3 FA in a serving of whole milk (3.25% fat) increased when cows grazed CSP compared to PM. A serving of whole milk from cows grazing PM had a higher content of saturated FA and branched-chain FA. In conclusion, the contents of various bioactive FA were higher in milk fat of cows grazing a CSP compared to PM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Metabolism of early-lactation dairy cows as affected by dietary starch and monensin supplementation.
McCarthy, M M; Yasui, T; Ryan, C M; Pelton, S H; Mechor, G D; Overton, T R
2015-05-01
The objective of this study was to evaluate the effect of dietary starch content and monensin (MON) on metabolism of dairy cows during early lactation. Before parturition, primiparous (n=21) and multiparous (n=49) Holstein cows were fed a common controlled-energy close-up diet with a daily topdress of either 0 or 400mg/d monensin. From d 1 to 21 postpartum, cows were fed a high-starch (HS; 26.2% starch, 34.3% neutral detergent fiber, 22.7% acid detergent fiber, 15.5% crude protein) or low-starch (LS; 21.5% starch, 36.9% neutral detergent fiber, 25.2% acid detergent fiber, 15.4% crude protein) total mixed ration with a daily topdress of either 0mg/d monensin (CON) or 450mg/d monensin (MON), continuing with prepartum topdress assignment. From d 22 through 63 postpartum, all cows were fed HS and continued with the assigned topdress treatment until d 63. Cows fed HS had higher plasma glucose and insulin and lower nonesterified fatty acids (NEFA) than cows fed LS during d 1 to 21 postpartum. Cows fed LS had elevated early-lactation β-hydroxybutyrate (BHBA) compared with cows fed HS. Cows fed HS had greater insulin resistance and increased plasma haptoglobin in the early lactation period. There was no effect of MON on postpartum plasma NEFA. Cows fed MON had higher plasma glucose compared with CON cows, which was driven by a MON × parity interaction in which primiparous cows fed MON had greater plasma glucose concentrations than cows fed CON. Cows fed MON had lower plasma BHBA compared with CON, which was contributed to by a MON × parity interaction in which primiparous cows fed MON had lower BHBA concentrations than CON. Starch treatment had no effect on overall liver triglyceride content. Primiparous cows fed MON had increased liver triglyceride content compared with CON primiparous cows, and multiparous cows fed MON had decreased liver triglyceride content compared with CON cows. Multiparous cows fed LS with MON had higher liver glycogen content than multiparous cows fed the LS without MON, with no effect of MON treatment for multiparous cows fed HS. There was no effect of starch or MON treatment on liver capacity to oxidize propionate to CO2, and effects of starch on gluconeogenesis were not significant. Cows fed MON tended to have greater capacity to convert propionate to glucose than CON. Supplementation with MON increased the ratio of glucose to CO2, which indicated that cows fed MON had a greater propensity to convert propionate to glucose. Overall, cows fed more propiogenic diets in early lactation (high starch or monensin) exhibited improved energy metabolism during early lactation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Oliveira, André S; Weinberg, Zwi G; Ogunade, Ibukun M; Cervantes, Andres A P; Arriola, Kathy G; Jiang, Yun; Kim, Donghyeon; Li, Xujiao; Gonçalves, Mariana C M; Vyas, Diwakar; Adesogan, Adegbola T
2017-06-01
Forages are usually inoculated with homofermentative and facultative heterofermentative lactic acid bacteria (LAB) to enhance lactic acid fermentation of forages, but effects of such inoculants on silage quality and the performance of dairy cows are unclear. Therefore, we conducted a meta-analysis to examine the effects of LAB inoculation on silage quality and preservation and the performance of dairy cows. A second objective was to examine the factors affecting the response to silage inoculation with LAB. The studies that met the selection criteria included 130 articles that examined the effects of LAB inoculation on silage quality and 31 articles that investigated dairy cow performance responses. The magnitude of the effect (effect size) was evaluated using raw mean differences (RMD) between inoculated and uninoculated treatments. Heterogeneity was explored by meta-regression and subgroup analysis using forage type, LAB species, LAB application rate, and silo scale (laboratory or farm-scale) as covariates for the silage quality response and forage type, LAB species, diet type [total mixed ration (TMR) or non-TMR], and the level of milk yield of the control cows as covariates for the performance responses. Inoculation with LAB (≥10 5 cfu/g as fed) markedly increased silage fermentation and dry matter recovery in temperate and tropical grasses, alfalfa, and other legumes. However, inoculation did not improve the fermentation of corn, sorghum, or sugarcane silages. Inoculation with LAB reduced clostridia and mold growth, butyric acid production, and ammonia-nitrogen in all silages, but it had no effect on aerobic stability. Silage inoculation (≥10 5 cfu/g as fed) increased milk yield and the response had low heterogeneity. However, inoculation had no effect on diet digestibility and feed efficiency. Inoculation with LAB improved the fermentation of grass and legume silages and the performance of dairy cows but did not affect the fermentation of corn, sorghum, and sugar cane silages or the aerobic stability of any silage. Further research is needed to elucidate how silage inoculated with homofermentative and facultative heterofermentative LAB improves the performance of dairy cows. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Kmicikewycz, A D; Harvatine, K J; Heinrichs, A J
2015-07-01
Two experiments (Exp.) were conducted to study effects of feeding long or short corn silage total mixed rations (TMR) on rumen pH, feed preference, and dairy cow performance and to determine the rate of recovery from grain-induced subacute ruminal acidosis (SARA). Both experiments utilized a crossover design with 12 lactating, multiparous, Holstein cows each (including 4 ruminally cannulated cows) and consisted of two 26-d periods. Each period consisted of 12d of adaptation followed by 14d of data collection. Each period was divided into 4 phases: adaptation, d 1 to 12; baseline, d 13 to 14; challenge, d 15 to 19; and recovery, d 20 to 26. Treatments in Exp. 1 were TMR based on corn silage with long (L) or short (ST) particle size in a 65:35 forage-to-concentrate (F:C) diet. Treatments in Exp. 2 were TMR based on corn silage with short (SH) or long (LH) particle size in a 65:35 F:C diet with 3.3% (DM basis) orchardgrass hay offered as a supplement to the diet. In both experiments, during the challenge phase cows received a 50:50 F:C diet to initiate SARA. Animals were housed individually, milked twice per day, and fed once per day for 10% refusal rate on an as-fed basis. Data were analyzed using PROC MIXED of SAS. Feeding L and LH diets increased acetate-to-propionate ratio in the rumen, which resulted in the maintenance of a ratio >2 from the start of the SARA challenge through recovery. In Exp. 1, feeding long corn silage TMR resulted in lower milk fat concentration on the third day of the challenge, whereas cows fed short corn silage TMR had lower milk fat concentration on the final day of the challenge compared with d 13. Providing supplemental hay to cows fed TMR based on long or short corn silage in Exp. 2 prevented acidosis when cows were challenged with a high-grain diet. Milk fat concentrations substantially decreased during the challenge phase in both diets supplemented with hay, but feeding LH did not lower milk fat concentrations until d 20 compared with d 17 for cows fed SH. Under the conditions of these experiments, cows selected for shorter particles compared with longer particles, despite the rumen challenge. However, when feeding a 50:50 F:C diet, feeding long corn silage TMR or supplementing the diet with grass hay increased rumen pH, acetate-to-propionate ratio in the rumen, and rate of recovery from SARA. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Pourazad, P; Khiaosa-Ard, R; Metzler-Zebeli, B U; Klevenhusen, F; Zebeli, Q
2017-12-01
In this study, we used two different grain-rich feeding models (continuous or transient) to determine their effects on in situ fiber degradation and abundances of important rumen fibrolytic microbes in the rumen. The role of the magnitude of ruminal pH drop during grain feeding in the fiber degradation was also determined. The study was performed in eight rumen-fistulated dry cows. They were fed forage-only diet (baseline), and then challenged with a 60% concentrate diet for 4 weeks, either continuously (n=4 cows) or transiently (n=4 cows). The cows of transient feeding had 1 week off concentrate in between. Ruminal degradation of grass silage and fiber-rich hay was determined by the in situ technique, and microbial abundances attached to incubated samples were analyzed by quantitative PCR. The in situ trials were performed at the baseline and in the 1st and the last week of concentrate feeding in the continuous model. The in situ trials were done in cows of the transient model at the baseline and in the 1st week of the re-challenge with concentrate. In situ degradation of NDF and ADF of the forage samples, and microbial abundances were determined at 0, 4, 8, 24 and 48 h of the incubation. Ruminal pH and temperature during the incubation were recorded using indwelling pH sensors. Compared with the respective baseline, both grain-rich feeding models lowered ruminal pH and increased the duration of pH below 5.5 and 5.8. Results of the grass silage incubation showed that in the continuous model the extent of NDF and ADF degradation was lower in the 1st, but not in the last week compared with the baseline. For the transient model, degradation of NDF of the silage was lower during the re-challenge compared with the baseline. Degradation of NDF and ADF of the hay was suppressed by both feeding models compared with the respective baseline. Changes in fiber degradation of either grass silage or hay were not related to the magnitude of ruminal pH depression during grain-rich feeding. In both feeding models total fungal numbers and relative abundance of Butyrivibrio fibrisolvens attached to the incubated forages were decreased by the challenge. Overall, Fibrobacter succinogenes was more sensitive to the grain challenge compared with Ruminococcus albus and Ruminococcus flavefaciens. The study provided evidence for a restored ruminal fiber degradation after prolonged time of grain-rich feeding, however depending on physical and chemical characteristics of forages.
Schingoethe, D J; Voelker, H H; Beardsley, G L; Parsons, J G
1976-05-01
Alfalfa-brome hay, haylage, .5% urea-treated corn silage, or .5% urea plus 1% dried whey-treated corn silage was fed as the only forage to one of four groups of 10 lactating cows per group for a lactation trial of 10 wk. Rumen samples were collected via stomach tube 3 to 4 h after the morning feeding. The pH of the rumen samples from cows fed hay was higher than for cows fed haylage, urea-treated corn silage, and urea-whey corn silage, 6.69 versus 6.36, 6.40, and 6.50. Total volatile fatty acids and propionate were highest from cows fed urea-whey corn silage and were higher on all three fermented forages than cows fed hay. Acetate/propionate ratio was highest from cows fed hay and lowest from cows fed corn silages. Butyrate was highest from cows fed haylage or hay. Milk protein composition was not affected by ration although nonprotein nitrogen of milk was highest from cows fed the urea-treated corn silages. Oleic acid and total unsaturated fatty acids were lowest in milk fat from cows fed hay while palmitic acid was highest from cows fed hay and haylage. These results suggest that type of forage fed may cause small changes in rumen fermentation and in milk composition. The importance of these changes is unknown but may affect properties of dairy products produced from this milk.
Izumi, Kenichi; Unno, Chigusa
2010-04-01
The influence of the feeding ratio of a non-forage fiber source and hay on ruminal mat characteristics and chewing activity was evaluated in dairy dry cows. Cows were fed four different diets: the ratios of alfalfa hay (AH) to beet pulp (BP) were 8:2 (dry matter basis, A8B2) and 2:8 (A2B8), and those of grass hay (GH) to BP were 8:2 (G8B2) and 2:8 (G2B8). Total eating time was decreased with increasing BP content (P < 0.01). Total rumination time for AH was shorter than that for GH (P < 0.01), and it decreased with increasing BP content (P < 0.01). The ruminal mat was detected by using a penetration resistance test of the rumen digesta. Penetration resistance value (PRV) of ruminal mat was highest with the G8B2 diet and PRV decreased with increasing BP content (P < 0.05) and feeding AH (P < 0.05). Thickness of the ruminal mat was greater for increasing BP content (P < 0.05). Simple linear regression of ruminal mat PRV on total rumination time resulted in a high positive correlation (r = 0.744; P < 0.001; n = 16). The results demonstrated that increasing the PRV of the ruminal mat stimulated rumination activity and a ruminal mat could be formed, although it was soft even when cows were offered a large quantity of BP.
Rinne, M; Kuoppala, K; Ahvenjärvi, S; Vanhatalo, A
2015-12-01
The effects of rapeseed and soya bean expeller (SBE) supplementation on digestion and milk production responses in dairy cows were investigated in an incomplete Latin square design using five cows and four 3-week periods. The experimental diets consisted of five concentrate treatments fed at a rate of 9 kg/day: a mixture of barley and oats, which was replaced with rapeseed or SBE at two levels (CP concentration (g/kg dry matter (DM)) of 130 for the control concentrate and 180 and 230 for the two protein supplemented levels). A mixture of grass and red clover silage (1:1) was fed ad libitum and it had a CP concentration of 157 g/kg DM. Supply of nutrients to the lower tract was measured using the omasal canal sampling technique, and total digestion from total faecal collection. Protein supplementation increased omasal canal amino acid (AA) flows and plasma concentrations of AA, and was also reflected as increased milk production. However, N use efficiency (NUE) decreased with increased protein supplementation. Rapeseed expeller (RSE) tended to increase silage DM intake and elicited higher milk production responses compared with SBE and also resulted in a higher NUE. The differences between the protein supplements in nitrogen metabolism were relatively small, for example, there were no differences in the efficiency of microbial protein synthesis or omasal canal flows of nitrogenous components between them, but plasma methionine concentration was lower for soya bean-fed cows at the high CP level in particular. The lower milk protein production responses to SBE than to RSE supplementation were at least partly caused by increased silage DM and by the lower methionine supply, which may further have been amplified by the use of red clover in the basal diet. Although feed intake, diet digestion, AA supply and milk production were all consistently improved by protein supplementation, there was a simultaneous decrease in NUE. In the current study, the milk protein production increased only 9% and energy-corrected milk production by 7% when high level of protein supplementation (on average 2.9 kg DM/day) was compared with the control diet without protein supplementation showing that dairy production could be sustained at a high level even without external protein supplements, at least in the short term. The economic and environmental aspects need to be carefully evaluated when decisions about protein supplementation for dairy cows are taken.
Comparison of three techniques for estimating the forage intake of lactating dairy cows on pasture.
Macoon, B; Sollenberger, L E; Moore, J E; Staples, C R; Fike, J H; Portier, K M
2003-09-01
Quantifying DMI is necessary for estimation of nutrient consumption by ruminants, but it is inherently difficult on grazed pastures and even more so when supplements are fed. Our objectives were to compare three methods of estimating forage DMI (inference from animal performance, evaluation from fecal output using a pulse-dose marker, and estimation from herbage disappearance methods) and to identify the most useful approach or combination of approaches for estimating pasture intake by lactating dairy cows. During three continuous 28-d periods in the winter season, Holstein cows (Bos taurus; n = 32) grazed a cool-season grass or a cool-season grass-clover mixture at two stocking rates (SR; 5 vs. 2.5 cows/ha) and were fed two rates of concentrate supplementation (CS; 1 kg of concentrate [as-fed] per 2.5 or 3.5 kg of milk produced). Animal response data used in computations for the animal performance method were obtained from the latter 14 d of each period. For the pulse-dose marker method, chromium-mordanted fiber was used. Pasture sampling to determine herbage disappearance was done weekly throughout the study. Forage DMI estimated by the animal performance method was different among periods (P < 0.001; 6.5, 6.4, and 9.6 kg/d for Periods 1, 2, and 3, respectively), between SR (P < 0.001; 8.7 [low SR] vs. 6.3 kg/d [high SR]) and between CS (P < 0.01; 8.4 [low CS] vs. 6.6 kg/d [high CS]). The period and SR effect seemed to be related to forage mass. The pulse-dose marker method generally provided greater estimates of forage DMI (as much as 11.0 kg/d more than the animal performance method) and was not correlated with the other methods. Estimates of forage DMI by the herbage disappearance method were correlated with the animal performance method. The difference between estimates from these two methods, ranging from -4.7 to 5.4 kg/d, were much lower than their difference from pulse-dose marker estimates. The results of this study suggest that, when appropriate for the research objectives, the animal performance or herbage disappearance methods may be useful and less costly alternatives to using the pulse-dose method.
van Hoeij, R J; Lam, T J G M; Bruckmaier, R M; Dijkstra, J; Remmelink, G J; Kemp, B; van Knegsel, A T M
2018-05-01
Reports on the effects of length of dry period (DP) on udder health of cows that were not treated with dry cow antibiotics are scarce. Additionally, the effects of a reduced dietary energy level for cows with a 0-d DP on udder health have not yet been studied. The aims of this study were (1) to compare effects of a 0-d or 30-d DP without use of dry cow antibiotics on udder health across the DP and subsequent lactation in dairy cows fed different dietary energy levels and (2) to evaluate associations between udder health and metabolic status of dairy cows. Five weeks before the expected calving date, Holstein-Friesian dairy cows (n = 115) were blocked for parity, expected calving date, and milk yield and somatic cell count (SCC) at their 2 last test days and were randomly assigned to 2 DP lengths: 0-d DP (n = 77) or 30-d DP (n = 38). Quarter milk samples were taken in wk 5 prepartum and in wk 1 and 5 postpartum. Proportion of quarters with elevated SCC (SCC ≥200,000 cells/mL) and proportion of udder pathogens in quarter milk samples did not differ between DP lengths among weeks. After calving, 102 of these cows were randomly assigned to 3 treatments: a 30-d DP with a standard energy level required for expected milk yield (30-d DP SEL; n = 36), a 0-d DP with the same energy level as cows with a 30-d DP (0-d DP SEL; n = 33), and a 0-d DP with a low energy level (0-d DP LEL, n = 33). From wk 8 of lactation onward, cows received either a glucogenic ration consisting of corn silage and grass silage or a lipogenic ration consisting of grass silage and sugar beet pulp at a standard or low energy level. During wk 1 to 7 postpartum, treatment did not affect SCC or SCC corrected for milk yield. During wk 8 to 44 of lactation, 0-d DP SEL cows had a greater SCC than 0-d DP LEL or 30-d DP SEL cows and had a greater SCC corrected for milk yield than 0-d DP LEL cows. During wk 1 to 44 of lactation, occurrence of at least 1 elevation of SCC (SCC ≥200,000 cells/mL after 2 wk of SCC <200,000 cells/mL) was not different among treatments. The 0-d DP SEL cows but not the 0-d DP LEL cows tended to have a 2.17 times greater hazard of having a case of clinical mastitis at any time in lactation than 30-d DP SEL cows. In wk 1 to 44 of lactation, lower fat- and protein- corrected milk yield and energy intake, greater energy balance, and greater plasma insulin concentration were associated with greater SCC. In conclusion, DP length did not affect udder health in the DP and in early lactation but seemed to decrease udder health for 0-d DP SEL cows in later lactation compared with 30-d DP SEL or 0-d DP LEL cows. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Klop, G; Hatew, B; Bannink, A; Dijkstra, J
2016-02-01
An experiment was conducted to study potential interaction between the effects of feeding nitrate and docosahexaenoic acid (DHA; C22:6 n-3) on enteric CH4 production and performance of lactating dairy cows. Twenty-eight lactating Holstein dairy cows were grouped into 7 blocks of 4 cows. Within blocks, cows were randomly assigned to 1 of 4 treatments: control (CON; urea as alternative nonprotein N source to nitrate), NO3 [21 g of nitrate/kg of dry matter (DM)], DHA (3 g of DHA/kg of DM and urea as alternative nonprotein N source to nitrate), or NO3 + DHA (21 g of nitrate/kg of DM and 3 g of DHA/kg of DM, respectively). Cows were fed a total mixed ration consisting of 21% grass silage, 49% corn silage, and 30% concentrates on a DM basis. Feed additives were included in the concentrates. Cows assigned to a treatment including nitrate were gradually adapted to the treatment dose of nitrate over a period of 21 d during which no DHA was fed. The experimental period lasted 17 d, and CH4 production was measured during the last 5d in climate respiration chambers. Cows produced on average 363, 263, 369, and 298 g of CH4/d on CON, NO3, DHA, and NO3 + DHA treatments, respectively, and a tendency for a nitrate × DHA interaction effect was found where the CH4-mitigating effect of nitrate decreased when combined with DHA. This tendency was not obtained for CH4 production relative to dry matter intake (DMI) or to fat- and protein corrected milk (FPCM). The NO3 treatment decreased CH4 production irrespective of the unit in which it was expressed, whereas DHA did not affect CH4 production per kilogram of DMI, but resulted in a higher CH4 production per kilogram of fat- and protein-corrected milk (FPCM) production. The FPCM production (27.9, 24.7, 24.2, and 23. 8 kg/d for CON, NO3, DHA, and NO3 + DHA, respectively) was lower for DHA-fed cows because of decreased milk fat concentration. The proportion of saturated fatty acids in milk fat was decreased by DHA, and the proportion of polyunsaturated fatty acids was increased by both nitrate and DHA. Milk protein concentration was lower for nitrate-fed cows. In conclusion, nitrate but not DHA decreased enteric CH4 production and no interaction effects were found on CH4 production per kilogram of DMI or per kilogram of FPCM. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Torrijos, M; Sousbie, P; Badey, L; Bosque, F; Steyer, J P
2012-01-01
The purpose of this work was to investigate the effects of the addition of by-products from the refining of vegetable oil on the behavior of co-digestion reactors treating a mixture of grass, cow dung and fruit and vegetable waste. Three by-products were used: one soapstock, one used winterization earth and one skimming of aeroflotation of the effluents. Three 15 l reactors were run in parallel and fed five times a week. In a first phase of 4 weeks, the three reactors were fed with the co-digestion substrates alone (grass, cow dung and fruit and vegetable waste) at an organic loading rate (OLR) of 1.5 g VS/kg d (VS: volatile solids). Then, a different by-product from the refining of oil was added to the feed of each reactor at an OLR of 0.5 g VS/kg d, generating a 33% increase in the OLR. The results show that the addition of by-products from the refining of oil is an efficient way of increasing the methane production of co-digestion reactors thanks to high methane yield of such by-products (0.69-0.77 l CH(4)/g VS loaded). In fact, in this work, it was possible to raise the methane production of the reactors by about 60% through a 33% increase in the OLR thanks to the addition of the by-products from the refining of vegetable oil.
Macedo, Fernanda Lopes; de Souza, Jonas; Batistel, Fernanda; Chagas, Lucas Jado; Santos, Flávio Augusto Portela
2016-12-01
In this study, we investigated the associative effects of concentrate levels and Ca salts of soybean oil (CSSO) supplementation on milk production, milk composition, and milk fatty acids of mid-lactation dairy cows grazing on tropical pasture. Twenty-four Jersey × Holstein cows were used in a randomized block design and assigned to four treatments arranged in a 2 × 2 factorial design. Factors evaluated were concentrate levels (low, 3 kg/day vs. high, 7 kg/day of concentrate) and CSSO supplementation (without CSSO vs. with 250 g CSSO cow/day). All cows grazed on elephant grass (Pennisetum purpureum cv. Cameroon) and received the supplemental treatments for a 90-day period. Interactions between concentrate level and CSSO were detected for milk yield, milk yield components, energy-corrected milk (ECM) and 3.5 % fat-corrected milk (FCM). Milk yield increased when CSSO was fed in a low concentrate level, while it decreased milk production in a high concentrate level. Yields of fat, protein, lactose, 3.5 % FCM, and ECM were not affected with CSSO in the low concentrate, but reduced in the high concentrate level. CSSO increased proportions of monounsaturated milk FA, C18:2 trans-10 cis-12, and polyunsaturated FA, and reduced proportions of saturated milk FA in milk. In conclusion, feeding the high level of concentrate was an effective strategy to improve milk yield and solid production. CSSO supplementation increased milk production when fed at low concentrate level but did not affect yield of solids.
Claassen, R M; Christensen, D A; Mutsvangwa, T
2016-09-01
Our objective was to examine the effects of feeding coextruded and nonextruded supplements consisting of wheat dried distillers grains with solubles with peas (WDDGS-peas) or canola meal (WDDGS-CM) on ruminal fermentation, omasal flow, and production performance in Holstein cows. Eight cows (4 ruminally cannulated) were used in a replicated 4×4 Latin square with 28-d periods and a 2×2 factorial arrangement of dietary treatments. Dietary treatments were coextruded or nonextruded mixtures of WDDGS-peas and WDDGS-CM that were included in total mixed rations at 15.1% [dry matter (DM) basis]. Diet had no effect on DM intake. Milk yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk fat content was greater in cows fed nonextruded diets compared with those fed coextruded diets, but milk fat yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk yield tended to be greater and milk protein yield was greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Cows fed nonextruded diets had a greater milk urea-N concentration compared with those fed coextruded diets. Cows fed coextruded diets had greater ruminal digestion of DM and tended to have greater ruminal digestion of organic matter compared with those fed nonextruded diets. Total-tract digestibilities of organic matter, crude protein, ether extract, and starch were greater, whereas that of acid detergent fiber and neutral detergent fiber tended to be greater in cows fed coextruded compared with those fed nonextruded diets. Total-tract digestibility of ether extract was lower whereas that of starch was greater and that of crude protein tended to be greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Total N excretion and milk N efficiency were unaffected by diet. Ruminal NH3-N concentration tended to be greater in cows fed WDDGS-CM compared with those fed WDDGS-peas. Ruminal propionate concentration was greater whereas plasma urea-N concentration tended to be lower in cows fed coextruded compared with those fed nonextruded diets. Plasma glucose concentration was greater in cows fed diets containing WDDGS-CM compared with those fed diets containing WDDGS-peas, but the difference in plasma glucose concentration between WDDGS-CM and WDDGS-peas was greater in cows fed coextruded diets compared with those fed nonextruded diets. In summary, feeding coextruded compared with nonextruded supplements or WDDGS-peas compared WDDGS-CM increased yields of milk, fat, and protein. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
... Received on Labeling and Grass-Fed Products Many commenters suggested that there is a place for both grass... labeling system: ``Organic--Grass Fed/Grain Finished,'' ``Organic--Grass Fed/Finished on Pasture with Supplemental Grain Feeding,'' ``Organic--100% Grass Fed/Grass Finished.'' Their recommendation suggested that...
The effect of harvesting strategy of grass silage on digestion and nutrient supply in dairy cows.
Kuoppala, K; Rinne, M; Ahvenjärvi, S; Nousiainen, J; Huhtanen, P
2010-07-01
This study examined the effects of primary growth (PG) and regrowth (RG) timothy-meadow fescue silages harvested at 2 stages of growth on feed intake, cell wall digestion and ruminal passage kinetics in lactating dairy cows. Four dairy cows equipped with rumen cannulas were used in a study designed as a 4 x 4 Latin square with 21-d periods. The experimental silages were offered ad libitum with 8 kg/d of concentrate. Ruminal digestion and passage kinetics were assessed by the rumen evacuation technique. Silages of PG were on average more digestible than RG silages. The concentration of neutral detergent fiber (NDF) and indigestible NDF (iNDF) increased and the concentration of digestible organic matter in dry matter (DM) of silages decreased with advancing maturity in PG and RG. Cows consumed more feed DM, energy, and protein and produced more milk when fed PG diets rather than RG diets. Delaying the harvest decreased DM intake and milk production in PG and RG. There were no differences between PG and RG in rumen pH, ammonia N, or total volatile fatty acid concentrations. The intake of N, omasal canal flow of total nonammonia N and microbial N, excretion of N in feces, and ruminal true digestibility of N were higher for PG than for RG diets. The efficiency of microbial N synthesis was not different between PG and RG. Intake and omasal canal flow of organic matter, NDF, and potentially digestible NDF (pdNDF) were higher in PG than in RG. Whole-diet digestibility of organic matter, NDF, or pdNDF in the rumen or in the total tract was not different between PG and RG despite the higher digestibility of PG silages measured in sheep. Rumen pool sizes of crude protein and iNDF were lower for PG diets, whereas the pool size of pdNDF was higher for PG diets than for RG diets. The rate of passage of iNDF was higher for PG diets than for RG diets, with no difference between them in rate of digestion or passage of pdNDF. The lower milk production in cows fed regrowth grass silages compared with primary growth silages could be attributed to the lower silage DM intake potential. Chemical composition of the silages, rumen fill, digestion and passage kinetics of NDF, or the ratio of protein to energy in absorbed nutrients could not explain the differences in DM intake between silages made from primary and regrowth grass. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
O'Shea, R; Wall, D; Murphy, J D
2016-09-01
Four feedstocks were assessed for use in a demand driven biogas system. Biomethane potential (BMP) assays were conducted for grass silage, food waste, Laminaria digitata and dairy cow slurry. Semi-continuous trials were undertaken for all feedstocks, assessing biogas and biomethane production. Three kinetic models of the semi-continuous trials were compared. A first order model most accurately correlated with gas production in the pulse fed semi-continuous system. This model was developed for production of electricity on demand, and biomethane upgrading. The model examined a theoretical grass silage digester that would produce 435kWe in a continuous fed system. Adaptation to demand driven biogas required 187min to produce sufficient methane to run a 2MWe combined heat and power (CHP) unit for 60min. The upgrading system was dispatched 71min following CHP shutdown. Of the biogas produced 21% was used in the CHP and 79% was used in the upgrading system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Karunakara, N; Ujwal, P; Yashodhara, I; Rao, Chetan; Sudeep Kumara, K; Dileep, B N; Ravi, P M
2013-10-01
Detailed studies were carried out to establish site-specific soil to grass transfer factors (Fv) and grass to cow milk transfer coefficients (Fm) for radioactive cesium ((137)Cs) and stable cesium (Cs) for Kaiga region, where a nuclear power station has been in operation for more than 10 years. The study included adopted cows, cows of local farmers, and cows from the dairy farm. A grass field was developed specifically for the study and 2 local breed cows were adopted and allowed to graze in this grass field. The soil and grass samples were collected regularly from this field and analyzed for the concentrations of (137)Cs and stable Cs to evaluate the soil to grass Fv values. The milk samples from the adopted cows were analyzed for the (137)Cs and stable Cs concentrations to evaluate Fm values. For comparison, studies were also carried out in dominant grazing areas in different villages around the nuclear power plant and the cows of local farmers which graze in these areas were identified and milk samples were collected and analyzed regularly. The geometric mean values of Fv were found to be 1.1 × 10(-1) and 1.8 × 10(-1) for (137)Cs and stable Cs, respectively. The Fm of (137)Cs had geometric mean values of 1.9 × 10(-2) d L(-1) and 4.6 × 10(-2) d L(-1), respectively, for adopted Cows 1 and 2; 1.7 × 10(-2) d L(-1) for the cows of local farmers, and 4.0 × 10(-3) d L(-1) for the dairy farm cows. The geometric mean values of Fm for stable Cs were similar to those of (137)Cs. The Fm value for the dairy farm cows was an order of magnitude lower than those for local breed cows. The Fm values observed for the local breed cows were also an order of magnitude higher when compared to the many values reported in the literature and in the IAEA publication. Possible reasons for this higher Fm values were identified. The correlation between Fv and Fm values for (137)Cs and stable Cs and their dependence on the potassium content ((40)K and stable K) in the soil and grass were also studied. In order to estimate the ingestion dose accurate data of the dietary habits of the population was necessary and this data was collected through a well planned demographic survey. The internal doses to a child due to the ingestion of (137)Cs along with the milk of the local cows and from the dairy farm were found to be 0.29 μSv y(-1) and 0.04 μSv y(-1),while that to an adult were 0.39 μSv y(-1) and 0.05 μSv y(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of limestone reactivity and percent on production by dairy cows in early lactation.
Nocek, J E; Braund, D G; English, J E
1983-12-01
Seventy-two Holstein cows (16 first lactation) were assigned to four treatments: A) normal-grind limestone (800 to 1000 mu) added to provide .77% calcium (total ration dry basis); B) fine-grind limestone (less than 150 mu) at .77% calcium; C) normal-grind at 1.15% calcium; and D) fine-grind limestone at 1.15% calcium. Cows fed diets containing .77% calcium had higher percent milk fat and fat yield than those fed 1.15% calcium diets, and cows fed fine-grind limestone had greater percent fat and fat yield than those fed normal-grind limestone. Four percent fat-corrected milk was higher for cows fed .77% calcium diets. Trends were similar for heifers in first lactation. Dry matter intake was higher for cows fed .77% calcium diets, and nutrient efficiency for milk synthesis favored cows fed fine-grind 1.15% calcium. Fecal pH was higher during wk 4 on treatment for cows fed high calcium diets; however, 8 wk were not different. Fecal starch and calcium and phosphorus in plasma were not different between treatments: however, heifers fed fine-grind 1.15% calcium showed a decrease of fecal starch with time.
Burke, F; Murphy, J J; O'Donovan, M A; O'Mara, F P; Kavanagh, S; Mulligan, F J
2007-02-01
Fifty-six autumn-calving Holstein-Friesian cows, blocked on the basis of days in milk (27.6 +/- 10.65 d), lactation number (3.1 +/- 2.21), and preexperimental milk yield (28.4 +/- 6.69 kg) were used to examine the effects of replacing 330 g/kg of dry matter (DM) of first-cut perennial ryegrass silage with either fermented whole-crop wheat (WCW), urea-treated processed WCW, or corn silage on subsequent feed intake, milk production, and efficiency of nitrogen utilization. The DM (g/kg), crude protein (CP, g/kg of DM) and in vitro DM digestibility (g/kg) of the forages were 204, 179, and 762 for grass silage; 389, 90, and 711 for fermented WCW; 795, 141, and 768 for urea-treated processed WCW; and 346, 93, and 783 for corn silage, respectively. Four forage treatments were evaluated as follows: 1) grass silage as the sole forage (GS); 2) a mixture of grass silage and fermented WCW silage, (F-WCW); 3) a mixture of grass silage and urea-treated processed WCW, (UP-WCW); and 4) a mixture of grass silage and corn silage (CS). In all cases, the alternative forages comprised 67% of the forage mix on a DM basis. Isonitrogenous diets were formulated by offering all cows 8 kg of concentrate as fed, formulated to different CP concentrations. Cows were offered these diets from 28 to 104 d in milk. Total DM intake and milk yield were greater on UP-WCW (20.0 and 30.2 kg/d) and CS (18.3 and 33.2 kg/d) than on GS (13.5 and 26.5 kg/d). Although DM intake was greater on F-WCW (17.1 kg/d) than on GS, milk yield was not significantly greater (+2.7 kg/d). Milk protein concentration was greater on F-WCW (30.5 g/kg), UP-WCW (31.3 g/kg), and CS (30.7 g/kg) than on GS (28.5 g/kg). However, there was no difference between treatments in milk fat or lactose concentrations. Body weight change was greater for cows offered GS (-0.27 kg/d) than for those offered UP-WCW (-0.01 kg/d) and CS (+0.05 kg/d) but not compared with those offered F-WCW (-0.06 kg/d). There was no effect of treatment on plasma glucose, nonesterified fatty acids, beta-hydroxybutyrate, urea, or total protein at d 64 +/- 17.4 and d 92 +/- 17.4 postpartum. Efficiency of N utilization was greatest for CS with 0.36 of N intake being recovered in milk compared with 0.28, 0.32, and 0.26 for GS, F-WCW, and UP-WCW, respectively. There was no effect of treatment on milk urea N concentration or the urinary allantoin N to creatinine N ratio. The results of this experiment indicate that corn silage is a more suitable supplementary forage to grass silage than fermented or urea-treated processed WCW, with advantages realized in milk production and more efficient N utilization.
Warner, D; Bannink, A; Hatew, B; van Laar, H; Dijkstra, J
2017-08-01
The objective of this study was to determine the effect of level of feed intake and quality of ryegrass silage as well as their interaction on enteric methane (CH) emission from dairy cows. In a randomized block design, 56 lactating dairy cows received a diet of grass silage, corn silage, and a compound feed meal (70:10:20 on DM basis). Treatments consisted of 4 grass silage qualities prepared from grass harvested from leafy through late heading stage, and offered to dairy cows at 96 ± 2.4 (mean ± SEM) days in milk (namely, high intake) and 217 ± 2.4 d in milk (namely, low intake). Grass silage CP content varied between 124 and 286 g/kg of DM, and NDF content between 365 and 546 g/kg of DM. After 12 d of adaptation, enteric CH production of cows was measured in open-circuit climate-controlled respiration chambers for 5 d. No interaction between DMI and grass quality on CH emission, or on milk production, diet digestibility, and energy, and N retention was found ( ≥ 0.17). Cows had a greater DMI (16.6 vs. 15.5 kg/d; SEM 0.46) and greater fat- and protein-corrected milk (FPCM) yield (29.9 vs. 25.4 kg/d; SEM 1.24) at high than low intake (both ≤ 0.001). Apparent total-tract nutrient digestibility was not affected ( ≥ 0.08) by DMI level. Total enteric CH production (346 ± 10.9 g/d) was not affected ( = 0.15) by DMI level. A small, significant ( = 0.025) decrease at high compared with low intake occurred for CH yield (21.8 ± 0.59 g/kg of DMI; -4%). Methane emission intensity (12.8 ± 0.56 g/kg of FPCM; -12%) was considerably smaller ( ≤ 0.001) at high intake as a result of greater milk yields realized in early lactation. As grass quality decreased from leafy through late heading stage, FPCM yield and apparent total-tract OM digestibility declined (-12%; ≤ 0.015), whereas total CH production (+13%), CH yield (+21%), and CH emission intensity (+28%) increased ( ≤ 0.001). Our results suggest that improving grass silage quality by cutting grass at an earlier stage considerably reduces enteric CH emissions from dairy cows, independent of DMI. In contrast, losses of N in manure increased for the earlier cut grass silage treatments. The small increase in DMI at high intake was associated with a small to moderate reduction in CH emission per unit of DMI and GE intake. This study confirmed that enteric CH emissions from dairy cows at distinct levels of feed intake depend on the nutritive value and chemical composition of the grass silage.
Brunette, T; Baurhoo, B; Mustafa, A F
2014-10-01
This study investigated the effects of dietary replacement of corn silage (CS) with 2 cultivars of forage millet silages [i.e., regular millet (RM) and sweet millet (SM)] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a high-forage total mixed ration (68:32 forage:concentrate ratio). Dietary treatments included CS (control), RM, and SM diets. Experimental silages constituted 37% of each diet DM. Three ruminally fistulated cows were used to determine the effect of dietary treatments on ruminal fermentation and total-tract nutrient utilization. Relative to CS, RM and SM silages contained 36% more crude protein, 66% more neutral detergent fiber (NDF), and 88% more acid detergent fiber. Cows fed CS consumed more dry matter (DM; 24.4 vs. 22.7 kg/d) and starch (5.7 vs. 3.7 kg/d), but less NDF (7.9 vs. 8.7 kg/d) than cows fed RM or SM. However, DM, starch and NDF intakes were not different between forage millet silage types. Feeding RM relative to CS reduced milk yield (32.7 vs. 35.2 kg/d), energy-corrected milk (35.8 vs. 38.0 kg/d) and SCM (32.7 vs. 35.3 kg/d). However, cows fed SM had similar milk, energy-corrected milk, and solids-corrected milk yields than cows fed CS or RM. Milk efficiency was not affected by dietary treatments. Milk protein concentration was greatest for cows fed CS, intermediate for cows fed SM, and lowest for cows fed RM. Milk concentration of solids-not-fat was lesser, whereas milk urea nitrogen was greater for cows fed RM than for those fed CS. However, millet silage type had no effect on milk solids-not-fat and milk urea nitrogen levels. Concentrations of milk fat, lactose and total solids were not affected by silage type. Ruminal pH and ruminal NH3-N were greater for cows fed RM and SM than for cows fed CS. Total-tract digestibility of DM (average=67.9%), NDF (average=53.9%), crude protein (average=63.3%), and gross energy (average=67.9%) were not influenced by dietary treatments. It was concluded that cows fed CS performed better than those fed RM or SM likely due to the higher starch and lower NDF intakes. However, no major differences were noted between the 2 forage millet silage cultivars. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Little, M W; O'Connell, N E; Welsh, M D; Mulligan, F J; Ferris, C P
2017-06-01
Because negative energy balance (EB) contributes to transition-period immune dysfunction in dairy cows, dietary management strategies should aim to minimize negative EB during this time. Prepartum diets that oversupply energy may exacerbate negative EB in early lactation, with detrimental effects on immune function. However, with lower body condition score (BCS) cows, it has been shown that offering concentrates in addition to a grass silage-based diet when confined during an 8-wk dry period resulted in increased neutrophil function in early lactation. The aim of this study was to examine if similar benefits occur when concentrate feeding was restricted to a 4-wk period prepartum. Twenty-six multiparous and 22 primiparous Holstein-Friesian cows were offered ad libitum access to medium-quality grass silage until 28 d before their predicted calving dates (actual mean of 32 d prepartum; standard deviation = 6.4). At this time multiparous cows had a mean BCS of 2.9 (standard deviation = 0.12) and primiparous cows a mean BCS of 3.0 (standard deviation = 0.14) on a 1 to 5 scale. Cows were then allocated in a balanced manner to 1 of 2 treatments (13 multiparous cows and 11 primiparous cows on each treatment): silage only (SO) or silage plus concentrates (S+C) until calving. Cows on SO were offered the same grass silage ad libitum. Cows on S+C were offered an ad libitum mixed ration of the same grass silage and additional concentrates in a 60:40 dry matter (DM) ratio, which provided a mean concentrate DM intake (DMI) of 4.5 kg/cow per d. After calving, all cows were offered a common mixed ration (grass silage and concentrates, 40:60 DM ratio) for 70 d postpartum. Offering concentrates in addition to grass silage during the 4 wk prepartum increased prepartum DMI (12.0 versus 10.1 kg/cow per d), EB (+40.0 versus +10.6 MJ/cow per d), and body weight (BW; 640 versus 628 kg), and tended to increase BCS (3.02 versus 2.97). However, postpartum DMI, milk yield, milk composition, BW change, BCS change, serum nonesterified fatty acid, and β-hydroxybutryrate concentrations, health, and corpus luteum measures were unaffected by treatment. The in vitro assays of neutrophil phagocytosis, neutrophil oxidative burst, and interferon gamma production, conducted on blood samples obtained at d 14 prepartum and d 3, 7, 14, and 21 postpartum, were unaffected by treatment. Primiparous cows had higher phagocytic fluorescence intensity at d 14 prepartum and d 3 and 7 postpartum; a higher percentage of neutrophils undergoing oxidative burst at d 3, 7, and 21 postpartum; and a higher oxidative burst fluorescence intensity at d 14 prepartum and d 7, 14, and 21 postpartum compared with multiparous cows. This suggests that neutrophil function of primiparous cows was less sensitive to the changes occurring during the transition period than that of multiparous cows. In conclusion, offering concentrates during the 4-wk period prepartum had no effect on postpartum DMI, milk yield, body tissue mobilization, EB, measures of neutrophil or lymphocyte function, health, or corpus luteum activity. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
In vitro methane and gas production with inocula from cows and goats fed an identical diet.
Mengistu, Genet; Hendriks, Wouter H; Pellikaan, Wilbert F
2018-03-01
Fermentative capacity among ruminants can differ depending on the type of ruminant species and the substrate fermented. The aim was to compare in vitro cow and goat rumen inocula in terms of methane (CH 4 ) and gas production (GP), fermentation kinetics and 72 h volatile fatty acids (VFA) production using the browse species Acacia etbaica, Capparis tomentosa, Dichrostachys cinerea, Rhus natalensis, freeze-dried maize silage and grass silage, and a concentrate as substrates. Total GP, CH 4 and VFA were higher (P ≤ 0.008) in goat inoculum than cows across substrates. The half-time for asymptotic GP was lower (P < 0.0001) in phase 1 and higher (P < 0.012) in phase 2, and the maximum rate of GP was higher (P < 0.0001) in phase 1 and phase 3 (P < 0.0001) in goats compared to cows. Methane production and as a percentage of total GP was higher (P < 0.0001) and the half-time tended (P = 0.059) to be at a later time for goats compared to cows. Goat inoculum showed higher fermentative activity with a concomitant higher CH 4 production compared to cows. This difference highlights the ability of goats to better utilise browse species and other roughage types. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Macedo, Fernanda Lopes; Batistel, Fernanda; de Souza, Jonas; Chagas, Lucas Jado; Santos, Flávio Augusto Portela
2016-12-01
In this study, we investigated the associative effects of concentrate levels and Ca salts of soybean oil (CSSO) supplementation on performance and ruminal parameters of mid-lactation dairy cows grazing on tropical pasture. Twenty-four Jersey × Holstein cows were used in a randomized block design and assigned to four treatments arranged in a 2 × 2 factorial design. Factors evaluated were concentrate levels (low, 3 kg/day vs. high, 7 kg/day of concentrate) and CSSO supplementation (without CSSO vs. with 250 g CSSO cow/day). All cows grazed on elephant grass (Pennisetum purpureum cv. Cameroon) and received the supplemental treatments for a 90-day period. The high concentrate level decreased forage intake and grazing time. In addition, the high concentrate level increased rumen propionate concentration and microbial synthesis and tended to decrease ammonia-N compared with low concentrate level. The addition of CSSO tended to decrease valerate, isobutyrate, isovalerate, and microbial synthesis. In conclusion, feeding CSSO for mid lactating cows grazing on tropical pasture had negative effects on rumen function. In contrast, CSSO supplementation tended to interact with concentrate level and increased energy intake when fed at low concentrate level. Feeding the high level of concentrate was an effective strategy to increase energy intake and microbial synthesis and improve N utilization.
Comparative studies on bone structure in dairy cows with different feeding conditions.
Pilmane, M; Zitare, I; Jemeljanovs, A
2010-01-01
The bone belongs to the dynamic tissues and its structure in domestic cows is still not completely understood in correlation to the impact of different food components. The aim of our work was a histomorphometrical and immunohistochemical research on bone morphology and factors influencing it in healthy dairy cows fed with self-produced grain and with rapeseed cakes. The bone of self-produced grain-fed cows demonstrated statistically significant difference in the number of osteocytes from the bone of rapeseed cakes-fed cows. The rapeseed cakes-fed cows didn't show any bone cell positive for BMP2/4, while FGFR1 increased significantly in their supportive tissues. The number of bFGF- and apoptosis-containing structures varied in cows of both groups. MMP2 expression showed statistically significant difference between both animals' groups with domination in bone of cows fed with self-produced grain. Defensin-, osteopontin- and osteocalcin-containing cells showed tendency to increase in bone of cows on rapeseed cakes diet. Conclusions. The rapeseed-fed cow's long bones demonstrate significant decrease of osteocytes per mm2 and selective increase of FGFR1, suggesting the (compensatory) growth stimulation in supportive tissue. The statistically significant selective absence of MMP2 with a slight tendency of increase in osteopontin and osteocalcin in rapeseed-fed cow's long bones indicates the persistence of seemingly still compensated qualitative changes in bone (beginning of disturbances in mineralization, metabolism etc.) proved also by a slight increase of the bone antimicrobial peptide.
Gaynor, P J; Mueller, F J; Miller, J K; Ramsey, N; Goff, J P; Horst, R L
1989-10-01
Jersey cows were fed three alfalfa haylage-based diets with different cation-anion balances beginning 6 wk preceding third or later calving and ending 24 to 36 h postpartum. Sodium and Cl as percentages of dietary DM were .08 and 1.66 in diet 1 (anionic, 5 cows), .44 and .91 in diet 2 (intermediate, 6 cows), and 1.60 and .34 in diet 3 (cationic, 6 cows). Cation-anion balances were 22, 60, and 126 meq/100 g DM; Ca:P ratios averaged 4:1. Cows fed diet 1 in comparison with cows fed diets 2 or 3 over 6 wk had similar concentrations of Ca, P, and Na but higher concentrations of Mg and K in plasma and higher urinary excretions of Ca and Mg. Concentrations of 1,25-dihydroxyvitamin D 3 d before parturition were higher in cows fed diet 1 than in cows fed diets 2 or 3. Within 36 h after calving, mean concentrations of Ca in plasma (mg/dl, range) of cows fed diets 1 to 3, respectively, were 7 (8.7 to 6.2), 6.5 (7.8 to 3.9), and 6.3 (7.8 to 3.8). Number of cases of clinical milk fever by diet were 0 of 5, 2 of 6, and 1 of 6 cows. Alteration of dietary cation-anion balance by addition of Cl may effectively reduce incidence and severity of parturient hypocalcemia.
Siciliano-Jones, J L; Socha, M T; Tomlinson, D J; DeFrain, J M
2008-05-01
Two hundred fifty multiparous and primiparous cows were assigned to a study at approximately 70 d prepartum to determine the effect of trace mineral source on lactation performance, claw integrity, and fertility. Cows received treatments from 3 wk prepartum through wk 35 postpartum. Treatments consisted of 1) all supplemental Zn, Mn, Cu, and Co provided in sulfate form (Sulfate) and 2) 360 mg of Zn, 200 mg of Mn, 125 mg of Cu, and 12 mg of Co supplied daily by Sulfate minerals replaced with similar amounts of minerals supplied by Availa-4 (CTM). Individuals involved with daily animal care or data recording, or both, were blinded to treatment assignments. Cows from all treatments were housed in common pens, and treatments were dispensed to cows via a computerized feeder. All claws of cows were examined before treatment administration and at 16 and 36 wk postpartum by personnel trained in identifying claw lesions. Cows fed the CTM diet tended to produce more milk and energy-corrected milk than cows fed the Sulfate diet. Cows fed the CTM diet also produced more milk protein and solids (fat + protein) than cows fed the Sulfate diet. Replacing Sulfate minerals with those supplied by CTM decreased incidence of sole ulcers at wk 36 postpartum and tended to decrease incidence of interdigital dermatitis at wk 16 and 36 postpartum. Severity of heel erosion tended to be less for cows fed CTM than cows receiving the Sulfate diet. Despite first service conception rates tending to be greater for cows fed the Sulfate diet, there was no effect of treatment on rate of conception. A greater percentage of cows fed the Sulfate diet tended to be culled from the herd before wk 36 postpartum than cows fed the CTM diet. Replacing Sulfate minerals with CTM resulted in improved lactation performance and claw integrity.
Côrtes, C; da Silva-Kazama, D C; Kazama, R; Gagnon, N; Benchaar, C; Santos, G T D; Zeoula, L M; Petit, H V
2010-07-01
Four ruminally lactating Holstein cows averaging 602+/-25 kg of body weight and 64+/-6 d in milk at the beginning of the experiment were randomly assigned to a 4 x 4 Latin square design to determine the effects of feeding whole flaxseed and calcium salts of flaxseed oil on dry matter intake, digestibility, ruminal fermentation, milk production and composition, and milk fatty acid profile. The treatments were a control with no flaxseed products (CON) or a diet (on a dry matter basis) of 4.2% whole flaxseed (FLA), 1.9% calcium salts of flaxseed oil (SAL), or 2.3% whole flaxseed and 0.8% calcium salts of flaxseed oil (MIX). The 4 isonitrogenous and isoenergetic diets were fed for ad libitum intake. Experimental periods consisted of 21 d of diet adaptation and 7 d of data collection and sampling. Dry matter intake, digestibility, milk production, and milk concentrations of protein, lactose, urea N, and total solids did not differ among treatments. Ruminal pH was reduced for cows fed the CON diet compared with those fed the SAL diet. Propionate proportion was higher in ruminal fluid of cows fed CON than in that of those fed SAL, and cows fed the SAL and CON diets had ruminal propionate concentrations similar to those of cows fed the FLA and MIX diets. Butyrate concentration was numerically higher for cows fed the SAL diet compared with those fed the FLA diet. Milk fat concentration was lower for cows fed SAL than for those fed CON, and there was no difference between cows fed CON and those fed FLA and MIX. Milk yields of protein, fat, lactose, and total solids were similar among treatments. Concentrations of cis-9 18:1 and of intermediates of ruminal biohydrogenation of fatty acids such as trans-9 18:1 were higher in milk fat of cows fed SAL and MIX than for those fed the CON diet. Concentration of rumenic acid (cis-9, trans-11 18:2) in milk fat was increased by 63% when feeding SAL compared with FLA. Concentration of alpha-linolenic acid was higher in milk fat of cows fed SAL and MIX than in milk of cows fed CON (75 and 61%, respectively), whereas there was no difference between FLA and CON. Flaxseed products (FLA, SAL, and MIX diets) decreased the n-6 to n-3 fatty acid ratio in milk fat. Results confirm that flax products supplying 0.7 to 1.4% supplemental fat in the diet can slightly improve the nutritive value of milk fat for better human health. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Fredin, S M; Akins, M S; Ferraretto, L F; Shaver, R D
2015-01-01
An experiment was conducted to evaluate the effects of corn-based dietary starch content and source of neutral detergent fiber (NDF) on lactation performance, nutrient digestion, bacterial protein flow, and ruminal parameters in lactating dairy cows. Eight ruminally cannulated multiparous Holstein cows averaging 193±11d in milk were randomly assigned to treatments in a replicated 4×4 Latin square design with 21-d periods. Treatment diets were high corn grain (HCG; 38% corn silage, 19% dry ground corn, and 4% soy hulls), high soy hulls (HSH; 38% corn silage, 11% dry ground corn, and 13% soy hulls), high corn silage (HCS; 50% corn silage, 6% dry ground corn, and 4% soy hulls), and low corn silage (LCS; 29% corn silage, 15% corn, and 19% soy hulls). The HCG, HSH, HCS, and LCS diets contained 29, 23, 24, and 22% starch; 27, 32, 30, and 32% total NDF; and 21, 21, 25, and 17% forage NDF (dry matter basis), respectively. Mean dry matter intake and milk yield were unaffected by treatment. Cows fed LCS had reduced milk fat content compared with HSH and HCS. The concentration of milk urea nitrogen was greater for cows fed HCS compared with the other treatments. Total-tract digestion of NDF was reduced for cows fed the HCG diet. Total-tract starch digestion was increased for cows fed the HSH and HCS compared with HCG and LCS diets. Bacterial protein flow was unaffected by treatment. Ruminal ammonia concentration was reduced in cows fed the HCG and LCS diets compared with the HCS diet. Ruminal propionate increased and the acetate:propionate ratio decreased in cows fed the LCS diet compared with the HCS diet. Ruminal pH was greater for cows fed the HCS diet compared with cows fed the LCS diet. Diet digestibility and performance of mid- to late-lactation cows fed reduced-starch diets by partially replacing corn grain with soy hulls or corn silage was similar to or improved compared with cows fed a normal-starch diet. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Mutsvangwa, T; Kiran, D; Abeysekara, S
2016-02-01
The objective of this study was to determine the effects of feeding canola meal (CM) or wheat dried distillers grains with solubles (W-DDGS) as the major source of protein in diets varying in crude protein (CP) content on ruminal fermentation, microbial protein production, omasal nutrient flow, and production performance in lactating dairy cows. Eight lactating dairy cows were used in a replicated 4×4 Latin square design with 29-d periods (21 d of dietary adaptation and 8 d of measurements) and a 2×2 factorial arrangement of dietary treatments. Four cows in 1 Latin square were ruminally cannulated to allow ruminal and omasal sampling. The treatment factors were (1) source of supplemental protein (CM vs. W-DDGS) and (2) dietary CP content (15 vs. 17%; DM basis). Diets contained 50% forage and 50% concentrate, and were fed twice daily at 0900 and 1600 h as total mixed rations for ad libitum intake. Dry matter intake and milk yield were unaffected by dietary treatments; however, milk yield in cows that were fed CM was numerically greater (+1.1 kg/d) when compared with cows fed W-DDGS. Feeding CM increased milk lactose content compared with feeding W-DDGS. Milk urea nitrogen and ruminal NH3-N concentrations were greater in cows fed the high-CP compared with those fed the low-CP diet. The rumen-degradable protein supply was greater in cows fed the high-CP when compared with those fed the low-CP diet when diets contained CM, whereas rumen-degradable protein supply was lower in cows fed the high-CP when compared with those fed the low-CP diet when diets contained W-DDGS. Total N flow at the omasal canal was not affected by diet; however, omasal flow of NH3-N was greater in cows fed CM when compared with those fed W-DDGS. The rumen-undegradable protein supply was greater in cows fed the low-CP when compared with those fed the high-CP diet when diets contained CM, whereas rumen-undegradable protein supply was lower in cows fed the low-CP when compared with those fed the high-CP diet when diets contained W-DDGS. Omasal flow of fluid-associated bacteria was greater and that of particle-associated bacteria tended to be greater in cows fed CM when compared with those fed W-DDGS; however, omasal flow of total microbial nonammonia N was unaffected by dietary treatment. Omasal flows of threonine and tryptophan were greater, whereas that of histidine and lysine tended to be greater in cows fed CM when compared with those fed W-DDGS. Our results show that when dairy diets are formulated to contain 15 or 17% CP, CM or W-DDGS can be used as the major source of protein and achieve similar levels of milk production. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Effect of raw soya bean particle size on productive performance and digestion of dairy cows.
Naves, A B; Freitas Júnior, J E; Barletta, R V; Gandra, J R; Calomeni, G D; Gardinal, R; Takiya, C S; Vendramini, T H A; Mingoti, R D; Rennó, F P
2016-08-01
Differing soya bean particle sizes may affect productive performance and ruminal fermentation due to the level of fatty acid (FA) exposure of the cotyledon in soya bean grain and because the protein in small particles is more rapidly degraded than the protein in large particles, which influence ruminal fibre digestion and the amounts of ruminally undegradable nutrients. The objective of this experiment was to investigate the effects of raw soya bean particle size on productive performance, digestion and milk FA profile of dairy cows. Twelve Holstein cows were assigned to three 4 × 4 Latin squares with 21-day periods. At the start of the experiment, cows were 121 days in milk (DIM) and yielded 30.2 kg/day of milk. Cows were fed 4 diets: (i) control diet (CO), without raw soya bean; (ii) whole raw soya bean (WRS); (iii) cracked raw soya bean in Wiley mill 4-mm screen (CS4); and (iv) cracked raw soya bean in Wiley mill 2-mm screen (CS2). The inclusion of soya beans (whole or cracked) was 200 g/kg on dry matter (DM) basis and partially replaced ground corn and soya bean meal. Uncorrected milk yield and composition were not influenced by experimental diets; however, fat-corrected milk (FCM) decreased when cows were fed soya bean treatments. Soya bean diets increased the intake of ether extract (EE) and net energy of lactation (NEL ), and decreased the intake of DM and non-fibre carbohydrate (NFC). Ruminal propionate concentration was lower in cows fed WRS than cows fed CS2 or CS4. Cows fed cracked raw soya bean presented lower nitrogen in faeces than cows fed WRS. The milk of cows fed WRS, CS2 and CS4 presented higher unsaturated FA than cows fed CO. The addition of raw soya bean in cow diets, regardless of the particle size, did not impair uncorrected milk yield and nutrient digestion, and increased the concentration of unsaturated FA in milk. Cows fed cracked raw soya bean presented similar productive performance to cows fed whole raw soya bean. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
Puhakka, L; Jaakkola, S; Simpura, I; Kokkonen, T; Vanhatalo, A
2016-10-01
The objective of this study was to evaluate the production and physiological responses of dairy cows to the substitution of fava bean for rapeseed meal at 2 protein supplementation levels in grass silage-based diets. We used 6 primiparous and 6 multiparous Finnish Ayrshire cows in a cyclic changeover trial with a 2×3 factorial arrangement of treatments. The experimental diets consisted of formic acid-treated timothy-meadow fescue silage and 3 isonitrogenous concentrates containing either rapeseed meal, fava bean, or a 1:1 mixture of rapeseed meal and fava bean at low and high inclusion rates, resulting in concentrate crude protein (CP) levels of 15.4 and 19.0% in dry matter. Silage dry matter intake decreased linearly when rapeseed meal was replaced with fava bean, the negative effect being more distinct at the high CP level than the low (-2.3 vs. -0.9kg/d, respectively). Similarly, milk and milk protein yields decreased linearly with fava bean, the change tending to be greater at the high CP level than the low. Yield of milk fat was lower for fava bean compared with rapeseed meal, the difference showing no interaction with CP level. Especially at the high CP level, milk urea concentration was higher with fava bean compared with rapeseed meal indicating better utilization of protein from the rapeseed meal. The apparent total-tract organic matter digestibility did not differ between treatments at the low CP level, but digestibility was higher for fava bean than for rapeseed meal at the high CP level. Plasma concentrations of essential amino acids, including methionine and lysine, were lower for fava bean than for rapeseed meal. Compared with rapeseed meal, the use of fava bean in dairy cow diets as the sole protein supplement decreased silage intake and milk production in highly digestible formic acid-treated grass silage-based diets. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ferraretto, L F; Fonseca, A C; Sniffen, C J; Formigoni, A; Shaver, R D
2015-01-01
Selection for hybrids with greater starch and NDF digestibility may be beneficial for dairy producers. The objective of this study was to determine the effect of feeding a TMR containing a floury-leafy corn silage hybrid (LFY) compared with a brown midrib corn silage hybrid (BMR) for intake, lactation performance, and total-tract nutrient digestibility in dairy cows. Ninety-six multiparous Holstein cows, 105±31d in milk at trial initiation, were stratified by DIM and randomly assigned to 12 pens of 8 cows each. Pens were randomly assigned to 1 of 2 treatments, BMR or LFY, in a completely randomized design; a 2-wk covariate period with cows fed a common diet followed by a 14-wk treatment period with cows fed their assigned treatment diet. Starch digestibilities, in situ, in vitro, and in vivo, were greater for LFY compared with BMR; the opposite was observed for NDF digestibility. Cows fed BMR consumed 1.7kg/d more dry matter than LFY. Although, actual-, energy-, and solids-corrected milk yields were greater for BMR than LFY, feed conversions (kg of milk or component-corrected milk per kg of DMI) did not differ. Fat-corrected milk and milk fat yield were similar, as milk fat content was greater for cows fed LFY (4.05%) than BMR (3.83%). Cows fed BMR had lower milk urea nitrogen concentration, but greater milk protein and lactose yields compared with LFY. Body weight change and condition score were unaffected by treatment. Total-tract starch digestibility was greater for cows fed the LFY corn silage; however, dry matter intake and milk and protein yields were greater for cows fed the BMR corn silage. Although total-tract starch digestibility was greater for cows fed the LFY corn silage, feed efficiency was not affected by hybrid type due to greater dry matter intake and milk and protein yields by cows fed the BMR corn silage. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Richards, Shauna; VanLeeuwen, John; Shepelo, Getrude; Gitau, George Karuoya; Kamunde, Collins; Uehlinger, Fabienne; Wichtel, Jeff
2015-01-01
Cows on smallholder dairy farms (SDF) in developing countries such as Kenya typically produce volumes of milk that are well below their genetic potential. An epidemiological study was conducted to determine reasons for this low milk production, including limited use of best management practices, such as suboptimal nutritional management. An observational cross-sectional study of 111 SDF was performed in Nyeri County, Kenya in June of 2013 determining the effect of cow factors, farmer demographics and farm management practices on the volume of milk sold per cow per year (kg milk sold/cow). In particular, the effect of feeding high protein fodder trees and other nutritional management practices were examined. Approximatly 38% of farmers fed fodder trees, but such feeding was not associated with volume of milk sold per cow, likely due to the low number of fodder trees per farm. Volume of milk sold per cow was positively associated with feeding dairy meal during the month prior to calving, feeding purchased hay during the past year, deworming cows every 4 or more months (as opposed to more regularly), and having dairy farming as the main source of family income. Volume of milk sold per cow was negatively associated with a household size of >5 people and feeding Napier grass at >2 meters in height during the dry season. An interaction between gender of the principal farmer and feed shortages was noted; volume of milk sold per cow was lower when female farmers experienced feed shortages whereas milk sold per cow was unaffected when male farmers experienced feed shortages. These demographic and management risk factors should be considered by smallholder dairy farmers and their advisors when developing strategies to improve income from milk sales and animal-source food availability for the farming families.
USDA-ARS?s Scientific Manuscript database
Ergot alkaloids in endophyte-infected grasses inhibit prolactin (PRL) secretion and may reduce milk production of cows consuming endophyte-infected grasses. We hypothesized that consumption of endophyte-infected fescue during the dry period inhibits mammary differentiation and subsequent milk produ...
Wetzels, S U; Mann, E; Pourazad, P; Qumar, M; Pinior, B; Metzler-Zebeli, B U; Wagner, M; Schmitz-Esser, S; Zebeli, Q
2017-03-01
Subacute ruminal acidosis (SARA) is a prevalent metabolic disorder in cattle, characterized by intermittent drops in ruminal pH. This study investigated the effect of a gradual adaptation and continuously induced long-term SARA challenge diet on the epimural bacterial community structure in the rumen of cows. Eight rumen-cannulated nonlactating Holstein cows were transitioned over 1 wk from a forage-based baseline feeding diet (grass silage-hay mix) to a SARA challenge diet, which they were fed for 4 wk. The SARA challenge diet consisted of 60% concentrates (dry matter basis) and 40% grass silage-hay mix. Rumen papillae biopsies were taken at the baseline, on the last day of the 1-wk adaptation, and on the last day of the 4-wk SARA challenge period; ruminal pH was measured using wireless sensors. We isolated DNA from papillae samples for 16S rRNA gene amplicon sequencing using Illumina MiSeq. Sequencing results of most abundant key phylotypes were confirmed by quantitative PCR. Although they were fed similar amounts of concentrate, cows responded differently in terms of ruminal pH during the SARA feeding challenge. Cows were therefore classified as responders (n = 4) and nonresponders (n = 4): only responders met the SARA criterion of a ruminal pH drop below 5.8 for longer than 330 min/d. Data showed that Proteobacteria, Firmicutes, and Bacteroidetes were the most abundant phyla, and at genus level, Campylobacter and Kingella showed highest relative abundance, at 15.5 and 7.8%, respectively. Diversity analyses revealed a significant increase of diversity after the 1-wk adaptation but a decrease of diversity and species richness after the 4-wk SARA feeding challenge, although without distinction between responders and nonresponders. At the level of the operational taxonomic unit, we detected diet-specific shifts in epimural community structure, but in the overall epimural bacterial community structure, we found no differences between responders and nonresponders. Correlation analysis revealed significant associations between grain intake and operational taxonomic unit abundance. The study revealed major shifts in the 3 dominating phyla and, most importantly, a loss of diversity in the epimural bacterial communities during a long-term SARA diet challenge, in which 60% concentrate supply for 4 wk was instrumental rather than the magnitude of the drop of ruminal pH below 5.8. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Williams, S R O; Chaves, A V; Deighton, M H; Jacobs, J L; Hannah, M C; Ribaux, B E; Morris, G L; Wales, W J; Moate, P J
2018-03-01
Almond hulls and citrus pulp have been fed to dairy cows with variable responses for milk production, but no information exists on their effect on enteric methane emissions. This experiment examined the effects of dietary supplementation with either almond hulls or ensiled citrus pulp on the milk yield, milk composition, and enteric methane emissions of dairy cows. Thirty-two Holstein dairy cows in mid lactation were offered 1 of 3 diets over a 28-d experiment. Twelve cows received a control (CON) diet, 10 cows a diet containing almond hulls (ALH), and 10 cows a diet containing ensiled citrus pulp (CIT). All cows were offered 6.0 kg of dry matter (DM)/d of crushed corn, 2.0 kg of DM/d of cold-pressed canola, and 0.2 kg of DM/d of a mineral mix. In addition, cows fed the CON diet were offered 14.5 kg of DM/d of alfalfa cubes; cows fed the ALH diet were offered 10.5 kg of DM/d of alfalfa cubes and 4.0 kg of DM/d of almond hulls; and cows on the CIT diet were offered 11.5 kg of DM/d of alfalfa cubes and 3.0 kg of DM/d of ensiled citrus pulp. Milk yield was measured daily and milk composition was measured on 4 d of each week. Individual cow methane emissions were measured by a sulfur hexafluoride tracer technique on d 24 to 28 of the experiment. The mean milk yield of cows fed the CON diet (27.4 kg/d) was greater than the mean milk yield of cows fed the ALH diet (24.6 kg/cow per day), whereas the mean milk yield of cows fed the CIT diet (26.2 kg/cow per day) was not different from the mean milk yield from cows fed the other 2 diets. Dietary treatment did not influence the concentrations of milk fat, protein, and lactose or fat yields, but the mean protein yield from cows fed the CON diet (0.87 kg/d) was greater than that from cows fed the ALH diet (0.78 kg/d) but not different to those fed the CIT diet (0.85 kg/d). In general, we found no differences in the proportion of individual fatty acids in milk. The mean pH of ruminal fluid from cows offered the CON diet was not different to the pH in the ruminal fluids of cows offered the ALH or the CIT diets. The mean methane emissions (g/d) and yields (g/kg of DM intake) were not influenced by dietary treatment. These findings indicate that, although almond hulls and ensiled citrus pulp can be used as a low-cost feed supplement, almond hulls did negatively affect milk production and neither inhibited enteric methane emissions. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Luo, Guobin; Xu, Wenbin; Yang, Jinshan; Li, Yang; Zhang, Liyang; Wang, Yizhen; Lin, Cong; Zhang, Yonggen
2017-05-01
This trial was performed to examine the effects of ruminally degradable starch (RDS) levels in total mixed ration (TMR) with low corn-based starch on the milk production, whole-tract nutrient digestibility and nitrogen balance in dairy cows. Eight multiparous Holstein cows (body weight [BW]: 717±63 kg; days in milk [DIM]: 169±29) were assigned to a crossover design with two dietary treatments: a diet containing 62.3% ruminally degradable starch (% of total starch, low RDS) or 72.1% ruminally degradable starch (% of total starch, high RDS). Changes to the ruminally degradable levels were conducted by using either finely ground corn or steam-flaked corn as the starch component. The results showed that dry matter intake, milk yield and composition in dairy cows were not affected by dietary treatments. The concentration of milk urea nitrogen was lower for cows fed high RDS TMR than low RDS TMR. The whole-tract apparent digestibility of neutral detergent fiber, acid detergent fiber and crude protein decreased, and that of starch increased for cows fed high RDS TMR over those fed low RDS TMR, with no dietary effect on the whole-tract apparent digestibility of dry matter and organic matter. The proportion of urinary N excretion in N intake was lower and that of fecal N excretion in N intake was higher for cows fed high RDS TMR than those fed low RDS TMR. The N secretion in milk and the retention of N were not influenced by the dietary treatments. Total purine derivative was similar in cows fed high RDS TMR and low RDS TMR. Consequently, estimated microbial N flow to the duodenum was similar in cows fed high RDS TMR and low RDS TMR. Results of this study show that ruminally degradable starch levels can influence whole-tract nutrient digestibility and nitrogen balance in dairy cows fed low corn-based starch diets, with no influence on performance.
Schoenberg, K M; Ehrhardt, R M; Overton, T R
2012-02-01
Nonlactating Holstein cows (n=12) in late pregnancy were used to determine effects of plane of nutrition followed by feed deprivation on metabolic responses to insulin. Beginning 48 d before expected parturition, cows were fed to either a high plane (HP) or a low plane (LP) of nutrition (162 and 90% of calculated energy requirements, respectively). Cows were subjected to an intravenous glucose tolerance test [GTT; 0.25 g of dextrose/kg of body weight (BW)] on d 14 of treatment and a hyperinsulinemic-euglycemic clamp (HEC; 1 μg/kg of BW/h) on d 15. Following 24 h of feed removal, cows were subjected to a second GTT on d 17 and a second HEC on d 18 after 48 h of feed removal. During the feeding period, plasma nonesterified fatty acid (NEFA) concentrations were higher for cows fed the LP diet compared with those fed the HP diet (163.6 vs. 73.1 μEq/L), whereas plasma insulin was higher for cows fed the HP diet during the feeding period (11.1 vs. 5.2 μIU/mL). Glucose areas under the curve during both GTT were higher for cows fed the LP diet than for those fed the HP diet (4,213 vs. 3,750 mg/dL × 60 min) and was higher during the GTT in the feed-deprived state (4,878 vs. 3,085 mg/dL × 60 min) than in the GTT during the fed state, suggesting slower clearance of glucose during negative energy balance either pre-or post-feed deprivation. This corresponded with a higher dextrose infusion rate during the fed-state HEC than during the feed-deprived-state HEC (203.3 vs. 90.1 mL/h). Plasma NEFA decreased at a faster rate following GTT during feed deprivation compared with that during the fed state (8.7 vs. 2.9%/min). Suppression of NEFA was highest for cows fed the HP diet during the GTT conducted during feed deprivation, and lowest for cows fed the HP diet during the fed-state GTT (68.6 vs. 50.3% decrease from basal). Plasma insulin responses to GTT were affected by feed deprivation such that cows had a much lower insulin response to GTT by 24 h after feed removal (995 vs. 3,957 μIU/mL × 60 min). During the fed-state HEC, circulating concentrations of NEFA were 21% below basal for cows fed the HP diet and 62% below basal for cows fed the LP diet; during feed deprivation, NEFA were 79 and 59% below basal for the HP and LP diets, respectively (diet × HEC). Cows that are fed below energy requirements or are feed deprived have slower clearance of glucose and greater NEFA responses to glucose challenge. Additionally, feed deprivation had a large effect on insulin secretion. Overall, effects of feed deprivation were larger than effects of plane of nutrition. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
de Andrade, Felipe Leite; Rodrigues, João Paulo Pacheco; Detmann, Edenio; Valadares Filho, Sebastião de Campos; Castro, Marcelo Messias Duarte; Trece, Aline Souza; Silva, Tadeu Eder; Fischer, Vivian; Weiss, Kirsten; Marcondes, Marcos Inácio
2016-04-01
The objective of this study was to compare the intake, digestibility, and performance of dairy cows fed corn silage, fresh sugarcane, and sugarcane ensiled in three different forms. Twenty-five Holstein cows at 114 ± 12.6 days in milk (DIM) were used. A randomized block design was adopted, using an arrangement of repeated measures over time. The following treatments were tested: corn silage (CS); fresh sugarcane (FS); sugarcane silage without additives (SCS); sugarcane silage enriched with calcium oxide at 5 g/kg of forage (SCSc); and sugarcane silage enriched with Lactobacillus buchneri at 5 × 10(4) cfu/kg of forage (SCSb). The roughage to concentrate ratio was 60:40 for the CS diet and 40:60 for the sugarcane-based diets. The dry matter intake (DMI) as a function of body weight had a downward trend for the cows fed sugarcane silage, compared with those fed FS. The sugarcane silages had higher digestibilities of dry matter (DM), organic matter (OM), and neutral detergent fiber (NDFap), compared with FS. The use of L. buchneri or calcium oxide improved the diet's digestibility. The use of FS, sugarcane silage, or sugarcane silage with additives had no effects on milk and fat-corrected milk yield, compared to corn silage. Cows fed FS presented lower milk total solids content and had a downward trend for milk fat, compared with cows fed sugarcane-silage diets. Cows fed sugarcane silages produced milk with higher casein stability in the alcohol test than cows fed fresh-sugarcane diet. Sugarcane silage, with or without additives, did not reduce the intake of dairy cows, and the use of additives improved the fiber's digestibility.
Hassanat, F; Gervais, R; Benchaar, C
2017-04-01
The objective of this study was to examine the effect of replacing conventional corn silage (CCS) with brown midrib corn silage (BMCS) in dairy cow diets on enteric CH 4 emission, nutrient intake, digestibility, ruminal fermentation characteristics, milk production, and N excretion. Sixteen rumen-cannulated lactating cows used in a crossover design (35-d periods) were fed (ad libitum) a total mixed ration (forage:concentrate ratio = 65:35, dry matter basis) based (59% dry matter) on either CCS or BMCS. Dry matter intake and milk yield increased when cows were fed BMCS instead of CCS. Of the milk components, only milk fat content slightly decreased when cows were fed the BMCS-based diet compared with when fed the CCS-based diet (3.81 vs. 3.92%). Compared with CCS, feeding BMCS to cows increased yields of milk protein and milk fat. Ruminal pH, protozoa numbers, total VFA concentration, and molar proportions of acetate and propionate were similar between cows fed BMCS and those fed CCS. Daily enteric CH 4 emission (g/d) was unaffected by dietary treatments, but CH 4 production expressed as a proportion of gross energy intake or on milk yield basis was lower for cows fed the BMCS-based diet than for cows fed the CCS-based diet. A decline in manure N excretion and a shift in N excretion from urine to feces were observed when BMCS replaced CCS in the diet, suggesting reduced potential of manure N volatilization. Results from this study show that improving fiber quality of corn silage in dairy cow diets through using brown midrib trait cultivar can reduce enteric CH 4 emissions as well as potential emissions of NH 3 and N 2 O from manure. However, CH 4 emissions during manure storage may increase due to excretion of degradable OM when BMCS diet is fed, which merits further investigation. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ertl, P; Zebeli, Q; Zollitsch, W; Knaus, W
2015-02-01
When fed human-edible feeds, such as grains and pulses, dairy cows are very inefficient in transforming them into animal products. Therefore, strategies to reduce human-edible inputs in dairy cow feeding are needed to improve food efficiency. The aim of this feeding trial was to analyze the effect of the full substitution of a common concentrate mixture with a by-product concentrate mixture on milk production, feed intake, blood values, and the edible feed conversion ratio (eFCR), defined as human-edible output per human edible input. The experiment was conducted as a change-over design, with each experimental period lasting for 7wk. Thirteen multiparous and 5 primiparous Holstein cows were randomly assigned to 1 of 2 treatments. Treatments consisted of a grass silage-based forage diet supplemented with either conventional ingredients or solely by-products from the food processing industry (BP). The BP mixture had higher contents of fiber and ether extract, whereas starch content was reduced compared with the conventional mixture. Milk yield and milk solids were not affected by treatment. The eFCR in the BP group were about 4 and 2.7 times higher for energy and protein, respectively. Blood values did not indicate negative effects on cows' metabolic health status. Results of this feeding trial suggest that by-products could replace common concentrate supplements in dairy cow feeding, resulting in an increased eFCR for energy and protein which emphasizes the unique role of dairy cows as net food producers. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Mutsvangwa, T; Davies, K L; McKinnon, J J; Christensen, D A
2016-08-01
The objective of this study was to determine how interactions between dietary crude protein (CP) and rumen-degradable protein (RDP) concentrations alter urea-nitrogen recycling, nitrogen (N) balance, omasal nutrient flow, and milk production in lactating Holstein cows. Eight multiparous Holstein cows (711±21kg of body weight; 91±17d in milk at the start of the experiment) were used in a replicated 4×4 Latin square design with a 2×2 factorial arrangement of dietary treatments and 29-d experimental periods. Four cows in one Latin square were fitted with ruminal cannulas to allow ruminal and omasal sampling. The dietary treatment factors were CP (14.9 vs. 17.5%; dry matter basis) and RDP (63 vs. 69% of CP) contents. Dietary RDP concentration was manipulated by including unprocessed or micronized canola meal. Diet adaptation (d 1-20) was followed by 8d (d 21-29) of sample and data collection. Continuous intrajugular infusions of [(15)N(15)N]-urea (220mg/d) were conducted for 4d (d 25-29) with concurrent total collections of urine and feces to estimate N balance and whole-body urea kinetics. Proportions of [(15)N(15)N]- and [(14)N(15)N]-urea in urinary urea, and (15)N enrichment in feces were used to calculate urea kinetics. For the low-CP diets, cows fed the high-RDP diet had a greater DM intake compared with those fed the low-RDP diet, but the opposite trend was observed for cows fed the high-CP diets. Dietary treatment had no effect on milk yield. Milk composition and milk component yields were largely unaffected by dietary treatment; however, on the low-CP diets, milk fat yield was greater for cows fed the low-RDP diet compared with those fed the high-RDP diet, but it was unaffected by RDP concentration on the high-CP diets. On the high-CP diets, milk urea nitrogen concentration was greater in cows fed the high-RDP diet compared with those fed the low-RDP diet, but it was unaffected by RDP concentration on the low-CP diets. Ruminal NH3-N concentration tended to be greater in cows fed the high-CP diet compared with those fed the low-CP diet, and it was greater in cows fed the high-RDP diet as compared with those fed the low-RDP diet. Nitrogen intake and both total N and urea-N excretion in urine were greater for cows fed the high-CP diet compared with those fed the low-CP diet. However, N balance and urinary excretion of purine derivatives were unaffected by dietary treatment. Urea-N entry rate (UER) was greater in cows fed the high-CP diet compared with those fed the low-CP diet; however, UER was unaffected by dietary RDP concentration. The proportion of urea-N recycled to the gastrointestinal tract (as a percentage of UER) was greater in cows fed the low-CP diet compared with those fed the high-CP diet. In summary, reducing dietary CP concentration decreased urinary N excretion but had no effect on milk yield, thus resulting in an overall improvement in milk N efficiency. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Silvestre, F T; Carvalho, T S M; Francisco, N; Santos, J E P; Staples, C R; Jenkins, T C; Thatcher, W W
2011-01-01
The objectives were to evaluate the effects of differential timing of supplementation of different Ca salts (CS) of fatty acids (FA) on FA profiles of cotyledonary-caruncular tissues, metabolic status, uterine health, pregnancy, pregnancy losses after 2 artificial inseminations (AI), and milk yield. Holstein cows (n=1,380) were assigned randomly to be fed either CS of palm oil (PO) or safflower oil (SO) from 30 d prepartum until 30 d postpartum (dpp) and further randomized to receive either CS of PO or fish oil (FO) from 30 to 160 dpp. Supplementation of CS of FA was at 1.5% of dietary dry matter. Tissues (n=23) and blood (n=32) were collected from a subsample of cows. Blood was collected daily from parturition to 10 dpp and three times weekly thereafter until 30 dpp for analyses of PGF2α metabolite, nonesterified FA, β-hydroxybutyric acid, blood urea nitrogen, and glucose. Cows were evaluated once between 8 to 10 dpp for cervical discharge type. At 43 dpp, cows received 2 injections of PGF2α 14 d apart, followed 14 d later by injections of GnRH at 7 d before and 56 h after an injection of PGF2α with AI at 16 h after the second GnRH injection. All cows received intravaginally a controlled internal drug-releasing device, containing 1.38 g of progesterone, at 18 d after the first AI followed 7 d later by removal of the device and injection of GnRH. Nonpregnant cows at 32 d after AI were injected with PGF2α, followed 56 h later with a GnRH injection and second AI 16 h thereafter. Cows diagnosed pregnant after both AI were re-examined at 60 d of pregnancy to determine pregnancy losses. Milk weights were recorded monthly for all cows. Caruncular n-6:n-3 FA ratio was greater in cows fed SO. Plasma concentrations of metabolites and frequency of cervical discharge type did not differ between PO- and SO-fed cows. Plasma PGF2α metabolite was greater in SO-fed cows at 4 and 7 dpp. Pregnancy per AI at 32 and 60 d post first AI was not affected by diets, but pregnancy loss was less in FO-fed cows. At second AI, pregnancy was greater in FO-fed cows at 32 d and in SO-FO-fed cows at 60 d post AI. Pregnancy loss after second AI was not affected by diets. Overall pregnancy per AI was greater in cows fed SO followed by FO at 60 d of pregnancy and pregnancy loss was reduced in FO-fed cows. Monthly milk yield was greater (0.7 kg/d) in SO-fed cows. In conclusion, strategic feeding of CS of FA during transition and breeding periods can benefit fertility and milk production of lactating dairy cows. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Dini, Yoana; Gere, José; Briano, Carolina; Manetti, Martin; Juliarena, Paula; Picasso, Valentin; Gratton, Roberto; Astigarraga, Laura
2012-06-08
Understanding the impact of changing pasture composition on reducing emissions of GHGs in dairy grazing systems is an important issue to mitigate climate change. The aim of this study was to estimate daily CH₄ emissions of dairy cows grazing two mixed pastures with contrasting composition of grasses and legumes: L pasture with 60% legumes on Dry Matter (DM) basis and G pasture with 75% grasses on DM basis. Milk production and CH₄ emissions were compared over two periods of two weeks during spring using eight lactating Holstein cows in a 2 × 2 Latin square design. Herbage organic matter intake (HOMI) was estimated by chromic oxide dilution and herbage organic matter digestibility (OMD) was estimated by faecal index. Methane emission was estimated by using the sulfur hexafluoride (SF6) tracer technique adapted to collect breath samples over 5-day periods. OMD (0.71) and HOMI (15.7 kg OM) were not affected by pasture composition. Milk production (20.3 kg/d), milk fat yield (742 g/d) and milk protein yield (667 g/d) were similar for both pastures. This may be explained by the high herbage allowance (30 kg DM above 5 cm/cow) which allowed the cows to graze selectively, in particular in grass sward. Similarly, methane emission expressed as absolute value (368 g/d or 516 L/d) or expressed as methane yield (6.6% of Gross Energy Intake (GEI)) was not affected by treatments. In conclusion, at high herbage allowance, the quality of the diet selected by grazing cows did not differ between pastures rich in legumes or rich in grasses, and therefore there was no effect on milk or methane production.
Golder, H M; Denman, S E; McSweeney, C; Wales, W J; Auldist, M J; Wright, M M; Marett, L C; Greenwood, J S; Hannah, M C; Celi, P; Bramley, E; Lean, I J
2014-09-01
Late-lactation Holstein cows (n=144) that were offered 15kg dry matter (DM)/cow per day of perennial ryegrass to graze were randomized into 24 groups of 6. Each group contained a fistulated cow and groups were allocated to 1 of 3 feeding strategies: (1) control (10 groups): cows were fed crushed wheat grain twice daily in the milking parlor and ryegrass silage at pasture; (2) partial mixed ration (PMR; 10 groups): PMR that was isoenergetic to the control diet and fed twice daily on a feed pad; (3) PMR+canola (4 groups): a proportion of wheat in the PMR was replaced with canola meal to produce more estimated metabolizable protein than other groups. Supplements were fed to the control and PMR cows at 8, 10, 12, 14, or 16kg of DM/d, and to the PMR+canola cows at 14 or 16kg of DM/d. The PMR-fed cows had a lower incidence of ruminal acidosis compared with controls, and ruminal acidosis increased linearly and quadratically with supplement fed. Yield of milk fat was highest in the PMR+canola cows fed 14 or 16kg of total supplement DM/d, followed by the PMR-fed cows, and was lowest in controls fed at these amounts; a similar trend was observed for milk fat percentage. Milk protein yield was higher in the PMR+canola cows fed 14 or 16kg of total supplement DM/d. Milk yield and milk protein percentage were not affected by feeding strategy. Milk, energy-corrected milk, and milk protein yields increased linearly with supplement fed, whereas milk fat percentage decreased. Ruminal butyrate and d-lactate concentrations, acetate-to-propionate ratio, (acetate + butyrate)/propionate, and pH increased in PMR-fed cows compared with controls for all supplement amounts, whereas propionate and valerate concentrations decreased. Ruminal acetate, butyrate, and ammonia concentrations, acetate-to-propionate ratio, (acetate + butyrate)/propionate, and pH linearly decreased with amounts of supplement fed. Ruminal propionate concentration linearly increased and valerate concentration linearly and quadratically increased with supplement feeding amount. The Bacteroidetes and Firmicutes were the dominant bacterial phyla identified. The Prevotellaceae, Ruminococcaceae, and Lachnospiraceae were the dominant bacterial families, regardless of feeding group, and were influenced by feeding strategy, supplement feeding amount, or both. The Veillonellaceae family decreased in relative abundance in PMR-fed cows compared with controls, and the Streptococcaeae and Lactobacillaceae families were present in only minor relative abundances, regardless of feeding group. Despite large among- and within-group variation in bacterial community composition, distinct bacterial communities occurred among feeding strategies, supplement amounts, and sample times and were associated with ruminal fermentation measures. Control cows fed 16kg of DM of total supplement per day had the most distinct ruminal bacterial community composition. Bacterial community composition was most significantly associated with supplement feeding amount and ammonia, butyrate, valerate, and propionate concentrations. Feeding supplements in a PMR reduced the incidence of ruminal acidosis and altered ruminal bacterial communities, regardless of supplement feeding amount, but did not result in increased milk measures compared with isoenergetic control diets component-fed to late-lactation cows. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Pereira, A B D; Utsumi, S A; Dorich, C D; Brito, A F
2015-12-01
The objective of this study was to use spot short-term measurements of CH4 (QCH4) and CO2 (QCO2) integrated with backward dietary energy partition calculations to estimate dry matter intake (DMI) in lactating dairy cows. Twelve multiparous cows averaging 173±37d in milk and 4 primiparous cows averaging 179±27d in milk were blocked by days in milk, parity, and DMI (as a percentage of body weight) and, within each block, randomly assigned to 1 of 2 treatments: ad libitum intake (AL) or restricted intake (RI=90% DMI) according to a crossover design. Each experimental period lasted 22d with 14d for treatments adaptation and 8d for data and sample collection. Diets contained (dry matter basis): 40% corn silage, 12% grass-legume haylage, and 48% concentrate. Spot short-term gas measurements were taken in 5-min sampling periods from 15 cows (1 cow refused sampling) using a portable, automated, open-circuit gas quantification system (GreenFeed, C-Lock Inc., Rapid City, SD) with intervals of 12h between the 2daily samples. Sampling points were advanced 2h from a day to the next to yield 16 gas samples per cow over 8d to account for diurnal variation in QCH4 and QCO2. The following equations were used sequentially to estimate DMI: (1) heat production (MJ/d)=(4.96 + 16.07 ÷ respiratory quotient) × QCO2; respiratory quotient=0.95; (2) metabolizable energy intake (MJ/d)=(heat production + milk energy) ± tissue energy balance; (3) digestible energy (DE) intake (MJ/d)=metabolizable energy + CH4 energy + urinary energy; (4) gross energy (GE) intake (MJ/d)=DE + [(DE ÷ in vitro true dry matter digestibility) - DE]; and (5) DMI (kg/d)=GE intake estimated ÷ diet GE concentration. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) and Fit Model procedure in JMP (α=0.05; SAS Institute Inc.). Cows significantly differed in DMI measured (23.8 vs. 22.4kg/d for AL and RI, respectively). Dry matter intake estimated using QCH4 and QCO2 coupled with dietary backward energy partition calculations (Equations 1 to 5 above) was highest in cows fed for AL (22.5 vs. 20.2kg/d). The resulting R(2) were 0.28 between DMI measured and DMI estimated by gaseous measurements, and 0.36 between DMI measured and DMI predicted by the National Research Council model (2001). Results showed that spot short-term measurements of QCH4 and QCO2 coupled with dietary backward estimations of energy partition underestimated DMI by 7.8%. However, the approach proposed herein was able to significantly discriminate differences in DMI between cows fed for AL or RI. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wims, C M; Delaby, L; Boland, T M; O'Donovan, M
2014-01-01
A grazing study was undertaken to examine the effect of maintaining three levels of pre-grazing herbage mass (HM) on dairy cow performance, grass dry matter (DM) production and output from perennial ryegrass (Lolium perenne L.) pastures. Cows were randomly assigned to one of three pre-grazing HM treatments: 1150 - Low HM (L), 1400 - Medium HM (M) or 2000 kg DM/ha - High HM (H). Herbage accumulation under grazing was lowest (P<0.01) on the L treatment and cows grazing the L pastures required more grass silage supplementation during the grazing season (+73 kg DM/cow) to overcome pasture deficits due to lower pasture growth rates (P<0.05). Treatment did not affect daily milk production or pasture intake, although cows grazing the L pastures had to graze a greater daily area (P<0.01) and increase grazing time (P<0.05) to compensate for a lower pre-grazing HM (P<0.01). The results indicate that, while pre-grazing HM did not influence daily milk yield per cow, adapting the practise of grazing low HM (1150 kg DM/ha) pasture reduces pasture DM production and at a system level may increase the requirement for imported feed.
Little, M W; O'Connell, N E; Welsh, M D; Barley, J; Meade, K G; Ferris, C P
2016-09-01
When cows with a "higher" body condition score (BCS) are oversupplied with energy during the dry period, postpartum energy balance is normally reduced, which can have a detrimental effect on immune competence and increase the infectious disease risk. However, within grassland-based systems higher yielding cows frequently have a low BCS at drying off. The effects on performance, health, and metabolic and immune functions of providing additional energy to cows with low BCS during the dry period is less certain. To address this uncertainty, 53 multiparous Holstein-Friesian cows (mean BCS of 2.5; 1-5 scale) were allocated to 1 of 2 treatments at dry-off: silage only or silage plus concentrates. Cows on the silage-only treatment were offered ad libitum access to medium-quality grass silage. Cows on the silage-plus-concentrate treatment were offered ad libitum access to a mixed ration comprising the same grass silage plus concentrates [in a 75:25 dry matter (DM) ratio], which provided a mean concentrate DM intake of 3.0kg/cow per day. Postpartum, cows were offered a common mixed ration comprising grass silage and concentrates (in a 40:60 DM ratio) for a 70-d period. Offering concentrates during the dry period increased DM intake, tended to increase energy balance, and increased body weight (BW) and BCS gain prepartum. Offering concentrates during the dry period increased BW and BCS loss postpartum and tended to increase milk fat percentage and serum nonesterified fatty acid concentration, but it did not affect postpartum DM intake, energy balance, and milk yield. Although the percentage of phagocytosis-positive neutrophils did not differ, neutrophils from cows on the silage-plus-concentrate treatment had higher phagocytic fluorescence intensity at 1 and 2 wk postpartum and higher phagocytic index at 1 wk postpartum. Serum haptoglobin concentrations and IFN-γ production by pokeweed mitogen stimulated whole blood culture were unaffected by treatment, although haptoglobin concentrations increased and IFN-γ production decreased peripartum. Offering concentrates during the dry period increased the incidence of lameness postpartum, although other health and fertility parameters were unaffected. In conclusion, supplementing low BCS cows with concentrates during the dry period had no effect on performance and fertility and resulted in a higher neutrophil phagocytic index at 1 wk postpartum and an increased incidence of lameness compared with offering cows a grass silage-only diet prepartum. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Boerman, J P; Preseault, C L; Kraft, J; Dann, H M; Lock, A L
2014-02-01
This study evaluated the effect of a blend of synthetic antioxidants on the yield of milk and milk components and milk fatty acid composition in dairy cows fed a diet designed to cause milk fat depression (MFD). We hypothesized that supplementing a synthetic antioxidant to diets with a high rumen unsaturated fatty acid load (RUFAL) would decrease the severity of MFD. Sixteen lactating Holstein cows (163 ± 47 d in milk), in a crossover design with two 21-d periods, were fed a corn silage and grass silage-based diet containing 15% distillers grains. The diet contained 34% neutral detergent fiber, 18% crude protein, 26% starch, and 4.3% total fatty acids (dry matter basis). Cows were fed the diet without supplementation (control; CON) or supplemented with 0.02% (dry matter basis) of a synthetic antioxidant (AOX; Agrado Plus, Novus International Inc., St. Charles, MO). Dry matter intake and milk yields were recorded daily. Milk samples were collected at the start of the study for baseline values and the end of each period (d 20-21) and analyzed for milk components and fatty acid composition. Dry matter intake and milk yield were unaffected by treatment and averaged 25.9 and 50.2 kg/d, respectively. Similarly, we observed no effect of treatment on yields of fat, protein, lactose, 3.5% fat-corrected milk, energy-corrected milk, feed efficiency, body weight, or body condition score. Milk fat concentration and yield were both reduced by the high RUFAL diets. We observed a tendency for AOX to increase the concentration of milk fat and decrease the concentration of milk protein. Yields of de novo and preformed fatty acids were not affected by treatment, although we detected a trend for a slight increase in the yield of 16-carbon fatty acid for AOX compared with CON. Treatment had only minor effects on individual milk fatty acids, except for the concentration and yield of linoleic acid, which were over 90% higher for AOX compared with CON. In conclusion, milk fat concentration and yield were reduced by a high RUFAL diet containing 15% distillers grains; however, supplementation with AOX did not overcome the MFD induced by this diet. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Dubuc, Jocelyn; DuTremblay, Denis; Baril, Jean; Bagg, Randy; Brodeur, Marcel; Duffield, Todd; DesCôteaux, Luc
2010-01-01
The objectives of this study were to quantify the effect of 16 ppm of dietary monensin on milk production and composition of dairy cows, and to investigate factors having a potential impact on this effect. Data were generated from a total of 3577 Holstein dairy cows (47 herds) in Quebec enrolled in a herd-level, randomized clinical trial investigating the effects of monensin supplementation. Milk production and composition data were collected from monthly dairy herd improvement (DHI) testing. Monensin increased milk production by 0.9 kg/cow/d in cows under 150 days in milk (DIM) (P < 0.05). Monensin decreased milk fat percentage by 0.18 percentage points during the whole lactation (P < 0.05). This decreasing effect was larger for component-fed cows (P < 0.05) and for cows being fed low levels of dietary physically effective particles (P < 0.05) when compared respectively to cows fed total mixed ration and cows fed high levels of dietary physically effective particles. The results of this study suggest that monensin influences milk production and milk composition of dairy cows, and that diet composition and feeding system influence those effects. PMID:20592825
Rafiee-Yarandi, H; Ghorbani, G R; Alikhani, M; Sadeghi-Sefidmazgi, A; Drackley, J K
2016-07-01
To evaluate the effect of soybeans roasted at different temperatures on milk yield and milk fatty acid composition, 8 (4 multiparous and 4 primiparous) mid-lactation Holstein cows (42.9±3 kg/d of milk) were assigned to a replicated 4×4 Latin square design. The control diet (CON) contained lignosulfonate-treated soybean meal (as a source of rumen-undegradable protein) and calcium salts of fatty acids (Ca-FA, as a source of energy). Diets 2, 3, and 4 contained ground soybeans roasted at 115, 130, or 145°C, respectively (as the source of protein and energy). Dry matter intake (DMI) tended to be greater for CON compared with the roasted soybean diets (24.6 vs. 23.3 kg/d). Apparent total-tract digestibilities of dry matter, organic matter, and crude protein were not different among the treatments. Actual and 3.5% fat-corrected milk yield were greater for CON than for the roasted soybean diets. Milk fat was higher for soybeans roasted at 130°C than for those roasted at either 115 or 145°C. No differences were observed between the CON and the roasted soybean diets, or among roasting temperatures, on feed efficiency and nitrogen concentrations in rumen, milk, and plasma. Milk from cows fed roasted soybeans had more long-chain fatty acids and fewer medium-chain fatty acids than milk from cows fed Ca-FA. Compared with milk from cows fed the CON diet, total milk fat contents of conjugated linoleic acid, cis-9,trans-11 conjugated linoleic acid, cis-C18:2, cis-C18:3, and C22:0 were higher for cows fed the roasted soybean diets. Polyunsaturated fatty acids and total unsaturated fatty acids were greater in milk from cows fed roasted soybean diets than in milk from cows fed CON. Concentrations of C16:0 and saturated fatty acids in milk fat were greater for CON than for the roasted soybean diets. Cows fed roasted soybean diets had lower atherogenic and thrombogenic indices than cows fed CON. Milk fatty acid composition did not differ among different roasting temperatures. In summary, results showed that cows fed CON had higher DMI and milk yield than cows fed roasted soybean diets. Among different roasting temperatures (115, 130, and 145°C), soybeans roasted at 115°C led to higher milk production and lower DMI. Cows fed roasted soybeans, regardless of the roasting temperature, had more unsaturated fatty acids in milk. Using roasted soybeans in dairy cow rations could, therefore, improve the health indices of milk for human nutrition. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Production response to corn silage produced from normal, brown midrib, or waxy corn hybrids.
Barlow, J S; Bernard, J K; Mullis, N A
2012-08-01
The objective was to evaluate the nutrient intake and digestibility and milk production response of lactating dairy cows fed diets based on corn silage produced from 3 different types of corn hybrids. Experimental diets contained 36.4% of the dietary dry matter (DM) from corn silage produced from normal (Agratech 1021, AgraTech Seeds Inc., Atlanta, GA), brown midrib (BMR; Mycogen F2F797, Mycogen Seeds, Indianapolis, IN), or waxy (Master's Choice 590, Master's Choice Hybrids, Ullin, IL) hybrids. Thirty-six multiparous and primiparous Holstein cows (66 ± 22 d in milk, 41 ± 8 kg/d of milk) were used in an 11-wk completely randomized design trial during the fall of 2009. All cows were fed a diet containing normal corn silage during the first 2wk of the trial before being assigned to 1 of 3 treatments for the following 9 wk. Data collected during the first 2 wk were used as a covariate in the statistical analysis. No difference was observed in dry matter intake (DMI) among treatments, which averaged 22.6 kg/d. Milk yield was higher for cows fed BMR (37.6 kg/d) compared with waxy (35.2 kg/d) but was similar to that of cows fed control (36.2 kg/d). Milk fat percentage tended to be lower for cows fed control (3.28%) compared with those fed BMR (3.60%) or waxy (3.55%) corn silage. Milk protein percentage tended to be lower for cows fed control (2.79%) compared with waxy (2.89%) but similar to that of those fed BMR (2.85%). No differences were observed in yield of milk components. Energy-corrected milk (ECM) yield and dairy efficiency (ECM:DMI) did not differ among treatments. Cows fed BMR tended to gain more body weight compared with those fed control and waxy. Results of this trial are consistent with previous reports in which cows fed diets based on corn silage produced from BMR hybrids have higher milk yield compared with those fed other hybrids. Corn silage produced from the waxy hybrid supported a similar yield of ECM because of higher milk components, but milk yield was not improved compared with the control. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Weiss, W P; Azem, E; Steinberg, W; Reinhardt, T A
2015-08-01
Holstein cows (>1 gestation) were fed 1 of 3 diets during the last 13 d of gestation (ranged from 22 to 7 d). The control diet (16 cows) was formulated to provide 18,000 IU/d of vitamin D3 and had a dietary cation-anion difference (DCAD) of 165mEq/kg (DCAD=Na + K - Cl - S). The second diet (DCAD + D) provided the same amount of vitamin D3 but had a DCAD of -139mEq/kg (17 cows). The third diet (DCAD + 25D) had no supplemental vitamin D3 but provided 6mg/d of 25-(OH) vitamin D3 [25-(OH)D3] with a DCAD of -138mEq/kg (20 cows). Diets were fed until parturition and then all cows were fed a common lactation diet that contained vitamin D3. Negative DCAD diets reduced urine pH, with the greatest decrease occurring with the DCAD + D treatment. Urinary Ca excretion was greatest for cows fed DCAD + 25D followed by cows fed DCAD + D. Urinary pH was negatively correlated with urinary excretion of Ca for cows fed DCAD + D. No such correlation was observed with the DCAD + 25D treatment because substantial excretion of urinary Ca occurred at moderate urinary pH values for that treatment. Cows fed DCAD + 25D had greater serum concentrations of 25-(OH)D3 than other treatments from 5 d after supplementation started through 7 d in milk. Concentrations of 1,25-(OH)2D3 in serum were greatest in DCAD + 25D cows starting at 2 d before calving and continued through 7 d in milk. Serum Ca concentrations 5 d before calving were greatest for cows fed DCAD + 25D, but at other time points before and after parturition treatment did not affect serum Ca. Incidence of clinical hypocalcemia was not statistically different between treatments, but cows fed DCAD + 25 had the highest incidence rate (12.5, 0, and 20% for control, DCAD + D, and DCAD + 25D). Calves born from cows fed DCAD + 25D had greater concentrations of 25-(OH)D3 in serum at birth than calves from other treatments (before colostrum consumption), but concentrations were similar by 3 d of age. Concentrations of 25-(OH)D3 in colostrum and transition milk were increased by feeding DCAD + 25D, but by 28 d in milk treatment effects no longer existed. Overall, feeding 25-OH vitamin D with a negative DCAD diet increased vitamin D status of the cow and her newborn calf but had minimal effects on calcium status and did not have positive effects on the incidence of hypocalcemia. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Savari, M; Khorvash, M; Amanlou, H; Ghorbani, G R; Ghasemi, E; Mirzaei, M
2018-02-01
This study was conducted to investigate the effects of the ratio of rumen-degradable protein (RDP) to rumen-undegradable protein (RUP) and corn processing method on production performance, nitrogen (N) efficiency, and feeding behavior of high-producing Holstein dairy cows. Twelve multiparous Holstein cows (second parity; milk yield = 48 ± 3 kg/d) were assigned to a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Factor 1 was corn processing method [ground corn (GC) or steam flaked corn (SFC) with a flake density of about 390 g/L], and factor 2 was RDP:RUP ratio [low ratio (LR) = 60:40; high ratio (HR) = 65:35] based on crude protein (%). The crude protein concentrations were kept constant across the treatments (16.7% of DM). No significant interactions of main treatment effects occurred for lactation performance data. Cows fed 2 different RDP:RUP ratios exhibited similar dry matter intake (DMI), but those fed SFC showed decreased feed intake compared with those receiving GC (25.1 ± 0.48 vs. 26.2 ± 0.47 kg/d, respectively). Cows fed HR diets produced more milk than did those fed LR diets (44.4 ± 1.05 vs. 43.2 ± 1.05 kg/d, respectively). Milk fat content decreased but milk protein content increased in cows fed SFC compared with those fed GC. Feed efficiency (i.e., milk yield/DMI) was enhanced with increasing ratio of RDP:RUP (1.68 ± 0.04 vs. 1.74 ± 0.04 for LR and HR, respectively). Apparent N efficiency was higher in cows fed HR than in those fed LR (30.4 ± 0.61 vs. 29.2 ± 0.62, respectively). Compared with cows fed the GC-based diet, those receiving SFC exhibited lower values of N intake, N-NH 3 concentration, and fecal N excretion. Cows receiving SFC-based diets spent more time ruminating (min/kg of DMI) than did those fed GC. Although these results showed no interaction effects of RDP:RUP ratio and corn processing method on performance, higher RDP:RUP ratios and ground corn can be effective feeding strategies for feed to lactating cows receiving high-concentrate diets. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Klop, G; Bannink, A; Dieho, K; Gerrits, W J J; Dijkstra, J
2016-09-01
Nitrate decreases enteric CH4 production in ruminants, but may also negatively affect fiber degradation. In this experiment, 28 lactating Holstein dairy cows were grouped into 7 blocks. Within blocks, cows were randomly assigned to 1 of 4 isonitrogenous treatments in a 2×2 factorial arrangement: control (CON); NO3 [21g of nitrate/kg of dry matter (DM)]; DHA [3g of docosahexaenoic acid (DHA)/kg of DM]; or NO3+DHA (21g of nitrate/kg of DM and 3g of DHA/kg of DM). Cows were fed a total mixed ration consisting of 21% grass silage, 49% corn silage, and 30% concentrates on a DM basis. Based on the difference in natural (13)C enrichment and neutral detergent fiber and starch content between grass silage and corn silage, we investigated whether a negative effect on rumen fiber degradation could be detected by evaluating diurnal patterns of (13)C enrichment of exhaled carbon dioxide. A significant nitrate × DHA interaction was found for neutral detergent fiber digestibility, which was reduced on the NO3 treatment to an average of 55%, as compared with 61, 64, and 65% on treatments CON, DHA, and NO3+DHA, respectively. Feeding nitrate, but not DHA, resulted in a pronounced increase in (13)C enrichment of CO2 in the first 3 to 4 h after feeding only. Results support the hypothesis that effects of a feed additive on the rate of fiber degradation in the rumen can be detected by evaluating diurnal patterns of (13)C enrichment of CO2. To be able to detect this, the main ration components have to differ considerably in fiber and nonfiber carbohydrate content as well as in natural (13)C enrichment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Dale, A J; Purcell, P J; Wylie, A R G; Gordon, A W; Ferris, C P
2017-03-01
Improving body condition score of thin cows in late lactation is necessary, because cows that are thin at drying off exhibit decreased fertility postpartum and are at increased risk of disease and of being culled in the subsequent lactation. Offering a diet low in crude protein (CP) content in late lactation may help to improve body condition score (BCS) at drying off, whereas imposing an extended dry period (EDP) has been advocated as another way to increase BCS at calving. To test these hypotheses, 65 thin cows (mean BCS 2.25 at 14 wk precalving) were managed on 1 of 3 treatments between 13 and 9 wk prepartum: normal protein control {NP; grass silage + 5 kg/d of a normal protein concentrate [228 g of CP/kg of dry matter (DM)]}, low protein [LP; grass silage + 5 kg/d of a low-protein concentrate (153 g of CP/kg of DM)], or EDP (cows dried off at 13 wk precalving and offered a grass silage-only diet). Both NP and LP cows were dried off at wk 8 prepartum, after which all cows were offered a grass silage-only diet until calving. After calving, all cows were offered a common diet (supplying 11.1 kg of concentrate DM/cow per day) for 19 wk. Between 13 and 9 wk prepartum, LP cows had lower DM intake, milk yield, and body weight than NP cows. Whereas EDP cows had lower serum β-hydroxybutyrate and fatty acid concentrations than those of NP cows, BCS at wk 9 prepartum did not differ between treatments. Cows on the LP treatment continued to have lower DMI and BW than those of NP and EDP cows between 8 wk prepartum and calving, but only EDP cows had a higher BCS at calving. Treatment did not affect calving difficulty score or calf birth weight. Although all cows were offered a common diet postpartum, cows on the LP treatment had lower DM intake and milk fat + plus protein yield than cows on any other treatment during the 19-wk period postpartum, but we found no differences in any postpartum indicator of body tissue reserves. The treatments imposed from wk 13 to 9 prepartum had no effect on any fertility or health parameters examined postpartum. Extending the dry period for thin cows improved their BCS at calving but did not allow these cows to achieve the target BCS of 2.75, and we found no beneficial effects of this treatment on cow performance postpartum. Offering a lower-protein diet to thin cows in late lactation did not improve BCS at calving above that of cows on a normal protein diet, but had unexplained long-term negative effects on cow performance. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Gao, X; Oba, M
2016-01-01
The objective of this study was to investigate effects of increasing dietary nonfiber carbohydrate (NFC) with starch, sucrose, or lactose on rumen fermentation, volatile fatty acid absorption, and milk production of lactating dairy cows. Twenty-eight multiparous, lactating Holstein cows (141 ± 50 d in milk; 614 ± 53 kg of body weight) including 8 ruminally cannulated cows were used in this study. Cows were assigned to 4 dietary treatments in a 4 × 4 Latin square design with 21-d periods. The treatments were control [27% starch and 4% sugar on a dry matter (DM) basis], a high-NFC diet by increasing dietary starch content (STA; 32% starch and 4% sugar on a DM basis), and 2 more high-NFC diets by increasing dietary sugar content (27% starch and 9% sugar on a DM basis) in which sucrose (SUC) or lactose (LAC) was supplemented. Dry matter intake was greater for cows fed high-NFC diets compared with control diet (27.1 vs. 26.3 kg/d), but rumen pH and milk production did not differ between cows fed control and high-NFC diets. However, cows fed high-disaccharide diets had lower mean rumen pH than those fed STA diet (6.19 vs. 6.32). Although molar proportion of butyrate was greater for high-disaccharide treatments than STA treatment (15.2 vs. 13.7 mol/100 mol), absorption rate of volatile fatty acid in the rumen was not affected by treatment. In addition, cows fed high-disaccharide diets had higher energy-corrected milk yield than cows fed STA diet (39.6 vs. 38.0 kg/d). Dry matter intake did not differ between cows fed 2 high-disaccharide diets. Although cows fed the SUC diet had lower molar proportion of butyrate in the rumen compared with those fed the LAC diet (14.4 vs. 15.9 mol/100 mol), the SUC diet did not decrease rumen pH. In addition, cows fed the SUC diet had lower nutrient digestibility of organic matter than did those fed the LAC diet (59.7 vs. 64.4%), but milk component yields did not differ between the 2 high-disaccharide diet treatments. The results of the present study suggested that partially replacing dietary starch with disaccharides increased DM intake and energy-corrected milk, although rumen pH decreased for high-disaccharide diets, and that the rumen pH responses cannot be attributed to difference in absorption rate of volatile fatty acids in the rumen. In addition, type of sugars affected nutrient digestibility and rumen fermentation, but the effects were not large enough to affect rumen pH and milk production. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Iqbal, S; Zebeli, Q; Mazzolari, A; Bertoni, G; Dunn, S M; Yang, W Z; Ametaj, B N
2009-12-01
The objectives of the present in vivo and in situ trials were to evaluate whether feeding barley grain steeped in lactic acid (LA) would affect rumen fermentation patterns, in situ dry matter (DM) degradation kinetics, and milk production and composition in lactating dairy cows. The in vivo trial involved 8 rumen-fistulated Holstein cows fed once daily a total mixed ration containing rolled barley grain (27% in DM) steeped for 48 h in an equal quantity of tap water (CTR) or in 0.5% LA (TRT) in a 2 x 2 crossover design. The in situ trials consisted of incubation of untreated rolled barley grain in cows fed CTR or TRT diets and of incubation of 3 different substrates including CTR or barley grain steeped in 0.5% or 1.0% LA (TRT1 and TRT2, respectively) up to 72 h in the rumen. Results of the in vivo trial indicated that cows fed the TRT diet had greater rumen pH during most intensive fermentation phases at 10 and 12 h post-feeding. The latter effect was associated with a shorter duration in which rumen pH was below 5.8 for cows fed the TRT diet (2.4 h) compared with CTR diet (3.9 h). Furthermore, cows fed the TRT diet had lower concentrations of volatile fatty acids at 2 and 4 h post-feeding. In addition, concentrations of preprandial volatile fatty acids were lower in the rumen fluid of cows fed the TRT diet. Results also showed that molar proportion of acetate was lower, whereas propionate tended to increase by feeding cows the TRT diet. Cows fed the TRT diet demonstrated greater rumen in situ lag time of substrate DM degradation and a tendency to lower the fractional degradation rate. Other in situ results indicated a quadratic effect of LA on the effective rumen degradability of substrates whereby the latter variable was decreased from CTR to TRT1 but increased for TRT2 substrate. Although the diet did not affect actual milk yield, fat-corrected milk, percentages of milk protein, and lactose and concentration of milk urea nitrogen, cows fed the TRT diet increased milk fat content and tended to increase fat:protein ratio in the milk. In conclusion, results demonstrated that treatment of barley grain with LA lowered the risk of subacute rumen acidosis and maintained high milk fat content in late-lactating Holstein cows fed diets based on barley grain.
Cook, D E; Bender, R W; Shinners, K J; Combs, D K
2016-07-01
The objective of this trial was to evaluate, in dairy cattle, the effects of calcium hydroxide treatment of whole-plant corn and a treatment applied to the bottom stalk fraction of the corn plant, achieved by harvesting corn in 2 crop streams. The treatments were calcium hydroxide-treated corn silage (TRTCS), toplage supplemented with calcium hydroxide-treated stalklage (TPL), a positive control of brown midrib corn silage (BMR), and a negative control of conventional whole-plant corn silage (WPCS). The toplage was harvested at a height of 82 cm with 2 of the 6 rows set as ear-snapping to incorporate higher tissues into the stalklage. Stalklage was harvested at 12 cm, and other corn silages were harvested at 27 cm. Sixteen pens, each with 8 Holstein cows averaging 70±25 d in milk and 46±11 kg of milk d(-1), were assigned 4 per treatment in a completely randomized design. The diet was approximately 40% corn silage, 20% alfalfa silage, and 40% concentrate on a dry matter basis. A 2-wk covariate period with conventional corn silage was followed by an 8-wk treatment period in which the 4 corn silage treatments were the only effective difference in diets. Cows fed TPL and TRTCS consumed more (1.9 and 1.4 kg of organic matter d(-1), respectively) than did cows fed WPCS. Milk yield was greater for cows fed BMR, TPL, and TRTCS. Cows fed BMR and TPL produced 2.9 and 2.7 kg d(-1), respectively, more energy-corrected milk (ECM) than cows fed WPCS, and cows fed TRTCS had the greatest ECM production (4.8 kg of ECM d(-1) greater than cows fed WPCS). No differences in body weight or body condition scored were observed. Milk fat concentration was similar among treatments and milk protein concentration was reduced for TRTCS. Starch and neutral detergent fiber digestibility were greater for cows fed TRTCS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Dann, H M; Fredin, S M; Cotanch, K W; Grant, R J; Kokko, C; Ji, P; Fujita, K
2015-06-01
Increases in grain prices have led to renewed interest in feeding reduced-starch diets to lactating dairy cows. An experiment was conducted to determine the effects of altering carbohydrate sources and reducing dietary starch on lactational performance, feeding behavior, and ruminal measures of Holstein dairy cows. Fifteen multiparous cows (6 ruminally cannulated) were blocked and assigned to 1 of 5 squares and used in a replicated 3×3 Latin square design with 21-d periods. Cows were fed 1 of 3 experimental diets: a control diet containing 20% brown midrib corn silage, 20% conventional corn silage, and 10% hay crop silage (CON); a reduced-starch high-forage diet containing 53% brown midrib corn silage and 10% hay crop silage (HFOR); and a reduced-starch diet containing the same forages as CON with partial replacement of corn meal by nonforage fiber sources (HNFFS). The CON diet contained (% of dry matter) 26.0% starch and 34.7% neutral detergent fiber (NDF), whereas the HFOR and HNFFS diets contained 21.4 or 21.3% starch and 38.3 or 38.0% NDF, respectively. Dry matter intake tended to be greater for cows fed the CON diet (28.2 kg/d) compared with those fed the HFOR diet (27.2 kg/d). Dry matter intake for cows fed the HNFFS diet was intermediate (27.7 kg/d). Milk yield was greater for cows fed the CON diet (51.6 kg/d) compared with those fed the HFOR diet (48.4 kg/d), but milk fat content tended to increase for cows fed the HFOR diet (3.98%) compared with those fed the CON diet (3.66%). Consequently, fat-corrected and solids-corrected milk yields were unaffected by dietary treatments. Total chewing, eating, and rumination times were similar across all dietary treatments. Rumination time per kilogram of DM was greatest for the HFOR diet, intermediate for the HNFFS diet, and least for the CON diet, whereas rumination time per kilogram of NDF was greatest for the CON diet and least for the HNFFS diet. Mean ruminal pH, NH3-N (mg/dL), and total volatile fatty acid concentrations (mM) were similar across all dietary treatments. Molar proportion of ruminal acetate (mol/100 mol) was increased for cows fed the HFOR diet compared with cows fed the CON diet. Microbial N yield measured by urinary purine derivatives was unaffected by dietary treatment. Reduced-starch diets containing greater amounts of high quality, highly digestible forage or nonforage fiber sources in place of corn meal resulted in similar fat-corrected or solids-corrected milk yield for high-producing dairy cows in the short term. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ferris, C P; Purcell, P J; Gordon, A W; Larsen, T; Vestergaard, M
2018-05-09
This 2 × 2 factorial design experiment was conducted to compare the performance of spring-calving Holstein dairy cows (HOL, n = 34) with Swedish Red × Jersey/Holstein crossbred (SR × J/HOL, n = 34) dairy cows within low and medium concentrate input grassland-based dairy systems. The experiment commenced when cows calved and encompassed 1 full lactation. Cows were offered diets containing grass silage and concentrates [70:30 dry matter (DM) ratio, and 40:60 DM ratio, for low and medium, respectively] until turnout, grazed grass plus either 1.0 or 4.0 kg of concentrate/d during the grazing period (low and medium, respectively), and grass silage and concentrates (85:15 DM ratio, and 70:30 DM ratio, for low and medium, respectively) from rehousing and until drying off. No significant genotype × system interactions were present for any of the feed intake or full-lactation milk production data examined. Full-lactation concentrate DM intakes were 769 and 1,902 kg/cow for the low and medium systems, respectively, whereas HOL cows had a higher total DM intake than SR × J/HOL cows in early lactation, but not in late lactation. Although HOL cows had a higher lactation milk yield than SR × J/HOL cows, the latter produced milk with a higher fat and protein content, and thus fat plus protein yield was unaffected by genotype. Milk produced by the SR × J/HOL cows had a higher degree of saturation of fatty acids than milk produced by the HOL cows, and the somatic cell score of milk produced by the former was also higher. Throughout the lactation, HOL cows were on average 30 kg heavier than SR × J/HOL cows, whereas the SR × J/HOL cows had a higher body condition score than the HOL cows. Holstein cows had a higher incidence of mastitis and ovarian dysfunction that SR × J/HOL cows. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Reis, R B; Emeterio, F S; Combs, D K; Satter, L D; Costa, H N
2001-02-01
We conducted two experiments to evaluate the effects of corn supplementation, source of corn, and corn particle size on performance and nutrient utilization of lactating dairy cows. In experiment 1, treatments were 1) direct-cut grass-legume forage without supplement, 2) direct-cut forage plus 10 kg DM of ground dry shelled corn-based concentrate, and 3) direct-cut forage plus 10 kg DM of coarsely ground high moisture ear corn-based concentrate. In experiment 2, treatments were 1) direct-cut grass-legume forage plus 10 kg DM of ground dry shelled corn-based concentrate, 2) direct-cut forage plus 10 kg DM of coarsely ground high moisture ear corn-based concentrate, and 3) direct-cut forage plus 10 kg of DM finely ground high moisture ear corn-based concentrate. Both experiments were designed as 3 x 3 Latin squares replicated three times. In experiment 1, yields of milk and milk protein increased with concentrate supplementation, but were not affected by source of corn. Solids-corrected milk yield tended to increase with grain supplementation. Dry matter intake increased with concentrate supplementation, but was not affected by source of corn or corn particle size. Corn supplements decreased ruminal pH and acetate to propionate ratio and increased ruminal propionate concentration. Grain supplements reduced ruminal ammonia concentration, increased concentration of urine allantoin, and increased the urinary allantoin to creatinine ratio. In the second study, fine grinding of high moisture corn reduced fecal starch plus free glucose levels and tended to increase its apparent digestibility. In both experiments, starch plus free glucose intake was higher on the diets with dry corn, but its utilization was not affected by source of corn.
Dunn, A; Ashfield, A; Earley, B; Welsh, M; Gordon, A; McGee, M; Morrison, S J
2017-01-01
The objectives were to evaluate the effect of (1) supplementing concentrates to multiparous Holstein cows during the dry period on colostral and milk immunoglobulin G (IgG) concentration; and (2) feeding calves colostrum at either 5 or 10% of their body weight (BW) on passive transfer of immunity, health, and performance. Holstein multiparous cows (n=37) were assigned to 1 of 2 nutritional treatments during an 8-wk dry period: (1) offered ad libitum grass silage only (GS) or (2) offered ad libitum access to the same grass silage plus concentrate [total mixed ration in a 75:25 dry matter (DM) ratio], providing a mean concentrate DM intake of 3.0kg/cow per day (GSC). Both treatment groups were offered identical levels of mineral and vitamin supplementation. Calves from these cows were weighed immediately after birth and fed either 5% (5BW) or 10% (10BW) of their BW in colostrum from their own dams within 2.5h of birth. Calves in the 10BW group received their second feed of colostrum from first-milking colostrum. Concentrate supplementation during the dry period had no effect on colostral IgG concentration, first-milking IgG yield, or fat, protein, and lactose contents. However, cows in GSC produced a greater mean milk yield over the first 8 milkings compared with cows in the GS group. Concentrate supplementation had no effect on calf BW or BW gain, serum IgG, or apparent efficiency of absorption (AEA) at 24h after birth. However, offspring from the GSC group had fewer cases of enteritis during the first 56d of life compared with offspring from the GS group. Calves in the 10BW group had greater mean serum IgG concentration for the first 3d following birth; however, at 24h after birth, we observed no treatment effect on AEA. The rate of enteritis was greater for calves in the 5BW treatment compared with 10BW. The colostrum-feeding regimen had no effect on BW gain or on the incidence of pneumonia among calf treatment groups. In conclusion, concentrate supplementation regimens offered during the dry period had a positive effect on colostrum yield, and offspring from the GSC group had a reduced rate of enteritis. Feeding 10% of BW of colostrum versus 5% of BW resulted in a greater serum IgG concentration for the first 3d postpartum, and 10BW calves had a reduced rate of enteritis. Overall, to achieve successful passive transfer, decrease the rate of enteritis, and increase efficiency in the dairy calf, we recommend that dairy calves be fed 10% of their BW in colostrum as soon as possible after birth. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Gessner, Denise K; Winkler, Anne; Koch, Christian; Dusel, Georg; Liebisch, Gerhard; Ringseis, Robert; Eder, Klaus
2017-03-23
It was recently reported that dairy cows fed a polyphenol-rich grape seed and grape marc meal extract (GSGME) during the transition period had an increased milk yield, but the underlying reasons remained unclear. As polyphenols exert a broad spectrum of metabolic effects, we hypothesized that feeding of GSGME influences metabolic pathways in the liver which could account for the positive effects of GSGME in dairy cows. In order to identify these pathways, we performed genome-wide transcript profiling in the liver and lipid profiling in plasma of dairy cows fed GSGME during the transition period at 1 week postpartum. Transcriptomic analysis of the liver revealed 207 differentially expressed transcripts, from which 156 were up- and 51 were down-regulated, between cows fed GSGME and control cows. Gene set enrichment analysis of the 155 up-regulated mRNAs showed that the most enriched gene ontology (GO) biological process terms were dealing with cell cycle regulation and the most enriched Kyoto Encyclopedia of Genes and Genomes pathways were p53 signaling and cell cycle. Functional analysis of the 43 down-regulated mRNAs revealed that a great part of these genes are involved in endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and inflammatory processes. Accordingly, protein folding, response to unfolded protein, unfolded protein binding, chemokine activity and heat shock protein binding were identified as one of the most enriched GO biological process and molecular function terms assigned to the down-regulated genes. In line with the transcriptomics data the plasma concentrations of the acute phase proteins serum amyloid A (SAA) and haptoglobin were reduced in cows fed GSGME compared to control cows. Lipidomic analysis of plasma revealed no differences in the concentrations of individual species of major and minor lipid classes between cows fed GSGME and control cows. Analysis of hepatic transcript profile in cows fed GSGME during the transition period at 1 week postpartum indicates that polyphenol-rich feed components are able to inhibit ER stress-induced UPR and inflammatory processes, both of which are considered to contribute to liver-associated diseases and to impair milk performance in dairy cows, in the liver of dairy cows during early lactation.
Wood, K M; Awda, B J; Fitzsimmons, C; Miller, S P; McBride, B W; Swanson, K C
2013-09-01
Twenty-two nonlactating multiparous pregnant beef cows (639 ± 68 kg) were used to investigate the effect of dietary restriction on the abundance of selected proteins regulating cellular energy metabolism. Cows were fed at either 85% (n = 11; LOW) or 140% (n = 11; HIGH) of total NE requirements. The diet consisted of a haylage-based total mixed ration containing 20% wheat straw. Cows were slaughtered by block (predicted date of parturition), beginning 83 d after the initiation of dietary treatments and every week thereafter for 6 wk, such that each block was slaughtered at approximately 250 d of gestation. Tissue samples from liver, kidney, sternomandibularis muscle, ruminal papilli (ventral sac), pancreas, and small intestinal muscosa were collected at slaughter and snap frozen in liquid N2. Western blots were conducted to quantify abundance of proliferating cell nuclear antigen (PCNA), ATP synthase, ubiquitin, and Na/K+ ATPase for all tissues; PPARγ, PPARγ coactivator 1 α (PGC-1α), and 5´-adenosine monophosphate-activated protein kinase (AMPK) and the activated form phosphorylated-AMPK (pAMPK) for liver, muscle, and rumen; phosphoenolpyruvate carboxykinase (PEPCK) for liver and kidney; and uncoupling protein 2 (UCP2) for liver. Statistical analysis was conducted using Proc Mixed in SAS and included the fixed effects of dietary treatment, cow age, block, and the random effect of pen. Dietary treatments resulted in cows fed HIGH having greater (P ≤ 0.04) ADG and final BW than cows fed LOW. Abundance of ubiquitin in muscle was greater (P = 0.009) in cows fed LOW, and PCG-1 α in liver was greater (P = 0.03) in cows fed HIGH. Hepatic O2 consumption was greater in HIGH (P ≤ 0.04). Feed intake can influence the abundance of important metabolic proteins and suggest that protein degradation may increase in muscle from moderately nutrient restricted cows and that energy metabolism in liver increases in cows fed above NE requirements.
Moate, P J; Williams, S R O; Jacobs, J L; Hannah, M C; Beauchemin, K A; Eckard, R J; Wales, W J
2017-09-01
Wheat is the most common concentrate fed to dairy cows in Australia, but few studies have examined the effects of wheat feeding on enteric methane emissions, and no studies have compared the relative potencies of wheat, corn, and barley for their effects on enteric methane production. In this 35-d experiment, 32 Holstein dairy cows were offered 1 of 4 diets: a corn diet (CRN) of 10.0 kg of dry matter (DM)/d of single-rolled corn grain, 1.8 kg of DM/d of canola meal, 0.2 kg of DM/d of minerals, and 11.0 kg of DM/d of chopped alfalfa hay; a wheat diet (WHT) similar to the CRN diet but with the corn replaced by single-rolled wheat; a barley diet (SRB) similar to the CRN diet but with the corn replaced by single-rolled barley; and a barley diet (DRB) similar to the CRN diet but with the corn replaced by double-rolled barley. Individual cow feed intakes, milk yields, and milk compositions were measured daily but reported for the last 5 d of the experiment. During the last 5 d of the experiment, individual cow methane emissions were measured using the SF 6 tracer technique for all cows, and ruminal fluid pH was continuously measured by intraruminal sensors for 3 cows in each treatment group. The average DM intake of cows offered the CRN, WHT, SRB, and DRB diets was 22.2, 21.1, 22.6, and 22.6 kg/d. The mean energy-corrected milk of cows fed the WHT diet was less than that of cows fed the other diets. This occurred because the milk fat percentage of cows fed the WHT diet was significantly less than that of cows fed the other diets. The mean methane emissions and methane yields of cows fed the WHT diet were also significantly less than those of cows fed the other diets. Indeed, the CRN, SRB, and DRB diets were associated with 49, 73, and 78% greater methane emissions, respectively, compared with the emissions from the WHT diet. Methane yield was found to be most strongly related to the minimum daily ruminal fluid pH. This study showed that although the inclusion of wheat in the diet of dairy cows could be an effective strategy for substantially reducing their methane emissions, it also reduced their milk fat percentage and production of milk fat and energy-corrected milk. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Dini, Yoana; Gere, José; Briano, Carolina; Manetti, Martin; Juliarena, Paula; Picasso, Valentin; Gratton, Roberto; Astigarraga, Laura
2012-01-01
Simple Summary GHGs emissions are relevant in evaluating environmental impact of farming systems. Methane (CH4) produced by enteric fermentation accounts for half of all anthropogenic emissions of GHGs in Uruguay, where ruminant production is based on year round grazing of forages. Here we compared milk production and CH4 emissions by dairy cows grazing two contrasting mixed pastures (rich in legumes or rich in grasses) using the SF6 tracer technique adapted to collect breath samples over 5-days periods. There were no differences in milk or CH4 production between the contrasting pastures, probably because of the high herbage allowance that enabled selective grazing by cows. Abstract Understanding the impact of changing pasture composition on reducing emissions of GHGs in dairy grazing systems is an important issue to mitigate climate change. The aim of this study was to estimate daily CH4 emissions of dairy cows grazing two mixed pastures with contrasting composition of grasses and legumes: L pasture with 60% legumes on Dry Matter (DM) basis and G pasture with 75% grasses on DM basis. Milk production and CH4 emissions were compared over two periods of two weeks during spring using eight lactating Holstein cows in a 2 × 2 Latin square design. Herbage organic matter intake (HOMI) was estimated by chromic oxide dilution and herbage organic matter digestibility (OMD) was estimated by faecal index. Methane emission was estimated by using the sulfur hexafluoride (SF6) tracer technique adapted to collect breath samples over 5-day periods. OMD (0.71) and HOMI (15.7 kg OM) were not affected by pasture composition. Milk production (20.3 kg/d), milk fat yield (742 g/d) and milk protein yield (667 g/d) were similar for both pastures. This may be explained by the high herbage allowance (30 kg DM above 5 cm/cow) which allowed the cows to graze selectively, in particular in grass sward. Similarly, methane emission expressed as absolute value (368 g/d or 516 L/d) or expressed as methane yield (6.6% of Gross Energy Intake (GEI)) was not affected by treatments. In conclusion, at high herbage allowance, the quality of the diet selected by grazing cows did not differ between pastures rich in legumes or rich in grasses, and therefore there was no effect on milk or methane production. PMID:26486922
Leno, B M; LaCount, S E; Ryan, C M; Briggs, D; Crombie, M; Overton, T R
2017-09-01
The objective of this study was to determine the effects of feeding different supplemental sources of Ca and Mg in the peripartum period, and different dietary levels of Mg postpartum, on plasma mineral status, performance, and aspects of energy metabolism in transition dairy cows. Multiparous Holstein cows (n = 41) were used in a completely randomized design with a 2 × 2 factorial arrangement of treatments starting at 28 d before expected parturition. Main effects were source assignments (CS = common sources of supplemental Ca and Mg, or MA = a blend of common and commercial mineral sources with supplemental minerals primarily from a commercial Ca-Mg dolomite source; MIN-AD, Papillon Agricultural Company Inc., Easton, MD) beginning at 21 d before due date; cows were further randomized within source treatments to 1 of 2 levels of Mg supplementation (LM = formulated postpartum diet Mg at 0.30% of dry matter (DM), or HM = formulated postpartum diet Mg at 0.45% of DM) beginning within 1 d after parturition. Final treatment groups included the following: common source, low Mg (CS-LM, n = 11); common source, high Mg (CS-HM, n = 11); MIN-AD, low Mg (MA-LM, n = 10); and MIN-AD, high Mg (MA-HM, n = 9). Treatment diets were fed and data collected through 42 d in milk. Postpartum plasma Mg concentrations tended to be higher for cows fed HM and cows fed CS, but no effects were observed on peripartum plasma Ca concentrations. Peripartum plasma P concentrations were higher for cows fed MA. Dry matter intake (DMI) in the prepartum period was higher for cows fed MA (CS = 15.9 vs. MA = 16.8 kg/d) and postpartum DMI was higher in some groups depending on week. Plasma nonesterified fatty acid concentrations were lower for cows fed MA during both the prepartum and postpartum periods. A source by level interaction was observed for postpartum plasma β-hydroxybutyrate (BHB) concentrations such that cows fed CS-LM had numerically higher BHB and cows fed MA-LM had numerically lower BHB (geometric means; CS-LM = 7.9, CS-HM = 6.9, MA-LM = 6.3, and MA-HM = 7.3 mg/dL) than cows fed the other 2 treatments. Higher milk fat yield, milk fat content, and fat- and energy-corrected yield during wk 1 for cows fed MA resulted in source by week interactions for these outcomes. This study demonstrated that varying supplemental Ca and Mg sources and feeding rates had minimal effect on plasma Ca status despite differences in plasma Mg and P concentrations. Effects on DMI and plasma energy metabolites suggest an opportunity for strategic use of mineral sources in the transition period to promote metabolic health. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Lessard, M; Gagnon, N; Godson, D L; Petit, H V
2004-07-01
The objectives of this study were to evaluate the functional properties of immunocompetent cells in dairy cows fed diets enriched in n-3 or n-6 polyunsaturated fatty acids during the transition period. Six weeks before calving, 21 primiparous and 27 multiparous pregnant Holstein dairy cows were randomly allotted to 1 of 3 dietary fat treatments: calcium salts of palm oil (Megalac), micronized soybeans, or whole flaxseed, which are, respectively, rich in saturated, n-6, or n-3 fatty acids. On wk 6 and 3 before parturition, cows received a subcutaneous injection of ovalbumin to measure the antibody response in colostrum and serum. Colostrum samples were collected at the first milking after calving, and blood samples were taken 6, 3, and 1 wk before the expected calving date and 1, 3, and 6 wk after calving. Blood mononuclear cells were cultured to evaluate the proliferative response to concanavalin A and the in vitro productions of interferon-gamma, tumor necrosis factor-alpha, nitric oxide, and prostaglandin E2. The serum antibody response to ovalbumin was unaffected by dietary fatty acids, but the response was lower in primiparous cows than in multiparous cows. A significant diet x parity interaction indicated that colostral antibody level against ovalbumin was significantly higher in multiparous cows fed soybeans than in those fed flaxseed or Megalac; there was no difference among treatments for primiparous cows. The lymphocyte response to concanavalin A was lower in cows fed soybeans than in those receiving flaxseed or Megalac when the cells were incubated with autologous serum. The proliferative response of mononuclear cells incubated with autologous serum was suppressed in the 1st wk after calving in both primiparous and multiparous cows, and multiparous cows showed a higher response than primiparous cows throughout the experiment. There was a significant interaction between parity and diet as a result of a greater production of interferon-gamma by mononuclear cells incubated with autologous serum in multiparous cows than in primiparous cows fed flaxseed; there was no difference among cows fed the other diets. Interferon-gamma production was reduced around calving while the inverse was observed for productions of nitric oxide and tumor necrosis factor-alpha. Productions of nitric oxide, prostaglandin E2, and tumor necrosis factor-gamma were greater in primiparous cows than in multiparous cows. In conclusion, functional properties of lymphocytes and monocyte/macrophage lineage of dairy cows during the transition period are modulated by parturition and the composition of polyunsaturated fatty acids in the diet.
Shaani, Y; Nikbachat, M; Yosef, E; Ben-Meir, Y; Mizrahi, I; Miron, J
2017-12-01
The objective of this study was to evaluate in lactating cows the effect of either chopping or ensiling of wheat roughage on: intake, digestibility, lactation performance and animal behavior. Three groups of 14 lactating cows each, were fed total mixed rations (TMRs) based on either long wheat hay (HL), short wheat hay (HS) or wheat silage (SI), as the sole roughage source (30% of TMR dry matter (DM)). Parameters examined: sorting behavior, DM intake, milk yield and composition, rumination, recumbence, average daily rumen pH, digesta passage rate, and in-vivo digestibility. Performance data was summarized by day and analyzed using a proc-mixed model. The content of physically effective neutral detergent fiber (peNDF) was similar in the HL and SI and lower in the HS, resulting in similar differences among the three corresponding TMRs. In vitro DM digestibility of wheat silage was higher than that of the two hays (65.6% v. 62.8%) resulting in higher in vitro DM digestibility of the SI-TMR compared with the hay-based TMRs (79.3 v. 77.0%). HS-TMR was better than HL- or SI-TMRs at preventing feed sorting by cows after 12 or 24 h eating of the diets. Cows fed HS-TMR consumed more DM and NDF but less peNDF than the other two groups. Average daily rumen pH was similar in the three groups, but daily rumination time was highest in the cows fed HS-TMR. Rumen retention time was longest in cows fed HL-TMR. DM digestibility in cows fed SI-TMR was higher than that of HS and HL groups (65.2%, 61.8% and 62.4%, respectively), but NDF digestibility was similar in the three treatments. The highest intake of digestible DM was observed in cows fed SI-TMR, HS cows were intermediate and HL cows were the lowest. Consequently, cows fed SI-TMR had higher yields of milk, 4% fat corrected milk and energy-corrected milk (47.1, 42.9 and 43.2 kg/day, respectively) than cows fed HS-TMR (45.7, 41.0 and 41.0 kg/day, respectively) or HL-TMR (44.1, 40.3 and 40.3 kg/day, respectively). Net energy production (NEL+M+gain) per kg DM intake was highest in the SI-TMR, lowest in the HS-TMR and intermediate in the HL-TMR (1.52, 1.40 and 1.45, respectively). Animal welfare, as expressed in daily recumbence time and BW gain was similar in the SI and HS groups and higher than the HL cows.
Mutagenic activities of biochars from pyrolysis.
Piterina, Anna V; Chipman, J Kevin; Pembroke, J Tony; Hayes, Michael H B
2017-08-15
Biochar production, from pyrolysis of lignocellulosic feedstocks, agricultural residues, and animal and poultry manures are emerging globally as novel industrial and commercial products. It is important to develop and to validate a series of suitable protocols for the ecological monitoring of the qualities and properties of biochars. The highly sensitive Salmonella mutagenicity assays (the Ames test) are used widely by the toxicology community and, via the rat liver extract (S9), can reflect the potential for mammalian metabolic activation. We examined the Ames test for analyses of the mutagenic activities of dimethylsulphoxide (DMSO) extracts of biochars using two bacterial models (S. typhimurium strains TA98 and TA100) in the presence and in the absence of the metabolic activation with the S9-mix. Tester strain TA98 was most sensitive in detecting mutagenic biochar products, and the contribution of S9 was established. Temperature and times of pyrolysis are important. Biochar pyrolysed at 400°C for 10min, from a lignocellulose precursor was mutagenic, but not when formed at 800°C for 60min, or at 600°C for 30min. Biochars from poultry litter, and manures of calves fed on grass had low mutagenicities. Biochar from pig manure had high mutagenicity; biochars from manures of cows fed on a grass plus cereals, those of calves fed on mother's milk, and biochars from solid industrial waste had intermediate mutagenicities. The methods outlined can indicate the need for further studies for screening and detection of the mutagenic residuals in a variety of biochar products. Copyright © 2017. Published by Elsevier B.V.
Francos, G; Distl, O; Ezra, E; Mayer, E
1999-06-01
In three field trials comprising 602 Israeli-Holstein dairy cows, the effect of the dry period ration on reproductive performance, culling rate and milk production was investigated. The cows were fed in groups. The basic dry period rations consisted for two herds of medium quality cereal hay and for one herd of corn straw, which were fed ad libitum. In each herd dry cows were assigned to an experimental and control group. Cows of the experimental group were supplemented with 1.5 to 3 kg of lactating cows mixed ration (LMR), whereas in the control group the amount of supplement was increased by the factor two or 3.3. In the experimental group the amount of the supplement was calculated to achieve levels of net energy and of crude protein close to NRC requirements; in the control group the level of net energy and protein was 12 to 18% higher as compared to the experimental group. The amount of LMR supplement in the experimental group of herds A, B, C were 1.5 kg, 1.9 kg, and 3 kg, respectively. In the control groups these amounts were 5 kg, 3.8 kg, and 6 kg, respectively. The groups fed moderate amounts of LMR supplement had a higher conception rate at first insemination, a higher percentage of cows conceiving and fewer cows culled in the consecutive lactation than cows fed increased amounts of LMR supplement. The lactational incidence of reproductive disorders and the milk production were not affected by the differences in feeding during the dry period. Reproductive performance and culling rate appeared to be more favorable for cows fed moderate amounts of supplement during the entire dry period or during the last 3 to 4 weeks of the dry period.
Alfalfa leaf meal in wintering beef cow diets. Quarterly report, July 1, 1997--September 30, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zehnder, C.M.; Hall, J.M.; Brown, D.B.
1998-06-01
One hundred dry pregnant cows (1389 lb) and twenty-four pregnant heifers (1034 lb) were assigned by calving date and body condition to one of four dietary treatments for a wintering period during their late gestation. Dietary treatments consisted of supplementing crude protein (CP) at 100 % or 120 % of the recommended intake using either soybean meal or alfalfa leaf meal (ALM) as the supplemental protein source. Cows were group fed (two replicate pens/treatment) while heifers were individually fed for the duration of the study. The study lasted 70 (early) or 85 (late) days for cows and ended when themore » first cow in each replicate calved. For heifers, the study lasted for 100 days and ended accordingly when each heifer calved. Heifers fed ALM had consumed less (P < .05) hay and corn dry matter (DM). Overall diet DM intakes were unaffected (P > .05) by protein source. Feeding 120 % of recommended protein (2.38 vs 2.07 lb/day) to heifers increased (P < .05) their rate of gain by almost .5 lb/head/day. Cows fed ALM had faster (P < .05) rates of gain when gain was measured 22 days before calving. Once cows calved, weight change was similar (P > .05) for each protein source. However, cows fed alfalfa leaf meal consumed more (P = .054) total dry matter (DM). Calving traits were not affected by protein source or intake. Wintering heifers or cows on ALM-based supplements had no detrimental effect on performance of heifers or cows or their calves at birth. Additional protein may be required by heifers to ensure that they continue gaining weight during late gestation.« less
Effect of body condition on consumption of pine needles (Pinus ponderosa) by beef cows.
Pfister, J A; Panter, K E; Gardner, D R; Cook, D; Welch, K D
2008-12-01
We determined whether cows in low (LBC) or high body condition (HBC) would consume different amounts of green pine needles (Pinus ponderosa). Cows (mature; open Hereford and Hereford x Angus) were fed a maintenance basal diet (alfalfa pellets) for Exp. 1 and 2; during Exp. 3 and 4, cows were fed high-protein and high-energy diets, respectively. Experiment 5 was a grazing study on rangeland during winter in South Dakota; diets were determined by using bite counts. Mean BCS (1 = emaciated, 9 = obese) was 7.5 for HBC cows and <4.0 for LBC cows during the experiments. During Exp. 1, LBC cows consumed more (P = 0.001) pine needles than did HBC cows (5.5 +/- 0.25 vs. 1.0 +/- 0.14 g/kg of BW daily, respectively). During Exp. 2, there was a day x treatment interaction (P = 0.001) as LBC cows consumed variable, but greater, amounts of pine needles than did HBC cows (3.7 +/- 0.19 vs. 1.3 +/- 0.12 g/kg of BW daily, respectively). When fed a high-protein/low-energy diet, LBC cows ate more (P = 0.04) pine needles than did HBC cows. When fed a low-protein/high-energy diet, there was a day x treatment interaction (P = 0.001) because LBC cows consumed more pine needles than did HBC cows for the first 3 d of the study, and then consumption by LBC animals decreased during the last 4 d. These experiments suggest that the protein:energy ratio may be an important factor in the ability of cows to tolerate terpenes, and that cows were not able to sustain an increased quantity of needle consumption on a low-protein diet. During the 25-d grazing study, there was a day x treatment interaction (P = 0.001) as LBC animals selected more pine needles (up to 25% of daily bites) on some days compared with HBC cows. Weather influenced pine needle consumption because pine needle bites by LBC cows were related (r(2) = 0.60; P = 0.001) to days of greater snow depth and lower minimum daily temperatures. Both LBC and HBC cows increased selection of pine needles from trees during cold, snowy weather, but the magnitude of the increase was greater for LBC cows. The LBC cows consumed more pine needles than did HBC cows in all experiments, except when cows were fed a low-protein diet. This study indicates that both body condition and protein intake are important factors in pine needle consumption.
Lim, J M; Nestor, K E; Kung, L
2015-02-01
We evaluated the effects of corn silage hybrids [control vs. brown midrib (BMR)] and the proportion of corn silage in rations on the performance of high-producing dairy cows. The chemical composition of the corn silages was similar except for lignin, which was higher in the control hybrid [3.09%, dry matter (DM) basis] compared with the BMR hybrid (2.19%). The 30-h in vitro neutral detergent fiber (NDF) digestibility was also higher (62.8% of NDF) in the BMR hybrid than in the control hybrid (52.2%). Twenty-seven Holstein cows were fed 1 of 3 diets comprising 62% forage and 38% concentrate (DM basis) containing 35% (DM basis) corn silage from the control hybrid (NLO), 35% of the BMR hybrid (BLO), or 50% of the BMR (BHI). Cows were fed the diets in a replicated 3×3 Latin square design with 28-d periods. Intake of DM was similar among treatments but milk production was greater for cows fed BLO (50.1kg/d) and BHI (51.1kg/d) than for NLO (47.9kg/d). Milk fat percentage was lower for cows fed BHI (3.37%) than for those fed BLO (3.55%) and NLO (3.56%) but yield of milk fat was similar among treatments. Yield and percentage of milk protein was higher for cows in BHI compared with NLO. The concentration of milk urea N was lower in cows fed BHI (14.0mg/dL) than in those fed NLO (14.7mg/dL) and intermediate for BLO (14.5mg/dL). The yield of 3.5% fat-corrected milk was higher in cows fed BLO (50.2kg/d) than in NLO (48.2kg/d) and was intermediate for BHI (49.8kg/d). The total-tract digestibility of dietary DM, organic matter, starch, and crude protein was lower for cows in NLO compared with the other treatments. The total-tract digestibility of NDF was highest for BHI (54.4%), intermediate for BLO (50.9%), and lowest for NLO (43.2%). We conclude that BMR corn silage can be included in rations at moderate and high proportions of a total ration, resulting in high levels of milk production. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ruminal Transcriptomic Analysis of Grass-Fed and Grain-Fed Angus Beef Cattle
Li, Yaokun; Carrillo, José A.; Ding, Yi; He, YangHua; Zhao, Chunping; Zan, Linsen; Song, Jiuzhou
2015-01-01
Beef represents a major diet component and one of the major sources of protein in human. The beef industry in the United States is currently undergoing changes and is facing increased demands especially for natural grass-fed beef. The grass-fed beef obtained their nutrients directly from pastures, which contained limited assimilable energy but abundant amount of fiber. On the contrary, the grain-fed steers received a grain-based regime that served as an efficient source of high-digestible energy. Lately, ruminant animals have been accused to be a substantial contributor for the green house effect. Therefore, the concerns from environmentalism, animal welfare and public health have driven consumers to choose grass-fed beef. Rumen is one of the key workshops to digest forage constituting a critical step to supply enough nutrients for animals’ growth and production. We hypothesize that rumen may function differently in grass- and grain-fed regimes. The objective of this study was to find the differentially expressed genes in the ruminal wall of grass-fed and grain-fed steers, and then explore the potential biopathways. In this study, the RNA Sequencing (RNA-Seq) method was used to measure the gene expression level in the ruminal wall. The total number of reads per sample ranged from 24,697,373 to 36,714,704. The analysis detected 342 differentially expressed genes between ruminal wall samples of animals raised under different regimens. The Fisher’s exact test performed in the Ingenuity Pathway Analysis (IPA) software found 16 significant molecular networks. Additionally, 13 significantly enriched pathways were identified, most of which were related to cell development and biosynthesis. Our analysis demonstrated that most of the pathways enriched with the differentially expressed genes were related to cell development and biosynthesis. Our results provided valuable insights into the molecular mechanisms resulting in the phenotype difference between grass-fed and grain-fed cattle. PMID:26090810
Jung, H G; Mertens, D R; Phillips, R L
2011-10-01
Cross-linking of lignin to arabinoxylan by ferulates limits in vitro rumen digestibility of grass cell walls. The effect of ferulate cross-linking on dry matter intake (DMI), milk production, and in vivo digestibility was investigated in ad libitum and restricted-intake digestion trials with lambs, and in a dairy cow performance trial using the low-ferulate sfe corn mutant. Silages of 5 inbred corn lines were fed: W23, 2 W23sfe lines (M04-4 and M04-21), B73, and B73bm3. As expected, the W23sfe silages contained fewer ferulate ether cross-links and B73bm3 silage had a lower lignin concentration than the respective genetic controls. Silages were fed as the sole ingredient to 4 lambs per silage treatment. Lambs were confined to metabolism crates and fed ad libitum for a 12-d adaptation period followed by a 5-d collection period of feed refusals and feces. Immediately following the ad libitum feeding trial, silage offered was limited to 2% of body weight. After a 2-d adaptation to restricted feeding, feed refusals and feces were collected for 5 d. Seventy Holstein cows were blocked by lactation, days in milk, body weight, and milk production and assigned to total mixed ration diets based on the 5 corn silages. Diets were fed for 28 d and data were collected on weekly DMI and milk production and composition. Fecal grab samples were collected during the last week of the lactation trial for estimation of feed digestibility using acid-insoluble ash as a marker. Silage, total mixed ration, feed refusals, and fecal samples were analyzed for crude protein, starch, neutral detergent fiber (NDF), cell wall polysaccharides, and lignin. The W23sfe silages resulted in lower DMI in the ad libitum trial than the W23 silage, but DMI did not differ in the restricted trial. No differences were observed for NDF or cell wall polysaccharide digestibility by lambs with restricted feeding, but the amount of NDF digested daily increased for lambs fed the M04-21 W23sfe silage ad libitum. Lambs were less selective against NDF and lignin when offered W23sfe silages. The B73bm3 silage did not affect DMI or digestibility of cell walls at the restricted feeding level, but total daily NDF digested was greater at ad libitum intake. Intake, milk production, and cell wall digestibility were greater for cows fed diets containing W23sfe silages than for those fed W23 silage. Although milk production was greater for the B73bm3 diet, DMI and cell wall digestibility were not altered. Cows were less selective against cell wall material when fed both W23sfe and B73bm3 silages. Reduced ferulate cross-linking in sfe corn silage is a new genetic mechanism for improving milk production. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Brito, A F; Tremblay, G F; Bertrand, A; Castonguay, Y; Bélanger, G; Michaud, R; Lafrenière, C; Martineau, R; Berthiaume, R
2014-11-01
The objective of this study was to investigate the effects of feeding alfalfa baleage with different concentrations of nonstructural carbohydrates (NSC) supplemented with a common corn-based concentrate on performance, ruminal fermentation profile, N utilization, and omasal flow of nutrients in dairy cows during early lactation. Ten multiparous (8 ruminally cannulated) and 8 primiparous Holstein cows were randomly assigned to treatments (high- or low-NSC diet) in a crossover design. The difference in NSC concentration between the 2 alfalfa baleages fed from d14 to 21 averaged 14 g of NSC/kg of dry matter (DM). Forages and concentrate were offered in separate meals with forages fed once and concentrate offered 3 times daily. Except for the molar proportion of valerate, which was lowest in cows fed the high-NSC diet, no other changes in ruminal fermentation were observed. Omasal flows of most nitrogenous fractions, including bacterial nonammonia N and AA, were not affected by treatments. Apparent ruminal digestibilities of neutral and acid detergent fiber and N were lowest, whereas that of total ethanol-soluble carbohydrates was highest when feeding the high-NSC diet. Postruminal digestibilities of DM, organic matter, fiber, and N were highest in cows fed the high-NSC diet, resulting in no difference in total-tract digestibilities. Total-tract digestibility of total ethanol-soluble carbohydrates was highest in cows fed the high-NSC diet, but that of starch did not differ across treatments. Although milk yield and total DM intake did not differ between treatments, yields of milk fat and 4% fat-corrected milk decreased significantly in cows fed the high-NSC diet. Milk concentration of urea N was lowest, and that of ruminal NH3-N highest, in cows fed the high-NSC diet. Plasma urea N concentration tended to be decreased in cows fed the high-NSC diet, but concentrations of AA were not affected by treatments, with the exception of Asp and Cys, both of which were lowest in cows fed the low-NSC diet. Feeding diets with contrasting NSC concentrations did not improve milk production, N utilization, or bacterial protein synthesis, possibly because intakes of NSC and DM were similar between treatments. Overall, results from the current study should be interpreted cautiously because of the lack of difference in dietary NSC intake between treatments and reduced N and fiber intakes when feeding the high-NSC diet. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Gozho, G N; Hobin, M R; Mutsvangwa, T
2008-01-01
The objective of this study was to determine the effects of methods of barley grain processing and source of supplemental fat on urea-N transfer to the gastrointestinal tract (GIT) and the utilization of this recycled urea-N in lactating dairy cows. Four ruminally cannulated Holstein cows (656.3 +/- 27.7 kg of BW; 79.8 +/- 12.3 d in milk) were used in a 4 x 4 Latin square design with 28-d periods and a 2 x 2 factorial arrangement of dietary treatments. Experimental diets contained dry-rolled barley or pelleted barley in combination with whole canola or whole flaxseed as supplemental fat sources. Nitrogen balance was measured from d 15 to 19, with concurrent measurements of urea-N kinetics using continuous intrajugular infusions of [15N 15N]-urea. Dry matter intake and N intake were higher in cows fed dry-rolled barley compared with those fed pelleted barley. Nitrogen retention was not affected by diet, but fecal N excretion was higher in cows fed dry-rolled barley than in those fed pelleted barley. Actual and energy-corrected milk yield were not affected by diet. Milk fat content and milk fat yield were higher in cows fed dry-rolled barley compared with those fed pelleted barley. Source of supplemental fat did not affect urea-N kinetics. Urea-N production was higher (442.2 vs. 334.3 g of N/d), and urea-N entering the GIT tended to be higher (272.9 vs. 202.0 g of N/d), in cows fed dry-rolled barley compared with those fed pelleted barley. The amount of urea-N entry into the GIT that was returned to the ornithine cycle was higher (204.1 vs. 159.5 g of N/d) in cows fed dry-rolled barley than in pelleted barley-fed cows. The amount of urea-N recycled to the GIT and used for anabolic purposes, and the amounts lost in the urine or feces were not affected by dietary treatment. Microbial nonammonia N supply, estimated using total urinary excretion of purine derivatives, was not affected by diet. These results show that even though barley grain processing altered urea-N entry into the GIT, the utilization of this recycled urea-N for microbial production was unaffected as the additional urea-N, which entered the GIT was returned to ureagenesis.
Determination of Flow Resistance Coefficient for Vegetation in Open Channel: Laboratory study
NASA Astrophysics Data System (ADS)
Aliza Ahmad, Noor; Ali, ZarinaMd; Arish, Nur Aini Mohd; Munirah Mat Daud, Azra; Fatin Amirah Alias, Nur
2018-04-01
This study focused on determination of flow resistances coefficient for grass in an open channel. Laboratory works were conducted to examine the effects of varying of roughness elements on the flume to determine flow resistance coefficient and also to determine the optimum flow resistance with five different flow rate, Q. Laboratory study with two type of vegetation which are Cow Grass and Pearl Grass were implementing to the bed of a flume. The roughness coefficient, n value is determine using Manning’s equation while Soil Conservation Services (SCS) method was used to determine the surface resistance. From the experiment, the flow resistance coefficient for Cow Grass in range 0.0008 - 0.0039 while Pearl Grass value for the flow resistance coefficient are in between 0.0013 - 0.0054. As a conclusion the vegetation roughness value in open channel are depends on density, distribution type of vegetation used and physical characteristic of the vegetation itself
Banta, J P; Lalman, D L; Owens, F N; Krehbiel, C R; Wettemann, R P
2011-11-01
Two experiments were conducted to determine the effects of sunflower seed supplements with varying fatty acid profiles on performance, reproduction, intake, and digestion in beef cattle. In Exp. 1, 127 multiparous spring-calving beef cows with free-choice access to bermudagrass hay were individually fed 1 of 3 supplements for an average of 83 d during mid to late gestation. Supplements (DM basis) included 1) 1.23 kg/d of a soybean hull-based supplement (control treatment); 2) 0.68 kg/d of linoleic sunflower seed plus 0.23 kg/d of the control supplement (linoleic treatment); and 3) 0.64 kg/d of mid-oleic sunflower seed plus 0.23 kg/d of the control supplement (oleic treatment). During the first 62 d of supplementation, the BW change was 11, 3, and -3 kg for cows fed the control, linoleic, and oleic supplements, respectively (P < 0.001). No difference in BW change was observed during the subsequent period (-65 kg, P = 0.83) or during the entire 303-d experiment (-31 kg, P = 0.49). During the first 62 d of supplementation, cows fed sunflower supplements tended (P = 0.08) to lose more body condition than cows fed the control diet, but BCS was not different (P > 0.22) for any subsequent measurement. At the beginning of the breeding season, the percentage of cows exhibiting luteal activity was greater for cows fed the control diet (43%; P = 0.02) than for cows fed either linoleic (20%) or oleic (16%) supplementation; however, first-service conception rate (67%; P = 0.22) and pregnancy rate at weaning (92%; P = 0.18) were not different among supplements. No differences were detected in calf birth (P = 0.46) or weaning BW (P = 0.74). In Exp. 2, 8 ruminally cannulated steers were used to determine the effects of sunflower seed supplementation on forage intake and digestion. Treatments (DM basis) included 1) no supplement; 2) a soybean hull-based supplement fed at 0.29% of BW/d; 3) whole linoleic sunflower seed fed at 0.16% of BW/d; and 4) whole high-oleic sunflower seed fed at 0.16% of BW/d. Hay intake was not influenced (P = 0.25) by supplement (1.51% of BW/d); however, DMI was greatest (P < 0.01) for steers fed the soybean hull-based supplement (1.93% of BW/d). Sunflower seed supplementation reduced (P < 0.01) NDF and ADF digestibility while increasing (P < 0.01) apparent CP and apparent lipid digestibility. In conclusion, whole sunflower seed supplementation resulted in reduced cow BW gain during mid to late gestation, but this reduction did not influence subsequent cow BW change, pregnancy rate, or calf performance.
Sulzberger, S A; Kalebich, C C; Melnichenko, S; Cardoso, F C
2016-10-01
Oral supplementation of clay has been reported to function as buffer in dairy cows. However, its effects on rumen, blood, and fecal pH have varied among studies. Our objective was to determine the effects of 3 concentrations of dietary clay supplementation after a grain challenge. Ten multiparous rumen-cannulated Holstein cows [body weight (mean ± standard deviation)=648±12kg] with 142±130 (60 to 502) days in milk were assigned to 1 of 5 treatments in a replicated 5×5 Latin square design balanced to measure carryover effects. Periods (21d) were divided into an adaptation phase (d 1 to 18, with regular total mixed ration fed ad libitum) and a measurement phase (d 19 to 21). Feed was restricted on d 18 to 75% of the average of the total mixed ration fed from d 15 to 17 (dry matter basis), and on d 19 cows received a grain challenge. The challenge consisted of 20% finely ground wheat administered into the rumen via a rumen cannula, based on the average dry matter intake obtained on d 15 to 17. Treatments were POS (no clay plus a grain challenge), 3different concentrations of clay (0.5, 1, or 2% of dietary dry matter intake), and control (C; no clay and no grain challenge). Statistical analysis was performed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Contrasts 1 (POS vs. C) and 2 (POS vs. the average of 0.5, 1, or 2%) were compared, along with linear and quadratic treatment effects. Rumen, fecal, and blood pH, along with blood metabolites, were measured at 0, 4, 8, 12, 16, 20, 24, 36, and 48h relative to the grain challenge. Cows fed POS had lower rumen pH [(mean ± standard error) 6.03±0.06] than cows fed C (6.20±0.06). Cow fed POS had lower fecal pH (6.14±0.04) than cows fed C (6.38±0.04). We observed a linear treatment effect for rumen pH and fecal pH. Fecal pH (6.22±0.04) was higher for cows fed clay (contrast 2) then for cows fed POS (6.14±0.04). We also observed a treatment difference (contrast 2) for negative incremental area under the curve, pH below 5.6 × h/d, (0.5% clay=7.93±0.83, 1% clay=8.56±0.83, and 2% clay=7.79±0.83) compared with POS (11.0±0.83). Cows fed clay tended to have higher milk yield (0.5% clay=28.8±3.4kg, 1% clay=30.2±3.4kg, and 2% clay=29.1±3.4kg, contrast 2), and had higher 3.5% fat-corrected milk (0.5% clay=29.9±3.5kg, 1% clay=34.1±3.5kg, and 2% clay=33.1±3.4kg), and higher energy-corrected milk (0.5% clay=29.1±3.3kg, 1% clay=32.8±3.4kg, and 2% clay=31.6±3.3kg) than cows fed POS (27.7±3.4kg, 28.0±3.4kg, 27.7±3.3kg, respectively). In conclusion, cows fed clay had higher rumen pH, energy-corrected milk, fat-corrected milk, and a trend for milk yield than cows fed POS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Rotta, P P; Filho, S C Valadares; Gionbelli, T R S; Costa E Silva, L F; Engle, T E; Marcondes, M I; Machado, F S; Villadiego, F A C; Silva, L H R
2015-05-01
This study investigated how feeding regimen (FR) alters apparent total-tract digestibility, performance, N balance, excretion of purine derivatives, and fat deposition in Holstein × Gyr cows at different days of gestation (DG). Forty-four pregnant multiparous Holstein × Gyr cows with an average initial body weight of 480±10.1 kg and an initial age of 5±0.5 yr old were allocated to 1 of 2 FR: ad libitum (AL; n=20) and maintenance level (ML; n=24). Maintenance level was considered to be 1.15% of body weight on a dry matter (DM) basis and met 100% of the energy requirements, whereas AL provided 190% of total net energy requirements. Data for hot and cold carcass dressing, fat deposition, average daily gain, empty body gain, and average daily gain without the gravid uterus were analyzed as a 4×2 factorial design. Intake, apparent total-tract digestibility, N balance, urinary concentration of urea, and purine derivatives data were analyzed as repeated measurements taken over the 28-d period (122, 150, 178, 206, 234, and 262 d of gestation). Cows were individually fed a corn silage-concentrate based diet composed of 93% roughage and 7% concentrate (DM basis) as a total mixed ration. Pregnant cows were slaughtered on 4 different DG: 139 (n=11), 199 (n=11), 241 (n=11), and 268 d (n=11). Overall, DM intake decreased as DG increased. This decrease observed in DM intake may be associated with the reduction in ruminal volume caused by the rapid increase in fetal size during late gestation. We observed an interaction for DM and organic matter apparent total-tract digestibility between FR and DG; at 150, 178, and 206 d of gestation, ML-fed cows had greater DM and organic matter apparent total-tract digestibility values than AL-fed cows. Rib fat thickness, mesentery, and kidney, pelvic, and heart fat were greater in AL-fed than in ML-fed cows at all DG, with the exception of rib fat thickness on d 139. Ad libitum-fed cows excreted more N in their feces and urine compared with ML-fed cows. Pregnant cows that were fed at maintenance had greater digestibility during some DG, excreted less N in feces and less N and urea in urine, and deposited less fat in the body. We therefore recommend ML (1.15% of body weight with 93% of roughage) as a FR for pregnant dry cows; however, during the last month of gestation, AL seems to be the most appropriate FR to avoid loss of body weight. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Garcia, M; Qu, Y; Scholte, C M; O'Connor, D; Rounds, W; Moyes, K M
2017-08-01
Chromium (Cr) has been reported to enhance immune function and improve insulin sensitivity and performance in beef and dairy cattle. However, its effect on bovine macrophage inflammatory and metabolic response is unknown. The objective of this study was to characterize the effect of dietary Cr on the inflammatory and metabolic response of polarized macrophages ex vivo. Twelve primiparous and 16 multiparous healthy Holstein cows in mid lactation (143 ± 37 d in milk) were enrolled in this study. Cows were fed a common total mixed ration once per day that was top-dressed with 200 g of ground corn containing 1 of 2 dietary treatments: control (CTL, no Cr supplementation) or Cr propionate (CrP, 8 mg of Cr/cow per day) for 35 d. At d 1, 17, and 35 of treatment, blood monocytes were isolated and cultured to obtain 3 monocyte-derived macrophage (MDM) phenotypes: M0 (non-polarized), M1 (pro-inflammatory; IFN-γ polarized) and M2 (anti-inflammatory; IL-4 polarized). The experiment was set in a randomized complete block design. Neither dry matter intake nor milk yield was affected by treatment. Plasma concentrations of metabolites and the metabolic and inflammatory response of MDM in spent media were not affected by treatment. Neither the whole blood cell population nor the specific proportion of leukocytes was affected by the main effect of treatment. However, we did observe a trend for fewer circulating neutrophils in cows fed CrP than in cows fed CTL for 35 d, which may be partly attributable to a greater influx of neutrophils into peripheral tissues, a reduced pro-inflammatory response during disease, or both; this warrants future study. Expression of IGFI was increased in MDM-M0, and expression of CXCL11 tended to increase in MDM-M2 from cows fed CrP compared with cows fed CTL. Expression of SLC2A3 also tended to increase in MDM-M2 from cows fed CrP compared with cows fed CTL at 17 d. Our results suggest that CrP has minimal effect on the inflammatory and metabolic response of MDM for Holstein dairy cows in mid lactation. Future studies are warranted to evaluate the differential regulation of Cr on the inflammatory and metabolic response of leukocytes from dairy cows at different stages of lactation and parity. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
O'Callaghan, Tom F; Faulkner, Hope; McAuliffe, Stephen; O'Sullivan, Maurice G; Hennessy, Deirdre; Dillon, Pat; Kilcawley, Kieran N; Stanton, Catherine; Ross, R Paul
2016-12-01
This study evaluated the effects of 3 widely practiced cow feeding systems in the United States, Europe, and Southern Hemisphere regions on the characteristics, quality, and consumer perception of sweet cream butter. Fifty-four multiparous and primiparous Friesian cows were divided into 3 groups (n=18) for an entire lactation. Group 1 was housed indoors and fed a total mixed ration diet (TMR) of grass silage, maize silage, and concentrates; group 2 was maintained outdoors on perennial ryegrass-only pasture (GRS); and group 3 was maintained outdoors on a perennial ryegrass/white clover pasture (CLV). Mid-lactation butter was manufactured in triplicate with milk from each group in June 2015 (137±7d in milk) and was analyzed over a 6-mo storage period at 5°C for textural and thermal properties, fatty acid composition, sensory properties, and volatile compounds. The nutritional value of butters was improved by pasture feeding, and butter from pasture-fed cows had significantly lower thrombogenicity index scores compared with butters from TMR-fed cows. In line with these results, pasture-derived milks (GRS and CLV) produced butter with significantly higher concentrations of conjugated linoleic acid (cis-9,trans-11) and trans-β-carotene than TMR butter. Alterations in the fatty acid composition of butter contributed to significant differences in textural and thermal properties of the butters. Total mixed ration-derived butters had significantly higher hardness scores at room temperature than those of GRS and CLV. Onset of crystallization for TMR butters also occurred at significantly higher temperatures compared with pasture butters. Volatile analysis of butter by gas chromatography-mass spectrometry identified 25 compounds present in each of the butters, 5 of which differed significantly based on feeding system, including acetone, 2-butanone, 1-pentenol, toluene, and β-pinene. Toluene was very significantly correlated with pasture-derived butter. Sensory analysis revealed significantly higher scores for GRS-derived butter in several attributes including "liking" of appearance, flavor, and color over those of TMR butter. Partial least square regression plots of fatty acid profiles showed clear separation of butter derived from grazed pasture-based perennial ryegrass or perennial rye/white clover diets from that of a TMR system, offering further insight into the ability of fatty acid profiling to verify such pasture-derived dairy products. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Casperson, Brittany A; Wertz-Lutz, Aimee E; Dunn, Jim L; Donkin, Shawn S
2018-03-01
Chemical treatment may improve the nutritional value of corn crop residues, commonly referred to as corn stover, and the potential use of this feed resource for ruminants, including lactating dairy cows. The objective of this study was to determine the effect of prestorage chopping, hydration, and treatment of corn stover with Ca(OH) 2 on the feeding value for milk production, milk composition, and dry matter intake (DMI). Multiparous mid-lactation Holstein cows (n = 30) were stratified by parity and milk production and randomly assigned to 1 of 3 diets. Corn stover was chopped, hydrated, and treated with 6% Ca(OH) 2 (as-fed basis) and stored in horizontal silo bags. Cows received a control (CON) total mixed ration (TMR) or a TMR in which a mixture of treated corn stover and distillers grains replaced either alfalfa haylage (AHsub) or alfalfa haylage and an additional portion of corn silage (AH+CSsub). Treated corn stover was fed in a TMR at 0, 15, and 30% of the diet DM for the CON, AHsub, and AH+CSsub diets, respectively. Cows were individually fed in tiestalls for 10 wk. Milk production was not altered by treatment. Compared with the CON diet, DMI was reduced when the AHsub diet was fed and tended to be reduced when cows were fed the AH+CSsub diet (25.9, 22.7, and 23.1 ± 0.88 kg/d for CON, AHsub, and AH+CSsub diets, respectively). Energy-corrected milk production per unit of DMI (kg/kg) tended to increase with treated corn stover feeding. Milk composition, energy-corrected milk production, and energy-corrected milk per unit of DMI (kg/kg) were not different among treatments for the 10-wk feeding period. Cows fed the AHsub and AH+CSsub diets had consistent DMI over the 10-wk treatment period, whereas DMI for cows fed the CON diet increased slightly over time. Milk production was not affected by the duration of feeding. These data indicate that corn stover processing, prestorage hydration, and treatment with calcium hydroxide can serve as an alternative to traditional haycrop and corn silage in diets fed to mid-lactation dairy cows. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Effect of frame size and season on enteric methane (CH4) and carbon dioxide (CO2) emissions in Angus brood cows grazing native tall-grass prairie in central Oklahoma, USA J.P.S. Neel USDA ARS, El Reno, OK A reduction in enteric CH4 production in ruminants is associated with improved production effic...
Coleman, S W; Phillips, W A; Volesky, J D; Buchanan, D
2001-07-01
The objective of this study was to compare an introduced warm-season perennial grass (plains bluestem, Bothriochloa ischaemum) to native tallgrass prairie for cow-calf production. Three systems were used, two based on tallgrass prairie with two different forms of protein supplementation and one based on plains bluestem as the primary forage. The systems were as follows: 1) native tallgrass prairie with pelleted oilseed meal as the winter protein supplement (native-control); 2) native tallgrass prairie with limited access to wheat pasture as the winter protein supplement (native-wheat); and 3) plains bluestem with limited access to wheat pasture as the protein supplement (bluestem-wheat). Oilseed meal protein supplements were fed twice weekly. Cows grazing wheat pasture were allowed 6 h of grazing twice weekly. Ninety-nine cows per year were used over the 3-yr study. Cows were sired by either Charolais, Gelbvieh, Angus, or Hereford bulls out of commercial Angus-Hereford dams. Calves were sired by Simmental bulls. Calving and weaning rate increased over time but did not differ among systems or breed types. System did not influence the size or body condition score of cows or the performance of calves, but changes in the weight and condition scores of cows were greater on either native system than on the bluestem-wheat system. Cows from Charolais and Gelbvieh bulls were taller (P < 0.05), and heavier (P < 0.05), and weaned heavier (P < 0.05) calves than cows from Angus or Hereford bulls. The weight of cows on the bluestem-wheat system tended to decrease over time, whereas cows grazing on the native systems tended to gain weight over time. The native-control system was the most profitable system based on cow production. If excess hay produced from the bluestem-wheat system was sold as a cash crop, then this system was the most profitable. In general, we conclude that limit-grazing wheat pasture is a viable alternative to oilseed meal as protein supplement for wintering dry cows. Although the bluestem system had 2.5 times the carrying capacity of the native prairie systems, increased productivity was offset by increased production costs. All systems were equal on a cow basis for providing nutrients for the cow-calf production system.
Bertilsson, J; Åkerlind, M; Eriksson, T
2017-10-01
Grass silage-based diets often result in poor nitrogen utilization when fed to dairy cows. Perennial ryegrass cultivars with high concentrations of water-soluble carbohydrates (WSC) have proven potential for correcting this imbalance when fed fresh, and have also been shown to increase feed intake, milk production, and N utilization. The possibility of achieving corresponding effects with silage-based diets was investigated in change-over experiments in an incomplete block design with 16 (yr 1) or 12 (yr 2) Swedish Red dairy cows in mid lactation. Measurements on N excretion and rumen parameters were performed on subgroups of 8 and 4 cows, respectively. In yr 1, 2 ryegrass cultivars (standard = Fennema; high-WSC = Aberdart) and 2 cuts (first and second) were compared. In all treatments, ryegrass silage was mixed 75/25 on a dry matter (DM) basis, with red clover silage before feeding out. In yr 2, 1 basic mixture from the different cuts of these 2 cultivars was used and experimental factors were red clover silage inclusion (25 or 50%) and sucrose addition (0 or 10%) on a silage DM basis. Differences in WSC concentration in the silage mixtures in yr 1 were minor, whereas the differences between cuts were more substantial: 100 compared with 111 g/kg of DM for first-cut silage and 39 compared with 47 g/kg of DM for second-cut silage. The silages fed in yr 2 had a WSC concentration of 115 or 102 g/kg of DM (25 or 50% red clover, respectively), but when sucrose was added WSC concentration reached 198 and 189 g/kg of DM, respectively. Milk production (kg/d) did not differ between treatments in either year. Red clover inclusion to 50% of silage DM increased milk protein. Nitrogen efficiency (milk N/feed N) increased from 0.231 to 0.254 with sucrose inclusion in yr 2 (average for the 2 red clover levels). Overall rumen pH was 5.99 and increased sucrose level did not affect pH level or daily pH pattern. Sucrose addition reduced neutral detergent fiber digestibility, particularly at higher inclusion rates of clover. Rumen pool of total purines did not differ between treatments, nor did protein production assessed from urinary allantoin. The NorFor feed evaluation model overestimated digestibility of neutral detergent fiber and N, but underestimated N excretion in feces. We concluded that addition of WSC to dairy cow diets at levels up to 3 kg of WSC per day (>14% of DM) does not dramatically affect cow performance. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Feeding value of field pea as a protein source in forage-based diets fed to beef cattle.
Soto-Navarro, S A; Encinias, A M; Bauer, M L; Lardy, G P; Caton, J S
2012-02-01
Three studies were conducted to evaluate the feasibility of field peas as a protein source in diets for beef cattle. In the first study, 4 cultivars of field pea were incubated in situ to determine rate and extent of CP disappearance. Results indicate that field pea cultivars vary in CP content (22.6, 26.1, 22.6, and 19.4%, DM basis for Profi, Arvika, Carneval, and Trapper, respectively). Soluble protein fraction ranged from 34.9% for Trapper to 54.9% for Profi. Degradable CP fraction was greater (P = 0.01) for Trapper compared with the other cultivars, and no differences (P ≥ 0.25) were observed among Profi, Arvika, and Carneval. Rate of CP degradation differed (P ≤ 0.03) for all cultivars, with Profi being the greatest and Trapper the smallest (10.8, 10.0, 8.1, and 6.3 ± 1.4%/h for Profi, Carneval, Arvika, and Trapper, respectively). Estimated RDP was not different (P = 0.21) for all 4 cultivars. In the second study, 30 crossbred beef steers (301 ± 15 kg) were individually fed and used to evaluate effects of field pea processing (whole, rolled, or ground) on steer performance. Diets contained 40% field pea grain. Growing steers consuming whole field pea had greater ADG (P = 0.08) than those consuming processed field pea (1.69, 1.52, and 1.63 ± 0.05 kg/d, for whole, rolled, and ground, respectively). However, DMI (kg/d and as % of BW) and G:F were not different (P ≥ 0.24). In the third study, 35 individually fed gestating beef cows (694 ± 17 kg) were used to evaluate the use of field pea as a protein supplement for medium quality grass hay (9.3% CP). Treatments consisted of whole field peas at 1) 0 g (CON), 2) 680 g (FP680), 3) 1,360 g (FP1360), and 4) 2,040 g (FP2040), and 5) 1,360 g of 74% barley and 26% canola meal (BCM). Total intake (forage + supplement) of gestating beef cows increased with increasing field pea level (linear, P = 0.01; supplemented vs. nonsupplemented, P = 0.01). In summary, protein quantity and rate of ruminal protein degradation vary across sources of field peas used in this study. Additionally, because of source variability, nutrient analysis and animal requirements should be considered when field pea is incorporated into beef cattle diets. Processing field pea does not improve performance of growing steers. Supplementation of field pea to gestating cows consuming medium-quality grass hay increased total DMI. Overall, our data indicate field pea can be used in a wide variety of beef cattle diets.
NASA Astrophysics Data System (ADS)
Castelan-Ortega, O. A.; Ku-Vera, J. C.; Molina, L. T.; Pedraza-Beltrán, P. E.; Canul-Solis, J. R.; Piñeiro-Vázquez, A.; Hernández-Pineda, G.; Benaouda, M.
2015-12-01
Until recently there were no facilities in Mexico to measure in vivo methane (CH4) emission by livestock. Inventories were calculated using emission factors from the IPCC, so the uncertainty in calculation is high. In 2014 the first laboratory equipped to measure CH4 started operations at the Universidad Autónoma de Yucatán. The second laboratory was built at the Universidad Autónoma del Estado de México and it began operations in June 2015. The first laboratory consists of two open-circuit respiration chambers, which are currently used to measure CH4 emissions by cattle in Mexico's tropical regions. Chamber dimensions are: 3.0 x 2.14 x 1.44 m (DxHxW). Air exiting the chambers is drawn by a mass flowmeter (Flowkit 500) at a rate of 500 L/min. The air sample is passed through a multiplexer and then through a chemical desiccant before entering the methane infrared analyzer (MA-10). All the instruments were fabricated by Sable Systems International, Las Vegas, USA. The average CH4 emission factor for Nelore bulls of 350 kg live weight fed with a tropical grass was 117.3 L/day and it increased to 198.6 L/day when 3 kg of concentrate feed were supplemented. For adult crossbred cows also fed with a tropical grass CH4 emission ranged from 92.7 to 137.3 L/day. The second laboratory consist of a respiration chamber of the head box type. It consists of a head box of 1.05 x 0.8 x 1.80 m (WxDxH) made of 3.5 x 3.5 cm stainless steel angle, and on the bottom, top, sides, back and front of the head box, 0.6 cm clear acrylic sheeting was used to provide comfortable vision to the animal, and a metabolic cage of 1.08 x 2.92 x 1.8 m (WxDxH) made of iron tubes with steel sheeting floor adapted for feces and urine collection. The methane analyzer and the mass flowmeter were of the same model as in the first laboratory. Once calibrated, in vivo measurements were performed using high yielding adult Holstein cows with an average live weight of 573 ±71 kg and milk yield of 30kg/day. The cows were fed maize silage, alfalfa hay and 4 kg concentrate feed. The average CH4 production was 484 ± 132 L/day. Emission factors obtained from both laboratories differed substantially from those used previously for inventories calculation in Mexico. IPCC factors are higher than those observed in our work particularly for cattle in the tropical regions of the country.
Ou, X; Andres, A; Pivik, R T; Cleves, M A; Snow, J H; Ding, Z; Badger, T M
2016-04-01
Infant diets may have significant impact on brain development in children. The aim of this study was to evaluate brain gray matter structure and function in 8-year-old children who were predominantly breastfed or fed cow's milk formula as infants. Forty-two healthy children (breastfed: n = 22, 10 boys and 12 girls; cow's milk formula: n = 20, 10 boys and 10 girls) were studied by using structural MR imaging (3D T1-weighted imaging) and blood oxygen level-dependent fMRI (while performing tasks involving visual perception and language functions). They were also administered standardized tests evaluating intelligence (Reynolds Intellectual Assessment Scales) and language skills (Clinical Evaluation of Language Fundamentals). Total brain gray matter volume did not differ between the breastfed and cow's milk formula groups. However, breastfed children had significantly higher (P < .05, corrected) regional gray matter volume measured by voxel-based morphometry in the left inferior temporal lobe and left superior parietal lobe compared with cow's milk formula-fed children. Breastfed children showed significantly more brain activation in the right frontal and left/right temporal lobes on fMRI when processing the perception task and in the left temporal/occipital lobe when processing the visual language task than cow's milk formula-fed children. The imaging findings were associated with significantly better performance for breastfed than cow's milk formula-fed children on both tasks. Our findings indicated greater regional gray matter development and better regional gray matter function in breastfed than cow's milk formula-fed children at 8 years of age and suggested that infant diets may have long-term influences on brain development in children. © 2016 by American Journal of Neuroradiology.
Little, M W; O'Connell, N E; Ferris, C P
2016-06-01
A diverse range of concentrate allocation strategies are adopted on dairy farms. The objectives of this study were to examine the effects on cow performance [dry matter (DM) intake (DMI), milk yield and composition, body tissue changes, and fertility] of adopting 2 contrasting concentrate allocation strategies over the first 140 d of lactation. Seventy-seven Holstein-Friesian dairy cows were allocated to 1 of 2 concentrate allocation strategies at calving, namely group or individual cow. Cows on the group strategy were offered a mixed ration comprising grass silage and concentrates in a 50:50 ratio on a DM basis. Cows on the individual cow strategy were offered a basal mixed ration comprising grass silage and concentrates (the latter included in the mix to achieve a mean intake of 6kg/cow per day), which was formulated to meet the cow's energy requirements for maintenance plus 24kg of milk/cow per day. Additional concentrates were offered via an out-of-parlor feeding system, with the amount offered adjusted weekly based on each individual cow's milk yield during the previous week. In addition, all cows received a small quantity of straw in the mixed ration part of the diet (approximately 0.3kg/cow per day), plus 0.5kg of concentrate twice daily in the milking parlor. Mean concentrate intakes over the study period were similar with each of the 2 allocation strategies (11.5 and 11.7kg of DM/cow per day for group and individual cow, respectively), although the pattern of intake with each treatment differed over time. Concentrate allocation strategy had no effect on either milk yield (39.3 and 38.0kg/d for group and individual cow, respectively), milk composition, or milk constituent yield. The milk yield response curves with each treatment were largely aligned with the concentrate DMI curves. Cows on the individual cow treatment had a greater range of concentrate DMI and milk yields than those on the group treatment. With the exception of a tendency for cows on the individual cow treatment to lose more body weight to nadir than cows on the group treatment, concentrate allocation strategy had little effect on either body weight or body condition score over the experimental period. Cows on the individual cow treatment had a higher pregnancy rate to first and second service and tended to have a higher 100-d in calf rate than cows on the group treatment. This study demonstrates that concentrate allocation strategy had little effect on overall production performance. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sorge, U S; Henriksen, M; Bastan, A; Cremers, N; Olsen, K; Crooker, B A
2016-10-01
Kelp (Ascophyllum nodosum) is rich in iodine and often fed by organic dairy producers as a mineral supplement to support animal health. A commonly held belief is that kelp supplementation decreases susceptibility to infectious bovine keratoconjunctivitis due to increased iodine concentrations in tears. Whereas serum and milk iodine concentrations are positively correlated and modulated by oral iodine supplementation, nothing is known about the iodine concentration of tears. Therefore, the 3 objectives of this pilot study were to determine (1) the iodine content of tears, milk, and serum of cows after being fed kelp for 30d; (2) the trace mineral and thyroid status of cows before (d 0) and after being fed kelp for 30d; and (3) the in vitro growth rate of bacteria in tears (Moraxella bovis) or milk (Staphylococcus aureus, Escherichia coli, Streptococcus uberis) collected from cows fed no kelp (d 0) or kelp (d 30). Cows (n=3/treatment) were individually fed 56g of kelp per day (n=3/treatment) or not (n=3/no treatment) for 30 d. Daily feed intake of the TMR was recorded and weekly TMR, kelp, milk, blood and tear samples were collected and analyzed for iodine. The feed samples were pooled and further analyzed for other minerals. On d 0 and 30, liver biopsies and blood samples were collected and analyzed for mineral content and thyroid hormone concentrations, respectively. An inhibition test used milk and tear-soaked plates from kelp-fed cows (d 0 and 30) as well as 1 and 7.5% iodine as positive and distilled water as negative control. As expected, serum iodine concentrations were positively correlated with milk and tear iodine concentrations. Whereas the iodine concentrations in serum increased significantly in the kelp-fed cows during the 30-d study, milk and tear iodine concentrations increased only numerically in these cows compared with the control group. Liver mineral profiles were comparable between groups and generally did not change over the course of the study. Thyroid hormones remained overall within the reference range throughout the trial. Neither milk nor tears from kelp-fed cows inhibited in vitro growth of any of the plated bacteria. In summary, serum iodine concentration was correlated with the iodine concentration in milk and tears and feeding kelp increased only the serum iodine levels of cows in this trial. Bacterial growth was not inhibited in milk and tears of kelp-fed cattle in vitro, and prevention of infectious bovine keratoconjunctivitis would not be based solely on increased iodine concentrations in tears. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Our objective was to characterize growth, fat mass (FM), fat free mass (FFM), and bone mineral content (BMC) longitudinally in breast-fed (BF), cow's milk formula-fed (CMF), or soy formula-fed (SF) healthy infants during the first year of life. Infants were assessed at ages 3, 6, 9, and 12 mo. Growt...
Frequency of Neospora caninum infections in beef cow-calf operations under extensive management.
Rodríguez, A M; Maresca, S; Cano, D B; Armendano, J I; Combessies, G; Lopéz-Valiente, S; Odriozola, E R; Späth, E J L; Odeón, A C; Campero, C M; Moore, D P
2016-03-30
The aim of this study was to evaluate the frequencies of Neospora caninum horizontal and vertical transmissions in beef cow-calf operations under three different extensive management systems: group A: 0.75 head per hectare pasturing on natural grass; group B: 1.1 head per hectare on natural grass and improved cultured pastures; and group C: 2 head per hectare on natural grass, improved cultured pasture and whole corn silage. Serum samples from 72 multiparous cows assigned to each beef cow-calf operations were obtained every 3 months during 2 years. A group of 30 replacement heifers from each group were tested similarly since they were 10-21 months old. Twenty four, 20 and 34 calves from groups A, B and C respectively, were bled before colostrum intake and again 6 months later. The samples were analyzed by indirect fluorescence antibody test (IFAT) for detection of total IgG against N. caninum at a serological titre ≥ 200 for multiparous cows and replacement heifers, and a serological titre ≥ 25 for calves. Serum samples from seropositive cows were assessed by ELISA to evaluate the avidity of their specific antibodies. There were no differences in the proportion of seropositive cows from groups A, B and C at the beginning of the trial (p>0.05). Interestingly, the lowest serological titres in seropositive cows from all groups were observed during the first trimester (p<0.05). Although seropositive cows had medium to high avidity antibodies, suggesting chronic infection; seroconversion associated with low antibody avidity was found in 2, 3 and 3 seropositive cows from groups A, B and C. All replacement heifers remained seronegative. No abortions were recorded but 2, 1, and 2 calves from groups A, B and C were seropositive before colostrum intake, respectively. Seropositive calves born from cows having intermediate or high avidity remained with the same serostatus at 6 months of age. Even under varying extensive management conditions, both N. caninum horizontal and vertical transmission methods do occur in beef cow-calf operations. Copyright © 2016. Published by Elsevier B.V.
Salehi, R; Colazo, M G; Oba, M; Ambrose, D J
2016-05-01
The objectives were to determine the effects of supplemental fat (no oilseed vs. oilseed) during late gestation and the source of fat (canola vs. sunflower seed), on dry matter intake (DMI), plasma metabolite concentrations, milk production and composition, calf birth weight, postpartum health disorders, ovarian function and reproductive performance in dairy cows. Pregnant Holstein cows, blocked by body condition and parity, were assigned to 1 of 3 diets containing rolled canola seed (high in oleic acid; n=43) or sunflower (high in linoleic acid; n=45) at 8% of dry matter, or no oilseed (control; n=43), for the last 35±2 d of pregnancy. After calving, all cows received a common lactation diet. Blood samples were collected at wk -3 (i.e., 2 wk after initiation of prepartum diets) and at wk +1, +2, +3, +4 and +5 postpartum to determine the concentration of fatty acids (mEq/dL), β-hydroxybutyrate (mg/dL), and glucose (mg/dL). Ovarian ultrasonography was performed twice weekly to determine the first appearance of dominant (10mm) and preovulatory-size (≥16mm) follicles, and ovulation. Uterine inflammatory status based on the proportion of polymorphonuclear leukocytes (PMN; subclinical endometritis: >8% PMN) was assessed at d 25±1 postpartum. Significant parity by treatment interactions were observed for DMI and milk yield. Prepartum oilseed supplementation, more specifically sunflower seed supplementation, increased postpartum DMI in primiparous cows without affecting prepartum DMI or milk yield. Contrarily, in multiparous cows, prepartum oilseed supplementation decreased both prepartum and postpartum DMI and milk yield during the first 2 wk. Regardless of parity, prepartum feeding of canola reduced postpartum DMI compared with those fed sunflower. Mean fatty acids concentrations at wk -3 were greater in cows given supplemental oilseed than those fed no oilseeds. Gestation length and calf birth weight were increased in cows given supplemental oilseed prepartum compared with cows fed no oilseeds, and a disproportionate increase in the birth weight of female calves was evident in cows fed oilseed. Total reproductive disorders tended to be greater in cows fed supplemental oilseed than those fed no oilseed (42 vs. 23%). Furthermore, cows fed sunflower seed had greater incidences of dystocia (35 vs. 18%) and total health disorders (52 vs. 32%) than those fed canola seed. Added oilseed and type of oilseed did not affect uterine inflammation at 25±1 d postpartum. Oilseed supplementation did not alter the intervals from calving to establishment of the first dominant follicle, preovulatory-size follicle, and ovulation, nor did it affect fertility (conception rate to first artificial insemination and proportion of pregnant cows by 150 d after calving). In summary, prepartum oilseed supplementation (6.2 to 7.4% ether extract, % of dietary dry matter) decreased DMI during the entire experimental period (pre- and postpartum), decreased milk yield during early lactation in multiparous cows, and increased calf birth weight with no significant improvement in ovarian function and reproductive performance. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Frey, H-J; Gross, J J; Petermann, R; Probst, S; Bruckmaier, R M; Hofstetter, P
2018-04-01
Feeding dairy cows indoors or on pasture affects not only labour, machinery and housing costs, but also animals' performance and metabolism. This study investigates the effects of indoor feeding (IF) with a partial-mixed ration (PMR) versus pasture-based feeding (PF) on milk production, fertility, backfat thickness (BFT), body weight (BW) loss and energy metabolism of Brown Swiss (BS) dairy cows with similar genetic production potential. The IF herd consisted of 13 cows fed a PMR composed of maize and grass silage plus protein concentrate according to each cow's requirements. The PF herd consisted of 14 cows offered barn-ventilated hay ad libitum after calving from January until March and grazed on semi-continuous pastures during the vegetation period. The IF cows produced more energy-corrected milk (ECM) per standard lactation (9,407 vs. 5,960 kg; p < .01), more milk fat (378 vs. 227 kg; p < .01) and milk protein (326 vs. 215 kg; p < .01). The calving interval (377 vs. 405 days; p < .01) and time empty (86 vs. 118 days; p < .01) were shorter in the PF compared to IF, possibly also due to different selection criteria for maintaining the respective seasonal calving rhythm. The empty body fat loss calculated according to BCS until its nadir was higher in IF cows (IF: 10.4 vs. PF: 4.8 MJ/day; p < .01), but no differences were noted in total body fat loss estimated via BFT (p = .24). However, PF had lower blood glucose concentration at all investigated time points, but no differences occurred in serum non-esterified fatty acid and β-hydroxybutyrate concentrations post-partum. In conclusion, BS cows were equally well suited for the IF with PMR and the PF system investigated here without developing a prominent metabolic load despite differences in nutrient supply. As such, investigated BS dairy cows in our trial seem to have a high capacity for metabolic adaptation to different production systems. © 2017 Blackwell Verlag GmbH.
Ye, G; Liu, J; Liu, Y; Chen, X; Liao, S F; Huang, D; Huang, K
2016-06-01
This study aimed to evaluate the effects of feeding glycerol-enriched yeast culture (GY) on feed intake, lactation performance, blood metabolites, and expression of some key hepatic gluconeogenic enzymes in dairy cows during the transition period. Forty-four multiparous transition Holstein cows were blocked by parity, previous 305-d mature equivalent milk yield, and expected calving date and randomly allocated to 4 dietary treatments: Control (no additive), 2 L/d of GY (75.8 g/L glycerol and 15.3 g/L yeast), 150 g/d of glycerol (G; 0.998 g/g glycerol), and 1 L/d of yeast culture (Y; 31.1 g/L yeast). All additives were top-dressed and hand mixed into the upper one-third of the total mixed ration in the morning from -14 to +28 d relative to calving. Results indicated that the DMI, NE intake, change of BCS, and milk yields were not affected by the treatments ( > 0.05). Supplementation of GY or Y increased milk fat percentages, milk protein percentages, and milk protein yields relative to the Control or G group ( < 0.05). Cows fed GY or G had higher glucose levels and lower β-hydroxybutyric acid (BHBA) and NEFA levels in plasma than cows fed the Control ( < 0.05) and had lower NEFA levels than cows fed Y ( < 0.05). On 14 d postpartum, cows fed GY or G had higher enzyme activities, mRNA, and protein expression of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C; < 0.05); higher enzyme activities ( < 0.05) and a tendency toward higher mRNA expression ( < 0.10) of glycerol kinase (GK); and a tendency toward higher enzyme activities of pyruvate carboxylase (PC) in the liver ( < 0.10) when compared with cows fed Control or Y. The enzyme activities, mRNA, and protein expression of PEPCK-C, PC, and GK did not differ between cows fed GY and G ( > 0.10). In conclusion, dietary GY or Y supplementation increased the milk fat and protein content of the cows in early lactation and GY or G supplementation improved the energy status as indicated by greater plasma glucose and lower plasma BHBA and NEFA concentrations and upregulated the hepatic gluconeogenic enzymes of dairy cows during the transition period. Feeding cows with a GY mixture in the peripartum period combined the effects of yeast on lactation performance and the effects of glycerol on energy status in dairy cows.
Stelzleni, A M; Patten, L E; Johnson, D D; Calkins, C R; Gwartney, B L
2007-10-01
The objective of this study was to benchmark carcasses and muscles from commercially identified fed (animals that were perceived to have been fed an increased plane of nutrition before slaughter) and nonfed cull beef and dairy cows and A-maturity, USDA Select steers, so that the muscles could be identified from cull cow carcasses that may be used to fill a void of intermediately priced beef steaks. Carcass characteristics were measured at 24 h postmortem for 75 carcasses from 5 populations consisting of cull beef cows commercially identified as fed (B-F, n = 15); cull beef cows commercially identified as nonfed (B-NF, n = 15); cull dairy cows commercially identified as fed (D-F, n = 15); cull dairy cows commercially identified as nonfed (D-NF, n = 15); and A-maturity, USDA Select grade steers (SEL, n = 15). Nine muscles were excised from each carcass [m. infraspinatus, m. triceps brachii (lateral and long heads), m. teres major, m. longissimus dorsi (also termed LM), m. psoas major, m. gluteus medius, m. rectus femoris, and m. tensor fasciae latae] and subjected to Warner-Bratzler shear force testing and objective sensory panel evaluation after 14 d of postmortem aging. Carcass characteristics differed (P < 0.05) among the 5 commercially identified slaughter groups for the traits of lean maturity, bone maturity, muscle score, HCW, fat color, subjective lean color, marbling, ribeye area, 12th-rib fat thickness, and preliminary yield grade. Carcasses from commercially identified, fed cull cows exhibited more (P < 0.01) weight in carcass lean than did commercially identified, nonfed cull cows. There was a group x muscle interaction (P = 0.02) for Warner-Bratzler shear force. Warner-Bratzler shear force and sensory overall tenderness values demonstrates that muscles from the SEL group were the most tender (P < 0.01), whereas muscles from the B-NF group were the least tender (P < 0.01). Sensory, beef flavor intensity was similar (P > 0.20) among cull cow carcass groups and more intense (P < 0.01) than the SEL carcass group. Muscles from the SEL group exhibited less (P < 0.01) detectable off-flavor than the cull cow carcass groups, whereas the B-NF group exhibited the most (P < 0.01) detectable off-flavor. Although carcass and muscle quality from commercially identified, fed, cull beef and dairy cows was not similar to A-maturity, USDA Select beef, they did show improvements when compared with nonfed, cull, beef and dairy cow carcasses and muscles.
Thivierge, M C; Chouinard, P Y; Lévesque, J; Girard, V; Seoane, J R; Brisson, G J
1998-07-01
Ten Holstein cows in early lactation were used in a replicated 5 x 5 Latin square design to study the effects of MgO and three buffers added to diets containing Ca salts of canola oil fatty acids. Treatments were 1) control (basal diet; no buffer). 2) 1.1% NaHCO3 plus 1.1% KHCO3, 3) 1.9% NaHCO3, 4) 0.5% MgO, and 5) 2.0% Na sesquicarbonate (percentage of dry matter). The control diet contained 53% grass silage, 43% concentrate, and 4% Ca salts. Body weight, intake, milk yield, and percentages of milk fat, protein, and lactose were unaffected by treatments. Buffers and MgO tended to increase triacylglycerol extraction by the mammary gland and changed the proportions of some fatty acids in milk. Arterial concentrations of acetate and triacylglycerol were correlated with their respective arteriovenous differences. Extraction by the mammary gland was high for acetate (approximately equal to 58.2%), triacylglycerol (approximately equal to 47.3%) propionate (approximately equal to 34.6%), and glucose (approximately equal to 24.3%). Extraction of free fatty acids, phospholipids, or cholesterol was negligible. Mammary triacylglycerol arteriovenous difference tended to be higher than when MgO was fed than when NaHCO3 was fed. Sodium sesquicarbonate, NaHCO3, and the blend of bicarbonate buffers increased C18:2 in milk fat when compared with the control treatment. The concentration of C18:2 in milk fat decreased when MgO was fed, but the ratio of cis-C18:1 to trans-C18:1 increased compared with effects of dietary NaHCO3. Medium-chain fatty acids in milk fat tended to be higher than Na sesquicarbonate than with NaHCO3. Buffers and MgO modified the profiles of fatty acids in milk.
Brown midrib corn shredlage in diets for high-producing dairy cows.
Vanderwerff, L M; Ferraretto, L F; Shaver, R D
2015-08-01
A novel method of harvesting whole-plant corn silage, shredlage, may increase kernel processing and physically effective fiber. Improved fiber effectiveness may be especially advantageous when feeding brown midrib (BMR) corn hybrids, which have reduced lignin content. The objective of this study was to determine the effect of feeding TMR containing BMR corn shredlage (SHRD) compared with BMR conventionally processed corn silage (KP) or KP plus chopped alfalfa hay (KPH) on intake, lactation performance, and total-tract nutrient digestibility in dairy cows. The KP was harvested using conventional rolls (2-mm gap) and the self-propelled forage harvester set at 19mm of theoretical length of cut, whereas SHRD was harvested using novel cross-grooved rolls (2-mm gap) and the self-propelled forage harvester set at 26mm of theoretical length of cut. Holstein cows (n=120; 81±8 d in milk at trial initiation), stratified by parity, days in milk, and milk yield, were randomly assigned to 15 pens of 8 cows each. Pens were randomly assigned to 1 of 3 treatment diets, SHRD, KP, or KPH, in a completely randomized design using a 2-wk covariate period with cows fed a common diet followed by a 14-wk treatment period with cows fed their assigned treatment diet. The TMR contained (dry matter basis) KP or SHRD forages (45%), alfalfa silage (10%), and a concentrate mixture (45%). Hay replaced 10% of KP silage in the KPH treatment TMR (dry matter basis). Milk, protein, and lactose yields were 3.4, 0.08, and 0.16kg/d greater, respectively, for cows fed KP and SHRD than KPH. A week by treatment interaction was detected for milk yield, such that cows fed SHRD produced or tended to produce 1.5kg/d per cow more milk, on average, than cows fed KP during 6 of the 14 treatment weeks. Component-corrected milk yields were similar among treatments. Cows fed KPH had greater milk fat concentration than cows fed KP and SHRD (3.67 vs. 3.30% on average). Consumption of dry matter, rumination activity, and sorting behavior were similar among treatments. Ruminal in situ starch digestibility was greater for SHRD than KP forages, and total-tract dietary starch digestibility was greater for SHRD than KP. Milk yield and starch digestibility were greater for SHRD than KP. Lack of improvement in milk fat content and rumination activity for SHRD compared with KP and reduced milk fat content for SHRD compared with KPH, however, suggest no improvement in physically effective fiber from the longer theoretical length of cut used with SHRD in a BMR hybrid. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Fernandes, Sandra Maria Rodrigues; de Morais, Mauro Batista; Amancio, Olga Maria Silverio
2008-02-01
To verify the occurrence of occult intestinal blood loss and iron deficiency in infants aged 9 to 12 months. A consecutive sample of 98 infants of the Pediatric Public Health Primary Care Unit in the town of Arapongas, Parana State, Brazil was involved in this cross-sectional study. Dietary history, hemoglobin, serum iron, transferrin saturation, ferritin, and an occult fecal blood loss investigation, by the immune chromatographic method specific for human hemoglobin were performed. Presence of occult intestinal blood occurred in 8/23 of the breast-fed (plus complementary feed) infants and in 30/64 of the infants who were fed with cow's milk (plus complementary feed) (P=0.449). The comparison of body iron indicators in accordance to positive or negative occult fecal blood, did not show any significant difference in the 23 breast-fed infants. Serum ferritin (median=4.2 ng/mL) was significantly lower (P=0.004) in infants who received whole cow's milk and had positive occult fecal blood, than in those infants who received whole cow's milk but were without occult fecal blood (median=12.1 ng/mL). In breast-fed infants with negative occult fecal blood, iron deficiency severity is not greater than in those with positive results. In infants fed whole cow's milk, occult fecal blood loss is an aggravating factor of iron deficiency.
Shee, C N; Lemenager, R P; Schoonmaker, J P
2016-01-01
Multiparous Angus×Simmental cows (n=54, 5.22±2.51 years) with male progeny were fed one of two diets supplemented with either dried distillers grains with solubles (DDGS) or soybean meal (CON), from calving until day 129 postpartum (PP) to determine effects of excess protein and fat on cow performance, milk composition and calf growth. Diets were formulated to be isocaloric and consisted of rye hay and DDGS (19.4% CP; 8.76% fat), or corn silage, rye hay and soybean meal (11.7% CP; 2.06% fat). Cow-calf pairs were allotted by cow and calf age, BW and breed. Cow BW and body condition score (BCS; P⩾0.13) were similar throughout the experiment. A weigh-suckle-weigh was performed on day 64 and day 110±10 PP to determine milk production. Milk was collected on day 68 and day 116±10 PP for analysis of milk components. Milk production was unaffected (P⩾0.75) by dietary treatments. Milk urea nitrogen was increased at both time points in DDGS compared with CON cows (P<0.01). Protein was decreased (P=0.01) and fat was increased (P=0.01) in milk from DDGS compared with CON cows on day 68 PP. Compared to CON, DDGS decreased medium chain FA (P<0.01) and increased long chain FA (P<0.01) at both time points. Saturated FA content of milk was decreased (P<0.01) at both time-points in DDGS compared with CON cows, which resulted in an increase (P<0.01) in monounsaturated and polyunsaturated FA, including cis-9, trans-11 conjugated linoleic acid. Daily gain of the DDGS calves was increased (P=0.01) compared with CON calves, resulting in heavier BW on day 129 (P=0.01). Heavier BW of DDGS calves was maintained through weaning (P=0.01). Timed-artificial insemination (TAI) rates were greater for cows fed DDGS compared with cows fed CON (P<0.02), but dietary treatment had no effect on overall pregnancy rates (P=0.64). In summary, feeding DDGS to lactating beef cows did not change cow BW or BCS, but did improve TAI rates and altered milk composition compared with CON. As a result, male progeny from cows fed DDGS during lactation had greater average daily gain and were heavier at day 129 and at weaning compared with male progeny from cows fed a control diet.
Muegge, C R; Brennan, K M; Schoonmaker, J P
2016-08-01
Angus × Simmental cows ( = 48; BW = 595 ± 17.4 kg, BCS = 5.26 ± 0.05, and age = 2.3 ± 0.07 yr), pregnant with male fetuses, were used to determine the effect of Se source during the last 80 d of gestation and first 108 d of lactation on cow and calf performance. At 203 d in gestation, cows were blocked by BW, breed composition, age, and calf sire and randomly allotted to organic Se, inorganic Se, or no Se treatments. Diets contained corn silage, corn stover, haylage, dried distillers' grains with solubles, and minerals and were formulated to contain 10.4% CP and 0.90 Mcal/kg NEg during gestation and 12.1% CP and 1.01 Mcal/kg NEg during lactation. Diets were fed daily as a total mixed ration and none, 3 mg/d Se as sodium selenite, or 3 mg/d Se as Sel-Plex were top-dressed daily. At 68 d postpartum (DPP), milk production was calculated using the weigh-suckle-weigh procedure and a milk sample was collected to determine composition. At 108 DPP, cow-calf pairs were commingled until weaning at 210 DPP. Cow BW and BCS ( ≥ 0.56) did not differ between treatments at any time point during the study. Milk production, milk fat, and total solids ( ≥ 0.38) did not differ among treatments. Milk protein tended to increase in cows fed inorganic Se compared with cows fed organic Se ( = 0.07) and milk lactose tended to be greatest in cows fed organic Se ( = 0.10). Conception to AI and overall pregnancy rates did not differ between treatments ( ≥ 0.39). Calf weights and ADG did not differ through 108 DPP ( ≥ 0.77) or for the preweaning period ( ≥ 0.33). Plasma Se concentration was adequate for all cows and did not differ among treatments for cows ( ≥ 0.37) or calves ( ≥ 0.90). Liver Se concentrations in cows fed inorganic or organic Se were greater than in control cows ( < 0.01). Longissimus muscles biopsies taken from progeny at 108 DPP also did not differ between treatments ( = 0.45). In conclusion, dietary Se source did not affect cow performance, milk production, or reproductive efficiency. Organic Se decreased milk protein and increased milk lactose but did not alter preweaning performance of progeny from Se-adequate cows.
Cone, J W; van Gelder, A H
2006-12-01
Experiments were conducted to investigate the influence of the adaptation of rumen micro-organisms on the degradation of native potato starch (PS) in the rumen. Cows were fed with rations used for gas production (GP) analysis (dry cows, 1.6% starch) and for the nylon bag (NB) technique (lactating cows, 23% starch, mainly maize starch) and a ration containing 19% native PS (lactating cows). Fermentation characteristics of 13 samples were investigated with the GP technique using rumen fluid from cows fed each of the three rations. The same samples were investigated with the NB technique in the cows obtaining the NB ration and the PS ration. The results showed that the rate of GP was influenced by the source of the rumen fluid. The fermentation rate of PS was considerably enhanced by using rumen fluid adapted to the fermentation of native PS instead of using the other rumen fluids. Incubating in cows fed the PS ration, the rate of PS degradation determined with the NB technique, was higher compared with cows fed other rations. Using the PS ration the observed lag period for PS was shorter. The results show a clear influence of ration on the degradation characteristics of starch, determined with both the GP technique and the NB technique. However, these changes in behaviour did not explain observed differences in amounts of rumen escape PS measured in vivo in animal experiments and in situ, using the NB technique.
Chandra, G; Aggarwal, A; Kumar, M; Singh, A K; Sharma, V K; Upadhyay, R C
2014-12-01
This study was conducted to exploit ameliorative effect of additional vitamin E and/or zinc supplementation on immune response of peripartum Sahiwal cows. Thirty-two pregnant dry Sahiwal cows were blocked into four treatment groups (n = 8), namely control, zinc (Zn), vitamin E (Vit E) and zinc + vitamin E (Zn + Vit E). Feeding regimen was same in all the groups except that the Sahiwal cows in the zinc-, vitamin E- and zinc + vitamin E-fed groups were additionally supplemented with 60 mg Zn/kg DM, 1000 IU vitamin E and 60 mg/kg + 1000 IU Zn + vitamin E, respectively, from day 60 pre-partum to day 90 post-partum. Blood samples were collected on days -60, -45, -30, -15, -7, -3, 0, 3, 7, 15, 30, 45, 60, 90 and 120 with respect to day of parturition and analysed for total immunoglobulin (TIG), immunoglobulin G (IgG), interleukin-2 (IL-2), vitamin E (Vit E) and zinc (Zn) status. Before calving, cows showed a decrease in plasma TIG, IgG, IL-2, Vit E and Zn levels. However, increased levels of plasma TIG, IgG, IL-2, Vit E and Zn were observed after calving. After calving, Sahiwal cows supplemented with Zn + Vit E had higher plasma TIG, IgG and IL-2 in comparison with cows of control and Zn + Vit E-fed groups. In the present study, plasma vitamin E level was higher in Vit E-fed and Zn + Vit E-fed cows; however, zinc level was higher in Zn- and Zn + Vit E-supplemented cows. In conclusion, a reduced immune response during peripartum period in Sahiwal cows was ameliorated by dietary vitamin E and zinc supplementation. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
Global Grazing Systems: Their Continuing Importance in Meeting Global Demand
NASA Astrophysics Data System (ADS)
Davis, K. F.; D'Odorico, P.
2014-12-01
Animal production exerts significant demand on land, water and food resources and is an extensive means by which humans modify natural systems. Demand for animal source foods has more than tripled over the past 50 years due to population growth and dietary change. To meet this demand, livestock intensification (e.g. concentrated animal feeding operations) has increased and with it the water, nitrogen and carbon footprints of animal production. However, grass-fed systems continue to contribute significantly to overall animal production. To date, little is known about the contributions of grass- and grain-fed systems to animal calorie production, how this has changed through time and to what extent these two systems are sensitive to climate. Using a calorie-based approach we hypothesize that grain-fed systems are increasing in importance (with serious implications for water and nutrient demand) and that rangeland productivity is correlated with rainfall. Our findings show that grass-fed systems made up the majority of animal calorie production since 1960 years but that the relative contribution of grain-fed system has increased (from 27% to 49%). This rapid transition towards grain-fed animal production is largely a result of changing diets demand, as we found the growth of grass-fed production only kept pace with population growth. On a regional scale, we find that Asia has been the major contributor to the increase in grass-fed animal calorie production and that Africa has undergone the most drastic transition from grass-fed to grain-fed dependence. Finally, as expected we see a positive relationship between rangeland productivity and precipitation and a shift from dairy- to meat-dominated production going from drier to wetter climates. This study represents a new means of analyzing the food security of animal products and an important step in understanding the historic trends of animal production, their relation to climate, their prospects for the future and their implications for freshwater resources and nutrient cycling.
Yasui, T; Ryan, C M; Gilbert, R O; Perryman, K R; Overton, T R
2014-01-01
Multiparous Holstein cows (n=60) were used to determine effects of supplementing hydroxy forms of Zn, Cu, and Mn compared with 2 other common supplementation strategies on oxidative metabolism, cytological endometritis, and performance of transition cows. After a 1-wk pretreatment period, cows were assigned randomly to 1 of 3 dietary treatments from 21 d before expected calving through 84 d postcalving. Dietary treatments administered by daily top-dressing included (1) inorganic sulfate forms of Zn, Cu, and Mn (ITM); (2) a blend (75:25) of sulfates and organic complexes of Zn, Cu, and Mn (ITM/OTM); and (3) hydroxy trace minerals (HTM) of Zn, Cu, and Mn. The resulting dietary concentrations of supplemental Zn, Cu, and Mn were similar among treatments and averaged 40, 10, and 27 mg/kg, respectively, before calving and 59, 15, and 40 mg/kg, respectively, after calving. Total concentrations of Zn, Cu, and Mn averaged 80, 16, and 62 mg/kg during the prepartum period and 102, 23, and 75 mg/kg, respectively, during the postpartum period. Overall, effects of treatment on milk yield and milk composition were not significant. Cows fed HTM during the prepartum period had higher body weight (BW) than those fed ITM during the prepartum period and had higher BW during the postpartum period than those fed the other treatments; however, BW change, body condition score, and body condition score change were not affected by treatment. Plasma total antioxidant capacity was lower in cows fed HTM than ITM but was not different from cows fed ITM/OTM. Cows fed HTM tended to have lower concentrations of plasma thiobarbituric acid reactive substances than those fed ITM during the whole study period, but plasma thiobarbituric acid reactive substances were not different between HTM and ITM/OTM. Plasma haptoglobin was lower in cows fed HTM than ITM/OTM at 1 wk postpartum. Endometrial cytology 7d postcalving and cytological endometritis as assessed on 1d between 40 and 60 d postcalving was not affected by treatment. In conclusion, supplementation with HTM sources of Zn, Cu, and Mn modulated plasma variables related to oxidative metabolism compared with supplementation with ITM; however, HTM and ITM/OTM resulted in similar responses. Furthermore, the source of trace minerals did not affect performance or uterine health in this experiment. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Hall, L W; Villar, F; Chapman, J D; McLean, D J; Long, N M; Xiao, Y; Collier, J L; Collier, R J
2018-06-06
Holstein cows (n = 30) were balanced by days in milk, milk production, and parity (91 ± 5.9 d in milk, 36.2 ± 2.5 kg/d, and 3.1 ± 1.4, respectively) and fed OmniGen-AF (OG; Phibro Animal Health, Teaneck, NJ), an immune stimulant, at 0 g/cow per d for control (CON) or 56 g/cow per d for OG for 52 d on a commercial dairy. At 52 d of the study cows were randomly selected (n = 12) from both groups (6 OG and 6 CON) and housed in environmentally controlled rooms at the Agricultural Research Complex for 21 d at the University of Arizona. Cows were subjected to 7 d of thermoneutral (TN) conditions, 10 d of heat stress (HS), and 4 d of recovery (REC) under TN conditions. Feed intake, milk production, and milk composition were measured daily. Rectal temperatures (RT) and respiration rates (RR) were recorded 3 times per day (600, 1400, and 1800 h). Blood samples were taken on d 7 (TN), 8 (HS), 10 (HS), 17 (HS), and 18 (TN) during the Agricultural Research Complex segment. Cows in HS had higher RR and RT and water intake and lower dry matter intake and milk yield than these measures in TN. There was a treatment × environment interaction with cows fed OG having lower RR and RT and higher dry matter intake during peak thermal loads than CON. However, milk yield did not differ between groups. Cows fed OG had lower milk fat percent than CON (3.7 vs 4.3%) during HS. The SCC content of milk did not differ between treatment groups but rose in both groups during the REC phase following HS. Plasma insulin and plasma glucose levels were not different between groups. However, plasma insulin in both groups was lower during acute HS, then rose across the HS period, and was highest during the REC phase. Plasma cortisol levels were highest in all cows on the first day of HS (d 8) but were lower in cows fed OG compared with CON. However, plasma ACTH concentrations were elevated in OG-fed animals at all times samples were collected. Plasma ACTH was also elevated in cows fed both OG and CON during HS. Feeding OG reduced plasma cortisol during acute but not chronic HS and increased basal plasma ACTH, suggesting that OG treatment may alter the hypothalamic pituitary adrenal axis. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wang, D M; Zhang, B X; Wang, J K; Liu, H Y; Liu, J X
2018-03-01
The current study was conducted to investigate the effects of 5,6-dimethylbenzimidazole (DMB) supplementation to the feed during the transition period and early lactation on the vitamin B 12 supply, lactation performance, and energy balance in postpartum cows. Twenty-four prepartum Holstein dairy cows were divided into 12 blocks based on their parity and milk yield at the last lactation and were then randomly allocated to 1 of 2 treatments: a basal diet without DMB (control) or a treatment diet that contained 1.5 g of DMB/d per cow. The study started at wk 3 before the expected calving day and ended at wk 8 postpartum. The feed intake and the lactation performance were measured weekly after calving. Blood parameters were measured on d -10, 0, 8, 15, 29, 43, and 57 relative to the calving day. Body weight was measured on the calving day and on d 57 after calving. The yields of milk, protein, and lactose in cows fed DMB were higher than in the control throughout the whole postpartum stage. On wk 8 postpartum, the vitamin B 12 content in the milk and sera was greater in cows fed DMB than in the control. The overall body weight loss from wk 1 to 8 postpartum was less in cows fed DMB than in the control. The plasma content of nonesterified fatty acids and β-hydroxybutyric acid was significantly lower in cows fed DMB than in the control throughout the whole experimental stage. In conclusion, dietary DMB fed during the transition period and early lactation improved the vitamin B 12 supply, milk production, and energy balance of postpartum dairy cows. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Ensiling is used widely to conserve forages for feeding to dairy cows. However, the protein in hay-crop silages is particularly susceptible to microbial breakdown in the rumen, and utilization of protein in alfalfa and grass silages by dairy cows is particularly poor. Dependent on maturity, hay-crop...
Cummins, S B; Lonergan, P; Evans, A C O; Berry, D P; Evans, R D; Butler, S T
2012-03-01
The objective of the present study was to characterize the phenotypic performance of cows with similar proportions of Holstein genetics, similar genetic merit for milk production traits, but with good (Fert+) or poor (Fert-) genetic merit for fertility traits. Specifically, we tested the hypothesis that cows with a negative estimated breeding value for calving interval would have superior fertility performance and would have detectable differences in body reserve mobilization and circulating concentrations of metabolic hormones and metabolites compared with cows that had a positive estimated breeding value for calving interval. For the duration of the study, cows were managed identically as a single herd in a typical grass-based, spring-calving production system. A total of 80 lactation records were available from 26 Fert+ and 26 Fert- cows over 2 consecutive years (2008 and 2009). During yr 1, cows were monitored during a 20-wk breeding season to evaluate reproductive performance. Milk production, body condition score (scale 1 to 5), body weight, grass dry matter intake, energy balance, and metabolic hormone and metabolite data were collected during both years. The Fert+ cows had greater daily milk yield (19.5 vs. 18.7 kg/d), shorter interval from calving to conception (85.6 vs. 113.8 d), and fewer services per cow (1.78 vs. 2.83). No difference between groups in grass dry matter intake, energy balance, or body weight was observed. The Fert+ cows maintained greater BCS during mid (2.84 vs. 2.74 units) and late lactation (2.82 vs. 2.73 units). Circulating concentrations of insulin-like growth factor-I were greater throughout the gestation-lactation cycle in Fert+ cows (148.3 vs. 128.2 ng/mL). The Fert+ cows also had greater circulating concentrations of insulin during the first 4 wk of lactation (1.71 vs. 1.24 μIU/mL). Analysis of records from national herd data verified the association between genetic merit for fertility traits and phenotypic reproductive performance; Fert+ cows (n = 2,436) required 11.1 d less to recalve than did Fert- cows (n = 1,388), and the percentage of cows that successfully calved for the second time within 365 and 400 d of the first calving was 8 and 13% greater for Fert+ compared with Fert- cows, respectively. These results demonstrate that genetic merit for fertility traits had a pronounced effect on reproductive efficiency, BCS profiles, and circulating concentrations of insulin-like growth factor-I. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Evaluation of hippuric acid content in goat milk as a marker of feeding regimen.
Carpio, A; Bonilla-Valverde, D; Arce, C; Rodríguez-Estévez, V; Sánchez-Rodríguez, M; Arce, L; Valcárcel, M
2013-09-01
Organic producers, traders, and consumers must address 2 issues related to milk: authentication of the production system and nutritional differentiation. The presence of hippuric acid (HA) in goat milk samples has been proposed as a possible marker to differentiate the feeding regimen of goats. The objective of this work is to check the hypothesis that HA could be a marker for the type of feeding regimen of goats by studying the influence of production system (conventional or organic) and feeding regimen (with or without grazing fodder). With this purpose, commercial cow and goat milk samples (n=27) and raw goat milk samples (n=185; collected from different breeds, localizations, and dates) were analyzed. Samples were grouped according to breed, feeding regimen, production system, and origin to compare HA content by ANOVA and honestly significant difference Tukey test at a confidence level of ≥95%. Hippuric acid content was obtained by analyzing milk samples with capillary electrophoresis. This method was validated by analyzing part of the samples with HPLC as a reference technique. Sixty-nine raw goat milk samples (of the total 158 samples analyzed in this work) were quantified by capillary electrophoresis. In these samples, the lowest average content for HA was 7±3 mg/L. This value corresponds to a group of conventional raw milk samples from goats fed with compound feed. The highest value of this group was 28±10 mg/L, corresponding to goats fed compound feed plus grass. Conversely, for organic raw goat milk samples, the highest concentration was 67±14 mg/L, which corresponds to goats fed grass. By contrast, the lowest value of this organic group was 26±10 mg/L, which belongs to goats fed organic compounds. Notice that the highest HA average content was found in samples from grazing animals corresponding to the organic group. This result suggests that HA is a good marker to determine the type of goats feeding regimen; a high content of HA represents a diet based mainly or exclusively on eating green grass (grazing), independently of the production system. Hence, this marker would not be useful for the actual organic policies to distinguish organic milk under the current regulations, because organic dairy ruminants can be fed organic compound feed and conserved fodder without grazing at all. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Effects of rumen-inert fat on lactation, reproduction, and health of high producing Holstein herds.
Scott, T A; Shaver, R D; Zepeda, L; Yandell, B; Smith, T R
1995-11-01
Two hundred twenty of 443 cows freshening between June 1989 and March 1990 in five commercial Holstein herds were fed .45 kg/d of rumen-inert fat from calving until 200 DIM. Control diets were fed as TMR and contained, on average, 3.7 to 4.8% supplemental fat (DM basis). Test herds had rolling herd averages of 9300 to 13,250 kg of milk. Production of 4% FCM and milk increased 1.01 (3.3%) and 1.50 kg/d (4.6%), respectively, for primiparous cows fed additional fat. Multiparous cows from four herds demonstrated no response; multiparous cows in one herd increased production of 4% FCM by 2.88 kg/d (8.2%), milk by 2.45 kg/d (6.4%), and milk fat by .14kg/d (10.6%) in response to additional fat. An explanation of response differences among herd for multiparous cows was not possible. For primiparous and multiparous cows, increased genetic potential increased treatment response. Increased body condition score at calving influenced treatment response of multiparous cows. Thinner cows produced more milk and less milk fat in response to additional dietary fat than did fatter cows. Most reproductive indices were unaffected by treatment. Cows receiving additional fat had lower, but nonsignificantly lower, incidences of most health disorders. Responses to rumen-inert fat by cows receiving high concentrations of dietary fat were marginal and were affected by body condition score at calving and by genetic potential.
Win, Kyaw San; Ueda, Koichiro; Kondo, Seiji
2015-09-01
In this study, we aimed to evaluate the effects of six levels of orchardgrass hay (GH) proportion (0%, 10%, 20%, 30%, 40% or 50% of dry matter) in finely chopped corn silage (CS)-based diets on digesta kinetics of CS and GH in the rumen. Six non-lactating, rumen-cannulated Holstein cows were used in a 6 × 6 Latin square design. Ruminal digesta kinetics was measured by ruminal dosing of feed particle markers (dysprosium for CS, erbium for GH) followed by fecal sampling. The increase of GH proportion had a quadratic effect (P < 0.01) on total tract digestibility of neutral detergent fiber (NDF) and acid detergent fiber. The proportion of GH did not affect the particle size distribution of rumen digesta, total weight of dry matter or NDF in the rumen. The rates of large particle size reduction in the rumen for CS tended to increase linearly with increasing GH proportion (P = 0.077). A quadratic effect (P < 0.05) was found with increasing the GH proportion for the ruminal passage rate of small GH particles, but not for CS particles. The results suggested that associative effects between CS and GH could be generated on rumen digesta kinetics when cows were fed a CS-based diet with an increased proportion of GH. © 2015 Japanese Society of Animal Science.
M. Foley, Aaron; Cross, Paul C.; Christianson, David A; Scurlock, Brandon M.; Creely, Scott
2015-01-01
Several elk herds in the Greater Yellowstone Ecosystem are fed during winter to alleviate interactions with livestock, reduce damage to stored crops, and to manage for high elk numbers. The effects of supplemental feeding on ungulate population dynamics has rarely been examined, despite the fact that supplemental feeding is partially justified as necessary for maintaining or enhancing population growth rates. We used linear regression to assess how the presence of feedgrounds, snowpack, summer rainfall, indices of grizzly bear density and wolves per elk, elk population trend counts, brucellosis seroprevalence, and survey date were correlated with midwinter calf:cow ratios, a metric correlated with population growth, from 1983–2010 from 12 ecologically similar elk herd units (7 fed and 5 unfed) in Wyoming, USA. Our statistical approach allowed for rigorous tests of the hypotheses that supplemental feeding had positive effects on calf:cow ratios and reduced sensitivity of calf:cow ratios to bottom-up limitation relative to top-down limitation from native predators. Calf:cow ratios generally declined across all herd units over the study period and varied widely among units with feedgrounds. We found no evidence that the presence of feedgrounds had positive effects on midwinter calf:cow ratios in Wyoming. Further, fed elk showed stronger correlations with environmental factors, whereas calf:cow ratios for unfed elk showed stronger correlations with predator indices. Although we found no consistent association between winter feeding and higher calf:cow ratios, we did not assess late winter mortality and differences in human offtake between fed and unfed regions, which remain a priority for future research.
USDA-ARS?s Scientific Manuscript database
Artisanal cheese, which is handmade in small batches, differs from mass-produced cheese because of the milk and procedures used. Artisanal cheese is made from the milk of pasture-fed cows, sheep, or goats instead of conventionally-fed cows, and is affected by plants eaten, stage of lactation, and s...
Selenium-fertilized forage as a way to supplement lactating dairy cows.
Séboussi, R; Tremblay, G F; Ouellet, V; Chouinard, P Y; Chorfi, Y; Bélanger, G; Charbonneau, É
2016-07-01
Fertilization with Se improves forage organic Se concentration, but comparisons with other forms of Se supplementation in feeding lactating dairy cows are scarce. Our objective was to compare the effect of Se-enriched forages to dietary sources of inorganic and organic Se. Digestibility, retention, and balance were assessed by measuring Se concentrations in feces, urine, milk, and blood. The resulting effect on antioxidant status and lactation performance of dairy cows was also determined. High-Se silages [1.72 mg of Se/kg of dry matter (DM)] were produced following a spring application of 2.5 kg/ha of Selcote Ultra, whereas low-Se silages (0.05 mg of Se/kg of DM) were produced in the Se-unfertilized portion of the same fields. After a 77±17 d period of Se depletion, 33 late-lactation primiparous Holstein cows were blocked and randomly assigned for 43 d to 1 of 4 experimental total mixed rations fed for ad libitum intake in an unbalanced randomized block design. Treatments consisted of 4 diets: control with low-Se silages, without Se supplement (0.12±0.04 mg of Se/kg of DM); ISe with low-Se silages and inorganic Se (0.80±0.14 mg of Se/kg of DM); YSe with low-Se silages and organic Se from yeast (0.70±0.11 mg of Se/kg of DM); and FSe with high-Se silages, without Se supplement (0.79±0.14 mg of Se/kg of DM). Organic Se, either as YSe or FSe, was more available and more effective to increase blood and milk Se concentrations than ISe. Moreover, FSe was more available than YSe, as cows fed FSe excreted 16 and 22% less Se (as percentage of intake) in feces and urine, respectively, had higher Se apparent absorption (17%), retention (37%), and balance (45%), and had greater concentration of Se in serum (16%) and milk (11%) than cows fed YSe. Antioxidant status (whole blood and plasma glutathione peroxidase, and milk thioredoxin reductase and malondialdehyde) was not affected by treatments. Dry matter intake, yield of actual, energy-corrected, and fat-corrected milk, as well as milk fat and lactose concentrations, were not affected by the dietary treatments. Cows fed ISe had lower milk protein concentration (3.44%) than cows fed YSe (3.58%) or FSe (3.51%). Cows fed Se-supplemented diets had a lower milk somatic cell count than cows fed the control diet. Results from the current study showed that the production of Se-enriched forages is an effective method to supplement dairy cows in Se as it was more available than YSe, and did not alter antioxidant status and performances of lactating dairy cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Katsoulos, P D; Roubies, N; Panousis, N; Karatzias, H
2005-01-01
The objective of the experiment was to investigate the effect of clinoptilolite (a natural zeolite) supplementation in the ration of dairy cows on serum copper (Cu), zinc (Zn), and iron (Fe) concentrations. Fifty-two clinically healthy Holstein cows were randomly assigned to one of three groups according to their age and parity. The first group (group A) comprised 17 cows fed a ration supplemented with 1.25% clinoptilolite, the second group (group B) comprised also 17 cows was given a ration with 2.5% clinoptilolite, and the third group (group C, the control), comprised 18 cows fed the basal ration that did not contain any clinoptilolite. The experiment started when the cows entered the fourth week before the expected parturition and lasted until the end of lactation. All cows were fed the above concentrates during the entire experimental period. Blood samples were collected from each animal at the starting day of the experiment, at the day of calving, and at monthly intervals thereafter. All samples were tested for serum Cu, Zn, and Fe concentrations. The results showed that the 1.25 and 2.5% supplementation of clinoptilolite did not have any adverse effects on serum concentrations of Cu, Zn, and Fe.
Harrison, J; White, R; Kincaid, R; Block, E; Jenkins, T; St-Pierre, N
2012-07-01
The effect of additional dietary potassium in early lactation dairy cows was evaluated with the addition of potassium carbonate sesquihydrate, which increased dietary K from 1.3 to 2.1% of dry matter (DM) from wk 3 to 12 of lactation. Cows fed potassium carbonate sesquihydrate in the form of DCAD Plus (Church & Dwight Co. Inc., Princeton, NJ) had increased DM intake, milk fat percentage and yield, energy-corrected milk, and efficiency of milk production per unit of DM intake. Milk fat of cows fed higher dietary K had a lower concentration of trans fatty acids, suggesting a role for potassium carbonate sesquihydrate in the rumen in the biohydrogenation processes converting linoleic to stearic acid. Cows fed the diet with 2.1% K had greater apparent balance of K, and no effects were noted on the concentration of blood Mg or amount of fecal Mg. The data support the feeding of greater amounts of K in the early lactation cow. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
2013-01-01
The objectives of this study were to 1) determine the variation of nutrient digestion, plasma metabolites and oxidative stress parameters triggered by induced subacute ruminal acidosis (SARA); and 2) evaluate the ability of pelleted beet pulp (BP) as a replacement for ground corn to alleviate SARA. Eight Holstein-Friesian cows were fed four diets during four successive17-day periods: 1) total mixed ration (TMR) containing 0% finely ground wheat (FGW) (W0); 2) TMR containing 10% FGW (W10); 3) TMR containing 20% FGW (W20); and 4) TMR containing 10% BP as a replacement for 10% ground corn (BP10). The SARA induction protocol reduced the mean ruminal pH from 6.37 to 5.94, and the minimum ruminal pH decreased from 5.99 to 5.41 from baseline to challenge period. Mean ruminal pH increased from 5.94 to 6.05, and minimum daily ruminal pH increased from 5.41 to 5.63, when BP was substituted for corn. The apparent digestibility of nutrients was not affected by the dietary treatments, except that the digestibility of neutral detergent fibre (NDF) and acid detergent fibre (ADF) was reduced in cows fed the W20 diet compared with cows fed the W0 and W10 diets, and cows fed the BP10 diet had higher NDF and ADF digestibility than the cows fed the W20 diet. Cows fed the W20 diet had a lower plasma concentration of β-hydroxybutyrate (BHBA), non-esterified fatty acids (NEFA), cholesterol, triglyceride, and total antioxidative capacity (TAC), and a higher plasma concentration of glucose, insulin, malonaldehyde (MDA), super oxygen dehydrogenises (SOD), and glutathione peroxidase (GSH-Px) than cows fed the W0 diet. Substitution of BP for corn increased concentrations of plasma BHBA and TAC, but decreased concentrations of plasma MDA. Our results indicate that reduction of fibre digestion; the concomitant increase of plasma glucose and insulin; the decrease of plasma BHBA, NEFA, cholesterol, and triglyceride; and changes of plasma oxidative stress parameters are highly related to SARA induced by W20 diets. These variables may be alternative candidates for SARA diagnosis. We also suggest that the substitution of BP for corn could reduce the risk of SARA, increase fibre digestion, and improve the antioxidant status in dairy cows. PMID:23947764
Guo, Yongqing; Xu, Xiaofeng; Zou, Yang; Yang, Zhanshan; Li, Shengli; Cao, Zhijun
2013-08-16
The objectives of this study were to 1) determine the variation of nutrient digestion, plasma metabolites and oxidative stress parameters triggered by induced subacute ruminal acidosis (SARA); and 2) evaluate the ability of pelleted beet pulp (BP) as a replacement for ground corn to alleviate SARA. Eight Holstein-Friesian cows were fed four diets during four successive17-day periods: 1) total mixed ration (TMR) containing 0% finely ground wheat (FGW) (W0); 2) TMR containing 10% FGW (W10); 3) TMR containing 20% FGW (W20); and 4) TMR containing 10% BP as a replacement for 10% ground corn (BP10). The SARA induction protocol reduced the mean ruminal pH from 6.37 to 5.94, and the minimum ruminal pH decreased from 5.99 to 5.41 from baseline to challenge period. Mean ruminal pH increased from 5.94 to 6.05, and minimum daily ruminal pH increased from 5.41 to 5.63, when BP was substituted for corn. The apparent digestibility of nutrients was not affected by the dietary treatments, except that the digestibility of neutral detergent fibre (NDF) and acid detergent fibre (ADF) was reduced in cows fed the W20 diet compared with cows fed the W0 and W10 diets, and cows fed the BP10 diet had higher NDF and ADF digestibility than the cows fed the W20 diet. Cows fed the W20 diet had a lower plasma concentration of β-hydroxybutyrate (BHBA), non-esterified fatty acids (NEFA), cholesterol, triglyceride, and total antioxidative capacity (TAC), and a higher plasma concentration of glucose, insulin, malonaldehyde (MDA), super oxygen dehydrogenises (SOD), and glutathione peroxidase (GSH-Px) than cows fed the W0 diet. Substitution of BP for corn increased concentrations of plasma BHBA and TAC, but decreased concentrations of plasma MDA. Our results indicate that reduction of fibre digestion; the concomitant increase of plasma glucose and insulin; the decrease of plasma BHBA, NEFA, cholesterol, and triglyceride; and changes of plasma oxidative stress parameters are highly related to SARA induced by W20 diets. These variables may be alternative candidates for SARA diagnosis. We also suggest that the substitution of BP for corn could reduce the risk of SARA, increase fibre digestion, and improve the antioxidant status in dairy cows.
Faulkner, M J; St-Pierre, N R; Weiss, W P
2017-07-01
Eighteen multiparous cows were used in a split-plot replicated Latin square with two 28-d periods to evaluate the effects of source of supplemental Cu, Zn, and Mn (sulfates or hydroxy) on apparent absorption of minerals when fed in either a forage- or by-product-based diet. The by-product diets were formulated to have greater concentrations of NDF and lesser concentrations of starch, and specific ingredients were chosen because they were good sources of soluble fiber and β-glucans, which bind trace minerals in nonruminants. We hypothesized that hydroxy trace minerals would interact less with digesta and have greater apparent absorption compared with sulfate minerals, and the difference in apparent absorption would be greater for the by-product diet compared with the forage-based diet. During the 56-d experiment, cows remained on the same fiber treatment but source of supplemental trace mineral was different for each 28-d period; thus, all cows were exposed to both mineral treatments. During each period cows were fed no supplemental Cu, Zn, or Mn for 16 d, followed by 12 d of feeding supplemental minerals from either sulfate or hydroxy sources. Supplemental minerals for each of the mineral sources fed provided approximately 10, 35, and 32 mg/kg of supplemental Cu, Zn, and Mn, respectively, for both fiber treatments. Total Cu, Zn, and Mn dietary concentrations, respectively, were approximately 19, 65, and 70 mg/kg for the forage diets and 21, 85, and 79 for the by-product diets. Treatment had no effect on dry matter intake (24.2 kg/d) or milk production (34.9 kg/d). Cows consuming the by-product diets had greater Zn (1,863 vs. 1,453 mg/d) and Mn (1,790 vs. 1,588 mg/d) intake compared with cows fed forage diets, but apparent Zn absorption was similar between treatments. Manganese apparent absorption was greater for the by-product diets compared with the forage diets (16 vs. 11%). A fiber by mineral interaction was observed for Cu apparent absorption, as cows fed hydroxy minerals with forage diets had greater apparent absorption compared with cows fed sulfate minerals; however, the opposite was observed with the by-product diets. Source of supplemental trace minerals and type of fiber in diets affected availability of Cu and Mn and should be considered in ration formulation. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Utilization of protein in red clover and alfalfa silages by lactating dairy cows and growing lambs.
Broderick, Glen A
2018-02-01
Feeding trials were conducted with lactating cows and growing lambs to quantify effects of replacing dietary alfalfa silage (AS) with red clover silage (RCS) on nutrient utilization. The lactation trial had a 2 × 4 arrangement of treatments: AS or RCS fed with no supplement, rumen-protected Met (RPM), rumen-protected Lys (RPL), or RPM plus RPL. Grass silage was fed at 13% of dry matter (DM) with AS to equalize dietary neutral detergent fiber (NDF) and crude protein contents. All diets contained (DM basis) 5% corn silage and 16% crude protein. Thirty-two multiparous (4 ruminally cannulated) plus 16 primiparous Holstein cows were blocked by parity and days in milk and fed diets as total mixed rations in an incomplete 8 × 8 Latin square trial with four 28-d periods. Production data (over the last 14 d of each period) and digestibility and excretion data (at the end of each period) were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Although DM intake was 1.2 kg/d greater on AS than RCS, milk yield and body weight gain were not different. However, yields of fat and energy-corrected milk as well as milk content of fat, true protein, and solids-not-fat were greater on AS. Relative to AS, feeding RCS increased milk and energy-corrected milk yield per unit of DM intake, milk lactose content, and apparent N efficiency and reduced milk urea. Relative to AS, apparent digestibility of DM, organic matter, NDF, and acid detergent fiber were greater on RCS, whereas apparent and estimated true N digestibility were lower. Urinary N excretion and ruminal concentrations of ammonia, total AA, and branched-chain volatile fatty acids were reduced on RCS, indicating reduced ruminal protein degradation. Supplementation of RPM increased intake, milk true protein, and solids-not-fat content and tended to increase milk fat content. There were no silage × RPM interactions, suggesting that RPM was equally limiting on both AS and RCS. Supplementation of RPL did not influence any production trait; however, a significant silage × RPL interaction was detected for intake: RPL reduced intake of AS diets but increased intake of RCS diets. Duplicated metabolism trials were conducted with lambs confined to metabolism crates and fed only silage. After adaptation, collections of silage refusals and excreta were made during ad libitum feeding followed by feeding DM restricted to 2% of body weight. Intake of DM was not different when silages were fed ad libitum. Apparent digestibility of DM, organic matter, NDF, and hemicellulose was greater in lambs fed RCS on both ad libitum and restricted intake; however, acid detergent fiber digestibility was only greater at restricted intake. Apparent and estimated true N digestibility was substantially lower, and N retention was reduced, on RCS. Results confirmed greater DM and fiber digestibility in ruminants and N efficiency in cows fed RCS. Specific loss of Lys bioavailability on RCS was not observed. Based on milk composition, Met was the first-limiting AA on both silages; however, Met was not limiting based on production and nutrient efficiency. Depressed true N digestibility suggested impaired intestinal digestibility of rumen-undegraded protein from RCS. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Effect of an immunomodulatory feed additive on markers of immunity in pasture-fed dairy cows.
Playford, M C; Dawson, K; Playford, S E; Smith, A N; Page, S W; Collins, K; Forsberg, N
2014-12-01
Infectious diseases in dairy cows often follow a time of nutritional or physiological stress and the subsequent altered immune system function. This study aimed to determine if the immunomodulatory effects of a feed additive previously observed in experimental animals and housed cattle fed total mixed rations could be reproduced in pasture-fed dairy cattle under Australian conditions. The study included 34 pasture-fed dairy cattle given the treatment (n = 17) or placebo (bentonite, n = 17) for an acclimation period of 15 days followed by 60 days of supplementation. Blood tests were taken pre-trial and then 30, 60 and 90 days after acclimation. Blood samples were extracted and preserved in Trizol and analysed for immune markers. Pasture-fed dairy cows in the treatment group had significantly higher levels of the immune markers interleukin-8R and L-selectin in comparison with placebo-fed cows at 60 days after the start of supplementation. The immunomodulatory effects of the additive observed in the current study and the associated enhanced neutrophil function demonstrated by other studies suggest a role in decreasing the rates of mastitis and other infectious diseases of dairy cattle, particularly during times of nutritional or physiological stress. © 2014 Australian Veterinary Association.
Kinoshita, Asako; Keese, Christina; Meyer, Ulrich; Starke, Alexander; Wrenzycki, Christine; Dänicke, Sven
2018-01-01
The objective of this study was to investigate the effect of long-term exposure to a Fusarium toxin deoxynivalenol (DON, 5 mg/kg DM) on the energy metabolism in lactating cows fed diets with different amounts of concentrate. In Period 1 27 German Holstein cows were assigned to two groups and fed a control or mycotoxin-contaminated diet with 50% concentrate for 11 weeks. In Period 2 each group was further divided and fed either a diet containing 30% or 60% concentrate for 16 weeks. Blood samples were collected in week 0, 4, 8, 15, 21, and 27 for calculation of the Revised Quantitative Insulin Sensitivity Check Index and biopsy samples of skeletal muscle and the liver in w 0, 15, and 27 for analysis by real-time RT-qPCR. The DON-fed groups presented lower insulin sensitivities than controls at week 27. Concomitantly, muscular mRNA expression of insulin receptors and hepatic mRNA expression of glucose transporter 2 and key enzymes for gluconeogenesis and fatty acid metabolism were lower in DON-fed cows compared to the control. The study revealed no consistent evidence that DON effects were modified by dietary concentrate levels. In conclusion, long-term dietary DON intake appears to have mild effects on energy metabolism in lactating dairy cows. PMID:29738450
Muegge, C R; Brennan, K M; Schoonmaker, J P
2017-03-01
Angus × Simmental cows ( = 48, BW = 594 kg, BCS = 5.26, age = 2.7) pregnant with male fetuses were used to determine the effect of selenium source during the last 80 d of gestation and first 108 d of lactation on progeny feedlot performance. At 203 d of gestation, cows were blocked by BW, breed composition, and calf sire and randomly allotted to 1 of 3 treatments: no supplemental Se, 3 mg/d inorganic Se (sodium selenite), and 3 mg/d organic Se (Sel-plex). Maternal diets were formulated to contain 10.4% CP and 0.90 Mcal/kg NE during gestation and 12.1% CP and 1.01 Mcal/kg NE during lactation. Basal diets contained 0.07 and 0.11 mg/kg Se for gestation and lactation diets, respectively. Diets were fed daily as a total mixed ration, and no additional Se, 3 mg/d Se as sodium selenite, or 3 mg/d Se as Sel-Plex were top-dressed daily. Treatment diets were fed through 108 d postpartum (DPP). At 108 DPP cow-calf pairs were commingled until weaning at 210 DPP. At 28 d postweaning, steers ( = 47, BW = 301 kg) were placed in individual pens and fed a diet formulated to provide 13.9% CP and 1.24 Mcal/kg NE. No supplemental Se was fed; however, basal Se concentration was 0.10 mg/kg. The diet was delivered as a total mixed ration once daily. Steers were slaughtered at a target BW of 625 kg. Steers from cows supplemented with organic Se tended to enter the feedlot heavier ( = 0.06) than steers from cows supplemented with inorganic Se. There was no difference in ADG among treatments ( ≥ 0.73), but steers from organic Se cows tended to spend fewer days on feed compared to steers from inorganic Se cows ( = 0.09). Steers from organic Se cows had a greater overall DMI compared to steers from inorganic Se cows ( = 0.04), but there was no difference in overall G:F ( = 0.49). Dressing percentage was greater for steers from cows fed no Se compared with steers from cows fed either inorganic or organic Se ( = 0.03). Maternal Se source had no effect on HCW, back fat, percentage KPH, LM area, yield grade, marbling score, or quality grade distribution ( ≥ 0.17) of progeny. In conclusion, maternal supplementation with organic Se appears to have a long-term benefit on intake of steer progeny and may result in improvements in growth that could decrease days on feed.
Hollmann, M; Powers, W J; Fogiel, A C; Liesman, J S; Beede, D K
2013-03-01
Dietary coconut oil (CNO) can reduce dry matter intake (DMI), enteric methane (eCH(4)) emissions, and milk fat yield of lactating cows. The goals of this research were to examine responses to different CNO concentrations during the habituation period (34-d) and to evaluate temporal patterns of DMI, eCH(4), and milk fat yield. Treatment diets contained (dry basis): 0.0% (CNO0), 1.3% (CNO1.3), 2.7% (CNO2.7), 3.3% (CNO3.3), or 4.0% CNO (CNO4). In experiment 1, 12 primi- or small secundiparous cows were housed in individual, environmentally controlled rooms and fed CNO0, CNO1.3, CNO2.7, or CNO4. Measurements included DMI, eCH(4), and milk yield and composition. Due to a precipitous drop in DMI (26%), cows fed CNO4 were replaced with cows fed CNO3.3 following d 10. Dietary CNO of 2.7% or more reduced eCH(4) emissions. Reduction was greater with increased CNO and during the first than the second half of the day. Simultaneously, decline in DMI of cows fed CNO2.7, CNO3.3, or CNO4 was increasingly precipitous with increased CNO concentration. Total-tract neutral detergent fiber (NDF) digestibility during wk 5 was reduced in cows fed CNO2.7 or CNO3.3, which in part explained concomitantly reduced eCH(4)/DMI. In addition, milk fat yield was depressed at an increasing rate in cows fed CNO2.7, CNO3.3, and CNO4. In experiment 2, DMI was measured individually in 12 multiparous cows during habituation to CNO0, CNO1.3, CNO2.7, or CNO3.3 for 21 d before relocation to individual, environmentally controlled rooms. Dietary CNO2.7 or CNO3.3 reduced DMI by d 4 and total-tract NDF digestibility during wk 5. Relocation to individual rooms was associated with a 15% reduction in DMI, which was not affected by treatment. Results showed that 2.7% or more dietary CNO reduced eCH(4) and DMI, caused milk fat depression, and decreased NDF digestibility. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Cabezas-Garcia, E H; Krizsan, S J; Shingfield, K J; Huhtanen, P
2017-07-01
This study evaluated the effects of gradual replacement of a mixture of late-cut grass silage (LS) and barley with early-cut grass silage (ES) on milk production, CH 4 emissions, and N utilization in Swedish Red cows. Two grass silages were prepared from the same primary growth of timothy grass sward but harvested 2 wk apart [11.0 and 9.7 MJ of metabolizable energy/kg of dry matter (DM)]. Four diets, fed as a total mixed ration, were formulated to meet the metabolizable energy and protein requirements of 35 kg of energy-corrected milk (ECM) by gradually replacing a mixture of LS and barley with ES (0, 33, 67, and 100% of the forage component of the diet), whereas the proportion of barley decreased from 47.2 to 26.6% of diet DM. Expeller canola meal was used as a protein supplement. Sixteen Swedish Red cows were used in 4 replicated 4 × 4 Latin squares. Cows were offered diets ad libitum and milked twice daily. Each period of 28 d comprised 14 d of diet adaptation followed by 14 d of data collection. Intake and milk yield were recorded daily, and milk samples were collected on d 19 to 21 and d 26 to 28 of each period. Diet digestibility was determined by grab sampling using indigestible neutral detergent fiber as an internal marker. Gas emissions were measured using the GreenFeed system (C-Lock Inc., Rapid City, SD). Dry matter intake (DMI) linearly decreased from 22.6 to 19.3 kg/d as the proportion of ES increased in the diet. The ECM yield did not differ among treatments, but milk protein yield decreased with increasing proportion of ES in the diet. Because of reduced DMI with increasing ES, feed efficiency (ECM/DMI) improved with an increased proportion of ES in the diet. Nitrogen efficiency (milk N/N intake) did not change despite a linear increase in milk urea N concentration from 9.7 (LS alone) to 11.9 mg/dL (ES alone) with graded replacement of LS and barley by ES in the diet. Lower DMI responses in ES diets were partly compensated for by increased organic matter digestibility (656 g/kg of DM for LS alone; 715 g/kg of DM for ES alone) related to improved forage digestibility at early harvesting. Total CH 4 emissions and CH 4 intensity (CH 4 /ECM) were not influenced by diet, but CH 4 yield (CH 4 /DMI) increased linearly from 19.5 to 23.0 g/kg of DMI with greater inclusion of ES in the diet. In conclusion, replacing LS and barley with ES improved the conversion of feed to milk without increasing CH 4 emissions or compromising N efficiency. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Stone, W C; Chase, L E; Overton, T R; Nestor, K E
2012-11-01
The objective of this study was to evaluate transition cow performance when brown midrib corn silage (BMRCS; Mycogen F2F444) was included in the diet during the transition period, and to determine if any production response occurring during the first 3 wk of lactation would persist from wk 4 to 15 when a common diet was fed. Seventy Holstein dairy cows were blocked by parity (either second or third and greater) and calving date and randomly assigned to the CCS (a mixture of varieties of conventional corn silage) or BMRCS treatment. Diets were formulated with the objective of keeping all ration parameters the same, with the exception of neutral detergent fiber digestibility. Neutral detergent fiber digestibility values (30 h) for CCS and BMRCS averaged 56.8 and 73.8%, respectively. Prepartum rations contained 47% corn silage, 18% wheat straw, 7% alfalfa haylage, and 28% concentrate, and averaged 45% neutral detergent fiber (DM basis). Postpartum rations contained 40% corn silage, 15% alfalfa haylage, 1% straw, and 44% concentrate. Milk weights (3×/d) and dry matter intake were recorded daily, and milk composition was measured weekly. Cows fed BMRCS had higher dry matter intake during the 2-wk period before calving (14.3 vs. 13.2 kg/d) and the 3-wk period after calving (20.1 vs. 18.1 kg/d) than did cows fed CCS. Yields of milk, solids, and lactose were increased, whereas a trend was observed for a reduction in somatic cell counts and linear scores in the postpartum period for cows receiving BMRCS during the transition. A significant carryover effect of BMRCS was observed on production from wk 4 to 15 when the common diet was fed, with yields of protein (1.36 vs. 1.30 kg/d), lactose (2.24 vs. 2.12 kg/d), and solids (5.82 vs. 5.51 kg/d) increasing significantly, and yields of fat-corrected milk, energy-corrected milk, and fat tending to increase during this period for cows that had been fed BMRCS. The increased intakes during the last 2 wk of the prepartum period in the BMRCS treatment were likely because of a reduction in fill, whereas the increased intakes in the postpartum period in cows fed the BMRCS were either because of the higher intakes during the prepartum period or because of a reduction in fill limitations in the postpartum period. The carryover response in wk 4 to 15 may have resulted from cows that received BMRCS during the transition period being in a more positive nutrient balance than cows fed CCS. The results of this study indicate the importance that digestible NDF can have in transition diets and the long-term production responses that can occur when intake is increased in the transition period. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
[Utilization of glucose and long-chain fatty acids in lactating dairy cows fed a fat-enriched diet].
Voigt, J; Gaafar, K; Kanitz, W; Precht, D; Becker, F; Schneider, F; Spitschak, M; Schönhusen, U; Junghans, P; Aschenbach, J R; Gäbel, G
2005-11-01
The fate of carbon from long-chain fatty acids and glucose in dairy cows which were fed with protected fat was studied using stable isotope technique. The experiment was carried out on two groups of dairy cows (n=16 in each group) during the first 15 weeks of the lactation period. The cows were fed isoenergetic and isoproteinogenous diets based on corn silage. About 1.8 kg of tapioca starch in the diet of the starch group was substituted by about 0.7 kg of rumen protected fat (Ca salts of palm oil and soybean oil) in the diet of the fat group. The carbon atoms of dietary fat were naturally depleted in 13C as compared to carbon atoms of starch. Daily milk performance and lactose output were significantly (P < 0.05) higher among the cows fed with fat diet. In comparison to the starch group, the enrichment of milk fat with 13C was significantly lower, while that of breath CO2 was significantly higher in the fat group (P < 0.05). This means the fatty acids were incorporated into milk fat in preference to metabolic oxidation. Further studies showed that blood glucose is oxidized to a lower extent and is used for the synthesis of lactose to a higher proportion if the cows were fed with the fat diet. The glucose entry rate into the body glucose pool was not different between the diets. In conclusion, the dietary fatty acids perform a glucose sparing effect and improve the glucose supply for the mammary gland.
Effect of feed restriction on reproductive and metabolic hormones in dairy cows.
Ferraretto, L F; Gencoglu, H; Hackbart, K S; Nascimento, A B; Dalla Costa, F; Bender, R W; Guenther, J N; Shaver, R D; Wiltbank, M C
2014-02-01
The objective of this trial was to evaluate the effects of feed restriction (FR) on serum glucose, nonesterified fatty acids, progesterone (P4), insulin, and milk production in dairy cows. Eight multiparous Holstein cows, 114 ± 14 d pregnant and 685 ± 39 kg of body weight, were randomly assigned to a replicated 4 × 4 Latin square design with 14-d periods. During the first 8 d of each period, cows in all treatments were fed for ad libitum feed intake. Beginning on d 9 of each period, cows received 1 of 4 treatments: ad libitum (AL), 25% feed restriction (25 FR), 50% feed restriction (50 FR), and 50% of TMR replaced with wheat straw (50 ST). Daily feed allowance was divided into 3 equal portions allocated every 8h with jugular blood samples collected immediately before each feeding through d 14. In addition, on d 12 of each period, blood samples were collected before and at 60, 120, 180, 240, 300, 360, 420, and 480 min after morning feeding. The conventional total mixed ration and total mixed ration with straw averaged 15.1 and 10.8%, 32.1 and 50.5%, and 26.8 and 17.0% for concentrations of crude protein, neutral detergent fiber, and starch, respectively. Cows that were feed and energy restricted had reduced dry matter intake, net energy for lactation intake, circulating glucose concentrations, and milk production, but greater body weight and body condition score losses than AL cows. Circulating concentrations of insulin were lower for cows fed 50 FR (8.27 μIU/mL) and 50 ST (6.24 μIU/mL) compared with cows fed AL (16.65 μIU/mL) and 25 FR (11.16 μIU/mL). Furthermore, the greatest plasma nonesterified fatty acids concentration was observed for 50 ST (647.7 μ Eq/L), followed by 50 FR (357.5 μEq/L), 25 FR (225.3 μEq/L), and AL (156.3 μEq/L). In addition, serum P4 concentration was lower for cows fed AL than cows fed 50 ST and 25 FR. Thus, FR reduced circulating glucose and insulin but increased P4 concentration, changes that may be positive in reproductive management programs. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Effect of feed restriction on reproductive and metabolic hormones in dairy cows
Ferraretto, L. F.; Gencoglu, H.; Hackbart, K. S.; Nascimento, A. B.; Costa, F. Dalla; Bender, R. W.; Guenther, J. N.; Shaver, R. D.; Wiltbank, M. C.
2018-01-01
The objective of this trial was to evaluate the effects of feed restriction (FR) on serum glucose, nonesterified fatty acids, progesterone (P4), insulin, and milk production in dairy cows. Eight multiparous Holstein cows, 114 ± 14 d pregnant and 685 ± 39 kg of body weight, were randomly assigned to a replicated 4 × 4 Latin square design with 14-d periods. During the first 8 d of each period, cows in all treatments were fed for ad libitum feed intake. Beginning on d 9 of each period, cows received 1 of 4 treatments: ad libitum (AL), 25% feed restriction (25FR), 50% feed restriction (50FR), and 50% of TMR replaced with wheat straw (50ST). Daily feed allowance was divided into 3 equal portions allocated every 8 h with jugular blood samples collected immediately before each feeding through d 14. In addition, on d 12 of each period, blood samples were collected before and at 60, 120, 180, 240, 300, 360, 420, and 480 min after morning feeding. The conventional total mixed ration and total mixed ration with straw averaged 15.1 and 10.8%, 32.1 and 50.5%, and 26.8 and 17.0% for concentrations of crude protein, neutral detergent fiber, and starch, respectively. Cows that were feed and energy restricted had reduced dry matter intake, net energy for lactation intake, circulating glucose concentrations, and milk production, but greater body weight and body condition score losses than AL cows. Circulating concentrations of insulin were lower for cows fed 50FR (8.27 μIU/mL) and 50ST (6.24 μIU/mL) compared with cows fed AL (16.65 μIU/mL) and 25FR (11.16 μIU/mL). Furthermore, the greatest plasma nonesterified fatty acids concentration was observed for 50ST (647.7 μEq/L), followed by 50FR (357.5 μEq/L), 25FR (225.3 μEq/L), and AL (156.3 μEq/L). In addition, serum P4 concentration was lower for cows fed AL than cows fed 50ST and 25FR. Thus, FR reduced circulating glucose and insulin but increased P4 concentration, changes that may be positive in reproductive management programs. PMID:24359832
Van Hekken, D L; Tunick, M H; Ren, D X; Tomasula, P M
2017-08-01
We compared the effects of homogenization and heat processing on the chemical and in vitro digestion traits of milk from organic and conventional herds. Raw milk from organic (>50% of dry matter intake from pasture) and conventional (no access to pasture) farms were adjusted to commercial whole and nonfat milk fat standards, and processed with or without homogenization, and with high-temperature-short-time or UHT pasteurization. The milk then underwent in vitro gastrointestinal digestion. Comparison of milk from organic and conventional herds showed that the milks responded to processing in similar ways. General composition was the same among the whole milk samples and among the nonfat milk samples. Protein profiles were similar, with intact caseins and whey proteins predominant and only minor amounts of peptides. Whole milk samples from grazing cows contained higher levels of α-linolenic (C18:3), vaccenic (C18:1 trans), and conjugated linoleic acids, and lower levels of palmitic (C16:0) and stearic (C18:0) acids than samples from nongrazing cows. Processing had no effect on conjugated linoleic acid and linolenic acid levels in milk, although homogenization resulted in higher levels of C8 to C14 saturated fatty acids. Of the 9 volatile compounds evaluated, milk from grazing cows contained lower levels of 2-butanone than milk from nongrazing cows, and milk from both farms showed spikes for heptanal in UHT samples and spikes for butanoic, octanoic, nonanoic, and N-decanoic acids in homogenized samples. At the start of in vitro digestion, nonfat raw and pasteurized milk samples formed the largest acid clots, and organic milk clots were larger than conventional milk clots; UHT whole milk formed the smallest clots. Milk digests from grazing cows had lower levels of free fatty acids than digests from nongrazing cows. In vitro proteolysis was similar in milk from both farms and resulted in 85 to 95% digestibility. Overall, milk from organic/grass-fed and conventional herds responded in similar ways to typical homogenization and heat processing used in United States dairy plants and showed only minor differences in chemical traits and in vitro digestion. Findings from this research enhance our knowledge of the effect of processing on the quality traits and digestibility of milk from organic/pasture-fed and confined conventional herds and will help health-conscious consumers make informed decisions about dairy selections. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wohlt, J E; Ritter, D E; Evans, J L
1986-11-01
Three supplemental sources of inorganic calcium (calcite flour, aragonite, albacar), each differing in particle size and rate of reactivity, provided .6 or .9% calcium in corn silage:grain (1:1 dry matter) diets of high producing dairy cows. All cows were fed calcite flour at .6% calcium during the first 4 wk of lactation. On d 29 of lactation 5 cows were assigned to each of the six diets. Peak milk yield paralleled dry matter intake and was higher when calcite flour and aragonite provided .9% calcium, intermediate when all sources provided .6% calcium, and lower when albacar provided .9% calcium. However, adaptations to calcium source and to particle sizes of a calcium source (.35 to 1190 mu) were made within 40 d by lactating Holsteins. Starch increased and pH decreased in feces of cows fed albacar. Increasing calcium in the diet provided more buffering capacity in the gastrointestinal tract. True absorption of calcium did not differ from linearity due to source when fecal calcium was regressed on ingested calcium but did vary as a function of diet percentage. Thus, calcium retention was increased when cows were fed .9 vs. .6% calcium. These data suggest that a slow reacting (coarser) inorganic calcium source should be fed at a higher amount to optimize feed intake and milk production.
Luan, S; Cowles, K; Murphy, M R; Cardoso, F C
2016-03-01
The effects of a grain challenge on ruminal, urine, and fecal pH, apparent total-tract starch digestibility, and milk composition were determined. Six Holstein cows, 6 rumen-cannulated Holstein cows, and 6 Jersey cows were used in a replicated 3 × 3 Latin square design balanced to measure carryover effects. Periods (10 d) were divided into 4 stages (S): S1, d 1 to 3, served as baseline with regular total mixed ration ad libitum; S2, d 4, served as restricted feeding, with cows offered 50% of the total mixed ration fed on S1 (dry matter basis); S3, d 5, a grain challenge was performed, in which cows were fed total mixed ration ad libitum and not fed (CON) or fed an addition of 10% (MG) or 20% (HG) pellet wheat-barley (1:1) top-dressed onto the total mixed ration, based on dry matter intake obtained in S1; S4, d 6 to 10, served as recovery stage with regular total mixed ration fed ad libitum. Overall, cows had a quadratic treatment effect for milk yield where CON (22.6 kg/d) and HG (23.5 kg/d) had lower milk yield than cows in MG (23.7 kg/d). Jersey cows had a quadratic treatment effect for dry matter intake where cows in CON (13.2 kg/d) and HG (12.4 kg/d) had lower dry matter intake than cows in MG (14 kg/d). Holstein cows had a linear treatment effect for dry matter intake (17.7, 18.4, and 18.6 kg/d for CON, MG, and HG, respectively). Rumen pH for the rumen-cannulated cows had a linear treatment effect (6.45, 6.35, and 6.24 for CON, MG, and HG, respectively). Cows in HG spent more time with rumen pH below 5.8 (4.33 h) than MG (2 h) or CON (2.17 h) as shown by the quadratic treatment effect. Holstein cows in HG (8.46) had lower urine pH than MG (8.51) or CON (8.54) as showed by the linear treatment effect for urine pH. Apparent total-tract starch digestibility had a tendency for a linear treatment effect on S3 (97.62 ± 1.5, 97.47 ± 1.5, and 91.84 ± 1.6%, for CON, MG, and HG, respectively). Fecal pH was associated with rumen pH depression as early as 15 h after feeding for Holstein cows. In conclusion, a grain challenge reduced urine pH in Holstein cows but not in Jersey cows. Holstein cows' health were not affected when rumen pH was depressed. A potentially useful link between rumen pH and systemic (urine) pH within 2 h after feeding was quantified in Holstein cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Christensen, R G; Yang, S Y; Eun, J-S; Young, A J; Hall, J O; MacAdam, J W
2015-11-01
This experiment was conducted to determine effects of feeding birdsfoot trefoil hay-based diets in comparison with an alfalfa hay-based diet on N utilization efficiency, ruminal fermentation, and lactational performance by mid-lactation dairy cows. Nine multiparous lactating Holstein cows (131 ± 22.6 d in milk), 3 of which were rumen fistulated, were fed 3 experimental diets in a replicated 3 × 3 Latin square design with 3 periods of 14 d of adaptation and 7 d of data and sample collection. Within squares, cows were randomly assigned to diets as follows: alfalfa hay-based diet (AHT), alfalfa and birdsfoot trefoil hay-based diet (ABT), and birdsfoot trefoil hay-based diet (BT). Intakes of dry matter and crude protein were similar across treatments, whereas ABT and BT diets resulted in decreased fiber intake compared with AHT. Feeding BT tended to increase neutral detergent fiber digestibility compared with AHT and ABT. Milk yield tended to increase for cows consuming ABT or BT diets. Milk true protein concentration and yield were greater for cows consuming ABT relative to those fed AHT. Concentration of total volatile fatty acids tended to increase by cows fed BT compared with those fed AHT and ABT. Feeding birdsfoot trefoil hay in a total mixed ration resulted in a tendency to decrease acetate proportion, but it tended to increase propionate proportion, leading to a tendency to decrease acetate-to-propionate ratio. Whereas concentration of ammonia-N was similar across treatments, cows offered BT exhibited greater microbial protein yield relative to those fed AHT and ABT. Cows offered birdsfoot trefoil hay diets secreted more milk N than AHT, resulting in improved N utilization efficiency for milk N. The positive effects due to feeding birdsfoot trefoil hay were attributed to enhanced neutral detergent fiber digestion, and thus it could replace alfalfa hay in high-forage dairy diets while improving N utilization efficiencies and maintaining lactational performance compared with alfalfa hay. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wei, Zihai; Zhang, Baoxin; Liu, Jianxin
2018-01-01
Corn stover (CS) is an abundant source of feed for livestock in China. However, it is low in nutritional value that we have been seeking technologies to improve. Previous studies show that non-fiber carbohydrate (NFC) might limit the utilization of a CS diet by lactating dairy cows. Thus, this study was conducted to investigate the lactation performance and rumen fermentation characteristics in lactating cows consuming CS with two contents of NFC compared to an alfalfa hay-containing diet. Twelve Holstein cows were used in a replicated 3 × 3 Latin square design with three dietary treatments: (1) low-NFC diet (NFC = 35.6%, L-NFC), (2) high-NFC diet (NFC = 40.1%, H-NFC), and (3) alfalfa hay diet (NFC = 38.9%, AH). Intake of DM was lower for cows fed H-NFC compared to L-NFC and AH, while the milk yield was higher in AH than in H-NFC and L-NFC ( P < 0.01). The feed efficiency (milk yield/DM intake, 1.15 vs. 1.08, P < 0.01) were greater for cows fed H-NFC than L-NFC. The contents of milk protein and lactose were not different among the groups ( P > 0.11), but milk fat content was higher for cows fed H-NFC and L-NFC compared to AH ( P < 0.01). The rumen ammonia nitrogen concentration and the concentrations of urea nitrogen in blood and milk were lower for cows fed H-NFC and AH compared to L-NFC ( P < 0.05). The concentrations of rumen propionate and total volatile fatty acids were different among groups ( P < 0.05) with higher concentration for cows fed AH compared to H-NFC and L-NFC, and acetate concentration tended to be different among groups ( P = 0.06). From the results obtained in this study, it was inferred that the increased NFC content in a diet containing corn stover can improve the feed efficiency and benefit the nitrogen conversion.
Negative impacts of invasive plants on conservation of sensitive desert wildlife
Drake, K. Kristina; Bowen, Lizabeth; Nussear, Kenneth E.; Esque, Todd C.; Berger, Andrew J.; Custer, Nathan; Waters, Shannon C.; Johnson, Jay D.; Miles, A. Keith; Lewison, Rebecca L.
2016-01-01
Habitat disturbance from development, resource extraction, off-road vehicle use, and energy development ranks highly among threats to desert systems worldwide. In the Mojave Desert, United States, these disturbances have promoted the establishment of nonnative plants, so that native grasses and forbs are now intermixed with, or have been replaced by invasive, nonnative Mediterranean grasses. This shift in plant composition has altered food availability for Mojave Desert tortoises (Gopherus agassizii), a federally listed species. We hypothesized that this change in forage would negatively influence the physiological ecology, immune competence, and health of neonatal and yearling tortoises. To test this, we monitored the effects of diet on growth, body condition, immunological responses (measured by gene transcription), and survival for 100 captive Mojave tortoises. Tortoises were assigned to one of five diets: native forbs, native grass, invasive grass, and native forbs combined with either the native or invasive grass. Tortoises eating native forbs had better body condition and immune functions, grew more, and had higher survival rates (>95%) than tortoises consuming any other diet. At the end of the experiment, 32% of individuals fed only native grass and 37% fed only invasive grass were found dead or removed from the experiment due to poor body conditions. In contrast, all tortoises fed either the native forb or combined native forb and native grass diets survived and were in good condition. Health and body condition quickly declined for tortoises fed only the native grass (Festuca octoflora) or invasive grass (Bromus rubens) with notable loss of fat and muscle mass and increased muscular atrophy. Bromus rubens seeds were found embedded in the oral mucosa and tongue in most individuals eating that diet, which led to mucosal inflammation. Genes indicative of physiological, immune, and metabolic functions were transcribed at lower levels for individuals fed B. rubens, indicating potential greater susceptibility to disease or other health-related problems. This study highlights the negative indirect effects of invasive grasses, such as red brome, in desert ecosystems, and provides definitive evidence of a larger negative consequence to health, survival, and ultimately population recruitment for Mojave Desert tortoises than previously understood.
[Effect of feeding methods in infants on serum lipid profile].
Maślanka, R; Siemianowicz, K; Stajszczyk, M; Wojakowski, W
1995-07-01
Mothers very often do not start to breast feed their children, or stop very quickly and introduce various formulas based either on modified or unmodified cow's milk. These infant formulas differ from human milk in their chemical composition. Breast milk is the most suitable source of all nutrients required for the development of a newborn or infant. The serum levels of total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides and phospholipids were determined. The influence of the type of feeding on the levels of the above-mentioned lipids was analyzed. Higher serum levels of triglycerides in babies fed formulas based on modified cow's milk than in those fed formulas based on unmodified milk were found. Higher serum levels of phospholipids were found in breast-fed babies than in those fed formulas based on unmodified cow's milk.
Korosteleva, S N; Smith, T K; Boermans, H J
2009-04-01
A previous study in dairy cows showed some effect of feed contaminated with Fusarium mycotoxins on metabolism and immunity. A subsequent experiment investigated the effect of feedborne Fusarium mycotoxins on some immune functions in more detail. A total mixed ration (TMR) containing a blend of feedstuffs naturally contaminated with Fusarium mycotoxins was fed for 63 d to 12 mid-lactation Holstein cows with an average milk production of 36 kg/d in a completely randomized design with repeated measures including 1) control TMR and 2) contaminated TMR. Wheat, corn, hay, and corn silage were the contaminated feedstuffs. Deoxynivalenol was the major contaminant and was found in TMR at 3.5 mg/kg of dry matter. The parameters measured were 1) performance: body weight, body condition score, dry matter intake, milk production, composition and somatic cell count; 2) health: blood serum chemistry, hematology, coagulation profile, and rumen fluid ammonia levels; 3) immune function: total serum immunoglobulins (IgA, IgG, IgM), specific antibody response to ovalbumin, and neutrophil phagocytosis. Dry matter intake, body weight, milk production, and milk composition were not affected by diet. Neutrophil phagocytosis was depressed throughout the experiment in cows fed the contaminated diet. Serum sodium concentrations and osmolality were significantly elevated throughout the experiment in cows fed the contaminated diet. Primary antibody response to ovalbumin immunization was higher in cows fed the contaminated diet compared with controls. It was concluded that feed naturally contaminated with Fusarium mycotoxins can affect metabolic parameters and immune function of dairy cows.
Moate, P J; Jacobs, J L; Hannah, M C; Morris, G L; Beauchemin, K A; Alvarez Hess, P S; Eckard, R J; Liu, Z; Rochfort, S; Wales, W J; Williams, S R O
2018-05-02
Short-term studies have shown that feeding dairy cows diets containing a high proportion (>40%) of wheat may result in reduced milk fat concentration and reduced CH 4 emissions (g of CH 4 /cow per d), but no long-term studies have been done on these responses. This study compared the milk production and CH 4 responses when 24 dairy cows were fed diets containing high proportions of either wheat or corn over 16 wk. Cows were assigned to 2 groups and offered a diet (CRN) containing 10.0 kg of dry matter/d of crushed corn grain, 1.8 kg of dry matter/d of canola meal, 0.2 kg of dry matter/d of minerals, and 11.0 kg of dry matter/d of chopped alfalfa hay or a similar diet (WHT) in which wheat replaced the corn. Dry matter intake and milk yields of individual cows were measured daily. Methane emissions from individual cows were measured using controlled climate respiration chambers over 2 consecutive days during each of wk 4, 10, and 16. Milk composition was measured on the 2 d when cows were in chambers during wk 4, 10, and 16. Over the 16-wk experimental period, total dry matter intake remained relatively constant and similar for the 2 dietary treatment groups. At wk 4, CH 4 emission, CH 4 yield (g of CH 4 /kg of dry matter intake), milk fat yield, and milk fat concentration were substantially less in cows fed the WHT diet compared with the same metrics in cows fed the CRN diet; but these differences were not apparent at wk 10 and 16. The responses over time in these metrics were not similar in all cows. In 4 cows fed the WHT diet, CH 4 yield, milk fat concentration, and milk fat yield remained relatively constant from wk 4 to 16, whereas for 5 fed the WHT diet, their CH 4 emissions, milk fat yields, and milk fat concentrations almost doubled between wk 4 and 16. In the short term (4 wk), the inclusion of approximately 45% wheat instead of corn in the diet of cows resulted in reductions of 39% in CH 4 yield, 35% in milk fat concentration, and 40% in milk fat yield. However, these reductions did not persist to wk 10 or beyond. Our data indicate that cows do not all respond in the same way with some "adaptive" cows showing a marked increase in CH 4 yield, milk fat concentration, and milk fat yield after wk 4, whereas in other "nonadaptive" cows, these metrics were persistently inhibited to 16 wk. This research shows that short-term studies on dietary interventions to mitigate enteric CH 4 emissions may not always predict the long-term effects of such interventions. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Some silage inoculants promote an increase in milk production, possibly through altering the rumen microflora. In this study, dairy cows fed alfalfa silage treated with the inoculant, Lactobacillus plantarum MTD/1 (LPS), were compared to cows fed untreated silage (Ctrl) with the objectives: 1) to de...
What dairy cows are fed impacts manure chemistry and the environment
USDA-ARS?s Scientific Manuscript database
Over the past 20 years or so there has been increasing evidence and concern that nutrients contained in animal manures can adversely impact water and air quality. Research has demonstrated that the diets fed to dairy cows can be modified to reduce nutrient excretions in manure and environmental impa...
Lawley, Blair; Munro, Karen; Gowri Pathmanathan, Siva; Zhou, Shao J.; Makrides, Maria; Gibson, Robert A.; Sullivan, Thomas; Prosser, Colin G.; Lowry, Dianne; Hodgkinson, Alison J.
2013-01-01
The aim of the study was to compare the compositions of the fecal microbiotas of infants fed goat milk formula to those of infants fed cow milk formula or breast milk as the gold standard. Pyrosequencing of 16S rRNA gene sequences was used in the analysis of the microbiotas in stool samples collected from 90 Australian babies (30 in each group) at 2 months of age. Beta-diversity analysis of total microbiota sequences and Lachnospiraceae sequences revealed that they were more similar in breast milk/goat milk comparisons than in breast milk/cow milk comparisons. The Lachnospiraceae were mostly restricted to a single species (Ruminococcus gnavus) in breast milk-fed and goat milk-fed babies compared to a more diverse collection in cow milk-fed babies. Bifidobacteriaceae were abundant in the microbiotas of infants in all three groups. Bifidobacterium longum, Bifidobacterium breve, and Bifidobacterium bifidum were the most commonly detected bifidobacterial species. A semiquantitative PCR method was devised to differentiate between B. longum subsp. longum and B. longum subsp. infantis and was used to test stool samples. B. longum subsp. infantis was seldom present in stools, even of breast milk-fed babies. The presence of B. bifidum in the stools of breast milk-fed infants at abundances greater than 10% of the total microbiota was associated with the highest total abundances of Bifidobacteriaceae. When Bifidobacteriaceae abundance was low, Lachnospiraceae abundances were greater. New information about the composition of the fecal microbiota when goat milk formula is used in infant nutrition was thus obtained. PMID:23455335
Tannock, Gerald W; Lawley, Blair; Munro, Karen; Gowri Pathmanathan, Siva; Zhou, Shao J; Makrides, Maria; Gibson, Robert A; Sullivan, Thomas; Prosser, Colin G; Lowry, Dianne; Hodgkinson, Alison J
2013-05-01
The aim of the study was to compare the compositions of the fecal microbiotas of infants fed goat milk formula to those of infants fed cow milk formula or breast milk as the gold standard. Pyrosequencing of 16S rRNA gene sequences was used in the analysis of the microbiotas in stool samples collected from 90 Australian babies (30 in each group) at 2 months of age. Beta-diversity analysis of total microbiota sequences and Lachnospiraceae sequences revealed that they were more similar in breast milk/goat milk comparisons than in breast milk/cow milk comparisons. The Lachnospiraceae were mostly restricted to a single species (Ruminococcus gnavus) in breast milk-fed and goat milk-fed babies compared to a more diverse collection in cow milk-fed babies. Bifidobacteriaceae were abundant in the microbiotas of infants in all three groups. Bifidobacterium longum, Bifidobacterium breve, and Bifidobacterium bifidum were the most commonly detected bifidobacterial species. A semiquantitative PCR method was devised to differentiate between B. longum subsp. longum and B. longum subsp. infantis and was used to test stool samples. B. longum subsp. infantis was seldom present in stools, even of breast milk-fed babies. The presence of B. bifidum in the stools of breast milk-fed infants at abundances greater than 10% of the total microbiota was associated with the highest total abundances of Bifidobacteriaceae. When Bifidobacteriaceae abundance was low, Lachnospiraceae abundances were greater. New information about the composition of the fecal microbiota when goat milk formula is used in infant nutrition was thus obtained.
Vickers, L A; Weary, D M; Veira, D M; von Keyserlingk, M A G
2013-02-01
A common feeding practice during the dry period is to switch dairy cows to an energy-dense diet 3 wk prepartum, but this practice may lead to the overconsumption of energy and increase the risk of metabolic disease postpartum. The aim of this trial was to compare the metabolic status of transition Holstein dairy cows fed a 77% forage diet (77F; NEl = 1.46 Mcal/kg; NDF = 41%) vs. those fed an 87% forage diet (87F; NEl = 1.41 Mcal/kg; 48% NDF). Approximately 60 d before calving, cows were dried off, housed in a free stall barn, and fed the 87F diet. Three weeks before expected calving, cows were randomly assigned to either the 77F treatment and switched to this diet (n = 45) or assigned to the 87F treatment and stayed on the dry cow ration until parturition (n = 42). After parturition, all cows were fed a common lactation diet (NEl = 1.59 Mcal/kg; 36% NDF). Dry matter intake was measured daily from 2 wk before to 2 wk after calving. Blood was sampled daily for 10 d postpartum. Subclinical ketosis was diagnosed using a threshold of β-hydroxybutyrate (BHBA) ≥ 1.0 mmol/L after calving. The percentage of cows pregnant and odds of being pregnant for each treatment group were determined at 60, 90, and 120 d in milk through ultrasound by the herd veterinarian. Cows on the 87F diet consumed less DM prepartum than those on the 77F diet (12.7 ± 0.3 kg/d vs. 15.4 ± 0.3 kg/d, P < 0.001), but no difference in DMI was detected after calving (19.7 ± 5.5 kg/d; P = 0.87). Although the calculated prepartum required energy intake was the same for the 2 treatments (15.3 ± 1.2 Mcal/d; P = 0.16), cows on the 77F diet consumed 4.5 Mcal/d more than those on the 87F diet (22.5 ± 0.5 Mcal/d vs. 18.0 ± 0.5 Mcal/d; P < 0.001). Postpartum concentration of BHBA was less for cows fed the 87F diet prepartum (0.49 ± 0.02 mmol/L vs. 0.59 ± 0.02 mmol/L; P = 0.02), and fewer animals on this diet were diagnosed subclinical ketosis (SCK; 49% vs. 17%; P = 0.001). Milk production tended to be less for cows fed the 87F diet prepartum (47.3 ± 0.4 kg/d vs. 48.8 ± 0.4 kg/d; P = 0.10) for the first 22 wk of lactation, which was significant for d 7 to 28 of lactation (44.6 ± 1.1 kg/d vs. 47.6 ± 1.0 kg/d; P = 0.05). Although sample size was small to draw strong conclusions on reproductive performance, at 120 d in milk, cows on the 87F diet were 0.3 times more likely to be pregnant (P = 0.03). These results indicate that feeding an 87F diet before calving can reduce rates of SCK in transition dairy cows.
Effect of feeding a corn hybrid selected for leafiness as silage or grain to lactating dairy cattle.
Clark, P W; Kelm, S; Endres, M I
2002-03-01
A leafy corn hybrid was compared to a grain corn hybrid as silage and high moisture grain to evaluate dry matter intake, milk yield, and milk composition. Sixteen multiparous Holstein cows averaging 97 DIM were used in a feeding trial based on 4 x 4 Latin squares with 21-d periods. Each of four diets contained (dry basis) 8% chopped hay, 42% corn silage, 11% high moisture corn grain, 10% whole, fuzzy cottonseed, and 29% protein concentrate. One diet used leafy corn as both high moisture grain and silage. A second diet contained grain corn hybrid (control) as both high moisture grain and silage. A third diet contained leafy corn for high moisture grain and control corn for silage and the fourth diet used control corn for high moisture grain and leafy corn for silage. Cows fed diets containing leafy silage produced more milk and milk protein and ate more DM than cows fed control silage. The corn hybrid used for high moisture grain did not influence milk yield or composition. Dry matter intake was greater for cows fed the diet containing both leafy high moisture grain and leafy silage than for cows fed both control high moisture grain and control silage, but milk yield and composition were not different. When fed as silage, the leafy corn hybrid used in this experiment supported greater DMI as well as higher milk and protein yields when compared to the grain corn hybrid.
Shin, J H; Wang, D; Kim, S C; Adesogan, A T; Staples, C R
2012-07-01
The objective was to determine whether crude glycerin could partially replace concentrate ingredients in corn silage- or cottonseed hull-based diets formulated to support minimal milk fat production without reducing milk production. Multiparous, lactating Holstein cows (n=24; 116 ± 13d in milk) were assigned to dietary treatments arranged in a 2 × 3 factorial design; namely, 2 dietary roughage sources (cottonseed hulls or corn silage) and 3 dietary concentrations of glycerin [0, 5, or 10% on a dry matter (DM) basis]. Four different cows received each dietary treatment in each of 3 periods such that each diet was evaluated using 12 cows. Crude glycerin, produced using soybean oil, contained 12% water, 5% oil, 6.8% sodium chloride, and 0.4% methanol. Glycerin partially replaced ground corn, corn gluten feed, and citrus pulp. Diets of minimum fiber concentrations were fed to lactating dairy cows and resulted in low concentrations of milk fat (averaging 3.12% for cows fed diets without glycerin). The effects of glycerin on cow performance and ruminal measurements were the same for both dietary roughage sources with the exception of feed efficiency. Replacing concentrate with crude glycerin at 5% of dietary DM increased DM intake without increasing milk yield. Concentration and yield of milk fat were reduced when glycerin was fed at 10% of dietary DM. This was accompanied by a 30% reduction in apparent total-tract digestion of dietary neutral detergent fiber. Crude glycerin affected the microbial population in the rumen as evidenced by increased molar proportions of propionic, butyric, and valeric acids and decreased molar proportions of acetic acid. Efficiency of N utilization was improved as evidenced by lower concentrations of blood urea nitrogen and ruminal ammonia-N. Cows fed cottonseed hull-based diets consumed 5.3 kg/d more DM but produced only 1.7 kg/d more milk, resulting in reduced efficiency. Increased production of ruminal microbial protein, molar proportion of propionic acid, and passage of ruminal fluid resulted from feeding the cottonseed hull- versus corn silage-based diets, although apparent digestibilities of DM and neutral detergent fiber were reduced. Replacing 5 and 10% of concentrate ingredients with crude glycerin improved efficiency of 4% fat-corrected milk production when corn silage-based diets were fed but decreased it when cottonseed hull-based diets were fed. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Nitrogen partitioning and milk production of dairy cows grazing simple and diverse pastures.
Totty, V K; Greenwood, S L; Bryant, R H; Edwards, G R
2013-01-01
Research was conducted to examine the effects of a diverse pasture mix on dry matter intake, milk yield, and N partitioning of lactating dairy cows. A pasture containing only ryegrass and white clover (RG), or high-sugar ryegrass and white clover (HS), was compared with a diverse pasture mix (HSD) including chicory, plantain, lotus, high-sugar ryegrass, and white clover. The experiment was conducted over a 10-d period using 3 groups of 12 cows in late lactation. No difference was observed in dry matter (14.3 kg of dry matter/cow per day) or N (583 g of N/cow per day) intake between treatments. The cows grazing the HSD pasture had an increased milk yield (16.9 kg/d) compared with those grazing the simple RG and HS pastures (15.2 and 14.7 kg/d, respectively). However, no differences were observed in milk solids yield for the 3 treatments. A tendency toward greater milk protein yields in the HSD group resulted in improved N use efficiency for milk of 20.4% from the cows fed HSD, compared with 17.8 and 16.7% from cows in the RG and HS treatments, respectively. Urinary N excretion was lower from the cows fed HSD, at 353.8 g/d, compared with 438.3 and 426.6 g/d for cows fed RG and HS, respectively. These results suggest that the use of pastures containing chicory, lotus, and plantain can contribute to the goal of reducing N losses from cows in late lactation. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Kronqvist, C; Emanuelson, U; Spörndly, R; Holtenius, K
2011-03-01
The aim of this study was to investigate the effects of dietary Ca level (4.9, 9.3, and 13.6 g/kg of DM) on Ca and Mg homeostasis in dairy cows around parturition. Cows of the Swedish Red breed (n = 29) with no previous veterinary treatment for milk fever were divided into 3 groups, and each group was fed one of the different diets during the last 15 to 32 d of gestation. Calcium was added as ground limestone, and the Mg concentration was 1.8 g/kg of DM in all diets. After calving the cows were fed similar diets. Plasma was sampled twice per week until calving, and 6, 12, and 24 h, 2, 4, and 7 d after calving. Spot urine samples were collected twice weekly until calving and creatinine was used as a marker of daily urinary excretion. Fecal samples were collected 2 times per day for 5 d starting 2 wk before expected calving, and acid-insoluble ash was used as an indigestible marker to estimate digestibility. Apparent digestibility of Mg and daily Mg excretion in the urine were lower in the dry period for cows fed the highest Ca level. Plasma Mg concentration was lower on 2, 4, and 7 d after calving in cows fed the highest level of Ca. Treatment groups did not differ in plasma Ca concentration, parathyroid hormone concentration, or bone mobilization, evaluated using crosslinked carboxyterminal telopeptides of type I collagen (CTx) as a marker. Plasma Ca concentration decreased and plasma CTx concentration increased 6 h after calving. The apparent digestibility of Ca during the dry period was not affected by dietary Ca, but the cows fed 4.9 g Ca/kg of DM excreted 1.2 g of Ca/d in the urine, which was higher compared with 0.4 g/d and 0.6 g/d for the cows fed 9.3 g of Ca/kg of DM and 13.6 g of Ca/kg of DM, respectively. The results show that feeding 13.6 g of dietary Ca/kg of DM impaired the Mg absorption during the dry period, and resulted in decreased plasma Mg concentration after calving, but prepartum dietary Ca level did not affect plasma Ca, parathyroid hormone, or CTx concentrations. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Comparison of shortened and conventional dry period management strategies.
Cermakova, J; Kudrna, V; Simeckova, M; Vyborna, A; Dolezal, P; Illek, J
2014-09-01
The aim of this study was to compare 2 dry-cow management strategies and evaluate the effect of shortened dry period strategy on feed intake, metabolism, and postpartum performance of dairy cows in early lactation. Twenty-nine high-yielding dairy cows were divided into 2 groups. The control (CON) group (n=14) was assigned to a traditional dry period of approximately 60 d (57±5.9 d) and was fed a far-off dry cow ration from dry-off to -21 d relative to expected parturition. From d -21 relative to expected parturition, the cows were switched to a precalving ration containing an additional 3kg of concentrates. The cows of the experimental group (n=15) were assigned to a shortened dry period (SDP; 35±6.3 d) and were continuously fed a late-lactation diet from d -60 d relative to expected parturition until calving. After calving, both groups were fed the same lactation diet corresponding to their lactation requirements and cows were followed for 100 d of lactation. Prepartum dry matter intake of the cows assigned to an SDP and fed a late-lactation diet was approximately 4.11kg/cow per day greater compared with the CON group during the 60 d. However, no effect of dry period strategy on postpartum dry matter intake was detected. The cows with an SDP produced approximately 2.78kg/d (6.9%) less milk in the first 100 d of lactation than CON cows; the difference was not statistically significant. No differences were observed in live body weight, body condition score, or back-fat thickness between the treatments. Similarly, no differences existed in concentrations of plasma metabolites. The cows of the SDP group showed lower pH and increased concentrations of lactic acid and volatile fatty acids prepartum than the CON cows. Postpartum concentrations of lactic acid, volatile fatty acids, and NH3 and pH in rumen fluid did not differ between the treatments. Shortening of the dry period did not affect the colostrum quality or birth weights of the calves. Based on the results of this study, a traditional dry period management strategy appeared to be more favorable, considering the dry matter intake and milk production, compared with an SDP and feeding a late-lactation diet throughout the dry period. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Rodney, R M; Martinez, N; Block, E; Hernandez, L L; Celi, P; Nelson, C D; Santos, J E P; Lean, I J
2018-03-01
Pregnant Holstein cows, 28 nulliparous and 51 parous, were blocked by parity and milk yield and randomly allocated to receive diets that differed in dietary cation-anion difference (DCAD), +130 or -130 mEq/kg, and supplemented with either calcidiol or cholecalciferol at 3 mg/11 kg of dry matter from 255 d of gestation until parturition. Blood was sampled thrice weekly prepartum, and on d 0, 1, 2, 3, 6, 9, 12, 15, 18, 21, 24, 27, and 30 postpartum to evaluate effects of the diets on vitamin D, mineral and bone metabolism, and acid-base status. Blood pH and concentrations of minerals, vitamin D metabolites, and bone-related hormones were determined, as were mineral concentrations and losses in urine and colostrum. Supplementing with calcidiol increased plasma concentrations of 25-hydroxyvitamin D 3 , 3-epi 25-hydroxyvitamin D 3 , 25-hydroxyvitamin D 2 , 1,25-dihydroxyvitamin D 3 , and 24,25-dihydroxyvitamin D 3 compared with supplementing with cholecalciferol. Cows fed the diet with negative DCAD had lesser concentrations of vitamin D metabolites before and after calving than cows fed the diet with positive DCAD, except for 25-hydroxyvitamin D 2 . Feeding the diet with negative DCAD induced a compensated metabolic acidosis that attenuated the decline in blood ionized Ca (iCa) and serum total Ca (tCa) around calving, particularly in parous cows, whereas cows fed the diet with positive DCAD and supplemented with calcidiol had the greatest 1,25-dihydroxyvitamin D 3 concentrations and the lowest iCa and tCa concentrations on d 1 and 2 postpartum. The acidogenic diet or calcidiol markedly increased urinary losses of tCa and tMg, and feeding calcidiol tended to increase colostrum yield and increased losses of tCa and tMg in colostrum. Cows fed the diet with negative DCAD had increased concentrations of serotonin and C-terminal telopeptide of type 1 collagen prepartum compared with cows fed the diet with positive DCAD. Concentrations of undercarboxylated and carboxylated osteocalcin and those of adiponectin did not differ with treatment. These results provide evidence that dietary manipulations can induce metabolic adaptations that improve mineral homeostasis with the onset of lactation that might explain some of the improvements observed in health and production when cows are fed diets with negative DCAD or supplemented with calcidiol. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Influence of calcium and phosphorus feeding on markers of bone metabolism in transition cows.
Moreira, V R; Zeringue, L K; Williams, C C; Leonardi, C; McCormick, M E
2009-10-01
A study was carried out to verify the effect of Ca and P levels on production, digestibility, and serum bone metabolism biomarkers in dairy cows. Fifty-two nonlactating multiparous cows (>or=3 lactations) were confined in a free-stall barn approximately 20 d before calving. A standard close-up diet was fed to cows once daily until d 2 postpartum. Cows were randomly assigned to 1 of 4 dietary treatments arranged in a 2 x 2 factorial approach averaging 0.64% Ca for high Ca (HCa), 0.46% Ca for low Ca (LCa), 0.47% P for high P (HP), and 0.38% P for low P (LP) on a dry matter basis. Experimental diets were fed twice daily from 3 d in milk (DIM) until 31 DIM. Intake and milk yield were recorded daily. Milk samples were collected on d 28, 29, and 30 postpartum for components analyses. Blood samples were drawn 10 d before expected calving, at calving, and at 15 and 30 DIM for serum analyses of osteocalcin, a biomarker of bone accretion, and pyridinoline, a biomarker of bone resorption. Total fecal collection was conducted when cows in a block averaged 20 DIM. Intake and production traits were not significantly affected by any of the dietary treatments. Cows averaged nearly 21 kg/d dry matter intake and 44 kg/d milk yield from 6 to 31 DIM. There were no significant differences across treatments in body weight or body condition score loss. Phosphorus intake, P fecal output, P digestibility, and P apparent absorption were affected by dietary P content. Calcium intake was higher with HCa, but Ca fecal output, digestibility, and apparent absorption showed an interaction between dietary Ca and dietary P. Calcium fecal output was 100.6 g/d for cows fed HCaHP, intermediate for cows on the HCaLP diet (89 g/d), and similar among cows fed the 2 LCa diets (70 g/d with LCaHP and 75 with LCaLP). There was no significant effect of Ca or P on osteocalcin measurements. Pyridinoline concentrations were affected by dietary Ca levels and tended to have a significant dietary Ca x dietary P interaction. Phosphorus apparent digestibility occurred independently of dietary Ca levels. Results of this study suggest that more bone was mobilized in cows fed LCa diets, but excess dietary P caused greater and prolonged bone mobilization regardless of dietary Ca content.
Gao, X; Oba, M
2014-05-01
The objectives of the current study were to evaluate the variation in severity of subacute ruminal acidosis (SARA) among lactating dairy cows fed a high-grain diet and to determine factors characterizing animals that are tolerant to high-grain diets. Sixteen ruminally cannulated late-lactating dairy cows (days in milk=282 ± 33.8; body weight=601 ± 75.9 kg) were fed a high-grain diet consisting of 35% forage and 65% concentrate mix. After 17 d of diet adaptation, chewing activities were monitored for a 24-h period and ruminal pH was measured every 30s for 72 h. Acidosis index, defined as the severity of SARA (area of pH <5.8) divided by dry matter intake (DMI), was determined for individual animals to assess the severity of SARA normalized for a feed intake level. Although all cows were fed the same diet, minimum pH values ranged from 5.16 to 6.04, and the acidosis index ranged from 0.0 to 10.9 pH · min/kg of DMI. Six cows with the lowest acidosis index (0.04 ± 0.61 pH · min/kg) and 4 with the highest acidosis index (7.67 ± 0.75 pH · min/kg) were classified as animals that were tolerant and susceptible to the high-grain diet, respectively. Total volatile fatty acid concentration and volatile fatty acid profile were not different between the groups. Susceptible animals sorted against long particles, whereas tolerant animals did not (sorting index=87.6 vs. 97.9, respectively). However, the tolerant cows had shorter total chewing time (35.8 vs. 45.1 min/kg of DMI). In addition, although DMI, milk yield, and milk component yields did not differ between the groups, milk urea nitrogen concentration was higher for tolerant cows compared with susceptible cows (12.8 vs. 8.6 mg/dL), which is possibly attributed to less organic matter fermentation in the rumen of tolerant cows. These results suggest that a substantial variation exists in the severity of SARA among lactating dairy cows fed the same high-grain diet, and that cows tolerant to the high-grain diet might be characterized by less sorting behavior but less chewing time, and higher milk urea nitrogen concentration. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Obstacles to organic and grass fed small ruminant production in the U.S
USDA-ARS?s Scientific Manuscript database
Certified organic livestock must align to standards set forth by the National Organic Standards. Grass fed ruminant production follows a voluntary standard, both programs implemented by the USDA Agricultural Marketing Service. There is very little research being conducted on organic livestock system...
Effect of body condition on consumption of pine needles (Pinus ponderosa) by beef cows
USDA-ARS?s Scientific Manuscript database
We determined if cattle in low (LBC) or high body condition (HBC) would consume different amounts of green pine needles (Pinus ponderosa). Cattle (mature; open Hereford and Hereford x Angus) were fed an adequate basal diet (alfalfa pellets) for Trials 1 and 2; during Trials 3 and 4 cows were fed hig...
Atypical hypocalcemia in 2 dairy cows, after having been fed discarded vegetable cooking oil.
Gunn, Allan J; Abuelo, Angel
2017-12-01
Two mid-lactation dairy cows were presented sternally recumbent 4 days after the herd had been fed discarded vegetable cooking oil ad libitum. In both affected animals hypocalcemia was confirmed by clinical chemistry and response to treatment. This atypical presentation of hypocalcemia associated with feeding discarded cooking oil is previously unreported.
Atypical hypocalcemia in 2 dairy cows, after having been fed discarded vegetable cooking oil
Gunn, Allan J.; Abuelo, Angel
2017-01-01
Two mid-lactation dairy cows were presented sternally recumbent 4 days after the herd had been fed discarded vegetable cooking oil ad libitum. In both affected animals hypocalcemia was confirmed by clinical chemistry and response to treatment. This atypical presentation of hypocalcemia associated with feeding discarded cooking oil is previously unreported. PMID:29203941
Larsen, Mette Krogh; Vogdanou, Stefania; Hellwing, Anne Louise F; Rybicka, Iga; Weisbjerg, Martin Riis
2016-11-01
The composition of grass/clover silage varies depending on time of harvest time. In particular silage from late regrowths is expected to contain lower fibre and higher linolenic acid concentrations compared to spring growth, thereby autumn silage is expected to increase linolenic acid content of milk fat. Rapeseed supplementation is expected to increase milk production and to increase all C18 fatty acids in milk fat. An interaction between rapeseed and silage type is expected, as hydrogenation of unsaturated fatty acids in rapeseed is expected to be less when low fibre silage is fed. Thirty-six Jersey cows were used in a 4 × 4 Latin square design, for 4 periods of 3 weeks and with a 2 × 2 factorial arrangement of treatments: spring grass/clover silage from primary growth or autumn grass/clover silage which was an equal mixture of 3rd regrowth and 4th regrowth, with or without rapeseed supplementation. Dry matter intake and milk production was higher for autumn than for spring silage. Rapeseed supplementation did not affect dry matter intake, but increased milk production. The concentrations of C18 : 1cis9, C18 : 2n6 and β-carotene and C18 : 3n3 in milk were increased whereas the concentrations of C16 : 0, riboflavin and α-tocopherol were decreased with autumn silage. The majority of C18 FAs in milk and α-tocopherol concentration increased with rapeseed whereas C11 : 0 to C16 : 0 FA were reduced. Autumn silage reduced biohydrogenation of C18 : 2n6, whereas rapeseed increased biohydrogenation of C18 : 2n6 and reduced biohydrogenation of C18 : 3n3. Apparent recovery of C18 : 2n6 was reduced with rapeseed. Minor interaction effects of silage type and rapeseed addition were observed for some milk fatty acids. Feeding silage from late regrowth increased linolenic acid concentration in milk fat. Rapeseed inclusion increased milk production, and increased C18 : 0 as well as C18 : 1 fatty acids, but not C18 : 2 and C18 : 3 in milk fat. Interactions between silage type and rapeseed supplementation were minimal.
Effects of biotin supplementation on peripartum performance and metabolites of Holstein cows.
Rosendo, O; Staples, C R; McDowell, L R; McMahon, R; Badinga, L; Martin, F G; Shearer, J F; Seymour, W M; Wilkinson, N S
2004-08-01
Fifty-two multiparous Holstein cows were randomly assigned to receive 0 or 20 mg of biotin/d starting at an average of 16 d prepartum and then switched to 0 or 30 mg of biotin/d from calving through 70 d postpartum to determine whether supplemental biotin would affect cow performance, hepatic lipidosis, and plasma metabolites. Mean concentration of biotin in plasma sampled weekly was greater in cows fed biotin (4.3 vs. 9.4 nmol/L). Postpartum dry matter intake as a percentage of body weight (3.9% vs. 4.0%), milk production (35.8 vs. 34.8 kg/d), and milk fat concentrations (3.59% vs. 3.69%) were similar between treatment groups. Milk from biotin-supplemented cows tended to have a greater concentration of protein (2.73% vs. 2.83%). Concentrations of plasma nonesterified fatty acids were lower at wk 2 (652 vs. 413 microEq/mL) and 4 (381 vs. 196 microEq/mL) postpartum in cows fed supplemental biotin. However, mean plasma concentrations of beta-hydroxybutyric acid were not affected by biotin supplementation. Mean concentration of plasma glucose was greater for lactating cows fed supplemental biotin (63.4 vs. 66.6 mg/dL). Biopsies of liver were taken at 2, 16, and 30 d postpartum. The triacylglycerol concentration in liver (wet basis) tended to decrease at a faster rate after d 2 postpartum with biotin supplementation compared with control cows. The potential mechanisms that link improved glucose status and decreased lipid mobilization in cows supplemented with biotin warrant further investigation.
Cheng, Zhang; Mo, Wing-Yin; Nie, Xiang-Ping; Li, Kai-Bing; Choi, Wai-Ming; Man, Yu-Bon; Wong, Ming-Hung
2016-04-01
The present study used commercial feeds, food waste feeds, Napier grass, and mixed feeds (food waste feed to Napier grass ratio, 1:10) to feed grass carp (Ctenopharyngodon idellus). The results indicated that grass carp fed with food waste feeds and mix feeds achieved growth performance (based on specific growth rate and feed conversion ratio) that was similar to commercial feeds (p > 0.05). Concentrations of metalloid/metals in food waste feeds and polycyclic aromatic hydrocarbons (PAHs) in Napier grass were relatively higher than other types of fish feeds (p < 0.05). However, most of the metalloid/metals and PAH levels in fish fed with four types of fish feeds were not significantly different (p > 0.05). These findings show that food waste feeds are suitable for using in the production of fish feed and Napier grass can be served as supplemental feeds for grass carp, and hence reducing the production cost.
Wallace, L G; Bobe, G; Vorachek, W R; Dolan, B P; Estill, C T; Pirelli, G J; Hall, J A
2017-06-01
In newborn dairy calves, it has been demonstrated that supranutritional maternal and colostral Se supplementation using Se yeast or sodium selenite, respectively, improves passive transfer of IgG. In beef cattle, agronomic biofortification with Se is a more practical alternative for Se supplementation, whereby the Se concentration of hay is increased through the use of Se-containing fertilizer amendments. It has been previously demonstrated that agronomic Se biofortification is an effective strategy to improve immunity and performance in Se-replete weaned beef calves. The objective of this experiment was to determine the effects of feeding beef cows Se-enriched alfalfa () hay during the last 8 to 12 wk of gestation on passive transfer of antibodies to calves. At 10 wk ± 16 d before calving, 45 cows were assigned to 1 of 3 treatment groups with 3 pens (5 cows/pen) per treatment: Control cows were fed non-Se-fortified alfalfa hay plus a mineral supplement containing 120 mg/kg Se from sodium selenite, Med-Se cows were fed alfalfa hay fertilized with 45.0 g Se/ha as sodium selenate, and High-Se cows were fed alfalfa hay fertilized with 89.9 g Se/ha as sodium selenate; both the Med-Se and the High-Se groups received mineral supplement without added Se. Colostrum and whole blood (WB) were collected from cows at calving, and WB was collected from calves within 2 h of calving and at 12, 24, 36, and 48 h of age. Concentrations of IgG1 and J-5 antibody in cow colostrum and calf serum were quantified using ELISA procedures. Selenium concentrations linearly increased in WB ( < 0.001) and colostrum ( < 0.001) of cows and in WB of newborn calves ( < 0.001) with increasing Se concentration in alfalfa hay. Colostrum concentrations of IgG1 ( = 0.03) were increased in cows fed Se-biofortified alfalfa hay, but J-5 antibody ( = 0.43) concentrations were not. Calf serum IgG1 ( = 0.43) and J-5 antibody ( = 0.44) concentrations during the first 48 h of age were not affected by prior Se treatment of cows. These data suggest that feeding Se-biofortified alfalfa hay promotes the accumulation of Se and antibodies in colostrum but does not affect short-term serum antibody concentrations in calves.
Moallem, U; Kaim, M; Folman, Y; Sklan, D
1997-09-01
This study examined the mechanisms by which calcium soaps of fatty acids and bovine somatotropin (bST) affect production and reproduction of high producing cows. Calcium soaps of fatty acids were fed at 2.2% dry matter, and 500 mg of Zn-sometribove (Monsanto Inc., St Louis, MO) were injected subcutaneously every 14 d from 10 to 150 d in milk (DIM). Production of fat-corrected milk was increased by 3.5 kg/d when calcium soaps of fatty acids were fed, by 6.1 kg/d when bST was administered, and by 7.4 kg/d when calcium soaps of fatty acids were fed and bST was administered. Body weight was similar for cows on all treatments until 85 DIM after which cows that were treated with bST had lower body weights. Body condition scores decreased more for cows treated with bST and began increasing later and more slowly. Treatment with bST resulted in more cows that experienced first ovulation after 30 DIM, and more cows on the control treatment exhibited first estrus before 35 DIM. Days open were greater when bST was administered. After the first artificial insemination, conception rates were similar for cows on the control treatment and for cows fed calcium soaps of fatty acids; conception rates after the first artificial insemination were low for all cows treated with bST. Pregnancy rates at 120 and 150 DIM were decreased by bST. Number of DIM to first ovulation, number of DIM to first estrus, and days open were negatively correlated with glucose and cholesterol concentrations in plasma. Production of fat-corrected milk was correlated with days open and with concentrations of triglycerides in plasma, nonesterified fatty acids, and cholesterol. Increased production had different effects on reproduction when induced by calcium soaps of fatty acids or bST treatment. Some of the adverse effects of bST treatments were alleviated by calcium soaps of fatty acids.
Direct and carryover effect of post-grazing sward height on total lactation dairy cow performance.
Ganche, E; Delaby, L; O'Donovan, M; Boland, T M; Kennedy, E
2013-08-01
Grazing pastures to low post-grazing sward heights (PGSH) is a strategy to maximise the quantity of grazed grass in the diet of dairy cows within temperate grass-based systems. Within Irish spring-calving systems, it was hypothesised that grazing swards to very low PGSH would increase herbage availability during early lactation but would reduce dairy cow performance, the effect of which would persist in subsequent lactation performance when compared with cows grazing to a higher PGSH. Seventy-two Holstein-Friesian dairy cows (mean calving date, 12 February) were randomly assigned post-calving across two PGSH treatments (n = 36): 2.7 cm (severe; S1) and 3.5 cm (moderate; M1), which were applied from 10 February to 18 April (period 1; P1). This was followed by a carryover period (period 2; P2) during which cows were randomly reassigned within their P1 treatment across two further PGSH (n = 18): 3.5 cm (severe, SS and MS) and 4.5 cm (moderate, SM and MM) until 30 October. Decreasing PGSH from 3.5 to 2.7 cm significantly decreased milk (-2.3 kg/cow per day), protein (-95 g/day), fat (-143 g/day) and lactose (-109 g/day) yields, milk protein (-1.2 g/kg) and fat (-2.2 g/kg) concentrations and grass dry matter intake (GDMI; -1.7 kg dry matter/cow per day). The severe PGSH was associated with a lower bodyweight (BW) at the end of P1. There was no carryover effect of P1 PGSH on subsequent milk or milk solids yields in P2, but PGSH had a significant carryover effect on milk fat and lactose concentrations. Animals severely restricted at pasture in early spring had a higher BW and slightly higher body condition score in later lactation when compared with M1 animals. During P2, increasing PGSH from 3.5 to 4.5 cm increased milk and milk solids yield as a result of greater GDMI and resulted in higher mean BW and end BW. This study indicates that following a 10-week period of feed restriction, subsequent dairy cow cumulative milk production is unaffected. However, the substantial loss in milk solid yield that occurred during the period of restriction is not recovered.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to investigate the effects of incremental amounts of Ascophyllum nodosum meal (ANOD) on milk production, milk composition including fatty acids and I, blood metabolites, and nutrient intake and digestibility in early lactation dairy cows fed high-forage diets. Twelve ...
Livingstone, K M; Humphries, D J; Kirton, P; Kliem, K E; Givens, D I; Reynolds, C K
2015-06-01
Replacing dietary grass silage (GS) with maize silage (MS) and dietary fat supplements may reduce milk concentration of specific saturated fatty acids (SFA) and can reduce methane production by dairy cows. The present study investigated the effect of feeding an extruded linseed supplement on milk fatty acid (FA) composition and methane production of lactating dairy cows, and whether basal forage type, in diets formulated for similar neutral detergent fiber and starch, altered the response to the extruded linseed supplement. Four mid-lactation Holstein-Friesian cows were fed diets as total mixed rations, containing either high proportions of MS or GS, both with or without extruded linseed supplement, in a 4×4 Latin square design experiment with 28-d periods. Diets contained 500 g of forage/kg of dry matter (DM) containing MS and GS in proportions (DM basis) of either 75:25 or 25:75 for high MS or high GS diets, respectively. Extruded linseed supplement (275 g/kg ether extract, DM basis) was included in treatment diets at 50 g/kg of DM. Milk yields, DM intake, milk composition, and methane production were measured at the end of each experimental period when cows were housed in respiration chambers. Whereas DM intake was higher for the MS-based diet, forage type and extruded linseed had no significant effect on milk yield, milk fat, protein, or lactose concentration, methane production, or methane per kilogram of DM intake or milk yield. Total milk fat SFA concentrations were lower with MS compared with GS-based diets (65.4 vs. 68.4 g/100 g of FA, respectively) and with extruded linseed compared with no extruded linseed (65.2 vs. 68.6 g/100 g of FA, respectively), and these effects were additive. Concentrations of total trans FA were higher with MS compared with GS-based diets (7.0 vs. 5.4 g/100 g of FA, respectively) and when extruded linseed was fed (6.8 vs. 5. 6g/100 g of FA, respectively). Total n-3 FA were higher when extruded linseed was fed compared with no extruded linseed (1.2 vs. 0.8 g/100 g of FA, respectively), whereas total n-6 polyunsaturated FA were higher when feeding MS compared with GS (2.5 vs. 2.1 g/100 g of FA, respectively). Feeding extruded linseed and MS both provided potentially beneficial decreases in SFA concentration of milk, and no significant interactions were found between extruded linseed supplementation and forage type. However, both MS and extruded linseed increased trans FA concentration in milk fat. Neither MS nor extruded linseed had significant effects on methane production or yield, but the amounts of supplemental lipid provided by extruded linseed were relatively small. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Chen, J; Gross, J J; van Dorland, H A; Remmelink, G J; Bruckmaier, R M; Kemp, B; van Knegsel, A T M
2015-02-01
In a prior study, we observed that cows with a 0-d dry period had greater energy balance and lower milk production compared with cows with a 30- or 60-d dry period in early lactation. The objective of the current study was to evaluate the influence of dry period length on metabolic status and hepatic gene expression in cows fed a lipogenic or glucogenic diet in early lactation. Holstein-Friesian dairy cows (n=167) were assigned randomly to 3×2 factorial design with 3 dry period lengths (n=56, 55, and 56 for 0-, 30-, and 60-d dry, respectively) and 2 early lactation diets (n=84 and 83 for glucogenic and lipogenic diet, respectively). Cows were fed a glucogenic or lipogenic diet from 10d before the expected calving date and onward. The main ingredient for a glucogenic concentrate was corn, and the main ingredients for a lipogenic concentrate were sugar beet pulp, palm kernel, and rumen-protected palm oil. Blood was sampled weekly from 95 cows from wk 3 precalving to wk 8 postcalving. Liver samples were collected from 76 cows in wk -2, 2, and 4 relative to calving. Liver samples were analyzed for triacylglycerol concentrations and mRNA expression of 12 candidate genes. Precalving, cows with a 0-d dry period had greater plasma β-hydroxybutyrate, urea, and insulin concentrations compared with cows with a 30- or 60-d dry period. Postcalving, cows with a 0-d dry period had lower liver triacylglycerol and plasma nonesterified fatty acids concentrations (0.20, 0.32, and 0.36mmol/L for 0-, 30-, and 60-d dry period, respectively), greater plasma glucose, insulin-like growth factor-I, and insulin (24.38, 14.02, and 11.08µIU/mL for 0-, 30-, and 60-d dry period, respectively) concentrations, and lower hepatic mRNA expression of pyruvate carboxylase, compared with cows with a 30- or 60-d dry period. Plasma urea and β-hydroxybutyrate concentrations were greater in cows fed a lipogenic diet compared with cows fed a glucogenic diet. In conclusion, cows with a 0-d dry period had an improved metabolic status in early lactation, indicated by lower plasma concentrations of nonesterified fatty acids, greater plasma concentrations of glucose, insulin-like growth factor-I, and insulin, and lower mRNA expression of pyruvate carboxylase in the liver, compared with cows with a 30- or 60-d dry period. Independent of dry period length, the glucogenic diet also improved the metabolic status compared with the lipogenic diet. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Urinary indices in llamas fed different diets.
Lackey, M N; Belknap, E B; Salman, M D; Tinguely, L; Johnson, L W
1995-07-01
Indices of renal function and damage were measured in 12 healthy male adult llamas fed a diet of mixed alfalfa/grass hay (mixed hay) and water ad libitum. Using a collection bag fitted over the preputial area, urine samples were collected at 6, 12, and 24 hours. Serum samples were obtained concurrently to determine endogenous creatinine clearance (CL), total (TE) and fractional excretion (FE) of electrolytes (Na, K, Cl, P), electrolyte CL, urine and serum osmolality, urine enzyme activities (gamma-glutamyltransferase and N-acetyl-beta-D-glucosaminidase), and urine protein concentration. Urine production was quantified. Three months later, 10 of the 12 llamas were fed a grass hay diet and water ad libitum. Similar samples were obtained, and similar measurements were made. Urine production was higher when the llamas were fed the mixed hay diet. Total urine volume for llamas fed mixed hay ranged from 628 to 1,760 ml/24 h, with a median of 1,307.5 ml/24h, compared with a range of 620 to 1,380 ml/24 h and a median of 927.50 ml/24h for llamas fed grass hay. Median urine osmolality was higher in llamas fed mixed hay (1,906 mOsm/kg of body weight, with a range of 1,237 to 2,529 mOsm/kg), compared with llamas fed grass hay (1,666 mOsm/kg with a range of 1,163 to 2,044 mOsm/kg). Creatinine CL did not vary significantly over time for either diet.(ABSTRACT TRUNCATED AT 250 WORDS)
Schoenberg, K M; Overton, T R
2011-12-01
Specific mechanisms by which dry period dietary energy affects transition cow metabolism have been intensively investigated but those of thiazolidinedione (TZD) administration have not. We hypothesized that effects of both are mediated via changes in insulin, glucose, or fatty acid metabolism. The objective of this experiment was to determine the effects of the insulin-sensitizing agent TZD and dietary energy level on glucose and fatty acid metabolism during late gestation in dairy cows. Multiparous Holstein cows (n=32) approximately 50 d before expected calving date were dried-off and assigned to 1 of 2 dietary energy levels for 3 wk (high: 1.52 Mcal/kg of NE(L), or low: 1.34 Mcal/kg of NE(L)) and treated daily during the final 14 d with 4.0 mg of TZD/kg of body weight (BW) or saline in a completely randomized design. Cows fed the low energy diet had lower dry matter intake (12.8 vs. 16.1 kg/d) and higher plasma nonesterified fatty acid (NEFA) concentrations (103.3 vs. 82.4 μEq/L) compared with cows fed the high energy diet. Cows administered TZD had higher plasma glucose concentrations (62.5 vs. 59.6 mg/dL) than saline controls and cows fed the high energy diet had higher plasma insulin concentrations (35.1 vs. 25.3 μU/mL) compared with those fed the low energy diet. After 2 wk of TZD treatment, all cows were subjected to an intravenous glucose tolerance test (GTT; 0.25 g of dextrose/kg of BW) followed 110 min later by an insulin challenge (IC; 1.0 μg of insulin/kg of BW). Differences in plasma glucose response to GTT were minimal based on diet; however, cows fed the low energy diet had more negative NEFA areas under the curve (AUC; -4,838 vs. -2,137 μEq/L × min over 90 min) and greater rates of NEFA decrease (1.35 vs. 0.63%/min) during GTT, suggesting differential responses of tissue glucose and fatty acid metabolism in response to dietary energy level. During IC, the TZD-treated cows tended to have more negative glucose AUC (-45.0 vs. -12.1mg/dL × min over 15 min) than controls, suggesting that TZD-treated cows had greater responses to insulin. Limited interactions were observed between dietary and TZD treatments in all response variables measured. Adipose tissue biopsies performed on the final day of treatment suggested higher expression of peroxisome proliferator-activated receptor-γ (0.71 vs. 0.50 relative expression) and lipoprotein lipase (0.71 vs. 0.40 relative expression) in cows fed the high energy diet as measured by quantitative real-time PCR. These results indicate that energy level and insulin-sensitizing agents affect glucose and lipid metabolism during the dry period. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Ergot alkaloids in endophyte-infected grasses inhibit prolactin (PRL) secretion and may reduce milk production of cows consuming endophyte-infected grasses. We investigated the effects of consuming endophyte-infected fescue during late lactation and the dry period on mammary growth, differentiation ...
Realini, C E; Font i Furnols, M; Sañudo, C; Montossi, F; Oliver, M A; Guerrero, L
2013-09-01
The effect of country of origin (local, Switzerland, Argentina, Uruguay), finishing diet (grass, grass plus concentrate, concentrate), and price (low, medium, high) on consumer's beef choice and segmentation was evaluated in Spain, France and United Kingdom. Sensory acceptability of Uruguayan beef from different production systems was also evaluated and contrasted with consumers' beef choices. Origin was the most important characteristic for the choice of beef with preference for meat produced locally. The second most important factor was animal feed followed by price with preference for beef from grass-fed animals and lowest price. The least preferred product was beef from Uruguay, concentrate-fed animals and highest price. Sensory data showed higher acceptability scores for Uruguayan beef from grass-fed animals with or without concentrate supplementation than animals fed concentrate only. Consumer segments with distinct preferences were identified. Foreign country promotion seems to be fundamental for marketing beef in Europe, as well as the development of different marketing strategies to satisfy each consumer segment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Preynat, A; Lapierre, H; Thivierge, M C; Palin, M F; Cardinault, N; Matte, J J; Desrochers, A; Girard, C L
2010-05-01
The present experiment was undertaken to study the interactions between dietary supplements of rumen-protected methionine (RPM) and intramuscular injections of folic acid and vitamin B(12), given from 3 wk before calving to 16 wk of lactation, on hepatic metabolism of lactating dairy cows. Sixty multiparous Holstein cows were assigned to 10 blocks of 6 cows each according to their previous milk production. Within each block, 3 cows were fed a diet calculated to supply Met as 1.83% of metabolizable protein, whereas the 3 other cows were fed the same diet supplemented with 18g of RPM calculated to provide Met as 2.23% of metabolizable protein. Within each level of Met, the cows received no vitamin supplement or weekly intramuscular injections of 160mg of folic acid alone or combined with 10mg of vitamin B(12). Liver biopsies were taken at 2, 4, 8, and 16 wk of lactation. Liver concentrations of folates and vitamin B(12) were increased by their respective supplements but this response to vitamin supplements was altered by methionine supply. Concentrations of total lipids and triglycerides increased in livers of cows fed RPM, whereas concentrations of cholesterol ester, cholesterol, diglycerides, phosphatidylethanolamine, and phosphatidylcholine were not affected. Folic acid, alone or combined with vitamin B(12), tended to increase the ratio of phosphatidylcholine to phosphatidylethanolamine. Gene expression of 5,10-methylene-tetrahydrofolate reductase, microsomal transfer protein, and phosphatidylethanolamine methyltransferase were higher in liver of cows fed RPM supplements. The relative mRNA abundance of 5,10-methylene-tetrahydrofolate reductase and methylmalonyl-CoA mutase were increased by the combined injections of folic acid and vitamin B(12), whereas those of methionine synthase and methionine synthase reductase were not affected by treatments. These results suggest that increasing supply of methyl groups, as preformed labile methyl groups or through methylneogenesis, affected the methylation cycle but had a limited effect on dairy cow performance. The observed effects of the combined supplement of folic acid and vitamin B(12) on lactational performance of dairy cows probably result from an improvement of energy metabolism during early lactation. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
2014-01-01
To investigate the effects of different sources of carbohydrates on intake, digestibility, chewing, and performance, nine lactating Holstein dairy cows (day in milk= 100±21 d; body weight=645.7 ± 26.5 kg) were allotted to a 3 × 3 Latin square design at three 23-d periods. The three treatments included 34.91% (B), 18.87% (BC), and 18.86% (BB) barley that in treatment B was partially replaced with only corn or corn plus beet pulp in treatments BC and BB, respectively. The concentration of starch and neutral detergent soluble carbohydrate varied (22.2, 20.2, and 14.5; 13.6, 15.9, and 20.1% of DM in treatments B, BC, and BB, respectively). Cows in treatment BB showed a higher DMI and improved digestibility of DM, NDF, and EE compared with treatments B or BC. Ruminal pH was higher in cows fed on BB (6.83) compared with those that received B or BC treatments (6.62 and 6.73, respectively). A lower proportion of propionate accompanied the higher pH in the BB group; however, a greater proportion of acetate and acetate: propionate ratio was observed compared with cows fed either on the B or BC diet. Moreover, cows fed on the BB diet showed the lowest ruminal passage rate and longest ruminal and total retention time. Eating time did not differ among treatments, rumination time was greater among cows fed on the BB diet compared with the others, whereas total chewing activity was greater than those fed on BC, but similar to those fed on B. The treatments showed no effect on milk yield. Partially replacing barley with corn or beet pulp resulted in an increase in milk fat and a lower protein concentration. Changing dietary NFC with that of a different degradability thus altered intake, chewing activity, ruminal environment, retention time or passage rate, and lactation performance. The results of this study showed that beet pulp with a higher NDF and a detergent-soluble carbohydrate or pectin established a more consistent ruminal mat than barley and corn, thus resulting in higher mean retention time and chewing activity, whereas no changes in 3.5% FCM and milk fat were observed. PMID:24410961
Doreau, M; Ferlay, A; Rochette, Y; Martin, C
2014-03-01
Dehydrated lucerne is used as a protein source in dairy cow rations, but little is known about the effects of lucerne on greenhouse gas production by animals. Eight Holstein dairy cows (average weight: 582 kg) were used in a replicated 4 × 4 Latin square design. They received diets based on either maize silage (M) or grass silage (G) (45% of diet on dry matter (DM) basis), with either soya bean meal (15% of diet DM) completed with beet pulp (15% of diet DM) (SP) or dehydrated lucerne (L) (30% of diet DM) as protein sources; MSP, ML, GSP and GL diets were calculated to meet energy requirements for milk production by dairy cows and degradable protein for rumen microbes. Dry matter intake (DMI) did not differ among diets (18.0 kg/day DMI); milk production was higher with SP diets than with L diets (26.0 v. 24.1 kg/day), but milk production did not vary with forage type. Milk fatty-acid (FA) composition was modified by both forage and protein sources: L and G diets resulted in less saturated FA, less linoleic acid, more trans-monounsaturated FA, and more linolenic acid than SP and M diets, respectively. Enteric methane (CH4) production, measured by the SF6 tracer method, was higher for G diets than for M diets, but did not differ with protein source. The same effects were observed when CH4 was expressed per kg milk. Minor effects of diets on rumen fermentation pattern were observed. Manure CH4 emissions estimated from faecal organic matter were negatively related to diet digestibility and were thus higher for L than SP diets, and higher for M than G diets; the resulting difference in total CH4 production was small. Owing to diet formulation constraints, N intake was higher for SP than for L diets; interaction between forage type and protein source was significant for N intake. The same statistical effects were found for N in milk. Faecal and urinary N losses were determined from total faeces and urine collection. Faecal N output was lower for M than for G diets but did not differ between protein sources. Urinary N output did not differ between forage types, but was lower for cows fed L diets than for cows fed SP diets, potentially resulting in lower ammonia emissions with L diets. Replacing soya bean meal plus beet pulp with dehydrated lucerne did not change CH4 production, but resulted in more N in faeces and less N in urine.
Gebrehawariat, Efrem; Tamir, Berhan; Tegegne, Azage
2010-12-01
Thirty-six Boran × Friesian dairy cows (392 ± 12 kg; mean ± SD) in early parity were used in a randomised complete block design. Cows were blocked by parity into three blocks of 12 animals and offered normal maize (NM) stover (T1), NM silage (T2) or quality protein maize (QPM) silage (T3) basal diets supplemented with a similar concentrate mix. Feed intake, body weight and condition changes and milk yield and composition were assessed. The daily intake of DM, OM, NDF and ADF for cows fed the NM stover-based diet was higher (P<0.05) than for the cows fed the NM silage and QPM silage-based diets. However, the daily intake of DOM (9.3 kg) and ME (140.8 MJ) for cows on QPM silage-based diet was higher (P<0.05) than for cows on NM stover-based diet (8.4 kg and 124.2 MJ) and NM silage-based diet (7.9 kg and 119.1 MJ). Body weight of cows was affected (P<0.05) by the diet, but diet had no effect (P>0.05) on body condition score, milk yield and milk composition. The digestible organic matter in the NM stover-based diet (724 g/kg DM) was lower (P<0.05) than that in the NM (770 g/kg DM) and QPM silage-based diet (762 g/kg DM). It was concluded that the performances of the cows on the NM silage and QPM silage diets were similar and were not superior to that of the NM stover-based diet.
Gebrehawariat, Efrem; Tegegne, Azage
2010-01-01
Thirty-six Boran × Friesian dairy cows (392 ± 12 kg; mean ± SD) in early parity were used in a randomised complete block design. Cows were blocked by parity into three blocks of 12 animals and offered normal maize (NM) stover (T1), NM silage (T2) or quality protein maize (QPM) silage (T3) basal diets supplemented with a similar concentrate mix. Feed intake, body weight and condition changes and milk yield and composition were assessed. The daily intake of DM, OM, NDF and ADF for cows fed the NM stover-based diet was higher (P < 0.05) than for the cows fed the NM silage and QPM silage-based diets. However, the daily intake of DOM (9.3 kg) and ME (140.8 MJ) for cows on QPM silage-based diet was higher (P < 0.05) than for cows on NM stover-based diet (8.4 kg and 124.2 MJ) and NM silage-based diet (7.9 kg and 119.1 MJ). Body weight of cows was affected (P < 0.05) by the diet, but diet had no effect (P > 0.05) on body condition score, milk yield and milk composition. The digestible organic matter in the NM stover-based diet (724 g/kg DM) was lower (P < 0.05) than that in the NM (770 g/kg DM) and QPM silage-based diet (762 g/kg DM). It was concluded that the performances of the cows on the NM silage and QPM silage diets were similar and were not superior to that of the NM stover-based diet. PMID:20577806
USDA-ARS?s Scientific Manuscript database
Plasma AA level was used to estimate Met bioavailability in 2 sources of rumen-protected Met (RPM): Mepron (RPM1) and Smartamine M (RPM2). Eight cows, consuming 22 kg DM/d, yielding 34 kg milk/d and fitted with ruminal cannulae, were fed a basal TMR containing (DM basis) 14% alfalfa silage, 54% corn...
Dorich, C D; Varner, R K; Pereira, A B D; Martineau, R; Soder, K J; Brito, A F
2015-04-01
The objective of this study was to measure enteric CH4 emissions using a new portable automated open-circuit gas quantification system (GQS) and the sulfur hexafluoride tracer technique (SF6) in midlactation Holstein cows housed in a tiestall barn. Sixteen cows averaging 176 ± 34 d in milk, 40.7 ± 6.1 kg of milk yield, and 685 ± 49 kg of body weight were randomly assigned to 1 out of 2 treatments according to a crossover design. Treatments were (1) ad libitum (adjusted daily to yield 10% orts) and (2) restricted feed intake [set to restrict feed by 10% of baseline dry matter intake (DMI)]. Each experimental period lasted 22d, with 14 d for treatment adaptation and 8d for data and sample collection. A common diet was fed to the cows as a total mixed ration and contained 40.4% corn silage, 11.2% grass-legume haylage, and 48.4% concentrate on a dry matter basis. Spot 5-min measurements using the GQS were taken twice daily with a 12-h interval between sampling and sampling times advanced 2h daily to account for diurnal variation in CH4 emissions. Canisters for the SF6 method were sampled twice daily before milking with 4 local background gas canisters inside the barn analyzed for background gas concentrations. Enteric CH4 emissions were not affected by treatments and averaged 472 and 458 g/d (standard error of the mean = 18 g/d) for ad libitum and restricted intake treatments, respectively (data not shown). The GQS appears to be a reliable method because of the relatively low coefficients of variation (ranging from 14.1 to 22.4%) for CH4 emissions and a moderate relationship (coefficient of determination = 0.42) between CH4 emissions and DMI. The SF6 resulted in large coefficients of variation (ranging from 16.0 to 111%) for CH4 emissions and a poor relationship (coefficient of determination = 0.17) between CH4 emissions and DMI, likely because of limited barn ventilation and high background gas concentration. Research with improved barn ventilation systems or outdoors is warranted to further assess the GQS and SF6 methodologies. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Performance of dairy cows fed high levels of acetic acid or ethanol.
Daniel, J L P; Amaral, R C; Sá Neto, A; Cabezas-Garcia, E H; Bispo, A W; Zopollatto, M; Cardoso, T L; Spoto, M H F; Santos, F A P; Nussio, L G
2013-01-01
Ethanol and acetic acid are common end products from silages. The main objective of this study was to determine whether high concentrations of ethanol or acetic acid in total mixed ration would affect performance in dairy cows. Thirty mid-lactation Holstein cows were grouped in 10 blocks and fed one of the following diets for 7 wk: (1) control (33% Bermuda hay + 67% concentrates), (2) ethanol [control diet + 5% ethanol, dry matter (DM) basis], or (3) acetic acid (control diet + 5% acetic acid, DM basis). Ethanol and acetic acid were diluted in water (1:2) and sprayed onto total mixed rations twice daily before feeding. An equal amount of water was mixed with the control ration. To adapt animals to these treatments, cows were fed only half of the treatment dose during the first week of study. Cows fed ethanol yielded more milk (37.9 kg/d) than those fed the control (35.8 kg/d) or acetic acid (35.3 kg/d) diets, mainly due to the higher DM intake (DMI; 23.7, 22.2, and 21.6 kg/d, respectively). The significant diet × week interaction for DMI, mainly during wk 2 and 3 (when acetic acid reached the full dose), was related to the decrease in DMI observed for the acetic acid treatment. There was a diet × week interaction in excretion of milk energy per DMI during wk 2 and 3, due to cows fed acetic acid sustained milk yield despite lower DMI. Energy efficiency was similar across diets. Blood metabolites (glucose, insulin, nonesterified fatty acids, ethanol, and γ-glutamyl transferase activity) and sensory characteristics of milk were not affected by these treatments. Animal performance suggested similar energy value for the diet containing ethanol compared with other diets. Rumen conversion of ethanol to acetate and a concomitant increase in methane production might be a plausible explanation for the deviation of the predicted energy value based on the heat of combustion. Therefore, the loss of volatile compounds during the drying process in the laboratory should be considered when calculating energy content of fermented feedstuffs. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Nutritive value of maize silage in relation to dairy cow performance and milk quality.
Khan, Nazir A; Yu, Peiqiang; Ali, Mubarak; Cone, John W; Hendriks, Wouter H
2015-01-01
Maize silage has become the major forage component in the ration of dairy cows over the last few decades. This review provides information on the mean content and variability in chemical composition, fatty acid (FA) profile and ensiling quality of maize silages, and discusses the major factors which cause these variations. In addition, the effect of the broad range in chemical composition of maize silages on the total tract digestibility of dietary nutrients, milk production and milk composition of dairy cows is quantified and discussed. Finally, the optimum inclusion level of maize silage in the ration of dairy cows for milk production and composition is reviewed. The data showed that the nutritive value of maize silages is highly variable and that most of this variation is caused by large differences in maturity at harvest. Maize silages ensiled at a very early stage (dry matter (DM) < 250 g kg(-1)) were particularly low in starch content and starch/neutral detergent fibre (NDF) ratio, and resulted in a lower DM intake (DMI), milk yield and milk protein content. The DMI, milk yield and milk protein content increased with advancing maturity, reaching an optimum level for maize silages ensiled at DM contents of 300-350 g kg(-1), and then declined slightly at further maturity beyond 350 g kg(-1). The increases in milk (R(2) = 0.599) and protein (R(2) = 0.605) yields with maturity of maize silages were positively related to the increase in starch/NDF ratio of the maize silages. On average, the inclusion of maize silage in grass silage-based diets improved the forage DMI by 2 kg d(-1), milk yield by 1.9 kg d(-1) and milk protein content by 1.2 g kg(-1). Further comparisons showed that, in terms of milk and milk constituent yields, the optimum grass/maize silage ratio depends on the quality of both the grass and maize silages. Replacement of grass silage with maize silage in the ration, as well as an increasing maturity of the maize silages, altered the milk FA profile of the dairy cows, notably, the concentration of the cis-unsaturated FAs, C18:3n-3 and n-3/n-6 ratio decreased in milk fat. Despite variation in nutritive value, maize silage is rich in metabolizable energy and supports higher DMI and milk yield. Harvesting maize silages at a DM content between 300 and 350 g kg(-1) and feeding in combination with grass silage results in a higher milk yield of dairy cows. © 2014 Society of Chemical Industry.
Motupalli, P R; Sinclair, L A; Charlton, G L; Bleach, E C; Rutter, S M
2014-11-01
A number of factors influence dairy cow preference to be indoors or at pasture. The study reported here investigated whether herbage mass and distance affects preference and if continuously housed cows exhibited behavioral and production differences compared to cows that had free access to pasture. Dairy cows (n = 16) were offered a free choice of being in cubicle housing (1.5 cubicles/cow) or at pasture with a high (3,000 ± 200 kg DM/ha) vs. low (1,800 ± 200 kg DM/ha) herbage mass. A control group (n = 16) was confined to cubicle housing for the duration of the study. Each herbage mass was offered at either a near (38 m) or far (254 m) distance in a 2 × 2 factorial crossover design to determine motivation to access pasture. Overall, dairy cows expressed a partial preference to be at pasture, spending 68.7% of their time at pasture. This was not affected (P > 0.05) by herbage mass. Both grass intake (P = 0.001) and grazing time (P = 0.039) was greater when cows were offered the high herbage mass. Neither total mixed ration intake (P > 0.05) nor milk yield (P > 0.05) was affected by herbage mass or distance. Additionally, no interaction existed between herbage mass and distance (P > 0.05). Distance affected preference: overall time on pasture was greater at the near distance (P = 0.002); however, nighttime use was not affected by distance (P = 0.184). Housed cows produced less milk than free-choice cows and this was potentially due to a combination of decreased lying time in housed cows (P < 0.001) and grass intake (1.22 kg/d) in free-choice cows. This study shows that herbage mass is not a major factor driving dairy cow preference for pasture, but distance does affect preference for pasture during the day. Additionally, there are clear production and welfare benefits for providing cows with a choice to be at pasture or cubicle housing over being continuously housed. Further research is necessary to quantify the effect of lying time on milk yields.
Galvão, K N; Santos, J E P; Coscioni, A C; Juchem, S O; Chebel, R C; Sischo, W M; Villaseñor, M
2006-06-01
Objectives were to determine the effects of gossypol exposure during early embryo development on embryonic survival after transfer of frozen and thawed embryos to lactating dairy cows treated with human chorionic gonadotropin (hCG). Holstein cows (n = 269) were either treated or not treated with 3,300 IU of hCG on d 5 of the estrous cycle and received an embryo collected from heifers fed or not fed gossypol. Embryo donor heifers consumed either 0 or 12 g/d of free gossypol for 76 d prior to embryo collection, resulting in mean plasma gossypol concentrations of 0 and 7.38 microg/mL, respectively. Embryos were transferred on d 7 of the estrous cycle and pregnancy diagnosed 21 and 35 d later. Progesterone was analyzed in plasma collected on d 5 and 12 of the estrous cycle. Treatment with hCG increased the total luteal area on d 12 (818.0 vs. 461.1 mm2) because of increased number of corpora lutea (2.0 vs. 1.0) and increased area of the original corpora lutea (522.7 vs. 443.5 mm2). Plasma progesterone concentrations were similar between treatments on d 5, but increased by d 12 in hCG-treated cows (6.46 vs. 4.78 ng/ mL). Pregnancy rates on d 28 and 42 were not affected by hCG. However, after transfer into lactating cows, embryos collected from heifers not fed gossypol resulted in higher pregnancy rates at 28 d (33.3 vs. 23.1%) and 42 d (29.6 vs. 20.2%) of gestation compared with embryos collected from heifers fed gossypol. Our data suggest that the negative effects of gossypol on fertility are mediated by changes in embryo viability in spite of similar grade quality at transfer.
Gregorini, P; Beukes, P C; Hanigan, M D; Waghorn, G; Muetzel, S; McNamara, J P
2013-08-01
Molly is a deterministic, mechanistic, dynamic model representing the digestion, metabolism, and production of a dairy cow. This study compared the predictions of enteric methane production from the original version of Molly (MollyOrigin) and 2 new versions of Molly. Updated versions included new ruminal fiber digestive parameters and animal hormonal parameters (Molly84) and a revised version of digestive and ruminal parameters (Molly85), using 3 different ruminal volatile fatty acid (VFA) stoichiometry constructs to describe the VFA pattern and methane (CH4) production (g of CH4/d). The VFA stoichiometry constructs were the original forage and mixed-diet VFA constructs and a new VFA stoichiometry based on a more recent and larger set of data that includes lactate and valerate production, amylolytic and cellulolytic bacteria, as well as protozoal pools. The models' outputs were challenged using data from 16 dairy cattle 26 mo old [standard error of the mean (SEM)=1.7], 82 (SEM=8.7) d in milk, producing 17 (SEM=0.2) kg of milk/d, and fed fresh-cut ryegrass [dry matter intake=12.3 (SEM=0.3) kg of DM/d] in respiration chambers. Mean observed CH4 production was 266±5.6 SEM (g/d). Mean predicted values for CH4 production were 287 and 258 g/d for MollyOrigin without and with the new VFA construct. Model Molly84 predicted 295 and 288 g of CH4/d with and without the new VFA settings. Model Molly85 predicted the same CH4 production (276 g/d) with or without the new VFA construct. The incorporation of the new VFA construct did not consistently reduce the low prediction error across the versions of Molly evaluated in the present study. The improvements in the Molly versions from MollyOrigin to Molly84 to Molly85 resulted in a decrease in mean square prediction error from 8.6 to 8.3 to 4.3% using the forage diet setting. The majority of the mean square prediction error was apportioned to random bias (e.g., 43, 65, and 70% in MollyOrigin, Molly84, and Molly85, respectively, on the forage setting, showing that with the updated versions a greater proportion of error was random). The slope bias was less than 2% in all cases. We concluded that, of the versions of Molly used for pastoral systems, Molly85 has the capability to predict CH4 production from grass-fed dairy cows with the highest accuracy. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Xu, Tianle; Tao, Hui; Chang, Guangjun; Zhang, Kai; Xu, Lei; Shen, Xiangzhen
2015-03-07
Dairy cows are often fed a high-concentrate diet to meet lactating demands, yet long-term concentrate feeding induces subacute ruminal acidosis (SARA) and leads to a decrease in milk fat. Stearoyl-CoA desaturase1 (SCD1) participates in fatty acid biosynthesis in the liver of lactating ruminants. Here, we conducted this study to investigate the impact of lipopolysaccharide derived from the rumen on SCD1 expression and on fatty acid composition in the liver of dairy cows fed a high-concentrate diet. Eight multiparous mid-lactating Holstein cows (455 ± 28 kg) were randomly assigned into two groups in the experiment and were fed a low-concentrate diet (LC) or high-concentrate diet (HC) for 18 weeks. The results showed that the total volatile fatty acids and lactic acid accumulated in the rumen, leading to a decreased rumen pH and elevated lipopolysaccharides (LPSs) in the HC group. The long chain fatty acid profile in the rumen and hepatic vein was remarkably altered in the animals fed the HC diet. The triglyceride (TG), non-esterified fatty acid (NEFA) and total cholesterol (TCH) content in the plasma was significantly decreased, whereas plasma glucose and insulin levels were increased. The expression of SCD1 in the liver was significantly down-regulated in the HC group. In regards to transcriptional regulators, the expression of sterol regulatory element binding transcription factors (SREBF1c, SREBF2) and SREBP cleavage activating protein (SCAP) was down-regulated, while peroxisome proliferator-activated receptor α (PPARα) was up-regulated. These data indicate that lipopolysaccharide derived from the rumen down-regulates stearoyl-CoA desaturase 1 expression and alters fatty acid composition in the liver of dairy cows fed a high-concentrate diet.
Streambank Erosion from Grazed Pastures, Grass Filters and Forest Buffers Over a Six-Year Period
USDA-ARS?s Scientific Manuscript database
In agricultural landscapes, streambank erosion, as a source of non-point water pollution, is one of the major contributors to stream habitat degradation. Streambank erosion rates from riparian forest buffers, grass filters and grazed pastures (stocking rates ranged from 0.23 to 1.15 cow-days ha-1 m-...
Prepartum nutrient intake alters palmitate metabolism by liver slices from peripartal dairy cows.
Litherland, N B; Dann, H M; Drackley, J K
2011-04-01
We determined the effects of day relative to parturition and prepartum plane of nutrition on hepatic partitioning of palmitate metabolism to CO2, acid-soluble products (ASP), and esterified products (EP). Multiparous Holsteins (n=74) were fed different amounts of nutrients during the dry period in a 3 (far-off period diet)×2 (close-up period diet) factorial arrangement. During the far-off period (d -60 to -25) cows received a low-energy control diet fed ad libitum (100NRC) to meet National Research Council (NRC) requirements, a moderate-energy diet fed ad libitum to exceed NRC recommendations for net energy of lactation (NEL) by >50% (150NRC), or the same diet fed at restricted intake to provide 80% of NEL requirements (80NRC). During the close-up period (d -24 until parturition), cows were fed a diet for ad libitum intake to meet NRC recommendations or in restricted amounts to provide 80% of calculated NEL requirements. After parturition, all cows had ad libitum access to a lactation diet. Liver slices from biopsies on d -30, -14, 1, 14, and 28 relative to parturition were used to determine conversion of [1-(14)C] palmitate to CO2, ASP, and EP. Across diets, oxidation of palmitate to CO2 was decreased postpartum, whereas oxidation to ASP was increased at d 1 postpartum compared with other times. Conversion of palmitate to EP increased markedly postpartum, with the greatest rates at d 1 postpartum. Conversion of palmitate to CO2 and ASP on d 1 postpartum was lower and the proportion of palmitate metabolism as EP was greater for cows fed 150NRC than for those fed 100NRC or 80NRC. Hepatic triacylglycerol concentration at d 1 postpartum was greatest for cows fed 150NRC. Palmitate metabolism did not differ between close-up diets. Hepatic triacylglycerol was negatively correlated with tissue metabolism of palmitate to CO2 and ASP but positively correlated with metabolism to EP. Hepatic triacylglycerol was highly correlated with NEFA concentrations on the day of calving and d 1 postpartum but not with NEFA prepartum. In contrast, plasma BHBA postpartum was not correlated with hepatic palmitate metabolism by liver slices but was highly correlated with NEFA concentration prepartum. Excessive energy intake during the far-off dry period decreased hepatic palmitate oxidation and shifted palmitate metabolism toward greater esterification, consistent with greater hepatic triacylglycerol accumulation postpartum. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Moriel, P; Scatena, T S; Sá Filho, O G; Cooke, R F; Vasconcelos, J L M
2008-12-01
Two experiments were conducted to investigate the effects of carbohydrate source and processing on serum progesterone (P4) and insulin concentrations of nonlactating dairy cows. In experiment 1, 12 ovariectomized grazing Gir x Holstein cows were stratified by body weight and body condition score, and randomly assigned to receive a supplement containing either finely ground corn or citrus pulp in a Latin square crossover design. Diets were fed individually, twice daily at a rate of 10.9 kg of dry matter per cow. Cows received a controlled intravaginal P4-releasing insert before the beginning of the study, and inserts were replaced every 7 d. During the first experimental period, cows were adapted to treatments from d 0 to 13 and blood was collected on d 14, whereas during the second experimental period cows were adapted to treatments from d 0 to 6 and blood samples were collected on d 7. In both periods, blood samples were collected immediately before and at 1, 2, 3, 4, 5, and 6 h after the first supplement feeding of the collection day. In experiment 2, the cows utilized in experiment 1 were randomly assigned to receive a supplement based on finely ground corn, coarsely ground corn, or high-moisture corn in a Latin square crossover design. Cows were fed and received the controlled intravaginal P4-releasing insert as in experiment 1. Within each of the 3 experimental periods, cows were adapted to diets from d 0 to 6, and blood samples were collected on d 7 as in experiment 1. Time effects were detected in experiments 1 and 2 because insulin concentrations increased by 1 h (4.6 +/- 0.90 vs. 7.4 +/- 0.91 microIU/mL for 0 and 1 h, respectively) and P4 concentrations decreased by 3 h (1.8 +/- 0.12 vs. 1.2 +/- 0.11 ng/mL for 0 and 3 h, respectively) after supplements were offered. In experiment 2, insulin concentrations were greater in cows fed high-moisture corn compared with those fed coarsely or finely ground corn (8.8 +/- 1.05, 5.7 +/- 1.05, and 6.1 +/- 1.05 microIU/mL, respectively). Data combined from both experiments indicated that cows with median insulin >or=4.5 microIU/mL before supplement feeding had greater P4 concentrations at 1 h, but lesser P4 concentrations at 5 h compared with cows with insulin <4.5 microIU/mL. Carbohydrate processing, but not carbohydrate source, affected serum insulin of nonlactating dairy cows.
Mann, S; Yepes, F A Leal; Overton, T R; Wakshlag, J J; Lock, A L; Ryan, C M; Nydam, D V
2015-05-01
The objective was to investigate the effect of different dry cow feeding strategies on the degree of ketonemia postpartum. Epidemiologic studies provide evidence of an association between elevated β-hydroxybutyrate (BHBA) concentrations in postpartum dairy cows and a decreased risk for reproductive success as well as increased risk for several diseases in early lactation, such as displacement of the abomasum and metritis. The plane of energy fed to cows in the prepartum period has been shown to influence ketogenesis and the degree of negative energy balance postpartum. Our hypothesis was that a high-fiber, controlled-energy diet (C) fed during the dry period would lead to a lower degree of hyperketonemia in the first weeks postpartum compared with either a high-energy diet (H), or a diet where an intermediate level of energy would only be fed in the close-up period (starting at 28d before expected parturition), following the same controlled-energy diet in the far-off period. Hyperketonemia in this study was defined as a blood BHBA concentration of ≥1.2mmol/L. Holstein cows (n=84) entering parity 2 or greater were enrolled using a randomized block design and housed in individual tiestalls. All treatment diets were fed for ad libitum intake and contained monensin. Cows received the same fresh cow ration after calving. Blood samples were obtained 3 times weekly before and after calving and analyzed for BHBA and nonesterified fatty acids (NEFA). Milk components, production, and dry matter intake were recorded and energy balance was calculated. Repeated measures ANOVA was conducted for the outcomes dry matter intake, energy balance, BHBA and NEFA concentrations, milk and energy-corrected milk yield, as well as milk composition. Predicted energy balance tended to be less negative postpartum in group C and cows in this group had fewer episodes of hyperketonemia compared with both the intermediate group and group H in the first 3 wk after calving. Postpartum BHBA and NEFA concentrations over time were highest in group H and lowest in group C, whereas milk production was not affected by prepartum plane of energy. Analysis of milk fatty acid composition showed a higher yield of preformed fatty acids in group H compared with group C, suggesting higher lipid mobilization for cows fed H. In this study, a 1-group, controlled-energy dry period approach decreased the degree of negative energy balance as well as the number of episodes and degree of hyperketonemia postpartum. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
McDonnell, Ruairi P; Staines, Martin vH
2017-08-01
This research paper describes the effect of partially replacing wheat with maize grain and canola meal on milk production and body condition changes in early lactation Holstein-Friesian dairy cows consuming a grass silage-based diet over an 83-d period. Two groups of 39 cows were stratified for age, parity, historical milk yield and days in milk (DIM), and offered one of two treatment diets. The first treatment (CON) reflected a typical diet used by Western Australian dairy producers in summer and comprised (kg DM/cow per d); 8 kg of annual ryegrass silage, 6 kg of crushed wheat (provided once daily in a mixed ration), 3·6 kg of crushed lupins (provided in the milking parlour in two daily portions) and ad libitum lucerne haylage. The second treatment diet (COMP) was identical except the 6 kg of crushed wheat was replaced by 6 kg of a more complex concentrate mix (27% crushed wheat, 34% maize grain and 37% canola meal). Lucerne haylage was provided independently in the paddock to all cows, and no pasture was available throughout the experiment. The COMP group had a greater mean overall daily intake (22·5 vs 20·4 kg DM/cow) and a higher energy corrected milk (ECM) yield (29·2 vs 27·1 kg/cow; P = 0·047) than the CON cows. The difference in overall intake was caused by a higher daily intake of lucerne haylage in COMP cows (4·5 vs 2·3 kg DM/cow). The CON group had a higher concentration of milk fat (42·1 vs 39·3 g/kg; P = 0·029) than COMP cows. Milk protein yield was greater in COMP cows (P < 0·021); however, milk fat yield was unaffected by treatment. It is concluded that partially replacing wheat with canola meal and maize grain in a grass silage-based diet increases voluntary DMI of conserved forage and consequently yields of ECM and milk protein.
Huhtanen, P; Cabezas-Garcia, E H; Krizsan, S J; Shingfield, K J
2015-05-01
Concentrations of milk urea N (MUN) are influenced by dietary crude protein concentration and intake and could therefore be used as a biomarker of the efficiency of N utilization for milk production (milk N/N intake; MNE) in lactating cows. In the present investigation, data from milk-production trials (production data set; n=1,804 cow/period observations from 21 change-over studies) and metabolic studies involving measurements of nutrient flow at the omasum in lactating cows (flow data set; n=450 cow/period observations from 29 studies) were used to evaluate the influence of between-cow variation on the relationship of MUN with MNE, urinary N (UN) output, and diet digestibility. All measurements were made on cows fed diets based on grass silage supplemented with a range of protein supplements. Data were analyzed by mixed-model regression analysis with diet within experiment and period within experiment as random effects, allowing the effect of diet and period to be excluded. Between-cow coefficient of variation in MUN concentration and MNE was 0.13 and 0.07 in the production data set and 0.11 and 0.08 in the flow data set, respectively. Based on residual variance, the best model for predicting MNE developed from the production data set was MNE (g/kg)=238 + 7.0 × milk yield (MY; kg/d) - 0.064 × MY(2) - 2.7 × MUN (mg/dL) - 0.10 body weight (kg). For the flow data set, including both MUN and rumen ammonia N concentration with MY in the model accounted for more variation in MNE than when either term was used with MY alone. The best model for predicting UN excretion developed from the production data set (n=443) was UN (g/d)=-29 + 4.3 × dry matter intake (kg/d) + 4.3 × MUN + 0.14 × body weight. Between-cow variation had a smaller influence on the association of MUN with MNE and UN output than published estimates of these relationships based on treatment means, in which differences in MUN generally arise from variation in dietary crude protein concentration. For the flow data set, between-cow variation in MUN and rumen ammonia N concentrations was positively associated with total-tract organic matter digestibility. In conclusion, evaluation of phenotypic variation in MUN indicated that between-cow variation in MUN had a smaller effect on MNE compared with published responses of MUN to dietary crude protein concentration, suggesting that a closer control over diet composition relative to requirements has greater potential to improve MNE and lower UN on farm than genetic selection. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Fenugreek (Trigonella foenum-graecum L.) as an alternative forage for dairy cows.
Alemu, A W; Doepel, L
2011-08-01
Fenugreek is a novel forage crop in Canada that is generating interest as an alternative to alfalfa for dairy cows. To evaluate the value of fenugreek haylage relative to alfalfa haylage, six, second lactation Holstein cows (56 ± 8 days in milk), which were fitted with rumen cannulas (10 cm i.d., Bar Diamond Inc., Parma, ID, USA) were used in a replicated three × three Latin square design with 18-day periods. Diets consisting of 400 g/kg haylage, 100 g/kg barley silage and 500 g/kg concentrate on a dry matter (DM) basis were fed once daily for ad libitum intake. The haylage component constituted the dietary treatments: (i) Agriculture and Agri-Food Canada F70 fenugreek (F70), (ii) Crop Development Center Quatro fenugreek (QUAT) and (iii) alfalfa (ALF). DM intake (DMI), milk yield and milk protein and lactose yields were higher (P < 0.001) for cows fed ALF than fenugreek (FEN, average of F70 and QUAT). Milk fat of cows fed FEN contained lower concentrations of saturated, medium-chain and hypercholestrolemic fatty acids (FAs; P < 0.05) than that of cows fed ALF. Apparent total tract digestibility of DM and nutrients was not affected by treatments. Similarly, individual ruminal volatile FA concentrations and rumen pH (5.9) were not affected by treatments. Rumen ammonia-N concentration was higher for FEN than ALF (P < 0.001). Estimates of neutral detergent fiber (NDF) passage rate (P < 0.05) and NDF turnover rate (P < 0.001) in the rumen were higher for ALF than FEN. Our results suggest that although the digestibility of the FEN diets was not different from that of the ALF diet, fenugreek haylage has a lower feeding value than ALF for lactating dairy cows due in part to lower DMI and subsequently lower milk yield.
Intestinal blood loss during cow milk feeding in older infants: quantitative measurements.
Jiang, T; Jeter, J M; Nelson, S E; Ziegler, E E
2000-07-01
To determine the response, in terms of fecal hemoglobin excretion and clinical symptoms, of normal 9 1/2-month-old infants to being fed cow milk. Longitudinal (before-after) trial in which each infant was fed formula for 1 month (baseline) followed by 3 months during which cow milk was fed. Healthy infants living in Iowa City, Iowa, a town with a population of about 60,000. Hemoglobin concentration in spot stools, 96-hour quantitative fecal hemoglobin excretion, stool characteristics, feeding-related behaviors, and iron nutritional status. Fecal hemoglobin concentration during formula feeding (baseline) was higher than previously observed in younger infants. Nine of 31 infants responded to cow milk feeding with increased fecal hemoglobin concentration. Fecal hemoglobin concentration (mean +/- SD) of the 9 responders rose from 1,395 +/- 856 microg/g of dry stool (baseline) to 2,711 +/- 1,732 microg/g of dry stool (P=.01). The response rate (29%) was similar to that in younger infants, but the intensity of the response was much less. Quantitative hemoglobin excretion was in general agreement with estimates based on spot stool hemoglobin concentrations. Cow milk feeding was not associated with recognizable changes in stool characteristics, nor were there clinical signs related to fecal blood loss. Iron status was similar, except that after 3 months of cow milk feeding responders showed lower (P= .047) ferritin concentrations than nonresponders. Cow milk-induced blood loss is present in 9 1/2-month-old infants but is of such low intensity that its clinical significance seems questionable. Nevertheless, infants without cow milk-induced blood loss were in better iron nutritional status than infants who showed blood loss.
Farahani, T Amirabadi; Amanlou, H; Kazemi-Bonchenari, M
2017-08-01
This experiment was conducted to compare conventional (CON; 21 d) and shortened (SH; 10 d) close-up period, and evaluate the effect of shortened close-up period combined with feeding different metabolizable protein (MP) levels on dry matter (DM) intake, metabolic status, and performance of dairy cows. Forty-eight multiparous Holstein cows with similar parity, body weight (BW), and previous lactation milk yield were divided into 2 groups. The first group (n = 24) received the far-off diet from -60 to -21 d (CON), and the second group (n = 24) received same far-off diet from -60 to -10 d (SH) relative to expected parturition. Cows were then moved to individual stalls and randomly allocated to 1 of 3 close-up diets: low MP diet (LMP; MP = 79 g/kg of DM), medium MP diet (MMP; MP = 101 g/kg of DM), or high MP diet (HMP; MP = 118 g/kg of DM). Treatments were used in a 2 × 3 factorial arrangement with 2 lengths of close-up period (CON and SH) and 3 levels of MP (LMP, MMP, and HMP). All diets were fed for ad libitum intake during the close-up period. After calving, all cows received the same fresh cow diet. We found no interaction between close-up period length and MP levels for traits, except for postpartum serum fatty acids and β-hydroxybutyrate (BHB). The concentrations of postpartum serum fatty acids and BHB were higher on LMP than MMP and HMP diets in SH group. The cows of the SH group tended to produce less colostrum in the first milking than cows in CON group. The length of close-up period did not affect pre- and postpartum DM intake or energy balance of cows during the last week of prepartum, but cows of the CON group had greater BW changes during the last 3 wk before parturition than cows in SH group. Cows fed MMP and HMP diets consumed 1.2 and 1 kg more DM than for those fed LMP prepartum, respectively. The concentrations of prepartum BHB and Ca were higher for SH cows than CON group cows. Except for blood urea N concentration, no other blood metabolite in prepartum was affected by dietary MP. We found no effects of close-up period length or MP levels in the close-up diet on urinary pH, purine derivative excretion, and microbial N flow. Postpartum, milk yield was not affected by close-up period length, but cows in CON group tended to have higher 4% fat-corrected milk yield, had higher milk fat content and yield, had greater BW and body condition score loss, and higher energy negative balance than cows in the SH group. Cows fed MMP diet ate 1.8 kg more DM and yielded 3.37 kg more milk than those fed the LMP diet. Milk fat, protein, and lactose content, milk urea N, and somatic cell count were not affected by MP levels, but the yield of milk protein and lactose were higher on MMP diet than on LMP diet. Concentrations of postpartum serum fatty acids and BHB were decreased by shortening the close-up period length, but glucose, cholesterol, and triglyceride were similar between close-up groups. During the postpartum period, serum fatty acids, BHB, aminotransferase, and Ca concentrations were decreased by increasing the MP levels in the close-up diet. It appears from this data set that multiparous cows will benefit from a shortened close-up period, and feeding a moderate MP diet could improve DM intake, milk yield, and metabolic status of periparturient dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to evaluate methane (CH4) and ammonia (NH3) emissions of lactating dairy cows fed different starch level and corn silage type. After the completion of an 8-wk production study, 48 Holstein cows were allocated to 1 of 4 air-flow controlled chambers (2 cows/chamber) for...
Gao, X; Oba, M
2015-08-01
The objective of the current study was to evaluate if milk urea nitrogen (MUN) and milk fat content could be used as the noninvasive indicator to identify cows with greater or lower risk of subacute ruminal acidosis (SARA). Our hypothesis was that cows with lower MUN and milk fat content would have greater risk of SARA, whereas cows with higher MUN and milk fat content would have lower risk of SARA. In the screening study, 35 late-lactating Holstein cows (DIM=250±71.1; BW=601±45.4kg) were fed a high-grain diet containing 35% forage and 65% concentrate mix ad libitum for 21 d. Concentration of MUN ranged from 5.7 to 13.9Mg/dL among the 35 cows, and the average milk fat content was 3.5%. Then, 5 cows with highest MUN concentrations with milk fat higher than 3.5% were selected as animals that presumably have low risk of SARA, and 5 cows with lowest MUN concentrations with milk fat less than 3.5% were selected as animals that presumably have high risk of SARA. These 10 animals were ruminally cannulated during the subsequent dry period. As 1 low-risk cow was culled due to fatty liver, 9 animals (DIM=122±33.2; BW=615±49.1kg) were used in the subsequent study in the following lactation. All cows were fed a high-grain diet consisting of 35% forage and 65% concentrate mix ad libitum for 21 d. Ruminal pH was measured every 30 s for 72 h. Minimum (5.75 vs. 5.30) and mean ruminal pH (6.35 vs. 6.04) was higher for low- compared with high-risk animals. In addition, duration of rumen pH below 5.8 was shorter in low-risk animals (52.5 vs. 395min/d). These results suggested that MUN and milk fat content in late-lactating cows fed a high-grain diet may be used to identify cows that have higher or lower risk of SARA. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Basarab, John; Baron, Vern; López-Campos, Óscar; Aalhus, Jennifer; Haugen-Kozyra, Karen; Okine, Erasmus
2012-01-01
Simple Summary A spring calving herd (~350 beef cows) over two production cycles was used to compare the whole-farm greenhouse gas (GHG) emissions among calf-fed vs. yearling-fed production systems, with and without growth implants. Farm GHG emissions initially included enteric CH4, manure CH4 and N2O, cropping N2O, and energy use CO2. The carbon footprint ranged from 19.9–22.5 kg CO2e per kg carcass weight. Including soil organic carbon loss from annual cropping and carbon sequestration from perennial pastures and haylands further reduced the carbon footprint by 11–16%. The carbon footprint of beef was reduced by growth promotants (4.9–5.1%) and by calf-fed beef production (6.3–7.5%). Abstract A spring calving herd consisting of about 350 beef cows, 14–16 breeding bulls, 60 replacement heifers and 112 steers were used to compare the whole-farm GHG emissions among calf-fed vs. yearling-fed production systems with and without growth implants. Carbon footprint ranged from 11.63 to 13.22 kg CO2e per kg live weight (19.87–22.52 kg CO2e per kg carcass weight). Enteric CH4 was the largest source of GHG emissions (53–54%), followed by manure N2O (20–22%), cropping N2O (11%), energy use CO2 (9–9.5%), and manure CH4 (4–6%). Beef cow accounted for 77% and 58% of the GHG emissions in the calf-fed and yearling-fed. Feeders accounted for the second highest GHG emissions (15% calf-fed; 35–36% yearling-fed). Implants reduced the carbon footprint by 4.9–5.1% compared with hormone-free. Calf-fed reduced the carbon footprint by 6.3–7.5% compared with yearling-fed. When expressed as kg CO2e per kg carcass weight per year the carbon footprint of calf-fed production was 73.9–76.1% lower than yearling-fed production, and calf-fed implanted was 85% lower than hormone-free yearling-fed. Reducing GHG emissions from beef production may be accomplished by improving the feed efficiency of the cow herd, decreasing the days on low quality feeds, and reducing the age at harvest of youthful cattle. PMID:26486917
Serum bile acid concentrations in dairy cattle with hepatic lipidosis.
Garry, F B; Fettman, M J; Curtis, C R; Smith, J A
1994-01-01
This study was designed to evaluate serum bile acid measurements as indicatory, of liver function and/or hepatic fat infiltration in dairy cattle. Serum bile acid concentrations were measured in healthy dairy cattle at different stages of lactation after fasting or feeding. Bile acid concentrations were compared with liver fat content and sulfobromophthalein (BSP) half-life (T 1/2). Serum bile acid concentrations were higher in cows in early lactation and with higher daily milk production. Compared with prefasting values, bile acid concentrations were decreased at 8, 14, and 24 hours of fasting. Blood samples from fed cows at 1- to 2-hour intervals had wide and inconsistent variations in bile acid concentration. Because serum bile acids correlated well with BSP T 1/2, it is suggested that both measurements evaluate a similar aspect of liver function. Neither bile acids nor BSP T 1/2 correlated with differences in liver fat content among cows. Because of large variability in serum bile acid concentrations in fed cows and the lack of correlation of measured values with liver fat content, bile acid determinations do not appear useful for showing changes in hepatic function in fed cows with subclinical hepatic lipidosis nor serve as a screening test for this condition.
2012-01-01
Background Contemporary dairy breeding goals have broadened to include, along with milk production traits, a number of non-production-related traits in an effort to improve the overall functionality of the dairy cow. Increased indirect selection for resistance to mastitis, one of the most important production-related diseases in the dairy sector, via selection for reduced somatic cell count has been part of these broadened goals. A number of genome-wide association studies have identified genetic variants associated with milk production traits and mastitis resistance, however the majority of these studies have been based on animals which were predominantly kept in confinement and fed a concentrate-based diet (i.e. high-input production systems). This genome-wide association study aims to detect associations using genotypic and phenotypic data from Irish Holstein-Friesian cattle fed predominantly grazed grass in a pasture-based production system (low-input). Results Significant associations were detected for milk yield, fat yield, protein yield, fat percentage, protein percentage and somatic cell score using separate single-locus, frequentist and multi-locus, Bayesian approaches. These associations were detected using two separate populations of Holstein-Friesian sires and cows. In total, 1,529 and 37 associations were detected in the sires using a single SNP regression and a Bayesian method, respectively. There were 103 associations in common between the sires and cows across all the traits. As well as detecting associations within known QTL regions, a number of novel associations were detected; the most notable of these was a region of chromosome 13 associated with milk yield in the population of Holstein-Friesian sires. Conclusions A total of 276 of novel SNPs were detected in the sires using a single SNP regression approach. Although obvious candidate genes may not be initially forthcoming, this study provides a preliminary framework upon which to identify the causal mechanisms underlying the various milk production traits and somatic cell score. Consequently this will deepen our understanding of how these traits are expressed. PMID:22449276
Côrtes, Cristiano; da Silva-Kazama, Daniele; Kazama, Ricardo; Benchaar, Chaouki; dos Santos, Geraldo; Zeoula, Lucia M; Gagnon, N; Petit, Hélène V
2013-02-14
Ruminal microbiota plays an important role in the conversion of plant lignans into mammalian lignans. The main mammalian lignan present in the milk of dairy cows fed flax products is enterolactone (EL). The objectives of the present study were to investigate the effects of abomasal infusion of flax oil on the metabolism of flax lignans and concentrations of EL in biological fluids of dairy cows. A total of six rumen-cannulated dairy cows were assigned within a 2 × 3 factorial arrangement of six treatments utilising flax hulls (0 and 15·9 % of DM) and abomasal infusion of flax oil (0, 250 and 500 g/d). There were six periods of 21 d each. Samples were collected during the last 7 d of each period and subjected to chemical analysis. Flax hull supplementation increased concentrations of EL in ruminal fluid, plasma, urine and milk, while flax oil infusion had no effect. Post-feeding, β-glucuronidase activity in the ruminal fluid of cows infused with 250 g flax oil was significantly lower for cows fed hulls than for those fed the control diet. The present study demonstrated that the presence of a rich source of n-3 fatty acids such as flax oil in the small intestine does not interfere with the absorption of the mammalian lignan EL and that lower ruminal β-glucuronidase activity had no effect on the conversion of flax lignans into EL in the rumen of dairy cows.
Effect of maternal dietary exclusion on breast fed infants with eczema: two controlled studies.
Cant, A J; Bailes, J A; Marsden, R A; Hewitt, D
1986-01-01
Thirty seven breast fed infants with eczema were studied to see whether changes in their mothers' diets affected their skin condition. Nineteen mothers and babies took part in a double blind crossover trial of exclusion of egg and cows' milk, and 18 took part in open exclusion of 11 foods followed by double blind challenge to those mothers whose infants seemed to respond. Babies were examined at the beginning and end of each dietary period, and the extent and severity of the rash were given a numerical score. The eczema improved in six infants when their mothers avoided egg and cows' milk and worsened again when these were reintroduced. Two infants suffered gastrointestinal reactions after maternal ingestion of egg and cows' milk, one developing colitis. Maternal dietary exclusion seems to benefit some breast fed babies with eczema. PMID:3089466
Carrillo, José A.; He, Yanghua; Li, Yaokun; Liu, Jianan; Erdman, Richard A.; Sonstegard, Tad S.; Song, Jiuzhou
2016-01-01
Beef represents a major dietary component and source of protein in many countries. With an increasing demand for beef, the industry is currently undergoing changes towards naturally produced beef. However, the true differences between the feeding systems, especially the biochemical and nutritional aspects, are still unclear. Using transcriptome and metabolome profiles, we identified biological pathways related to the differences between grass- and grain-fed Angus steers. In the latissimus dorsi muscle, we have recognized 241 differentially expressed genes (FDR < 0.1). The metabolome examinations of muscle and blood revealed 163 and 179 altered compounds in each tissue (P < 0.05), respectively. Accordingly, alterations in glucose metabolism, divergences in free fatty acids and carnitine conjugated lipid levels, and altered β-oxidation have been observed. The anti-inflammatory n3 polyunsaturated fatty acids are enriched in grass finished beef, while higher levels of n6 PUFAs in grain finished animals may promote inflammation and oxidative stress. Furthermore, grass-fed animals produce tender beef with lower total fat and a higher omega3/omega6 ratio than grain-fed ones, which could potentially benefit consumer health. Most importantly, blood cortisol levels strongly indicate that grass-fed animals may experience less stress than the grain-fed individuals. These results will provide deeper insights into the merits and mechanisms of muscle development. PMID:27185157
Carrillo, José A; He, Yanghua; Li, Yaokun; Liu, Jianan; Erdman, Richard A; Sonstegard, Tad S; Song, Jiuzhou
2016-05-17
Beef represents a major dietary component and source of protein in many countries. With an increasing demand for beef, the industry is currently undergoing changes towards naturally produced beef. However, the true differences between the feeding systems, especially the biochemical and nutritional aspects, are still unclear. Using transcriptome and metabolome profiles, we identified biological pathways related to the differences between grass- and grain-fed Angus steers. In the latissimus dorsi muscle, we have recognized 241 differentially expressed genes (FDR < 0.1). The metabolome examinations of muscle and blood revealed 163 and 179 altered compounds in each tissue (P < 0.05), respectively. Accordingly, alterations in glucose metabolism, divergences in free fatty acids and carnitine conjugated lipid levels, and altered β-oxidation have been observed. The anti-inflammatory n3 polyunsaturated fatty acids are enriched in grass finished beef, while higher levels of n6 PUFAs in grain finished animals may promote inflammation and oxidative stress. Furthermore, grass-fed animals produce tender beef with lower total fat and a higher omega3/omega6 ratio than grain-fed ones, which could potentially benefit consumer health. Most importantly, blood cortisol levels strongly indicate that grass-fed animals may experience less stress than the grain-fed individuals. These results will provide deeper insights into the merits and mechanisms of muscle development.
Doorenbos, J; Martín-Tereso, J; Dijkstra, J; van Laar, H
2017-07-01
Aggregating rumen degradation characteristics of different carbohydrate components into the term modeled rapidly degradable carbohydrates (mRDC) can simplify diet formulation by accounting for differences in rate and extent of carbohydrate degradation within and between feedstuffs. This study sought to evaluate responses of lactating dairy cows to diets formulated with increasing levels of mRDC, keeping the supply of other nutrients as constant as possible. The mRDC content of feedstuffs was calculated based on a simple rumen model including soluble, washable, and nonwashable but potentially degradable fractions, as well as the fractional degradation and passage rates, of sugar, starch, neutral detergent fiber, and other carbohydrates. The mRDC term effectively represents the total amount of carbohydrates degraded in the rumen within 2 h after ingestion. Fifty-two lactating Holstein cows (of which 4 were rumen fistulated) were assigned to 4 treatments in a 4 × 4 Latin square design. Treatments were fed as a total mixed ration consisting of 25.4% corn silage, 23.1% grass silage, 11.6% grass hay, and 39.9% concentrate on a dry matter basis. Differences in mRDC were created by exchanging nonforage neutral detergent fiber-rich ingredients (mainly sugar beet pulp) with starch-rich ingredients (mainly wheat) and by exchanging corn (slowly degradable starch) with wheat (rapidly degradable starch) in the concentrate, resulting in 4 treatments that varied in dietary mRDC level of 167, 181, 194, or 208 g/kg of dry matter. Level of mRDC did not affect dry matter intake. Fat- and protein-corrected milk production and milk fat and lactose yield were greatest at 181 mRDC and decreased with further increases in mRDC. Milk protein yield and concentration increased with increasing mRDC level. Mean rumen pH and diurnal variation in ruminal pH did not differ between treatments. Total daily meal time and number of visits per meal were smaller at 181 and 194 mRDC. Despite milk production responses, increasing dietary mRDC levels, while maintaining net energy and intestinal digestible protein as well as other nutrients at similar levels, did not influence rumen pH parameter estimates and had minor effects on feeding behavior. These results indicate that aggregating rapidly degradable carbohydrate content into one term may be a simple way to further improve predictability of production responses in practical diet formulation for lactating dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Hausler, K; Godden, S M; Schneider, M J; Lightfield, A R; Bulthaus, M; Haines, D
2013-04-01
The objective was to conduct a study to investigate if violative meat residues are detected in very young bob veal calves that are fed first-milking colostrum harvested from cows that were dry treated, on-label, with cephapirin benzathine. First-milking colostrum was collected from cows that were given intramammary treatment at dry off, on-label, with cephapirin benzathine (ToMORROW, Boehringer Ingelheim Vetmedica Inc., St. Joseph, MO). Newborn bull calves meeting study inclusion criteria were removed from their dams shortly after birth and before suckling, and assigned to 1 of 2 trials. For the first trial, 6 treated calves were fed 3.8L of fresh maternal colostrum and 1 control calf was fed 1.5 doses of a plasma-derived colostrum replacer (Secure Calf Colostrum Replacer, VitaPlus Inc., Madison, WI) within 1h after birth. For the second trial, 5 treated calves were fed 3.8L of fresh maternal colostrum and 1 control calf was fed 1.5 doses of Secure Calf Colostrum Replacer within 1h after birth. All calves were humanely euthanized at 24h (trial 1) or 48h (trial 2) of age, and tissues were harvested for antimicrobial residue testing. Samples of maternal colostrum and colostrum replacer were also submitted for antimicrobial residue testing. Kidneys collected from all study calves tested negative for cephapirin benzathine residues when using both the KIS assay (Charm Sciences, Lawrence, MA) and liquid chromatography-tandem mass spectrometry analysis. The potential transfer of cephapirin from cows treated on-label at dry off to calves via colostrum may not be a significant source of cephapirin residues in veal tissues. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Carder, E G; Weiss, W P
2017-06-01
The first few weeks after parturition is marked by low, but increasing feed intake and sharply increasing milk production by dairy cows. Because of low intake, the nutrient density of the diet may need to be higher during this period to support increasing milk yields. We hypothesized that feeding higher levels of metabolizable protein (MP) or a protein supplement with rumen-protected lysine and methionine during the immediate postpartum period would increase yields of milk and milk components. Fifty-six Holstein cows (21 primiparous and 35 multiparous) starting at 3 d in milk were used in a randomized block design. In phase 1 (3 through 23 d in milk), cows were fed 1 of 3 diets that differed in supply of MP and AA profile. At 23 d in milk, all cows were moved to a common freestall pen and fed the control diet used in phase 1 for an additional 63 d (phase 2). Diets were formulated using the National Research Council model and were control [16.5% crude protein (CP), 10.9% rumen-degradable protein (RDP), and 5.6% rumen-undegradable protein (RUP)], high MP (HMP; 18.5% CP, 11.6% RDP, 6.9% RUP), and AA (MPAA; 17.5% CP, 10.5% RDP, 7.0% RUP 29.7). The MPAA diet included a proprietary spray-dried blood meal product (Perdue Agribusiness, Salisbury, MD) and contained a model-estimated 7.2 and 2.6% of digestible lysine and methionine (% of MP). The HMP and control diets contained 6.3 and 6.7% digestible lysine and both had 1.8% digestible methionine. In phase 1, diet did not affect milk yield (33.6, 34.7, and 33.2 kg for control, HMP, and MPAA, respectively), dry matter intake (17.8, 18.0, and 18.5 kg/d for control, HMP, and MPAA), or milk protein yield (1.07 kg/d). Feeding additional protein (HMP or MPAA) increased both the concentration and yield of milk fat, and milk protein concentration was greater (3.30 vs. 3.17%) for MPAA compared with the HMP diet. Energy-corrected milk was greater (38.4 and 38.6 vs. 35.3 kg/d, respectively) for MPAA and HP than for the control. Cows fed MPAA had the greatest plasma concentrations of Met and the lowest concentrations of isoleucine, but lysine was not affected by treatment. Feeding additional MP (HMP or MPAA) reduced the concentrations of 3-methylhistidine in plasma, indicating reduced muscle breakdown. Diet effects on milk composition continued after cows were changed to a common diet in that cows fed MPAA the first 3 wk of lactation had greater concentration of milk protein for the entire experiment than cows fed HMP, and cows fed additional MP (HMP and MPAA) during phase 1 had greater concentrations of milk fat for the entire experiment. Increasing dietary protein and AA supply in early lactation had short-term effects on yield of energy-corrected milk and long-term effects on milk composition. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ferreira, Gonzalo; Brown, Alston N; Teets, Christy L
2015-09-01
We hypothesized that pantothenic acid reduces the absorption of biotin in lactating dairy cows. Therefore, the objective of this study was to evaluate the plausible interaction between biotin and pantothenic acid on production performance and concentration of avidin-binding substances (ABS), an indicator of biotin concentration, in blood and milk of lactating dairy cows. Eight primiparous and 16 multiparous Holstein cows were assigned to 1 of 4 diet sequences in a replicated 4×4 Latin square design with 18-d periods. Cows were housed in a freestall barn and fed once daily (0730 h) by means of a Calan gate system (American Calan Inc., Northwood, NH). Treatments consisted of a control diet that contained no B-vitamins, a biotin diet that contained 0.87 mg of biotin per kilogram of dry matter (DM), a pantothenic acid diet that contained 21 mg of pantothenic acid per kilogram of DM, and a biotin plus pantothenic acid diet that contained 0.87 mg of biotin and 21 mg of calcium pantothenic acid per kilogram of DM. Four different concentrates were prepared in a commercial feed mill. These concentrates were mixed with corn silage and grass hay and delivered ad libitum as a total mixed ration. Biotin supplementation did not affect DM intake, milk yield, or milk fat, protein, lactose, and milk-urea-nitrogen concentrations. Fat, protein, and lactose yields were not affected by treatments. The fat-to-protein ratio was <1 and similar among all treatments. Biotin supplementation did not increase the concentration of ABS in plasma. The supplementation of pantothenic acid did not affect the concentration of ABS in plasma when either supplemented alone or in combination with biotin. Biotin supplementation increased the concentration of ABS in milk relative to control. Contrary to our hypothesis, the supplementation of pantothenic acid did not decrease the concentration of ABS in milk relative to the control. When cows were supplemented with both biotin and pantothenic acid, the concentration of ABS in milk was similar to that of cows supplemented with biotin alone. In conclusion, pantothenic acid did not affect the concentrations of ABS in plasma and milk, suggesting that increasing dietary supply of pantothenic acid did not inhibit biotin absorption. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
We evaluated the immune modulatory effects as well as effects on productivity of Bovamine® (Lactobacillus acidophilus strain NP51 and Probionibacterium freudenreichii) fed to Holstein and Jersey dairy cows during late lactation (average DIM = 202.44 days on wk-0). Cows were randomized to treatment g...
Circulating blood metabolites in early-lactation dairy cows fed canola or soybean meals
USDA-ARS?s Scientific Manuscript database
A successful transition from pregnancy to lactation is imperative for dairy cows to maximize milk production potential. Altering the dietary protein source can change the availability of energy to the cow. The objective of this experiment was to evaluate the effect of crude protein (CP) source canol...
USDA-ARS?s Scientific Manuscript database
Ground beef has potential to be a relatively inexpensive and sustainable source of n-3 FA for people who frequently consume it, but don’t consume n-3 containing fish. To enhance n-3 FA content in ground beef, we evaluated FA content in pertinent muscles from grass-fed cattle that were supplemented ...
Feeding Vegetarian and Vegan Infants and Toddlers
... vegans) if breast-feeding is decreased or stopped. Cow's milk, soy milk, rice milk and homemade formulas ... milk: at least one quart per day of cow's or soy milk. Calcium: Breast- and formula-fed ...
Lee, M R F; Connelly, P L; Tweed, J K S; Dewhurst, R J; Merry, R J; Scollan, N D
2006-11-01
The experiment investigated the digestion of lipids from different forage silages in beef steers. Six Hereford x Friesian steers prepared with rumen and duodenal cannulas were given ad libitum access to a high-sugar grass silage, control grass silage, red clover silage, or mixtures of the red clover and each of the grass silages (50:50, DM basis). The experiment was conducted as an incomplete 5 x 5 Latin square, with an additional randomly repeated sequence. Total fatty acid and C18:3n-3 concentrations were greater (P < 0.05) for the high-sugar grass silage than the control grass silage or the red clover silage. Dry matter and total fatty acid intake were less (P < 0.05) for steers fed the control grass silage than for steers fed the other diets. Duodenal flow of C18:3n-3 was greater (P < 0.05), and flows of C18:0 and total C18:1 trans were less (P < 0.05), for the red clover silage compared with the 2 grass silage diets, with the mixtures intermediate. These results were supported by a reduction (P < 0.05) in biohydrogenation of C18:3n-3 for the red clover silage, with the mixtures again being intermediate. Flows of total branched- and odd-chain fatty acids were greater (P < 0.05) for the high-sugar grass silage diet, possibly as a result of greater microbial flow, because these fatty acids are associated with bacterial lipid. Duodenal flows of the chlorophyll metabolite, phytanic acid, were greater (P < 0.05) for animals fed the high-sugar grass silage treatments compared with the other treatments. These results confirm the potential for modifying the fatty acid composition of ruminant products by feeding red clover silage.
Jami, E; Shterzer, N; Yosef, E; Nikbachat, M; Miron, J; Mizrahi, I
2014-03-01
This study measured the effects of including 5% NaOH-treated corn straw (T-CS) as a substitute for 15% wheat hay in the control total mixed ration (TMR) of lactating cows on performance, digestibility, and rumen microbial profile. Two groups of 21 cows each, similar in initial performance, were fed individually 1 of the 2 TMR examined. Voluntary dry matter intake of cows fed the control TMR was 4.3% higher than that of the T-CS cows, but in vivo dry matter and organic matter digestibilities of both groups were similar. Crude protein digestibility was higher in the control cows but digestibility of neutral detergent fiber polysaccharides (cellulose and hemicelluloses) was higher in the T-CS TMR. This was followed by 4.6% reduction in rumination time of the T-CS group. A slightly higher milk yield was observed in the control cows compared with the T-CS group; however, milk fat and milk protein content were higher in cows fed the T-CS TMR. This was reflected in 1.3% increase in energy-corrected milk yield and 5.34% increase in production efficiency (energy-corrected milk yield/intake) of the T-CS cows compared with the control. Welfare of the cows, as assessed by length of daily recumbence time, was improved by feeding the T-CS TMR relative to the control group. As a whole, the rumen bacterial community was significantly modulated in the T-CS group in the experimental period compared with the preexperimental period, whereas the bacterial community of the control group remained unchanged during this period. Out of the 8 bacterial species that were quantified using real-time PCR, a notable decrease in cellulolytic bacteria was observed in the T-CS group, as well as an increase in lactic acid-utilizing bacteria. These results illustrate the effect of T-CS on the composition of rumen microbiota, which may play a role in improving the performance of the lactating cow. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The objective of this experiment was to determine the effect of endophyte toxicity in clover additions to tall fescue pastures used as a limit-grazed complement to warm-season grass pastures. Over 3 years, beef cows (n = 108, Year 1; n = 72, Year 2 and 3; initial fall body weight = 480 ± 8.6 kg, bo...
Zimbelman, R B; Baumgard, L H; Collier, R J
2010-06-01
Twelve multiparous Holstein cows (145+/-9 d in milk) were randomly assigned to receive either 0 g/d of encapsulated niacin (control diet; C) or 12 g/d of encapsulated niacin (NI) and were exposed to thermoneutral (TN; 7 d) or heat stress (HS; 7 d) conditions in climate-controlled chambers. The temperature-humidity index during TN conditions never exceeded 72, whereas HS conditions consisted of a circadian temperature range in which the temperature-humidity index exceeded 72 for 12 h/d. Measures of thermal status obtained 4 times/d included respiration rate (RR); rectal temperature; surface temperature of both shaved and unshaved areas at the rump, shoulder, and tail head; vaginal temperature; and evaporative heat loss (EVHL) of the shoulder shaved and unshaved areas. Cows fed NI had increased free plasma niacin concentrations in both the TN and HS periods (1.70 vs. 1.47+/-0.17 microg/mL). Milk yield did not differ between dietary groups or periods. Dry matter intake was not affected by NI, but decreased (3%) for both C and NI treatments during HS. Water intake was increased during HS in both treatments (C: 40.4 vs. 57.7+/-0.8L/d for TN and HS, respectively; NI: 52.7 vs. 57.7+/-0.8 L/d for TN and HS, respectively). Average EVHL for shaved and unshaved skin for C and NI treatments was higher during HS (90.1 vs. 108.1 g/m(2) per hour) than TN (20.7 vs. 15.7+/-4.9 g/m(2) per hour). Between 1000 and 1600 h, mean EVHL for shaved and unshaved areas for NI fed cows was higher than for C fed cows (106.9 vs. 94.4+/-4.9 g/m(2) per hour). The NI fed cows had decreased rectal temperatures during HS compared with the C fed cows (38.17 vs. 38.34+/-0.07 degrees C) and had lower vaginal temperatures (38.0 vs. 38.4+/-0.02 degrees C). Calculated metabolic rate decreased during HS regardless of diet (50.25 and 49.70+/-0.48 kcal/kg of body weight per day for TN and HS, respectively). Feeding NI increased free plasma NI levels, increased EVHL during peak thermal load, and was associated with a small but detectable reduction in rectal and vaginal temperatures in lactating dairy cows experiencing a mild thermal load. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunningham, O.C.; Addington, L.H.
1937-01-01
Alfalfa which was produced in the proximity of a smelting company was fed to dairy cows and the results compared to dairy cows fed a matched crop which was grown many miles away. The fumigated alfalfa had 20% or more of the leaflets that were affected. The feeding experiment lasted 90 days with milk and butter fat production carefully determined and a sulfur analysis was made of each hay. Results indicate that there were no significant difference in milk or in butter fat production, nor in the weight of the cows in favor of either ration.
Hammond, K J; Jones, A K; Humphries, D J; Crompton, L A; Reynolds, C K
2016-10-01
Strategies to mitigate greenhouse gas emissions from dairy cattle are unlikely to be adopted if production or profitability is reduced. The primary objective of this study was to examine the effects of high maize silage (MS) versus high grass silage (GS) diets, without or with added neutral detergent fiber (NDF) on milk production and methane emission of dairy cattle, using GreenFeed (GF) or respiration chamber (RC) techniques for methane emission measurements. Experiment 1 was 12wk in duration with a randomized block continuous design and 40 Holstein cows (74d in milk) in free-stall housing, assigned to 1 of 4 dietary treatments (n=10 per treatment), according to calving date, parity, and milk yield. Milk production and dry matter intake (DMI) were measured daily, and milk composition measured weekly, with methane yield (g/kg of DMI) estimated using a GF unit (wk 10 to 12). Experiment 2 was a 4×4 Latin square design with 5-wk periods and 4 dairy cows (114d in milk) fed the same 4 dietary treatments as in experiment 1. Measurements of DMI, milk production, and milk composition occurred in wk 4, and DMI, milk production, and methane yield were measured for 2d in RC during wk 5. Dietary treatments for both experiments were fed as total mixed rations offered ad libitum and containing 500g of silage/kg of dry matter composed (DM basis) of either 75:25 MS:GS (MS) or 25:75 MS:GS (GS), without or with added NDF from chopped straw and soy hulls (+47g of NDF/kg of dry matter). In both experiments, compared with high GS, cows fed high MS had a higher DMI, greater milk production, and lower methane yield (24% lower in experiment 1 using GF and 8% lower in experiment 2 using RC). Added NDF increased (or tended to increase) methane yield for high MS, but not high GS diets. In the separate experiments, the GF and RC methods detected similar dietary treatment effects on methane emission (expressed as g/d and g/kg of DMI), although the magnitude of the differences varied between experiments. Overall methane emission and yield were 448g/d and 20.9g/kg of DMI for experiment 1 using GF and 458g/d and 23.8g/kg of DMI for experiment 2 using RC, respectively. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Tahir, M N; Lund, P; Hetta, M
2013-04-01
A 2 × 2 factorial feeding experiment was conducted to examine the effects of varying the maturity level of the grass used to prepare silage and the nature of concentrate starch source and their interactions on dry matter intake (DMI), diet digestibility, energy corrected milk (ECM) production and milk composition in dairy cows. Twenty-eight multiparous Swedish Red dairy cows, 133 ± 45 days in milk (DIM), with an average milk yield of 30 ± 4 kg/day and a live weight of 624 ± 69 kg were blocked by DIM and randomly assigned to seven replicated balanced 4 × 4 Latin squares with four 21-day experimental periods. The experimental diets consisted of four total mixed rations (TMR) consisting of early-cut grass silage (EGS) supplemented with either barley- or maize-based concentrate and late-cut grass silage (LGS) supplemented with either barley- or maize-based concentrate. All TMR contained identical proportions of forage (51%) and concentrate (49%). Total tract digestibility was estimated by determining indigestible NDF (iNDF) concentrations in feeds and faeces and using iNDF as an internal marker. The feeds' ruminal degradation parameters were determined using both in situ (nylon bag) and in vitro (gas production (GP)) techniques. Cows offered diets containing EGS had greater (P < 0.001) daily dry matter (DM) intakes, ECM yields and total tract digestibilities for DM and organic matter (OM), but these were not affected by the nature of the concentrate starch source. No interaction between the maturity of the silage and the nature of the concentrate starch source was observed for DMI, diet digestibility or ECM yield. Both grass silages and concentrates had similar rates of ruminal degradation of NDF when measured in situ. The in situ DM (P < 0.001) and starch (P = 0.001) degradation rates of barley-based concentrate were greater than those for maize-based concentrate. In vitro OM GP rates and extents were similar for both concentrate feeds. The results showed that diets containing EGS offered better animal performance and diet digestibility than diets containing LGS. The concentrate starch source did not affect animal performance, but total NDF digestibility was better with diet containing barley- than maize-based concentrate.
O'Callaghan, Tom F; Hennessy, Deirdre; McAuliffe, Stephen; Kilcawley, Kieran N; O'Donovan, Michael; Dillon, Pat; Ross, R Paul; Stanton, Catherine
2016-12-01
The aim of this study was to investigate the effects of different feeding systems on milk quality and composition. Fifty-four multiparous and primiparous Friesian lactating cows were divided into 3 groups (n=18) to study the effects of 3 feeding systems over a full lactation. Group 1 was housed indoors and offered a total mixed ration diet (TMR), group 2 was maintained outdoors on a perennial ryegrass pasture (referred to as grass), and group 3 was also grazed outdoors on a perennial ryegrass/white clover pasture (referred to as clover). Bulk milk samples were collected from each group at morning and afternoon milkings once weekly from March 11 to October 28 in 2015. Milk from pasture-fed cows (grass and clover) had significantly higher concentrations of fat, protein, true protein, and casein. The pasture feeding systems induced significantly higher concentrations of saturated fatty acids C11:0, C13:0, C15:0, C17:0, C23:0, and unsaturated fatty acids C18:2n-6 trans, C18:3n-3, C20:1, and C20:4n-6 and a greater than 2-fold increase in the conjugated linoleic acid C18:2 cis-9,trans-11 content of milk compared with that of the TMR feeding system. The TMR feeding system resulted in milks with increased concentrations of C16:0, C18:2n-6 cis, C18:3n-6 cis, C22:0 C22:1n-9, and C18:2 cis-10,trans-12. Principal component analysis of average fatty acid profiles showed clear separation of milks from the grazed pasture-based diets to that of a TMR system throughout lactation, offering further insight into the ability to verify pasture-derived milk by fatty acid profiling. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sanchez, W K; Beede, D K; Cornell, J A
1997-06-01
The objective of this study was to determine lactational, blood mineral, and blood acid-base responses to dietary mixtures of NaHCO3, NaCl, and KCl and dietary cation-anion difference by lactating diary cows. Three 100:0:0 (primary) blends, three 50:50:0 (binary) blends, and one 33:33:33 (tertiary) blend of NaHCO3, NaCl, and KCl, respectively, were formulated to replace 1% of the dry matter in a diet based on corn silage. Seven treatments were defined according to a simplex-centroid mixtures design using a partially balanced incomplete block arrangement. An eighth treatment served as a control and contained 1% SiO2 instead of the mineral blends. Dietary cation-anion difference ranged from +25 to +40 meq of (Na + K - Cl)/100 g of dietary dry matter. Diets were fed for three consecutive 28-d periods during summer to 36 midlactation cows. Cows that were fed the tertiary mixture had lower milk protein percentage, whole blood bicarbonate, and plasma K than did cows fed the other blends. With the exception of milk protein percentage and body weight gain, none of the mixtures had a significant impact on lactational performance. The lack of differences could have been due to the narrow range in the dietary cation-anion difference studied.
Crossbreeding: implications for dairy cow fertility and survival.
Buckley, F; Lopez-Villalobos, N; Heins, B J
2014-05-01
In pasture-based seasonal calving systems, failure to become pregnant during the breeding season results in important economic losses as maximum profit is attained by minimising costs and increasing the proportion of grass in the diet of the lactating dairy cow. In the United States, dairy producers primarily strive to maximise production potential but are becoming increasingly aware of the economic consequences of sub-optimal cow fertility and survival. For this reason, interest in crossbreeding is emerging. The objective of this paper is to review the fertility and survival outcomes reported from recent research studies and data analyses in Ireland, New Zealand and the United States. Research conducted in Ireland during the early 2000s concluded that of three 'alternative' dairy breeds the Norwegian Red was most suited to seasonal grass-based production. A key finding was favourable fertility and survival. A follow-up study confirmed a fertility advantage with Norwegian Red×Holstein-Friesian compared with Holstein-Friesian: proportion pregnant to first service; +0.08 and in-calf after 6 weeks breeding; +0.11. Another study found higher fertility with Jersey crossbreds: pregnant to first service; +0.21, and in-calf after 6 weeks breeding; +0.19. Studies conducted in Northern Ireland also found superior fertility performance with Jersey crossbred cows offered low and moderate concentrate diets. In New Zealand, crossbred dairy cattle (primarily Jersey×Friesian) are achieving similar rates of genetic gain for farm profit as the purebred populations, but creating additional gain derived from economic heterosis. In the United States, analysis of commercial data from California showed higher first-service conception rates for Scandinavian Red×Holstein (+6 percentage units) and Montbeliarde×Holstein (+10 percentage units) compared with Holstein (23%). They also exhibited fewer days open and greater survival. At Penn State University, Brown Swiss×Holstein cows had 17 fewer days open than Holstein cows during first lactation, and numerically fewer in second (12 days) and third lactation (6 days). At the University of Minnesota, crossbred cows had 21 percentage units higher first-service conception rates, 41 fewer days open and 12 percentage units higher in-calf rates compared with pure Holstein cows. They also had greater survival to second (+13 percentage units), third (+24 percentage units), fourth (+25 percentage units) and fifth (+17 percentage units) lactation. The literature clearly illustrates favourable animal performance benefits from crossbreeding, using a range of modern breeds, and within the context of both grass-based and high-input confinement production environments. Economic analyses generally indicate profitable performance owing to lower replacement cost and higher herd productivity.
Nurfeta, Ajebu; Abdu, Yunus
2014-03-01
Nonconventional agro-industrial by-products such as traditional liquor residues (locally called katikala atella) are widely used by livestock farmers in Ethiopia. The objective of this experiment was to evaluate the supplementary value of katikala atella and malt sprout (MS) on performance of sheep fed a basal diet of Rhodes grass hay. Thirty intact yearling male sheep with an average initial body weight of 17.4 ± 0.74 kg (mean ± SD) were assigned to the treatments in a completely randomized block design: atella alone (T1), 75 % atella + 25 % malt sprout (MS) (T2), 50 % atella + 50 % MS (T3), 25 % atella + 75 % MS (T4), MS alone (T5), and Rhodes grass hay alone (T6). Grass hay was fed ad libitum to all treatments. The total dry matter (DM) and organic matter (OM) intakes of sheep fed T4, T5, and T3 diets were the highest (P < 0.05), while sheep receiving T6 had the lowest DM intake. The highest (P < 0.05) total crude protein (CP) intake was for sheep fed T5 diet, while the lowest was for those fed T6 diet. Sheep receiving T3 diet had higher (P < 0.05) DM, OM, CP, neutral detergent fiber (NDF), and acid detergent fiber (ADF) digestibility as compared with those fed T1, T2, and T6 diets. Sheep supplemented with 50-100 % malt sprout had similar (P > 0.05) DM, OM, CP, NDF, and ADF digestibility. The highest (P < 0.05) average daily gain was for sheep fed T3, T4, and T5 diets, while sheep in T6 lost body weight. Sheep fed T5 diet had the highest (P < 0.05) nitrogen retention, while those fed T6 diet had the lowest. The study has shown that a mixture diet consisting of equal parts of katikala atella and malt sprout (T3) are found to be superior in most of the required nutrient characteristics.
Martinez, N; Rodney, R M; Block, E; Hernandez, L L; Nelson, C D; Lean, I J; Santos, J E P
2018-03-01
The objectives of this experiment were to evaluate the effects of feeding diets with 2 dietary cation-anion difference (DCAD) levels and supplemented with either cholecalciferol (CH) or calcidiol (CA) during late gestation on lactation performance and energetic metabolism in dairy cows. The hypothesis was that combining a prepartum acidogenic diet with calcidiol supplementation would benefit peripartum Ca metabolism and, thus, improve energy metabolism and lactation performance compared with cows fed an alkalogenic diet or cholecalciferol. Holstein cows at 252 d of gestation were blocked by parity (28 nulliparous and 51 parous cows) and milk yield within parous cows, and randomly assigned to 1 of 4 treatments arranged as a 2 × 2 factorial, with 2 levels of DCAD (positive, +130, and negative, -130 mEq/kg) and 2 sources of vitamin D, CH or CA, fed at 3 mg per 11 kg of diet dry matter (DM). The resulting treatment combinations were positive DCAD with CH (PCH), positive DCAD with CA (PCA), negative DCAD with CH (NCH), or negative DCAD with CA (NCA), which were fed for the last 21 d of gestation. After calving, cows were fed the same lactation diet. Body weight and body condition were evaluated prepartum and for the first 49 d postpartum. Blood was sampled thrice weekly prepartum, and on d 0, 1, 2, 3, and every 3 d thereafter until 30 d postpartum for quantification of hormones and metabolites. Lactation performance was evaluated for the first 49 d postpartum. Feeding a diet with negative DCAD reduced DM intake in parous cows by 2.1 kg/d, but no effect was observed in nulliparous cows. The negative DCAD reduced concentrations of glucose (positive = 4.05 vs. negative = 3.95 mM), insulin (positive = 0.57 vs. negative = 0.45 ng/mL), and insulin-like growth factor-1 (positive = 110 vs. negative = 95 ng/mL) prepartum. Treatments did not affect DM intake postpartum, but CA-supplemented cows tended to produce more colostrum (PCH = 5.86, PCA = 7.68 NCH = 6.21, NCA = 7.96 ± 1.06 kg) and produced more fat-corrected milk (PCH = 37.0, PCA = 40.1 NCH = 37.5, NCA = 41.9 ± 1.8 kg) and milk components compared with CH-supplemented cows. Feeding the negative DCAD numerically increased yield of fat-corrected milk by 1.0 kg/d in both nulliparous and 1.4 kg/d in parous cows. Minor differences were observed in postpartum concentrations of hormones and metabolites linked to energy metabolism among treatments. Results from this experiment indicate that replacing CH with CA supplemented at 3 mg/d during the prepartum period improved postpartum lactation performance in dairy cows. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Polyorach, Sineenart; Wanapat, Metha; Phesatcha, Kampanat; Kang, Sungchhang
2015-12-01
This study aimed to investigate the effect of mangosteen (Garcinia mangostana) peel powder (MSP) supplementation on feed intake, nutrient digestibility, ruminal fermentation, and milk production in lactating dairy cows fed a concentrate containing yeast fermented cassava chip protein (YEFECAP). Four crossbred dairy cows (50 % Holstein-Friesian and 50 % Thai native breed) in mid-lactation, 404 ± 50.0 kg of body weight and 90 ± 5 day in milk with daily milk production of 9 ± 2.0 kg/day, were randomly assigned according to a 4 × 4 Latin square design to receive 4 dietary treatments. The treatments were different levels of MSP supplementation at 0, 100, 200, and 300 g/head/day. Rice straw was used as a roughage source and fed ad libitum to all cows, and concentrate containing YEFECAP at 200 g/kg concentrate was offered corresponding to concentrate to milk yield ratio at 1:2. Results revealed that feed intake, apparent nutrient digestibility, ruminal pH and temperature, and total volatile fatty acid were not significantly affected by MSP supplementation (P > 0.05). However, increasing levels of MSP supplementation increased molar proportion of propionate while ammonia-nitrogen, acetate, and acetate to propionate ratio were decreased (P < 0.01). Moreover, milk production and economic return were increased linearly (P < 0.01) with the increasing level of MSP supplementation. The present findings suggested that supplementation of MSP especially at 300 g/head/day with concentrate containing YEFECAP at 200 g/kg could improve rumen fermentation efficiency, milk production and protein content, and economical return of lactating dairy cows fed on rice straw.
Shaani, Y; Nikbachat, M; Yosef, E; Ben-Meir, Y; Friedman, N; Miron, J; Mizrahi, I
2017-03-01
This study examined the effects on intake, diurnal rumen pH changes, rumination and digestibility of feeding ruminally cannulated non-lactating cows in a Latin square design (four cows×four periods) with four total mixed rations (TMRs) typical for lactating cows. TMRs were based on: long wheat hay or short wheat hay, wheat silage or wheat silage+1.5% NaHCO3 buffer, as the sole roughage source (30% of TMR dry matter (DM)). The level of physically effective NDF remaining above the 8 mm screen (peNDF) was similar in the long hay and silage-based TMRs (9.45% to 9.64% of DM) and lower in the short hay TMR (7.47% of DM). The four TMRs were offered individually at 95% of ad libitum intake to avoid orts within 24 h. Cows fed long hay consumed less DM than the short hay and silage groups (9.6 v. 10.5 and 10.8 kg/day, respectively) and sorted against large hay particles at 12 h post-feeding. Under the limitations of this study (non-lactating cows fed at restricted intake) short hay TMR prevented sorting within 12 h post-feeding, encouraged rumination per kg peNDF ingested, and had higher average rumen pH (6.24), whereas preventing sub acute ruminal acidosis (SARA, defined as pH<5.8 for at least 5 h/day). In contrast, the long hay and silage-based groups were under SARA. In vitro methane production of rumen fluid was higher in the hay-fed cows than in their silage-fed counterparts, and in all treatments lower at 1 h pre-feeding than at 6 h post-feeding. In vivo DM and NDF digestibility were similar for the short hay and silage TMRs, and higher than those of the long hay TMR. Under the conditions of this study, addition of 1.5% buffer to the wheat silage TMR had no effect on intake, rumen pH, creation of SARA and digestibility.
Rule, D C; Broughton, K S; Shellito, S M; Maiorano, G
2002-05-01
The objective of this study was to compare fatty acid weight percentages and cholesterol concentrations of longissimus dorsi (LD), semitendinosus (ST), and supraspinatus (SS) muscles (n = 10 for each) of range bison (31 mo of age), feedlot-finished bison (18 mo of age), range beef cows (4 to 7 yr of age), feedlot steers (18 mo of age), free-ranging cow elk (3 to 5 yr of age), and chicken breast. Lipids were analyzed by capillary GLC. Total saturated fatty acids (SFA) were greater (P < 0.01) in range bison than in feedlot bison and were greater (P < 0.01) in SS of range beef cattle than in feedlot steers. Muscles of elk and range bison were similar (P > 0.05) in SAT. In LD, polyunsaturated fatty acids (PUFA) were highest (P < 0.01) for elk and range bison and lowest (P < 0.01) for feedlot steers within each muscle. Range bison and range beef cows had greater (P < 0.01) PUFA in LD and ST than feedlot bison or steers, respectively. Range-fed animals had higher (P < 0.01) n-3 fatty acids than feedlot-fed animals or chicken breast. Chicken breast n-6 fatty acids were greater (P < 0.01) than for muscles from bison, beef, or elk. Elk had higher (P < 0.01) n-6 fatty acids than bison or beef cattle; however, range-fed animals had higher (P < 0.01) n-6 fatty acids than feedlot-fed animals in ST. Conjugated linoleic acid (CLA, 18:2cis-9, trans-11) in LD was greatest (P < 0.01) for range beef cows (0.4%), and lowest for chicken breast and elk (mean = 0.1%). In ST, CLA was greatest (P < 0.01) for range and feedlot bison and range beef cows (mean = 0.4%) and lowest for elk and chicken breast (mean = 0.1%). Also, SS CLA was greatest (P < 0.01) for range beef cows (0.5%) and lowest for chicken breast (0.1%). Mean total fatty acid concentration (g/100 g tissue) for all muscles was highest (P < 0.01) for feedlot bison and feedlot cattle and lowest (P < 0.01) for range bison, range beef cows, elk, and chicken. Chicken breast cholesterol (mg/100 g tissue) was higher (P < 0.01) than LD and ST cholesterol, which were lowest (P < 0.01; 43.8) for range bison and intermediate for the other species. Cholesterol in SS was highest (P < 0.01) for feedlot bison and steers, which were similar to chicken breast (mean = 61.2 vs 52.8 for the mean of the other species). We conclude that lipid composition of bison muscle varies with feeding regimen, and range-fed bison had muscle lipid composition similar to that of forage-fed beef cows and wild elk.
Acute photosensitisation and mortality in a herd of dairy cattle in Tasmania.
Golder, H M; Moss, N; Rogers, G; Jackson, B; Gannon, N; Wong, Ptw; Lean, I J
2017-01-01
A herd of Holstein, Jersey, or Holstein-Jersey cross lactating cattle of mixed ages presented with a sudden drop in milk yield in 94/678 cows on 3 October 2014 (Day 0). The herd was located in Gretna in the Derwent Valley (Tasmania, Australia) and had been grazing dryland pasture. On Day 0 the cows variably showed recumbency, peracute photosensitisation, inflamed coronary bands, conjunctival erythema, periauricular oedema, distress indicated by kicking at the flank, bruxism, discomfort, weight shifting, vocalisation indicating pain and depression. Blood samples collected on Day 4 from five clinically affected cows showed high activities of aspartate aminotransferase, glutamate dehydrogenase and gamma-glutamyl transferase. Morbidity, based on the number of treated cases within 72 hours of clinical onset, was estimated at 165/678 cows (24.3%). Mortality over the first 30 days was 19/678 cows (2.8%). Necropsies of two cows on Day 4 showed marked distension of the gall bladder and extensive icterus. Necropsies of another two cows on Day 5 showed enlarged livers with severe damage and oedema of the distal abomasum. Severe ulcerative abomasal gastritis was present in both cows. Hepatic histopathology was consistent with chronic cholangiohepatitis. Fifty-five different mycotoxins were detected from a barley grass (Hordeum murinum) sample from the presumably contaminated pasture. Concentrations of B-trichothecenes, fumonisins, and zearalenone metabolites from this sample were remarkably high. The leaf smut, Jamesdicksonia dactylidis, that has not been previously reported in Tasmania, was identified from the sample of barley grass, but it is not known whether the smut can produce toxins. Probably an undescribed peracute mycotoxicosis associated with the ingestion of contaminated dryland pasture. A definitive diagnosis could not be reached in this case of acute photosensitisation and mortality in dairy cattle grazing possibly contaminated dryland pasture. The findings differed from both facial eczema and acute bovine liver disease, suggesting an undescribed mycotoxicosis.
Response of lactating dairy cows to degree of steam-flaked barley grain in low-forage diets.
Safaei, Kh; Ghorbani, G R; Alikhani, M; Sadeghi-Sefidmazgi, A; Yang, W Z
2017-10-01
This study was conducted to investigate the effects of processing method (grinding vs. steam flaking) and increasing densities of steam-flaked barley grain on dry matter intake (DMI), rumen pH and fermentation characteristics, digestibility of dry matter in the total digestive tract (DDTT), and milk production of dairy cows. Eight multiparous mid-lactation Holstein cows averaging 103 ± 24 DIM, 44.5 ± 4.7 kg milk/day and weighing 611 ± 43 kg at the start of the experiment were used in a replicated 4 × 4 Latin square design with 21-day periods. Cows were fed diets consisting of (DM basis) 23.8% corn silage, 13.5% chopped alfalfa hay and 62.7% concentrate. The dietary treatments were either ground barley (GB) using a hammer mill or steam-flaked barley (SFB) - varying density at 390, 340 or 290 g/l. Processing method (GB vs. SFB) did not affect DMI (23.6 kg/day on average), DDTT (71.0% on average), milk yield (43.4 kg/day on average), milk components, rumen pH and molar proportions of acetate, propionate, butyrate and sorting activity. Ruminal isovalerate concentration tended (p = 0.06) to be higher for cows fed GB than those fed SFB-based diets. Decreasing the density of SFB from 390, 340 to 290 g/l tended to linearly increase DMI (p = 0.09), decrease total solids percentage of milk (p = 0.10) and linearly decreased milk urea nitrogen (12.8, 12.4 and 12.1 mg/dl; p = 0.04); also, the sorting index (SI) of the particles retained on the 19.0-mm sieve without affecting the SI of the particles retained on 8.0-mm, 1.18-mm or passed through 1.18-mm sieve (p = 0.05). These results indicated the limited effects of processing method (grinding vs. steam flaking) and densities of SFB (390, 290 or 290 g/l) on cows' performance and feed utilization for dairy cows fed low-forage diets. Therefore, both processing methods could be recommended under current feeding conditions of dairy cows. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Mulliniks, J T; Cox, S H; Kemp, M E; Endecott, R L; Waterman, R C; Vanleeuwen, D M; Torell, L A; Petersen, M K
2011-10-01
Reproductive performance in young beef cows is often compromised due to a mismatch of physiological demands and suboptimal environmental conditions. Studies conducted at the Corona Range and Livestock Research Center from 2000 to 2007 evaluated 3 postpartum supplement strategies that varied in the amount of glucogenic potential (GP) supplied. Reproductive variables, milk production, and serum metabolites were used to assess supplement effectiveness and economics associated with 2- and 3-yr-old beef cows (n = 379) grazing native range. Supplements were individually fed twice/week at 1,135 g/d (2003 to 2004) or 908 g/d (all other years) and provided 1) 327 g of CP, 109 to 118 g of RUP (CON); 2) 327 to 341 g of CP, 142 to 157 g of RUP (RUP); or 3) 327 g of CP, 151 to 173 g of RUP + 40 to 100 g of propionate salt (PS; RUP+PS). Ultimately, total GP for CON, RUP, and RUP+PS was 44 to 47, 57 to 70, and 93 to 141 g, respectively. Blood samples were collected once/week (2000) or twice/week (2001 to 2007) for progesterone analysis to estimate days to resumption of estrus. Cows were exposed to bulls for 60 d or less, and pregnancy was confirmed by rectal palpation at weaning. Days to resumption of estrus after calving decreased linearly (P = 0.02), resulting in an increased pregnancy rate (P = 0.03) with increasing GP. Milk production exhibited a quadratic (P = 0.04) response to increasing GP, with cows fed RUP producing the most amount of milk. However, a linear decrease (P = 0.07) in days from BW nadir to estrus was found with increasing GP. Total kilograms of calf weaned per cow exposed for the supplemental year and subsequent year was increased linearly (P = 0.07) with increased GP. The improvement in pregnancy rate by supplementing RUP+PS resulted in an increase in total revenue of 18% compared with CON-fed cows and 9.5% compared with RUP-fed cows in the subsequent year after supplementation. These data suggest feeding young cows additional GP in the form of PS allows for partitioning of nutrients away from milk production and toward reproduction, allowing for increased profitability by increasing pregnancy rates and decreasing days to resumption of estrus.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to compare the effects of corn meal or liquid molasses fed as the sole supplemental nonstructural carbohydrate source on milk yield and composition, milk fatty acids, and N use efficiency in grazing dairy cows. Ten multiparous organically-certified Jersey cows averagi...
Leiva, T; Cooke, R F; Brandão, A P; Marques, R S; Vasconcelos, J L M
2015-04-01
The objective of this experiment was to compare metabolic and milk production parameters in dairy cows supplemented and nonsupplemented with rumen-protected choline (RPC) during the transition period. Twenty-three nonlactating, multiparous, pregnant Holstein cows were ranked by BW and BCS 21 d before expected date of calving and immediately were assigned to receive (n = 12) or not receive (control; n = 11) RPC until 45 d in milk (DIM). Cows supplemented with RPC received (as-fed basis) 50 and 100 g/d of RPC (18.8% choline) before and after calving, respectively. Before calving, cows were maintained in 2 drylot pens according to treatment with ad libitum access to corn silage, and individually they received (as-fed basis) 3 kg/cow daily of a concentrate. Upon calving, cows were moved to 2 adjacent drylot pens according to treatment, milked twice daily, offered (as-fed basis) 35 kg/cow daily of corn silage, and individually received a concentrate formulated to meet their nutritional requirements after milking. The RPC was individually offered to cows as a topdressing into the morning concentrate feeding. Before calving, cow BW and BCS were recorded weekly, and blood samples were collected every 5 d beginning on d -21 relative to expected calving date. Upon calving and until 45 DIM, BW and BCS were recorded weekly, individual milk production was recorded daily, and milk samples were collected once a week and analyzed for fat, protein, and total solids. Blood samples were collected every other day from 0 to 20 DIM and every 5 d from 20 to 45 DIM. Based on actual calving dates, cows receiving RPC or control began receiving treatments 16.8 ± 1.7 and 17.3 ± 2.0 d before calving, respectively. No treatment effects were detected (P ≥ 0.18) on postpartum concentrate intake, BW and BCS, or serum concentrations of cortisol, β-hydroxybutyrate, NEFA, glucose, and IGF-I. Cows supplemented with RPC had greater (P ≤ 0.01) mean serum haptoglobin and insulin concentrations compared with control. Cows supplemented with RPC had greater (P < 0.01) milk protein, total solids (P < 0.01), and milk fat concentrations (P = 0.09) compared with control. No treatment effects were detected (P ≥ 0.43) for milk yield parameters, such as fat-corrected or solids-corrected milk yield. In conclusion, supplementing RPC to transition dairy cows increased haptoglobin and insulin concentrations and benefited milk composition.
Martí-Herrero, J; Alvarez, R; Cespedes, R; Rojas, M R; Conde, V; Aliaga, L; Balboa, M; Danov, S
2015-04-01
The aim of this research is to evaluate the co-digestion of cow and llama manure combined with sheep manure, in psychrophilic conditions and real field low cost tubular digesters adapted to cold climate. Four digesters were monitored in cold climate conditions; one fed with cow manure, a second one with llama manure, the third one with co-digestion of cow-sheep manure and the fourth one was fed with llama-sheep manure. The slurry had a mean temperature of 16.6 °C, the organic load rate was 0.44 kgvs m(-3) d(-1) and the hydraulic retention time was 80 days. After one hundred days biogas production was stable, as was the methane content and the pH of the effluent. The co-digestion of cow-sheep manure results in a biogas production increase of 100% compared to the mono-digestion of cow manure, while co-digestion of llama-sheep manure results in a decrease of 50% in biogas production with respect to mono-digestion of llama manure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Diagnosis of subacute ruminal acidosis (SARA) by continuous reticular pH measurements in cows.
Sato, Shigeru; Ikeda, Aya; Tsuchiya, Yoshiyuki; Ikuta, Kentaro; Murayama, Isao; Kanehira, Masahiro; Okada, Keiji; Mizuguchi, Hitoshi
2012-09-01
The objective of this study was to determine whether subacute ruminal acidosis (SARA) could be diagnosed by continuous measurements of the reticular pH, as compared with the ruminal pH, using healthy cows fed a control diet and SARA cows fed a rumen acidosis-inducing diet. The reticular and ruminal pH were measured simultaneously by a radio transmission pH measurement system. The mean reticular pH at 1-h intervals decreased gradually from the morning feeding to the next feeding time in both healthy and SARA cows, though the decrease in the ruminal pH was observed to be more drastic as compared with that observed in the reticular pH. The threshold of the 1-h mean pH in the reticulum for a diagnosis of SARA was considered to be 6.3, and a significant positive correlation was observed between the reticular and ruminal pH. No differences in the concentrations of lactic acid, ammonia nitrogen, and volatile fatty acids were noted between the reticular and ruminal fluids in SARA cows. These results demonstrate that the reticular pH can be used to detect SARA in cows, as opposed to using the ruminal pH.
Côrtes, Cristiano; Kazama, Ricardo; da Silva-Kazama, Daniele; Benchaar, Chaouki; Zeoula, Lucia M; Santos, Geraldo T D; Petit, Hélène V
2011-08-01
Flax hull, a co-product obtained from flax processing, is a rich source of n-3 fatty acids (FA) but there is little information on digestion of flax hull based diets and nutritive value of flax hull for dairy production. Flax oil is rich in α-linolenic acid (LNA) and rumen bypass of flax oil contributes to increase n-3 FA proportions in milk. Therefore, the main objective of the experiment was to determine the effects of abomasal infusion of increasing amounts of flax oil on apparent digestibility, dry matter (DM) intake, milk production, milk composition, and milk FA profile with emphasis on the proportion of LNA when cows were supplemented or not with another source of LNA such as flax hull. Six multiparous Holstein cows averaging 650±36 kg body weight and 95±20 d in milk were assigned to a 6×6 Latin square design (21-d experimental periods) with a 2×3 factorial arrangement of treatments. Treatments were: 1) control, neither flax hull nor flax oil (CON), 2) diet containing (DM basis) 15·9% flaxseed hull (FHU); 3) CON with abomasal infusion of 250 g/d flax oil; 4) CON with abomasal infusion of 500 g/d flax oil; 5) FHU with abomasal infusion of 250 g/d flax oil; 6) FHU with abomasal infusion of 500 g/d flax oil. Infusion of flax oil in the abomasum resulted in a more pronounce decrease in DM intake for cows fed the CON diets than for those fed the FHU diets. Abomasal infusion of flax oil had little effect on digestibility and FHU supplementation increased digestibility of DM and crude protein. Milk yield was not changed by abomasal infusion of flax oil where it was decreased with FHU supplementation. Cows fed FHU had higher proportions of 18:0, cis9-18:1, trans dienes, trans monoenes and total trans in milk fat than those fed CON. Proportion of LNA was similar in milk fat of cows infused with 250 and 500 g/d flax oil in the abomasum. Independently of the basal diet, abomasal infusion of flax oil resulted in the lowest n-6:n-3 FA ratio in milk fat, suggesting that the most important factor for modification of milk FA profile was the amount of n-3 FA bypassing the rumen and not the amount of flax hull fed to dairy cows. Moreover, these data suggest that there is no advantage to supply more than 250 g/d of flax oil in the abomasum to increase the proportion of LNA in milk fat.
Philippeau, C; Lettat, A; Martin, C; Silberberg, M; Morgavi, D P; Ferlay, A; Berger, C; Nozière, P
2017-04-01
This study investigated the effects of bacterial direct-fed microbials (DFM) on ruminal fermentation and microbial characteristics, methane (CH 4 ) emission, diet digestibility, and milk fatty acid (FA) composition in dairy cows fed diets formulated to induce different ruminal volatile fatty acid (VFA) profiles. Eight ruminally cannulated dairy cows were divided into 2 groups based on parity, days in milk, milk production, and body weight. Cows in each group were fed either a high-starch (38%, HS) or a low-starch (2%, LS) diet in a 55:45 forage-to-concentrate ratio on a dry matter (DM) basis. For each diet, cows were randomly assigned to 1 of 4 treatments in a Latin square design of (1) control (CON); (2) Propionibacterium P63 (P63); (3) P63 plus Lactobacillus plantarum 115 (P63+Lp); (4) P63 plus Lactobacillus rhamnosus 32 (P63+Lr). Strains of DFM were administered at 10 10 cfu/d. Methane emission (using the sulfur hexafluoride tracer technique), total-tract digestibility, dry matter intake, and milk production and composition were quantified in wk 3. Ruminal fermentation and microbial characteristics were measured in wk 4. Data were analyzed using the mixed procedure of SAS (SAS Institute Inc., Cary, NC). The 2 diets induced different ruminal VFA profiles, with a greater proportion of propionate at the expense of acetate and butyrate for the HS diet. Greater concentrations of total bacteria and selected bacterial species of methanogenic Archaea were reported for the HS diet, whereas the protozoa concentration in HS decreased. For both diets, bacterial DFM supplementation raised ruminal pH (+0.18 pH units, on average) compared with CON. Irrespective of diet, P63+Lp and P63+Lr increased ruminal cellulase activity (3.8-fold, on average) compared with CON, but this effect was not associated with variations in ruminal microbial numbers. Irrespective of diet, no effect of bacterial DFM on ruminal VFA was observed. For the LS diet, supplementing cows with P63+Lr tended to decrease CH 4 emission (26.5%, on average, when expressed per kilogram of milk or 4% fat-corrected milk). Only P63 supplementation to cows fed the HS diet affected the concentration of some milk FA, such as cis isomers of 18:1 and intermediates of ruminal biohydrogenation of polyunsaturated FA. Overall, bacterial DFM could be useful to stabilize ruminal pH. Their effects on CH 4 production mitigation and milk FA profile depended on DFM strain and diet and should be confirmed under a greater variation of dietary conditions. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sarker, Swapan Chandra; Parvin, Mst Sonia; Rahman, A K M Anisur; Islam, Md Taohidul
2013-06-01
The purpose of the study was to identify the potential risk factors for subclinical mastitis (SCM) in lactating dairy cows in Bangladesh. A cross-sectional study was carried out on randomly selected 212 smallholder dairy farms of Sadar upazilas of Rangpur, Mymensingh, and Satkhira districts of Bangladesh during January to October 2011. The direct interview using a structured questionnaire and physical examination of the cows were done to collect data on 15 variables. Milk samples collected from study cows were subjected to California Mastitis Test (CMT). The diagnosis of SCM was based on the results of CMT and physical examination of udder and milk. The bivariable followed by multivariable analysis was done using SPSS 17.0. Of the total cows examined, 20.2 % had subclinical mastitis. In bivariable analysis, eight risk factors were identified. However, in the final model of multivariable analysis, four potential risk factors were identified. These were history of previous clinical mastitis (odds ratio (OR) 10.51, p<0.001), pendulous type of udder (OR 2.26, p=0.008), no grass feeding (OR 1.84, p=0.039), and body condition score (BCS) 2.5 or less (OR 7.25, p=0.054). Four different factors were significantly associated with the occurrence of subclinical mastitis, which need to be considered in the control of the disease. However, particular emphasis should be given on grass feeding and BCS because these traits can be modified or improved to allow prevention of SCM.
Ayrault, Sophie; Catinon, Mickaël; Boudouma, Omar; Bordier, Louise; Agnello, Gregory; Reynaud, Stéphane; Tissut, Michel
2016-05-01
Magnetic particles (MP) emitted by an iron smelter were used to investigate the exposure of cows grazing on a grassland polluted by these MP and by large amounts of potentially toxic elements (PTE). The morphology as well as the chemical composition of the MP separated from cow dung were studied. Large amounts of typical MP were found (1.1 g kg(-1) dry weight) in the cow dung sampled from the exposed site, whereas these particles were absent from the reference unpolluted site. The ingested MP were mainly technogenic magnetic particles (TMP) emitted by the smelter. Considering the MP concentration in the grazed grass on the exposed site, it was concluded that cows absorb the MP not only from the grass but also from the soil surface. The results of a mild acidic leaching of the MP suggested that the particles were possibly submitted to a superficial dissolution in the abomasum, pointing at a potential route of transfer of the PTE originating from the TMP and leading into food chains. TMP were only a small part of the anthropogenic contamination having affected the soil and the dung. However, due to their unequivocal signature, TMP are a powerful tracer of the distribution of PTE in the different compartments constituting the food chains and the ecosystems. Furthermore, the measurement of the particle sizes gave evidence that a noticeable proportion of the MP could enter the respiratory tract. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hittmann, A R; Grace, N D; Knowles, S O
2012-03-01
To monitor the consequences of withdrawing mineral Cu supplements from two dairy herds with initially high concentrations of Cu in liver. Two herds were selected from dairy farms in the Waikato region of New Zealand that participated in an earlier survey of Cu supplementation practices and Cu status of dairy cows. The herds were fed pasture, grass and maize silage, plus palm kernel expeller (PKE) containing 25-30 mg Cu/kg dry matter (DM) fed at 2-4 kg/cow/day. No mineral Cu supplements were supplied from January 2009. Pasture samples were collected for mineral analysis in September 2008 and April 2009. Concentration of Cu in liver biopsies from the same 9-10 cows per herd was measured on three occasions between April 2009 and May 2010. Pastures on both farms contained 10 mg Cu/kg DM, 0.1-0.5 mg Mo/kg DM and 3.5-4.0 g S/kg DM. The initial herd mean concentrations of Cu in liver were 1,500 (SD 590) and 1,250 (SD 640) μmol Cu/kg fresh tissue. In the absence of mineral Cu supplements, those mean concentrations decreased over 12 months to 705 (SD 370) and 1,120 (SD 560) μmol Cu/kg fresh tissue, respectively. For cows in the first herd, the rate of depletion of liver Cu reserves was influenced by initial concentration of Cu, such that high concentration led to faster loss according to first-order kinetics. Mineral Cu supplementation was not necessary over 12 months for two dairy herds with mean concentrations of Cu in liver >1,250 μmol Cu/kg fresh tissue, grazing pastures containing 10 mg Cu/kg DM and concentrations of Mo <1 mg/kg DM. The quantity and particularly the duration of feeding PKE appeared to be a factor in whether or not the herd lost substantial reserves of Cu in liver during the year. However, the Cu status of both herds in this study was more than adequate to support late pregnancy and mating. CLINICAL REVELANCE: Copper status of the herd should be monitored and on-farm management of Cu nutrition should take into account all sources contributing to daily intake of Cu. Where Cu supplementation has been excessive and there is risk of chronic Cu toxicity, mineral Cu supplements may be withdrawn for a period commensurate with the expected rate of liver Cu depletion.
[Allergic colitis in exclusively breast-fed infants].
Sierra Salinas, C; Blasco Alonso, J; Olivares Sánchez, L; Barco Gálvez, A; del Río Mapelli, L
2006-02-01
Eosinophilic colitis is induced by antigens present in cow's milk proteins in formula or human milk. In the last few years, an increasing number of cases have been diagnosed in exclusively breast-fed infants. We performed a retrospective study of 13 infants diagnosed with allergic colitis in our unit between January 1997 and January 2004. All the infants had been exclusively breast-fed. In all patients, initial symptoms were digestive (12 with mucus and bloody stools). Onset of symptoms occurred at 0-3 months in 77 %. Laboratory data of the allergic compound were negative. The main locations were the descending and sigmoid colon (75 %). Biopsy demonstrated acute inflammation, with neutrophil infiltration and an increase in eosinophils. In all patients, initial treatment consisted of exclusion of cow's milk proteins from the mother's diet. Ten of the 13 patients showed no improvement, requiring exclusive administration of protein-free hydrolyzate. In 3 infants, breastfeeding was maintained (breastfeeding without cow's milk proteins plus hydrolyzate). Diagnosis of eosinophilic colitis is based on exclusion of other causes of specific colitis and typical endoscopic and ultrastructural findings. Moreover, a satisfactory response to dietary treatment must be demonstrated. This diagnosis should be considered in breast-fed infants with rectal bleeding without involvement of general health status.
A Case Study of Behaviour and Performance of Confined or Pastured Cows During the Dry Period.
Black, Randi A; Krawczel, Peter D
2016-07-13
The objectives of this study were to determine the effect of the dry cow management system (pasture or confined) on: (1) lying behaviour and activity; (2) feeding and heat stress behaviours; (3) intramammary infections, postpartum. Non-lactating Holstein cows were assigned to either deep-bedded, sand freestalls ( n = 14) or pasture ( n = 14) using rolling enrollment. At dry-off, cows were equipped with an accelerometer to determine daily lying time (h/d), lying bouts (bouts/d), steps (steps/d) and divided into periods: far-off (60 to 15 d prepartum), close-up (14 to 1 d prepartum), calving (calving date) and postpartum (1 to 14 d postpartum). Respiration rates were recorded once weekly from dry off to calving from 1300 to 1500 h. Feeding displacements were defined as one cow successfully displacing another from the feed bunk and were recorded once per week during the 2 h period, immediately after feeding at 800 h. Pastured cows were fed a commercial dry cow pellet during far-off and total mixed ration during close-up, with free access to hay and grazing. Freestall housed cows were fed a total mixed ration at far-off and close-up. Cows housed in freestalls were moved to a maternity pen with a mattress at commencement of labour. Pastured cows calved in pasture. After calving, all cows were commingled in a pen identical to the freestall housing treatment. Cows housed in freestalls laid down for longer during far-off and close-up periods, had fewer lying bouts during the calving period and took fewer steps throughout the study period when compared to pastured cows. Freestall housed cows experienced more displacements after feeding than did pastured cows. Respiration rates increased with an increasing temperature humidity index, more in pastured cows than in freestall housed cows. Pastured cows altered their lying behaviour and activity, suggesting a shift in time budget priorities between pastured and confined dry cows. Pastured cows also experienced less aggression around feeding but may be more susceptible to heat stress.
Potts, S B; Boerman, J P; Lock, A L; Allen, M S; VandeHaar, M J
2017-01-01
We determined if differences in digestibility among cows explained variation in residual feed intake (RFI) in 4 crossover design experiments. Lactating Holstein cows (n=109; 120±30d in milk; mean ± SD) were fed diets high (HS) or low (LS) in starch. The HS diets were 30% (±1.8%) starch and 27% (±1.2%) neutral detergent fiber (NDF); LS diets were 14% (±2.2%) starch and 40% (±5.3%) NDF. Each experiment consisted of two 28-d treatment periods, with apparent total-tract digestibility measured using indigestible NDF as an internal marker during the last 5d of each period. Individual cow dry matter (DM) intake and milk yield were recorded daily, body weight was measured 3 to 5 times per week, and milk components were analyzed 2 d/wk. Individual DM intake was regressed on milk energy output, metabolic body weight, body energy gain, and fixed effects of parity, experiment, cohort (a group of cows that received treatments in the same sequence) nested within experiment, and diet nested within cohort and experiment, with the residual being RFI. High RFI cows ate more than expected and were deemed less efficient. Residual feed intake correlated negatively with digestibility of starch for both HS (r=-0.31) and LS (r=-0.23) diets, and with digestibilities of DM (r=-0.30) and NDF (r=-0.23) for LS diets but was not correlated with DM or NDF digestibility for HS diets. For each cohort within an experiment, cows were classified as high RFI (HRFI; >0.5 SD), medium RFI (MRFI; ±0.5 SD), and low RFI (LRFI; <-0.5 SD). Digestibility of DM was similar (~66%) among HRFI and LRFI for HS diets but greater for LRFI when fed LS diets (64 vs. 62%). For LS diets, digestibility of DM could account for up to 31% of the differences among HRFI and LRFI for apparent diet energy density, as determined from individual cow performance, indicating that digestibility explains some of the between-animal differences for the ability to convert gross energy into net energy. Some of the differences in digestibility between HRFI and LRFI were expected because cows with high RFI eat at a greater multiple of maintenance, and greater intake is associated with increased passage rate and digestibility depression. Based on these data, we conclude that a cow's digestive ability explains none of the variation in RFI for cows eating high starch diets but 9 to 31% of the variation in RFI when cows are fed low starch diets. Perhaps differences in other metabolic processes, such as tissue turnover, heat production, or others related to maintenance, can account for more variation in RFI than digestibility. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Utama, D T; Lee, S G; Baek, K H; Chung, W S; Chung, I A; Kim, D I; Kim, G Y; Lee, S K
2018-02-01
Holstein-Friesian steer beef production is renowned globally as a secondary product of the milk industry. Grass feeding is a common practice in raising Holstein steers because of its low cost. Furthermore, grass feeding is an alternative way to produce beef with a balanced n-6 to n-3 fatty acids (FAs) ratio. However, the performance and meat quality of Holstein-Friesian cattle is more likely to depend on a high-quality diet. The aim of this study was to observe whether feeding two mixed diets; a corn-based total mixed ration (TMR) with winter ryegrass (Lolium perenne) or flaxseed oil-supplemented pellets with reed canary grass haylage (n-3 mix) provided benefits on carcass weight, meat quality and FA composition compared with cattle fed with reed canary grass (Phalaris arundinacea) haylage alone. In all, 15 21-month-old Holstein-Friesian steers were randomly assigned to three group pens, were allowed free access to water and were fed different experimental diets for 150 days. Blood samples were taken a week before slaughter. Carcass weight and meat quality were evaluated after slaughter. Plasma lipid levels and aspartate aminotransferase (AST), γ-glutamyl transpeptidase (GGT), creatine kinase (CK) and alkaline phosphatase (ALP) activities were determined. Diet did not affect plasma triglyceride levels and GGT activity. Plasma cholesterol levels, including low-density and high-density lipoproteins, were higher in both mixed-diet groups than in the haylae group. The highest activities of plasma AST, CK and ALP were observed in the haylage group, followed by n-3 mix and TMR groups, respectively. Carcass weight was lower in the haylage group than in the other groups and no differences were found between the TMR and n-3 mix groups. Although the n-3 mix-fed and haylage-fed beef provided lower n-6 to n-3 FAs ratio than TMR-fed beef, the roasted beef obtained from the TMR group was more acceptable with better overall meat physicochemical properties and sensory scores. According to daily cost, carcass weight and n-6 to n-3 FAs ratio, the finishing diet containing flaxseed oil-supplemented pellets and reed canary grass haylage at the as-fed ratio of 40 : 60 could be beneficial for the production of n-3-enriched beef.
Corn silage from corn treated with foliar fungicide and performance of Holstein cows.
Haerr, K J; Lopes, N M; Pereira, M N; Fellows, G M; Cardoso, F C
2015-12-01
Foliar fungicide application to corn plants is used in corn aimed for corn silage in the dairy industry, but questions regarding frequency of application and its effect on corn silage quality and feed conversion when fed to dairy cows remain prevalent. The objective of this study was to evaluate the effects of various foliar fungicide applications to corn on dry matter intake (DMI), milk production, and milk composition when fed to dairy cows. Sixty-four Holstein cows with parity 2.5±1.5, 653±80kg of body weight, and 161±51d in milk were blocked and randomly assigned to 1 of 4 corn silage treatments (total mixed ration with 35% of the dry matter as corn silage). Treatments were as follows: control (CON), corn silage with no applications of foliar fungicide; treatment 1 (1X), corn silage from corn that received 1 application of pyraclostrobin (PYR) foliar fungicide (Headline; BASF Corp.) at corn vegetative stage 5; treatment 2 (2X), corn silage from corn that received the same application as 1X plus another application of a mixture of PYR and metconazole (Headline AMP; BASF Corp.) at corn reproductive stage 1 ("silking"); and treatment 3 (3X), corn silage from corn that received the same applications as 2X as well as a third application of PYR and metconazole at reproductive stage 3 ("milky kernel"). Corn was harvested at about 32% dry matter and 3/4 milk line stage of kernel development and ensiled for 200d. Treatments were fed to cows for 5wk, with the last week being used for statistical inferences. Week -1 was used as a covariate in the statistical analysis. Dry matter intake tended to be lower for cows fed corn silage treated with fungicide than CON (23.8, 23.0, 19.5, and 21.3kg for CON, 1X, 2X, and 3X, respectively). A linear treatment effect for DMI was observed, with DMI decreasing as foliar fungicide applications increased. Treatments CON, 1X, 2X, and 3X did not differ for milk yield (34.5, 34.5, 34.2, and 34.4kg/d, respectively); however, a trend for increased feed conversion represented by fat-corrected milk/DMI (1.65 vs. 1.47) and energy-corrected milk/DMI (1.60 vs. 1.43) was noted for cows fed corn silage with fungicide compared with CON. In conclusion, cows receiving corn silage treated with foliar fungicide had better conversion of feed dry matter to milk than those receiving CON silage. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Faulkner, M J; Weiss, W P
2017-07-01
Excess rumen-soluble Cu and Zn can alter rumen microbial populations and reduce fiber digestibility. Because of differences in particle size and chemical composition, ruminal and total-tract digestibility of fiber from forage- and by-product-based diets can differ. We hypothesized that, because of differences in mineral solubility, diets with hydroxy rather than sulfate trace minerals would have greater fiber digestibility, but the effect may depend on source of fiber. Eighteen multiparous cows were used in a split-plot replicated Latin square with two 28-d periods to evaluate the effects of Cu, Zn, and Mn source (sulfates or hydroxy; Micronutrients USA LLC, Indianapolis, IN) and neutral detergent fiber (NDF) source (forage diet = 26% NDF vs. by-product = 36%) on total-tract nutrient digestibility. During the entire experiment (56 d) cows remained on the same fiber treatment, but source of supplemental trace mineral was different for each 28-d period so that all cows were exposed to both mineral treatments. During each of the two 28-d periods, cows were fed no supplemental Cu, Zn, or Mn for 16 d followed by 12 d of feeding supplemental Cu, Zn, and Mn from either sulfates or hydroxy sources. Supplemental minerals for each of the mineral sources fed provided approximately 10, 35, and 32 mg/kg of supplemental Cu, Zn, and Mn, respectively, for both fiber treatments. Total dietary concentrations of Cu, Zn, and Mn were approximately 19, 65, and 70 mg/kg for the forage diets and 21, 85, and 79 mg/kg for the by-product diets, respectively. Treatment had no effect on dry matter intake (24.2 kg/d) or milk production (34.9 kg/d). Milk fatty acid profiles were altered by fiber source, mineral source, and their interaction. Cows fed the by-product diets had lower dry matter (65.9 vs. 70.2%), organic matter (67.4 vs. 71.7%), and crude protein digestibility (58.8 vs. 62.1%) but greater starch (97.5 vs. 96.3%) and NDF digestibility (50.5 vs. 44.4%) compared with cows fed the forage treatment. Feeding increased concentrations of by-products decreased total digestible nutrients regardless of mineral source. Feeding hydroxy Cu, Zn, and Mn increased NDF digestibility (48.5 vs. 46.4%) but had no effect on total digestible nutrients. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Influence of corn silage hybrid type on lactation performance by Holstein dairy cows.
Akins, M S; Shaver, R D
2014-12-01
The primary objective of this study was to determine lactation performance by dairy cows fed nutridense (ND), dual-purpose (DP), or brown midrib (BM) corn silage hybrids at the same concentration in the diets. A secondary objective was to determine lactation performance by dairy cows fed NutriDense corn silage at a higher concentration in the diet. One hundred twenty-eight Holstein and Holstein × Jersey cows (105 ± 38 d in milk) were stratified by breed and parity and randomly assigned to 16 pens of 8 cows each. Pens were then randomly assigned to 1 of 4 treatments. Three treatment total mixed rations (TMR; DP40, BM40, and ND40) contained 40% of dry matter (DM) from the respective corn silage hybrid and 20% of DM from alfalfa silage. The fourth treatment TMR had ND corn silage as the sole forage at 65% of DM (ND65). A 2-wk covariate adjustment period preceded the treatment period, with all pens receiving a TMR with equal proportions of DP40, BM40, and ND40. Following the covariate period, cows were fed their assigned treatment diets for 11 wk. nutridense corn silage had greater starch and lower neutral detergent fiber (NDF) content than DP or BM, resulting in ND40 having greater energy content (73.2% of total digestible nutrients, TDN) than DP40 or BM40 (71.9 and 71.4% TDN, respectively). Cows fed BM40 had greater milk yield than DP40, whereas ND40 tended to have greater milk yield and had greater protein and lactose yields compared with DP40. No differences in intake, component-corrected milk yields, or feed efficiency were detected between DP40, BM40, and ND40. Milk yield differences may be due to increased starch intake for ND40 and increased digestible NDF intake for BM40 compared with DP40. Intake and milk yield and composition were similar for ND40 compared with BM40, possibly due to counteracting effects of higher starch intake for ND40 and higher digestible NDF intake for BM40. Feeding ND65 reduced intake, and thus milk and component yields, compared with ND40 due to either increased ruminal starch digestibility or increased rumen fill for ND65. Nutridense corn silage was a viable alternative to both DP and BM at 40% of diet DM; however, lactation performance was reduced when nutridense corn silage was fed at 65% of DM. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Erdman, R A; Piperova, L S; Kohn, R A
2011-10-01
Corn silage (CS) has replaced alfalfa hay (AH) and haylage as the major forage fed to lactating dairy cows, yet many dairy producers believe that inclusion of small amounts of alfalfa hay or haylage improves feed intake and milk production. Alfalfa contains greater concentrations of K and Ca than corn silage and has an inherently higher dietary cation-anion difference (DCAD). Supplemental dietary buffers such as NaHCO(3) and K(2)CO(3) increase DCAD and summaries of studies with these buffers showed improved performance in CS-based diets but not in AH-based diets. We speculated that improvements in performance with AH addition to CS-based diets could be due to differences in mineral and DCAD concentrations between the 2 forages. The objective of this experiment was to test the effects of forage (CS vs. AH) and mineral supplementation on production responses using 45 lactating Holstein cows during the first 20 wk postpartum. Dietary treatments included (1) 50:50 mixture of AH and CS as the forage (AHCS); (2) CS as the sole forage; and (3) CS fortified with mineral supplements (CaCO(3) and K(2)CO(3)) to match the Ca and K content of the AHCS diet (CS-DCAD). Feed intake and milk production were equivalent or greater for cows fed the CS and CS-DCAD diets compared with those fed the AHCS diet. Fat percentage was greater in cows fed the CS compared with the AHCS diet. Fat-corrected milk (FCM; 3.5%) tended to be greater in cows fed the CS and CS-DCAD diets compared with the AHCS diet. Feed efficiencies measured as FCM/dry matter intake were 1.76, 1.80, and 1.94 for the AHCS, CS, and CS-DCAD diets, respectively. The combined effects of reduced feed intake and increased FCM contributed to increased feed efficiency with the CS-DCAD diet, which contained 1.41% K compared with 1.18% K in the CS diet, and we speculate that this might be the result of added dietary K and DCAD effects on digestive efficiency. These results indicate no advantage to including AH in CS-based diets, but suggest that improving mineral supplementation in CS-based diets may increase feed efficiency. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
O'Brien, D; Shalloo, L; Patton, J; Buckley, F; Grainger, C; Wallace, M
2012-09-01
Life cycle assessment (LCA) and the Intergovernmental Panel on Climate Change (IPCC) guideline methodology, which are the principal greenhouse gas (GHG) quantification methods, were evaluated in this study using a dairy farm GHG model. The model was applied to estimate GHG emissions from two contrasting dairy systems: a seasonal calving pasture-based dairy farm and a total confinement dairy system. Data used to quantify emissions from these systems originated from a research study carried out over a 1-year period in Ireland. The genetic merit of cows modelled was similar for both systems. Total mixed ration was fed in the Confinement system, whereas grazed grass was mainly fed in the grass-based system. GHG emissions from these systems were quantified per unit of product and area. The results of both methods showed that the dairy system that emitted the lowest GHG emissions per unit area did not necessarily emit the lowest GHG emissions possible for a given level of product. Consequently, a recommendation from this study is that GHG emissions be evaluated per unit of product given the growing affluent human population and increasing demand for dairy products. The IPCC and LCA methods ranked dairy systems' GHG emissions differently. For instance, the IPCC method quantified that the Confinement system reduced GHG emissions per unit of product by 8% compared with the grass-based system, but the LCA approach calculated that the Confinement system increased emissions by 16% when off-farm emissions associated with primary dairy production were included. Thus, GHG emissions should be quantified using approaches that quantify the total GHG emissions associated with the production system, so as to determine whether the dairy system was causing emissions displacement. The IPCC and LCA methods were also used in this study to simulate, through a dairy farm GHG model, what effect management changes within both production systems have on GHG emissions. The findings suggest that single changes have a small mitigating effect on GHG emissions (<5%), except for strategies used to control emissions from manure storage in the Confinement system (14% to 24%). However, when several management strategies were combined, GHG emissions per unit of product could be reduced significantly (15% to 30%). The LCA method was identified as the preferred approach to assess the effect of management changes on GHG emissions, but the analysis indicated that further standardisation of the approach is needed given the sensitivity of the approach to allocation decisions regarding milk and meat.
Gusha, Jacob; Manyuchi, Clive Rolex; Imbayarwo-Chikosi, Venancio Edward; Hamandishe, Vimbayi Rangaridzo; Katsande, Simbarashe; Zvinorova, Plaxedis Ivy
2014-01-01
The effects of supplementing crossbred cows with non-conventional protein sources on dry matter intake, milk yield parameters and economic returns were investigated. Twenty-five lactating F1 Holstein-Mashona crossbreds averaging 115 ± 24 days in milk were used. Five treatments, total mixed ration (TMR), urea-treated maize stover, untreated maize stover, Macroptilium atropurpureum (Siratro) hay and veld hay, were randomly assigned to cows and replicated five times in a completely randomised design. Nutrient composition, intake, milk yield and economic returns were determined. M. atropurpureum hay, urea-treated maize stover and TMR had equal crude protein content. Daily dry matter intake and yield differed significantly among the treatment diets (P < 0.05). Cows on TMR, urea-treated maize stover and M. atropurpureum consumed more (P < 0.05) than cows on untreated maize stover and veld hay. Supplementing with TMR, urea-treated maize stover and M. atropurpureum hay increased (P < 0.05) milk yields. Mean daily milk yield was highest for cows supplemented with urea-treated maize stover. Percent fat, protein and total solids in milk from cows fed urea-treated stover compared favourably to that of milk for cows supplemented with TMR. Income over supplement cost was highest for cows supplemented with M. atropurpureum hay and urea-treated maize stover. Urea-treated maize stover and M. atropurpureum can therefore be used as a replacer protein supplements for dairy cattle in Zimbabwe.
Goff, Jesse P; Koszewski, Nicholas J
2018-06-01
Most studies demonstrating that diets with low dietary cation-anion difference (DCAD) reduce hypocalcemia in cows add enough anions to the diet to reduce urine pH below 7.0. One objective of these experiments was to determine whether there is any benefit to periparturient plasma Ca concentration if diet anion addition results in a lesser degree of acidification of the cow and urine pH does not go below 7.0. Another method for reducing hypocalcemia involves feeding a prepartal diet that is Ca deficient. This places the cow in negative Ca balance before calving, stimulating parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D secretion before calving and thus promoting Ca homeostasis at calving. As practiced in the field, low-Ca diets are often about 0.5% Ca. Our second objective was to determine whether a 0.46% Ca diet would be sufficiently low in Ca to stimulate PTH secretion before calving. A meta-analysis of the literature suggests that a 0.5% Ca, low-DCAD diet will reduce hypocalcemia better than a 0.7% Ca diet. A third objective was to compare periparturient plasma Ca in cows fed 0.46 or 0.72% Ca diets with similar DCAD. In experiment 1, anions (primarily chloride) or anions plus Ca were added to a 1.4% K basal diet to create the following diets: 0.46% Ca and +167 mEq/kg of DCAD, 0.46% Ca and -13 mEq/kg of DCAD, and 0.72% Ca and -17 mEq/kg of DCAD. In experiment 2, the same amounts of anion were added to a 2.05% K basal diet to create the following diets: 0.46% Ca and +327 mEq/kg of DCAD, 0.46% Ca and +146 mEq/kg of DCAD, and 0.72% Ca and +140 mEq/kg of DCAD. In experiment 1, cows fed the diet with 0.46% Ca and +167 mEq/kg of DCAD had significantly lower plasma Ca concentration after calving than cows fed the 0.46 or 0.72% Ca diets with anions. Periparturient plasma Ca concentrations did not differ in cows fed the low-DCAD diets with 0.46 or 0.72% Ca. Urine pH was reduced from 8.27 in the diet with 0.46% Ca and +167 mEq/kg of DCAD to 7.07 and 7.41 in the 0.46 and 0.72% Ca anion diets, respectively. Precalving plasma PTH and 1,25-dihydroxyvitamin D concentrations were similar in cows fed the 0.46% Ca diets and the 0.72% Ca diets, suggesting that the 0.46% Ca diets were not low enough in Ca to place the cow in negative Ca balance before calving. In experiment 2, adding the anion supplements to a 2.05% K diet did not reduce urine pH below 8.0. Periparturient plasma Ca concentrations did not differ in cows in any group in experiment 2. Precalving diets that are 0.46% Ca fed ad libitum are too high in Ca to stimulate Ca homeostasis before calving. Adding anions to a diet can benefit periparturient cow plasma Ca concentration, but only if it alters acid-base status enough to reduce urine pH below 7.5. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Raffrenato, E; Fievisohn, R; Cotanch, K W; Grant, R J; Chase, L E; Van Amburgh, M E
2017-10-01
The objective of this study was to correlate in vitro and in vivo neutral detergent fiber (NDF) digestibility (NDFD) with the chemical composition of forages and specific chemical linkages, primarily ester- and ether-linked para-coumaric (pCA) and ferulic acids (FA) in forages fed to dairy cattle. The content of acid detergent lignin (ADL) and its relationship with NDF does not fully explain the observed variability in NDFD. The ferulic and p-coumaric acid linkages between ADL and cell wall polysaccharides, rather than the amount of ADL, might be a better predictor of NDFD. Twenty-three forages, including conventional and brown midrib corn silages and grasses at various stages of maturity were incubated in vitro for measurement of 24-h and 96-h NDFD. Undigested and digested residues were analyzed for NDF, acid detergent fiber (ADF), ADL, and Klason lignin (KL); ester- and ether-linked pCA and FA were determined in these fractions. To determine whether in vitro observations of ester- and ether-linked pCA and FA and digestibility were similar to in vivo observations, 3 corn silages selected for digestibility were fed to 6 ruminally fistulated cows for 3 wk in 3 iso-NDF diets. Intact samples and NDF and ADF residues of diet, rumen, and feces were analyzed for ester- and ether-linked pCA and FA. From the in vitro study, the phenolic acid content (total pCA and FA) was highest for corn silages, and overall the content of ester- and ether-linked pCA and FA in both NDF and ADF residues were correlated with NDF digestibility parameters, reflecting the competitive effect of these linkages on digestibility. Also, Klason lignin and ADL were negatively correlated with ether-linked ferulic acid on an NDF basis. Overall, esterified FA and esterified pCA were negatively correlated with all of the measured fiber fractions on both a dry matter and an NDF basis. The lignin content of the plant residues and chemical linkages explained most of the variation in both rate and extent of NDF digestion but not uniformly among forages, ranging from 56 to 99%. The results from the in vivo study were similar to the in vitro data, demonstrating the highest total-tract aNDF digestibility (70%; NDF analysis conducted with α-amylase and sodium sulfite) for cows fed the corn silage with the lowest ester- and ether-linked pCA content in the NDF fraction. In this study, digestibility of forage fiber was influenced by the linkages among lignin and the carbohydrate moieties, which vary by hybrid and species and most likely vary by the agronomic conditions under which the plant was grown. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Predictive value of the cow's milk skin prick test in infantile colic.
Moravej, Hossein; Imanieh, Mohammad H; Kashef, Sara; Handjani, Farhad; Eghterdari, Fardin
2010-01-01
Infantile colic is a common problem among young infants. Cow's milk allergy has been suggested as one of the causes. We aimed to investigate the value of the cow's milk skin test for the diagnosis of cow's milk allergy in exclusively breast-fed infants with infantile colic. Exclusively breast-fed infants with infantile colic were enrolled in this study. On the first visit, the average hours of crying of the infant in a 24-h period were recorded and the cow's milk skin test was performed. If the infant had a positive skin test, elimination of cow's milk from the mothers' diet was advised. Infants with negative skin tests were divided into case and control groups. Cow's milk was eliminated from the diet of mothers in the case group. After 2 weeks, the number of hours of crying were recorded again. The reduction in the crying hours was compared between the two groups using the chi-square test. Skin tests were positive in 3 of 114 cases (2.6%) of infantile colic. All three cases recovered completely following elimination of cow's milk from the mother's diet. Among the 111 patients with negative skin tests, 77 patients completed the study: 35 in the case group and 42 in the control group. The reduction in crying hours in infants in the case group was not significantly different from that in the control group. Elimination of cow's milk from the mothers' diet is not beneficial for infants with a negative skin test. Infants with a positive skin test may benefit from this management.
Livestock disease threats associated with intensification of pastoral dairy farming.
Lean, Ij; Westwood, Ct; Playford, Mc
2008-12-01
This paper provides an overview of the changes in the pasture-based dairy systems of New Zealand and Australia that may influence the health of cattle. There are relatively few available data that can be used to quantify the effects of increased intensification of milk production on the health of cattle. There is evidence that increased production increases the risk of mastitis and culling for udder health. Increased risks of mastitis with treatment with somatotropin support these findings; however, the risk of mastitis may decrease with increased milking frequency. Larger herds with greater stocking density should increase the risk for infectious disease, but evidence to support this contention is sparse. Very intensive grazing patterns associated with higher grass yields achieved using better cultivars and greater use of fertilisers favour nematode parasites. There is some evidence of anthelmintic resistance in both nematodes and liver fluke. Veterinarians will need to be aware of the potential for these to reduce the productivity of cattle. There have been benefits of improved nutrition on the efficiency of energy use for dairy production. Diseases such as bloat and ketosis appear to be of lower prevalence. It also appears that mineral nutrition of pasture-fed cattle is being better addressed, with gains in the control of milk fever, hypomagnesaemia and trace-element deficiencies. However, acidosis is a condition with a high point prevalence in pasture-based dairy systems where cows are fed supplements; one study in Australia found a point prevalence of approximately 11% of cows with acidosis. There is evidence from this study that the neutral detergent fibre (NDF) in pasture-based diets may need to be higher than 30% of the diet to maintain rumen stability. Laminitis and acidosis are different conditions with a similar pathogenesis, specifically highly fermentable diets. The prevalence of lameness was 28% in herds in Australia, suggesting that this condition must be a focus for preventive medical approaches, including the design of laneways, feed pads and dairies.
McCarthy, J; Delaby, L; Hennessy, D; McCarthy, B; Ryan, W; Pierce, K M; Brennan, A; Horan, B
2015-06-01
Economically viable and productive farming systems are required to meet the growing worldwide need for agricultural produce while at the same time reducing environmental impact. Within grazing systems of animal production, increasing concern exists as to the effect of intensive farming on potential N losses to ground and surface waters, which demands an appraisal of N flows within complete grass-based dairy farming systems. A 3-yr (2011 to 2013) whole-farm system study was conducted on a free-draining soil type that is highly susceptible to N loss under temperate maritime conditions. Soil solution concentrations of N from 3 spring-calving, grass-based systems designed to represent 3 alternative whole-farm stocking rate (SR) treatments in a post-milk quota situation in the European Union were compared: low (2.51 cows/ha), medium (2.92 cows/ha), and high SR (3.28 cows/ha). Each SR had its own farmlet containing 18 paddocks and 23 cows. Nitrogen loss from each treatment was measured using ceramic cups installed to a depth of 1m to sample the soil water. The annual and monthly average nitrate, nitrite, ammonia, and total N concentrations in soil solution collected were analyzed for each year using a repeated measures analysis. Subsequently, and based on the biological data collated from each farm system treatment within each year, the efficiency of N use was evaluated using an N balance model. Based on similar N inputs, increasing SR resulted in increased grazing efficiency and milk production per hectare. Stocking rate had no significant effect on soil solution concentrations of nitrate, nitrite, ammonia, or total N (26.0, 0.2, 2.4, and 32.3 mg/L, respectively). An N balance model evaluation of each treatment incorporating input and output data indicated that the increased grass utilization and milk production per hectare at higher SR resulted in a reduction in N surplus and increased N use efficiency. The results highlight the possibility for the sustainable intensification of grass-based dairy systems and suggest that, at the same level of N inputs, increasing SR has little effect on N loss in pastoral systems with limited imported feed. These results suggest that greater emphasis should be attributed to increased grass production and utilization under grazing to further improve the environmental impact of grazing systems. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Klop, G; van Laar-van Schuppen, S; Pellikaan, W F; Hendriks, W H; Bannink, A; Dijkstra, J
2017-04-01
The adaptation of dairy cows to methane (CH4)-mitigating feed additives was evaluated using the in vitro gas production (GP) technique. Nine rumen-fistulated lactating Holstein cows were grouped into three blocks and within blocks randomly assigned to one of three experimental diets: Control (CON; no feed additive), Agolin Ruminant® (AR; 0.05 g/kg dry matter (DM)) or lauric acid (LA; 30 g/kg DM). Total mixed rations composed of maize silage, grass silage and concentrate were fed in a 40 : 30 : 30 ratio on DM basis. Rumen fluid was collected from each cow at days -4, 1, 4, 8, 15 and 22 relative to the introduction of the additives in the diets. On each of these days, a 48-h GP experiment was performed in which rumen fluid from each individual donor cow was incubated with each of the three substrates that reflected the treatment diets offered to the cows. DM intake was on average 19.8, 20.1 and 16.2 kg/day with an average fat- and protein-corrected milk production of 30.7, 31.7 and 26.2 kg/day with diet CON, AR and LA, respectively. In general, feed additives in the donor cow diet had a larger effect on gas and CH4 production than the same additives in the incubation substrate. Incubation substrate affected asymptotic GP, half-time of asymptotic CH4 production, total volatile fatty acid (VFA) concentration, molar proportions of propionate and butyrate and degradation of organic matter (OMD), but did not affect CH4 production. No substrate×day interactions were observed. A significant diet×day interaction was observed for in vitro gas and CH4 production, total VFA concentration, molar proportions of VFA and OMD. From day 4 onwards, the LA diet persistently reduced gas and CH4 production, total VFA concentration, acetate molar proportion and OMD, and increased propionate molar proportion. In vitro CH4 production was reduced by the AR diet on day 8, but not on days 15 and 22. In line with these findings, the molar proportion of propionate in fermentation fluid was greater, and that of acetate smaller, for the AR diet than for the CON diet on day 8, but not on days 15 and 22. Overall, the data indicate a short-term effect of AR on CH4 production, whereas the CH4-mitigating effect of LA persisted.
Zhou, Shao J; Sullivan, Thomas; Gibson, Robert A; Lönnerdal, Bo; Prosser, Colin G; Lowry, Dianne J; Makrides, Maria
2014-05-01
The safety and nutritional adequacy of goat milk infant formulas have been questioned. The primary aim of the present study was to compare the growth and nutritional status of infants fed a goat milk infant formula with those of infants fed a typical whey-based cow milk infant formula. The secondary aim was to examine a range of health- and allergy-related outcomes. A double-blind, randomised controlled trial with 200 formula-fed term infants randomly assigned to receive either goat or cow milk formula from 2 weeks to at least 4 months of age was conducted. A cohort of 101 breast-fed infants was included for comparison. Weight, length and head circumference were measured at 2 weeks and 1, 2, 3, 4, 6 and 12 months of age. Nutritional status was assessed from serum albumin, urea, creatinine, Hb, ferritin, and folate and plasma amino acid concentrations at 4 months. Z-scores for weight, length, head circumference and weight for length were not different between the two formula-fed groups. There were differences in the values of some amino acids and blood biomarkers between the formula-fed groups, but the mean values for biomarkers were within the normal reference range. There were no differences in the occurrence of serious adverse events, general health, and incidence of dermatitis or medically diagnosed food allergy. The incidence of parentally reported blood-stained stools was higher in the goat milk formula-fed group, although this was a secondary outcome and its importance is unclear. Goat milk formula provided growth and nutritional outcomes in infants that did not differ from those provided by a standard whey-based cow milk formula.
USDA-ARS?s Scientific Manuscript database
We evaluated the impact of consuming endophyte-infected fescue during late pregnancy on parameters of mammary development in Holstein cows. Cows (N = 16) were fed 10% of their ration as tall fescue seed that was free from (CON) or infected with endophyte (INF) from 90d before expected calving until ...
Zhang, Tingting; Si, Bingwen; Deng, Kaidong; Tu, Yan; Zhou, Chaolong; Diao, Qiyu
2018-01-01
We determined how supplementing the diet of lactating, multiparous Holstein dairy cows with a preparation of Moringa oleifera rachises and twigs affected their milk production and quality and the levels of plasma antioxidants. We found that milk yield increased in cows receiving the 6% (w/w) moringa supplement compared with that of the control. Addition of the moringa supplement increased the concentration of milk fat and decreased the somatic cell count in the milk. However, protein, glucose and total solid and urea nitrogen concentrations in the milk were the same for all treatments. The concentration of glutathione peroxidase increased for cows fed the moringa supplement compared with the control. The percentages of total unsaturated fatty acids, mono-unsaturated fatty acids, and polyunsaturated fatty acids including n-3 polyunsaturated fatty acid increased in the milk of cows fed the moringa supplement compared with those of the controls. Addition of the moringa supplement into the diet of lactating multiparous cows improved milk production and health status and modified milk fatty acid profile positively. The results suggested that moringa supplement could be used as a diet supplement for producing high quality and healthier milk. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Sugarcane bagasse as exclusive roughage for dairy cows in smallholder livestock system.
de Almeida, Gleidiana Amélia Pontes; de Andrade Ferreira, Marcelo; de Lima Silva, Janaina; Chagas, Juana Catarina Cariri; Véras, Antônia Sherlânea Chaves; de Barros, Leonardo José Assis; de Almeida, Gledson Luiz Pontes
2018-03-01
The study aimed to evaluate sugarcane bagasse as roughage in lactating cow on feed intake, digestibility, ingestive behavior, milk production and composition, and microbial protein synthesis. Ten Girolando cows at initial body weight of 450±25.6 kg and at 143.7±30.7 days in milk were assigned in two 5×5 Latin square designs. Five 21-day experimental periods were adopted (1° to 14-day: diets adaptation period; 15° to 21-day: data collection and sampling period). The diets consisted of four different levels of sugarcane bagasse (45%, 50%, 55%, and 60%) and a control diet, commonly adopted in the region, based on spineless cactus (25% sugarcane bagasse), formulated to meet 12 kg/d milk yield. The dry matter (DM), organic matter (OM), and total digestible nutrients intakes and DM and OM digestibilities observed for 45% and 50% bagasse inclusion were similar to control diet, while that 55% and 60% bagasse inclusion were lower. Cows fed control diet, and bagasse diets of 45%, and 50% levels had the nutritional requirements attended, that guaranteed 12 kg/d of milk yield. The crude protein intake and digestibility of cows fed 45%, 50%, and 55% of bagasse inclusion were similar to control diet. The neutral detergent fiber (NDF) intake and digestibility differ for all bagasse diets related to control diet, while the non-fiber carbohydrates intake and digestibility for cows fed 45% of bagasse were similar for control diet. The intakes and digestibilities of nutrients decreased linearly in function of bagasse inclusion; NDF and indigestible NDF intakes did not vary. The ruminating time, feeding and rumination efficiency, microbial protein synthesis and milk yield decreased linearly with sugarcane bagasse inclusion. Sugarcane bagasse decreases milk production; however, its inclusion level in between 45% to 50% associated to concentrate could replace diets based on spineless cactus for crossbred dairy cow's producing 12 kg/d of milk.
Sugarcane bagasse as exclusive roughage for dairy cows in smallholder livestock system
2018-01-01
Objective The study aimed to evaluate sugarcane bagasse as roughage in lactating cow on feed intake, digestibility, ingestive behavior, milk production and composition, and microbial protein synthesis. Methods Ten Girolando cows at initial body weight of 450±25.6 kg and at 143.7±30.7 days in milk were assigned in two 5×5 Latin square designs. Five 21-day experimental periods were adopted (1° to 14-day: diets adaptation period; 15° to 21-day: data collection and sampling period). The diets consisted of four different levels of sugarcane bagasse (45%, 50%, 55%, and 60%) and a control diet, commonly adopted in the region, based on spineless cactus (25% sugarcane bagasse), formulated to meet 12 kg/d milk yield. Results The dry matter (DM), organic matter (OM), and total digestible nutrients intakes and DM and OM digestibilities observed for 45% and 50% bagasse inclusion were similar to control diet, while that 55% and 60% bagasse inclusion were lower. Cows fed control diet, and bagasse diets of 45%, and 50% levels had the nutritional requirements attended, that guaranteed 12 kg/d of milk yield. The crude protein intake and digestibility of cows fed 45%, 50%, and 55% of bagasse inclusion were similar to control diet. The neutral detergent fiber (NDF) intake and digestibility differ for all bagasse diets related to control diet, while the non-fiber carbohydrates intake and digestibility for cows fed 45% of bagasse were similar for control diet. The intakes and digestibilities of nutrients decreased linearly in function of bagasse inclusion; NDF and indigestible NDF intakes did not vary. The ruminating time, feeding and rumination efficiency, microbial protein synthesis and milk yield decreased linearly with sugarcane bagasse inclusion. Conclusion Sugarcane bagasse decreases milk production; however, its inclusion level in between 45% to 50% associated to concentrate could replace diets based on spineless cactus for crossbred dairy cow's producing 12 kg/d of milk. PMID:29059720
Harlid, Sophia; Adgent, Margaret; Jefferson, Wendy N.; Panduri, Vijayalakshmi; Umbach, David M.; Xu, Zongli; Stallings, Virginia A.; Williams, Carmen J.; Rogan, Walter J.; Taylor, Jack A.
2016-01-01
Background: Early-life exposure to estrogenic compounds affects the development of the reproductive system in rodent models and humans. Soy products, which contain phytoestrogens such as genistein, are one source of exposure in infants fed soy formula, and they result in high serum concentrations. Objectives: Our goal was to determine whether soy exposure is associated with differential DNA methylation in vaginal cells from soy-fed infant girls. Methods: Using the Illumina HumanMethylation450 BeadChip, we evaluated epigenome-wide DNA methylation in vaginal cells from four soy formula–fed and six cow formula–fed girls from the Infant Feeding and Early Development (IFED) study. Using pyrosequencing we followed up the two most differentially methylated sites in 214 vaginal cell samples serially collected between birth and 9 months of age from 50 girls (28 soy formula–fed and 22 cow formula–fed). With a mouse model, we examined the effect of neonatal exposure to genistein on gene specific mRNA levels in vaginal tissue. Results: The epigenome-wide scan suggested differences in methylation between soy formula–fed and cow formula–fed infants at three CpGs in the gene proline rich 5 like (PRR5L) (p < 104). Pyrosequencing of the two feeding groups found that methylation levels progressively diverged with age, with pointwise differences becoming statistically significant after 126 days. Genistein-exposed mice showed a 50% decrease in vaginal Prr5l mRNA levels compared to controls. Conclusions: Girls fed soy formula have altered DNA methylation in vaginal cell DNA which may be associated with decreased expression of an estrogen-responsive gene. Citation: Harlid S, Adgent M, Jefferson WN, Panduri V, Umbach DM, Xu Z, Stallings VA, Williams CJ, Rogan WJ, Taylor JA. 2017. Soy formula and epigenetic modifications: analysis of vaginal epithelial cells from infant girls in the IFED study. Environ Health Perspect 125:447–452; http://dx.doi.org/10.1289/EHP428 PMID:27539829
Harlid, Sophia; Adgent, Margaret; Jefferson, Wendy N; Panduri, Vijayalakshmi; Umbach, David M; Xu, Zongli; Stallings, Virginia A; Williams, Carmen J; Rogan, Walter J; Taylor, Jack A
2017-03-01
Early-life exposure to estrogenic compounds affects the development of the reproductive system in rodent models and humans. Soy products, which contain phytoestrogens such as genistein, are one source of exposure in infants fed soy formula, and they result in high serum concentrations. Our goal was to determine whether soy exposure is associated with differential DNA methylation in vaginal cells from soy-fed infant girls. Using the Illumina HumanMethylation450 BeadChip, we evaluated epigenome-wide DNA methylation in vaginal cells from four soy formula-fed and six cow formula-fed girls from the Infant Feeding and Early Development (IFED) study. Using pyrosequencing we followed up the two most differentially methylated sites in 214 vaginal cell samples serially collected between birth and 9 months of age from 50 girls (28 soy formula-fed and 22 cow formula-fed). With a mouse model, we examined the effect of neonatal exposure to genistein on gene specific mRNA levels in vaginal tissue. The epigenome-wide scan suggested differences in methylation between soy formula-fed and cow formula-fed infants at three CpGs in the gene proline rich 5 like ( PRR5L ) ( p < 10 4 ). Pyrosequencing of the two feeding groups found that methylation levels progressively diverged with age, with pointwise differences becoming statistically significant after 126 days. Genistein-exposed mice showed a 50% decrease in vaginal Prr5l mRNA levels compared to controls. Girls fed soy formula have altered DNA methylation in vaginal cell DNA which may be associated with decreased expression of an estrogen-responsive gene. Citation: Harlid S, Adgent M, Jefferson WN, Panduri V, Umbach DM, Xu Z, Stallings VA, Williams CJ, Rogan WJ, Taylor JA. 2017. Soy formula and epigenetic modifications: analysis of vaginal epithelial cells from infant girls in the IFED study. Environ Health Perspect 125:447-452; http://dx.doi.org/10.1289/EHP428.
Acosta, D A V; Rivelli, M I; Skenandore, C; Zhou, Z; Keisler, D H; Luchini, D; Corrêa, M N; Cardoso, F C
2017-07-01
Multiparous Holstein cows were assigned in a randomized complete block design into four treatments from 21 d before calving to 30 d in milk (DIM). Treatments were: MET [n = 19, fed the basal diet + rumen-protected methionine at a rate of 0.08% (w/w) of the dry matter, Smartamine ® M], CHO (n = 17, fed the basal diet + choline 60 g/d, Reashure ® ), MIX (n = 21, fed the basal diet + Smartamine ® M at a rate of 0.08% (w/w) of the dry matter and 60 g/d Reashure ® ), and CON (n = 20, no supplementation, fed the close-up and fresh cow diets). Follicular development was monitored via ultrasound every 2 d starting at 7 DIM until ovulation (n = 37) or aspiration (n = 40) of the first postpartum dominant follicle (DF). Follicular fluid from 40 cows was aspirated and cells were retrieved immediately by centrifugation. Gene expression of TLR4, TNF, IL1-β, IL8, IL6, LHCGR, STAR, 3β-HSD, P450scc, CYP19A1, IRS1, IGF, MAT1A, and SAHH, was measured in the follicular cells of the first DF. Cows in CON had higher TNF, TLR4, and IL1-β mRNA expression (11.70 ± 4.6, 21.29 ± 10.4, 6.28 ± 1.4, respectively) than CHO (2.77 ± 0.9, 2.16 ± 0.9, 2.29 ± 0.7, respectively), and MIX (2.23 ± 0.7, 1.46 ± 0.6, 2.92 ± 0.8, respectively). Cows in CON had higher IL1-β expression (6.27 ± 1.4) than cows in MET (3.28 ± 0.6). Expression of IL8 mRNA was lower for cows in CHO (0.98 ± 0.3) than cows in CON (4.90 ± 0.7), MET (6.10 ± 1.7), or MIX (5.05 ± 1.8). Treatments did not affect mRNA expression of LHCGR, STAR, P450scc, CYP19A, SAHH, MAT1A, or IL6 however, 3β-HSD expression was higher for cows in MET (1.46 ± 0.3) and MIX (1.25 ± 0.3) than CON (0.17 ± 0.04) and CHO (0.26 ± 0.1). Supplementation of methionine, choline, and both methionine and choline during the transition period did not affect days to first ovulation or number of cows that ovulated the first follicular wave. Plasma and follicular fluid estradiol and progesterone concentrations were not different among treatments. Methionine concentrations in the follicular fluid of the first postpartum DF was higher for cows in MET (18.2 ± 0.1 μM) than cows in CON (11.1 ± 0.9 μM). In conclusion, supplementing choline and methionine during the transition period changed mRNA expression in follicular cells and dietary methionine supplementation increased plasma and follicular fluid concentrations of methionine of the first postpartum DF in Holstein cows. Copyright © 2017 Elsevier Inc. All rights reserved.
Psychrophilic dry anaerobic digestion of dairy cow feces: Long-term operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massé, Daniel I., E-mail: Daniel.masse@agr.gc.ca; Cata Saady, Noori M.
2015-02-15
Highlights: • Psychrophilic dry anaerobic digestion (PDAD) of cow feces (CF) is feasible. • PDAD of CF is as efficient as mesophilic and thermophilic AD at TCL 21 days. • CF (13–16% TS at OLR 5.0 g TCOD{sub fed} kg{sup −1} inoculum d{sup −1}) yielded 222 ± 27 {sub N}L CH{sub 4} kg{sup −1} VS fed. - Abstract: This paper reports experimental results which demonstrate psychrophilic dry anaerobic digestion of cow feces during long-term operation in sequence batch reactor. Cow feces (13–16% total solids) has been anaerobically digested in 12 successive cycles (252 days) at 21 days treatment cycle lengthmore » (TCL) and temperature of 20 °C using psychrotrophic anaerobic mixed culture. An average specific methane yield (SMY) of 184.9 ± 24.0, 189.9 ± 27.3, and 222 ± 27.7 {sub N}L CH{sub 4} kg{sup −1} of VS fed has been achieved at an organic loading rate of 3.0, 4.0, and 5.0 g TCOD kg{sup −1} inoculum d{sup −1} and TCL of 21 days, respectively. The corresponding substrate to inoculum ratio (SIR) was 0.39 ± 0.06, 0.48 ± .02, 0.53 ± 0.05, respectively. Average methane production rate of 10 ± 1.4 {sub N}L CH{sub 4} kg{sup −1} VS fed d{sup −1} has been obtained. The low concentration of volatile fatty acids indicated that hydrolysis was the reaction limiting step.« less
Oliver, A L; Grant, R J; Pedersen, J F; O'Rear, J
2004-03-01
Total mixed rations containing conventional forage sorghum, brown midrib (bmr)-6 forage sorghum, bmr-18 forage sorghum, or corn silage were fed to Holstein dairy cows to determine the effect on lactation, ruminal fermentation, and total tract nutrient digestion. Sixteen multiparous cows (4 ruminally fistulated; 124 d in milk) were assigned to 1 of 4 diets in a replicated Latin square design with 4-wk periods (21-d adaptation and 7 d of collection). Diets consisted of 40% test silage, 10% alfalfa silage, and 50% concentrate mix (dry basis). Acid detergent lignin concentration was reduced by 21 and 13%, respectively, for the bmr-6 and bmr-18 sorghum silages when compared with the conventional sorghum. Dry matter intake was not affected by diet. Production of 4% fat-corrected milk was greatest for cows fed bmr-6 (33.7 kg/d) and corn silage (33.3 kg/d), was least for cows fed the conventional sorghum (29.1 kg/d), and was intermediate for cows fed the bmr-18 sorghum (31.2 kg/d), which did not differ from any other diet. Total tract neutral detergent fiber (NDF) digestibility was greatest for the bmr-6 sorghum (54.4%) and corn silage (54.1%) diets and was lower for the conventional (40.8%) and bmr-18 sorghum (47.9%) diets. In situ extent of NDF digestion was greatest for the bmr-6 sorghum (76.4%) and corn silage (79.0%) diets, least for the conventional sorghum diet (70.4%), and intermediate for the bmr-18 sorghum silage diet (73.1%), which was not different from the other diets. Results of this study indicate that the bmr-6 sorghum hybrid outperformed the conventional sorghum hybrid; the bmr-18 sorghum was intermediate between conventional and bmr-6 in most cases. Additionally, the bmr-6 hybrid resulted in lactational performance equivalent to the corn hybrid used in this study. There are important compositional differences among bmr forage sorghum hybrids that need to be characterized to predict animal response accurately.
Mapato, Chaowarit; Wanapat, Metha
2018-03-23
Both quantity and quality of forages are important in dry season feeding. Eight Thai native beef bulls were arranged in a Completely randomized design to evaluate dwarf Napier namely Sweet grass (Pennisetum purpureum cv. Mahasarakham) preserved as silage or hay on feed intake, digestibility, and rumen fermentation. The animals were fed with forage ad libitum supplemented with concentrate mixture at 1.0% of BW for 21 days; data were collected during the last 7 days. The results showed that there were differences (P < 0.05) between treatments in dry matter (DM) intake, DM digestibility, and ruminal pH, in which hay feeding gave enhanced feed intake and more favorable ruminal pH. Nevertheless, mean ruminal ammonia nitrogen, total volatile fatty acids (TVFAs), proportion of VFAs, bacterial and protozoal population, and blood urea nitrogen were similar (P > 0.05) in animals fed silage and hay. Sweet grass is better preserved as hay rather than silage.
Hardegen, Justus; Latorre-Pérez, Adriel; Vilanova, Cristina; Günther, Thomas; Porcar, Manuel; Luschnig, Olaf; Simeonov, Claudia; Abendroth, Christian
2018-06-06
In this work, liquid and solid fractions of grass biomass were used as co-substrates for anaerobic co-digestion of sewage sludge. The input of grass biomass was increased gradually, and the underlying methanogenic microbiome was assessed by means of microscopy-based cell counting and full-length 16S rRNA gene high-throughput sequencing, proving for the first time the suitability of nanopore-based portable sequencers as a monitoring tool for anaerobic digestion systems. In both cases co-fermentation resulted in an increased number of bacteria and methanogenic archaea. Interestingly, the microbial communities were highly different between solid and liquid-fed batches. Liquid-fed batches developed a more stable microbiome, enriched in Methanosarcina spp., and resulted in higher methanogenic yield. In contrast, solid-fed batches were highly unstable at higher substrate concentrations, and kept Methanosaeta spp. - typically associated to sewage sludge - as the majoritary methanogenic archaea. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mesilati-Stahy, Ronit; Moallem, Uzi; Magen, Yogev; Argov-Argaman, Nurit
2015-07-15
The mechanism underlying the shift in milk-fat-globule (MFG) mean diameter upon changing the concentrate-to-forage ratio in dairy cow rations was investigated. Cows were fed high-concentrate low-forage (HCLF) or high-forage low-concentrate (LCHF) rations for 4 weeks. Mean diameter of MFG, determined in raw whole milk, was 0.4 μm larger in the LCHF-fed vs. HCLF-fed group. The main compositional differences between treatments were found in a specific MFG subgroup with the diameter of 3.3 μm (F1), with higher capric, lauric, myristic and lower oleic acid concentrations in HCLF vs. LCHF milk. Similarly, lipid concentration differences between treatments were only found in F1, with higher triglyceride and phosphatidylethanolamine, and lower sphingomyelin concentrations in LCHF vs. HCLF milk. The higher MFG mean diameter in whole raw LCHF milk might therefore be attributed to increased secretion of F1-group MFG, while fat content and composition in the other MFG size groups remains unchanged. Copyright © 2015 Elsevier Ltd. All rights reserved.
Compton, C W R; Young, L; McDougall, S
2015-09-01
Firstly, to define, in dairy cows in the first 5 weeks post-calving fed a predominantly pasture-based diet, cut-points of concentrations of beta-hydroxybutyrate (BHBA) in blood, above which there were associations with purulent vaginal discharge (PVD), reduced pregnancy rates (PR) and decreased milk production, in order to better define subclinical ketosis (SCK) in such cattle; and secondly, to determine the prevalence, incidence and risk factors for SCK. An observational field study was conducted in 565 cows from 15 spring-calving and predominantly pasture-fed dairy herds in two regions of New Zealand during the 2010- 2011 dairy season. Within each herd, a cohort of randomly selected cows (approximately 40 per herd) was blood sampled to determine concentrations of BHBA on six occasions at weekly intervals starting within 5 days of calving. The key outcome variables were the presence/absence of PVD at 5 weeks post-calving, PR after 6 weeks (6-week PR) and after the completion of the breeding season (final PR), and mean daily milk solids production. Two cut-points for defining SCK were identified: firstly concentration of BHBA in blood≥1.2 mmol/L within 5 days post-calving, which was associated with an increased diagnosis of PVD (24 vs. 8%); and secondly concentration of BHBA in blood≥1.2 mmol/L at any stage within 5 weeks post-calving, which was associated with decreased 6-week PR (78 vs. 85%). The mean herd-level incidence of SCK within 5 weeks post-calving was 68 (min 12; max 100)% and large variations existed between herds in peak prevalence of SCK and the interval post-calving at which such peaks occurred. Cows>8 years of age and cows losing body condition were at increased risk of SCK within 5 weeks of calving. Cows with concentration of BHBA in blood≥1.2 mmol/L in early lactation had a higher risk of PVD and lower 6-week PR. Cow and herd-level prevalence of SCK varied widely in early lactation. Subclinical ketosis is common and is significantly associated with reproductive performance in mainly pasture-fed New Zealand dairy cattle. Controlling SCK may therefore result in improvements in herd reproductive performance. However considerable variation exists among herds in the incidence of SCK and in the timing of peak prevalence which means that herd-specific monitoring programmes are required to define herd SCK status accurately.
CALYPTOSPORA FUNDULI (APICOMPLEXA): LIFE CYCLE AND TAXONOMY
The taxonomic status of the extraintestinal piscine coccidium Calyptospora funduli is based in part on its requirement of an intermediate host (the daggerblade grass shrimp, Palaemonetes pugio). Grass shrimp fed livers of Gulf killifish (Fundulus grandis) infected with sporulated...
LIFE CYCLE OF CALYPTOSPORA FUNDULI (APICOMPLEXA: CALYPTOSPORIDAE)
The taxonomic status of the extraintestinal piscine coccidium Calyptospora funduli is based in part on its requirement of an intermediate host (the daggerblade grass shrimp, Palaemonetes pugio). In this study, grass shrimp fed livers of Gulf killifish (Fundulus grandis) infected ...
Guyader, J; Doreau, M; Morgavi, D P; Gérard, C; Loncke, C; Martin, C
2016-07-01
A previous study showed the additive methane (CH4)-mitigating effect of nitrate and linseed fed to non-lactating cows. Before practical application, the use of this new strategy in dairy cows requires further investigation in terms of persistency of methanogenesis reduction and absence of residuals in milk products. The objective of this experiment was to study the long-term effect of linseed plus nitrate on enteric CH4 emission and performance in dairy cows. We also assessed the effect of this feeding strategy on the presence of nitrate residuals in milk products, total tract digestibility, nitrogen (N) balance and rumen fermentation. A total of 16 lactating Holstein cows were allocated to two groups in a randomised design conducted in parallel for 17 weeks. Diets were on a dry matter (DM) basis: (1) control (54% maize silage, 6% hay and 40% concentrate; CON) or (2) control plus 3.5% added fat from linseed and 1.8% nitrate (LIN+NIT). Diets were equivalent in terms of CP (16%), starch (28%) and NDF (33%), and were offered twice daily. Cows were fed ad libitum, except during weeks 5, 16 and 17 in which feed was restricted to 95% of dry matter intake (DMI) to ensure complete consumption of meals during measurement periods. Milk production and DMI were measured weekly. Nitrate and nitrite concentrations in milk and milk products were determined monthly. Daily CH4 emission was quantified in open circuit respiration chambers (weeks 5 and 16). Total tract apparent digestibility, N balance and rumen fermentation parameters were determined in week 17. Daily DMI tended to be lower with LIN+NIT from week 4 to 16 (-5.1 kg/day on average). The LIN+NIT diet decreased milk production during 6 non-consecutive weeks (-2.5 kg/day on average). Nitrate or nitrite residuals were not detected in milk and associated products. The LIN+NIT diet reduced CH4 emission to a similar extent at the beginning and end of the trial (-47%, g/day; -30%, g/kg DMI; -33%, g/kg fat- and protein-corrected milk, on average). Diets did not affect N efficiency and nutrients digestibility. In the rumen, LIN+NIT did not affect protozoa number but reduced total volatile fatty acid (-12%) and propionate (-31%) concentrations. We concluded that linseed plus nitrate may have a long-term CH4-mitigating effect in dairy cows and that consuming milk products from cows fed nitrate may be safe in terms of nitrate and nitrite residuals. Further work is required to optimise the doses of linseed plus nitrate to avoid reduced cows performance.
Roberts, A J; Klindt, J; Jenkins, T G
2005-07-01
Objectives of this study were to evaluate effects of seven sire breed groups and three levels of daily ME intake (DMEI = 132 or 189 kcal ME/kg BW(0.75) or ad libitum), beginning 5 mo prepartum, on BCS, length of postpartum anestrus, and circulating concentrations of IGF-1 and GH in F1 cows (six to eight cows per sire breed in each DMEI group) out of Angus or Hereford dams. At the initiation of the study, BW were 522, 530, 548, 572, 575, 577, and 595 kg for cows sired by Longhorn, Galloway, 1960s Hereford or Angus, 1980s Hereford or Angus, or Nellore, Salers, and Shorthorn bulls, respectively (SE = 13; P < 0.001 for sire breed). After 4 mo on DMEI treatment during the pre-partum period, cows fed 132 kcal of ME/kg BW(0.75)gained little to no BW; cows fed 189 kcal ME/kg BW(0.75) gained 50 kg; and cows fed ad libitum gained 70 kg (all groups differ P < 0.05). Concentrations of progesterone in weekly blood samples collected 2 to 14 wk after calving were used to establish when normal luteal function resumed to predict length of postpartum anestrus. Length of anestrus was affected by level of DMEI in cows sired by Galloway, Longhorn, and Nellore bulls, but not other breeds (P < 0.02 for interaction of sire breed and DMEI). Level of DMEI, but not sire breed, affected (P < 0.01) BCS at wk 2 postpartum. Concentrations of IGF-1 at wk 2 postpartum differed (P < 0.001) due to sire breed, and changes in concentrations of IGF-1 from wk 2 to 14 were influenced (P < 0.03) by the interaction of sire breed and level of DMEI; which was primarily the result of differences in rate of decrease over time among different sire breed x level of DMEI groupings. Concentrations of GH did not differ due to sire breed but varied (P < 0.001) due to the interaction of DMEI and week postpartum, for which concentrations of GH did not differ at wk 2 but increased over time at rates that were inversely proportional to level of DMEI. Length of anestrus was negatively associated (P < 0.05) with day of calving, BCS, and BW. When effects of sire breed and level of DMEI were accounted for (residual correlation), length of anestrus was inversely associated (P < 0.01) with IGF-1 concentrations. Breed of sire influenced length of postpartum anestrus and energy balance, as predicted by IGF-1, in crossbred cows fed varying levels of DMEI.
Investigating locomotion of dairy cows by use of high speed cinematography.
Herlin, A H; Drevemo, S
1997-05-01
The longterm influence of management systems on the locomotion of 17 dairy cows was investigated by high speed cinematography (100 frames/s) and kinematic analysis. Angular patterns and hoof trajectories of the left fore- and hindlimbs are presented and statistics made of occurring minimum and maximum angles. At the recording, 3 cows had been kept in tie-stalls (TI) and 6 cows in cubicles (CI) for a consecutive time of about 2.5 years while 8 cows had been kept on grass for about 3 months. Four of the grazing cows had earlier been kept in cubicles (CG) and 4 in tie-stalls (TG) during earlier off grazing seasons together with TI and CI cows. The CI cows had a smaller maximum angle of the elbow joint compared to TI, TG and CG cows. The hock joint angle of the CI cows was less flexed during the stance phase than in TI and CG cows while the minimum angle during the swing phase was greater in the TI and CI cows compared to TG and CG cows. Pastured cows (TG and CG) had a less pronounced flexion of the fetlock joint angle during the stance compared to cows kept indoors (TI and CI). The results suggest that slatted floor and lack of exercise during summer grazing may affect locomotion. This is indicated by restrictions in the movements of the elbow and hock joints and in less fetlock joint flexion at full support.
Immune and oxidative response to linseed in the diet of periparturient Holstein cows.
Đidara, M; Poljičak-Milas, N; Milinković-Tur, S; Mašek, T; Šuran, J; Pavić, M; Kardum, M; Šperanda, M
2015-08-01
The aim of this research was to determine the influence of dietary replacement of n-6 with n-3 polyunsaturated fatty acids on cellular immunity and oxidative stress in the transition period dairy cows. The experiment was conducted on 20 dairy Holstein cows from 3 ± 1 weeks before parturition until the 6th week of lactation. Both groups were fed an iso-energetic and iso-nitrogenous diet. Soybean meal from control (C) group was replaced with linseed in the experimental (LS) group. Cellular immunity and oxidative stress were measured on days -10, 1, 21 and 42 relative to parturition. During the entire experimental period, the proportion of CD45+ cells was lower (P<0.05) in LS group compared with the C group. The phagocytosis ability and phagocytosis index of cows fed with n-3 fatty acids were significantly reduced (P<0.05) compared with the group of cows fed with n-6 fatty acids. The most severe decrease in phagocytosis ability was on day -10 and 1 relative to parturition. The activity of superoxide dismutase (P<0.05) and plasma glutathione peroxidase (P<0.05) increased around calving, although activities were not influenced by dietary treatment. Increased malondialdehyde concentration (P<0.05) was influenced by dietary n-3 fatty acids and the time relative to parturition. The immune suppression was most pronounced during periparturient period. In that matter we can conclude that not only dietary n-3 fatty acids but also oxidative stress, which reached peak at time of parturition, contributed to the reduced cellular immunity during the periparturient period.
Using plant wax markers to estimate the diet composition of grazing Holstein dairy cows.
Heublein, C; Südekum, K-H; Gill, F L; Dohme-Meier, F; Schori, F
2017-02-01
The objective of this study was to test whether diet selection of dairy cows under grazing conditions could be estimated using plant wax markers. Furthermore, differences between 2 cow strains and the effect of concentrate supplementation on plant species selection were investigated. The experiment was a study with a crossover design performed on an organic farm with 12 Swiss Holstein cows and 12 New Zealand Holstein cows. Both experimental periods consisted of a 21-d adaptation and a 7-d measurement period. All cows grazed full time in a rotational stocking system and received either no concentrate or 6 kg/d of a commercial cereal-grain mix. Representative herbage samples of each grazed paddock were taken and botanical composition of subsamples was manually determined. The average proportions of the plant species were 27.8% Lolium perenne, 6.1% Dactylis glomerata, 10.4% Trifolium repens, and 9.0% Taraxacum officinale. Other grass species were merged as "other grass" (38.2%) and other forb species as "other forbs" (8.5%). n-Alkanes, long-chain fatty acids, and long-chain alcohols (LCOH) were analyzed in the samples of plant species, concentrate, and feces from each cow. A linear discriminant analysis indicated that diet components were differentiated best with LCOH (96%) and worst with the combination of all marker groups together (12%). For each marker, the fecal marker recovery (FR) relative to dosed ytterbium was determined in 2 ways. Estimation of diet composition was performed with the software "EatWhat," and results were compared with botanical composition with the Aitchison distance. The results indicate that the diet composition of grazing dairy cows can be estimated using plant wax markers. Additionally, the calculation of FR led to mostly reliable results, yet this approach needs further validation. The most accurate estimation was achieved with the marker combination of n-alkanes and LCOH with a correction for FR. Less accurate estimations were achieved with long-chain fatty acids alone or in combination with n-alkanes. No difference relating to diet selection between the 2 cow strains was recorded, but supplemented cows apparently ingested higher proportions of T. repens than nonsupplemented cows. Awareness that supplementation influences selection behavior of grazing dairy cows may lead to adaptations in botanical composition of the pasture according to the demand of the animals. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Liu, Tailiang; Wen, Hua; Jiang, Ming; Yuan, Danning; Gao, Pan; Zhao, Yujiang; Wu, Fan; Liu, Wei
2010-09-01
An experiment was conducted to investigate the effect of dietary chromium picolinate supplement on growth and haematology parameters of grass carp, Ctenopharyngodon idellus. Six diets with increasing dietary chromium picolinate levels 0, 0.2, 0.4, 0.8, 1.6 and 3.2 mg kg(-1) were fed to triplicate groups of 20 fish (initial weight of 12.78 +/- 1.16 g, mean +/- SD) in a flow water system for 10 weeks. Fish fed the diet supplemented with 0.8 mg Cr kg(-1) had significantly improved weight gain (WG), feed efficiency ratio (FER), protein efficiency ratio (PER) and protein retention (PR). Fish fed high-chromium diets exhibited lower whole-body crude lipid contents than fish fed low-chromium diets. Liver glycogen concentrations for fish fed the diet with 0.2 mg Cr kg(-1) was the highest (77.67 mg g(-1)). Fish fed the diet supplemented with 1.6 and 3.2 mg Cr kg(-1) had significantly lower liver glycogen concentrations than other groups (P < 0.05). The highest serum insulin concentrations were observed in fish fed the diet supplemented with 0.8 mg Cr kg(-1), but serum insulin concentrations decreased (P < 0.05) when dietary supplementation of chromium was higher than 0.8 mg Cr kg(-1). Cholesterol concentrations decreased in direct proportion to dietary chromium level and achieved the lowest level when the fish were fed the 0.8 mg Cr kg(-1) diet, but increased when the fish were fed the diet with more than 0.8 mg Cr kg(-1) (P < 0.05). Fish fed the diet supplemented with 0.8 mg Cr kg(-1) had higher triglyceride and high-density lipoprotein cholesterol (HDL-C) concentrations compared to other treatments. The results of the present study suggested that chromium picolinate could modify serum carbohydrate and lipid metabolism profile, and that the optimal dietary chromium level was 0.8 mg kg(-1) for grass carp according to growth.
Effect of potassium and hypomagnesemia on insulin in the bovine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentz, D.E.; Madsen, F.C.; Miller, J.K.
1976-01-01
Grass tetany in cattle has been associated with the consumption of early spring forages high in potassium (K) and low in magnesium (Mg). Alterations in serum Mg and K may affect intermediary carbohydrate metabolism, resulting in hypoglycemia and ketosis that often accompany grass tetany. We investigated these interrelationships by infusing potassium chloride (KCl) intravenously in normal (plasma Mg greater than 2.1 mg/100 ml) and Mg-deficient (plasma Mg less than .7 mg/100 ml) 9-month-old Holstein bull calves and intraruminally into nonpregnant, nonlactating Holstein cows. Plasma levels of both K and immunoreactive insulin (IRI) were elevated (P less than .01) by 1.14,more » 2, and 3 percent KCl (51, 64, and 135 mg K/kg) in calves and by 550 g KCl (440 mg K/kg body weight) in cows. Plasma K was lower (P less than .01) and IRI higher (P less than .01) in Mg-deficient calves than in normal calves during 2 percent KCl infusion. These results suggest that prolonged elevation of K and insulin in ruminants could lead to a series of metabolic disturbances that may play an important role in the etiology of grass tetany.« less
Ammonia Emissions From Dairy Barns: What Have We Learned?
USDA-ARS?s Scientific Manuscript database
Research, extension, the feed industry and veterinarians have long advocated dairy cow diets that maximize milk production while assuring good animal health and reproduction. Under practical conditions, only 20 to 30% of the crude protein (CP) fed to a dairy cow is converted into milk protein. The r...
Pigeon peas as a supplement for lactating dairy cows fed corn silage-based diets.
Corriher, V A; Hill, G M; Bernard, J K; Jenkins, T C; West, J W; Mullinix, B G
2010-11-01
Holstein rumen-cannulated cows [n=7; initial body weight (BW) 640.56±71.43 kg] were fed a corn silage basal diet with 1 of 3 concentrates (C=control; P10=10% pigeon peas; P20=20% pigeon peas). Cows were randomly assigned to treatments in a replicated 3×3 Latin square and individually fed using Calan gates. Each experimental period was 21 d with 7 d for adaption and 14 d for sample collection. Ruminal fluid samples were taken the last day of each experimental period and analyzed for pH, ammonia, long-chain fatty acids, and volatile fatty acids (VFA). Consecutive a.m. and p.m. milk samples were taken during the last 2 wk of the 21-d period and analyzed for fat, protein, long-chain fatty acids, and somatic cell count. Dry matter intake (kg/d) was reduced during the second period and was greater for P10 diets. Milk protein was greater for cows fed P20 compared with P10. Energy-corrected milk was greater for cows fed the control diet compared with P10. Treatment had no effect on milk yield. Ruminal fluid pH decreased over sampling times; however, pH remained at or above 5.5. Diets did not affect ruminal fluid pH; however, pH was different for sampling periods. Ruminal ammonia decreased until 8h postfeeding at which time it peaked consistent with changes in ammonia concentrations that usually peak 3 to 5h postfeeding on diets high in plant proteins. Dietary treatments altered ruminal fluid VFA with reduced concentrations of acetate and greater concentrations of propionate for control diet, resulting in reduced acetate:propionate ratio. Isobutyrate exhibited an hour by treatment interaction, in which isobutyrate decreased until 8h postfeeding and then tended to be greater for P10 than for other treatments. Animals fed the P10 diet had greater concentrations of ruminal isovalerate. Ruminal cis-9,trans-11 and trans-10,cis-12 conjugated linoleic acid (CLA) isomers were not affected by dietary treatments. The P10 diet had greatest ruminal synthesis of cis-9,trans-11, but control cows had greatest ruminal synthesis of trans-10,cis-12. Milk CLA isomers were similar among treatments. Trends were observed for greater cis-9,trans-11 and trans-10,cis-12 for the P10 diet. Pigeon peas may be used as a protein supplement in dairy diets without affecting milk production, dry matter intake, or ruminal environment when they replace corn and soybean meal. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Galacto-Oligosaccharide Prebiotics
NASA Astrophysics Data System (ADS)
Tzortzis, George; Vulevic, Jelena
The wide recognition of bifidobacteria as health promoting bacteria (Boesten and de Vos, 2008) has attracted a lot of interest in identifying substances that can selectively promote their growth. Many studies using conventional culture and molecular techniques for bacterial identification have shown that breast-fed infants are characterized by an intestinal microbiota that is dominated by bifidobacteria (Benno et al., 1984), which is different from that of infants fed on cow's milk in that their microbiotas are characterized by lower counts of bifidobacteria, with greater numbers of more potentially harmful organisms such as clostridia and enterococci (Lunderquist et al., 1985). As a result of this difference in the microbiota composition, higher levels of ammonia, amines and phenols and other potentially harmful substances have also been found in infants fed cow's milk products (Lunderquist et al., 1985).
Schadt, I; Ferguson, J D; Azzaro, G; Petriglieri, R; Caccamo, M; Van Soest, P; Licitra, G
2012-08-01
Not only feed but also respective bolus particle size could alter diet efficiency and cow performance. The objective of this project was to characterize particle size of selected feeds and respective swallowed boli. Feed samples included 6 different particle length rye grass hay samples, 1 grass silage, 1 corn silage, and 1 total mixed ration (TMR). Rye grass hay samples consisted of long hay and chopped hay particles retained on the 19- (19_PSPS hay), 8- (8_PSPS hay), and 1.18-mm (1.18_PSPS hay) Penn State Particle Separator (PSPS) screens and those collected on the pan (PSPS_pan hay). A sixth hay treatment was rye grass forage cut at 50-mm lengths and dried to hay (50-mm hay). Treatments were offered to 4 nonlactating and 4 lactating cows following rumen evacuation. Swallowed boli were collected and the number of chews per gram of ingested feed dry matter was determined. Feed and bolus particles of lengths ≥5mm were collected on a 1.6-mm screen using a horizontal wet sieving technique. This cut point was chosen, as the literature suggests that most fecal particles are shorter than 5mm. Dry matter proportions on this screen (PROP_1.6) were determined and particle lengths of retained particles were measured by image analysis. Mean particle lengths (ML) were calculated considering particles ≥5mm in length. Boli of long hay, of 19_PSPS hay, of 8_PSPS hay, and of 50-mm hay had similar ML of 10 to 11mm. Bolus PROP_1.6 were also similar between these treatments, ranging from 0.54 to 0.69. Bolus particle lengths and distributions of these treatments were not related to respective hay particles. Bolus of 1.18_PSPS hay had PROP_1.6 of 0.51 and a smaller ML of 8mm. The PSPS_pan hay had PROP_1.6 of only 0.33, but was still chewed intensely. Apparently, little particle size reduction occurred when cows ate the TMR or the silages. Feed and respective bolus PROP_1.6 were as follows: 0.66 and 0.59 in grass silage, 0.52 and 0.55 in corn silage, and 0.44 and 0.38 in the TMR. Feed and respective bolus ML were as follows: 13.8 and 11.6mm in grass silage, 12.0 and 11.2mm in corn silage, and 13.1 and 12.5mm in the TMR. Rye grass hay particles retained on PSPS screens ≥8mm, with ML of at least 25mm were longer compared with TMR particles, but respective bolus particles were shorter. Bolus particle size is not associated with the size of large feed particles chewed to a constant size that is appropriate for deglutition. This size may be related to feed chemical composition. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Huang, Wenming; Tian, Yujia; Li, Shengli; Wu, Zhaohai; Cao, Zhijun
2017-11-01
The objective of this study was to determine the effect of reduced energy density of close-up diets on ruminal fermentation parameters in transition cows. Fourteen Holstein dry cows were blocked and assigned randomly to three groups fed a high energy density diet (HD, 1.62 Mcal of net energy for lactation (NE L )/kg dry matter (DM)), or a middle energy density diet (MD, 1.47 Mcal NE L /kg DM), or a low energy density diet (LD, 1.30 Mcal NE L /kg DM) prepartum, and were fed the same diet postpartum. The reduced energy density diets decreased the average dry matter intake (DMI) prepartum and tended to increase the DMI postpartum. The ruminal pH of the LD group was significantly higher prepartum and lower during the first week of lactation compared with the other two groups. The reduced energy density diet depressed the average ruminal concentration of propionate and butyrate prepartum, and increased the average concentration of total volatile fatty acids (VFA) postpartum. The LD group had higher populations of Butyrivibrio fibrisolvens and Ruminococcus flavefaciens relative to HD and MD groups on 7 days in milk. In conclusion, the cows fed reduced energy density diet prepartum had higher VFA concentration, but were more susceptible to subacute ruminal acidosis postpartum. © 2017 Japanese Society of Animal Science.
Variability, stability, and resilience of fecal microbiota in dairy cows fed whole crop corn silage.
Tang, Minh Thuy; Han, Hongyan; Yu, Zhu; Tsuruta, Takeshi; Nishino, Naoki
2017-08-01
The microbiota of whole crop corn silage and feces of silage-fed dairy cows were examined. A total of 18 dairy cow feces were collected from six farms in Japan and China, and high-throughput Illumina sequencing of the V4 hypervariable region of 16S rRNA genes was performed. Lactobacillaceae were dominant in all silages, followed by Acetobacteraceae, Bacillaceae, and Enterobacteriaceae. In feces, the predominant families were Ruminococcaceae, Bacteroidaceae, Clostridiaceae, Lachnospiraceae, Rikenellaceae, and Paraprevotellaceae. Therefore, Lactobacillaceae of corn silage appeared to be eliminated in the gastrointestinal tract. Although fecal microbiota composition was similar in most samples, relative abundances of several families, such as Ruminococcaceae, Christensenellaceae, Turicibacteraceae, and Succinivibrionaceae, varied between farms and countries. In addition to the geographical location, differences in feeding management between total mixed ration feeding and separate feeding appeared to be involved in the variations. Moreover, a cow-to-cow variation for concentrate-associated families was demonstrated at the same farm; two cows showed high abundance of Succinivibrionaceae and Prevotellaceae, whereas another had a high abundance of Porphyromonadaceae. There was a negative correlation between forage-associated Ruminococcaceae and concentrate-associated Succinivibrionaceae and Prevotellaceae in 18 feces samples. Succinivibrionaceae, Prevotellaceae, p-2534-18B5, and Spirochaetaceae were regarded as highly variable taxa in this study. These findings help to improve our understanding of variation and similarity of the fecal microbiota of dairy cows with regard to individuals, farms, and countries. Microbiota of naturally fermented corn silage had no influence on the fecal microbiota of dairy cows.
Phuong, H N; Blavy, P; Martin, O; Schmidely, P; Friggens, N C
2016-01-01
Reproductive success is a key component of lifetime efficiency - which is the ratio of energy in milk (MJ) to energy intake (MJ) over the lifespan, of cows. At the animal level, breeding and feeding management can substantially impact milk yield, body condition and energy balance of cows, which are known as major contributors to reproductive failure in dairy cattle. This study extended an existing lifetime performance model to incorporate the impacts that performance changes due to changing breeding and feeding strategies have on the probability of reproducing and thereby on the productive lifespan, and thus allow the prediction of a cow's lifetime efficiency. The model is dynamic and stochastic, with an individual cow being the unit modelled and one day being the unit of time. To evaluate the model, data from a French study including Holstein and Normande cows fed high-concentrate diets and data from a Scottish study including Holstein cows selected for high and average genetic merit for fat plus protein that were fed high- v. low-concentrate diets were used. Generally, the model consistently simulated productive and reproductive performance of various genotypes of cows across feeding systems. In the French data, the model adequately simulated the reproductive performance of Holsteins but significantly under-predicted that of Normande cows. In the Scottish data, conception to first service was comparably simulated, whereas interval traits were slightly under-predicted. Selection for greater milk production impaired the reproductive performance and lifespan but not lifetime efficiency. The definition of lifetime efficiency used in this model did not include associated costs or herd-level effects. Further works should include such economic indicators to allow more accurate simulation of lifetime profitability in different production scenarios.
Ueda, Koichiro; Mitani, Tomohiro; Kondo, Seiji
2017-01-01
The present study aimed to clarify the effect of timing and type of supplementary grain in grazing dairy cows on herbage dry matter intake (HDMI), nitrogen utilization and milk production. Eight lactating cows were allowed to graze from evening to morning during three seasonal periods (spring, summer, autumn). They were randomly allocated to four treatments (timing: pre- (Pre) or post-grazing (Post), for large grain allotments consisting of 75% of daily grain offered; grain type: barley or corn) in 4 × 4 Latin square designs in each period. In the spring period, HDMI was greater for cows fed corn than those fed barley (P = 0.005), whereas cows in the Pre treatment had a similar HDMI, higher (P = 0.049) urinary purine derivative concentration and greater (P = 0.004) milk yield compared with cows in the Post treatment. In the summer and autumn periods, timing treatments did not affect HDMI, nitrogen utilization or milk production, but cows supplemented with barley had higher urinary purine derivatives concentration (P < 0.05) and milk yield (P < 0.05) compared with those supplemented with corn. The results indicate that large grain allotments immediately before evening grazing during early grazing seasons increased ruminal microbial protein synthesis and milk production without reducing HDMI regardless of grain type. © 2016 Japanese Society of Animal Science.
Werner, Louise B; Hellgren, Lars I; Raff, Marianne; Jensen, Søren K; Petersen, Rikke A; Drachmann, Tue; Tholstrup, Tine
2013-07-10
There is considerable interest in dairy products from low-input systems, such as mountain-pasture grazing cows, because these products are believed to be healthier than products from high-input conventional systems. This may be due to a higher content of bioactive components, such as phytanic acid, a PPAR-agonist derived from chlorophyll. However, the effects of such products on human health have been poorly investigated. To compare the effect of milk-fat from mountain-pasture grazing cows (G) and conventionally fed cows (C) on risk markers of the metabolic syndrome. In a double-blind, randomized, 12-week, parallel intervention study, 38 healthy subjects replaced part of their habitual dietary fat intake with 39 g fat from test butter made from milk from mountain-pasture grazing cows or from cows fed conventional winter fodder. Glucose-tolerance and circulating risk markers were analysed before and after the intervention. No differences in blood lipids, lipoproteins, hsCRP, insulin, glucose or glucose-tolerance were observed. Interestingly, strong correlations between phytanic acid at baseline and total (P<0.0001) and LDL cholesterol (P=0.0001) were observed. Lack of effects on blood lipids and inflammation indicates that dairy products from mountain-pasture grazing cows are not healthier than products from high-input conventional systems. Considering the strong correlation between LDL cholesterol and phytanic acid at baseline, it may be suggested that phytanic acid increases total and LDL cholesterol. ClinicalTrials.gov, NCT01343589.
Adaptive Problem Solving by Analogy
2013-07-01
spread activation. Animal Cow Legs Ears Associative link ISA link Part‐of link Milk Distribution A: Approved for public release; distribution...mappings support each other by positively weighted associative links and inconsistent hypothesis inhibit each other (Figure 2.4). Thus the Cow ...nodes is implemented by a process of Spot Dog Lucky Pet Cat Tom 0 Cow ‐1 Legs Ears Muffle Horns Eats grass TARGET SITUATION Legs
Alhadrami, G A; Al-Shorepy, S A; Yousef, A M
2010-12-01
Twenty-eight indigenous ewe lambs (6 months of age and 14.4 kg body weight (BW)) were used to evaluate the effect of feeding Sporobolus grass hay (SGH) as the only source of forage on growth, and feed and water intakes. The ewe lambs were randomly and equally allocated to two treatment groups (14 lambs/group). The ewe lambs in group 1 (treatment 1) received SGH, while lambs in group 2 (treatment 2) received Rhodes grass hay (RGH) as the only source of forage. Water was available at all times for both treatment groups. Sporobolus grass was irrigated with brackish water of high salt content (20,000 ppm) and grown in saline desert lands (sabkha) in the United Arab Emirates. The average daily dry matter intake was significantly (P < .05) higher for the animals fed SGH than those fed RGH at all stages. Both water intakes per unit body gain and water intake per unit feed intake were significant (P < .05) between the two treatments group at all stages. Average daily gain did not differ significantly (P > .05) between the two groups at all stages. From these data, we conclude that SGH can replace Rhodes hay in sheep diet without significant effect on sheep performance.
Devries, T J; Dohme, F; Beauchemin, K A
2008-10-01
An experiment was conducted to determine whether the susceptibility of cows to ruminal acidosis influences feed sorting and whether feed sorting changes during a bout of ruminal acidosis. Eight ruminally cannulated cows were assigned to 1 of 2 acidosis risk levels: low risk (LR, mid-lactation cows fed a 60% forage diet) or high risk (HR, early lactation cows fed a 45% forage diet). As a result, diets were intentionally confounded with milk production to represent 2 different acidosis risk scenarios. Cows were exposed to an acidosis challenge in each of two 14-d periods. Each period consisted of 3 baseline days, a feed restriction day (restricting TMR to 50% of ad libitum intake), an acidosis challenge day (1-h meal of 4 kg of ground barley/wheat before allocating the TMR), and a recovery phase. Ruminal pH was measured continuously for the first 9 d of each period using an indwelling system. Feed and orts were sampled for 2 baseline days, on the challenge day, and 1 and 3 d after the challenge day for each cow and subjected to particle size analysis. The separator contained 3 screens (18, 9, and 1.18 mm) and a bottom pan to determine the proportion of long, medium, short, and fine particles, respectively. Sorting was calculated as the actual intake of each particle size fraction expressed as a percentage of the predicted intake of that fraction. All cows sorted against the longest and finest TMR particles and sorted for medium-length particles. Sorting was performed to a greater extent by the HR cows, and this sorting was related to low ruminal pH. Both HR and LR cows altered their sorting behavior in response to acidosis challenges. For the HR cows, severe acidosis was associated with increased sorting for the longer particles in the diet and against the shorter particles, likely to lessen the effects of the very.
Conneely, M; Berry, D P; Sayers, R; Murphy, J P; Doherty, M L; Lorenz, I; Kennedy, E
2014-01-01
Absorption of adequate IgG from colostrum is critical to provide the newborn calf with adequate immunological protection and resistance to disease. Excessive iodine supplementation of the prepartum ewe reduces IgG absorption of her offspring; it is possible that excessive iodine supplementation of the prepartum dairy cow may similarly impair the ability of the calf to acquire immunological protection. The objectives of this study were to determine whether the iodine status, health status, and ability of calves to absorb IgG from colostrum were affected by prepartum iodine supplementation strategies of their dams. Dairy cows (n=127) received one of the following levels of iodine supplementation precalving: 15mg of iodine/kg of dietary dry matter (DM) (HI); no additional iodine supplementation (MI); 5mg/kg of dietary DM (SI); and 15mg of iodine/kg of DM for the first 3.5wk of the precalving period and no additional supplementation for the second 3.5wk (HMI). Calves were assigned to 1 of 6 experimental treatments, based on the prepartum iodine supplementation treatment of their dam and the precalving treatment group of the cows from which the colostrum fed was obtained: (1) HI_HI: born to HI dams, fed HI colostrum (i.e., colostrum produced by cows in the HI group); (2) MI_MI: born to MI dams, fed MI colostrum; (3) SI_SI: born to SI dams, fed SI colostrum; (4) HI_MI: born to HI dams, fed MI colostrum; (5) MI_HI: born to MI dams, fed HI colostrum; and (6) HMI_HMI: born to HMI dams, fed HMI colostrum. Concentration of calf serum IgG and plasma inorganic iodine (PII) was measured at 0 and 24h of age. Apparent efficiency of absorption for IgG was determined. Health scores were assigned to calves twice weekly and all episodes of disease were recorded. Cow experimental treatment group affected calf PII at 0h of age; the PII of calves born to HI dams (987.2µg/L) was greater than that of calves born to MI dams (510.1µg/L), SI (585.2µg/L), and HMI dams (692.9µg/L). Calf experimental treatment group affected calf PII at 24h of age; the PII of HI_HI (1,259.2µg/L) and HI_MI (1,177.8µg/L) calves was greater than MI_MI (240.7µg/L), SI_SI (302.2µg/L), HMI_HMI (320.7µg/L), and MI_HI (216.3µg/L) calves. No effect of experimental treatment was observed on the concentration of IgG measured in calf serum at 24h of age, or on apparent efficiency of absorption. Experimental treatment had no effect on the likelihood of a calf being assigned a worse nasal, eye and ear, cough, or fecal score within the study period, nor did it affect the probability of a calf receiving treatment for a disease a greater number of times. Prepartum iodine supplementation of cows at 15mg/kg of DM increased the iodine levels in their calves at birth and 24h of age, but did not affect their ability to absorb IgG from colostrum. Supplementation with iodine above the minimum requirements established by the National Research Council was unnecessary to ensure appropriate iodine levels in calves at birth. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Hamilton, Scott W; DePeters, Edward J; McGarvey, Jeffery A; Lathrop, Jeremy; Mitloehner, Frank M
2010-01-01
The present study investigated the effects of a feed additive and rumen microbial modifier, monensin sodium (monensin), on selected variables in lactating dairy cows. Monensin fed cows (MON, 600 mg d(-1)) were compared with untreated control cows (CON, 0 mg d(-1)) with respect to the effects of monensin on the production of three greenhouse gases (GHG), methane (CH(4)), nitrous oxide (N(2)O), and carbon dioxide (CO(2)), along with animal performance (dry matter intake; DMI), milk production, milk components, plasma urea nitrogen (PUN), milk urea nitrogen (MUN), and the microbial population structure of fresh feces. Measurements of GHG were collected at Days 14 and 60 in an environmental chamber simulating commercial dairy freestall housing conditions. Milk production and DMI measurements were collected twice daily over the 60-d experimental period; milk components, PUN, and MUN were measured on Days 14 and 60. The microbial population structure of feces from 6 MON and 6 CON cows was examined on three different occasions (Days 14, 30, and 60). Monensin did not affect emissions of methane (CH(4)), nitrous oxide (N(2)O), and carbon dioxide (CO(2)). Over a 24-h period, emissions of CH(4), N(2)O, and CO(2) decreased in both MON and CON groups. Animal performance and the microbial population structure of the animal fresh waste were also unaffected for MON vs. CON cows.
Effects of feeding betaine-containing liquid supplement to transition dairy cows.
Monteiro, A P A; Bernard, J K; Guo, J-R; Weng, X-S; Emanuele, S; Davis, R; Dahl, G E; Tao, S
2017-02-01
Betaine is a natural compound found in sugar beets that serves as a methyl donor and organic osmolyte when fed to animals. The objective was to evaluate the effect of feeding betaine-containing molasses on performance of transition dairy cows during late summer in 2 trials. In early September, cows were randomly assigned to betaine (BET) or control (CON) groups either shortly after dry off (trial 1; n = 10 per treatment) or 24 d before calving (trial 2; n = 8 per treatment) based on parity and previous mature equivalent milk yield. Cows were fed common diets supplemented either with a liquid supplement made of molasses from sugar cane and condensed beet solubles containing betaine [BET, 89.1 g/kg of dry matter (DM)] or a sugar cane molasses-based liquid supplement without betaine (CON) until 8 wk postpartum. The liquid supplements had similar nutrient contents and were fed at a rate of 1.1 and 1.4 kg DM/d for pre- and postpartum cows, respectively. Starting at their entry in the studies, cows were housed in the same freestall barn without a cooling system. After calving, all cows were housed in the same barn cooled by misters and fans and milked thrice daily. Intake was recorded daily and body weight and body condition score were assessed every 2 wk. Milk yield was recorded at each milking and composition was analyzed weekly. Blood samples were collected weekly from a subset of cows to assess concentrations of metabolites and AA. No treatment effects were apparent for DM intake and body weight in the prepartum and postpartum periods. For cows enrolled at dry off, BET supported higher milk yield (45.1 vs. 41.9 kg/d) and fat content (4.78 vs. 4.34%) and elevated plasma concentrations of nonesterified fatty acids and β-hydroxybutyrate in early lactation compared to CON. However, no differences were observed for milk yield, most milk component contents and yields, and blood metabolites between treatments for cows enrolled during the close-up period. Compared to cows in the CON group, BET cows enrolled during the far-off period tended to have lower plasma concentrations of Met, Thr, and Trp during the pre- and postpartum periods. They also had lower plasma concentrations of Lys and Phe before calving but higher plasma Gly concentration after parturition. In conclusion, feeding a betaine-containing liquid supplement from far-off through early lactation improves lactation performance but increases adipose tissue mobilization and production of ketone bodies in early lactation. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Mann, S; Nydam, D V; Abuelo, A; Leal Yepes, F A; Overton, T R; Wakshlag, J J
2016-08-01
Adipose tissue mobilization is a hallmark of the transition period in dairy cows. Cows overfed energy during the dry period have higher concentrations of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) compared with cows fed a controlled-energy diet prepartum. The reason for an increase in blood NEFA concentrations at the level of adipose tissue in cows overfed energy has not been fully elucidated. One hypothesis is that cows with high BHB concentrations suffer from adipose tissue-specific insulin resistance, leading to higher rates of adipose tissue mobilization in the postpartum period. To test this hypothesis, subcutaneous adipose tissue biopsies of cows overfed energy in excess of predicted requirements by 50% in the dry period, and that had high concentrations of blood BHB postpartum (group H; n=12), were used. Findings were compared with results of biopsies from cows fed a controlled-energy diet and with low BHB concentrations postpartum (group C; n=12) to create the biggest contrast in BHB concentrations. Subcutaneous adipose tissue biopsies were obtained before and 60 min after an intravenous glucose challenge (0.25 g/kg of glucose) at 28 and 10 d before expected calving as well as on d 4 and 21 postpartum. Phosphorylation of protein kinase B, extracellular signal-regulated kinase, and hormone-sensitive lipase was determined before and after glucose infusion by Western blot. Western blot was also used to assess the baseline protein abundance of peroxisome proliferator-activated receptor gamma and insulin receptor β-subunit. In addition, gene expression of fatty acid synthase, adiponectin, monocyte chemoattractant protein 1, and tumor necrosis factor α was determined by real-time quantitative reverse-transcription PCR. Backfat thickness was determined in the thurl area by ultrasonography. Cows in group H showed a greater degree of lipogenesis prepartum, but no differences were found in lipolytic enzyme activity postpartum compared with cows in group C. Baseline plasma insulin concentrations were decreased and serum NEFA concentrations increased postpartum in group H. Insulin signaling through protein kinase B, quantity of insulin receptor, markers of inflammation, and peroxisome proliferator-activated receptor gamma in adipose tissue were not different between the groups, but expression of adiponectin was increased in adipose tissue of cows in group H during the immediate peripartum period. In conclusion, differences in serum concentrations of NEFA between cows overfed energy prepartum and high blood concentrations of BHB are likely due to greater negative energy balance postpartum reflected in lower circulating concentrations of glucose and insulin and an increase in the total amount of mobilized adipose tissue mass rather than due to changes in adipose tissue insulin signaling. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Karami-Shabankareh, H; Kafilzadeh, F; Piri, V; Mohammadi, H
2013-12-01
This study examined the effects of dry glycerol supplementation on follicular growth, post-partum interval to first ovulation, concentration of serum metabolites and hormones related to fertility, body condition score (BCS) and body weight (BW) in primiparous Holstein dairy cows. Sixty primiparous Holstein dairy cows were randomly assigned to two groups (control: n = 30 and glycerol supplemented: n = 30). Dry glycerol (250 g/day/cow) was fed as a top dressing to the common lactating total mixed ration (TMR) from parturition to 21 days post-partum. Ovaries were examined four times using ultrasonography on days 13, 19, 25 and 36 post-partum to determine ovarian follicular growth. Concentration of serum metabolites and hormones was determined weekly. Body condition score was evaluated weekly from weeks 1 to 5 after parturition, and BWs were recorded three times on days 1, 11 and 21 during the experimental period. The cows fed dry glycerol had more large follicles (p < 0.0001) and corpora lutea (CL) (p = 0.02) compared with the control cows. Days to the first ovulation (p = 0.06), days to first oestrus (p = 0.05), services per conception (p = 0.06) and days open (p = 0.004) were positively affected by dry glycerol supplementation. Serum concentration of glucose and insulin was higher in dry glycerol-supplemented cows (p = 0.1; p = 0.06, respectively). Feeding glycerol had no effect on mean serum concentrations of β-hydroxybutyrate, non-esterified fatty acids and IGF-1 during the experimental period. However, significant differences were observed at concentration of BHBA and IGF-1 (p = 0.02 and p = 0.04, respectively) between two groups on day 21 after calving. The cows in the glycerol-fed group had higher serum progesterone concentrations on days 33 (p = 0.007) and 36 (p = 0.004) after calving. Supplemented cows had lower body condition loss during weeks 1-5 after calving compared with the control cows (0.34 vs 0.41 BCS). In week 13 post-partum, the proportion of cycling cows was 83.3 and 69.9% for those which received supplemented or non-supplemented diet, respectively. These results demonstrated that feeding dry glycerol as a glucogenic supply may be useful to improve negative energy balance and reproductive efficiency in young cows which calve with high requirement of energy. © 2013 Blackwell Verlag GmbH.
Paciullo, D S C; Pires, M F A; Aroeira, L J M; Morenz, M J F; Maurício, R M; Gomide, C A M; Silveira, S R
2014-08-01
The silvopastoral system (SPS) has been suggested to ensure sustainability in animal production systems in tropical ecosystems. The objective of this study was to evaluate pasture characteristics, herbage intake, grazing activity and milk yield of Holstein×Zebu cows managed in two grazing systems (treatments): SPS dominated by a graminaceous forage (Brachiaria decumbens) intercropped with different leguminous herbaceous forages (Stylosanthes spp., Pueraria phaseoloides and Calopogonium mucunoides) and legume trees (Acacia mangium, Gliricidia sepium and Leucaena leucocephala), and open pasture (OP) of B. decumbens intercropped only with Stylosanthes spp. Pastures were managed according to the rules for organic cattle production. The study was carried out by following a switch back format with 12 cows, 6 for each treatment, over 3 experimental years. Herbage mass was similar (P>0.05) for both treatments, supporting an average stocking rate of 1.23 AU/ha. Daily dry matter intake did not vary (P>0.05) between treatments (average of 11.3±1.02 kg/cow per day, corresponding to 2.23±0.2% BW). Milk yield was higher (P0.05) in subsequent years. The highest (P0.05) milk yields. Low persistence of Stylosanthes guianensis was observed over the experimental period, indicating that the persistence of forage legumes under grazing could be improved using adapted cultivars that have higher annual seed production. The SPS and a diversified botanical composition of the pasture using legume species mixed with grasses are recommended for organic milk production.
USDA-ARS?s Scientific Manuscript database
Feeding rumen-protected methionine (RPM) and lysine (RPL) may allow feeding lower crude protein (CP) diets to dairy cows, thereby increasing nitrogen efficiency and reducing environmental impact. Moreover, RPL supplementation may improve the value of corn distillers dried grains plus solubles (DDGS)...
Evaluating the microscopic fecal technique for estimating hard mast in turkey diets
Mark A. Rumble; Stanley H. Anderson
1993-01-01
Wild and domestic dark turkeys (Meleagris gallopavo) were fed experimental diets containing acorn (Quercus gambelli), ponderosa pine (Pinus ponderosa) seed, grasses, forbs, and arthropods. In fecal estimates of diet composition, acorn and ponderosa pine seed were underestimated and grass was overestimated....
Fiber source and inclusion level affects characteristics of excreta from growing pigs
Ndou, Saymore Petros; Bakare, Archibold Garikayi
2018-01-01
Objective The objective of the study was to determine the influence of varying fibrous diets on fecal characteristics of growing pigs. Methods A total of 104 pigs (initial weight 18±2.0 kg) were used in the study. They were housed in individual pens and fed on diets containing maize cob, grass hay, lucerne hay, maize stover, and sunflower husk. These fibers were included at 0, 80, 160, 240, 320 and 400 g/kg. Fecal and urine samples were collected. Results Fecal output was largest amongst pigs fed on diets containing grass hay and maize stover (p<0.05). Nitrogen content was highest in feces from pigs fed on sunflower husk (p< 0.05). Pigs fed on diets containing maize stover and maize cobs produced the largest concentrations of short chain fatty acids. Acetate concentration was high in feces of pigs fed maize stover than those fed grass hay and lucerne hay (p<0.05). As the level of fiber inclusion increased, fecal consistency and nitrogen content increased linearly (p<0.05). Urea nitrogen decreased as the inclusion level increased across all the fibers (p<0.05), with maize cobs containing the largest content of urea nitrogen. As dietary fiber content increased, fecal nitrogen content also increased (p<0.05). Conclusion It was concluded that different fiber sources influence fecal characteristics, thereby having different implications on pig waste management. It is vital to monitor fiber inclusion thresholds so as to easily manage environmental pollutants such as butyrate that contribute to odors. PMID:26954189
Zhao, Honghao; Xia, Jianguo; Zhang, Xi; He, Xugang; Li, Li; Tang, Rong; Chi, Wei; Li, Dapeng
2018-01-01
Fish muscle, the main edible parts with high protein level and low fat level, is consumed worldwide. Diet contributes greatly to fish growth performance and muscle quality. In order to elucidate the correlation between diet and muscle quality, the same batch of juvenile grass carp (Ctenopharyngodon idellus) were divided into two groups and fed with either grass (Lolium perenne, Euphrasia pectinata and Sorghum sudanense) or artificial feed, respectively. However, the different two diets didn't result in significant differences in all the detected water quality parameters (e.g., Tm, pH, DO, NH3/NH4+-N, NO3--N, NO2-, TN, TP, and TOC) between the two experimental groups. After a 4-month culture period, various indexes and expression of myogenic regulatory factor (MRFs) and their related genes were tested. The weight gain of the fish fed with artificial feed (AFG) was nearly 40% higher than the fish fed with grass (GFG). Significantly higher alkaline phosphatase, total cholestrol, high density cholestrol and total protein were detected in GFG as compared to AFG. GFG also showed increased hardness, resilience and shear force in texture profile analysis, with significantly bigger and compact muscle fibers in histologic slices. The fat accumulation was most serious in the abdomen muscle of AFG. Additionally, the expression levels of MyoG, MyoD, IGF-1, and MSTNs were higher, whereas Myf-5, MRF4, and IGF-2 were lower in most positional muscles of GFG as compared to AFG. Overall, these results suggested that feeding grass could promote muscle growth and development by stimulating muscle fiber hypertrophy, as well as significantly enhance the expression of CoL1As. Feeding C. idellus with grass could also improve flesh quality by improving muscle characteristics, enhancing the production of collagen, meanthile, reducing fat accumulation and moisture in muscle, but at the cost of a slower growth. PMID:29632496
Effect on production of replacing dietary starch with sucrose in lactating dairy cows.
Broderick, G A; Luchini, N D; Reynal, S M; Varga, G A; Ishler, V A
2008-12-01
Replacing dietary starch with sugar has been reported to improve production in dairy cows. Two sets of 24 Holstein cows averaging 41 kg/d of milk were fed a covariate diet, blocked by days in milk, and randomly assigned in 2 phases to 4 groups of 6 cows each. Cows were fed experimental diets containing [dry matter (DM) basis]: 39% alfalfa silage, 21% corn silage, 21% rolled high-moisture shelled corn, 9% soybean meal, 2% fat, 1% vitamin-mineral supplement, 7.5% supplemental nonstructural carbohydrate, 16.7% crude protein, and 30% neutral detergent fiber. Nonstructural carbohydrates added to the 4 diets were 1) 7.5% corn starch, 0% sucrose; 2) 5.0% starch, 2.5% sucrose; 3) 2.5% starch, 5.0% sucrose; or 4) 0% starch, 7.5% sucrose. Cows were fed the experimental diets for 8 wk. There were linear increases in DM intake and milk fat content and yield, and linear decreases in ruminal concentrations of ammonia and branched-chain volatile fatty acids, and urinary excretion of urea-N and total N, and urinary urea-N as a proportion of total N, as sucrose replaced corn starch in the diet. Despite these changes, there was no effect of diet on microbial protein formation, estimated from total purine flow at the omasum or purine derivative excretion in the urine, and there were linear decreases in both milk/DM intake and milk N/N-intake when sucrose replaced dietary starch. However, expressing efficiency as fat-corrected milk/DM intake or solids-corrected milk/DM intake indicated that there was no effect of sucrose addition on nutrient utilization. Replacing dietary starch with sucrose increased fat secretion, apparently via increased energy supply because of greater intake. Positive responses normally correlated with improved ruminal N efficiency that were altered by sucrose feeding were not associated with increased protein secretion in this trial.
Particle size of roasted soybeans and the effect on milk production of dairy cows.
Dhiman, T R; Korevaar, A C; Satter, L D
1997-08-01
Fifteen cows were used in an experiment with a 5 x 5 replicated Latin square design to quantify the effect of particle size of roasted soybeans on milk production and fecal excretion of soybeans. The five experimental periods were each 2 wk long. Diets contained (percentage of dry matter) 33% alfalfa silage, 17% corn silage, 30.6% high moisture ear corn, 18% soybeans, and 1.4% mineral supplement. The five dietary treatments included raw whole soybeans or roasted soybeans in four particle sizes (whole and half, half and quarter, quarter and smaller, and coarsely ground). Mean particle sizes of the raw soybeans and of the roasted soybeans in whole and half sizes were > 4.75 mm. Mean particle sizes of the roasted soybeans in half and quarter, quarter and smaller, and coarsely ground roasted soybeans were 2.92, 2.01, and 1.59, respectively. During the normal handling of roasted soybeans, a large number of seeds was broken into halves in the treatment with whole and half sizes (36%, wt/wt basis). Production of 3.5% fat-corrected milk was 35.4, 37.7, 37.2, 35.1, and 35.4 kg/d for cows fed raw soybeans; roasted soybeans in whole and half, half and quarter, and quarter and smaller sizes; and ground roasted soybeans, respectively. Cows that were fed raw soybeans excreted the largest amount of visible soybean particles in feces, and cows that were fed ground roasted soybeans had the least amount of soybeans in the feces (61.3 vs. 10.6 g of soybeans/kg of fecal dry matter). Roasted soybeans in half and quarter sizes are optimal for milk production.
[Diagnosis and management of cow's protein milk allergy in infant].
Mazigh, Sonia; Yahiaoui, Salem; Ben Rabeh, Rania; Fetni, Ilhem; Sammoud, Azza
2015-04-01
Cow's milk protein allergy (CMPA) can be responsible of a variety of symptoms and can be caused by IgE or non-IgEmediated reactions. The remaining questions concern the diagnosis (what are the most suggestive clinical manifestations, the laboratory evaluations which play a supporting role, and the management of CMPA in breast fed infants and formula-fed infants. Review of the pub med, science direct, Cochrane library, using the key words cow's milk protein allergy, guideline, and child. Evidence was levelled A, B, C. No symptom is pathognomonic. A thorough history and careful clinical examination are necessary to suspect the disease. Skin prick tests, and serum specific IgE are only indicative of sensitivation to CMP. A double-blind placebo-controlled challenge is considered the gold standard in diagnosis, but in practice only an open challenge is performed. The patient with suspected pathology will follow a cow's milk free diet for 2-4 weeks. Formula-fed infants get an extensively hydrolyzed formula .If the allergy is present, clinical manifestations will disappear. If symptoms do not improve, an amino acid based formula should be considered. In severe Cow's milk protein allergy with life-threatening symptoms, an amino-acid formula is recommended. The infant should be maintained on an elimination diet until the infant is between 9-12 months or at least for 6 months. The overall natural evolution of the disease is favorable with most patients achieving tolerance to milk by the age of five years. The importance of defined diagnostic criteria needs to be emphasized. It precludes infants from an unnecessary diet and avoids delay in diagnosis, which can lead to malnutrition.
Production and feeding strategies for phosphorus management on dairy farms.
Rotz, C A; Sharpley, A N; Satter, L D; Gburek, W J; Sanderson, M A
2002-11-01
Long-term accumulation of soil phosphorus (P) is becoming a concern on some watersheds heavily populated with animal feeding facilities, including dairy farms. Management changes in crop production and feeding may help reduce the accumulation of excess P, but farm profitability must be maintained or improved to assure adoption of such changes. Whole-farm simulation was used to evaluate the long-term effects of changes in feeding, cropping, and other production strategies on P loading and the economics of 100-cow and 800-cow dairy farms in southeastern New York. Simulated farms maintained a long-term P balance if the following occurred: 1) animals were fed to meet recommended minimum amounts of dietary P, 2) the cropping strategy and land base supplied all of the forage needed, 3) all animals were fed a high forage diet, and 4) replacement heifers were produced on the farm to utilize more forage. The most easily implemented change was to reduce the supplemental mineral P fed to that required to meet current NRC recommended amounts, and this provided an annual increase in farm profit of about $22/cow. Intensifying the use of grassland and improving grazing practices increased profit along with a small reduction in excess P. Conversion from dairy production to heifer raising or expansion from 100 cows to a 250-cow "state-of-the-art" confinement facility (with a 70% increase in land area) were also profitable options. These options provided a long-term P balance for the farm as long as the production and use of forage was maximized and minimum dietary P amounts were those recommended by the NRC. Thus, management changes can be made to prevent the long-term accumulation of soil P on dairy farms while improving farm profitability.
Macoon, B; Sollenberger, L E; Staples, C R; Portier, K M; Fike, J H; Moore, J E
2011-08-01
Cool-season annual forages provide high-quality herbage for up to 5 mo in the US Gulf Coast states, but their management in pasture-based dairy systems has received little attention. Objectives of this study were to evaluate pasture and animal responses when lactating Holstein cows (n=32, mean DIM=184±21) grazed either N-fertilized rye (Secale cereale L.)-annual ryegrass (Lolium multiflorum Lam.) mixed pastures or rye-annual ryegrass-crimson clover (Trifolium incarnatum L.)-red clover (Trifolium pratense L.) pastures at 2 stocking rates (5 vs. 2.5 cows/ha) and 2 rates of concentrate supplementation [0.29 or 0.40 kg of supplement (as is)/kg of daily milk production]. Two cows paired by parity (one multiparous and one primiparous) were assigned randomly to each pasture. The 2 × 2 × 2 factorial arrangement of treatments was replicated twice in a completely randomized design. Forage mixture and supplementation rate did not affect milk production during three 28-d periods. Greater milk production occurred at the low (19.7 kg/d) than the high (14.7 kg/d) stocking rate during periods 2 and 3, but production was similar during period 1. Despite lower production per cow, milk production per hectare was generally greater at the high stocking rate (81.6 vs. 49.5 kg/ha). Generally, greater pregraze herbage mass on pastures at the lower stocking rate (1,400 vs. 1,150 kg/ha) accounted for greater herbage allowance. Both forage (8.0 vs. 5.9 kg/d) and total (14.1 vs. 11.6) organic matter intake were greater at the low stocking rate. Cows fed less supplement had greater forage organic matter intake (8.0 vs. 6.1 kg/d). Greater herbage mass was associated with the greater intake and subsequent greater milk production. Differences in forage nutritive value, blood metabolites and milk composition, although showing some response to treatments, may not be of sufficient magnitude to affect choice of pasture species or other management practices. Animal performance was not improved by adding clovers to mixed cool-season grass pastures like those in this study. Stocking rate had a major effect on pasture and animal performance. During the cool season, supplementation with concentrates should be planned based on estimated energy intake from forages to achieve optimum milk production and ensure maintenance of body condition. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ertl, P; Zebeli, Q; Zollitsch, W; Knaus, W
2016-02-01
Besides the widely discussed negative environmental effects of dairy production, such as greenhouse gas emissions, the feeding of large amounts of potentially human-edible feedstuffs to dairy cows is another important sustainability concern. The aim of this study was therefore to investigate the effects of a complete substitution of common cereal grains and pulses with a mixture of wheat bran and sugar beet pulp in a high-forage diet on cow performance, production efficiency, feed intake, and ruminating behavior, as well as on net food production potential. Thirteen multiparous and 7 primiparous mid-lactation Holstein dairy cows were randomly assigned to 1 of 2 treatments in a change-over design with 7-wk periods. Cows were fed a high-forage diet (grass silage and hay accounted for 75% of the dry matter intake), supplemented with either a cereal grain-based concentrate mixture (CON), or a mixture of wheat bran and dried sugar beet pulp (WBBP). Human-edible inputs were calculated for 2 different scenarios based on minimum and maximum potential recovery rates of human-edible energy and protein from the respective feedstuffs. Dietary starch and neutral detergent fiber contents were 3.0 and 44.1% for WBBP, compared with 10.8 and 38.2% in CON, respectively. Dietary treatment did not affect milk production, milk composition, feed intake, or total chewing activity. However, chewing index expressed in minutes per kilogram of neutral detergent fiber ingested was 12% lower in WBBP compared with CON. In comparison to CON, the human-edible feed conversion efficiencies for energy and protein, defined as human-edible output per human-edible input, were 6.8 and 5.3 times higher, respectively, in WBBP under the maximum scenario. For the maximum scenario, the daily net food production (human-edible output minus human-edible input) increased from 5.4 MJ and 250 g of crude protein per cow in CON to 61.5 MJ and 630 g of crude protein in the WBBP diet. In conclusion, our data suggest that in forage-based dairy production systems, wheat bran and sugar beet pulp could replace common cereal grains in mid-lactation dairy cows without impairing performance, while strongly increasing human-edible feed conversion efficiency and net food production index. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Murugeswari, Rathinam; Valli, Chinnamani; Karunakaran, Raman; Leela, Venkatasubramanian; Pandian, Amaresan Serma Saravana
2018-04-01
In Tamil Nadu, a southern state of India, rice is readily available at a low cost, hence, is cooked (cooking akin to human consumption) and fed irrationally to cross-bred dairy cattle with poor productivity. Hence, a study was carried out with the objective to examine the prevalence of acidosis sequelae to rice-based feeding regimen and assess its magnitude. A survey was conducted in all the 32 districts of Tamil Nadu, by randomly selecting two blocks per districts and from each block five villages were randomly selected. From each of the selected village, 10 dairy farmers belonging to the unorganized sector, owning one or two cross-bred dairy cows in early and mid-lactation were randomly selected so that a sample size of 100 farmers per district was maintained. The feeding regimen, milk yield was recorded, and occurrence of acidosis and incidence of laminitis were ascertained by the veterinarian with the confirmative test to determine the impact of feeding cooked rice to cows. It is observed that 71.5% of farmers in unorganized sector feed cooked rice to their cattle. The incidence of acidosis progressively increased significantly (p<0.05) from 29.00% in cows fed with 0.5 kg of cooked rice to 69.23% in cows fed with more than 2.5 kg of cooked rice. However, the incidence of acidosis remained significantly (p<0.05) as low as 9.9% in cows fed feeding regimen without cooked rice which is suggestive of a correlation between excessive feeding cooked rice and onset of acidosis. Further, the noticeable difference in the incidence of acidosis observed between feeding cooked rice and those fed without rice and limited intake of oil cake indicates that there is a mismatch between energy and protein supply to these cattle. Among cooked rice-based diet, the incidence of laminitis increased progressively (p<0.05) from 9.2% to 37.9% with the increase in the quantum of cooked rice in the diet. The study points out the importance of protein supplementation in rice-based feeding regimen to set right the mismatched supply between nitrogen and fermentable organic matter in the rumen. This research has practical implications for animal health, welfare, nutrition, and management.
Murugeswari, Rathinam; Valli, Chinnamani; Karunakaran, Raman; Leela, Venkatasubramanian; Pandian, Amaresan Serma Saravana
2018-01-01
Background and Aim In Tamil Nadu, a southern state of India, rice is readily available at a low cost, hence, is cooked (cooking akin to human consumption) and fed irrationally to cross-bred dairy cattle with poor productivity. Hence, a study was carried out with the objective to examine the prevalence of acidosis sequelae to rice-based feeding regimen and assess its magnitude. Materials and Methods A survey was conducted in all the 32 districts of Tamil Nadu, by randomly selecting two blocks per districts and from each block five villages were randomly selected. From each of the selected village, 10 dairy farmers belonging to the unorganized sector, owning one or two cross-bred dairy cows in early and mid-lactation were randomly selected so that a sample size of 100 farmers per district was maintained. The feeding regimen, milk yield was recorded, and occurrence of acidosis and incidence of laminitis were ascertained by the veterinarian with the confirmative test to determine the impact of feeding cooked rice to cows. Results It is observed that 71.5% of farmers in unorganized sector feed cooked rice to their cattle. The incidence of acidosis progressively increased significantly (p<0.05) from 29.00% in cows fed with 0.5 kg of cooked rice to 69.23% in cows fed with more than 2.5 kg of cooked rice. However, the incidence of acidosis remained significantly (p<0.05) as low as 9.9% in cows fed feeding regimen without cooked rice which is suggestive of a correlation between excessive feeding cooked rice and onset of acidosis. Further, the noticeable difference in the incidence of acidosis observed between feeding cooked rice and those fed without rice and limited intake of oil cake indicates that there is a mismatch between energy and protein supply to these cattle. Among cooked rice-based diet, the incidence of laminitis increased progressively (p<0.05) from 9.2% to 37.9% with the increase in the quantum of cooked rice in the diet. Conclusion The study points out the importance of protein supplementation in rice-based feeding regimen to set right the mismatched supply between nitrogen and fermentable organic matter in the rumen. This research has practical implications for animal health, welfare, nutrition, and management PMID:29805211
Maulfair, D D; Fustini, M; Heinrichs, A J
2011-07-01
The objective of this experiment was to evaluate the effects of feeding rations of different particle sizes on rumen digesta and fecal matter particle size. Four rumen-cannulated, multiparous, Holstein cows (104±15 d in milk) were randomly assigned to treatments in a 4×4 Latin square design. The diets consisted of 29.4% corn silage, 22.9% ground corn, 17.6% alfalfa haylage, and 11.8% dry grass hay [20% of forage dry matter (DM)] on a DM basis. Dry grass hay was chopped to 4 different lengths to vary the total mixed ration (TMR) particle size. Geometric mean particle sizes of the rations were 4.46, 5.10, 5.32, and 5.84 mm for short, medium, long, and extra long diets, respectively. The ration affected rumen digesta particle size for particles ≥3.35 mm, and had no effect on distribution of particles <3.35 mm. All rumen digesta particle size fractions varied by time after feeding, with soluble particle fractions increasing immediately after feeding and 0.15, 0.6, and 1.18-mm particle size fractions decreasing slightly after feeding. Particle fractions >1.18 mm had ration by time interactions. Fecal neutral detergent fiber (NDF) and indigestible NDF concentrations decreased with increasing TMR particle size. Fecal particle size expressed as total geometric mean particle length followed this same tendency. Fecal particle size, expressed as retained geometric mean particle length, averaged 1.13 mm with more than 36% of particles being larger than 1.18 mm. All fecal nutrient concentrations measured were significantly affected by time after feeding, with NDF and indigestible NDF increasing after feeding and peaking at about 12h later and then decreasing to preprandial levels. Starch concentrations were determined to have the opposite effect. Additionally, apparent digestibility of diet nutrients was analyzed and DM digestibility tended to decrease with increasing TMR particle size, whereas other nutrient digestibilities were not different among rations. These results show that the critical size for increased resistance to rumen escape is larger than 1.18 mm and this critical size is constant throughout the day. This study also concludes that, when using average quality grass hay to provide the range of particle sizes fed, DM digestibility tends to decrease with increasing ration particle size. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Hassanat, F; Gervais, R; Julien, C; Massé, D I; Lettat, A; Chouinard, P Y; Petit, H V; Benchaar, C
2013-07-01
The objective of this study was to determine the effects of replacing alfalfa silage (AS) with corn silage (CS) in dairy cow total mixed rations (TMR) on enteric CH4 emissions, ruminal fermentation characteristics, apparent total-tract digestibility, N balance, and milk production. Nine ruminally cannulated lactating cows were used in a replicated 3×3 Latin square design (32-d period) and fed (ad libitum) a TMR [forage:concentrate ratio of 60:40; dry matter (DM) basis], with the forage portion consisting of either alfalfa silage (0% CS; 56.4% AS in the TMR), a 50:50 mixture of both silages (50% CS; 28.2% AS and 28.2% CS in the TMR), or corn silage (100% CS; 56.4% CS in the TMR). Increasing the CS proportion (i.e., at the expense of AS) in the diet was achieved by decreasing the corn grain proportion and increasing that of soybean meal. Intake of DM and milk yield increased quadratically, whereas DM digestibility increased linearly as the proportion of CS increased in the diet. Increasing the dietary CS proportion resulted in changes (i.e., lower ruminal pH and acetate:propionate ratio, reduced fiber digestibility, decreased protozoa numbers, and lower milk fat and higher milk protein contents) typical of those observed when cows are fed high-starch diets. A quadratic response in daily CH4 emissions was observed in response to increasing the proportion of CS in the diet (440, 483, and 434 g/d for 0% CS, 50% CS, and 100% CS, respectively). Methane production adjusted for intake of DM, and gross or digestible energy was unaffected in cows fed the 50% CS diet, but decreased in cows fed the 100% CS diet (i.e., quadratic effect). Increasing the CS proportion in the diet at the expense of AS improved N utilization, as reflected by the decreases in ruminal NH3 concentration and manure N excretion, suggesting low potential NH3 and N2O emissions. Results from this study, suggest that total replacement of AS with CS in dairy cow diets offers a means of decreasing CH4 output and N losses. However, the reduction in fiber degradation and the resulting increase in volatile solids content of the manure may lead to increased CH4 emissions from manure storage. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Effects of time and sampling location on concentrations of β-hydroxybutyric acid in dairy cows.
Mahrt, A; Burfeind, O; Heuwieser, W
2014-01-01
Two trials were conducted to examine factors potentially influencing the measurement of blood β-hydroxybutyric acid (BHBA) in dairy cows. The objective of the first trial was to study effects of sampling time on BHBA concentration in continuously fed dairy cows. Furthermore, we determined test characteristics of a single BHBA measurement at a random time of the day to diagnose subclinical ketosis considering commonly used cut-points (1.2 and 1.4 mmol/L). Finally, we set out to evaluate if test characteristics could be enhanced by repeating measurements after different time intervals. During 4 herd visits, a total of 128 cows (8 to 28 d in milk) fed 10 times daily were screened at 0900 h and preselected by BHBA concentration. Blood samples were drawn from the tail vessels and BHBA concentrations were measured using an electronic BHBA meter (Precision Xceed, Abbott Diabetes Care Ltd., Witney, UK). Cows with BHBA concentrations ≥0.8 mmol/L at this time were enrolled in the trial (n=92). Subsequent BHBA measurements took place every 3h for a total of 8 measurements during 24 h. The effect of sampling time on BHBA concentrations was tested in a repeated-measures ANOVA repeating sampling time. Sampling time did not affect BHBA concentrations in continuously fed dairy cows. Defining the average daily BHBA concentration calculated from the 8 measurements as the gold standard, a single measurement at a random time of the day to diagnose subclinical ketosis had a sensitivity of 0.90 or 0.89 at the 2 BHBA cut-points (1.2 and 1.4 mmol/L). Specificity was 0.88 or 0.90 using the same cut-points. Repeating measurements after different time intervals improved test characteristics only slightly. In the second experiment, we compared BHBA concentrations of samples drawn from 3 different blood sampling locations (tail vessels, jugular vein, and mammary vein) of 116 lactating dairy cows. Concentrations of BHBA differed in samples from the 3 sampling locations. Mean BHBA concentration was 0.3 mmol/L lower when measured in the mammary vein compared with the jugular vein and 0.4 mmol/L lower in the mammary vein compared with the tail vessels. We conclude that to measure BHBA, blood samples of continuously fed dairy cows can be drawn at any time of the day. A single measurement provides very good test characteristics for on-farm conditions. Blood samples for BHBA measurement should be drawn from the jugular vein or tail vessels; the mammary vein should not be used for this purpose. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Fu, Peter P; Xia, Qingsu; He, Xiaobo; Barel, Shimon; Edery, Nir; Beland, Frederick A; Shimshoni, Jakob A
2017-03-20
Pyrrolizidine alkaloids are among the most common poisonous plants affecting livestock, wildlife, and humans. Exposure of humans and livestock to toxic pyrrolizidine alkaloids through the intake of contaminated food and feed may result in poisoning, leading to devastating epidemics. During February 2014, 73 mixed breed female beef cows from the Galilee region of Israel were accidently fed pyrrolizidine alkaloid contaminated hay for 42 days, resulting in the sudden death of 24 cows over a period of 63 days. The remaining cows were slaughtered 2.5 months after the last ingestion of the contaminated hay. In this study, we report the histopathological analysis of the livers from five of the slaughtered cows and quantitation of pyrrolizidine alkaloid-derived DNA adducts from their livers and three livers of control cows fed with feed free of weeds producing pyrrolizidine alkaloids. Histopathological examination revealed that the five cows suffered from varying degrees of bile duct proliferation, fibrosis, and megalocytosis. Selected reaction monitoring HPLC-ES-MS/MS analysis indicated that (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts were formed in all five livers. The livers from the three control cows did not have any liver damage nor any indication of DHP-DNA adduct formed. These results confirm that the toxicity observed in these cattle was caused by pyrrolizidine alkaloid poisoning and that pyrrolizidine alkaloid-derived DNA adducts could still be detected and quantified in the livers of the chronically poisoned cows 2.5 months after their last exposure to the contaminated feed, suggesting that DHP-derived DNA adducts can serve as biomarkers for pyrrolizidine alkaloid exposure and poisoning.
Hall, Jean A; Bobe, Gerd; Vorachek, William R; Kasper, Katherine; Traber, Maret G; Mosher, Wayne D; Pirelli, Gene J; Gamroth, Mike
2014-12-01
Dairy cows have increased nutritional requirements for antioxidants postpartum. Supranutritional organic Se supplementation may be beneficial because selenoproteins are involved in regulating oxidative stress and inflammation. Our objective was to determine whether feeding Se-yeast above requirements to Se-replete dairy cows during late gestation affects blood micronutrients, antioxidants, metabolites, and inflammation biomarkers postpartum. During the last 8-weeks before calving, dairy cows at a commercial farm were fed either 0 (control) or 105 mg Se-yeast once weekly (supranutritional Se-yeast), in addition to Na selenite at 0.3 mg Se/kg dry matter in their rations. Concentrations of whole-blood (WB) Se and serum Se, erythrocyte glutathione (GSH), and serum albumin, cholesterol, α-tocopherol, haptoglobin, serum amyloid A (SAA), calcium, magnesium, phosphorus, non-esterified fatty acids, and β-hydroxybutyrate were measured directly after calving, at 48 h, and 14 days of lactation in 10 cows of each group. Supranutritional Se-yeast supplementation affected indicators of antioxidant status and inflammation. Cows fed a supranutritional Se-yeast supplement during the last 8-weeks of gestation had higher Se concentrations in WB (overall 52 % higher) and serum (overall 36 % higher) at all-time points, had higher SAA concentrations at 48 h (98 % higher), had higher erythrocyte GSH (38 % higher) and serum albumin concentrations (6.6 % higher) at 14 days, and had lower serum cholesterol concentrations and higher α-tocopherol/cholesterol ratios at calving and at 48 h compared with control cows. In conclusion, feeding Se-replete cows during late gestation a supranutritional Se-yeast supplement improves antioxidant status and immune responses after calving without negatively impacting other micronutrients and energy status.
Compton, C W R; Young, L; McDougall, S
2015-09-01
To determine the effectiveness of intra-rumenal controlled release capsules (CRC) containing 32 g of monensin administered pre-calving to reduce the cumulative incidence of subclinical ketosis (SCK) in mainly pasture-fed dairy cows. Cows (n=837) due to calve in the first 6 weeks of the spring calving period were enrolled from four commercial herds in the Waikato region of New Zealand in a blinded, randomised, negative-controlled field trial. Three weeks before the start of the calving period cows were randomly allocated to receive either no treatment (control) or a single CRC containing monensin and then blood sampled on two occasions, 7 days apart within 12 days following calving for measurement of concentrations of beta hydroxybutyrate (BHBA) in blood. Cows were diagnosed with SCK if the concentration of BHBA in blood in either of these samples was ≥1.2 mmol/L. Fewer treated cows were diagnosed with SCK within 12 days post-calving than control cows (144/340 (42.4%) vs. 192/336 (57.1%); p<0.001). There was no interaction between treatment group and age, breed or herd of origin. From the final multivariable model it was estimated that treatment with CRC containing monensin reduced the absolute cumulative incidence of SCK by 17.9 (95% CI=9.2-25.8)% compared to no treatment. Treatment with a CRC containing monensin>10 days prior to calving reduced the cumulative incidence of SCK of pasture-based dairy cows in commercial dairy herds within 12 days post-calving. Administration pre-calving of an intra-rumenal bolus containing monensin can be considered as one of a range of management options for the control of SCK in early lactation.
Preynat, A; Lapierre, H; Thivierge, M C; Palin, M F; Matte, J J; Desrochers, A; Girard, C L
2009-02-01
The present experiment was undertaken to determine the effects of dietary supplements of rumen-protected methionine and intramuscular injections of folic acid and vitamin B(12), given 3 wk before to 16 wk after calving, on glucose and methionine metabolism of lactating dairy cows. Twenty-four multiparous Holstein cows were assigned to 6 blocks of 4 cows each according to their previous milk production. Within each block, 2 cows were fed a diet estimated to supply methionine as 1.83% metabolizable protein, equivalent to 76% of methionine requirement, whereas the 2 other cows were fed the same diet supplemented daily with 18 g of rumen-protected methionine. Within each diet, the cows were administrated either no vitamin supplement or weekly intramuscular injections of 160 mg of folic acid plus 10 mg of vitamin B(12.) To investigate metabolic changes at 12 wk of lactation, glucose and methionine kinetics were measured by isotope dilution using infusions of 3[U-(13)C]glucose, [(13)C]NaHCO(3) and 3[1-(13)C,(2)H(3)] methionine. Milk and plasma concentrations of folic acid and vitamin B(12) increased with vitamin injections. Supplementary B-vitamins increased milk production from 34.7 to 38.9 +/- 1.0 kg/d and increased milk lactose, protein, and total solids yields. Whole-body glucose flux tended to increase with vitamin supplementation with a similar quantitative magnitude as the milk lactose yield increase. Vitamin supplementation increased methionine utilization for protein synthesis through increased protein turnover when methionine was deficient and through decreased methionine oxidation when rumen-protected methionine was fed. Vitamin supplementation decreased plasma concentrations of homocysteine independently of rumen-protected methionine feeding, although no effect of vitamin supplementation was measured on methionine remethylation, but this could be due to the limitation of the technique used. Therefore, the effects of these B-vitamins on lactation performance were not mainly explained by methionine economy because of a more efficient methylneogenesis but were rather related to increased glucose availability and changes in methionine metabolism.
Gomes da Silva, Aline; Paulino, Mário Fonseca; da Silva Amorim, Lincoln; Detmann, Edenio; Rennó, Luciana Navajas; de Souza Duarte, Márcio; Henrique de Moura, Felipe; Prímola de Melo, Luciano; Henrique Silva E Paiva, Paulo; Manso, Marcos Rocha; Valério de Carvalho, Victor
2017-02-01
Creep feeding has been used to reduce calves' nutritional dependence on the cow, but research results under tropical conditions have not been conclusive about the effects on the cow. Therefore, this study was conducted to evaluate the effects of high and low supplementation levels for Nellore heifer calves on performance, milk production, and metabolic profile of their mothers. Fifty multiparous Nellore cows and their respective calves were used. The following treatments were evaluated: 0-control, no supplement was fed to calves; 3-calves received supplement in the amount of 3 g/kg of body weight (BW); 6-calves received supplement in the amount of 6 g/kg of BW. There was no significant effect of level of supplementation offered to offspring on cow BW, body condition score (BCS) and subcutaneous fat thickness (P > 0.05). Level of supplementation of heifer calves did not significantly affect milk production corrected to 4% of fat (P > 0.05). Fat, protein, lactose, and total solids of the milk also did not differ among supplementation strategies (P > 0.05). Level of supplement fed to calves had no effect on cows' glucose, total cholesterol, HDL, LDL, triglycerides, total protein, and albumin levels (P > 0.05), but cows nursing calves that did not receive supplement had lower level of serum urea N (SUN; P < 0.05). We conclude that creep feeding in the amounts of 3 or 6 g/kg of BW daily has no major impact on dams' performance and metabolism.
2013-01-01
Background There is considerable interest in dairy products from low-input systems, such as mountain-pasture grazing cows, because these products are believed to be healthier than products from high-input conventional systems. This may be due to a higher content of bioactive components, such as phytanic acid, a PPAR-agonist derived from chlorophyll. However, the effects of such products on human health have been poorly investigated. Objective To compare the effect of milk-fat from mountain-pasture grazing cows (G) and conventionally fed cows (C) on risk markers of the metabolic syndrome. Design In a double-blind, randomized, 12-week, parallel intervention study, 38 healthy subjects replaced part of their habitual dietary fat intake with 39 g fat from test butter made from milk from mountain-pasture grazing cows or from cows fed conventional winter fodder. Glucose-tolerance and circulating risk markers were analysed before and after the intervention. Results No differences in blood lipids, lipoproteins, hsCRP, insulin, glucose or glucose-tolerance were observed. Interestingly, strong correlations between phytanic acid at baseline and total (P<0.0001) and LDL cholesterol (P=0.0001) were observed. Conclusions Lack of effects on blood lipids and inflammation indicates that dairy products from mountain-pasture grazing cows are not healthier than products from high-input conventional systems. Considering the strong correlation between LDL cholesterol and phytanic acid at baseline, it may be suggested that phytanic acid increases total and LDL cholesterol. Trial registration ClinicalTrials.gov, NCT01343589 PMID:23842081
A Case Study of Behaviour and Performance of Confined or Pastured Cows During the Dry Period
Black, Randi A.; Krawczel, Peter D.
2016-01-01
Simple Summary Pasture and freestall systems offer benefits and consequences during lactation but have not been investigated during the dry period. The effect of pasture or confined systems during the dry period on behaviour and milk quality was investigated. Freestall housing resulted in more resting behaviour and less locomotor activity during the dry period compared to pastured cows. At calving, freestall housed cows performed fewer lying bouts and less locomotor activity compared to pastured cows. Pasture resulted in less aggression around feeding but high respiration rates during peak heat times. Pasture during the dry period altered lying behavior, reduced feed bunk aggression and increased heat stress behaviors. Abstract The objectives of this study were to determine the effect of the dry cow management system (pasture or confined) on: (1) lying behaviour and activity; (2) feeding and heat stress behaviours; (3) intramammary infections, postpartum. Non-lactating Holstein cows were assigned to either deep-bedded, sand freestalls (n = 14) or pasture (n = 14) using rolling enrollment. At dry-off, cows were equipped with an accelerometer to determine daily lying time (h/d), lying bouts (bouts/d), steps (steps/d) and divided into periods: far-off (60 to 15 d prepartum), close-up (14 to 1 d prepartum), calving (calving date) and postpartum (1 to 14 d postpartum). Respiration rates were recorded once weekly from dry off to calving from 1300 to 1500 h. Feeding displacements were defined as one cow successfully displacing another from the feed bunk and were recorded once per week during the 2 h period, immediately after feeding at 800 h. Pastured cows were fed a commercial dry cow pellet during far-off and total mixed ration during close-up, with free access to hay and grazing. Freestall housed cows were fed a total mixed ration at far-off and close-up. Cows housed in freestalls were moved to a maternity pen with a mattress at commencement of labour. Pastured cows calved in pasture. After calving, all cows were commingled in a pen identical to the freestall housing treatment. Cows housed in freestalls laid down for longer during far-off and close-up periods, had fewer lying bouts during the calving period and took fewer steps throughout the study period when compared to pastured cows. Freestall housed cows experienced more displacements after feeding than did pastured cows. Respiration rates increased with an increasing temperature humidity index, more in pastured cows than in freestall housed cows. Pastured cows altered their lying behaviour and activity, suggesting a shift in time budget priorities between pastured and confined dry cows. Pastured cows also experienced less aggression around feeding but may be more susceptible to heat stress. PMID:27420102
Dias, A L G; Freitas, J A; Micai, B; Azevedo, R A; Greco, L F; Santos, J E P
2018-01-01
The objectives of this experiment were to evaluate the effect of feeding a culture of Saccharomyces cerevisiae on rumen metabolism and digestibility when cows are fed diets varying in starch content. Four lactating Holstein cows were assigned to a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Treatments were low starch (LS; 23% of diet DM) and no yeast culture (YC; LS-control), LS and 15 g of YC/d (LS-YC), high starch (HS; 29% of diet DM) and no YC (HS-control), and HS and 15 g of YC/d (HS-YC). Periods lasted 28 d, with the last 9 d for data collection. Days 20 to 24 were used to determine production, nutrient flow, and digestibility. On d 25, 3 kg of corn grain DM was placed in the rumen 1 h before the morning feeding, and yields of milk and milk components were measured after the challenge. Blood was sampled -1, 3, 7, and 11 h relative to the morning feeding on d 24 and 25. Rumen pH was measured continuously on d 24 and 25. Rumen papillae were collected on d 24 and 28 to quantify mRNA expression of select genes. Supplementing YC increased yields of milk (26.3 vs. 29.6 kg/d), energy-corrected milk (ECM; 26.5 vs. 30.3 kg/d), fat (0.94 vs. 1.08 kg/d), true protein (0.84 vs. 0.96 kg/d), and ECM/dry matter intake (1.15 vs. 1.30) compared with the control but did not affect dry matter intake (22.6 vs. 22.9 kg/d). Cows fed HS had increased milk true protein percentage (3.18 vs. 3.31%) and yield (0.87 vs. 0.94 kg/d) compared with cows fed LS. Feeding HS-YC increased the proportion of dietary N incorporated into milk true protein from 24.9% in the other 3 treatments to 29.6%. Feeding HS increased the concentration of propionate (21.7 vs. 32.3 mM) and reduced that of NH 3 -N (8.3 vs. 6.7 mg/dL) in rumen fluid compared with the control, and combining HS with YC in HS-YC tended to increase microbial N synthesis compared with LS-YC (275 vs. 322 g/d). Supplementing YC to cows fed HS reduced plasma haptoglobin and rumen lactate concentrations, increased mean rumen pH, reduced the time with pH <6.0, and prevented the decrease in rumen neutral detergent fiber digestion caused by HS. Cows fed HS had less total-tract digestion of organic matter (73.9 vs. 72.4%) because of reduced acid detergent fiber (57.6 vs. 51.7%) and neutral detergent fiber (60.9 vs. 56.7%) digestibility. Production performance after the challenge was similar to that before the challenge, and YC improved yield of ECM. After the challenge, supplementing YC tended to reduce rumen lactate concentration compared with the control and reduced haptoglobin in cows fed HS. Feeding HS but not YC increased expression in rumen papillae of genes for receptors (FFAR2 and FFAR3) and transporter (SLC16A3) of short-chain fatty acids but did not affect genes involved in transport of Na + /H + or water or in inflammatory response. Supplementing YC to dairy cows improved lactation performance in diets containing low or high starch, and mechanisms might be partially attributed to improvements in rumen pH, digestion of fiber, microbial N synthesis, and reduction in acute phase response. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Transport of iodine and cesium via the grass-cow-milk pathway after the Chernobyl accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirchner, G.
1994-06-01
More than 150 data sets giving time-dependent concentrations of {sup 131}I and {sup 137}Cs in feed and milk of cows after the Chernobyl accident are evaluated using a minimal compartmental modeling approach. Transfer of cesium via the grass-cow-milk pathway is adequately described by a three-compartmental model. No unique model results for {sup 131}I, as a compartment with slow secretion of {sup 131}I into milk, are identified for some datasets only. Frequency distributions of weathering half-lives on grass and of equilibrium feed-to-milk transfer coefficients are approximately lognormal. Mean values of weathering half-lives on plants are 9.1 {plus_minus} 0.6 d for iodinemore » and 11.1 {plus_minus} 0.8 d for cesium, in good agreement with means established from experiments performed before 1986. Mean values of equilibrium feed-to-milk transfer coefficients are 3.4 {plus_minus} 0.4 10{sup {minus}3} d L{sup {minus}1} for {sup 131}I and 5.4 {plus_minus} 0.5 10{sup {minus}3} d L{sup {minus}1} for {sup 137}Cs. Both are lower than means calculated from the pre-Chernobyl data base. Plausible explanations of the differences include (1) reduced availability of fallout compared to soluble tracer; (2) underestimation of post-Chernobyl transfer coefficients by some experiments concluded too early to record slow transport processes; and (3) reduced transfer of {sup 131}I compared to long-lived iodine isotopes due to decay during fixation in the thyroid. Feed-to-milk transfer of {sup 131}I is related to milk yield, but no influence of milk yield and type of feed on transfer is apparent for cesium. 73 refs., 3 figs., 5 tabs.« less
USDA-ARS?s Scientific Manuscript database
Cottonseed is an important dietary ingredient for dairy cows and is fed principally as upland cottonseed. However, Pima cotton production is growing in the U.S. Pima cottonseed contains greater levels of protein, oil and gossypol, a potentially toxic compound. Heating cottonseed promotes the gossypo...
USDA-ARS?s Scientific Manuscript database
Objectives of this study were to quantify production responses of lactating dairy cows to supplying absorbable Met as isopropyl-2-hydroxy-4-(methylthio)-butanoic acid (HMBi), or rumen-protected Met (RPM, Smartamine® M) fed with or without 2-hydroxy-4-(methylthio)-butanoic acid (HMB), and to determin...
Grazing Soybean to Increase Voluntary Cow Traffic in a Pasture-based Automatic Milking System
Clark, C. E. F.; Horadagoda, A.; Kerrisk, K. L.; Scott, V.; Islam, M. R.; Kaur, R.; Garcia, S. C.
2014-01-01
Pasture-based automatic milking systems (AMS) require cow traffic to enable cows to be milked. The interval between milkings can be manipulated by strategically allocating pasture. The current experiment investigated the effect of replacing an allocation of grazed pasture with grazed soybean (Glycine max) with the hypothesis that incorporating soybean would increase voluntary cow traffic and milk production. One hundred and eighty mixed age, primiparous and multiparous Holstein-Friesian/Illawarra cows were randomly assigned to two treatment groups (n = 90/group) with a 2×2 Latin square design. Each group was either offered treatments of kikuyu grass (Pennisetum clandestinum Hoach ex Chiov.) pasture (pasture) or soybean from 0900 h to 1500 h during the experimental period which consisted of 2 periods of 3 days following 5 days of training and adaptation in each period with groups crossing over treatments after the first period. The number of cows trafficking to each treatment was similar together with milk yield (mean ≈18 L/cow/d) in this experiment. For the cows that arrived at soybean or pasture there were significant differences in their behaviour and consequently the number of cows exiting each treatment paddock. There was greater cow traffic (more cows and sooner) exiting pasture allocations. Cows that arrived at soybean stayed on the allocation for 25% more time and ate more forage (8.5 kg/cow/d/allocation) relative to pasture (4.7 kg/cow/d/allocation). Pasture cows predominantly replaced eating time with rumination. These findings suggest that replacing pasture with alternative grazeable forages provides no additional incentive to increase voluntary cow traffic to an allocation of feed in AMS. This work highlights the opportunity to increase forage intakes in AMS through the incorporation of alternative forages. PMID:25049970
Hassanat, F; Gervais, R; Massé, D I; Petit, H V; Benchaar, C
2014-10-01
The objective of this study was to investigate the effects of changing forage source in dairy cow diets from timothy silage (TS) to alfalfa silage (AS) on enteric CH₄ emissions, ruminal fermentation characteristics, digestion, milk production, and N balance. Nine ruminally cannulated lactating cows were used in a replicated 3 × 3 Latin square design (32-d period) and fed (ad libitum) a total mixed ration (TMR; forage:concentrate ratio of 60:40, dry matter basis), with the forage portion consisting of either TS (0% AS; 0% AS and 54.4% TS in the TMR), a 50:50 mixture of both silages (50% AS; 27.2% AS and 27.2% TS in the TMR), or AS (100% AS; 54.4% AS and 0% TS in the TMR). Compared with TS, AS contained less (36.9 vs. 52.1%) neutral detergent fiber but more (20.5 vs. 13.6%) crude protein (CP). In sacco 24-h ruminal degradability of organic matter (OM) was higher for AS than for TS (73.5 vs. 66.9%). Replacement of TS with AS in the diet entailed increasing proportions of corn grain and bypass protein supplement at the expense of soybean meal. As the dietary proportion of AS increased, CP and starch concentrations increased, whereas fiber content declined in the TMR. Dry matter intake increased linearly with increasing AS proportions in the diet. Apparent total-tract digestibility of OM and gross energy remained unaffected, whereas CP digestibility increased linearly and that of fiber decreased linearly with increasing inclusion of AS in the diet. The acetate-to-propionate ratio was not affected, whereas ruminal concentration of ammonia (NH₃) and molar proportion of branched-chain VFA increased as the proportion of AS in the diet increased. Daily CH₄ emissions tended to increase (476, 483, and 491 g/d for cows fed 0% AS, 50% AS, and 100% AS, respectively) linearly as cows were fed increasing proportions of AS. Methane production adjusted for dry matter intake (average=19.8 g/kg) or gross energy intake (average=5.83%) was not affected by increasing AS inclusion in the diet. When expressed on a fat-corrected milk or energy-corrected milk yield basis, CH₄ production increased linearly with increasing AS dietary proportion. Urinary N excretion (g/d) increased linearly when cows were fed increasing amounts of AS in the diet, suggesting a potential for higher nitrous oxide (N₂O) and NH₃ emissions. Efficiency of dietary N use for milk protein secretion (g of milk N/g of N intake) declined with the inclusion of AS in the diet. Despite marked differences in chemical composition and ruminal degradability, under the conditions of this study, replacing TS with AS in dairy cow diets was not effective in reducing CH₄ energy losses. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wang, Bing; Wang, Diming; Wu, Xuehui; Cai, Jie; Liu, Mei; Huang, Xinbei; Wu, Jiusheng; Liu, Jianxin; Guan, Leluo
2017-05-06
Rumen epithelial tissue plays an important role in nutrient absorption and rumen health. However, whether forage quality and particle size impact the rumen epithelial morphology is unclear. The current study was conducted to elucidate the effects of forage quality and forage particle size on rumen epithelial morphology and to identify potential underlying molecular mechanisms by analyzing the transcriptome of the rumen epithelium (RE). To achieve these objectives, 18 mid-lactation dairy cows were allocated to three groups (6 cows per group), and were fed with one of three different forage-based diets, alfalfa hay (AH), corn stover (CS), and rice straw (RS) for 14 weeks, respectively. Ruminal volatile fatty acids (VFAs) and epithelial thickness were determined, and RNA-sequencing was conducted to identify the transcriptomic changes of rumen epithelial under different forage-based diets. The RS diet exhibited greater particle size but low quality, the AH diet was high nutritional value but small particle size, and CS diet was low quality and small particle size. The ruminal total VFA concentration was greater in AH compared with those in CS or RS. The width of the rumen papillae was greater in RS-fed cows than in cows fed AH or CS. In total, 31, 40, and 28 differentially expressed (DE, fold change > 2, FDR < 0.05) genes were identified via pair-wise comparisons including AH vs. CS, AH vs. RS, and RS vs. CS, respectively. Functional classification analysis of DE genes revealed dynamic changes in ion binding (such as DSG1) between AH and CS, proliferation and apoptotic processes (such as BAG3, HLA-DQA1, and UGT2B17) and complement activation (such as C7) between AH or RS and CS. The expression of HLA-DQA1 was down-regulated in RS compared with AH and CS, and the expression of UGT2B17 was down-regulated in RS compared with CS, with positive (R = 0.94) and negative (R = -0.96) correlation with the width of rumen epithelial papillae (P < 0.05), respectively. Our results suggest that both nutrients (VFAs) and particle sizes can alter expression of genes involved in cell proliferation/apoptosis process and complement complex. Our results suggest that particle size may be more important in regulating rumen epithelial morphology when animals are fed with low-quality forage diets and the identified DE genes may affect the RE nutrient absorption or morphology of RE. Our findings provide insights into the effects of the dietary particle size in the future management of dairy cow feeding, that when cows were fed with low-quality forage (such as rice straw), smaller particle size may be beneficial for nutrients absorption and milk production.
Chibisa, G E; Mutsvangwa, T
2013-10-01
A study was conducted to determine the effects of including either wheat-based (W-DDGS) or corn-wheat blend (B-DDGS) dried distillers grains with solubles as the major protein source in low- or high-crude protein (CP) diets fed to dairy cows on ruminal function, microbial protein synthesis, omasal nutrient flows, urea-N recycling, and milk production. Eight lactating Holstein cows (768.5 ± 57.7 kg of body weight; 109.5 ± 40.0 d in milk) were used in a replicated 4 × 4 Latin square design with 28-d periods (18d of dietary adaptation and 10d of measurements) and a 2 × 2 factorial arrangement of dietary treatments. Four cows in one Latin square were ruminally cannulated for the measurement of ruminal fermentation characteristics, microbial protein synthesis, urea-N recycling kinetics, and omasal nutrient flow. The treatment factors were type of distillers co-product (W-DDGS vs. B-DDGS) and dietary CP content [15.2 vs. 17.3%; dry matter (DM) basis]. The B-DDGS was produced from a mixture of 15% wheat and 85% corn grain. All diets were formulated to contain 10% W-DDGS or B-DDGS on a DM basis. No diet effect was observed on DM intake. Yields of milk, fat, protein, and lactose, and plasma urea-N and milk urea-N concentrations were lower in cows fed the low-CP compared with those fed the high-CP diet. Although feeding B-DDGS tended to reduce ruminal ammonia-N (NH3-N) concentration compared with feeding W-DDGS (9.3 vs. 10.5mg/dL), no differences were observed in plasma urea-N and milk urea-N concentrations. Additionally, dietary inclusion of B-DDGS compared with W-DDGS did not affect rumen-degradable protein supply, omasal flows of total N, microbial nonammonia N (NAN), rumen-undegradable protein, and total NAN, or urea-N recycling kinetics and milk production. However, cows fed the low-CP diet had lower N intake, rumen-degradable protein supply, ruminal NH3-N concentration, and omasal flows of N, microbial NAN, and total NAN compared with those fed the high-CP diet. Feeding the low-CP compared with the high-CP diet also resulted in lower endogenous urea-N production, urea-N recycled to the gastrointestinal tract, and urea-N excretion in urine. In summary, our results indicate that both W-DDGS and B-DDGS can be included as the major protein sources in dairy cow diets without compromising nutrient supply and production performance. However, feeding the low-CP diet lowered omasal flows of microbial protein and metabolizable protein, which, in turn, resulted in lower milk production compared with feeding the high-CP diet. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Zbinden, R S; Falk, M; Münger, A; Dohme-Meier, F; van Dorland, H A; Bruckmaier, R M; Gross, J J
2017-08-01
Herbage feeding with only little input of concentrates plays an important role in milk production in grassland dominated countries like Switzerland. The objective was to investigate the effects of a solely herbage-based diet and level of milk production on performance, and variables related to the metabolic, endocrine and inflammatory status to estimate the stress imposed on dairy cows. Twenty-five multiparous Holstein cows were divided into a control (C+, n = 13) and a treatment group (C-, n = 12), according to their previous lactation yield (4679-10 808 kg) from week 3 ante partum until week 8 post-partum (p.p.). While C+ received fresh herbage plus additional concentrate, no concentrate was fed to C- throughout the experiment. Within C+ and C-, the median of the preceding lactation yields (7752 kg) was used to split cows into a high (HYC+, HYC-)- and low-yielding (LYC+, LYC-) groups. Throughout the study, HYC+ had a higher milk yield (35.9 kg/d) compared to the other subgroups (27.2-31.7 kg/d, p < 0.05). Plasma glucose (3.51 vs. 3.72 mmol/l) and IGF-1 (66.0 vs. 78.9ng/mL) concentrations were lower in HYC-/LYC- compared to HYC+/LYC+ cows (p < 0.05). Plasma FFA and BHBA concentrations were dramatically elevated in HYC- (1.1 and 1.6 mmol/l) compared to all other subgroups (mean values: 0.5 and 0.6 mmol/l, p < 0.05). Saliva cortisol, plasma concentrations of serum amyloid A (SAA), haptoglobin (Hp), beta-endorphin (BE) and activity of alkaline phosphatase (AP) were not different between C+ and C-. In conclusion, herbage-fed high-yielding cows without supplementary concentrate experienced a high metabolic load resulting in a reduced performance compared to cows of similar potential fed accordingly. Low-yielding cows performed well without concentrate supplementation. Interestingly, the selected markers for inflammation and stress such as cortisol, Hp, SAA, BE and AP gave no indication for the metabolic load being translated into compromised well-being. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Addition of sodium bicarbonate to complete pelleted diets fed to dairy calves.
Wheeler, T B; Wangsness, P J; Muller, L D; Griel, L C
1980-11-01
During two trials, 35 and 27 Holstein calves were fed ad libitum complete, pelleted diets containing either 35% alfalfa (Trial 1) or 35% grass (Trial 2) hay from birth to 12 wk of age. Calves in Trial 1 were fed one of the following diets: control, control + 3.5% sodium chloride, or control + 5% sodium bicarbonate. In Trial 2, diets were: control, control + 5% sodium bicarbonate, or control + 5% sodium bicarbonate + loose, chopped grass hay. Intake of dry matter, gain in body weight, ruminal pH, or fecal starch did not differ. Calves fed sodium bicarbonate in Trial 1 but not 2 had a reduced feed efficiency compared with control and supplemented diets. In Trial 1 added sodium bicarbonate did not alter intake or digestible energy. Addition of sodium bicarbonate increased concentration of ruminal acetate and butyrate and decreased propionate in both trials. Fecal pH was elevated in calves fed sodium bicarbonate diets during both trials. Sodium chloride increased water intake in Trial 1, and sodium bicarbonate increased water indigestible energy. Addition of sodium bicarbonate increased concentration of ruminal acetate and butyrate and decreased propionate in both trials. Fecal pH was elevated in calves fed sodium bicarbonate diets during both trials. Sodium chloride increased water intake in Trial 1, and sodium bicarbonate increased water indigestible energy. Addition of sodium bicarbonate increased concentration of ruminal acetate and butyrate and decreased propionate in both trials. Fecal pH was elevated in calves fed sodium bicarbonate diets during both trials. Sodium chloride increased water intake in Trial 1, and sodium bicarbonate increased water intake in Trial 2. Incidence of free-gas bloat was higher in calves fed sodium bicarbonate in both trials. Addition of sodium bicarbonate to complete pelleted diets containing 35% alfalfa or 35% grass hay appeared to have no benefit for young, growing dairy calves in performance and health.
Effects of feeding rumen-degradable valine on milk production in late-lactating dairy cows.
Hultquist, Kayla M; Casper, David P
2016-02-01
The study objective was to determine if feeding the rumen-degradable AA Val can increase milk production comparable to recombinant bovine somatotropin (bST). Eight multiparous late-lactating (255±26.4 d in milk) Holstein dairy cows were blocked by milk yield (34.1±8.25 kg/d) and randomly assigned to 1 of 4 treatments in a replicated 4×4 Latin square design with 21-d periods (7 d for dietary adaptation and 14 d for data collection). Treatments were control (CON), a single injection of recombinant bST (rbST), and Val fed at 40 (V40) and 80 g/d (V80). Cows were fed a total mixed ration with a distillers dried grains carrier at 113.4 g/d containing none or added AA. Dry matter intake (21.3, 22.0, 22.8, and 21.5 kg/d for CON, rbST, V40, and V80, respectively) was similar among treatments, except cows receiving V40 had greater dry matter intake than cows receiving V80. Milk yield (22.0, 26.1, 25.2, and 24.9 kg/d), 3.5% fat-corrected milk (22.1, 25.4, 24.4, and 24.3 kg/d), and energy-corrected milk (22.7, 26.1, 25.1, and 24.9 kg/d) were increased at similar amounts for cows receiving rbST, V40, and V80 compared with CON cows. Milk fat percentages (3.51, 3.36, 3.32, and 3.38%) were greatest for CON cows compared with cows receiving V40, whereas cows receiving other treatments were intermediate and similar. Milk protein percentages (3.20, 3.12, 3.15, and 3.13%) were greater for CON cows compared with cows receiving rbST and V40, whereas cows receiving V80 were intermediate and similar. Ruminal isobutyrate (1.19, 1.24, 1.44, and 1.74 mol/100 mol) concentrations were increased for cows receiving V40 and V80 compared with CON and rbST cows, with cows receiving V80 having greater concentrations than cows receiving V40. Plasma growth hormone concentrations (1.78, 1.99, 1.55, and 1.45 ng/mL) were greater for cows receiving rbST compared with cows receiving V40 and V80, whereas CON cows were intermediate and similar. Plasma insulin-like growth factor-1 concentrations (60.4, 106.1, 65.9, and 58.3 ng/mL) were greater for cows receiving rbST compared with cows receiving other treatments. This study suggests that feeding rumen degradable Val can increase milk yield comparable to recombinant bST. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Capper, Judith L
2012-04-10
This study compared the environmental impact of conventional, natural and grass-fed beef production systems. A deterministic model based on the metabolism and nutrient requirements of the beef population was used to quantify resource inputs and waste outputs per 1.0 × 10⁸ kg of hot carcass weight beef in conventional (CON), natural (NAT) and grass-fed (GFD) production systems. Production systems were modeled using characteristic management practices, population dynamics and production data from U.S. beef production systems. Increased productivity (slaughter weight and growth rate) in the CON system reduced the cattle population size required to produce 1.0 × 10⁸ kg of beef compared to the NAT or GFD system. The CON system required 56.3% of the animals, 24.8% of the water, 55.3% of the land and 71.4% of the fossil fuel energy required to produce 1.0 × 10⁸ kg of beef compared to the GFD system. The carbon footprint per 1.0 × 10⁸ kg of beef was lowest in the CON system (15,989 × 10³ t), intermediate in the NAT system (18,772 × 10³ t) and highest in the GFD system (26,785 × 10³ t). The challenge to the U.S beef industry is to communicate differences in system environmental impacts to facilitate informed dietary choice.
Herbage intake of dairy cows in mixed sequential grazing with breeding ewes as followers.
Jiménez-Rosales, Juan Daniel; Améndola-Massiotti, Ricardo Daniel; Burgueño-Ferreira, Juan Andrés; Ramírez-Valverde, Rodolfo; Topete-Pelayo, Pedro; Huerta-Bravo, Maximino
2018-03-01
This study aimed to evaluate the hypothesis that mixed sequential grazing of dairy cows and breeding ewes is beneficial. During the seasons of spring-summer 2013 and autumn-winter 2013-2014, 12 (spring-summer) and 16 (autumn-winter) Holstein Friesian cows and 24 gestating (spring-summer) and lactating (autumn-winter) Pelibuey ewes grazed on six (spring-summer) and nine (autumn-winter) paddocks of alfalfa and orchard grass mixed pastures. The treatments "single species cow grazing" (CowG) and "mixed sequential grazing with ewes as followers of cows" (MixG) were evaluated, under a completely randomized design with two replicates per paddock. Herbage mass on offer (HO) and residual herbage mass (RH) were estimated by cutting samples. The estimate of herbage intake (HI) of cows was based on the use of internal and external markers; the apparent HI of ewes was calculated as the difference between HO (RH of cows) and RH. Even though HO was higher in CowG, the HI of cows was higher in MixG during spring-summer and similar in both treatments during autumn-winter, implying that in MixG the effects on the cows HI of higher alfalfa proportion and herbage accumulation rate evolving from lower residual herbage mass in the previous cycle counteracted that of a higher HO in CowG. The HI of ewes was sufficient to enable satisfactory performance as breeding ewes. Thus, the benefits of mixed sequential grazing arose from higher herbage accumulation, positive changes in botanical composition, and the achievement of sheep production without negative effects on the herbage intake of cows.
van Gastelen, S; Antunes-Fernandes, E C; Hettinga, K A; Klop, G; Alferink, S J J; Hendriks, W H; Dijkstra, J
2015-03-01
The objective of this study was to determine the effects of replacing grass silage (GS) with corn silage (CS) in dairy cow diets on enteric methane (CH4) production, rumen volatile fatty acid concentrations, and milk fatty acid (FA) composition. A completely randomized block design experiment was conducted with 32 multiparous lactating Holstein-Friesian cows. Four dietary treatments were used, all having a roughage-to-concentrate ratio of 80:20 based on dry matter (DM). The roughage consisted of either 100% GS, 67% GS and 33% CS, 33% GS and 67% CS, or 100% CS (all DM basis). Feed intake was restricted (95% of ad libitum DM intake) to avoid confounding effects of DM intake on CH4 production. Nutrient intake, apparent digestibility, milk production and composition, nitrogen (N) and energy balance, and CH4 production were measured during a 5-d period in climate respiration chambers after adaptation to the diet for 12 d. Increasing CS proportion linearly decreased neutral detergent fiber and crude protein intake and linearly increased starch intake. Milk production and milk fat content (on average 23.4 kg/d and 4.68%, respectively) were not affected by increasing CS inclusion, whereas milk protein content increased quadratically. Rumen variables were unaffected by increasing CS inclusion, except the molar proportion of butyrate, which increased linearly. Methane production (expressed as grams per day, grams per kilogram of fat- and protein-corrected milk, and as a percent of gross energy intake) decreased quadratically with increasing CS inclusion, and decreased linearly when expressed as grams of CH4 per kilogram of DM intake. In comparison with 100% GS, CH4 production was 11 and 8% reduced for the 100% CS diet when expressed per unit of DM intake and per unit fat- and protein-corrected milk, respectively. Nitrogen efficiency increased linearly with increased inclusion of CS. The concentration of trans C18:1 FA, C18:1 cis-12, and total CLA increased quadratically, and iso C16:0, C18:1 cis-13, and C18:2n-6 increased linearly, whereas the concentration of C15:0, iso C15:0, C17:0, and C18:3n-3 decreased linearly with increasing inclusion of CS. No differences were found in short- and medium-straight, even-chain FA concentrations, with the exception of C4:0 which increased linearly with increased inclusion of CS. Replacing GS with CS in a common forage-based diet for dairy cattle offers an effective strategy to decrease enteric CH4 production without negatively affecting dairy cow performance, although a critical level of starch in the diet seems to be needed. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Martinez, N; Rodney, R M; Block, E; Hernandez, L L; Nelson, C D; Lean, I J; Santos, J E P
2018-03-01
The objectives of the experiment were to evaluate the effects of feeding diets with distinct dietary cation-anion difference (DCAD) levels and supplemented with 2 sources of vitamin D during the prepartum transition period on postpartum health and reproduction in dairy cows. The hypotheses were that feeding acidogenic diets prepartum would reduce the risk of hypocalcemia and other diseases, and the benefits of a negative DCAD treatment on health would be potentiated by supplementing calcidiol compared with cholecalciferol. Cows at 252 d of gestation were blocked by parity (28 nulliparous and 52 parous cows) and milk yield within parous cows, and randomly assigned to 1 of 4 treatments arranged as a 2 × 2 factorial, with 2 levels of DCAD, positive (+130 mEq/kg) or negative (-130 mEq/kg), and 2 sources of vitamin D, cholecalciferol or calcidiol, fed at 3 mg for each 11 kg of diet dry matter. The resulting treatment combinations were positive DCAD with cholecalciferol (PCH), positive DCAD with calcidiol (PCA), negative DCAD with cholecalciferol (NCH), and negative DCAD with calcidiol (NCA), which were fed from 252 d of gestation to calving. After calving, cows were fed the same lactation diet supplemented with cholecalciferol at 0.70 mg for every 20 kg of dry matter. Blood was sampled 7 d before parturition, and at 2 and 7 d postpartum to evaluate cell counts and measures of neutrophil function. Postpartum clinical and subclinical diseases and reproductive responses were evaluated. Feeding a diet with negative DCAD eliminated clinical hypocalcemia (23.1 vs. 0%) and drastically reduced the incidence and daily risk of subclinical hypocalcemia, and these effects were observed in the first 48 to 72 h after calving. The diet with negative DCAD tended to improve the intensity of oxidative burst activity of neutrophils in all cows prepartum and increased the intensity of phagocytosis in parous cows prepartum and the proportion of neutrophils with killing activity in parous cows postpartum (58.5 vs. 67.6%). Feeding calcidiol improved the proportion of neutrophils with oxidative burst activity (60.0 vs. 68.7%), reduced the incidences of retained placenta (30.8 vs. 2.5%) and metritis (46.2 vs. 23.1%), and reduced the proportion of cows with multiple diseases in early lactation. Combining the negative DCAD diet with calcidiol reduced morbidity by at least 60% compared with any of the other treatments. Cows with morbidity had lower blood ionized Ca and serum total Ca concentrations than healthy cows. Treatments did not affect the daily risk of hyperketonemia in the first 30 d of lactation. Despite the changes in cow health, manipulating the prepartum DCAD did not influence reproduction, but feeding calcidiol tended to increase the rate of pregnancy by 55%, which reduced the median days open by 19. In conclusion, feeding prepartum cows with a diet containing a negative DCAD combined with 3 mg of calcidiol benefited health in early lactation. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Badiei, A; Aliverdilou, A; Amanlou, H; Beheshti, M; Dirandeh, E; Masoumi, R; Moosakhani, F; Petit, H V
2014-10-01
The objective of this study was to determine the effect of different durations of n-3 supplementation during the peripartal period on production and reproduction performance of Holstein dairy cows. Thirty-two Holstein dry cows (16 multiparous and 16 primiparous) were blocked within parity for similar expected calving dates 8 wk before calving. Cows within blocks were assigned randomly to 1 of 4 treatments: (1) control without n-3 fatty acid (FA) supplementation during the dry period; (2) n-3 FA supplementation during the whole dry period (8 wk); and (3) n-3 FA supplementation during the early dry period (first 5 wk; far-off), or (4) n-3 FA supplementation during the late dry period (last 3 wk; close-up). All cows received the same diet without n-3 FA after calving for the first 6 wk of lactation. Ovaries of each cow were examined 10, 17, 24, and 34 d from calving (calving=d 0) by transrectal ultrasonography to determine follicular development. Blood samples were collected at 14-d intervals starting on the first day of the dry period (8 wk before expected calving) to determine plasma concentrations of glucose, β-hydroxybutyrate, nonesterified fatty acids, urea N, aspartate aminotransferase, and insulin. Blood samples were also collected on d 1, 10, 17, 24, 31, and 38 postpartum for determination of progesterone concentration. Milk yield was recorded daily throughout the experiment and samples were taken twice weekly (Monday and Thursday mornings) for analysis of fat, protein, and lactose. Yields of milk and 4% fat-corrected milk and milk composition were similar among treatments except for fat proportion, which tended to be lower in cows that were fed n-3 FA throughout the dry period. We observed no differences among treatments for plasma concentrations of metabolites and hormones. The cows that were fed in the 3 n-3 FA treatments had larger ovulatory follicles compared with those fed the controlled diet. Treatments did not differ significantly in terms of the number of days open, day to first service, or number of services per pregnancy. In conclusion, n-3 FA supplementation throughout the dry period or in the early or late prepartal period had no carryover reproductive postpartum benefits and no effect on the production of Holstein dairy cows. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Hall, Jean A; Bobe, Gerd; Vorachek, William R; Estill, Charles T; Mosher, Wayne D; Pirelli, Gene J; Gamroth, Mike
2014-07-01
Selenium (Se) is an essential micronutrient for ruminant animals affecting both performance and immune functions. Adding 3 mg of Se/L (in the form of Na selenite) to colostrum has been shown to improve IgG absorption in Se-deficient newborn dairy calves. The objective of our study was to determine the effect of supranutritional maternal and colostral Se supplementation on IgG status of Se-replete dairy calves. The study design was a 2 × 2 × 2 factorial design. During the last 8 wk before calving, dairy cows at a commercial dairy were fed either 0 (control cows) or 105 mg of Se-yeast once weekly (supranutritional Se-yeast-supplemented cows), in addition to Na selenite at 0.3 mg of Se/kg of DM in their ration. After birth, calves were fed pooled colostrum from control or supranutritional Se-yeast-supplemented cows to which 0 or 3 mg of Se/L (in the form of Na selenite) was added. Concentrations of whole-blood (WB) Se and serum Se measured at birth and at 48 h and 14 d of age, and serum IgG concentrations measured at 48 h and 14 and 60 d of age were determined. Calves born to Se-yeast-supplemented cows had higher WB-Se and serum-Se concentrations for the first 2 wk, and higher IgG absorption efficiency (62% at 48 h), resulting in higher serum-IgG concentrations (43% at 48 h and 65% at 14 d) and higher total serum-IgG content (50% at 48 h and 75% at 14 d), compared with calves born to control cows. Calves that received colostrum with added Na selenite had higher WB-Se concentrations for the first 2 wk, but only at 14 d of age were serum-Se concentrations, serum-IgG concentrations (53% higher), and total serum-IgG content (56% higher) higher, compared with calves that were fed colostrum without added Na selenite. Calves born to Se-yeast-supplemented cows that received colostrum from Se-yeast cows without added Na selenite had a higher IgG absorption efficiency compared with all other treatment groups. Our results support that feeding cows supranutritional Se-yeast supplement during the dry period or spiking colostrum with Na selenite both improve IgG status of Se-replete calves. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Brouk, M J; Cvetkovic, B; Rice, D W; Smith, B L; Hinds, M A; Owens, F N; Iiams, C; Sauber, T E
2011-04-01
The nutritional equivalency of grain plus whole plant silage from genetically modified corn plants containing the DAS-59122-7 (59122) event expressing the Cry34Ab1 and Cry35Ab1 proteins to grain and silage from a near-isogenic corn hybrid without this trait (control) was assessed using lactating dairy cows. Corn plants with event 59122 are resistant to western corn rootworm and tolerant to the herbicide active ingredient glufosinate-ammonium. Effects on feed intake, milk production, and milk composition were determined. The 59122 grain and the control grain were produced in 2005 from isolated plots in Richland, Iowa. Whole plant corn silage for the 59122 and control treatments were grown in isolated plots at the Kansas State University Dairy Center and ensiled in Ag-Bags. Thirty lactating Holstein cows blocked by lactation number, day of lactation, and previous energy-corrected milk production were used in a switchback design. All cows were fed diets that contained 22.7% grain plus 21.3% whole plant silage from either the 59122 or the control hybrid, in addition to 21% wet corn gluten feed, 12.3% protein mix, 8.0% whole cottonseed, and 14.7% alfalfa hay. Each period of the switchback trial included 2 wk for diet adjustment followed by 4 wk for data and sample collection. Milk samples (a.m. and p.m.) collected from 2 consecutive milkings of each collection wk were analyzed for fat, protein, lactose, solids-not-fat, milk urea nitrogen, and somatic cell count. Percentages of milk fat, protein, lactose, and solids-not-fat were not affected by dietary treatment. Yields of milk, 4% fat-corrected milk, energy-corrected milk, solids-corrected milk, and the concentrations and yields of milk fat, milk protein, milk solids, and milk lactose were not significantly different between treatments. Efficiencies of milk, fat-corrected milk, energy-corrected milk, and solids-corrected milk production also were not different when cows were fed crops from 59122 than when they were fed the control hybrid. Milk production efficiency averaged 1.48 and 1.50 kg/kg of dry matter intake for cows fed diets containing the control and 59122 corn, respectively. These data indicate that the nutritional value for milk production was not different between a diet containing grain plus whole plant corn silage produced from a 59122 corn hybrid versus a diet containing grain and corn silage from its near-isogenic control corn hybrid. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Stratton-Phelps, Meri; House, John K
2004-10-01
To determine whether feeding a commercial anionic dietary supplement as a urinary acidifier to male goats may be useful for management of urolithiasis. 8 adult sexually intact male Toggenburg, Saanen, and Nubian goats. Goats were randomly assigned by age-, breed-, and weight-matched pairs to an oat or grass hay diet that was fed for 12 days. On days 13 to 14 (early sample collection time before supplementation), measurements were made of blood and urine sodium, potassium, calcium, magnesium, chloride, phosphorus, and sulfur concentrations; blood and urine pH; urine production; and water consumption. During the next 28 days, the anionic dietary supplement was added to the oat and grass hay diets to achieve a dietary cation-anion difference of 0 mEq/100g of dry matter. Blood and urine samples were analyzed during dietary supplementation on days 12 to 13 (middle sample collection time) and 27 to 28 (late sample collection time). Blood bicarbonate, pH, and urine pH of goats fed grass hay and goats fed oat hay were significantly decreased during the middle and late sample collection times, compared with the early sample collection time. Water consumption and urine production in all goats increased significantly during the late sample collection time, compared with the early sample collection time. The anionic dietary supplement used in our study increases urine volume, alters urine ion concentrations, and is an efficacious urinary acidifier in goats. Goats treated with prolonged anionic dietary supplementation should be monitored for secondary osteoporosis from chronic urinary calcium loss.
Immune response and milk production of dairy cows fed graded levels of rumen-protected glutamine.
Caroprese, M; Albenzio, M; Marino, R; Santillo, A; Sevi, A
2012-08-01
The objective of the study was to determine the effects of dietary supplementation with glutamine on the immune function and milk production of dairy cows. The experiment involved 24 Friesian cows, divided into three groups of eight each, according to the level of rumen-protected glutamine supplementation: a diet with no supplementation (Control), a diet supplemented with 160 g/day/cow (G160) and a diet supplemented with 320 g/day/cow (G320). At 0, 30, and 60 days of the experiment, lymphocyte response to phytohemoagglutinin (PHA) was determined in vivo for each animal. Humoral response to chicken egg albumin (OVA) and interleukin - (IL)-1β, IL-6 and IL-10 plasma levels were measured at 0, 15, 30, 45, and 60 days. Results demonstrate that supplementing 160 g/day/cow of glutamine can modulate immune responses of dairy cows and enhance the amino acid profile of cow milk. Copyright © 2011. Published by Elsevier India Pvt Ltd.
Evaluation of dietary betaine in lactating Holstein cows subjected to heat stress.
Hall, L W; Dunshea, F R; Allen, J D; Rungruang, S; Collier, J L; Long, N M; Collier, R J
2016-12-01
Betaine (BET), a natural, organic osmolyte, improves cellular efficiency by acting as a chaperone, refolding denatured proteins. To test if dietary BET reduced the effect of heat stress (HS) in lactating dairy cows, multiparous, lactating Holstein cows (n=24) were blocked by days in milk (101.4±8.6 d) and randomly assigned to 1 of 3 daily intakes of dietary BET: the control (CON) group received no BET, mid intake (MID) received 57mg of BET/kg of body weight, and high dose (HI) received 114mg of BET/kg of body weight. Cows were fed twice daily and BET was top-dressed at each feeding. Cows were milked 2 times/d and milk samples were taken daily for analysis. Milk components, yield, feed intake, and water intake records were taken daily. Rectal temperature and respiration rate were taken 3 times/d at 0600, 1400, and 1800h. Cows were housed in environmentally controlled rooms and were allowed acclimation for 7d at thermoneutral (TN) conditions with a mean temperature-humidity index of 56.6. Cows were then exposed to 7d of TN followed by 7d of HS represented by a temperature-humidity index of 71.5 for 14d. This was followed by a recovery period of 3d at TN. Dietary BET increased milk yield during the TN period. No differences were found between BET and CON in total milk production or milk composition during HS. The increase in water intake during HS was not as great for cows fed BET compared with controls. The cows on CON diets had higher p.m. respiration rate than both MID and HI BET during HS, but lower rectal temperature compared with BET. No difference was found in serum glucose during TN, but cows given HI had elevated glucose levels during HS compared with CON. No differences were found in serum insulin levels between CON and BET but an intake by environment interaction was present with insulin increasing in HI-treated lactating dairy cows during HS. The heat shock response [heat shock protein (HSP) 27 and HSP70] was upregulated in bovine mammary epithelial cells in vitro. Blood leukocyte HSP27 was downregulated at the HI dose under TN conditions and HSP70 was upregulated at the HI dose and this effect was increased by HS. No effect was seen with the MID dose with HSP27 or HSP70. The lack of effect of BET at MID may be associated with uptake across the gut. We conclude that BET increased milk production under TN conditions and was associated with reduced feed and water intake and slightly increased body temperatures during HS of cows fed BET. The effect of BET on milk production was lost during HS with HI BET, whereas serum glucose levels increased during HS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Kinoshita, Asako; Kenéz, Ákos; Locher, Lena; Meyer, Ulrich; Dänicke, Sven; Rehage, Jürgen; Huber, Korinna
2016-01-01
The glucose homeostasis in dairy cattle is very well controlled, in line with the metabolic adaptation during the periparturient period. Former studies showed that nicotinic acid (NA) lowered plasma non-esterified fatty acids (NEFA) concentrations and increased insulin sensitivity in dairy cows. Thus, the purpose of this study was to investigate whether the expression of proteins involved in hepatic and adipose insulin signaling and protein expression of hepatic glucose transporter 2 (GLUT2) were affected by dietary NA and dietary concentrate intake in periparturient dairy cows. Twenty pluriparous German Holstein cows were fed with the same diet from about 21 days before the expected calving date (d-21) to calving. After calving, cows were randomly assigned in 4 groups and fed with diets different in concentrate proportion (“HC” with 60:40% or “LC” with 30:70% concentrate-to-roughage ratio) and supplemented with NA (24 g/day) (NA) or without (CON) until d21. Biopsy samples were taken from the liver, subcutaneous (SCAT) and retroperitoneal (RPAT) adipose tissues at d-21 and d21. Protein expression of insulin signaling molecules (insulin receptor (INSR), phosphatidylinositol-3-kinase (PI3K), protein kinase Cζ (PKCζ)) and hepatic GLUT2 was measured by Western Blotting. The ratio of protein expression at d21/at d-21 was calculated and statistically evaluated for the effects of time and diet. Cows in HC had significantly higher dietary energy intake than cows in LC. In RPAT a decrease in PI3K and PKCζ expression was found in all groups, irrespectively of diet. In the liver, the GLUT2 expression was significantly lower in cows in NA compared with cows in CON. In conclusion, insulin signaling might be decreased in RPAT over time without any effect of diet. NA was able to modulate hepatic GLUT2 expression, but its physiological role is unclear. PMID:26766039
Kinoshita, Asako; Kenéz, Ákos; Locher, Lena; Meyer, Ulrich; Dänicke, Sven; Rehage, Jürgen; Huber, Korinna
2016-01-01
The glucose homeostasis in dairy cattle is very well controlled, in line with the metabolic adaptation during the periparturient period. Former studies showed that nicotinic acid (NA) lowered plasma non-esterified fatty acids (NEFA) concentrations and increased insulin sensitivity in dairy cows. Thus, the purpose of this study was to investigate whether the expression of proteins involved in hepatic and adipose insulin signaling and protein expression of hepatic glucose transporter 2 (GLUT2) were affected by dietary NA and dietary concentrate intake in periparturient dairy cows. Twenty pluriparous German Holstein cows were fed with the same diet from about 21 days before the expected calving date (d-21) to calving. After calving, cows were randomly assigned in 4 groups and fed with diets different in concentrate proportion ("HC" with 60:40% or "LC" with 30:70% concentrate-to-roughage ratio) and supplemented with NA (24 g/day) (NA) or without (CON) until d21. Biopsy samples were taken from the liver, subcutaneous (SCAT) and retroperitoneal (RPAT) adipose tissues at d-21 and d21. Protein expression of insulin signaling molecules (insulin receptor (INSR), phosphatidylinositol-3-kinase (PI3K), protein kinase Cζ (PKCζ)) and hepatic GLUT2 was measured by Western Blotting. The ratio of protein expression at d21/at d-21 was calculated and statistically evaluated for the effects of time and diet. Cows in HC had significantly higher dietary energy intake than cows in LC. In RPAT a decrease in PI3K and PKCζ expression was found in all groups, irrespectively of diet. In the liver, the GLUT2 expression was significantly lower in cows in NA compared with cows in CON. In conclusion, insulin signaling might be decreased in RPAT over time without any effect of diet. NA was able to modulate hepatic GLUT2 expression, but its physiological role is unclear.
Effects of rutin and buckwheat seeds on energy metabolism and methane production in dairy cows.
Stoldt, Ann-Kathrin; Derno, Michael; Das, Gürbüz; Weitzel, Joachim M; Wolffram, Siegfried; Metges, Cornelia C
2016-03-01
Flavonoids are secondary plant metabolites with several health promoting effects. As dairy cows often suffer from metabolic imbalance and health problems, interest is growing in health improvements by plant substances such as flavonoids. Our group has recently shown that the flavonoids quercetin and rutin (a glucorhamnoside of quercetin) are bioavailable in cows when given via a duodenal fistula or orally, respectively, affect glucose metabolism, and have beneficial effects on liver health. Furthermore, flavonoids may reduce rumen methane production in vitro through their antibacterial properties. To test the hypothesis that rutin has effects on energy metabolism, methane production, and production performance in dairy cows, we fed rutin trihydrate at a dose of 100mg/kg of body weight to a group of 7 lactating dairy cows for 2 wk in a crossover design. In a second experiment, 2 cows were fed the same ration but were supplemented with buckwheat seeds (Fagopyrum tartaricum), providing rutin at a dose comparable to the first experiment. Two other cows receiving barley supplements were used as controls in a change-over mode. Blood samples were taken weekly and respiration measurements were performed at the end of each treatment. Supplementation of pure rutin, but not of rutin contained in buckwheat seeds, increased the plasma quercetin content. Methane production and milk yield and composition were not affected by rutin treatment in either form. Plasma glucose, β-hydroxybutyrate, and albumin were increased by pure rutin treatment, indicating a possible metabolic effect of rutin on energy metabolism of dairy cows. In addition, we did not show that in vivo ruminal methane production was reduced by rutin. In conclusion, we could not confirm earlier reports on in vitro methane reduction by rutin supplementation in dairy cows in established lactation. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Rérat, M; Schlegel, P
2014-06-01
Dry cow diets based on grassland forage from intensive production contain high amounts of K and could be responsible for a reduced ability to maintain Ca homoeostasis. The aim of this study was to determine whether a moderate anionic salt supplementation to a forage-based pre-calving diet with varying native K content affects the mineral and acid-base status in transition cows. Twenty-four dry and pregnant Holstein cows, without antecedent episodes of clinical hypocalcemia, were assigned to two diets during the last 4 weeks before estimated calving date. Twelve cows were fed a hay-based diet low in K (18 g K/kg DM), and 12, a hay-based diet high in K (35 g K/kg DM). Within each diet, six cows received anionic salts during the last 2 weeks before the estimated calving day. After calving, all cows received the high K diet ad libitum. Blood samples were taken daily from day 11 pre-partum to day 5 post-partum. Urine samples were taken on days 7 and 2 pre-partum and on day 2 post-partum. The anionic salt did not alter feed intake during the pre-partum period. Serum Ca was not influenced by the dietary treatments. Feeding pre-partum diets with low K concentrations induced a reduced metabolic alkalotic charge, as indicated by reduced pre-partum urinary base-acid quotient. Transition cows fed the low K diet including anionic salts induced a mild metabolic acidosis before calving, as indicated by higher urinary Ca, lower urinary pH and net acid-base excretion. Although serum Ca during the post-partum period was not affected by dietary treatment, feeding a low K diet moderately supplemented with anionic salts to reach a dietary cation-anion difference close to zero permitted to obtain a metabolic response in periparturient cows without altering the dry matter intake. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.
Clements, A R; Ireland, F A; Freitas, T; Tucker, H; Shike, D W
2017-12-01
Mature Simmental × Angus cows (214 cows; 635 ± 7 kg) were utilized to determine the effects of late gestation and early postpartum supplementation of methionine hydroxy analog (MHA) on cow BW, BCS, milk production, milk composition, reproduction, and calf performance until weaning in a fall-calving, cool-season grazing system. Cows were stratified by BW, age, AI sire, and assigned to 1 of 12 pastures (17 or 18 cows·pasture). Pastures were randomly allotted to 1 of 2 treatments: control (0.45 kg·cow·d of wheat midd-based pellets, = 6) or supplement including MHA (0.45 kg·cow·d of wheat midd-based pellets including 10 g MHA supplied as MFP (Novus International, Inc., St. Charles, MO; = 6). Treatments were fed 23 ± 7 d prepartum through 73 ± 7 d postpartum. Cow BW was collected at postcalving (27 ± 7 d postpartum), end of supplementation (73 ± 7 d postpartum), AI, pregnancy check, and end of trial (192 and 193 ± 7 d postpartum). At 73 ± 7 d postpartum, a subset of cow-calf pairs was used in a weigh-suckle-weigh procedure to determine milk production, and milk samples were taken to determine milk composition ( = 45·treatment). Serum from blood was collected at 73 ± 7 and 83 ± 7 d postpartum to determine cow cyclicity and concentrations of 2-hydroxy4-(methylthio) butanoic acid (HMTBa) and L-Methionine. After supplementation, all cow-calf pairs were managed as a common group until weaning (193 ± 7 d of age). Cows were bred via AI at 97 ± 7 d postpartum and clean-up bulls were turned out 11 d post-AI for a 55-d breeding season. Cows fed MHA had greater ( < 0.01) serum concentrations of HMTBa. Cow BW and BCS were not different ( ≥ 0.10) at any time points between treatments. There was no treatment effect ( ≥ 0.17) on calf birth BW, calf weaning BW (193 ± 7 d of age), or calf ADG. Calculated 24-h milk production, milk composition and component production did not differ ( ≥ 0.21). There were no differences ( ≥ 0.50) in percentage of cows cycling, AI conception rate, and overall pregnancy rate between treatments. Post-trial nutritional modeling suggests cows experienced several nutritional deficiencies beyond methionine (Met) that limited the response to Met supplementation. Although supplementation of MHA during late gestation through estimated peak lactation increased serum HMTBa concentrations, it did not affect cow performance, cow milk production, or calf performance when fall-calving cows grazed cool-season forages.
USDA-ARS?s Scientific Manuscript database
A meta-analysis was conducted to compare the effects of feeding dairy cows conventional sorghum (CSS) or corn silages (CCS) vs. brown midrib sorghum silage (BMRSS) on dry matter intake (DMI), milk yield, and milk composition. Data from nine published articles (1984-2015) were used to contrast CSS (7...
USDA-ARS?s Scientific Manuscript database
Two trials were conducted simultaneously to study the effect of alfalfa silage (AS) to corn silage (CS) ratio in the diet of lactating dairy cows on performance, digestibility, ruminal parameters, nitrogen (N) balance, manure production and composition, and gaseous emissions [carbon dioxide (CO2), ...
USDA-ARS?s Scientific Manuscript database
The objective of this experiment was to determine the effects of unroasted ground shelled corn (GSC) or roasted GSC (RGSC), when fed with alfalfa, ensiled in bag, bunker, or O2-limiting tower silos on ruminal digestion and microbial protein synthesis in lactating dairy cows. The roasted corn was hea...
Effects of change in body composition on gene expression in the uterine endometrium of beef cattle
USDA-ARS?s Scientific Manuscript database
The objective of this study was to determine the impact of change of body composition on gene expression in the uterine endometrium of beef cows. Mature, non-lactating Angus cows (body condition score [BCS] = 5.07 ± 0.1) were fed a similar diet for 30 d prior to the initiation of the study. Follow...
USDA-ARS?s Scientific Manuscript database
Oil and fat products has shown to reduce methane, however, limited research compares different fat sources effects on methane production. A study using 8 multiparous (325 ± 17 DIM) (mean ± SD) lactating dairy cows, was conducted to determine effects of feeding canola/tallow vs. extruded byproduct co...
USDA-ARS?s Scientific Manuscript database
To better understand the transformative nature of feed nitrogen (N) on confinement dairy farms (cows fed stored feed in barns), a series of cow, laboratory, and field experiments was undertaken to quantify the relative amounts of N contained in individual ration components that are secreted in milk,...
USDA-ARS?s Scientific Manuscript database
Fifty-six energy balances were completed with eight Holstein (H) and eight Jersey (J) multiparous lactating cows to examine the effect of breed on the efficiency of milk production and energy use. Two dietary treatments were fed in a repeated switch back design to compare breeds. Dietary treatments ...
USDA-ARS?s Scientific Manuscript database
Cows (n = 12/genotype) from unselected (stable milk yield since 1964, UH) and contemporary (CH) Holsteins that differed by more than 4,500 kg milk/305 d were fed the same diet ad lib and housed together for more than 4 months before being blocked (2/genotype) by DIM and randomly assigned within geno...
USDA-ARS?s Scientific Manuscript database
Differences between organic and conventional milk were studied by comparing two adjacent farms over a 12-mo period starting at the beginning of the grazing season, thus eliminating variables due to geography and weather. Milk was collected from a farm where cows were fed a conventional total mixed ...
Trace element status and zinc homeostasis differ in breast and formula-fed piglets
USDA-ARS?s Scientific Manuscript database
Differences in trace element composition and bioavailability between breast milk and infant formulas may affect metal homeostasis in neonates. In the current study, piglets were fed soy infant formula (Soy), cow's milk formula (Milk), or were allowed to suckle from the sow from PND2 to PND21. Serum ...
Asano, Keigo; Ishida, Miho; Ishida, Motohiko
2017-03-01
To examine the effects of inclusion levels of pelleted silvergrass (PS) in the diet on digestibility, ruminal fermentation and nutrient status of breeding Japanese Black cows, four cows were allotted to a 4 × 4 Latin square design experiment. Treatments were control fed a diet consisting of 89.4% Sudangrass hay and 10.6% soybean meal on a dry matter (DM) basis, and PS18, PS27 and PS45 fed the diet replaced with 18%, 27% and 45% of control with PS, respectively. The total digestible nutrients (TDN) content of PS was 45.6% on a DM basis. The TDN intakes were significantly decreased by increasing PS level in the diet (P < 0.05), but were higher than the TDN requirement of maintenance cows in all treatments. The total chewing time was decreased significantly by increasing PS level in the diets (P < 0.05). However, the pH and concentration of volatile fatty acid in the ruminal fluid and serum metabolite concentrations were not significantly different among the treatments. The results suggested that including PS up to 45% in the diet did not have adverse effects on the ruminal fermentation and nutrient status in breeding Japanese Black cows at the maintenance stage. © 2016 Japanese Society of Animal Science.
Zhou, Zheng; Vailati-Riboni, Mario; Luchini, Daniel N; Loor, Juan J
2016-12-29
The objective of this study was to profile plasma amino acids (AA) and derivatives of their metabolism during the periparturient period in response to supplemental rumen-protected methionine (MET) or rumen-protected choline (CHOL). Forty cows were fed from -21 through 30 days around parturition in a 2 × 2 factorial design a diet containing MET or CHOL. MET supply led to greater circulating methionine and proportion of methionine in the essential AA pool, total AA, and total sulfur-containing compounds. Lysine in total AA also was greater in these cows, indicating a better overall AA profile. Sulfur-containing compounds (cystathionine, cystine, homocystine, and taurine) were greater in MET-fed cows, indicating an enriched sulfur-containing compound pool due to enhanced transsulfuration activity. Circulating essential AA and total AA concentrations were greater in cows supplied MET due to greater lysine, arginine, tryptophan, threonine, proline, asparagine, alanine, and citrulline. In contrast, CHOL supply had no effect on essential AA or total AA, and only tryptophan and cystine were greater. Plasma 3-methylhistidine concentration was lower in response to CHOL supply, suggesting less tissue protein mobilization in these cows. Overall, the data revealed that enhanced periparturient supply of MET has positive effects on plasma AA profiles and overall antioxidant status.
Zhou, Zheng; Vailati-Riboni, Mario; Luchini, Daniel N.; Loor, Juan J.
2016-01-01
The objective of this study was to profile plasma amino acids (AA) and derivatives of their metabolism during the periparturient period in response to supplemental rumen-protected methionine (MET) or rumen-protected choline (CHOL). Forty cows were fed from −21 through 30 days around parturition in a 2 × 2 factorial design a diet containing MET or CHOL. MET supply led to greater circulating methionine and proportion of methionine in the essential AA pool, total AA, and total sulfur-containing compounds. Lysine in total AA also was greater in these cows, indicating a better overall AA profile. Sulfur-containing compounds (cystathionine, cystine, homocystine, and taurine) were greater in MET-fed cows, indicating an enriched sulfur-containing compound pool due to enhanced transsulfuration activity. Circulating essential AA and total AA concentrations were greater in cows supplied MET due to greater lysine, arginine, tryptophan, threonine, proline, asparagine, alanine, and citrulline. In contrast, CHOL supply had no effect on essential AA or total AA, and only tryptophan and cystine were greater. Plasma 3-methylhistidine concentration was lower in response to CHOL supply, suggesting less tissue protein mobilization in these cows. Overall, the data revealed that enhanced periparturient supply of MET has positive effects on plasma AA profiles and overall antioxidant status. PMID:28036059
Massé, Daniel I; Jarret, Guillaume; Benchaar, Chaouki; Saady, Noori M Cata
2014-03-05
The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L(-1)·day(-1) during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows' daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH₄ production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH₄ production by 14% compared to the control diet.
Iodine in raw and pasteurized milk of dairy cows fed different amounts of potassium iodide.
Norouzian, M A
2011-02-01
Relation between iodine (I) intake by lactating Holstein cows and iodine concentrations in raw and pasteurized milk were investigated. Four treatment groups with eight cows assigned to each treatment were fed a basal diet containing 0.534 mg I/kg alone or supplemented with potassium iodide at 2.5, 5 or 7.5 mg/kg in 7-week period. Iodine concentrations in raw milk increased with each increase in dietary I from 162.2 ng/ml for basal diet to 534.5, 559.8 and 607.5 ng/ml when 2.5, 5 and 7.5 mg/kg was fed as potassium iodide (P < 0.05). This trend was found for blood plasma and urine iodine concentration. Iodine supplementation had no significant effect on thyroidal hormones. high-temperature short-time (HTST) pasteurization process reduced I concentration. The mean iodine content found in the milk prior to heating processing was 466.0 ± 205.0 ng/ml, whereas for the processed milk this level was 349.5 ± 172.8 ng/ml. It was concluded that iodine supplementation above of NRC recommendation (0.5 mg/kg diet DM) resulted in significant increases in iodine concentrations in milk, although the effect of heating in HTST pasteurization process on iodine concentration was not negligible.
Copper poisoning in a dairy herd fed a mineral supplement
Bradley, Charles H.
1993-01-01
Copper poisoning in a dairy herd resulted in the death of 9 of 63 (14%) adult Holstein cows. Clinical signs were acute anorexia, weakness, mental dullness, poor pupillary light reflexes, and scant nasal discharge. These were followed by recumbency, chocolate-colored blood, jaundice, and death. Four animals exhibited signs of hyperesthesia and/or rumen stasis prior to death. At necropsy there was generalized icterus of body tissues, with the liver appearing orange and the kidneys dark blue. Histologically, there was accumulation of hemosiderin in Kupffer cells, and severe to moderate hepatocellular necrosis in all cases. Ammonium molybdate added to the ration, combined with the cessation of mineral supplementation, arrested the outbreak. These cases illustrate significant mortality, due to copper poisoning, in adult cattle fed a low-dose mineral dietary supplement for over two years. Dietary copper intake of the herd (on a dry matter basis) was 37.5 mg/kg for lactating cows and 22.6 mg/kg for dry cows. PMID:17424221
Chung, Y-H; Walker, N D; McGinn, S M; Beauchemin, K A
2011-05-01
Fifteen ruminally cannulated, nonlactating Holstein cows were used to measure the effects of 2 strains of Saccharomyces cerevisiae, fed as active dried yeasts, on ruminal pH and fermentation and enteric methane (CH(4)) emissions. Nonlactating cows were blocked by total duration (h) that their ruminal pH was below 5.8 during a 6-d pre-experimental period. Within each block, cows were randomly assigned to control (no yeast), yeast strain 1 (Levucell SC), or yeast strain 2 (a novel strain selected for enhanced in vitro fiber degradation), with both strains (Lallemand Animal Nutrition, Montréal, QC, Canada) providing 1 × 10(10) cfu/head per day. Cows were fed once daily a total mixed ration consisting of a 50:50 forage to concentrate ratio (dry matter basis). The yeast strains were dosed via the rumen cannula daily at the time of feeding. During the 35-d experiment, ruminal pH was measured continuously for 7 d (d 22 to 28) by using an indwelling system, and CH(4) gas was measured for 4 d (d 32 to 35) using the sulfur hexafluoride tracer gas technique (with halters and yokes). Rumen contents were sampled on 2 d (d 22 and 26) at 0, 3, and 6h after feeding. Dry matter intake, body weight, and apparent total-tract digestibility of nutrients were not affected by yeast feeding. Strain 2 decreased the average daily minimum (5.35 vs. 5.65 or 5.66), mean (5.98 vs. 6.24 or 6.34), and maximum ruminal pH (6.71 vs. 6.86 or 6.86), and prolonged the time that ruminal pH was below 5.8 (7.5 vs. 3.3 or 1.0 h/d) compared with the control or strain 1, respectively. The molar percentage of acetate was lower and that of propionate was greater in the ruminal fluid of cows receiving strain 2 compared with cows receiving no yeast or strain 1. Enteric CH(4) production adjusted for intake of dry matter or gross energy, however, did not differ between either yeast strain compared with the control but it tended to be reduced by 10% when strain 2 was compared with strain 1. The study shows that different strains of S. cerevisiae fed as active dried yeasts vary in their ability to modify the rumen fermentative pattern in nonlactating dairy cows. Because strain 2 tended (when compared with strain 1) to lower CH(4) emissions but increase the risk of acidosis, it may be prudent to further evaluate this strain in cattle fed high-forage diets, for which the risk of acidosis is low but CH(4) emissions are high. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Gardner, D R; Panter, K E; James, L F; Stegelmeier, B L
1998-10-01
Lodgepole pine (Pinus contorta) and common juniper (Juniperus communis) contain high levels of isocupressic acid that has been identified as the abortifacient component of ponderosa pine needles in cattle. Therefore, the abortifacient potential of P contorta and J communis needles was tested in feeding trials with pregnant cattle. Cows (2 groups of 2 each) were fed by gavage 4.5-5.5 kg/d ground dry needles from either P contorta or J communis starting on gestation day 250. Isocupressic acid (ICA) levels in P contorta needles and J communis plant material were 0.8 and 2.0% (dry weight) respectively. Cows fed P contorta received a daily dose of 62-78 mg ICA/kg body weight and aborted after 8 and 10 d. The 2 cows fed J communis received a daily dose of 190 and 245 mg ICA/kg body weight and aborted after 3 and 4 days respectively. All cows retained fetal membranes and had classical clinical signs of pine needle-induced abortion. Pinus ponderosa, P contorta, J communis, and Cupressus macrocarpa samples were also analyzed for the presence of myristate and laurate esters of 1,14-tetradecanediol and 1,12-dodecanediol. These lipid like compounds of P ponderosa have potent vasoconstrictive activity in a placentome perfusion assay and are proposed as possible abortifacients in cattle. Concentration of the vasoactive lipids were 0.028% (P ponderosa), 0.023% (P contorta), 0.001% (J communis), and none detected (C macrocarpa). It was concluded that these compounds are not required for the plant material to be abortifacient in cattle.
The rumen microbial metaproteome as revealed by SDS-PAGE.
Snelling, Timothy J; Wallace, R John
2017-01-07
Ruminal digestion is carried out by large numbers of bacteria, archaea, protozoa and fungi. Understanding the microbiota is important because ruminal fermentation dictates the efficiency of feed utilisation by the animal and is also responsible for major emissions of the greenhouse gas, methane. Recent metagenomic and metatranscriptomic studies have helped to elucidate many features of the composition and activity of the microbiota. The metaproteome provides complementary information to these other -omics technologies. The aim of this study was to explore the metaproteome of bovine and ovine ruminal digesta using 2D SDS-PAGE. Digesta samples were taken via ruminal fistulae and by gastric intubation, or at slaughter, and stored in glycerol at -80 °C. A protein extraction protocol was developed to maximise yield and representativeness of the protein content. The proteome of ruminal digesta taken from dairy cows fed a high concentrate diet was dominated by a few very highly expressed proteins, which were identified by LC-MS/MS to be structural proteins, such as actin and α- and β-tubulins, derived from ciliate protozoa. Removal of protozoa from digesta before extraction of proteins revealed the prokaryotic metaproteome, which was dominated by enzymes involved in glycolysis, such as glyceraldehyde-3-phosphate dehydrogenase, phosphoenolpyruvate carboxykinase, phosphoglycerate kinase and triosephosphate isomerase. The enzymes were predominantly from the Firmicutes and Bacteroidetes phyla. Enzymes from methanogenic archaea were also abundant, consistent with the importance of methane formation in the rumen. Gels from samples from dairy cows fed a high proportion of grass silage were consistently obscured by co-staining of humic compounds. Samples from beef cattle and fattening lambs receiving a predominantly concentrate diet produced clearer gels, but the pattern of spots was inconsistent between samples, making comparisons difficult. This work demonstrated for the first time that 2D-PAGE reveals key structural proteins and enzymes in the rumen microbial community, despite its high complexity, and that taxonomic information can be deduced from the analysis. However, technical issues associated with feed material contamination, which affects the reproducibility of electrophoresis of different samples, limits its value.
Lupine consumption by cattle in the scablands of Eastern Washington.
USDA-ARS?s Scientific Manuscript database
The Scabland region of eastern Washington is dominated by annual grasses and in some areas by Lupinus leucophyllus (velvet lupine). The purpose of these trials was to document the consumption of velvet lupine and relate the amount of lupine eaten by pregnant cows with the incidence of crooked calv...
Breast vs bottle: endocrine responses are different with formula feeding.
Lucas, A; Sarson, D L; Blackburn, A M; Adrian, T E; Aynsley-Green, A; Bloom, S R
1980-06-14
Differences in pancreatic and gut-hormone release between breast-fed and bottle-fed infants have not been documented although these hormones may play a key role in postnatal adaptation. In a study of 77 six-day-old healthy term infants, bottle-fed neonates ('Cow and Gate Premium') had significant changes in plasma-concentrations of insulin, motilin, enteroglucagon, neurotensin, and pancreatic polypeptide after feeding, whereas in breast-fed infants these changes were reduced or absent. Basal levels of gastric inhibitory polypeptide, motilin, neurotensin, and vasoactive intestinal peptide were also higher in the bottle-fed infants than in those who were breast-fed. These findings may partly explain differences in the deposition of subcutaneous fat and in stool frequency between breast-fed and bottle-fed neonates.
Pramanik, P; Ghosh, G K; Ghosal, P K; Banik, P
2007-09-01
The aim of this work was to study the effect of different organic wastes, viz. cow dung, grass, aquatic weeds and municipal solid waste with lime and microbial inoculants on chemical and biochemical properties of vermicompost. Cow dung was the best substrate for vermicomposting. Application of lime (5 g/kg) and inoculation of microorganisms increased the nutrient content in vermicompost and also phosphatases and urease activities. Bacillus polymyxa, the free-living N-fixer, increased N-content of vermicompost significantly (p < or = 0.01) as compared to other inoculants.
Amanlou, H; Farahani, T Amirabadi; Farsuni, N Eslamian
2017-05-01
The objective of this study was to determine the effects of feeding increased dietary crude protein (CP) on productive performance and indicators of protein and energy metabolism during 21 d postpartum. Thirty multiparous Holstein dairy cows were balanced by previous lactation milk yield, body condition score (BCS) at calving, and parity and randomly allocated to 1 of 3 dietary treatments from calving until 21 d postpartum. Dietary treatments were 16.0% CP with 5.0% rumen undegradable protein (RUP) based on dry matter (DM) (16CP), 18.7% CP with 7.0% RUP based on DM (19CP), and 21.4% CP with 9.0% RUP based on DM (21CP). Diets were similar in net energy for lactation (approximately 1.7 Mcal/kg of DM) and CP levels were increased with corn gluten meal and fish meal. Dry matter intake (DMI) was increased by increasing dietary CP levels from 16.0 to 19.0% of DM, but dietary CP beyond 19.0% had no effect on DMI. Milk yields were 4.7 and 6.5 kg/d greater in cows fed the 19CP and 21CP diets versus those fed the 16CP diet, whereas 4% fat-corrected milk was greater for cows fed the 21CP than the 16CP diet (36.0 vs. 31.4 kg/d). Milk protein content and yield, lactose yield, and milk urea nitrogen were elevated by increased dietary CP. Milk lactose content and fat yield were not different among dietary treatments, but milk fat content tended to decline with increasing content of CP in diets. High CP levels increased milk N secretion but decreased milk N efficiency. Apparent digestibility of DM, CP, and neutral detergent fiber was greater on the 19CP and 21CP diets compared with the 16CP diet. Cows fed the 19CP and 21CP diets lost less body condition relative to those fed the 16CP diet over 21 d postpartum. Feeding higher CP levels increased the concentrations of serum albumin, albumin to globulin ratio, and urea nitrogen and decreased aspartate aminotransferase, nonesterified fatty acids, and β-hydroxybutyrate, but had no effect on globulin, glucose, cholesterol, or triacylglycerol. These findings indicated that elevating dietary CP up to 19.0% of DM using RUP supplements improved DMI, productive performance and the indicators of protein and energy metabolism from calving to 21 d postpartum. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Influence of body condition score on live and carcass value of cull beef cows.
Apple, J K
1999-10-01
Mature beef cows (n = 88) were slaughtered to determine the influence of body condition score (BCS) on carcass and live animal value. Cows were weighed and assigned a BCS (9-point scale), 24 h before slaughter. Hide and by-products weights were recorded during harvest. After a 48-h chill period, the right side of each carcass was fabricated into boneless subprimal cuts, minor cuts, lean trim, fat, and bone. Weights were recorded at all stages of fabrication. Carcass values (U.S.$/100 kg of hot carcass weight) were calculated for U.S. Utility and U.S. Cutter grades, as well as for the Utility/Cutter mix for each BCS. Gross value included the carcass value and the value of the hide and byproducts, whereas net value was calculated after harvest and fabrication costs and by-product value were considered. Live value (U.S.$/100 kg of live weight) was computed by dividing the net value by the animal's live weight 24 h before harvest. The value of the hide and by-products for BCS-2 cows was greater (P<.05) than for cows assigned a BCS of 3 through 8. Even though U.S. Utility carcasses from BCS-8 cows produced the least (P<.05) valuable subprimal cuts from the chuck, loin, and round, the gross and net values of BCS-8 cows were greater (P<.05) than those of BCS-3, 4, 5, and 6. Within the grade of U.S. Cutter, carcasses from BCS-6 cows had the highest (P<.05), and BCS-2 cows had the lowest (P<.05), gross and net values. Across the U.S. Utility/Cutter mix, cows designated with a BCS of 7 and 8 had greater (P<.05) gross and net values than cows assigned a BCS of 6, or lower. Live value increased linearly (P = .0002) from a low of $76.10/100 kg for BCS-2 cows to a high of $90.84/100 kg for BCS-7 cows. Carcasses from BCS-6 cows were relatively lean (8.4 mm of fat opposite of the longissimus muscle), and approximately 73% of the carcasses achieved a quality grade of U.S. Utility. Moreover, carcasses from BCS-6 cows had the highest total carcass values and live values comparable (P>.05) to BCS-7 cows. Information from this study can be used by the non-fed beef industry to establish a value-based marketing system. Data from this study would indicate that marketing cull beef cows at a BCS of 6 could optimize economic returns to both cow-calf producers and non-fed beef packers.
Testroet, E D; Beitz, D C; O'Neil, M R; Mueller, A L; Ramirez-Ramirez, H A; Clark, S
2018-07-01
Feeding dried distillers grains with solubles (DDGS) to lactating dairy cows has been implicated as a cause of late blowing defects in the production of Swiss-style cheeses. Our objectives were (1) to test the effect of feeding reduced-fat DDGS (RF-DDGS; ∼6% fat) to lactating dairy cows on the composition of milk and on the suitability of the milk for production of baby Swiss cheese and (2) to evaluate the effect of diet on cow lactation performance. Lactating Holstein dairy cows were fed both dietary treatments in a 2 × 2 crossover design. Cows were housed in a 48-cow freestall pen equipped with individual feeding gates to record feed intake. The control diet was a corn, corn silage, and alfalfa hay diet supplemented with mechanically expelled soybean meal. The experimental diet was the same base ration, but 20% (dry matter basis) RF-DDGS were included in place of the expelled soybean meal. The RF-DDGS diet was additionally supplemented with rumen-protected lysine; diets were formulated to be isoenergetic and isonitrogenous. Cows were allowed ad libitum access to feed and water, fed twice daily, and milked 3 times daily. For cheese production, milk was collected and pooled 6 times for each dietary treatment. There was no treatment effect on milk yield (35.66 and 35.39 kg/d), milk fat production (1.27 and 1.25 kg/d), milk fat percentage (3.65 and 3.61%), milk protein production (1.05 and 1.08 kg/d), lactose percentage (4.62 and 4.64%), milk total solids (12.19 and 12.28%), and somatic cell count (232.57 and 287.22 × 10 3 cells/mL) for control and RF-DDGS, respectively. However, dry matter intake was increased by treatment, which implied a reduction in feed efficiency. Milk protein percentage also increased (3.01 and 3.11%), whereas milk urea nitrogen decreased (14.18 and 12.99 mg/dL), indicating that protein utilization may be more efficient when cows are fed RF-DDGS. No differences in cheese were observed by a trained panel except cheese appearance; control cheese eyes were significantly, but not practically, larger than the RF-DDGS cheese. These results indicate that RF-DDGS can be effectively used in the rations of lactating Holstein cows with no deleterious effects on milk production and composition and metrics of the physiology of the cow (i.e., blood glucose and nonesterified fatty acids); however, feeding RF-DDGS increased dry matter intake, which decreased feed efficiency. Finally, feeding RF-DDGS did not negatively influence quality and suitability of milk for production of baby Swiss cheese. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Loor, Juan J; Everts, Robin E; Bionaz, Massimo; Dann, Heather M; Morin, Dawn E; Oliveira, Rosane; Rodriguez-Zas, Sandra L; Drackley, James K; Lewin, Harris A
2007-12-19
Dairy cows are highly susceptible after parturition to developing liver lipidosis and ketosis, which are costly diseases to farmers. A bovine microarray platform consisting of 13,257-annotated oligonucleotides was used to study hepatic gene networks underlying nutrition-induced ketosis. On day 5 postpartum, 14 Holstein cows were randomly assigned to ketosis-induction (n = 7) or control (n = 7) groups. Cows in the ketosis-induction group were fed at 50% of day 4 intake until they developed signs of clinical ketosis, and cows in the control group were fed ad libitum throughout the treatment period. Liver was biopsied at 10-14 (ketosis) or 14 days postpartum (controls). Feed restriction increased blood concentrations of nonesterified fatty acids and beta-hydroxybutyrate, but decreased glucose. Liver triacylglycerol concentration also increased. A total of 2,415 genes were altered by ketosis (false discovery rate = 0.05). Ingenuity Pathway Analysis revealed downregulation of genes associated with oxidative phosphorylation, protein ubiquitination, and ubiquinone biosynthesis with ketosis. Other molecular adaptations included upregulation of genes and nuclear receptors associated with cytokine signaling, fatty acid uptake/transport, and fatty acid oxidation. Genes downregulated during ketosis included several associated with cholesterol metabolism, growth hormone signaling, proton transport, and fatty acid desaturation. Feed restriction and ketosis resulted in previously unrecognized alterations in gene network expression underlying key cellular functions and discrete metabolic events. These responses might help explain well-documented physiological adaptations to reduced feed intake in early postpartum cows and, thus, provide molecular targets that might be useful in prevention and treatment of liver lipidosis and ketosis.
Steinke, K; Guertler, P; Paul, V; Wiedemann, S; Ettle, T; Albrecht, C; Meyer, H H D; Spiekers, H; Schwarz, F J
2010-10-01
A long-term study over 25 months was conducted to evaluate the effects of genetically modified corn on performance of lactating dairy cows. Thirty-six dairy cows were assigned to two feeding groups and fed with diets based on whole-crop silage, kernels and whole-crop cobs from Bt-corn (Bt-MON810) or its isogenic not genetically modified counterpart (CON) as main components. The study included two consecutive lactations. There were no differences in the chemical composition and estimated net energy content of Bt-MON810 and CON corn components and diets. CON feed samples were negative for the presence of Cry1Ab protein, while in Bt-MON810 feed samples the Cry1Ab protein was detected. Cows fed Bt-MON810 corn had a daily Cry1Ab protein intake of 6.0 mg in the first lactation and 6.1 mg in the second lactation of the trial. Dry matter intake (DMI) was 18.8 and 20.7 kg/cow per day in the first and the second lactation of the trial, with no treatment differences. Similarly, milk yield (23.8 and 29.0 kg/cow per day in the first and the second lactation of the trial) was not affected by dietary treatment. There were no consistent effects of feeding MON810 or its isogenic CON on milk composition or body condition. Thus, the present long-term study demonstrated the compositional and nutritional equivalence of Bt-MON810 and its isogenic CON. © 2010 Blackwell Verlag GmbH.
USDA-ARS?s Scientific Manuscript database
Improving uterine blood flow in nutrient restricted cows is vital to prevent under development of the fetus leading to decreased production characteristics of the offspring. This study examined uterine blood flow, steroid concentrations, and the activity of steroid metabolizing enzymes in pregnant b...
USDA-ARS?s Scientific Manuscript database
Crops and livestock transform a general range of 20% to 50% of applied N into product N. Most applied N not transformed into agricultural products is lost to the environment. The objective of this study was to quantify soil N input (fertilizer N, biologically fixed-N) incorporation into dairy cow di...
USDA-ARS?s Scientific Manuscript database
The main objective of this trial is to determine the partitioning of nitrogen (N) from different feed ingredients in milk, feces, and urine. This abstract focuses on relative excretion of N in feces and urine. Twelve multiparous late-lactation Holstein cows (means±SD; 264±18 days in milk) were fed a...
USDA-ARS?s Scientific Manuscript database
Late-lactation Holstein cows (n=9/treatment) were used to evaluate effects of TNF-alpha administration on glucose and fatty acid (FA) metabolism. Cows were blocked by feed intake and milk yield and randomly assigned within block to 1 of 3 treatments: control, TNF-alpha, and pair-fed control. Treatme...
Mann, S; Urh, C; Sauerwein, H; Wakshlag, J J; Yepes, F A Leal; Overton, T R; Nydam, D V
2018-01-01
Adipokines-hormones produced by adipose tissue-have important regulatory functions, and their concentrations can change around the time of calving when energy balance rapidly decreases. Hence, energy balance may be an important factor in determining the circulating concentrations of adipokines, particularly adiponectin and leptin. The objective of our study was to investigate the association between the level of energy fed to prepartum Holstein cows and circulating concentrations of adiponectin and leptin before and after calving. Holstein dairy cows entering second or greater lactation were fed either a controlled-energy diet formulated to supply approximately 100% of energy requirements (n = 28) or a high-energy diet formulated to supply approximately 150% of energy requirements throughout the entire dry period (n = 28). Serum samples were analyzed for adiponectin and leptin concentrations at 56, 28, 10, and 1 d prepartum as well as on d 1, 10, 21, and 42 postpartum using ELISA. Parity was dichotomized into cows entering second versus higher parity. Average peripartum body condition score (BCS) was computed from weekly measurements and dichotomized into animals with an average BCS of ≤3.25 and >3.25. In addition, cows were classified according to the occurrence of hyperketonemia (β-hydroxybutyrate concentrations ≥1.2 mmol/L at any time between 3 and 21 d in milk). Data were analyzed using repeated-measures ANOVA. Serum leptin but not adiponectin concentrations were associated with prepartum feeding level such that leptin concentrations increased transiently during the dry period in cows overfed energy, but concentrations were not different postpartum. Cows entering second parity had higher adiponectin and lower leptin concentrations compared with cows in higher parities. Cows that developed hyperketonemia postpartum had consistently lower adiponectin concentrations during the study period. Cows with average BCS >3.25 had higher leptin concentrations during the dry period only, but adiponectin concentrations were not associated with BCS. In conclusion, prepartum energy level had only transient effects on leptin concentrations and did not lead to changes in adiponectin concentrations. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Mattos, R; Staples, C R; Williams, J; Amorocho, A; McGuire, M A; Thatcher, W W
2002-04-01
The primary objective was to determine whether the dietary polyunsaturated fatty acids, eicosapentaenoic (EPA, C20:5, n-3) and docosahexaenoic (DHA, C22:6, n-3), present in fish meal (FM) can attenuate uterine secretion of PGF2alpha in response to a challenge with estradiol and oxytocin in lactating dairy cows. Cycling multiparous cows (n = 32) were fed diets containing 0 (OFM), 2.6 (2.6FM), 5.2 (5.2FM), or 7.8% menhaden FM (7.8FM). The diet consisting of 7.8FM also contained fish oil (0.28% of dietary dry matter) to increase intake of EPA and DHA. Average dry matter intake was 24.9 kg/d and unaffected by diet. Combined intakes of EPA and DHA averaged 0, 12.8, 24.1, and 54.0 g/d from the OFM, 2.6FM, 5.2FM, and 7.8FM diets, respectively. At 30 to 34 d after initiation of dietary treatments, cows received an i.m. injection of 100 microg of GnRH followed by i.m. administration of 25 and 15 mg of PGF2alpha after 7 and 8 d, respectively. Synchronous ovulation was induced by an injection of 3000 IU of human chorionic gonadotropin (hCG) given 24 h later on d 9. Subsequent luteal phase increases in plasma progesterone concentrations did not differ (0.88 ng/ml per day). At 15 d after hCG injection, cows were injected with estradiol-17beta (3 mg, i.v.) at 0900 h and oxytocin (100 IU, i.v.) at 1300 h. Plasma PGF2alpha metabolite concentrations after oxytocin injection were reduced in cows fed diets containing FM compared with those fed OFM. Milk production (39.1 kg/d) and concentrations of fat, protein, or urea nitrogen in milk were not affected by diet. Feeding fish meal and fish oil containing eicosapentaenoic acid and docosahexaenoic acid reduced the proportion of n-6 fatty acids and increased that of n-3 fatty acids in milk in a dose-responsive manner.
Westreicher-Kristen, E; Kaiser, R; Steingass, H; Rodehutscord, M
2014-04-01
We evaluated the effect of three sources of dried distillers' grains with solubles (DDGS) in diets of mid-lactating dairy cows on milk production and milk composition and on digestibility in sheep. DDGS from wheat, corn and barley (DDGS1 ), wheat and corn (DDGS2 ) and wheat (DDGS3 ) were studied and compared with a rapeseed meal (RSM). RSM and DDGS were characterized through in situ crude protein (CP) degradability. Nutrient digestibility was determined in sheep. Twenty-four multiparous cows were used in a 4 × 4 Latin square design with 28-day periods. Treatments included total mixed rations containing as primary protein sources RSM (control), DDGS1 (D1), DDGS2 (D2) or DDGS3 (D3). RSM contained less rapidly degradable CP (fraction a), more potentially degradable CP (fraction b) and more rumen undegradable CP (UDP) than the three DDGS. In vivo digestibility of RSM organic matter was similar to DDGS. Calculated net energy for lactation (NEL ) was lower for RSM (7.4 MJ/kg DM) than for DDGS, which averaged 7.7 MJ/kg DM. Cows' dry matter intake did not differ between diets (21.7 kg/day). Cows fed D1 yielded more milk than those fed D3 (31.7 vs. 30.4 kg/day); no differences were found between control and DDGS diets (31.3 vs. 31.1 kg/day). Energy-corrected milk was similar among diets (31.2 kg/day). Diets affected neither milk fat concentration (4.0%) nor milk fat yield (1.24 kg/day). Milk protein yield of control (1.12 kg/day) was significantly higher than D3 (1.06 kg/day) but not different form D1 and D2 (1.08 kg/day each). Feeding DDGS significantly increased milk lactose concentration (4.91%) in relation to control (4.81%). DDGS can be a suitable feed in relation to RSM and can be fed up to 4 kg dry matter per day in rations of dairy cows in mid-lactation. However, high variation of protein and energy values of DDGS should be considered when included in diets of dairy cows. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.
Lohrenz, A-K; Duske, K; Schönhusen, U; Losand, B; Seyfert, H M; Metges, C C; Hammon, H M
2011-09-01
Diets containing corn starch may improve glucose supply by providing significant amounts of intestinal starch and increasing intestinal glucose absorption in dairy cows. Glucose absorption in the small intestine requires specific glucose transporters; that is, sodium-dependent glucose co-transporter-1 (SGLT1) and facilitated glucose transporter (GLUT2), which are usually downregulated in the small intestine of functional ruminants but are upregulated when luminal glucose is available. We tested the hypothesis that mRNA and protein expression of intestinal glucose transporters and mRNA expression of enzymes related to gluconeogenesis are affected by variable starch supply. Dairy cows (n=9/group) were fed for 4 wk total mixed rations (TMR) containing either high (HS) or low (LS) starch levels in the diet. Feed intake and milk yield were measured daily. After slaughter, tissue samples of the small intestinal mucosa (mid-duodenum and mid-jejunum) were taken for determination of mRNA concentrations of SGLT1 and GLUT2 as well as pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase by real-time reverse transcription PCR relative to a housekeeping gene. Protein expression of GLUT2 in crude mucosal membranes and of SGLT1 and GLUT2 in brush-border membrane vesicles was quantified by sodium dodecyl sulfate-PAGE and immunoblot. A mixed model was used to examine feeding and time-related changes on feed intake and milk yield and to test feeding and gut site effects on gene or protein expression of glucose transporters and enzymes in the intestinal mucosa. Dry matter intake, but not energy intake, was higher in cows fed HS compared with LS. Abundance of SGLT1 mRNA tended to be higher in duodenal than in jejunal mucosa, and mRNA abundances of pyruvate carboxylase tended to be higher in jejunal than in duodenal mucosa. In brush-border membrane vesicles, SGLT1 and GLUT2 protein expression could be demonstrated. No diet-dependent differences were found concerning mRNA and protein contents of glucose transporter or mRNA level of gluconeogenic enzymes. In conclusion, our investigations on glucose transporters and gluconeogenic enzymes in the small intestinal mucosa of dairy cows did not show significant diet regulation when TMR with different amounts of intestinal starch were fed. Therefore, predicted intestinal glucose absorption after enhanced starch feeding is probably not supported by changes of intestinal glucose transporters in dairy cows. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Kashongwe, O B; Bebe, B O; Matofari, J W; Huelsebusch, C G
2017-06-01
Associations between feeding practices, milk yield, and composition were assessed in smallholder rural and peri-urban dairy cow (n = 97) and pastoral camel (n = 15) herds. A cross-sectional survey supplemented by follow-up collection of feed and milk samples for laboratory analyses was conducted. Data was analyzed using descriptive, correlation, and analysis of variance statistics. Feeding practices in rural smallholder dairy cows' herds were pastured based (87.7%) with napier grass (89.4%) and concentrates (93.9%) as forage and concentrate supplements. In smallholder peri-urban dairy cows' herds, it was napier grass based (68.4%) with concentrates (100%), oat forages (42.9%), and crop residues (28.6%). Pastoral camel herds were shrub browsing (53%), rangeland pasture grazing (20%), or Euphorbia tirucalli feeding (27%). Smallholder rural farmers offered more feeds (16.1 vs 15.3 kg/day) than peri-urban farmers, hence net energy for lactation (1.4 vs 1.3 Mcal/kg), crude protein (CP) (10 vs 12%), and milk yields (12 vs 9 kg/herd/day) was higher. Milk fat was higher in smallholder peri-urban (4.3%) than that of rural (3.9%). In pastoral camels, E. tirucalli feeding had higher daily milk yield/herd, fat, and CP (63 kg, 4.5 and 3.6%) than shrub browsing (35 kg, 4.2 and 3.0%) and grazing (23 kg yield, 2.6 and 2.7%). Five feeding practices out of 14 in smallholder dairy cattle herds resulted in more than 10 kg milk/cow/day because of low forage-to-concentrate ratio (2.5), inclusion of legume crop residue, or processing forages. They present opportunities for improved production in smallholder herds. In pastoral camel, E. tirucalli feeding showed the highest potential.
Martineau, R; Ouellet, D R; Kebreab, E; Lapierre, H
2016-04-01
The effects of casein infusion have been investigated extensively in ruminant species. Its effect on responses in dry matter intake (DMI) has been reviewed and indicated no significant effect. The literature reviewed in the current meta-analysis is more extensive and limited to dairy cows fed ad libitum. A total of 51 studies were included in the meta-analysis and data were fitted to a multilevel model adjusting for the correlated nature of some studies. The effect size was the mean difference calculated by subtracting the means for the control from the casein-infused group. Overall, casein infusion [average of 333 g of dry matter (DM)/d; range: 91 to 1,092 g of DM/d] tended to increase responses in DMI by 0.18 kg/d (n=48 studies; 3 outliers). However, an interaction was observed between the casein infusion rate (IR) and the initial metabolizable protein (MP) balance [i.e., supply minus requirements (NRC, 2001)]. When control cows were in negative MP balance (n=27 studies), responses in DMI averaged 0.28 kg/d at mean MP balance (-264 g/d) and casein IR (336 g/d), and a 100g/d increment in the casein IR from its mean increased further responses by 0.14 kg/d (MP balance being constant), compared with cows not infused with casein. In contrast, when control cows were in positive MP balance (n=22 studies; 2 outliers), responses in DMI averaged -0.20 kg/d at mean casein IR (339 g/d), and a 100g/d increment in the casein IR from its mean further decreased responses by 0.33 kg/d, compared with cows not infused with casein. Responses in milk true protein yield at mean casein IR were greater (109 vs. 65 g/d) for cows in negative vs. positive MP balance, respectively, and the influence of the casein IR on responses was significant only for cows in negative MP balance. A 100g/d increment in the casein IR from its mean increased further responses in milk true protein yield by 25 g/d, compared with cows not infused with casein. Responses in blood urea concentration increased in casein studies (+0.59 mM) and the influence of the casein IR was greatest for cows in positive MP balance (0.26 vs. 0.11 mM per 100g/d increment). Responses in DMI were also correlated negatively with responses in blood urea concentration only for cows in positive MP balance. Together, these results suggest an association between satiety and deamination and oxidation of AA supplied in excess of requirements for cows in positive MP balance. Therefore, casein stimulated appetite in cows fed MP-deficient diets possibly via the supply of orexigenic AA or through a pull effect in response to an increased metabolic demand. Conversely, casein induced satiety in cows fed diets supplying MP in excess of requirements. Not precluding other factors involved in satiety (e.g., insulin, gut peptides), casein could have increased the supply of AA (e.g., Ser, Thr, Tyr), which might depress appetite at the brain level or increase the deamination and the oxidation of AA in oversupply in agreement with the hepatic oxidation theory. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bevilacqua, C; Martin, P; Candalh, C; Fauquant, J; Piot, M; Roucayrol, A M; Pilla, F; Heyman, M
2001-05-01
Contradictory results have been reported on the use of goats' milk in cows' milk allergy. In this study the hypothesis was tested, using a guinea pig model of cows' milk allergy, that these discrepancies could be due to the high genetic polymorphism of goats' milk proteins. Forty guinea pigs were fed over a 20 d period with pelleted diets containing one of the following: soyabean proteins (group S), cows' milk proteins (group CM), goats' milk proteins with high (group GM1) or low (group GM2) alpha(s1)-casein content. Parenteral sensitization to GM1 and GM2 proteins as also assessed. The sensitization was measured (1) by systemic IgG1 antibodies directed against bovine or caprine beta-lactoglobulin (beta-lg), alpha-lactalbumin (alpha-la) and whole caseins, and (2) by intestinal anaphylaxis measured in vitro in Ussing chambers, by the rise in short-circuit current (delta Isc) in response to milk proteins. Guinea pigs fed on CM and GM1 developed high titres (> 1500) of anti-beta-lg IgG1, with an important cross reactivity between goat and cow beta-lg. However, in guinea pigs fed on GM2, anti-goat beta-lg IgG1 antibodies were significantly decreased compared with GM1 guinea pigs (mean IgG1 titres were 546 and 2046 respectively), and the intestinal anaphylaxis was significantly decreased (3.5+/-4.5 microA/cm2) compared with that observed in GM1 guinea pigs (8.3+/-7.6 microA/cm2). Animals receiving GM1 or GM2 proteins via the parenteral route developed a marked sensitization. These results suggest that the discrepancies observed in the use of goats milk in cows' milk allergy could be due, at least in part, to the high genetic polymorphism of goats' milk proteins.
Benchaar, C; Hassanat, F; Gervais, R; Chouinard, P Y; Petit, H V; Massé, D I
2014-02-01
This study evaluated the effects of replacing barley silage (BS) with corn silage (CS) in dairy cow diets on enteric CH4 emissions, ruminal fermentation characteristics, digestion, milk production, and N balance. Nine ruminally cannulated lactating cows were used in a replicated 3 × 3 Latin square design (32-d period) and fed (ad libitum) a total mixed ration (TMR; forage:concentrate ratio 60:40; dry matter basis) with the forage portion consisting of either barley silage (0% CS; 0% CS and 54.4% BS in the TMR), a 50:50 mixture of both silages (27% CS; 27.2% CS and 27.2% BS in the TMR), or corn silage (54% CS; 0% BS and 54.4% CS in the TMR). Increasing the CS proportion (i.e., at the expense of BS) also involved increasing the proportion of corn grain (at the expense of barley grain). Intake and digestibility of dry matter and milk production increased linearly as the proportion of CS increased in the diet. Increasing dietary CS proportion decreased linearly the acetate molar proportion and increased linearly that of propionate. Daily CH4 emissions tended to respond quadratically to increasing proportions of CS in the diet (487, 540, and 523 g/d for 0, 27, and 54% CS, respectively). Methane production adjusted for dry matter or gross energy intake declined as the amount of CS increased in the diet; this effect was more pronounced when cows were fed the 54% CS diet than the 27% CS diet. Increasing the CS proportion in the diet improved N utilization, as reflected by decreases in ruminal ammonia concentration and urinary N excretion and higher use of dietary N for milk protein secretion. Total replacement of BS with CS in dairy cow diets offers a strategy to decrease CH4 energy losses and control N losses without negatively affecting milk performance. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Xie, G; Cole, L C; Zhao, L D; Skrzypek, M V; Sanders, S R; Rhoads, M L; Baumgard, L H; Rhoads, R P
2016-05-01
Multiparous cows (n=12; parity=2; 136±8 d in milk, 560±32kg of body weight) housed in climate-controlled chambers were fed a total mixed ration (TMR) consisting primarily of alfalfa hay and steam-flaked corn. During the first experimental period (P1), all 12 cows were housed in thermoneutral conditions (18°C, 20% humidity) with ad libitum intake for 9 d. During the second experimental period (P2), half of the cows were fed for ad libitum intake and subjected to heat-stress conditions [WFHS, n=6; cyclical temperature 31.1 to 38.9°C, 20% humidity: minimum temperature humidity index (THI)=73, maximum THI=80.5], and half of the cows were pair-fed to match the intake of WFHS cows in thermal neutral conditions (TNPF, n=6) for 9 d. Rectal temperature and respiration rate were measured thrice daily at 0430, 1200, and 1630 h. To evaluate muscle and liver insulin responsiveness, biopsies were obtained immediately before and after an insulin tolerance test on the last day of each period. Insulin receptor (IR), insulin receptor substrate 1 (IRS-1), AKT/protein kinase B (AKT), and phosphorylated AKT (p-AKT) were measured by Western blot analyses for both tissues. During P2, WFHS increased rectal temperature and respiration rate by 1.48°C and 2.4-fold, respectively. Heat stress reduced dry matter intake by 8kg/d and, by design, TNPF cows had similar intake reductions. Milk yield was decreased similarly (30%) in WFHS and TNPF cows, and both groups entered into a similar (-4.5 Mcal/d) calculated negative energy balance during P2. Insulin infusion caused a less rapid glucose disposal in P2 compared with P1, but glucose clearance did not differ between environments in P2. In liver, insulin increased p-AKT protein content in each period. Phosphorylation ratio of AKT increased 120% in each period after insulin infusion. In skeletal muscle, protein abundance of the IR, IRS, and AKT remained stable between periods and environment. Insulin increased skeletal muscle p-AKT in each period, but the phosphorylation ratio (abundance of phosphorylated protein:abundance of total protein) of AKT was decreased in P2 for TNPF animals, but not during WFHS. These results indicate that mild systemic insulin resistance during HS may be related to reduced nutrient intake but skeletal muscle and liver insulin signaling remains unchanged. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Kowalczyk, Janine; Ehlers, Susan; Oberhausen, Anja; Tischer, Marion; Fürst, Peter; Schafft, Helmut; Lahrssen-Wiederholt, Monika
2013-03-27
The transfer of the perfluoroalkyl acids (PFAAs) perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS), perfluorooctanesulfonate (PFOS), and perfluorooctanoate (PFOA) from feed into tissue and milk of dairy cows was investigated. Holstein cows (n = 6) were fed a PFAA-contaminated feed for 28 days. After the PFAA-feeding period, three cows were slaughtered while the others were fed PFAA-free feed for another 21 days (depuration period). For PFAA analysis plasma, liver, kidney, and muscle tissue, urine, and milk were sampled and analyzed using high-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS). The average daily intake of dairy cows was 3.4 ± 0.7, 4.6 ± 1.0, 7.6 ± 3.7 and 2.0 ± 1.2 μg/kg body weight (bw) for PFBS, PFHxS, PFOS, and PFOA, respectively. Overall, PFBS, PFHxS, PFOS, and PFOA showed different kinetics in dairy cows. In plasma, concentrations of PFBS (mean = 1.2 ± 0.8 μg/L) and PFOA (mean = 8.5 ± 5.7 μg/L) were low, whereas PFHxS and PFOS continuously increased during the PFAA-feeding period up to maximal concentrations of 419 ± 172 and 1903 ± 525 μg/L, respectively. PFOS in plasma remained constantly high during the depuration period. PFOS levels were highest in liver, followed by kidney, without significant differences between feeding periods. The highest PFHxS levels were detected in liver and kidney of cows slaughtered on day 29 (61 ± 24 and 98 ± 31 μg/kg wet weight (ww)). The lowest PFAA levels were detected in muscle tissue. At the end of the feeding study, cumulative secretion in milk was determined for PFOS (14 ± 3.6%) and PFHxS (2.5 ± 0.2%). The other two chemicals were barely secreted into milk: PFBS (0.01 ± 0.02%) and PFOA (0.1 ± 0.06%). Overall, the kinetics of PFOA were similar to those of PFBS and substantially differed from those of PFHxS and PFOS. The very low concentration of PFBS in plasma and milk, the relatively high urinary excretion, and only traces of PFBS in liver (0.3 ± 0.3 μg/kg ww) and kidney (1.0 ± 0.3 μg/kg ww) support the conclusion that PFBS does not accumulate in the body of dairy cows.
USDA-ARS?s Scientific Manuscript database
The objective of this experiment was to determine changes in production traits and body composition of beef steers and heifers when fed a forage-based ration followed by a concentrate-based ration. Cattle were progeny of composite breed cows bred to Charolais, Simmental, and Red Angus bulls. Appro...
USDA-ARS?s Scientific Manuscript database
Category: pre/post harvest pathogens Published: unpublished to date Objective: The objective of this study was to determine whether inherent differences in fed cattle and cull cattle sources affect the prevalence and serogroups present of intimin positive STEC, and identify unappreciated serogro...
Jahani-Moghadam, M; Chashnidel, Y; Teimouri-Yansari, A; Mahjoubi, E; Dirandeh, E
2018-05-01
To determine the effects of oral Ca bolus administration in the early postpartum period of cows on milk yield and composition, blood metabolites, early-lactation health status, and reproductive performance. Multiparous Holstein dry cows (n=66) with a mean parity of 3.1 (SD 0.35) were fed a diet with a positive dietary cation-anion difference (DCAD) prior to calving. They were randomly assigned to receive no treatment (Control; n=33) or two oral Ca boluses (n=33, 45 g of Ca per bolus); one was administered immediately after calving (Day 0) and the second 24 hours (±30 minutes) later. Blood samples were collected at calving, and on Days 2 and 7 to determine concentrations in serum of Ca, P, Mg, glucose, non-esterified fatty acids (NEFA), and β-hydroxybutyric acid (BHBA). Milk yield was recorded daily and milk composition was determined weekly from calving until 28 day postpartum. Health and outcomes were determined during the first 30 days postpartum and reproductive outcomes to 180 days postpartum. Mean milk yields and composition over the first month of lactation were similar between cows in the two treatment groups (p>0.1). Mean concentrations of Ca in serum were not different between treatment groups on Day 0, but were higher on Day 2 for cows that received oral Ca boluses (1.77 (SE 0.07)) compared with Control cows (1.54 (SE 0.08)) (p=0.04). Concentrations in serum of P, Mg, glucose, NEFA and ΒHBA did not differ between treatment groups on any day of measurement. Fewer cows that received oral Ca were diagnosed with hypocalcaemia (total concentrations of Ca in serum <1.5 mmol/L) by Day 2 (2/33; 6%) compared with Control cows (12/33; 36%) (p=0.01). There was no difference in the prevalence of other health outcomes between treatment groups. The proportion of cows conceiving to first insemination was greater in cows that received an oral Ca bolus (19/29; 65%) than Control cows (12/29; 41%) (p=0.01). Oral Ca bolus administration increased concentrations of Ca in serum on Day 2 postpartum, and increased first service conception rates, in cows fed a diet with a positive DCAD prior to calving compared to cows that received no oral Ca bolus supplementation. Because of the small number of cows used in this study, further studies in large-scale dairy farms should be carried out to confirm these findings.
Carryover effects of potassium supplementation on calcium homeostasis in dairy cows at parturition.
Bhanugopan, M S; Fulkerson, W J; Fraser, D R; Hyde, M; McNeill, D M
2010-05-01
The purpose of this study was to test whether supplementation with K improves bone mineral density (BMD) in older cows so that by parturition their bone is better able to mobilize Ca. Twenty-four Holstein Friesian cows (6 mo pregnant, lactating, and in their third or later lactation) were allocated to 2 equal groups and individually fed twice daily a total diet comprising low K oaten hay plus a pelleted concentrate fortified with or without K(2)CO(3) to achieve 3.12% K/kg of DM in the total diet of the K-supplemented (KS) cows compared with 1.50% K/kg of DM for the control cows. The cows were fed their respective diets from the beginning of their sixth month of pregnancy until 2 wk before the expected date of parturition. The strategy was to use K to stimulate a mild increase in extracellular pH to potentially improve BMD well before parturition, when high K contents in the diet are considered safe, but cease supplementing in the few weeks prepartum, when high intakes of K are known to be problematic. The expectation was that the effect of the denser bone would carry through to benefit the cow's plasma Ca, P, and Mg status at parturition. Prior to the period of K supplementation, the cows were part of a commercial pasture-based herd, to which they were returned at the end of the supplementation period and treated as 1 group from at least 11 d prepartum until the end of the study at d 42 of the next lactation. Supplementation with K successfully induced a sustained increase of urinary pH throughout late lactation and into the dry period, as expected. The KS cows consistently averaged a urine pH 0.25+/-0.10 U higher than the controls. However, there was no significant effect of K supplementation on BMD, bone mineral concentrations, plasma osteocalcin, urinary deoxypyridinoline:creatinine plasma Ca, or plasma P concentrations during or immediately after the cessation of supplementation, nor where there any carryover effects during parturition or by d 42 of lactation. Instead, there was an unexpected decrease in the concentration of Mg in plasma of the KS cows compared with the control cows that extended from 0.5 to 2.5 d postpartum. The timing of the decline in plasma Mg was paralleled by declines in plasma concentrations of 1,25 dihydroxy-vitamin D(3) and urinary excretion of Ca and Mg, whereas urinary excretion of P increased; all changes were consistent with a hypomagnesemia that could increase the risk of hypocalcemia. These data suggest that, in addition to the well-documented negative effects of K when fed immediately at parturition, the effects of high dietary K diets can carry over for at least 11 d to trigger a mild hypomagnesemia at parturition. Because K supplementation did not improve BMD prepartum, it was not possible to conclude for or against an ability of denser bone to reduce the risk of hypocalcemia in older cows at parturition. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Poulsen, N A; Gustavsson, F; Glantz, M; Paulsson, M; Larsen, L B; Larsen, M K
2012-11-01
The composition of milk fat from dairy cows is related to both genetic and environmental factors. Here, the effect of feed and herd was examined in 3 Scandinavian breeds, namely Danish Holstein-Friesian (DH), Danish Jersey (DJ), and Swedish Red (SR). In total, milk samples from 1,298 cows kept in indoor housing systems were collected from 61 conventional dairy herds in Denmark and Sweden. The fatty acid (FA) composition of milk was determined by gas chromatography and the content of α-tocopherol by HPLC. Based on the 17 individual FA determined, distinct FA profiles were observed for all breeds using univariate and multivariate statistics. The DJ cows were characterized by higher levels of saturated short-chain FA; in contrast, DH cows had higher content of unsaturated C18 FA, whereas higher levels of primarily C14:0, C14:1, C18:1 cis-9, and C18:3n-3 were evident in SR cows. This variation in milk fat composition across breeds was further reflected in different desaturase indices, which were generally higher in SR cows. In addition, α-tocopherol differed significantly among breeds, with DJ cows having the highest content. Herd-specific feeding plans were collected, and different feed items were separated into 4 broad feed categories, including grass products, maize silage, grain, and concentrate. The pronounced differences in overall feed composition among breeds were, to a large extent, due to regional differences between countries, with SR receiving higher levels of grain and grass silage compared with the Danish breeds. Within breeds, differences in feeding regimens among herds were furthermore higher in SR. Significant correlations between feed category and individual FA were observed in all breeds. Furthermore, variance components were estimated and used to determine the proportion of phenotypic variation that could be explained by herd. The herd effect for individual FA was generally lower for DH compared with the 2 other breeds. In addition, very low herd effects were shown for C14:1 and C16:1 in all breeds, suggesting that the content of these FA is mainly genetically regulated. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Nousiainen, J; Rinne, M; Huhtanen, P
2009-10-01
A meta-analysis based on published experiments with lactating dairy cows was conducted to study the effects of dietary forage and concentrate factors on apparent total diet digestibility. A data set was collected that included a total of 497 dietary treatment means from 92 studies. The diets were based on grass silage or on legume or whole-crop cereal silages partly or completely substituted for grass silage. The silages were supplemented with concentrates given at a flat rate within a dietary comparison. For the statistical evaluation, the data were divided into 5 subsets to quantify silage (digestibility, 42 diets in 17 studies; fermentation characteristics, 108 diets in 39 studies) and concentrate (amount of supplementation, 142 diets in 59 studies; concentration of crude protein, 215 diets in 82 studies; carbohydrate composition, 66 diets in 23 studies) factors on total diet digestibility. The diet digestibility of dairy cows was determined by total fecal collection or by using acid-insoluble ash as an internal marker. Diet organic matter digestibility (OMD) at a maintenance level of feeding (OMD(m)) was estimated using sheep in vivo or corresponding in vitro digestibility values for the forage and reported ingredient and chemical composition values, with tabulated digestibility coefficients for the concentrate components of the diet. A mixed model regression analysis was used to detect the responses of different dietary factors on apparent total diet digestibility. Improved silage OMD(m) resulting from earlier harvest was translated into improved production-level OMD in cows (OMD(p)). The effects of silage fermentation characteristics on OMD(p) were quantitatively small, although sometimes significant. Concentrate supplementation improved total diet OMD(m), but this was not realized in lactating dairy cows because of linearly decreased neutral detergent fiber (NDF) digestibility as concentrate intake increased. Increasing the concentrate crude protein amount quadratically improved OMD(p) in cows, with the response being mostly due to improved NDF digestibility. Replacement of starchy concentrates with fibrous by-products slightly decreased OMD(p) but tended to improve NDF digestibility. The true digestibility of cell solubles (OM - NDF) estimated by the Lucas test both from all data and from the data subsets was not significantly different from 1.00, suggesting that responses in OMD(p) of dairy cows are mediated through changes in the concentration and digestibility of NDF.
NASA Astrophysics Data System (ADS)
Møller, Henrik Bjarne; Moset, Verónica; Brask, Maike; Weisbjerg, Martin Riis; Lund, Peter
2014-09-01
The objective of the present study was to evaluate the effect of dairy cow diets on feces composition and methane (CH4) potential from manure with emphasis on fat level and roughage type and compare these results with the corresponding enteric CH4 emission. In experiment 1 six different diets, divided into two fat levels (low and high) and three different roughage types (early cut grass silage, late cut grass silage and maize silage), were used. The high fat level was achieved by adding crushed rapeseed. In experiment 2, the influence of increasing the fat level by using three different types of rapeseed: rapeseed cake, whole seed and rapeseed oil against a low fat ration with no rapeseed fat supplementation was studied. The diet and fat level had a significant influence on feces composition and CH4 yield. In general, ultimate CH4 yields (B0) were 8-9% higher than the present international default values for diets without extra fat and in feces from diets with extra fat supply the yield was 25-31% higher. It was possible to predict the B0 value from feed and feces characteristics; in fact, the best correlation was obtained by including both feed and feces characteristics. Addition of crude fat to diets to dairy cows reduced enteric CH4 emission but at the same time increased CH4 potential from feces both in terms of organic matter in feces and dry matter intake which might lead to increasing emissions unless proper manure handling such as anaerobic digestion is included. Without subsequent anaerobic digestion to produce energy the positive effect achieved at cow level could be counteracted by increasing manure emissions.
Shingfield, K J; Ahvenjärvi, S; Toivonen, V; Vanhatalo, A; Huhtanen, P; Griinari, J M
2008-05-01
Based on the potential benefits of cis-9, trans-11-conjugated linoleic acid (CLA) for human health there is interest in developing sustainable nutritional strategies for enhancing the concentration of this fatty acid in ruminant-derived foods. Most evidence to date suggests that endogenous synthesis is the major source of cis-9, trans-11 in milk fat and ruminal outflow is limited and largely independent of dietary 18 : 2n-6 supply. Four lactating cows fitted with a rumen cannula were used in a 4 x 4 Latin square with 14 d experimental periods to examine the effects of sunflower-seed oil (SFO) as a source of 18 : 2n-6 on ruminal lipid metabolism. Cows were offered grass silage-based diets supplemented with 0, 250, 500 or 750 g SFO/d. Supplements of SFO had no effect on DM intake, milk fat or protein secretion, but increased linearly (P < 0.01) milk yield and milk lactose output and shifted (P < 0.001) rumen fermentation towards propionate at the expense of acetate. SFO supplements increased linearly (P < 0.05) the flow of 18 : 0, 18 : 1, 18 : 2n-6 and total CLA at the omasum and enhanced ruminal cis-9-18 : 1, 18 : 2n-6 and 18 : 3n-3 metabolism. Flows of all-trans- (Delta4-16) and cis- (Delta9-16) 18 : 1 isomers were elevated, while increases in ruminal CLA outflow were confined to trans-8, trans-10 and geometric 9,11 and 10,12 isomers. It is concluded that supplementing grass silage-based diets with plant oils rich in 18 : 2n-6 enhances ruminal outflow of trans-11-18 : 1 and cis-9, trans-11-CLA in lactating cows.
Henke, Anika; Dickhoefer, Uta; Westreicher-Kristen, Edwin; Knappstein, Karin; Molkentin, Joachim; Hasler, Mario; Susenbeth, Andreas
2017-02-01
The aim of this study was to evaluate the effects of dietary Quebracho tannin extract (QTE) on feed intake, apparent total tract digestibility (ATTD), excretion of urinary purine derivatives (PD) and milk composition and yield in dairy cows. Fifty Holstein cows were divided into two groups. To reach a similar performance of both groups, cows were divided according to their milk yield, body weight, days in milk and number of lactations at the start of the experiment averaging 33.2 ± 8.2 kg/d, 637 ± 58 kg, 114 ± 73 d and 2.3 ± 1.6 lactations, respectively. The cows were fed a basal diet as total mixed ration containing on dry matter (DM) basis 34% grass silage, 32% maize silage and 34% concentrate feeds. Three dietary treatments were tested, the control (CON, basal diet without QTE), QTE 15 (basal diet with QTE at 15 g/kg DM) and QTE 30 (basal diet with QTE at 30 g/kg DM). Two treatments were arranged along six periods each 21 d (13 d adaptation phase and 8 d sampling phase). The ATTD of DM and organic matter were reduced only in Diet QTE 30 , whereas both QTE treatments reduced ATTD of fibre and nitrogen (N), indicating that QTE impaired rumen fermentation. Nevertheless, feed intake was unaffected by QTE. In Diet CON, urinary N excretion accounted for 29.8% of N intake and decreased in treatments QTE 15 and QTE 30 to 27.5% and 17.9%, respectively. Daily faecal N excretion increased in treatments CON, QTE 15 and QTE 30 from 211 to 237 and 273 g/d, respectively, which amounted to 39.0%, 42.4% and 51.7% of the N intake, respectively. Hence, QTE shifted N excretion from urine to faeces, whereas the proportion of ingested N appearing in milk was not affected by QTE (average 30.7% of N intake). Daily PD excretion as indicator for microbial crude protein (CP) flow at the duodenum decreased in treatment QTE 30 compared with Diet CON from 413 to 280 mmol/d. The ratios of total PD to creatinine suggest that urinary PD excretion was already lower when feeding Diet QTE 15 . While there was no effect of Diet QTE 15 , treatment QTE 30 reduced milk yield, milk fat and protein. Both QTE treatments reduced milk urea concentration, which suggest that ruminal degradation of dietary CP was reduced. In summary, adding QTE at dosages of 15 and 30 g/kg DM to diets of lactating dairy cows to improve feed and protein use efficiency is not recommended.
Cost-effectiveness of feeding strategies to reduce greenhouse gas emissions from dairy farming.
Van Middelaar, C E; Dijkstra, J; Berentsen, P B M; De Boer, I J M
2014-01-01
The objective of this paper was to evaluate the cost-effectiveness of 3 feeding strategies to reduce enteric CH4 production in dairy cows by calculating the effect on labor income at the farm level and on greenhouse gas (GHG) emissions at the chain level (i.e., from production of farm inputs to the farm gate). Strategies included were (1) dietary supplementation of an extruded linseed product (56% linseed; 1kg/cow per day in summer and 2kg/cow per day in winter), (2) dietary supplementation of a nitrate source (75% nitrate; 1% of dry matter intake), and (3) reducing the maturity stage of grass and grass silage (grazing at 1,400 instead of 1,700kg of dry matter/ha and harvesting at 3,000 instead of 3,500kg of dry matter/ha). A dairy farm linear programing model was used to define an average Dutch dairy farm on sandy soil without a predefined feeding strategy (reference situation). Subsequently, 1 of the 3 feeding strategies was implemented and the model was optimized again to determine the new economically optimal farm situation. Enteric CH4 production in the reference situation and after implementing the strategies was calculated based on a mechanistic model for enteric CH4 and empirical formulas explaining the effect of fat and nitrate supplementation on enteric CH4 production. Other GHG emissions along the chain were calculated using life cycle assessment. Total GHG emissions in the reference situation added up to 840kg of CO2 equivalents (CO2e) per t of fat- and protein-corrected milk (FPCM) and yearly labor income of €42,605. Supplementation of the extruded linseed product reduced emissions by 9kg of CO2e/t of FPCM and labor income by €16,041; supplementation of the dietary nitrate source reduced emissions by 32kg of CO2e/t of FPCM and labor income by €5,463; reducing the maturity stage of grass and grass silage reduced emissions by 11kg of CO2e/t of FPCM and labor income by €463. Of the 3 strategies, reducing grass maturity was the most cost-effective (€57/t of CO2e compared with €241/t of CO2e for nitrate supplementation and €2,594/t of CO2e for linseed supplementation) and had the greatest potential to be used in practice because the additional costs were low. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Xiao, Peizhen; Ji, Hong; Ye, Yuantu; Zhang, Baotong; Chen, Yongsheng; Tian, Jingjing; Liu, Pin; Chen, Liqiao; Du, Zhenyu
2017-02-01
This study was carried out to evaluate whether silymarin supplementation influences growth, lipid metabolism, and health status in grass carp fed elevated dietary lipid levels. The juvenile fish (27.43 ± 0.17 g/tail) were fed six isonitrogenous and isocaloric diets in a factorial design containing 0, 100, or 200 mg kg -1 silymarin (SM0, SM100, SM200) associated with either 4 or 8 % lipid level (low lipid, LL, and high lipid, HL, respectively) for 82 days. The results showed that both dietary silymarin supplementation and high lipid level significantly enhanced growth performance (WG, SGR), protein efficiency ratio, and feed utilization. Silymarin supplementation significantly reduced the VSI, hepatic lipid content, and the total bilirubin concentration in the serum. The gallbladdersomatic index displayed higher in the SM100 groups than SM200 groups. Serum total cholesterol content exhibited lower in the SM100 groups than SM0 groups. Meanwhile, significant interactions were shown for hepatic gene expression of HSL and CPT1 by two factors, and SM100 group had higher hepatic gene expression of HSL and CPT1 in fish fed with the HL diets. The SM100 groups up-regulated hepatic gene expressions of HMGCR and CYP7A1 compared with the SM0 groups. Silymarin supplementation notably reduced the elevated serum MDA content induced by HL treatments. Thus, silymarin supplementation markedly promoted growth and protein efficiency, suppressed lipid accumulation, and improved health status in grass carp fed with high-lipid diets, which might be associated with its enhancement of lipolysis and β-oxidation, antioxidant capacity.
Lettat, A; Hassanat, F; Benchaar, C
2013-08-01
Methane produced by the methanogenic Archaea that inhabit the rumen is a potent greenhouse gas and represents an energy loss for the animal. Although several strategies have been proposed to mitigate enteric CH4 production, little is known about the effects of dietary changes on the microbial consortia involved in ruminal methanogenesis. Thus, the current study aimed to examine how the metabolically active microbes are affected when dairy cows were fed diets with increasing proportions of corn silage (CS). For this purpose, 9 ruminally cannulated lactating dairy cows were used in a replicated 3 × 3 Latin square design and fed a total mixed ration (60:40 forage:concentrate ratio on a dry matter basis) with the forage portion being either alfalfa silage (0% CS), corn silage (100% CS), or a 50:50 mixture (50% CS). Enteric CH4 production was determined using respiration chambers and total rumen content was sampled for the determination of fermentation characteristics and molecular biology analyses (cDNA-based length heterogeneity PCR, quantitative PCR). The cDNA-based length heterogeneity PCR targeting active microbes revealed similar bacterial communities in cows fed 0% CS and 50% CS diets, whereas important differences were observed between 0% CS and 100% CS diets, including a reduction in the bacterial richness and diversity in cows fed 100% CS diet. As revealed by quantitative PCR, feeding the 100% CS diet increased the number of total bacteria, Prevotella spp., Archaea, and methanogenic activity, though it reduced protozoal number. Meanwhile, increasing the CS proportion in the diet increased propionate concentration but decreased ruminal pH, CH4 production (L/kg of dry matter intake), and concentrations of acetate and butyrate. Based on these microbial and fermentation changes, and because CH4 production was reduced by feeding 100% CS diet, this study shows that the use of cDNA-based quantitative PCR to estimate archaeal growth and activity is not reliable enough to reflect changes in ruminal methanogenesis. A more robust technique to characterize changes in archaeal community structures will help to better understand the microbial process involved in ruminal methanogenesis and, hence, enabling the development of more effective dietary CH4 mitigation strategies. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Clark, C E F; Kaur, R; Millapan, L O; Golder, H M; Thomson, P C; Horadagoda, A; Islam, M R; Kerrisk, K L; Garcia, S C
2018-06-01
Grain-based concentrate (GBC) supplement is of high cost to dairy farmers as a feed source as opposed to grazed pasture. Milk production response to GBC is affected by the composition and nutritive value of the remainder of the diet, animal factors, and interactions between forage type and level of GBC. In grazing systems, dairy cattle encounter contrasting pasture states, primarily because the social structure of the herd affects the timing of when each animal accesses a paddock after milking as a result of a relatively consistent cow milking order. However, the effect of feed management, namely pasture state and GBC allocation, on dairy cattle production and behavior is unknown. We examined the effect of varying GBC allocation for dairy cattle grazing differing states of kikuyu grass (Pennisetum clandestinum, a tropical pasture species; experiment 1) and annual ryegrass (Lolium multiflorum L., a temperate pasture species; experiment 2) on dry matter intake, milk production and composition, and grazing behavior. For each experiment, 90 lactating dairy cattle were randomly allocated to 2 consistent (fresh-fresh and depleted-depleted) and 2 inconsistent (fresh-depleted and depleted-fresh pasture state treatments (defined as sequences of pasture state allocation for the morning and afternoon grazing events) and 3 GBC treatments [2.7, 5.4, and 8.1 kg of dry matter (DM)/cow per day], giving 12 treatment combinations for each experiment. The duration of each experiment was 14 d, with the first 7 d used as adaptation to treatment. In each experiment, 3 cattle were selected from each of the 12 pasture type × GBC treatment groups within the experimental herd to determine herbage intake and total DM digestibility using the n-alkanes method (n = 36). There was no interaction between kikuyu grass or ryegrass pasture state and GBC level for intake, digestibility, or milk yield or components. Dairy cattle offered fresh-fresh and depleted-fresh ryegrass produced 9% more milk yield, in line with greater pasture intakes, compared with fresh-depleted and depleted-depleted pasture states. Dairy cattle offered fresh-fresh kikuyu grass had 8% more milk yield and 14% more milk protein yield than other pastures states, but there was no effect of pasture state on milk composition. Milk yield increased with GBC level for both pasture species (∼0.7-0.8 kg of milk/kg of DM GBC) as GBC level increased from 2.5 to 5.4 kg of DM/cow per day. There was a poor response (0.3 kg of milk/kg of DM GBC), and no response, when GBC levels increased from 5.4 to 8.1 kg of DM/cow per day for kikuyu grass and ryegrass, respectively, in line with pasture DMD. Time spent grazing, lying, and ruminating were not associated with kikuyu grass pasture state, GBC, or their interaction. Despite this, there was a linear increase in grazing time in the afternoon coinciding with a linear decrease in lying and rumination time for both kikuyu grass and ryegrass pasture. Together these findings reveal the effect of pasture state and GBC allocation on dairy cattle production and behavior. Tailoring GBC allocation to the state of pasture accessed by cattle appears unwarranted, but there is an opportunity to alter the timing of pasture access to increase herd-level milk production efficiency. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Impaired specific immunoreactivity in cows with hepatic lipidosis.
Wentink, G H; Rutten, V P; van den Ingh, T S; Hoek, A; Müller, K E; Wensing, T
1997-05-01
In this study, hepatic lipidosis in cows was experimentally induced by offering an energy surplus during the dry period. Liver triacylglycerol (TAG) was 16% in the experimental group. In the control group fed the same diet in restricted quantities, liver TAG was about 7%. The animals of both groups were vaccinated with tetanus vaccine at Day 3 after parturition. It was demonstrated that the cows with high liver TAG percentages had lower humoral and cellular (P < 0.05) immunological responses compared with the animals with low liver TAG levels at Day 14 after vaccination. The results obtained in the high TAG group support the notion that the frequent occurrence of aspecific infections in cows with hepatic lipidosis may be due to impaired immunoreactivity.
Impact of dietary fiber and physical form on performance of lactating dairy cows.
Woodford, J A; Jorgensen, N A; Barrington, G P
1986-04-01
Two trials were conducted to study the effects of forage intake and physical form on lactating cow performance. In trial 1, four cows in a 4 X 4 Latin square were fed long alfalfa hay at 28, 36, 45, and 53% of total dry matter plus concentrate. Total dry matter intake was not affected by forage percent. Total chewing time and milk fat percentage increased linearly with increasing forage consumption. Maximum 4% fat-corrected milk production occurred when diets contained 27% neutral detergent fiber and 18% acid detergent fiber. In trial 2, four cows in a 4 X 4 Latin square were fed diets of chopped alfalfa hay and concentrate in proportions to supply 27.4% total ration neutral detergent fiber. Mean particle length measured with an oscillating screen particle separator of the chopped hay was .26, .46, .64, and .90 cm. Total dry matter and forage dry matter intakes and total chewing were not influenced by forage mean particle length. Mean particle length did not affect actual milk or 4% fat-corrected milk production. Depression of milk fat percentage was prevented when forage mean particle length was greater than or equal .64 cm. Apparent digestibility of dietary constituents and rate of passage of hay and concentrate was not influenced by forage intake or physical form.
Bioavailability of zinc, copper, and manganese from infant diets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, J.G.
1987-01-01
A series of trace element absorption experiments were performed using the Sprague-Dawley suckling rat put and infant rhesis monkey (Macaca mulatta) with extrinsic radiolabeling to assess the bioavailability of Zn, Cu, and Mn from infant diets and to examine specific factors that affect absorption of these essential nutrients. Bioavailability of Cu as assessed by 6 h liver uptake (% of /sup 64/Cu dose) was highest from human milk and cow milk based formula and significantly lower from cow milk and soy based formula. Copper bioavailability from infant cereal products as assessed by whole body uptake (% of /sup 64/Cu dose)more » in d 20 rats, 9 h postintubation, was low compared to the bioavailability from cow milk or human milk alone. /sup 65/Zn uptake in d 20 rats, 9 h postintubation, was significantly lower from cereals fed alone or in combination with cow or human milk as compared to the uptake from the milks fed alone. Zn bioavailability varied among cereal diets, (lowest from cereals containing phytate and highest from cereal/fruit products). Mn bioavailability from infant diets was assessed using a modified suckling rat pup model. Bioavailability (24 h whole body retention of /sup 54/Mn) was high from all milks and commercial formulas tested.« less
Hristov, A N; Ahvenjarvi, S; McAllister, T A; Huhtanen, P
2003-10-01
The objective of this study was to determine composition, particle size distribution, and in vivo kinetics of ruminal particles having functional specific gravity (FSG) greater or less than FSG of particles found in the omasum and reticulum of lactating dairy cows. Particles from the reticulum and the omasal had FSG of 1.03 and 1.02, respectively. Particles from ruminal contents with FSG higher (HP) or lower (LP) than 1.02 were isolated and labeled with Er or Dy, respectively. Four ruminally cannulated, lactating Ayrshire dairy cows were fed all-grass silage (AS) or 54% grass silage:46% concentrate (SC) diets in a cross-over design trial and used to study chemical composition and ruminal and total tract kinetics of HP and LP. Labeled particles were pulse dosed into the rumen of the cows and disappearance of the markers from ruminal HP and LP pools and excretion in feces was monitored for 72 and 120 h, respectively. Fecal marker excretion data were fitted using two-compartment mathematical age-dependent/age-independent (Gn-->G1) models. Inclusion of concentrate in the diet (SC) increased (P < 0.05) apparent total tract digestibility of dietary DM, OM and N. Digestibility of fiber fractions, NDF and ADF, was lower (P < 0.01 and P < 0.05, respectively) for SC compared with AS. The heavy particles had higher (P < 0.01) indigestible NDF and lower (P < 0.01) N concentration than LP. Particles from the HP pool passed from the rumen more rapidly (P < 0.01) than particles from LP (0.044 and 0.019 h(-1), respectively). Diet had no effect on particle rate of disappearance or pool size in the rumen. Across diets, pool size of LP was consistently larger (P < 0.05) than that of HP. Diet had no effect on total tract mean retention time (MRT) of LP or HP. Total tract MRT of LP was greater (P < 0.05) than MRT of HP (59.6 vs. 49.0 h, respectively). Results from this study support the hypothesis that functional specific gravity is an important factor determining the rate of outflow and residence time of feed particles within the reticulo-rumen and total digestive tract. Our data indicate that digesta particles with functional specific gravity greater or less than 1.02 have different composition and flow characteristics. Heavier particles contain more indigestible fiber and less N and are likely depleted of substrate available for microbial fermentation, are smaller in size, and have a higher passage rate/shorter retention time in the digestive tract than lighter particles.
Petit, H V; Gagnon, N
2009-10-01
A total of 32 lactating Holstein cows with mean body weight of 622 kg (s.e. = 24) were allotted, at week 25 of lactation, to eight groups of four cows blocked for similar days in milk. The objective of the experiment was to determine the effect of feeding four dietary concentrations (0, 50, 100 or 150 g/kg of dry matter) of whole flaxseed, which contains the plant lignan precursor secoisolariciresinol diglucoside (SDG), on concentrations of two mammalian lignans (enterodiol and enterolactone) in milk. The effects of the four diets on feed intake, milk production, milk composition and digestion were also studied. Cows within each block were assigned to one of the four isonitrogenous and isoenergetic total mixed diets and the experiment was carried out from week 25 to 29 of lactation. Diets were fed for ad libitum intake. Enterolactone was the mammalian lignan, of the two metabolites studied, detected in the milk of cows and its concentration in milk tended (P = 0.08) to increase linearly with higher intake of SDG in the diet. Feed intake, milk yield and milk composition were similar among diets. Milk fatty acid profile was slightly improved by feeding flaxseed, as shown by higher concentrations of fatty acids (e.g. n-3) recognized as being beneficial for human health. Those results suggest that feeding of whole flaxseed may result in changes in milk fatty acid composition and enterolactone content, which offer benefits for consumers.
Grala, T M; Roche, J R; Phyn, C V C; Rius, A G; Boyle, R H; Snell, R G; Kay, J K
2013-01-01
The objective of this study was to investigate the effect of reduced milking frequency, at 2 feeding levels, on gene expression in adipose tissue of grazing dairy cows during early lactation. Multiparous Holstein-Friesian and Holstein-Friesian × Jersey cows (n=120) were grazed on pasture and milked twice daily (2×) from calving to 34±6d in milk (mean ± standard deviation). Cows were then allocated to 1 of 4 treatments in a 2×2 factorial arrangement. Treatments consisted of 2 milking frequencies (2× or once daily; 1×) and 2 feeding levels for 3 wk: adequately fed (AF), consuming 14.3 kg of dry matter/cow per day, or underfed (UF), consuming 8.3 kg of dry matter/cow per day. After the treatment period, all cows were fed to target grazing residuals ≥1,600 kg of DM/cow per day and milked 2× for 20 wk. Adipose tissue was collected from 12 cows per treatment by subcutaneous biopsy at -1, 3, and 5 wk relative to treatment start, RNA was extracted, and transcript abundance of genes involved in lipid metabolism was quantified using a linear mixed model. At the end of the 3-wk treatment period, transcript abundance of genes involved in fatty acid (FA) uptake into adipose tissue (LPL), FA synthesis [FA synthase (FASN) and stearoyl-coenzyme A desaturase (SCD)], FA oxidation [acyl-coenzyme A synthetase long-chain family member 1 (ACSL1) and carnitine palmitoyltransferase 2 (CPT2)], glyceroneogenesis [glycerol-3-phosphate dehydrogenase 1 (GPD1) and pyruvate carboxylase (PC)], and triacylglyceride synthesis [diacylglycerol O-acyltransferase 2 (DGAT2)] were greater in AF1× cows compared with all other treatments. However, when cows were underfed, no effects of milking frequency were observed on transcript abundance of genes involved in adipose lipid metabolism. Despite increases in plasma NEFA concentrations in UF cows, no effects of underfeeding were observed on the transcription of lipolytic genes. At 5 wk, after cows were returned to 2× milking and standard feed allowance, transcript abundances of genes involved in FA synthesis [acetyl-coenzyme A carboxylase α (ACACA) and SCD)] were increased in cows previously UF. Expression of ACSL1 was decreased in UF1× cows relative to UF2× cows and CPT2 expression was greater in AF1× cows compared with AF2× cows. In conclusion, after 3 wk of reduced milking frequency during a feed restriction, transcription of genes involved in lipid metabolism in adipose tissue were not altered, possibly due to the reduced milk production in these animals. However, 3 wk of 1× milking in AF cows increased transcription of genes involved in FA synthesis, oxidation, and triacylglyceride synthesis. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Organic Milk: Is the Grass Greener on the Other Side?
ERIC Educational Resources Information Center
Palliser, Janna
2011-01-01
This article looks at the costs and benefits of producing organic milk. To be organic, dairy farmers must use organic fertilizer and organic pesticides, and the cows are not given supplemental hormones or antibiotics--that is, the milk must be produced without chemicals, hormones, or antibiotics (Hannon 2009). The organic versus nonorganic world…
USDA-ARS?s Scientific Manuscript database
Lupinus leucophyllus (velvet lupine) is prevalent in eastern Washington, and when consumed by pregnant cows, can cause “crooked calf disease.” Rangelands in this region are dominated by poor quality annual grasses. The objective of this study was to determine if feeding supplemental crude protein...
Natural and anthropogenic radioactivity in the environment of Kopaonik mountain, Serbia.
Mitrović, Branislava; Ajtić, Jelena; Lazić, Marko; Andrić, Velibor; Krstić, Nikola; Vranješ, Borjana; Vićentijević, Mihajlo
2016-08-01
To evaluate the state of the environment in Kopaonik, a mountain in Serbia, the activity concentrations of (4) K, (226)Ra, (232)Th and (137)Cs in five different types of environmental samples are determined by gamma ray spectrometry, and radiological hazard due to terrestrial radionuclides is calculated. The mean activity concentrations of natural radionuclides in the soil are higher than the global average. However, with an exception of two sampling locations, the external radiation hazard index is below one, implying an insignificant radiation hazard. Apart from (40)K, content of the natural radionuclides is predominantly below minimum detectable activities in grass and cow milk, but not in mosses. Although (137)Cs is present in the soil, grass, mosses and herbal plants, its specific activity in cow milk is below minimum detectable activity. Amongst the investigated herbal plants, Vaccinium myrtillus L. shows accumulating properties, as a high content of (137)Cs is detected therein. Therefore, moderation is advised in consuming Vaccinium myrtillus L. tea. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rubino, Francesco; Carberry, Ciara; M Waters, Sinéad; Kenny, David; McCabe, Matthew S; Creevey, Christopher J
2017-04-01
Many microbes in complex competitive environments share genes for acquiring and utilising nutrients, questioning whether niche specialisation exists and if so, how it is maintained. We investigated the genomic signatures of niche specialisation in the rumen microbiome, a highly competitive, anaerobic environment, with limited nutrient availability determined by the biomass consumed by the host. We generated individual metagenomic libraries from 14 cows fed an ad libitum diet of grass silage and calculated functional isoform diversity for each microbial gene identified. The animal replicates were used to calculate confidence intervals to test for differences in diversity of functional isoforms between microbes that may drive niche specialisation. We identified 153 genes with significant differences in functional isoform diversity between the two most abundant bacterial genera in the rumen (Prevotella and Clostridium). We found Prevotella possesses a more diverse range of isoforms capable of degrading hemicellulose, whereas Clostridium for cellulose. Furthermore, significant differences were observed in key metabolic processes indicating that isoform diversity plays an important role in maintaining their niche specialisation. The methods presented represent a novel approach for untangling complex interactions between microorganisms in natural environments and have resulted in an expanded catalogue of gene targets central to rumen cellulosic biomass degradation.
Histidine deficiency has a negative effect on lactational performance of dairy cows.
Giallongo, F; Harper, M T; Oh, J; Parys, C; Shinzato, I; Hristov, A N
2017-04-01
A 10-wk randomized complete block design experiment with 24 Holstein cows was conducted to investigate the long-term effects of feeding a His-deficient diet on lactational performance of dairy cows. Cows were blocked by days in milk, milk yield, and parity, and randomly assigned to 1 of the following 2 treatments: (1) His-adequate diet [HAD; providing +166 g/d over metabolizable protein (MP) requirements, according to the National Research Council (2001) and digestible His (dHis) supply of 68 g/d, or 2.5% of MP requirements] and (2) His-deficient diet (HDD; +37 g/d over MP requirements and dHis supply of 49 g/d, or 1.9% of MP requirements). Both HAD and HDD were supplemented with rumen-protected (RP) Met and Lys supplying digestible Met and digestible Lys at 2.4 and 2.4% and 7.2 and 7.1% of MP requirements, respectively. At the end of the 10-wk experiment, HDD was supplemented with RPHis (HDD+RPHis; total dHis supply of 61 g/d, or 2.4% of MP requirements) for an additional 9 d. Dry matter intake (DMI; 25.4 and 27.1 kg/d, standard error of the mean = 0.41), yields of milk (37.6 and 40.5 kg/d, standard error of the mean = 0.62), protein and lactose, energy-corrected milk, and milk and plasma urea-N were decreased by HDD compared with HAD. Feed and energy-corrected milk feed efficiencies, milk fat, protein and lactose concentrations, body weight, and body condition score of the cows were not affected by treatment. Apparent total-tract digestibility of dry and organic matter, crude protein, and neutral detergent fiber, and excretion of urinary N and urea-N were decreased by HDD compared with HAD. Concentration of plasma leptin tended to be decreased for HDD compared with HAD. Plasma concentrations of EAA (His, Leu, Lys, Val) and carnosine decreased and total EAA tended to be decreased in cows fed HDD compared with HAD. Muscle concentrations of free His, Leu, and Val decreased and Gly and β-alanine tended to be increased by HDD compared with HAD. Cows fed HDD had a lower blood hemoglobin concentration than cows fed HAD. At the end of the 10-wk study, the 9-d supplementation of HDD with RPHis (i.e., HDD+RPHis) increased DMI and plasma His, and tended to increase energy-corrected milk yield and plasma carnosine, compared with HDD. In conclusion, feeding a diet deficient in dHis supplying adequate MP, digestible Met, and digestible Lys affected negatively lactational performance of dairy cows. These results confirm our previous findings that low dietary His supply can impair DMI, yields of milk and milk protein, and blood hemoglobin in dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Kliem, K E; Humphries, D J; Reynolds, C K; Morgan, R; Givens, D I
2017-02-01
Supplementing dairy cow diets with oilseed preparations has been shown to replace milk saturated fatty acids (SFA) with mono- and/or polyunsaturated fatty acids (MUFA, PUFA), which may reduce risk factors associated with cardio-metabolic diseases in humans consuming milk and dairy products. Previous studies demonstrating this are largely detailed, highly controlled experiments involving small numbers of animals, but in order to transfer this feeding strategy to commercial situations further studies are required involving whole herds varying in management practices. In experiment 1, three oilseed supplements (extruded linseed (EL), calcium salts of palm and linseed oil (CPLO) and milled rapeseed (MR)) were included in grass silage-based diets formulated to provide cows with ~350 g oil/day, and compared with a negative control (Control) diet containing no supplemental fat, and a positive control diet containing 350 g/cow per day oil as calcium salt of palm oil distillate (CPO). Diets were fed for 28-day periods in a 5×4 Latin Square design, and milk production, composition and fatty acid (FA) profile were analysed at the end of each period. Compared with Control, all lipid supplemented diets decreased milk fat SFA concentration by an average of 3.5 g/100 g FA, by replacement with both cis- and trans-MUFA/PUFA. Compared with CPO, only CPLO and MR resulted in lower milk SFA concentrations. In experiment 2, 24 commercial dairy farms (average herd size±SEM 191±19.3) from the south west of the United Kingdom were recruited and for a 1 month period asked to supplement their herd diets with either CPO, EL, CPLO or MR at the same inclusion level as the first study. Bulk tank milk was analysed weekly to determine FA concentration by Fourier Transform mid-IR spectroscopy prediction. After 4 weeks, EL, CPLO and MR all decreased herd milk SFA and increased MUFA to a similar extent (average -3.4 and +2.4 g/100 g FA, respectively) when compared with CPO. Differing responses observed between experiments 1 and 2 may be due in part to variations in farm management conditions (including basal diet) in experiment 2. This study demonstrates the importance of applying experimental research into commercial practice where variations in background conditions can augment different effects to those obtained under controlled conditions.
NASA Astrophysics Data System (ADS)
Davison, T. M.; Jonsson, N. N.; Mayer, D. G.; Gaughan, J. B.; Ehrlich, W. K.; McGowan, M. R.
2016-12-01
Exposure to hot environments affects milk yield (MY) and milk composition of pasture and feed-pad fed dairy cows in subtropical regions. This study was undertaken during summer to compare MY and physiology of cows exposed to six heat-load management treatments. Seventy-eight Holstein-Friesian cows were blocked by season of calving, parity, milk yield, BW, and milk protein (%) and milk fat (%) measured in 2 weeks prior to the start of the study. Within blocks, cows were randomly allocated to one of the following treatments: open-sided iron roofed day pen adjacent to dairy (CID) + sprinklers (SP); CID only; non-shaded pen adjacent to dairy + SP (NSD + SP); open-sided shade cloth roofed day pen adjacent to dairy (SCD); NSD + sprinkler (sprinkler on for 45 min at 1100 h if mean respiration rate >80 breaths per minute (NSD + WSP) ); open-sided shade cloth roofed structure over feed bunk in paddock + 1 km walk to and from the dairy (SCP + WLK). Sprinklers for CID + SP and NSD + SP cycled 2 min on, 12 min off when ambient temperature >26°C. The highest milk yields were in the CID + SP and CID treatments (23.9 L cow-1 day-1), intermediate for NSD + SP, SCD and SCP + WLK (22.4 L cow-1 day-1), and lowest for NSD + WSP (21.3 L cow-1 day-1) ( P < 0.05). The highest ( P < 0.05) feed intakes occurred in the CID + SP and CID treatments while intake was lowest ( P < 0.05) for NSD + WSP and SCP + WLK. Weather data were collected on site at 10-min intervals, and from these, THI was calculated. Nonlinear regression modelling of MY × THI and heat-load management treatment demonstrated that cows in CID + SP showed no decline in MY out to a THI break point value of 83.2, whereas the pooled MY of the other treatments declined when THI >80.7. A combination of iron roof shade plus water sprinkling throughout the day provided the most effective control of heat load.
Morrill, K M; Marston, S P; Whitehouse, N L; Van Amburgh, M E; Schwab, C G; Haines, D M; Erickson, P S
2010-05-01
The objectives of this experiment were to determine whether feeding anionic salts to prepartum Holstein cows affected their calf's colostral IgG passive transfer and whether adding sodium bicarbonate to a colostrum replacer (CR) would increase the efficiency of IgG absorption. Forty Holstein cows and their resulting calves were assigned to a 2 x 2 factorial arrangement of treatments in a randomized complete block design based on expected date of calving. Three weeks before the projected due date, cows were placed on 1 of 2 treatments: a diet without anionic salts (dietary cation-anion difference of +77 mEq/kg) or a diet with anionic salts (dietary cation-anion difference of -100 mEq/kg). Within 45 min after birth, all calves received 1 dose of a commercially available CR (132g of IgG) without or with supplemental sodium bicarbonate (19.5 g/dose). A half-dose of CR (66g of IgG) and sodium bicarbonate (9.75g) was fed at 6h of age. Calves received milk replacer at 12, 24, 36, and 48h. Blood samples were obtained from calves at 0, 6, 12, 24, and 48h and were analyzed for IgG concentration. Cows fed the diet supplemented with anionic salts had lower DMI on d 8, 5, 4, and 1 and lower urine pH 2 and 1 wk before parturition compared with cows fed the diet without supplemental anionic salts. Calves born from dams receiving anionic salts had similar IgG concentrations (15.1 vs. 14.4g/L) and apparent efficiency of absorption values (29.2 vs. 28.2%) compared with calves born from dams not fed anionic salts. Calves receiving supplemental sodium bicarbonate in the CR had higher serum IgG concentrations at 12 (14.4 vs. 12.0g/L), 24 (16.3 vs. 13.2g/L), and 48h (14.6 vs. 11.2g/L) and higher apparent efficiency of absorption values (31.2 vs. 26.1%) than calves that did not receive sodium bicarbonate in the CR. Calves receiving sodium bicarbonate also had greater area under the curve values for IgG absorption compared with calves not receiving sodium bicarbonate. There was a trend for an interaction with calves born from dams fed anionic salts having a greater area under the curve when fed supplemental sodium bicarbonate. Of the 40 calves in the study, 90% obtained adequate passive transfer (serum IgG > or = 10g/L). This study indicates that feeding anionic salts to the dam has no effect on passive transfer, whereas adding sodium bicarbonate to the CR increased IgG uptake in calves. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Maloney, Jennifer; Nowak-Wegrzyn, Anna
2007-06-01
Cow's milk protein allergy is the most common food allergy in infants and young children. It is estimated that up to 50% of pediatric cow's milk allergy is non-IgE-mediated. Allergic proctocolitis is a benign disorder manifesting with blood-streaked stools in otherwise healthy-appearing infants who are breast- or formula-fed. Symptoms resolve within 48-72 h following elimination of dietary cow's milk protein. Most infants tolerate cow's milk by their first birthday. Food protein-induced enterocolitis syndrome presents in young formula-fed infants with chronic emesis, diarrhea, and failure to thrive. Reintroduction of cow's milk protein following a period of avoidance results in profuse, repetitive emesis within 2-3 h following ingestion; 20% of acute exposures may be associated with hypovolemic shock. Treatment of acute reactions is with vigorous hydration. Most children become tolerant with age; attempts of re-introduction of milk must be done under physician supervision and with secure i.v. access. Allergic eosinophilic gastroenteritis affects infants as well as older children and adolescents. Abdominal pain, emesis, diarrhea, failure to thrive, or weight loss are the most common symptoms. A subset of patients may develop protein-losing enteropathy. Fifty percent of affected children are atopic and have evidence of food-specific IgE antibody but skin prick tests and serum food-IgE levels correlate with response to elimination diet poorly. Elemental diet based on the amino-acid formula leads to resolutions of gastrointestinal eosinophilic inflammation typically within 6 wk.
Li, S S; Shen, J S; Ren, D X; Liu, J X
2015-02-01
A proteomic approach was used to investigate the effects of the processing method of corn grain and soybean meal on the milk protein expression profile in lactating dairy cows. A total of 12 multiparous Holstein dairy cows were used in a 4×4 Latin square design with a 2×2 factorial arrangement. The primary factors examined were corn (finely ground (FGC) v. steam-flaked (SFC)) and soybean meal (solvent-extracted (SSBM) v. heat-treated (HSBM)), which were used to formulate four diets with the same basal ingredient: 27% FGC and 9% SSBM; 27% SFC and 9% SSBM; 27% FGC and 9% HSBM; and 27% SFC and 9% HSBM. Each period lasted for 21 days. Milk samples were collected on days 18, 19 and 20 of each period. Changes in the milk proteins were assessed by two-dimensional (2D) electrophoresis and ImageMaster 2D Platinum 6.0 software. A total of 13 spots displayed variations in protein spot abundance according to the statistical analysis. These spots were identified by a matrix-assisted laser desorption/ionization-time of flight/time of flight MS. According to the gels, the relative abundance of α(s2)-casein (CN) fragments was higher in the cows fed the SFC-HSBM than that for SFC-SSBM, whereas β-CN, α-lactalbumin and zinc-alpha-2-glycoprotein fragments were down-regulated in HSBM-fed cows. The relative decrease of β-CN expression was validated by western blot and agreed with the MS data. These results suggested that the method used to process soybean meal modified the synthesis and secretion of milk proteins in lactating dairy cows' mammary glands.
Congio, Guilhermo F S; Batalha, Camila D A; Chiavegato, Marília B; Berndt, Alexandre; Oliveira, Patrícia P A; Frighetto, Rosa T S; Maxwell, Thomas M R; Gregorini, Pablo; Da Silva, Sila C
2018-05-01
Agricultural systems are responsible for environmental impacts that can be mitigated through the adoption of more sustainable principles. Our objective was to investigate the influence of two pre-grazing targets (95% and maximum canopy light interception during pasture regrowth; LI 95% and LI Max , respectively) on sward structure and herbage nutritive value of elephant grass cv. Cameroon, and dry matter intake (DMI), milk yield, stocking rate, enteric methane (CH 4 ) emissions by Holstein × Jersey dairy cows. We hypothesized that grazing strategies modifying the sward structure of elephant grass (Pennisetum purpureum Schum.) improves nutritive value of herbage, increasing DMI and reducing intensity of enteric CH 4 emissions, providing environmental and productivity benefits to tropical pasture-based dairy systems. Results indicated that pre-sward surface height was greater for LI Max (≈135 cm) than LI 95% (≈100 cm) and can be used as a reliable field guide for monitoring sward structure. Grazing management based on LI 95% criteria improved herbage nutritive value and grazing efficiency, allowing greater DMI, milk yield and stocking rate by dairy cows. Daily enteric CH 4 emission was not affected; however, cows grazing elephant grass at LI 95% were more efficient and emitted 21% less CH 4 /kg of milk yield and 18% less CH 4 /kg of DMI. The 51% increase in milk yield per hectare overcame the 29% increase in enteric CH 4 emissions per hectare in LI 95% grazing management. Thereby the same resource allocation resulted in a 16% mitigation of the main greenhouse gas from pasture-based dairy systems. Overall, strategic grazing management is an environmental friendly practice that improves use efficiency of allocated resources through optimization of processes evolving plant, ruminant and their interface, and enhances milk production efficiency of tropical pasture-based systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Lima de Souza, Alexandre; Divino Ribeiro, Marinaldo; Mattos Negrão, Fagton; Castro, Wanderson José Rodrigues; Valério Geron, Luiz Juliano; de Azevedo Câmara, Larissa Rodrigues
2016-01-01
The objective was to evaluate the ingestive behavior of ovine fed Marandu grass silage with dehydrated brewery residue added. The experiment had a completely randomized design with five treatments and four repetitions, with the treatments levels of inclusion being of 0, 10, 20, 30, and 40% natural matter of naturally dehydrated brewery residue for 36 hours to the marandu grass silage. 20 ovines were used and the experimental period was 21 days, 15 being for adaptation to diets. The use of brewery byproduct promoted quadratic effect (P < 0.05) for the consumption of dry matter with maximum point value estimated at adding 23.25% additive. Ingestion efficiency and rumination efficiency of dry matter (g DM/hour) were significant (P < 0.05), by quadratic behavior, and NDF ingestion and rumination efficiency showed crescent linear behavior. The DM and NDF consumption expressed in kg/meal and in minutes/kg were also significant (P < 0.05), showing quadratic behavior. Rumination activity expressed in g DM and NDF/piece was influenced (P < 0.05) by the adding of brewery residue in marandu grass silage in quadratic way, with maximum value estimated of 1.57 g DM/bolus chewed in inclusion of 24.72% additive in grass silage. The conclusion is that intermediary levels adding of 20 to 25% dehydrated brewery residue affects certain parameters of ingestive behavior. PMID:27547811
Bacterial abundance and diversity in pond water supplied with different feeds
NASA Astrophysics Data System (ADS)
Qin, Ya; Hou, Jie; Deng, Ming; Liu, Quansheng; Wu, Chongwei; Ji, Yingjie; He, Xugang
2016-10-01
The abundance and diversity of bacteria in two types of ponds were investigated by quantitative PCR and Illumina MiSeq sequencing. The results revealed that the abundance of bacterial 16S rRNA genes in D ponds (with grass carp fed sudan grass) was significantly lower than that in E ponds (with grass carp fed commercial feed). The microbial communities were dominated by Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria in both E and D ponds, while the abundance of some genera was significantly different between the two types of ponds. Specifically, some potential pathogens such as Acinetobacter and Aeromonas were found to be significantly decreased, while some probiotics such as Comamonadaceae unclassified and Bacillales unclassified were significantly increased in D ponds. In addition, water quality of D ponds was better than that of E ponds. Temperature, dissolved oxygen and nutrients had significant influence on bacterial communities. The differences in bacterial community compositions between the two types of ponds could be partially explained by the different water conditions.
Berge, Anna C; Vertenten, Geert
2014-01-01
The aim of this study was to determine the prevalence, major management systems, and fresh cow clinical conditions associated with ketosis in western European dairy herds. A total of 131 dairies were enrolled in Germany, France, Italy, the Netherlands, and the United Kingdom during 2011 to 2012. A milk-based test for ketones (Keto-Test; Sanwa Kagaku Kenkyusho Co. Ltd., Nagoya, Japan; distributed by Elanco Animal Health, Antwerp, Belgium) was used for screening cows between d 7 and 21 after calving and ketosis was defined as a Keto-Test ≥100µmol/L. Study cows were observed for clinical disease up to 35d postcalving. Multivariate analysis (generalized estimating equation logistic regression) was performed to determine country, farm, management, feed, and cow factors associated with ketosis and to determine associations between ketosis and fresh cow diseases. Thirty-nine percent of the cows were classified as having ketosis. The herd average of ketosis was 43% in Germany, 53% in France, 31% in Italy, 46% in the Netherlands, and 31% in the United Kingdom. Of the 131 farms, 112 (85%) had 25% or more of their fresh cows resulting as positive for ketosis. Clinical ketosis was not reported in most farms and the highest level of clinical ketosis reported was 23%. The risks of ketosis were significantly lower in Italy and the United Kingdom compared with France, the Netherlands, and Germany. Larger herd size was associated with a decreased risk of ketosis. The farms that fed partially mixed rations had 1.5 times higher odds of ketosis than those that fed total mixed rations. Cows that calved in April to June had the highest odds of ketosis, with about twice as high odds compared with cows that calved in July to September. The cows that calved in January to March tended to have 1.5 times higher risk of ketosis compared with cows that calved in July to September. The odds of ketosis in parity 2 and parity 3 to 7 was significantly higher (1.5 and 2.8 times higher, respectively) than the odds of ketosis in parity 1. The odds of ketosis was significantly smaller in parity 2 compared with parity 3 to 7. Ketosis was associated with significantly higher odds of all common fresh cow conditions: metritis, mastitis, displaced abomasum, clinical ketosis, lameness, and gastrointestinal disorders. Odds of ketosis in cows having had twins or dystocia were not increased, whereas higher odds of ketosis were observed in cows with milk fever or retained placenta. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DeVries, T J; Beauchemin, K A; Dohme, F; Schwartzkopf-Genswein, K S
2009-10-01
An experiment was conducted to determine whether the susceptibility to ruminal acidosis, as defined through differences in days in milk (DIM), milk production level, and ration composition, influences cow feeding, ruminating, and lying behavior and whether these behaviors change during an acute bout of ruminal acidosis. Eight ruminally cannulated cows were assigned to 1 of 2 acidosis risk levels: low risk (LR, mid-lactation cows fed a 60:40 forage:concentrate ratio diet) or high risk (HR, early lactation cows fed a 45:55 forage:concentrate diet). As a result, diets were intentionally confounded with DIM and milk production to represent 2 different acidosis risk scenarios. Cows were exposed to an acidosis challenge in each of three 14-d periods. Each period consisted of 3 baseline days, a feed restriction day (restricting total mixed ration to 50% of ad libitum intake), an acidosis challenge day (1 h meal of 4 kg of ground barley/wheat before allocating the total mixed ration), and a recovery phase. Feeding, rumination, and standing/lying behavior were recorded for 2 baseline days, on the challenge day, and 1 and 4 d after the challenge day for each cow. Across the study, there were no differences in measures of standing, lying, or feeding behavior between the 2 groups of cows. The HR cows did, on average, spend less time ruminating (491 vs. 555 min/d) than the LR cows, resulting in a lesser percentage of observed cows ruminating across the day (44.6 vs. 48.1%). The acidosis challenge resulted in changes in behavior in all cows. Compared with the baseline, feeding time increased on the first day after the challenge (395 vs. 310 min/d), whereas lying time decreased (565 vs. 634 min/d). Rumination time decreased the first day following the challenge (436 min/d) relative to the baseline (533 min/d), but increased the following day (572 min/d). Fewer cows were observed to be ruminating at a given time on the first day following the challenge as compared with the baseline period. Despite this, on a herd level, numerous observations of the proportion of cows ruminating at any one time would need to be taken to accurately detect an acute bout of acidosis using changes in rumination behavior. Overall, these results suggest that risk of acidosis may have little overall effect on general behavior, with the exception of rumination. Furthermore, an acute bout of acidosis alters behavioral patterns of lactating dairy cows, particularly rumination behavior, and identification of these changes in behavior through repeated measurements may assist in the detection of an acidosis event within a herd.
Xue, B; Yan, T; Ferris, C F; Mayne, C S
2011-03-01
Eight Holstein and 8 Jersey-Holstein crossbred dairy cows (all primiparous) were used in a repeated 2 (genotype) × 2 (concentrate level) factorial design study involving a total of 4 periods (each of 6-wk duration), designed to examine the effect of cross-breeding on the efficiency of milk production and energy use. The 4 periods began at 5, 11, 27, and 33 wk of lactation, respectively. Animals were offered a completely mixed diet containing grass silage and concentrates, with the level of concentrate in the diet either 30 or 70% of dry matter (DM). During the final 10 d of each period, ration digestibility and energy use was measured, the latter in indirect open-circuit respiration calorimeters. No significant interaction existed between cow genotype and dietary concentrate level for feed intake, milk production, or any of the energy use parameters measured. Across the 2 genotypes, total DM intake, milk yield, and milk protein and lactose concentrations increased with increasing dietary concentrate level. Thus, cows offered the high-concentrate diet had a higher gross energy (GE) intake, and a higher energy output in feces, urine, milk as heat, and a higher metabolizable energy (ME) intake as a proportion of GE intake and as a proportion of digestible energy intake. Across the 2 levels of concentrates, the Jersey-Holstein cows had a significantly higher total DM intake and body condition score, and produced milk with higher fat, protein, and energy concentrations, compared with those of the Holstein cows. In addition, the Jersey-Holstein cows had a significantly higher GE intake and energy output in urine, methane, and milk. However, crossbreeding had no significant effect on energy digestibility or metabolizability, energy partitioning between milk and body tissue, or the efficiency of ME use for lactation. Relating ME intake to milk energy output and heat production indicated that crossbreeding did not influence ME requirement for maintenance or energy efficiencies. The energy metabolism data were also used to compare energy efficiencies between "early" (data pooled for the first 2 periods) and "late" (data pooled for the second 2 periods) stages of lactation. Stage of lactation had no effect on energy digestibility or metabolizability, whereas increasing stage of lactation increased the rate of energy partitioning into body tissue and reduced the rate of energy partitioning into milk, irrespective of cow genotype. In conclusion, crossbreeding of Holstein dams with Jersey sires had no adverse effects on the overall production efficiency of Holstein dairy cows in terms of milk production, efficiency of ME use for lactation, and energy partitioning between milk and body tissue. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Mellau, LSB; Jørgensen, RJ; Bartlett, PC; Enemark, JMD; Hansen, AK
2004-01-01
The objective of this experiment was to determine the effect of dietary grain on calcium homeostasis. Six rumen-fistulated dairy cows with 3 or more previous lactations and no history of parturient paresis were randomly assigned to a sequence of diets in a crossover study with 4 periods of 10 days each. Dietary treatments were: A control ration consisting of wrap grass silage alone (1), the control ration supplemented with ammonium chloride and ammonium sulphate salt solution (2), control ration following a period with supplementation (3) and control ration supplemented with increasing amounts of barley from 4 to 10 kg/cow per day, expected to produce subclinical rumen acidosis (4). Daily intake of the diets was adjusted to 14 kg DM/cow per day. On day 11, the calcium-regulating mechanisms in cows were challenged until recumbency by a standardized intravenous EDTA infusion and cows were left to recover spontaneously. Anion supplementation and the feeding of highly fermentable carbohydrate lowered urine pH below 7.0 due to subclinical acidosis. During spontaneous recovery from EDTA induced hypocalcaemia, the cows more quickly regained a whole blood free calcium concentration of 1.00 mmol/L if they had most recently been supplemented with either anionic salts or with increasing amounts of barley, as compared to the basic ration. It is concluded that so-called slug-feeding or 'steaming up' with highly fermentable carbohydrates before parturition in milk fever susceptible cows enhanced calcium homeostasis similar to the effect seen in cows on anionic diets. PMID:15663074
Leiva, T; Cooke, R F; Brandão, A P; Schubach, K M; Batista, L F D; Miranda, M F; Colombo, E A; Rodrigues, R O; Junior, J R G; Cerri, R L A; Vasconcelos, J L M
2017-06-01
This study compared vaginal temperature, physiologic, and productive parameters in lactating dairy cows supplemented or not with Omnigen-AF (Phibro Animal Health, Teaneck, NJ) during the summer months in a tropical environment. Thirty-two lactating, primiparous (n = 16) and multiparous (n = 16) pregnant Holstein × Gir cows were ranked by parity, days in milk, body weight, and body condition score (BCS), and assigned to receive (SUPP; n = 16) or not (CON; n = 16) Omnigen-AF (Phibro Animal Health, Teaneck, NJ) at 56 g/cow daily (as-fed basis). During the experimental period (d -6 to 56), cows were maintained in a single drylot pen with ad libitum access to water and a total mixed ration, and milked twice daily. Cows received Omnigen-AF mixed with 200 g of corn (as-fed basis) after the daily morning milking through self-locking head gates, whereas CON cows concurrently received 56 g of kaolin mixed with 200 g of corn. For feed intake evaluation, cows from both treatments were randomly divided in 4 groups of 8 cows each, and allocated to 8 individual feeding stations for 3 d. Intake was evaluated 4 times per group from d 1 to 56. From d -6 to 0, d 15 to 28, and d 43 to 56, cow vaginal temperature was recorded hourly. Environmental temperature-humidity index (THI) was also recorded hourly from d 15 to 28 and d 43 to 56. Cows were evaluated for body weight and BCS on d -6 and 56, individual milk production was recorded daily from d -6 to 56, and milk samples were collected on d -6, 0, 7, 14, 21, 28, 35, 42, 49, and 56 for analyses of somatic cell count and milk components. Blood samples were collected on d -6, -3, 0, 9, 15, 18, 21, 24, 27, 36, 45, 48, 51, 54, and 56. Results from samples or observations collected from d -6 to 0 were included as an independent covariate in each respective analysis. Environmental THI was 74.2 ± 0.5 and cows were exposed to THI >68 for 633 h within a total of 672 h of evaluation. Cows assigned to CON had greater vaginal temperature on d 28, 43, 45, and from d 48 to 55 (by 0.38 to 0.52%), as well as greater mean somatic cell count (by 97%) and serum haptoglobin concentrations (by 89%) compared with SUPP cows. Cows assigned to SUPP had greater mean dry matter intake (by 7%), BCS on d 56 (by 11%), and mean serum insulin concentrations (by 35%) compared with CON cows. Hence, SUPP ameliorated hyperthermia, improved nutritional status, and modulated systemic and mammary gland immune parameters in lactating dairy cows exposed to heat stress conditions. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Zhou, Z; Trevisi, E; Luchini, D N; Loor, J J
2017-08-01
The liver functionality index (LFI) represents an assessment of transition cow metabolic health by measuring changes in biomarkers associated with liver plasma protein synthesis (albumin), lipoprotein synthesis (cholesterol), and heme catabolism (bilirubin). The present analysis was conducted to determine the role of peripartal rumen-protected Met or choline (CHOL) supplementation on LFI groupings, and to assess relationships with performance, inflammation, oxidative stress status, and plasma AA profiles. A cohort of 40 multiparous Holstein cows that were part of a randomized complete block design with 2 × 2 factorial arrangement of Met (Smartamine M, Adisseo NA, Alpharetta, GA) and CHOL (ReaShure, Balchem Inc., New Hampton, NY) level (with or without) were used. From -21 d to calving, cows received the same close-up diet and were assigned randomly to each treatment. From calving to 30 d, cows were on the same postpartal diet and continued to receive the same treatments until 30 d. Addition of Met was adjusted daily at 0.08% dry matter of diet and CHOL was fed at 60 g/cow per day. Liver (-10, 7, 20, and 30 d) and blood (-10, 4, 8, 20, and 30 d) samples were harvested for biomarker analyses. Cows were ranked retrospectively and assigned to low (LLFI, LFI <0) and high (HLFI, LFI >0) LFI groups regardless of Met or CHOL supplementation. Compared with cows in LLFI, close-up and lactation DMI, milk yield, milk fat yield, and milk protein yield were greater in HLFI cows. As expected, cows in LLFI had lower plasma cholesterol and albumin but greater bilirubin concentrations around parturition. Plasma haptoglobin concentration was also lower in HLFI cows, but plasma paraoxonase and hepatic total and reduced hepatic glutathione concentrations were greater. Although higher concentrations of His, Met, and Trp, as well as a tendency for greater Ile, were observed in HLFI cows, overall essential AA concentrations did not differ with LFI status. In contrast, overall concentrations of nonessential AA were greater in HLFI cows due to greater circulating concentrations of Ala, Asn, Gln, Pro, and Ser. Similarly, overall concentrations of total AA and total sulfur-containing compounds were greater in cows with HLFI. Feeding Met compared with CHOL led to a tendency for more cows classified as HLFI. Overall, results support the broader application of the LFI in the management of transition cows. In that context, the fact that precalving concentrations of compounds such as reduced glutathione, total sulfur-containing compounds, Met, Tau, and homocysteine differed between HLFI and LLFI independent of Met or CHOL feeding also underscores their potential for monitoring cows that might be at a greater risk of developing health problems after calving. Further studies on the applicability of these biomarkers to monitor transition success appears warranted. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Braverman, Y; Chizov-Ginzburg, A; Saran, A; Winkler, M
1999-12-01
A study was conducted to assess the role of houseflies, Musca domestica L. in harbouring Corynebacterium pseudotuberculosis in dairy farms in Israel. The bacterium was isolated in June 1993 from 40 wild houseflies which had fed on a lesion on a cow, and from 28 laboratory flies fed on contaminated milk from a cow infected with mastitis. The bacterium was recovered from the body surface of 10 flies (of a total of 160) 10 min after being dipped entirely in a bacterial broth. The bacterium was recovered from the body surface of 10 flies (of a total of 40) 5 min after being fed on contaminated milk. When 110 flies were fed on contaminated sugar cubes, the bacterium was recovered externally from 70 flies 5 min later, and from an additional 20 flies 10 min after feeding. Of 110 flies, 80 excreted bacteria in saliva from 5 min to 3 h after feeding on contaminated milk. Bacteria were isolated from the intestine of 40 of 60 flies between 1 h and 4 h after feeding on contaminated milk. Bacteria were found in the faeces of 30 of 60 flies, between 1 h and 4 h after feeding on contaminated milk. In the light of these findings, and given the fact that this species of fly has a predilection to feed on milk residues of cow teats, the authors concluded that the housefly plays an important role in harbouring and disseminating C. pseudotuberculosis in dairy herds in Israel. In contrast, stable flies (Stomoxys calcitrans L.) are not important in the habouring and dissemination of the bacteria, since bacteria were not recovered 5, 10, 15, 30 min, 2 h or 24 h after membrane feeding on a mixture of bacterial broth and blood.
Feeding soywaste or pellet on performance and carcass characteristics of post-weaning kids.
Rahman, Mohammad Mijanur; Khadijah, Wan Embong Wan; Abdullah, Ramli Bin
2016-08-01
Twelve Jermasia kids were individually housed in pens to study the effects of soywaste on growth performance and carcass characteristics and to compare such effects with commercial pellet. Kids were divided into a pellet group and a soywaste group, including six kids (3 males and 3 females) in each group. Pellet or soywaste was offered to kids at a rate of 2.0 % dry matter (DM) of body weight/day in addition to Napier grass ad libitum. In last 10 days of experiment, kids were housed in metabolism crates for faeces collection. At the end of the experiment, three males from each group were slaughtered. Kids fed soywaste diet consumed more grass and neutral detergent fibre (NDF) than those fed pellet. The same trend was found for the digestibilities of DM, organic matter (OM) and NDF. Conversely, kids fed soywaste diet consumed less soywaste supplement than kids fed pellet. No treatment effects were observed on total intakes of DM, OM and crude protein (CP) including CP digestibility. Similarly, no effects were found on carcass and non-carcass components, except for lean, lean to fat ratio and kidney weight which were higher for kids fed soywaste diet. Results indicate that soywaste is effective as a feed for growing kids.
Preynat, A; Lapierre, H; Thivierge, M C; Palin, M F; Matte, J J; Desrochers, A; Girard, C L
2009-04-01
The present experiment was undertaken to determine if the effects of supplementary folic acid on lactational performance were caused by improved methylneogenesis and if the supply in vitamin B(12) could affect this metabolic pathway. In this eventuality, supplementary Met, a major source of preformed methyl groups, should reduce the requirements for these vitamins. Sixty multiparous Holstein cows were assigned to 10 blocks of 6 cows each according to their previous milk production. Within each block, 3 cows were fed a diet estimated to supply Met as 1.83% metabolizable protein and 3 cows were fed the same diet supplemented with 18 g of rumen-protected methionine (RPM) to supply Met as 2.23% of metabolizable protein. Within each level of Met, cows received no vitamin supplement or weekly intramuscular injections of 160 mg of folic acid alone or combined with 10 mg of vitamin B(12) from 3 wk before to 16 wk after calving. There was no treatment effect on dry matter intake during pre- and postcalving periods: 13.4 +/- 0.4 and 21.8 +/- 0.4 kg/d, respectively. Milk production was not affected by RPM supplementation. Folic acid and vitamin B(12) given together tended to increase milk production during the 16 wk of lactation. This effect was more pronounced during the first 4 wk of lactation: 37.5, 37.7, and 40.3 +/- 0.9 kg/d for cows receiving no vitamin supplement, folic acid alone, or folic acid combined with vitamin B(12), respectively. Milk fat yield was not affected by treatments. Lactose, crude protein, and total solid yields were greater, in early lactation, in cows injected with folic acid and vitamin B(12) together but this effect diminished as lactation progressed. Intramuscular injections of folic acid alone or combined with vitamin B(12) tended to decrease plasma concentrations of homocysteine from 5.51 microM with no vitamin supplement to 4.54 and 4.77 +/- 0.37 microM, respectively. Results of the present experiment suggest that the effects of the combined supplement of folic acid and vitamin B(12) on lactational performance of dairy cows were not due to an improvement in methyl groups supply, because RPM supplement, a source of preformed methyl groups, did not alter the cow responsiveness to vitamin supplements.
Grass Grows, the Cow Eats: A Simple Grazing Systems Model with Emergent Properties
ERIC Educational Resources Information Center
Ungar, Eugene David; Seligman, Noam G.; Noy-Meir, Imanuel
2004-01-01
We describe a simple, yet intellectually challenging model of grazing systems that introduces basic concepts in ecology and systems analysis. The practical is suitable for high-school and university curricula with a quantitative orientation, and requires only basic skills in mathematics and spreadsheet use. The model is based on Noy-Meir's (1975)…
USDA-ARS?s Scientific Manuscript database
Supplementing with limiting AA should allow less CP to be fed; reducing dietary CP will decrease urinary N and ameliorate the environmental impact of dairying. Rumen-protected Met (RPM), fed as Mepron to provide 9 g/d of absorbable Met, allowed similar milk yield at 15.8% CP as at 17.1% CP without R...
Piccioli-Cappelli, F; Loor, J J; Seal, C J; Minuti, A; Trevisi, E
2014-12-01
Diet composition defines the amount and type of nutrients absorbed by dairy cows. Endocrine-metabolic interactions can influence these parameters, and so nutrient availability for the mammary gland can significantly vary and affect milk yield and its composition. Six dairy cows in early and then late lactation received, for 28 d in a changeover design, 2 diets designed to provide, within the same stage of lactation, similar amounts of rumen fermentable material but either high starch plus sugar (HS) content or low starch plus sugar content (LS). All diets had similar dietary crude protein and calculated supply of essential amino acids. Dry matter intake within each stage of lactation was similar between groups. Milk yield was similar between groups in early lactation, whereas a higher milk yield was observed in late lactation when feeding HS. At the metabolic level, the main difference observed between the diets in both stages of lactation was lower blood glucose in cows fed LS. The lower glucose availability during consumption of LS caused substantial modifications in the circulating and postprandial pattern of metabolic hormones. Feeding LS versus HS resulted in an increase in the ratio of bovine somatotropin to insulin. This increased mobilization of lipid reserves resulted in higher blood concentrations of nonesterified fatty acids and β-hydroxybutyrate, which contributed to the higher milk fat content in both stages of lactation in the LS group. This greater recourse to body fat stores was confirmed by the greater loss of body weight during early lactation and the slower recovery of body weight in late lactation in cows fed LS. The lower insulin to glucagon ratio observed in cows fed LS in early and late lactation likely caused an increase in hepatic uptake and catabolism of amino acids, as confirmed by the higher blood urea concentrations. Despite the higher catabolism of amino acids in LS in early lactation, similar milk protein output was observed for both diets, suggesting similar availability of amino acids for peripheral tissue and mammary gland. The latter could be the result of sparing of amino acids at the gut level due to starch that escaped from the rumen, and to the balanced amino acid profile of digestible protein. This last aspect appears worthy of further research, with the aim to enhance the efficiency of protein metabolism of dairy cows, reducing environmental nitrogen pollution without affecting milk yield potential.
Effects of rumen-protected methionine, lysine, and histidine on lactation performance of dairy cows.
Giallongo, F; Harper, M T; Oh, J; Lopes, J C; Lapierre, H; Patton, R A; Parys, C; Shinzato, I; Hristov, A N
2016-06-01
The objective of this study was to evaluate the effects of supplementing a metabolizable protein (MP)-deficient diet with rumen-protected (RP) Met, Lys, and His, individually or combined, on the performance of lactating dairy cows. The experiment was a 9-wk randomized complete block design with 72 Holstein cows. Following a 2-wk covariate period, cows were blocked by days in milk, milk yield, and parity, and randomly assigned to 1 of the following 6 treatments: (1) MP-adequate diet [MPA; +243g/d MP balance, according to the National Research Council (2001) requirements]; (2) MP-deficient diet (MPD; -54g/d MP balance); (3) MPD supplemented with RPMet (MPDM); (4) MPD supplemented with RPLys (MPDL); (5) MPD supplemented with RPHis (MPDH); and (6) MPD supplemented with RPMet, RPLys, and RPHis (MPDMLH). Dry matter intake (DMI), yields of milk and milk components (fat, protein, lactose) and energy-corrected milk (ECM), feed and ECM feed efficiencies, and milk and plasma urea N were decreased by MPD, compared with MPA. Supplementation of the MPD diet with RPLys increased milk protein content and plasma glucose concentration and tended to increase milk urea N. Addition of RPHis tended to increase DMI, increased milk protein concentration, and numerically increased yields of milk fat, protein, and ECM. In addition to the trends for increased DMI and milk fat content, and higher milk protein concentration, supplementation of the 3 RP AA also increased yields of milk fat, protein, and ECM and ECM feed efficiency. Relative to MPA, milk N efficiency tended to be increased by MPD. Concentrations of plasma essential AA (except Met and Thr) were decreased by MPD compared with MPA. Supplementation of RPMet, RPLys, and RPHis increased plasma Met (except for MPDM), Lys, and His concentrations, respectively. Cows fed MPD had lower blood hemoglobin concentration and numerically higher plasma ghrelin than cows fed MPA. Concentration of total saturated fatty acids in milk fat were or tended to be higher for MPD compared with MPA and MPDMLH, respectively. Concentration of total polyunsaturated and yield of milk odd- and branched-chain fatty acids were or tended to be decreased by MPD compared with MPA. Overall, the results of this study confirm our previous data and suggest that His stimulates DMI and the combination of the 3 RP AA (Met, Lys, and His) has the potential to improve milk and milk component yields in dairy cows fed MP-deficient diets. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Carcass and meat quality of Assaf milk fed lambs: Effect of rearing system and sex.
Rodríguez, A B; Landa, R; Bodas, R; Prieto, N; Mantecón, A R; Giráldez, F J
2008-10-01
The effect of sex and rearing system on growth and carcass and meat characteristics of milk fed Assaf lambs was studied. Thirty-six lambs, 18 males and 18 females were used. Twelve lambs remained with their mothers throughout the experiment (NR). Within 24-36h of birth, the rest were housed individually and fed twice a day ad libitum (AAR) or at 70% of ad libitum consumption (RAR) with reconstituted cow's milk. Sex did not affect animal performance, yet females showed higher carcass and non-carcass fat deposits. NR lambs showed greater BWG than AAR fed lambs, and AAR, higher than the RAR. Differences between naturally and artificially reared lambs in CCW and killing out percentage were not significant. Empty digestive tract and mesenteric fat weights were greater for RAR than NR lambs, with the AAR lambs demonstrating intermediate values; conversely, omental fat was greater in NR lambs. Carcass ether extract content was greater for NR lambs, possibly due to the greater growth. Use of ad libitum cow's milk substitute in suckling lambs twice a day resulted in less body weight gain but similar killing out percentages compared to naturally raised lambs. A 70% restricted supply increased the days in suckling and reduced carcass fatness and compactness. Except for water loss, which was less in NR than artificially fed lambs, no differences were found in meat characteristics.
Teller, E; Vanbelle, M; Kamatali, P; Collignon, G; Page, B; Matatu, B
1990-11-01
Four primiparous Holstein-Friesian cows (518 kg average BW) with ruminal and duodenal cannulas were used to examine voluntary intake of direct cut (DC) or wilted (W) grass silage in relation to ruminal characteristics and chewing behavior. Dry matter content of the silages was 17.0 and 38.1%, concentrate DM intake was restricted to 5.0 and 5.3 kg/d, and voluntary DM intake from silages averaged 7.4 and 9.5 kg/d (P = .008), respectively. The acetate/propionate ratio in ruminal fluid decreased from 4.0 on DC to 3.3 on W silage (P = .021). The protein content in milk increased from 26.3 to 27.5 g/liter (P = .042) and the protein yield from 469 to 574 g/d (P = .038). The distribution of concentrates (38% of DM intake) with a mean particle size of .04 cm reduced differences in fecal mean particle size between diets. There was a shift from eating to ruminating on W silage with regard to daily duration (min/d) and number of jaw movements (no./d). However, ruminating index (no./kg DM intake) remained unchanged, irrespective of wilting and chop length of the silages or physiological state of the animals. These results are interpreted to indicate that the time lag for functional density of feed particles in the reticulorumen to increase, as affected by ruminating activity, not rate of reduction of the particle size, limits voluntary intake of grass silage by cattle.
Study on evaluation of silage from pineapple (Ananas comosus) fruit residue as livestock feed.
Gowda, Nisarani Kollurappa Shivakumar; Vallesha, Naglapura Chandrashekara; Awachat, Vaibhav Bhagvan; Anandan, Samireddypalli; Pal, Din Taran; Prasad, Cadaba Srinivasa
2015-03-01
Pineapple is a commercially important fruit crop grown in Asian and African countries. Pineapple fruit residue (PFR) accounts for more than 65% of the processed fruits, and its disposal is a major problem due to its high moisture and sugar content predisposing it to fungal growth and spoilage. Silage technique was adopted to address this problem, and the PFR silage was evaluated for its feeding value. It was observed that on 15th day, the pH of PFR silage was 4.2-4.3 and lactic acid content was 6-8% (DM basis). Combination of 4 parts leafy crown and 1 part peels/pomace was found very ideal to achieve moisture content of 65-70% and produced a good quality silage with minimum fungal count (<3-4 colony forming units) on 15th day of ensiling. Nutritive value in terms of energy and minerals was superior to maize green fodder. Feeding trial in two groups of sheep with 10 numbers in each group fed total mixed ration (TMR) comprising 62% PFR/maize silage and 48% concentrate mixture (DM basis) for 75-day period did not show any adverse effects on nutrient utilization (DM, CP, NDF, ADF), serum biochemical (total protein, creatinine, urea nitrogen, SGOT, SGPT), and mineral profile (Ca, P, Mg, Cu, Zn, Mn) and supported a daily growth rate of 140 g. The overall performance was similar to those sheep fed TMR with maize green fodder silage. Feeding PFR silage replacing hybrid napier green fodder in two groups of cows with eight in each group showed an improvement in average daily milk yield by 3.0 lit per cow and fat content by 0.6 U fed PFR silage-based TMR as compared to cows fed hybrid napier green fodder-based TMR. In both studies (sheep or cows), there was no evidence of metabolic or health-related disorders indicating that PFR silage was effectively utilized. Pineapple fruit residue that was hitherto wasted was successfully converted to silage and was found to be a valuable alternative to conventional green fodder. Ensiling of PFR not only improved the economics of feeding but also helped in overcoming the disposal problem.
García-Torres, S; López-Gajardo, A; Mesías, F J
2016-04-01
This paper evaluates consumer liking and preferences towards organic beef from two production systems allowed by EU regulation: i) free-range and ii) intensive (fattened in feed-lot with organic feedstuff) as compared with conventionally produced beef. Data were obtained in April-May 2014 with a sample of 150 regular beef consumers who completed two tasks: firstly a sensory test where consumers tasted and rated the meats and secondly a conjoint analysis to study beef purchasing preferences. Willingness-to-pay for the different meats was also calculated from conjoint results. Results show that consumers preferred organic-from-concentrate beef at sensory level while organic beef from animals fed on grass was preferred when process characteristics (i.e. farming system) or attributes perceived at the point of purchase (i.e. colour) were evaluated. It was also found that the price-premium for organic beef is over 40%, with organic-fed-on grass beef preferred slightly over that fed-on-concentrate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Han, Hongyan; Wang, Chao; Li, Yanbing; Yu, Zhu; Xu, Qingfang; Li, Guangpeng; Minh, Tang Thuy; Nishino, Naoki
2018-01-01
In order to assess the survival of lactic acid bacteria (LAB) in whole crop maize silage in the gut of dairy cows, one representative silage sample and three different feces samples were collected from dairy cows on three dairy farms in Hua Bei, China and three dairy farms in Kyushu, Japan. The composition of the bacterial community was examined by denaturing gradient gel electrophoresis and quantitative polymerase chain reaction. Lactobacillus acetotolerans was detected in all bunker-made maize silage samples, regardless of the dairy farm or sampling region from which they were sourced. A total of eight LAB species were detected in the maize silage samples, of which three (L. acetotolerans, L. pontis and L. casei) appeared to survive digestion. The populations of L. acetotolerans in silage and feces were 10 6-7 and 10 3-4 copies/g, respectively, indicating that, even for the LAB species showing potential survival in the gut, competition in this niche may be harsh and the population may substantially decrease during the digestion process. It may be difficult for silage LAB to survive in the gut of silage-fed dairy cows, because marked decrease in population can take place during the digestion process, even for surviving species. © 2017 Japanese Society of Animal Science.
Gerloff, B J; Herdt, T H; Wells, W W; Nachreiner, R F; Emery, R S
1986-06-01
Percutaneous liver biopsies and blood samples were obtained from 80 dairy cows in nine Michigan herds over the peripartum period. Thirty-nine cows were fed 17 g of supplemental inositol and 41 were fed a placebo. Liver biopsies were assayed for total myoinositol and triglyceride (TG) concentrations. Blood samples were assayed for serum dextran precipitable cholesterol, nonesterified fatty acids (NEFA), insulin, thyroxine (T4), free (FT4), triiodothyronine (T3) and free T3 (FT3) concentrations. Serum concentrations of insulin and the thyroid hormones decreased near parturition, with lowest concentrations occurring in the immediate postpartum period. Concentrations of T3 correlated well with T4, and the concentrations of free thyroid hormones reflected concentrations of total thyroid hormones. The percentage of hormone in the free fraction remained constant over time. Serum insulin, T3 and T4 were negatively correlated with serum NEFA and liver TG concentrations. Thyroid hormone concentrations were positively correlated with serum dextran precipitable cholesterol concentrations. Inositol supplementation was associated with reduced circulating T3 and FT3 concentrations, but not T4 and FT4 concentrations. Changes in hormone concentrations at parturition and their relationship to liver TG and serum NEFA concentrations were consistent with a metabolic adaptation by the dairy cow to the negative energy balance of early lactation.
Does low IgA in human milk predispose the infant to development of cow's milk allergy?
Järvinen, K M; Laine, S T; Järvenpää, A L; Suomalainen, H K
2000-10-01
We sought a relationship between total and cow's milk-specific IgA levels in colostrum and human milk and subsequent development of cow's milk allergy (CMA) in the breast-fed infant. The study included 87 nursing mothers and their infants (age, 2 d to 7 mo), followed prospectively up to 1 y. At 1 y, 48 mothers (69% with an atopic constitution) had an infant with CMA, verified by clinical cow's milk challenge, eight (38% with an atopic constitution) had a baby who had had protracted infantile colic but no CMA (disease control group), and 31 (23% with an atopic constitution) had a healthy infant. Total breast-milk IgA was measured by radial immunodiffusion, and IgA antibodies to cow's milk were measured by ELISA during the breast-feeding period. The levels of total and cow's milk-specific IgA antibodies in colostrum and human milk were significantly lower in the mothers whose baby later developed CMA [estimated third day value, 0.38 g/L (95% confidence interval, 0. 24-0.82)] than in the ones whose infant remained healthy or had had infantile colic but not CMA [0.82 g/L (95% confidence interval, 0. 99-1.51); p < 0.05]. The infants developed CMA significantly more often if the concentration of total IgA antibodies in milk was <0.25 g/L, when measured between 6 d and 4 wk postpartum [sensitivity, 0. 55; specificity, 0.92; odds ratio, 14.7 (95% confidence interval, 3. 1-70.2); p < 0.001]. The levels of cow's milk-specific IgA positively correlated with the levels of total IgA but not with the development of CMA in the infant. The levels of total or cow's milk-specific IgA did not correlate with maternal atopy. IgA antibodies in colostrum and human milk may prevent antigen entry at the intestinal surface of the breast-fed infant. A low IgA content in human milk may lead to defective exclusion of food antigens and thus predispose an offspring to develop food allergies.
Guo, Yongqing; Wang, Libin; Zou, Yang; Xu, Xiaofeng; Li, Shengli; Cao, Zhijun
2013-12-01
The aims of the experiment were to investigate the variation in ruminal fermentation, milk performance and milk fatty acid profile triggered by induced subacute ruminal acidosis (SARA); and to evaluate the ability of beet pulp (BP) as a replacement for ground maize in order to alleviate SARA. Eight Holstein-Friesian cows were fed four diets (total mixed rations) during four successive periods (each of 17 d): (1) without wheat (W0); (2) with 10% finely ground wheat (FGW) (W10); (3) with 20% FGW (W20); (4) with 20% FGW and 10% pelleted BP (BP10). Inducing SARA by diet W20 decreased the daily mean ruminal pH (6.37 vs. 5.94) and the minimum ruminal pH (5.99 vs. 5.41) from baseline to challenge period. Ruminal concentrations of total volatile fatty acid, propionate, butyrate, valerate and isovalerate increased with the W20 compared with the W0 and W10 treatments. The substitution of BP for maize increased the minimum ruminal pH and molar percentage of acetate and decreased the molar percentage of butyrate. The diets had no effect on dry matter intake (DMI) and milk yield, but the milk fat percentage and yield as well as the amount of fat-corrected milk was reduced in the W20 and BP10 treatments. The cows fed the W20 diet had greater milk concentrations of C11:0, C13:0, C15:0, C14:1, C16:1, C17:1, C18:2n6c, C20:3n6, total polyunsaturated fatty acids (FA) and total odd-chain FA, and lower concentrations of C18:0 and total saturated FA compared with the cows fed the W0 diet. Therefore, it can be concluded that changes in ruminal fermentation, milk fat concentration and fatty acid profile are highly related to SARA induced by feeding high FGW diets, and that the substitution of BP for maize could reduce the risk of SARA in dairy cows.
21 CFR 573.180 - Anhydrous ammonia.
Code of Federal Regulations, 2010 CFR
2010-04-01
... of manufacture; a statement that additional protein should not be fed to lactating dairy cows producing less than 32 pounds of milk per day nor beef cattle consuming less than 1 percent of body weight...
Kowalczyk-Zieba, I; Woclawek-Potocka, I; Piskula, M K; Piotrowska-Tomala, K K; Boruszewska, D; Bah, M M; Siemieniuch, M J; Skarzynski, D J
2011-12-01
The present study compared the changes in isoflavone (daidzein and genistein) and their metabolite (equol and para-ethyl-phenol) concentrations in the blood plasma of cows with induced mastitis and metritis after feeding with soy bean. Sixteen cows were divided into four groups: control for mastitis group, cows with induced mastitis group, control for metritis group, and cows with induced metritis group. All cows were fed a single dose of 2.5 kg of soy bean and then blood samples were taken from the jugular vein for 8 h at predetermined intervals. The concentrations of soy bean-derived isoflavones and their active metabolites were measured in the blood plasma on HPLC system. β-Glucuronidase activity in the blood plasma of cows was measured by fluorometric method. In the blood plasma of cows with induced mastitis and metritis, we found considerably higher concentrations and time-dependent increase in isoflavone metabolites (equol and para-ethyl-phenol) with reference to cyclic cows (P < 0.05). Moreover, we noticed significant decrease of genistein in the blood plasma of the cows with induced metritis compared with control cows (P < 0.05). In addition, in the blood plasma of the cows with induced metritis, we found an increase in β-glucuronidase activity compared with control cows (P < 0.05). In conclusion, health status of the females influenced the concentrations of isoflavone metabolites in the blood plasma of the cows. Experimentally induced mastitis and metritis increased isoflavone absorption, biotransformation and metabolism. Therefore, we suggest that cows with induced mastitis and metritis are more exposed to active isoflavone metabolite actions than healthy cows. Copyright © 2011. Published by Elsevier Inc.
Mirzad, Ahmad Nawid; Tada, Takashi; Ano, Hitoshi; Kobayashi, Ikuo; Yamauchi, Takenori; Katamoto, Hiromu
2018-01-01
This study aims to evaluate the oxidative stress during hot summer season using serum oxidative stress biomarkers and elucidate the effects of serum antioxidant vitamin levels in dairy and beef cows in a daytime grazing system. Blood samples were collected once a month from eight Holstein Friesian (HF) and 10 Japanese Black (JB) cows from November 2013 to October 2014. Serum values of derivatives of reactive oxygen metabolites (d-ROMs) tended to be higher in March in both breeds and those in HF cows were kept at higher (P<0.001) levels than those in JB cows during the study period. Serum levels of biological antioxidant potential (BAP) in both breeds were maintained at almost the same values during study period. The OSI [(d-ROMs/BAP) × 100] values in both breeds showed similar seasonal changes, i. e. increase from December to March and decrease from March to August or September. In addition, the OSI values in HF cows were kept at higher (P<0.01) levels than those in JB cows during the study period. Serum concentrations of α-tocopherol, β-carotene, blood urea nitrogen and total cholesterol showed similar seasonal changes in both breeds, low in the winter and high from spring to summer, which may be attributed to the pasture grass intake. Opposite changes in OSI values and serum concentrations of α-tocopherol and β-carotene indicated that antioxidant vitamin levels could affect oxidative stress status.
MIRZAD, Ahmad Nawid; TADA, Takashi; ANO, Hitoshi; KOBAYASHI, Ikuo; YAMAUCHI, Takenori; KATAMOTO, Hiromu
2017-01-01
This study aims to evaluate the oxidative stress during hot summer season using serum oxidative stress biomarkers and elucidate the effects of serum antioxidant vitamin levels in dairy and beef cows in a daytime grazing system. Blood samples were collected once a month from eight Holstein Friesian (HF) and 10 Japanese Black (JB) cows from November 2013 to October 2014. Serum values of derivatives of reactive oxygen metabolites (d-ROMs) tended to be higher in March in both breeds and those in HF cows were kept at higher (P<0.001) levels than those in JB cows during the study period. Serum levels of biological antioxidant potential (BAP) in both breeds were maintained at almost the same values during study period. The OSI [(d-ROMs/BAP) × 100] values in both breeds showed similar seasonal changes, i. e. increase from December to March and decrease from March to August or September. In addition, the OSI values in HF cows were kept at higher (P<0.01) levels than those in JB cows during the study period. Serum concentrations of α-tocopherol, β-carotene, blood urea nitrogen and total cholesterol showed similar seasonal changes in both breeds, low in the winter and high from spring to summer, which may be attributed to the pasture grass intake. Opposite changes in OSI values and serum concentrations of α-tocopherol and β-carotene indicated that antioxidant vitamin levels could affect oxidative stress status. PMID:29142148
[Iron nutrition in Mapuche infants fed with human milk (2d phase)].
Franco, E; Hertrampf, E; Rodríguez, E; Illanes, J C; Palacios, L; Llaguno, S; Lettelier, A
1990-01-01
Blood hemoglobin, serum iron, total iron binding capacity (TIBC) and serum ferritin were measured in 140 healthy rural mapuche (southern Chile's indigenous ethnic group) infants aged 8 to 15 months: 90 had been exclusively breast fed for the first 5 or 6 months of life, then solid foods were introduced but cow's milk was never given to them. The remaining 50, which were all weaned at nearly 4 months of age and then given cow's milk and solid foods at the corresponding age, were designated as controls. Anemia was detected in 4.5% of breast fed infants and in 38% of controls. Evidence of iron deficient erythropoiesis was found in 5% and 81% of cases and controls, respectively. Human milk apparently protects this ethnic group from iron deficiency anemia and this protection seems to be better in mapuche infants than in other groups of chilean infants, because these late have shown 30% incidence of anemia around the first year of life in other studies. More studies on differences in iron nutritional state among mapuche and non mapuche are needed and are under way.
Roche, J R; Meier, S; Heiser, A; Mitchell, M D; Walker, C G; Crookenden, M A; Riboni, M Vailati; Loor, J J; Kay, J K
2015-10-01
Precalving feeding level alters postcalving energy balance, dry matter intake, the liver and adipose tissue transcriptome, hepatic lipidosis, and the risk of metabolic diseases in both high-production cows consuming total mixed rations and moderate-production cows grazing pasture. We hypothesized that the reported benefits of a controlled restriction before calving are dependent on precalving body condition score (BCS): low BCS animals would not benefit from reduced feeding levels precalving, but high BCS cows would have metabolic and immunomodulatory profiles indicative of an improved health status. One hundred sixty-one days before calving, 150 cows were allocated randomly to 1 of 6 treatment groups (n = 25) in a 2 × 3 factorial arrangement: 2 precalving BCS categories (4.0 and 5.0; based on a 10-point scale: BCS4 and BCS5, respectively) and 3 levels of energy intake during the 3 wk preceding calving (75, 100, and 125% of estimated requirements). Cows in the BCS4 and BCS5 groups were managed through late lactation to ensure that target calving BCS was achieved at dry off. Cows were then fed to maintain this BCS target until 3 wk before expected calving date, at which point they were managed within their allotted precalving energy intake treatments by offering different allowances of fresh pasture/cow per day. Milk production, body weight, and BCS were measured weekly; blood was sampled weekly before and after calving and on d 0, 1, 2, 3, and 4 relative to calving. Aspirated plasma was assayed for nonesterified fatty acids, β-hydroxybutyrate, total protein, albumin, cholesterol, haptoglobin, IL-1β, IL-6, total antioxidant capacity, and reactive oxygen species. Liver was sampled wk 1, 2, and 4 postcalving for triacylglycerol analysis. Results confirm that precalving BCS and precalving feeding level have both independent and interdependent effects on production and health characteristics of transition dairy cows. Irrespective of precalving BCS, a controlled restriction precalving reduced the net release of nonesterified fatty acids from adipose tissue postpartum and increased plasma calcium concentrations, reducing the risk of milk fever. Fatter cows produced more milk but lost more BCS postcalving and had greater blood β-hydroxybutyrate concentrations and increased hepatic lipidosis. In comparison, after calving, indicators of reduced immune competence were accentuated in BCS4 cows subjected to a feed restriction before calving, probably increasing the risk of infectious diseases. It would appear from these results that optimally conditioned cows will benefit from a short-term (2-3 wk) controlled feed restriction (75-90% of requirements), whereas cows in less than optimal condition should be fed to requirements before calving. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A model to estimate insulin sensitivity in dairy cows.
Holtenius, Paul; Holtenius, Kjell
2007-10-11
Impairment of the insulin regulation of energy metabolism is considered to be an etiologic key component for metabolic disturbances. Methods for studies of insulin sensitivity thus are highly topical. There are clear indications that reduced insulin sensitivity contributes to the metabolic disturbances that occurs especially among obese lactating cows. Direct measurements of insulin sensitivity are laborious and not suitable for epidemiological studies. We have therefore adopted an indirect method originally developed for humans to estimate insulin sensitivity in dairy cows. The method, "Revised Quantitative Insulin Sensitivity Check Index" (RQUICKI) is based on plasma concentrations of glucose, insulin and free fatty acids (FFA) and it generates good and linear correlations with different estimates of insulin sensitivity in human populations. We hypothesized that the RQUICKI method could be used as an index of insulin function in lactating dairy cows. We calculated RQUICKI in 237 apparently healthy dairy cows from 20 commercial herds. All cows included were in their first 15 weeks of lactation. RQUICKI was not affected by the homeorhetic adaptations in energy metabolism that occurred during the first 15 weeks of lactation. In a cohort of 24 experimental cows fed in order to obtain different body condition at parturition RQUICKI was lower in early lactation in cows with a high body condition score suggesting disturbed insulin function in obese cows. The results indicate that RQUICKI might be used to identify lactating cows with disturbed insulin function.
Zaher, Manal Mohamed; Ahmed, Eman Mohamed; Morsy, Amal Abd El Alim
2014-01-01
Cow's milk protein allergy (CMPA) is common in infants with variable clinical presentation including varied gastrointestinal manifestation. Cow's milk protein allergy chiefly, involving occurs in children below the age of 3 years, successful therapy depends on completely eliminating cow's milk proteins (CMP) from the child's diet. Ideally, with the replacement of hypo or an allergenic food. Symptoms suggestive of CMPA may be encountered in approximately 5 to 15% of infants emphasizing the importance of controlled elimination/milk challenge procedures. We report on an Egyptian male infant, who developed frequent attacks of hematemesis when begin to eat foods other than breast milk including cow's milk and its dairy products at the age of three months. Possible cow's milk protein allergy was suspected. Further diagnostic work-up was done including: Hb, hematocrit, MCV: iron, ferritin, CRP, occult blood in stools, antibodies to H-pylori and upper GIT endoscopy and biopsy from snip of duodenal mucosa. Measurement of serum cow milk protein specific IgE by radio allegro sorbent test (RAST) technique (immune CAP specific IgE method) and results revealed cow's milk protein allergy. It is concluded that cow's milk protein allergy should be considered in cases of hematemesis presented in early infancy in infants who fed cow's milk early and that hematemesis should be added to the list of clinical presentation of CMPA.
Nieman, C C; Steensma, K M; Rowntree, J E; Beede, D K; Utsumi, S A
2015-12-01
The throughput of automatic milking systems (AMS) is likely affected by differential traffic behavior and subsequent effects on the milking frequency and milk production of cows. This study investigated the effect of increasing stocking rate and partial mixed ration (PMR) on the milk production, dry matter intake (DMI), feed conversion efficiency (FCE) and use of AMS by two genotypes of Holstein-Friesian cows in mid-lactation. The study lasted 8 weeks and consisted in a factorial arrangement of two genotypes of dairy cattle, United States Holstein (USH) or New Zealand Friesian (NZF), and two pasture-based feeding treatments, a low stocking rate system (2 cows/ha) fed temperate pasture and concentrate, or a high stocking rate system (HSR; 3 cows/ha) fed same pasture and concentrate plus PMR. A total of 28 cows, 14 USH and 14 NZF, were used for comparisons, with 12 cows, six USH and six NZF, also used for tracking of animal movements. Data were analyzed by repeated measure mixed models for a completely randomized design. No differences (P>0.05) in pre- or post-grazing herbage mass, DMI and FCE were detected in response to increases in stocking rate and PMR feeding in HSR. However, there was a significant (P<0.05) grazing treatment×genotype×week interaction on milk production, explained by differential responses of genotypes to changes in herbage mass over time (P<0.001). A reduction (P<0.01) in hours spent on pasture was detected in response to PMR supplementation in HSR; this reduction was greater (P=0.01) for USH than NZF cows (6 v. 2 h, respectively). Regardless of the grazing treatment, USH cows had greater (P=0.02) milking frequency (2.51 v. 2.26±0.08 milkings/day) and greater (P<0.01) milk yield (27.3 v. 16.0±1.2 kg/day), energy-corrected milk (24.8 v. 16.5±1.0 kg/day), DMI (22.1 v. 16.6±0.8 kg/day) and FCE (1.25 v. 1.01±0.06 kg/kg) than NZF cows. There was also a different distribution of milkings/h between genotypes (P<0.001), with patterns of milkings/h shifting (P<0.001) as a consequence of PMR feeding in HSR. Results confirmed the improved FCE of grazing dairy cows with greater milk production and suggested the potential use of PMR feeding as a tactical decision to managing HSR and milkings/day in AMS farms.
Hosseini, Afshin; Tariq, Muhammad Rizwan; Trindade da Rosa, Fernanda; Kesser, Julia; Iqbal, Zeeshan; Mora, Ofelia; Sauerwein, Helga; Drackley, James K.; Trevisi, Erminio; Loor, Juan J.
2015-01-01
The effects of dietary energy level and 2,4-thiazolidinedione (TZD) injection on feed intake, body fatness, blood biomarkers and TZD concentrations, genes related to insulin sensitivity in adipose tissue (AT) and skeletal muscle, and peroxisome proliferator-activated receptor gamma (PPARG) protein in subcutaneous AT (SAT) were evaluated in Holstein cows. Fourteen nonpregnant nonlactating cows were fed a control low-energy (CON, 1.30 Mcal/kg) diet to meet 100% of estimated nutrient requirements for 3 weeks, after which half of the cows were assigned to a higher-energy diet (OVE, 1.60 Mcal/kg) and half of the cows continued on CON for 6 weeks. All cows received an intravenous injection of TZD starting 2 weeks after initiation of dietary treatments and for an additional 2 weeks, which served as the washout period. Cows fed OVE had greater energy intake and body mass than CON, and TZD had no effect during the administration period. The OVE cows had greater TZD clearance rate than CON cows. The lower concentration of nonesterified fatty acids (NEFA) and greater concentration of insulin in blood of OVE cows before TZD injection indicated positive energy balance and higher insulin sensitivity. Administration of TZD increased blood concentrations of glucose, insulin, and beta-hydroxybutyrate (BHBA) at 2 to 4 weeks after diet initiation, while the concentration of NEFA and adiponectin (ADIPOQ) remained unchanged during TZD. The TZD upregulated the mRNA expression of PPARG and its targets FASN and SREBF1 in SAT, but also SUMO1 and UBC9 which encode sumoylation proteins known to down-regulate PPARG expression and curtail adipogenesis. Therefore, a post-translational response to control PPARG gene expression in SAT could be a counteregulatory mechanism to restrain adipogenesis. The OVE cows had greater expression of the insulin sensitivity-related genes IRS1, SLC2A4, INSR, SCD, INSIG1, DGAT2, and ADIPOQ in SAT. In skeletal muscle, where PPARA and its targets orchestrate carbohydrate metabolism and fatty acid oxidation, the OVE cows had greater glyceroneogenesis (higher mRNA expression of PC and PCK1), whereas CON cows had greater glucose transport (SLC2A4). Administration of TZD increased triacylglycerol concentration and altered expression of carbohydrate- and fatty acid oxidation-related genes in skeletal muscle. Results indicate that overfeeding did not affect insulin sensitivity in nonpregnant, nonlactating dairy cows. The bovine PPARG receptor appears TZD-responsive, with its activation potentially leading to greater adipogenesis and lipogenesis in SAT, while differentially regulating glucose homeostasis and fatty acid oxidation in skeletal muscle. Targeting PPARG via dietary nutraceuticals while avoiding excessive fat deposition might improve insulin sensitivity in dairy cows during times such as the peripartal period when the onset of lactation naturally decreases systemic insulin release and sensitivity in tissues such as AT. PMID:26571137
Macmillan, K; Gao, X; Oba, M
2017-02-01
The objectives of this study were to determine whether feeding behavior is different between cows at higher or lower risk for subacute ruminal acidosis (SARA) and whether increasing feeding frequency could be used to reduce the severity of SARA in higher-risk cows. In preliminary studies, 16 ruminally cannulated lactating cows were fed high-grain diets once per day to increase the risk of SARA. After a 17-d diet adaptation, ruminal pH was measured every 30 s over 24 h. Cows were classified as higher-risk (n = 7) or lower-risk (n = 9) for SARA based on an acidosis index (area of pH <5.8/dry matter intake). Feeding behavior was recorded every 5 min over the same 24 h. The 24-h observation period was analyzed in 3 periods of 8 h after feeding. Although there was no significant difference in overall dry matter intake, higher-risk cows spent more time eating in the first 8-h period after feeding than lower-risk cows (186 vs. 153 min) and less time eating in the third 8-h period (19 vs. 43 min). In the primary experiment, 8 ruminally cannulated lactating cows were fed a high-grain diet once per day (1×; 0800 h) or 3 times per day (3×; 0800, 1500, and 2000 h) in a crossover design with 21-d periods (16 d of treatment adaptation and 5 d of data collection). Rumen pH and feeding behavior were measured over 72 h. Behavior data were summarized separately for the 3 periods (0800 to 1500, 1500 to 2200, and 2200 to 0800 h). Four cows were categorized as higher-risk and 4 as lower-risk, based on their acidosis index. The 3× feeding reduced eating time between 0800 and 1500 h (99 vs. 145 min) and increased eating time between 2200 and 0800 h (76 vs. 43 min) for all cows, regardless of category, compared with 1× feeding. For higher-risk cows, 3× feeding reduced the area below pH 5.8 (51 vs. 98 pH × min/d), but it did not affect rumen pH for the lower-risk cows. Milk yield was not different between groups, but 3× feeding increased milk fat yield (1.22 vs. 1.08 kg/d) for all cows, regardless of category, compared to 1× feeding. Our results suggest that cows at higher risk for SARA eat less evenly throughout the day; increasing feeding frequency may reduce the severity of SARA in higher-risk cows and may also increase milk fat yield. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Hosseini, Afshin; Tariq, Muhammad Rizwan; Trindade da Rosa, Fernanda; Kesser, Julia; Iqbal, Zeeshan; Mora, Ofelia; Sauerwein, Helga; Drackley, James K; Trevisi, Erminio; Loor, Juan J
2015-01-01
The effects of dietary energy level and 2,4-thiazolidinedione (TZD) injection on feed intake, body fatness, blood biomarkers and TZD concentrations, genes related to insulin sensitivity in adipose tissue (AT) and skeletal muscle, and peroxisome proliferator-activated receptor gamma (PPARG) protein in subcutaneous AT (SAT) were evaluated in Holstein cows. Fourteen nonpregnant nonlactating cows were fed a control low-energy (CON, 1.30 Mcal/kg) diet to meet 100% of estimated nutrient requirements for 3 weeks, after which half of the cows were assigned to a higher-energy diet (OVE, 1.60 Mcal/kg) and half of the cows continued on CON for 6 weeks. All cows received an intravenous injection of TZD starting 2 weeks after initiation of dietary treatments and for an additional 2 weeks, which served as the washout period. Cows fed OVE had greater energy intake and body mass than CON, and TZD had no effect during the administration period. The OVE cows had greater TZD clearance rate than CON cows. The lower concentration of nonesterified fatty acids (NEFA) and greater concentration of insulin in blood of OVE cows before TZD injection indicated positive energy balance and higher insulin sensitivity. Administration of TZD increased blood concentrations of glucose, insulin, and beta-hydroxybutyrate (BHBA) at 2 to 4 weeks after diet initiation, while the concentration of NEFA and adiponectin (ADIPOQ) remained unchanged during TZD. The TZD upregulated the mRNA expression of PPARG and its targets FASN and SREBF1 in SAT, but also SUMO1 and UBC9 which encode sumoylation proteins known to down-regulate PPARG expression and curtail adipogenesis. Therefore, a post-translational response to control PPARG gene expression in SAT could be a counteregulatory mechanism to restrain adipogenesis. The OVE cows had greater expression of the insulin sensitivity-related genes IRS1, SLC2A4, INSR, SCD, INSIG1, DGAT2, and ADIPOQ in SAT. In skeletal muscle, where PPARA and its targets orchestrate carbohydrate metabolism and fatty acid oxidation, the OVE cows had greater glyceroneogenesis (higher mRNA expression of PC and PCK1), whereas CON cows had greater glucose transport (SLC2A4). Administration of TZD increased triacylglycerol concentration and altered expression of carbohydrate- and fatty acid oxidation-related genes in skeletal muscle. Results indicate that overfeeding did not affect insulin sensitivity in nonpregnant, nonlactating dairy cows. The bovine PPARG receptor appears TZD-responsive, with its activation potentially leading to greater adipogenesis and lipogenesis in SAT, while differentially regulating glucose homeostasis and fatty acid oxidation in skeletal muscle. Targeting PPARG via dietary nutraceuticals while avoiding excessive fat deposition might improve insulin sensitivity in dairy cows during times such as the peripartal period when the onset of lactation naturally decreases systemic insulin release and sensitivity in tissues such as AT.
Hernández-Ortega, Martha; Martínez-Fernández, Adela; Soldado, Ana; González, Amelia; Arriaga-Jordán, Carlos M; Argamentería, Alejandro; de la Roza-Delgado, Begoña; Vicente, Fernando
2014-11-01
The possibilities of using high quality pastures in conjunction with total mixed ration (TMR) during the grazing season have been examined. An experiment with sixteen Holstein cows blocked and randomly assigned to four treatments in a factorial arrangement was conducted in order to evaluate the influence of grazing time of day (day or night) and type of silage (maize or Italian ryegrass) included in the TMR of dairy cows grazing 12 h daily on milk yield, composition and fatty acid profile. The silage type had no effect on the dry matter intake, milk yield and fat and protein proportions. However, cows grazing during the night ate more grass than cows grazing during the day (8·53 vs. 5·65 kg DM/d; P<0·05). No differences were seen between grazing-time with respect to milk production, fat and protein contents. However, the proportion of polyunsaturated fatty acid was higher in milk of dairy cows grazing at night-time than grazing at day-time, especially 18:2n-6 (2·37 vs. 2·12 g/100 g FA respectively, P<0·05) and 18:2cis9trans11 (2·08 vs. 1·74 g/100 g FA respectively, P<0·05).
Ruiz-Albarrán, Miguel; Balocchi, Oscar A; Noro, Mirela; Wittwer, Fernando; Pulido, Rubén G
2016-07-01
The aim of this study was to evaluate the effect of herbage allowance (HA) and type of silage supplemented (TS) on milk yield, dry matter intake (DMI) and metabolism of dairy cows in early lactation. Thirty-six Holstein-Friesian dairy cows were allocated to four treatments derived from an arrangement of two HA (LHA = 17 or HHA = 25 kg of DM/cow/day) and two TS (grass (GS) or maize (MS)). Herbage allowance had no effect on DMI or milk yield. Rumen pH and NH3 -N concentration were not affected by HA. The efficiency of microbial protein synthesis in the rumen (microbial protein (MP)) was affected by HA with 21.5 and 23.9 g microbial nitrogen per kg ruminal digestible organic matter for LHA and HHA, respectively (P < 0.05). Supplementation with MS showed higher values of milk yield by 2.4 kg/cow/day (P < 0.001), milk protein content by 0.10 % (P < 0.023) and herbage DMI by 2.2 kg/cow/day, and showed lower values for milk urea compared to GS (P < 0.001). The former results suggest that TS had a greater effect on milk yield, total feed intake and energy intake than increase in herbage allowance; however, increase in HA had greater effects on MP than TS. © 2015 Japanese Society of Animal Science.
Chail, A; Legako, J F; Pitcher, L R; Griggs, T C; Ward, R E; Martini, S; MacAdam, J W
2016-05-01
Consumer liking, proximate composition, pH, Warner-Bratzler shear force, fatty acid composition, and volatile compounds were determined from the LM (longissimus thoracis) of cattle ( = 6 per diet) finished on conventional feedlot (USUGrain), legume, and grass forage diets. Forage diets included a condensed tannin-containing perennial legume, birdsfoot trefoil (; USUBFT), and a grass, meadow brome ( Rehmann; USUGrass). Moreover, representative retail forage (USDA Certified Organic Grass-fed [OrgGrass]) and conventional beef (USDA Choice, Grain-fed; ChGrain) were investigated ( = 6 per retail type). The ChGrain had the greatest ( < 0.05) intramuscular fat (IMF) percentage followed by USUGrain, the IMF percentage of which was greater ( < 0.05) than that of USUGrass and OrgGrass. The IMF content of USUBFT was similar ( > 0.05) to that of both USUGrain and USUGrass. Both grain-finished beef treatments were rated greater ( < 0.05) for flavor, tenderness, fattiness, juiciness, and overall liking compared with USUGrass and OrgGrass. Consumer liking of USUBFT beef tenderness, fattiness, and overall liking were comparable ( > 0.05) with that of USUGrain and ChGrain. Flavor liking was rated greatest ( < 0.05) for USUGrain and ChGrain, and that of USUBFT was intermediate ( > 0.05) to those of ChGrain, USUGrass, and OrgGrass. Cumulative SFA and MUFA concentrations were greatest ( < 0.05) in ChGrain and USUGrain, whereas USUGrass and OrgGrass had lower ( < 0.05) concentrations. Concentrations of cumulative SFA and MUFA in USUBFT were intermediate and similar ( > 0.05) to those of USUGrain and USUGrass. Each forage-finished beef treatment, USUGrass, OrgGrass, and USUBFT, had lower ( < 0.001) ratios of -6:-3 fatty acids. Hexanal was the most numerically abundant volatile compound. The concentration of hexanal increased with increasing concentrations of total PUFA. Among all the lipid degradation products (aldehydes, alcohols, furans, carboxylic acids, and ketones) measured in this study, there was an overall trend toward greater quantities in grain-finished products, lower quantities in USUGrass and OrgGrass, and intermediate quantities in USUBFT. This trend was in agreement with IMF content, fatty acid concentrations, and sensory attributes. These results suggest an opportunity for a birdsfoot trefoil finishing program, which results in beef comparable in sensory quality with grain-finished beef but with reduced -6 and SFA, similar to grass-finished beef.
Infant and child feeding practices: a preliminary investigation.
Wyne, A H; Spencer, A J; Szuster, F S
1997-02-01
The objective of this preliminary investigation was to examine the feeding practices of infants and pre-school children in Adelaide, and thereby contribute to the development of appropriate preventive dental strategies. A stratified random sample of 160 two year old and three year old pre-school children in the Adelaide Statistical District was obtained. Information about feeding practices and use of comforters or 'dummies' was obtained through a self-administered questionnaire completed by parents of the selected children. Information was collected for the age periods of 0-3 months, 4-6 months, 7-12 months, 13-24 months and 25-36 months. Most of the children (81.8 per cent) were breast-fed at some stage. However the percentage of children being breast-fed decreased markedly across age periods, particularly to 13-24 months, when only 15.9 per cent of children were being breast-fed. Over half of the children, had been bottle-fed with infant formula at some stage. The highest percentage of children being bottle-fed with infant formula occurred in the 4-6 months (42.6 per cent) closely followed by the 7-12 months age period (37.4 per cent). Nearly two-thirds of children were bottle-fed with cow's milk at some stage. The highest percentage of children being bottle-fed with cow's milk occurred in the 13-24 months age period (49.6 per cent). A quarter (24.5 per cent) of the children were put to bed at some stage with a bottle containing cariogenic fluids. The majority of children used a 'dummy' at some stage during both day-time and night-time. Parents are in need of advice on appropriate feeding patterns for infants and young children.
NASA Technical Reports Server (NTRS)
Ortiz, R. M.; Worthy, G. A.; Byers, F. M.
1999-01-01
The ability of West Indian manatees (Trichechus manatus) to move between fresh and salt water raises the question of whether manatees drink salt water. Water turnover rates were estimated in captive West Indian manatees using the deuterium oxide dilution technique. Rates were quantified in animals using four experimental treatments: (1) held in fresh water and fed lettuce (N=4), (2) held in salt water and fed lettuce (N=2), (3) acutely exposed to salt water and fed lettuce (N=4), and (4) chronically exposed to salt water with limited access to fresh water and fed sea grass (N=5). Animals held in fresh water had the highest turnover rates (145+/-12 ml kg-1 day-1) (mean +/- s.e.m.). Animals acutely exposed to salt water decreased their turnover rate significantly when moved into salt water (from 124+/-15 to 65+/-15 ml kg-1 day-1) and subsequently increased their turnover rate upon re-entry to fresh water (146+/-19 ml kg-1 day-1). Manatees chronically exposed to salt water had significantly lower turnover rates (21+/-3 ml kg-1 day-1) compared with animals held in salt water and fed lettuce (45+/-3 ml kg-1 day-1). Manatees chronically exposed to salt water and fed sea grass had very low turnover rates compared with manatees held in salt water and fed lettuce, which is consistent with a lack of mariposia. Manatees in fresh water drank large volumes of water, which may make them susceptible to hyponatremia if access to a source of Na+ is not provided.
Ortiz, R M; Worthy, G A; Byers, F M
1999-01-01
The ability of West Indian manatees (Trichechus manatus) to move between fresh and salt water raises the question of whether manatees drink salt water. Water turnover rates were estimated in captive West Indian manatees using the deuterium oxide dilution technique. Rates were quantified in animals using four experimental treatments: (1) held in fresh water and fed lettuce (N=4), (2) held in salt water and fed lettuce (N=2), (3) acutely exposed to salt water and fed lettuce (N=4), and (4) chronically exposed to salt water with limited access to fresh water and fed sea grass (N=5). Animals held in fresh water had the highest turnover rates (145+/-12 ml kg-1 day-1) (mean +/- s.e.m.). Animals acutely exposed to salt water decreased their turnover rate significantly when moved into salt water (from 124+/-15 to 65+/-15 ml kg-1 day-1) and subsequently increased their turnover rate upon re-entry to fresh water (146+/-19 ml kg-1 day-1). Manatees chronically exposed to salt water had significantly lower turnover rates (21+/-3 ml kg-1 day-1) compared with animals held in salt water and fed lettuce (45+/-3 ml kg-1 day-1). Manatees chronically exposed to salt water and fed sea grass had very low turnover rates compared with manatees held in salt water and fed lettuce, which is consistent with a lack of mariposia. Manatees in fresh water drank large volumes of water, which may make them susceptible to hyponatremia if access to a source of Na+ is not provided.
Washburn, S P; White, S L; Green, J T; Benson, G A
2002-01-01
Dairy cows in confinement and pasture-based feeding systems were compared across four spring-calving and three fall-calving replicates for differences in reproduction, mastitis, body weights, and body condition scores. Feeding systems and replicates included both Jersey and Holstein cows. Cows in confinement were fed a total mixed ration, and cows on pasture were supplemented with concentrates and provided baled hay or haylage when pasture supply was limiting. Breeding periods were for 75 d in spring or fall. Reproductive performance did not differ significantly due to feeding system or season. Jerseys had higher conception rates (59.6 vs. 49.5 +/- 3.3%) and higher percentages of cows pregnant in 75 d (78.1 vs. 57.9 +/- 3.9%) than Holsteins. Cows in confinement had 1.8 times more clinical mastitis and eight times the rate of culling for mastitis than did cows on pasture. Jerseys had half as many clinical cases of mastitis per cow as Holsteins. Only 41 +/- 5% of confinement Holsteins remained for a subsequent lactation, starting within the defined calving season compared with 51 +/- 5% of pastured Holsteins and 71 and 72 +/- 5% of Jerseys, respectively. Body weights and condition scores were generally higher for confinement cows than pastured cows, and Jerseys had higher condition scores and lower body weights than Holsteins. In summary, pastured cows had fewer clinical cases of mastitis, lower body condition scores, and lower body weights than confinement cows. Holsteins were less likely to rebreed, had more mastitis, higher culling rates, and lower body condition scores than Jerseys.
Jasmin, Bambi H; Boston, Ray C; Modesto, Rolf B; Schaer, Thomas P
2011-01-01
Little information is available on normal ruminal pH values for domestic sheep (Ovis aries) housed in a research setting and fed a complete pelleted ration. Sheep maintained on pelleted diets undergoing surgical procedures often present with postoperative anorexia and rumen atony. To determine the relationship between diet and postoperative rumen acidosis and associated atony, we studied dietary effects on ruminal pH in an ovine surgical model. Sheep undergoing orthopedic surgical procedures were randomized into 2 diet groups. Group 1 (n = 6) was fed complete pelleted diet during the pre- and postoperative period, and group 2 (n = 6) was fed timothy grass hay exclusively throughout the study. Measures included ruminal pH, ruminal motility, and rate of feed refusal, which was monitored throughout the pre- and postoperative periods. The 2 groups did not differ significantly before surgery, and the ruminal parameters remained largely within normal limits. However, a downward trend in the strength and frequency of rumen contractions was observed in pellet-fed sheep. After surgery, the pellet-fed group showed clinical signs consistent with ruminal acidosis, supported by decreased ruminal motility, anorexia, putrid-smelling ruminal material, and death of ruminal protozoa. Intervention by transfaunation in clinically affected sheep resulted in resolution of signs. Our findings suggest that sheep fed grass hay appear to have a more stable ruminal pH, are less likely to experience anorexia and rumen atony, and thereby exhibit fewer postoperative gastrointestinal complications than do sheep on a pellet diet. PMID:21333159
Jasmin, Bambi H; Boston, Ray C; Modesto, Rolf B; Schaer, Thomas P
2011-01-01
Little information is available on normal ruminal pH values for domestic sheep (Ovis aries) housed in a research setting and fed a complete pelleted ration. Sheep maintained on pelleted diets undergoing surgical procedures often present with postoperative anorexia and rumen atony. To determine the relationship between diet and postoperative rumen acidosis and associated atony, we studied dietary effects on ruminal pH in an ovine surgical model. Sheep undergoing orthopedic surgical procedures were randomized into 2 diet groups. Group 1 (n = 6) was fed complete pelleted diet during the pre- and postoperative period, and group 2 (n = 6) was fed timothy grass hay exclusively throughout the study. Measures included ruminal pH, ruminal motility, and rate of feed refusal, which was monitored throughout the pre- and postoperative periods. The 2 groups did not differ significantly before surgery, and the ruminal parameters remained largely within normal limits. However, a downward trend in the strength and frequency of rumen contractions was observed in pellet-fed sheep. After surgery, the pellet-fed group showed clinical signs consistent with ruminal acidosis, supported by decreased ruminal motility, anorexia, putrid-smelling ruminal material, and death of ruminal protozoa. Intervention by transfaunation in clinically affected sheep resulted in resolution of signs. Our findings suggest that sheep fed grass hay appear to have a more stable ruminal pH, are less likely to experience anorexia and rumen atony, and thereby exhibit fewer postoperative gastrointestinal complications than do sheep on a pellet diet.
Suksombat, Wisitiporn; Nanon, Atitthan; Meeprom, Chayapol; Lounglawan, Pipat
2017-09-01
The effects of essential oils (EOs) on ruminal nutrient disappearance, rumen fermentation and blood metabolites in fistulated non-lactating dairy cows were studied. Four fistulated non-lactaing dairy cows were used in a 4 × 4 Latin square design; the experiment consisted of four periods of 21 days in each period, with the first 14 days for adaptation followed by 7 days of measurement period. Animals were fed 3 kg/day of 21% crude protein (CP) concentrate and ad libitum corn silage. Treatments were: (i) control; (ii) 2 mL Allicin/cow/day; (iii) 2 mL zingiberene/cow/day; and (iv) 2 mL citral/cow/day. The results demonstrated that EOs increased dry matter and neutral detergent fiber degradabilities at 48 and 72 h, but had no effect on acid detergent fiber and CP degradabilities. EOs did not change ruminal pH, ammonia nitrogen, protozoa, volatile fatty acid concentrations and blood glucose but reduced blood urea nitrogen at 4 h. © 2017 Japanese Society of Animal Science.
Xiao, Peizhen; Yang, Zhou; Sun, Jian; Tian, Jingjing; Chang, Zhiguang; Li, Xuexian; Zhang, Baotong; Ye, Yuantu; Ji, Hong; Yu, Ermeng; Xie, Jun
2017-12-01
In this study, two experiments were performed to explore the function of silymarin in adipogenesis in grass carp (Ctenopharyngodon idellus) using in vitro and in vivo models. In experiment 1, differentiated grass carp pre-adipocytes were treated with silymarin for 6 days. Treatment with 100 μg mL -1 silymarin (SM100 group) significantly reduced triglyceride accumulation at day 6. The adipogenic gene expression levels of PPARγ, C/EBPα, SREBP1c, FAS, SCD1, and LPL, and the protein expression level of PPARγ were significantly down-regulated in the SM100 group. Additionally, the SM100 group had significantly lower reactive oxygen species production and reduced glutathione contents compared with the control in vitro. In experiment 2, the juvenile grass carp (mean body weight= 27.4 ± 0.17 g) were fed six isonitrogenous and isocaloric diets in a factorial design containing 0, 100, or 200 mg kg -1 silymarin (SM0, SM100, SM200) associated with either 4 or 8% lipid levels (low lipid, LL, and high lipid, HL, respectively) for 82 days. The results demonstrated that dietary silymarin supplementation significantly reduced the elevated intraperitoneal fat index in grass carp fed with high-lipid diets, and the gene expression of adipogenesis (PPARγ, FAS) when supplemented with dietary silymarin was notably lower than when no silymarin was supplemented under the high-lipid diets. Thus, our data suggest that silymarin suppressed lipid accumulation in grass carp both in vitro and in vivo, and the effect might be due to an influence on the expression of adipogenesis factors and ROS production partly associated with effects on antioxidant capability.
Gauthier, D; Yaouanc, A; Cochaud, J; Mauléon, P
1981-01-01
Two experiments were carried out to assess the influence of undernutrition on postpartum ovulation in nursing Charolais cows after PMSG injection. In each experiment, the nursing cows were divided into 2 groups: one fed at a low nutritional level and the other at a normal nutritional level. In the first experiment, 19 animals were injected on post-partum days 15 and 30 with 600 IU of PMSG; in the second experiment, 34 received the same injection on post-partum day 54 after 9 days of priming with a Norgestomet implant. On post-partum day 15, only one cow in each group ovulated. At post-partum day 30, 1 out of 8 cows at the low nutritional plane ovulated vs 5 out of 9 at the normal nutritional plane (P less than 0.05). Likewise, on post-partum day 54, 5 out of 14 cows at the low nutritional plane ovulated vs 17 out of 17 at the normal nutritional level (P less than 0.05). Therefore, there is a time during the post-partum period when the nursing cow ovary does not respond to PMSG by ovulation. The length of this time is increased by undernutrition.
Deusch, Simon; Camarinha-Silva, Amélia; Conrad, Jürgen; Beifuss, Uwe; Rodehutscord, Markus; Seifert, Jana
2017-01-01
The structure and function of the microbiome inhabiting the rumen are, amongst other factors, mainly shaped by the animal's feed intake. Describing the influence of different diets on the inherent community arrangement and associated metabolic activities of the most active ruminal fractions (bacteria and archaea) is of great interest for animal nutrition, biotechnology, and climatology. Samples were obtained from three fistulated Jersey cows rotationally fed with corn silage, grass silage or grass hay, each supplemented with a concentrate mixture. Samples were fractionated into ruminal fluid, particle-associated rumen liquid, and solid matter. DNA, proteins and metabolites were analyzed subsequently. DNA extracts were used for Illumina sequencing of the 16S rRNA gene and the metabolomes of rumen fluids were determined by 500 MHz-NMR spectroscopy. Tryptic peptides derived from protein extracts were measured by LC-ESI-MS/MS and spectra were processed by a two-step database search for quantitative metaproteome characterization. Data are available via ProteomeXchange with the identifier PXD006070. Protein- and DNA-based datasets revealed significant differences between sample fractions and diets and affirmed similar trends concerning shifts in phylogenetic composition. Ribosomal genes and proteins belonging to the phylum of Proteobacteria, particularly Succinivibrionaceae, exhibited a higher abundance in corn silage-based samples while fiber-degraders of the Lachnospiraceae family emerged in great quantities throughout the solid phase fractions. The analysis of 8163 quantified bacterial proteins revealed the presence of 166 carbohydrate active enzymes in varying abundance. Cellulosome affiliated proteins were less expressed in the grass silage, glycoside hydrolases appeared in slightest numbers in the corn silage. Most expressed glycoside hydrolases belonged to families 57 and 2. Enzymes analogous to ABC transporters for amino acids and monosaccharides were more abundant in the corn silage whereas oligosaccharide transporters showed a higher abundance in the fiber-rich diets. Proteins involved in carbon metabolism were detected in high numbers and identification of metabolites like short-chain fatty acids, methylamines and phenylpropionate by NMR enabled linkage between producers and products. This study forms a solid basis to retrieve deeper insight into the complex network of microbial adaptation in the rumen. PMID:28883813